WO2013160617A2 - Dispositif de recuperation d'energie - Google Patents

Dispositif de recuperation d'energie Download PDF

Info

Publication number
WO2013160617A2
WO2013160617A2 PCT/FR2013/050915 FR2013050915W WO2013160617A2 WO 2013160617 A2 WO2013160617 A2 WO 2013160617A2 FR 2013050915 W FR2013050915 W FR 2013050915W WO 2013160617 A2 WO2013160617 A2 WO 2013160617A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
central compartment
turbine
compartments
upper portion
Prior art date
Application number
PCT/FR2013/050915
Other languages
English (en)
Other versions
WO2013160617A4 (fr
WO2013160617A3 (fr
Inventor
Mathieu Barsacq
Jean-Luc LONGEROCHE
Philippe MAGALDI
Original Assignee
Geps Innov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geps Innov filed Critical Geps Innov
Priority to US14/396,517 priority Critical patent/US9410538B2/en
Publication of WO2013160617A2 publication Critical patent/WO2013160617A2/fr
Publication of WO2013160617A3 publication Critical patent/WO2013160617A3/fr
Publication of WO2013160617A4 publication Critical patent/WO2013160617A4/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/13Geometry two-dimensional trapezial
    • F05B2250/131Geometry two-dimensional trapezial polygonal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention generally relates to the recovery of the energy of movements present on our planet, such as the movements of the sea, earthquakes or moving objects.
  • French Patent FR 2 375 463 already discloses a device for recovering wave energy in the form of electric energy.
  • This device comprises a container:
  • peripheral compartments comprising a plurality of peripheral compartments and a central compartment interposed between a first and a second of said peripheral compartments
  • the installation of the device leads to favoring a predominant direction of wave propagation and reduces the efficiency of the device as soon as the direction of propagation of the wave deviates from this predominant direction.
  • An object of the present invention is to provide a device overcoming all or part of the aforementioned drawbacks.
  • the present invention proposes that an adjustable shutter is disposed substantially at the aforementioned throttling channel formed in the intermediate partition disposed across the central compartment.
  • the level of the mass of liquid in the central compartment and the depression in the throttling channel can be controlled in a relevant manner, thus favoring a suitable "feeding" of the turbine, even if it is arranged near the upper free surface of the central compartment.
  • the adjustable shutter comprises a secondary turbine.
  • the adjustable shutter comprises a diaphragm with movable walls.
  • This shutter adjustment which can therefore be in the form of a diaphragm, is that it is intrinsically adjustable, for example as a flexible and resilient membrane whose opening deforms elastically depending on the flow rate or the pressure exerted on she.
  • reaction time to open or close more or less the throttling channel can then be very fast. Again, coupling with the main turbine is recommended.
  • the invention also relates to a method for recovering, in the form of electrical energy, the energy resulting from oscillation movements.
  • a container containing a liquid of first and second compartments and a central compartment is provided:
  • an intermediate partition which is provided with a channel forming a throat for the passage of liquid from the upper portion to the lower portion
  • first and second valve systems having and at least one side wall where there are first and second valve systems, so that some of said valves, located, at rest, at an elevation level higher than the other valves, pass, during oscillations, of the liquid of the first and second compartments towards the upper portion of the central compartment, said other valves then passing liquid from the lower portion of the central compartment to the first and second compartments,
  • the container is oscillated about at least one axis perpendicular to a central axis of the container, vertical at rest, the liquid then flowing between the first and second compartments via the central compartment:
  • a vortex is created above the choke channel, around the first turbine, which moves its rotating rotor, via the flow vortex.
  • the associated generator thus actuated, in turn produces the electric current that feeds the network.
  • the efficiency of the / each turbine is a function of the speed of the liquid at its periphery and the depth of immersion of its blades.
  • flaps orienting, in the open position, the flow of liquid so as to inject it into the central compartment with a speed tangential to the corresponding lateral wall of the central compartment, with an angle a with respect to the normal N to the side wall of at least 45 °.
  • the liquid will always flow from top to bottom, more particularly from the upper portion to the lower portion, whatever the movements of the container.
  • the turbine will therefore always be driven in the same direction regardless of the direction of flow of the liquid. This will improve the efficiency of the turbine by avoiding the acceleration and deceleration phases.
  • the upper portion of the central compartment also called central tank, forms a buffer tank capable of containing a reserve of liquid ensuring a drive in regular rotation of the turbine.
  • the volume of this upper portion is at least equal to at least one third, preferably at least half the volume of the first or second compartment, more preferably at least equal to the volume of this first or second compartment, each of they pass successively from an upstream situation to a downstream one, depending on the oscillations.
  • the initial energy source is thus generated by the difference in water level between the upstream and downstream compartments.
  • the energy of the initial movement will be found in practice in a large part (4/5) in the kinetic energy stored by the vortex generated in the central compartment.
  • the device may comprise a plurality of turbines, for example two turbines, arranged in the path of the liquid flowing between said first and second compartments.
  • the first valve system and the second valve system are each able to inject the liquid into the upper portion of the central compartment so as to generate the aforementioned vortex, in said upper portion, said central compartment being preferably equipped with at least one turbine with vertical axis of rotation, preferably substantially coincident with the main axis of the container.
  • the vertical axis of rotation of the turbine is understood as oriented according to the terrestrial attraction.
  • the device recovers the potential energy of the liquid, resulting from a difference in water height between the first and second compartments, as described above, as well as the kinetic energy of (almost) the entire mass of liquid that is rotating in the central compartment.
  • the rotational movement of the mass of liquid contained in the upper portion of the central compartment or reservoir results
  • Test results show that the energy transmitted by the flow rate passing through the throttling channel corresponds to about 1/5 of the total energy recovered by the device, most of the energy transmitted, approximately 4/5, is constituted by the kinetic energy of the rotating liquid.
  • the vortex acts as a kind of "hydraulic flywheel", whose movement and speed are maintained by the movement of the container.
  • the rotational movement of the liquid inside the central compartment is a huge energy reserve that allows to "flatten" the flow variations related to the variability of the water level delta. As a result, the turbine experiences less flow variations.
  • the terrestrial device is equipped with elastic return means arranged between the energy recovery device and said terrestrial device to maintain, if necessary, the movements of the energy recovery device.
  • FIG. 1 is a schematic top view of a device according to a first embodiment of the invention, without said first turbine placed in the upper portion of the central compartment;
  • FIG. 2 is a schematic sectional view along a median plane of the device of Figure 1;
  • FIG. 3 is a sectional view along a median plane of a device according to a variant of the first embodiment
  • FIGS. 4A to 4H are views illustrating the operation of the device of FIGS. 1 and 2;
  • FIGS. 5 and 6 are respectively a top view (without said first turbine) and a schematic view along a vertical median plane of a device according to a second embodiment
  • FIGS. 7A and 7B are schematic views of injection valves of the device of FIGS. 5 and 6, respectively in the closed position and in the open position;
  • FIGS. 8A to 8D are schematic views illustrating the operation of the device of FIGS. 5 and 6 (without said first turbine);
  • FIGS. 9 and 10 are respectively a top view (without said first turbine) and a schematic view along a vertical median plane of a device according to a third embodiment
  • FIGS. 11A to 11F are schematic views (without said first turbine) illustrating the operation of the device of FIGS. 9 and 10,
  • FIG. 12 illustrates another variant according to an always schematic vertical section
  • FIGS. 13 and 14 illustrate yet another variant, in vertical and horizontal sections respectively (arrows XIV-XIV), again schematic,
  • FIGS. 15, 16 schematize, respectively in horizontal and vertical sections (section XVI-XVI), a solution with intermediate buffer compartment (s), which can be (each if there is one) several superimposed) in the manner of a water distribution torus.
  • the invention will be described in the context of a wave energy recovery device without it being possible to see any limitation of the scope of the invention to this type of energy.
  • the device is applicable for the recovery of energy from any moving body. It is also applicable for the recovery of vibratory energy from seismic shaking.
  • the general principle of the device of the invention consists in transforming the kinetic energy of a solid into non-uniform rotation or oscillation movement around one or more axes in potential energy of a liquid by transforming the movement of the solid. in a height of liquid.
  • This potential energy of the liquid is then transformed, by a quasi-continuous flow on a turbine coupled to an alternator, into an electrical energy.
  • This electrical energy is then transmitted to the electrical network or stored in a form that can be exploited later.
  • the device comprises a container 1 comprising a central compartment 11 comprising a main axis A and eight peripheral compartments 12 x to 12 8 arranged all around the central compartment.
  • the peripheral compartments are arranged in pairs around the central compartment, the two compartments of each pair being arranged symmetrically with respect to the main axis A.
  • the container also comprises, in the lower part, a box 20 filled with air and sealed with water. water serving as a float to maintain the container on the surface of the sea.
  • the axis A is here vertical, device at rest.
  • the central compartment and the peripheral compartments contain liquid F. This liquid is able to circulate between the peripheral compartments passing through the central compartment when the container oscillates or pivots about at least one axis perpendicular to the axis A.
  • the central compartment and the peripheral compartments are closed vis-à-vis the outside: if they communicate with each other, they do not communicate with the outside. At sea, water does not enter the passage of the waves.
  • the central compartment is separated between an upper portion 11a and a lower portion 11b, via a partition or transverse intermediate wall 11c where a throttling is defined.
  • a main turbine 313 is disposed in the upper portion 11a of the central compartment, preferably. This turbine is disposed in the path of the liquid flowing between the peripheral compartments. It is coupled to an alternator 22 (FIG. 2) to produce electrical energy when the turbine is driven by the liquid circulating in the central compartment. 2, but also figs.6,10,12, this main turbine 313 is disposed at the free surface of the central compartment, allowing high efficiency.
  • Non-return valve systems are provided in the inner wall of the peripheral compartments, between these peripheral compartments and the central compartment. These non-return valves are referenced 14, 15, 16 and 17 for the peripheral compartments 12 7 and 12 3 .
  • the valves 14 and 16 are arranged at the level of the upper portion, referenced l ia, the central compartment 11 and the valves 15 and 17 are disposed at the lower portion, referenced 11b, the central compartment.
  • the non-return valves 14 and 17 are designed to respectively pass liquid from the compartment 12 7 to the central compartment 11 and the central compartment 11 to the compartment 12 3 .
  • the non-return valves 16 and 15 are provided for respectively passing liquid from the compartment 12 3 to the central compartment 11 and the central compartment 11 to the compartment 12 7 .
  • the turbine 313 is thus immersed in an area of the central compartment intermediate between its top 110 (top of its upper portion 11a) and its bottom 120 (bottom of its lower portion 11b), so that when liquid flows from the upper portion to the lower portion under the effect of gravity, said liquid causes said turbine to rotate.
  • the intermediate partition 11c has a channel 18 of reduced section relative to the (horizontal) section of the portions 11a and 11b.
  • this channel 18 defines a throat for passage of the liquid from the upper portion 11a to the lower portion. It is here coaxial with the axis of rotation of the turbine 313. This axis is here aligned with the central axis A and is vertical, container at rest, as fig.2 for example.
  • a secondary turbine 13 is disposed at the location of the channel 18.
  • FIG. 3, the axis of the secondary turbine 13 could, alternatively, be perpendicular to the axis A. The turbine would then be rotated by 90 ° with respect to the diagram .
  • the secondary turbine 13 is connected to an alternator 220. This principle is also valid for the other variants concerned.
  • the central compartment is advantageously equipped, at the location of the intermediate partition 11c, with a convergent 19 disposed upstream of the channel 18 to direct the liquid coming from the upper portion 11a to the channel 18. It also advantageously comprises a divergent 21, arranged downstream of the channel 18, for the efficiency of the turbine according to the principle of conservation of the masses.
  • a diverging 25 may be provided at the outlet of the channel, downstream of the turbine.
  • FIGS. 4H The operation of the device of FIGS. 1 and 2, when it is subjected to the actions of the swell, is described with reference to FIGS. 4H.
  • the container 1 oscillates about an axis parallel to the direction of propagation of the swell.
  • the non-return valves 14 to 17 are controlled by opening / closing and / or flow through a control loop to maintain a permanent flow of liquid between the upper portion 11a and the lower portion 11b.
  • This allows the turbines to operate continuously in a range of speed and pressure for which it was designed.
  • This control loop can also act on the pitch of the turbine to adapt to the flow of liquid transferred between compartments.
  • the regulation loop acts on the opening level of the diaphragms of the non-return valves and possibly on the pitch of the turbine according to a plurality of input parameters among the following parameters:
  • Figures 5 and 6 illustrate a device according to a second embodiment designed.
  • the device comprises, as before, a container 101 comprising a central reservoir or compartment 111 of main axis A, with four planes of symmetry, and eight reservoirs or peripheral compartments 112 1 to 112 8 .
  • the central compartment comprises an upper portion 111a and a lower portion 111b, delimited by an intermediate wall 111c horizontal.
  • the main axis A In its stable initial position, the main axis A is vertical, the liquid levels in the peripheral compartments and the central compartment are identical. The upper portion forms a buffer tank.
  • a secondary turbine 13, of vertical axis of rotation, is still disposed in the central compartment at a central discharge orifice or central duct 118, its axis of rotation coinciding with the main axis A. Above again found the main turbine 313 mounted as before (see fig.6).
  • the valve systems mounted on the side wall 130 comprise so-called injection valves 114, 116 making it possible to inject the liquid from the peripheral compartments into the upper portion 111a of the central compartment, so as to generating and maintaining a vortex V in said upper portion, and so-called lower valves 115, 117 for transferring the liquid from the lower portion 111b of the central compartment to the peripheral compartments.
  • each injection valve 114 comprises three valves 114a each pivotally mounted about a vertical axis.
  • the valves each ensure the opening and closing of the orifice concerned between the peripheral compartment in question and the central compartment, as well as the orientation of the flow of liquid to generate and maintain the aforementioned vortex.
  • the lower valves 115, 117 are formed of simple check valves mounted at an opening or pipe of the side wall of the lower portion.
  • FIGS. 8A to 8D illustrate different phases of a sinusoidal oscillation cycle of period T, in the case of a cycle corresponding to a movement consisting of a rotation around the X axis and a rotation around the Y axis, of the same amplitude and the same period, but in phase shift of T / 4.
  • all the peripheral compartments are used for the transfer of liquid.
  • the compartment 7 112 is the left side of the container
  • the compartment 112 3 is the right side
  • the 112i compartment is at the front of the container
  • the compartment 5 is 112 at the rear of the container .
  • the device is advantageously duplicated on several levels.
  • FIGS. 9 and 10 illustrate a device according to a third embodiment according to the invention comprising pairs of Peripheral compartments vertically offset on three levels or floors.
  • the device comprises, as before, a container 201 comprising a central reservoir or compartment 211 of main axis A, with four planes of symmetry, and three stages of eight tanks or peripheral compartments. On each floor, the peripheral compartments are arranged around the central compartment.
  • the central compartment comprises an upper portion 211a and a lower portion 211b, delimited by an intermediate wall 211c.
  • the upper portion 211a forms a buffer tank, whose volume is at least equal to the volume of each peripheral compartment.
  • the intermediate wall has the central discharge orifice or central conduit 218, substantially at which is once again mounted a secondary turbine 213 forming a variable shutter. Its axis of rotation was chosen vertical. Above, we find again the main turbine 313; see fig.10.
  • Each injection system 214, 216 is formed of a deflector mounted fixed on the side wall, at an opening of the side wall, so as to create a rotational movement of the liquid in the clockwise direction, such as 9.
  • the lower valves 215, 217 are formed of non-return valves mounted at an opening or pipe of the side wall of the lower portion.
  • the type 3-way valves and the lower valves are controlled in opening and closing, depending on the oscillation movements of the container.
  • the central compartment is always full to allow the transfer of liquid between the lower, middle and upper peripheral compartments.
  • FIGS. 11A to 11F illustrate different phases of a sinusoidal oscillation cycle of period T, in the case of a simple cycle corresponding to a rotation movement around the X axis
  • the upper liquid supply valves 14, 16, 114, 116, 214, 216 in the central compartment may be situated laterally at the level (in elevation) of the main turbine 313, or even lower (FIG. .6, 10).
  • the first turbine 313 coupled to its alternator 22 is disposed in the upper portion of the central compartment 311, in the intermediate zone thereof.
  • the channel 318 again defines, in the transverse partition 311c, the liquid flow throat from the upper portion 31a of the compartment 311 to its lower portion 31b.
  • the (at least two) peripheral compartments communicate with the central compartment, via the valve systems 314-317 which, mounted at two different levels of elevation. place of the side wall 330 are, as already explained, communicate with each other, respectively central and lateral compartments 311 312 312 4 l 5 (at least).
  • the throttling channel 318 (or each flow passage of this channel, if it is made in several sub-channels as Figure 13) is intrinsically adjusted, for example as a flexible and elastic membrane whose opening, or flow passage of liquid to the lower portion (such 311b) of the central compartment (such 311) elastically deforms depending on the flow rate or the pressure exerted on it.
  • the adjustable shutter 13,113,213,333 and / or, on the intermediate partition, the channel 18, 118 ... 318 is (are) located (s) away from the axis of rotation of the first turbine 313.
  • the turbines 413 of the central compartment are coupled to an alternator.
  • they are oriented, container 401 at rest (thus vertical axis A), substantially horizontally, and especially at two different radial distances from the central axis A, while the throttle channel 318 is centered along this axis A.
  • These turbines will therefore see moving liquid particles of the same rotational movement, but having different speeds with respect to each other.
  • channel used should not be limited to a conduit or conduit. As shown in particular FIGS. 6, 10, 12, 13, it can be limited to a simple reduced section of passage formed in a thin wall. What he qualifies is a throttled passage or diaphragm of liquid flow.
  • the device further comprises at least one intermediate chamber 510,511 for distributing the transferred liquid interposed between:
  • peripheral compartments 515a, 515b, ... 515f from which said intermediate chamber is separated by the side wall 516 and with several of which it communicates by at least some of the valve systems 517a, 517b, ... 517f which can also be concomitantly open for those who supply liquid to the intermediate chamber (see 517b, 517c Figure 15) at the moment considered, while the device is inclined / oscillates.
  • the intermediate chambers 510,511 are superimposed.
  • the upper chamber 511 can communicate with that 510 from below by valves 529, preferably then controlled at the opening and closing.
  • valves 529 preferably then controlled at the opening and closing.
  • the (each) intermediate chamber 510,511 is closed on itself around the central compartment and can communicate with all the valve systems and / or all openings or passages 513a, 513b, ... 513f above.
  • openings or passages may consist of tubes permanently open, passing through the inner side wall 521 which separates the intermediate chamber 510,511 from the central compartment 512 and each oriented at an angle to promote the vortex as already mentioned and illustrated in FIG. 15 (substantially tangential feed) .
  • the valve systems 517a, 517b, ... 517f may consist of check valves ensuring liquid flow in only one direction (see Figure 16). They can be unmanned, so open and / or close under the sole solicitation of the liquid circulating between the ballasts concerned and the intermediate chamber 510.
  • the (each) intermediate chamber (which could be called pressurized water injection core) will have a vertical succession of levels.
  • the intermediate chamber 510 is in the form of a buffer tank between the upstream ballasts (in Example 515b, 515c) and the central compartment or basin 512.
  • the valve systems 517a, 517b, ... and the injectors (105) are decoupled: as soon as a liquid load height exists (when tilting as in FIG. 16), the pressure causes the valve systems 517a, 517b to open. , ..., concerned and the liquid passes through the intermediate chamber 510 where it is distributed so that it flows then in the central compartment by at least one, and a priori several, openings or passages 513a, 513b, ... 513f, as illustrated. Arrived at the bottom throttle 523 formed in the intermediate transverse wall 525 which separates the respective upper 512a and lower 512b portions of the central compartment.
  • the lower part 512b (may) extends (re) peripherally beyond the vertical of the partition 521 of the central compartment, and as here up to the intermediate chamber 510 and the peripheral compartments such as 515a, 515e.
  • a series of check valves 527 is disposed between the portion 525 and each of the peripheral compartments 515a, 515b, ... 515f.
  • Each check valve 527 can open to let the liquid in the portion 525 pass from that part to the relevant peripheral compartments, at a time L of the current movements, and closes to prevent traffic in the opposite direction.
  • the 527 check valves could be controlled to open and close.
  • the level of liquid in at least one of the upstream ballasts is higher than that of the other upstream ballasts.
  • the intermediate chamber which always contains liquid in transit, is in contact via the non-return valves 517a, 517b, ... with preferably all the upstream ballasts, and therefore at the instant t at the pressure of the ballast the most high.
  • the design of the system as a whole makes it exist in Permanently an upstream ballast whose liquid height is equal to or greater than that of the basin / central compartment 512.
  • the intermediate chamber is found in "overpressure" compared to the basin / central compartment.
  • valve 517a is then open and the flow is therefore naturally made by a large number of or all of the passages 513a, 513b, ... at the same time, resulting in an effective performance of the flow at time t, since the injection in the basin / central compartment 510 is "multi-point".
  • the ballast 515c is partially emptied, the movement has continued and generates a maximum absolute maximum water level in another ballast (adjacent compartment, 515b for example).
  • valve 517c is then closed, while the adjacent valve 517b opens, putting the intermediate chamber 510 at the pressure of the ballast 515b in the example and the flow continues through a significant number of, or all of , passages 513a, 513b, ...
  • the device in question will play both the role of buoyancy support for all of the functions described below and temporary storage of energy (in the intermediate chamber (s) 510,511) in the form of a volume of water (101) located in elevation relative to the kinetic energy pool (central compartment 510).
  • ballasts / peripheral compartments such as 515a ... 515e ... will not work in a single pair between an upstream ballast / a downstream ballast.
  • a device for recovering the energy of movements in the form of electrical energy comprising:
  • valve systems (517a, 517b, ...) disposed at the location of said side wall and each located to transfer liquid from one of the peripheral compartments to the upper portion of the central compartment and the lower portion of the central compartment to at least one other of said peripheral compartments, when the container is inclined, the central compartment comprising an upper portion (512a) and a lower portion (512b) separated by an intermediate partition (525) provided with a channel forming a constriction passage of the liquid from the upper portion to the lower portion,
  • the intermediate chamber be closed around itself around the central compartment and be able to communicate with all valve systems and / or all openings. Also provided is a method for recovering, in the form of electrical energy, oscillating motion energy, the method comprising steps wherein:
  • a container containing a liquid (F) is provided with a plurality of peripheral compartments (515a ... 515e ...) and a central compartment (512)
  • an intermediate partition which is provided with a channel (523) forming a throat for the passage of liquid from the upper portion to the lower portion,
  • the vessel is oscillated so that, during oscillations, some of said valves, located at a higher elevation level than other valves, pass liquid from a portion of the peripheral compartments to the upper portion of the central compartment, other of these said valves passing liquid from the lower portion of the central compartment to other of the peripheral compartments, the liquid (F) then flowing through the central compartment where it drives in rotation a turbine (519),

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

La présente invention concerne un dispositif de récupération d'énergie comprenant un compartiment central (11) dans lequel est disposée une turbine (313) et interposé entre au moins des premier et deuxième compartiments (123,127). Via des systèmes latéraux de vannes (14...17) et un canal d'étranglement central (18) du liquide transite entre les compartiments. Une particularité est que sensiblement au niveau du canal d'étranglement est disposé un obturateur réglable (13). Il peut s'agir d'une seconde turbine qui régule les pertes de charge et permet de gaver la turbine principale (313) située au-dessus, dans le vortex.

Description

DISPOSITIF DE RECUPERATION D'ENERGIE
La présente invention concerne, de façon générale, la récupération de l'énergie de mouvements présents sur notre planète, tels que les mouvements de la mer, les secousses sismiques ou les mouvements d'objets mobiles.
On connaît déjà, par le brevet Français FR 2 375 463, un dispositif permettant de récupérer l'énergie de la houle sous forme d'énergie électrique. Ce dispositif comprend un récipient :
- comprenant plusieurs compartiments périphériques et un compartiment central interposé entre un premier et un deuxième desdits compartiments périphériques,
- présentant un axe principal vertical au repos, et au moins une paroi latérale interposée entre plusieurs des compartiments périphériques et le compartiment central,
- apte à osciller autour d'au moins un axe perpendiculaire audit axe principal sous l'effet desdits mouvements, et
- contenant un liquide qui, lorsque le récipient oscille, circule entre les premier et deuxième compartiments via le compartiment central,
- et renfermant au moins une première turbine couplée à un alternateur.
Parmi les problèmes existants, on note ce qui suit :
- le liquide se déplace d'un compartiment A vers un compartiment B puis du compartiment B vers le compartiment A; pour obtenir un rendement correct, il est nécessaire de prévoir deux turbines, à savoir une pour chaque sens d'écoulement, ces deux turbines pouvant être disposées dans le même canal inférieur;
- l'installation du dispositif amène à privilégier une direction de propagation de houle prédominante et réduit le rendement du dispositif dès que la direction de propagation de la houle s'écarte de cette direction prédominante.
- des problèmes de rendement de turbine, en liaison avec les pertes de charge créées et le contrôle de la masse de liquide en circulation, en particulier.
Un but de la présente invention est de proposer un dispositif palliant toute ou partie des inconvénients précités. A cet effet, la présente invention propose qu'un obturateur réglable soit disposé sensiblement au niveau du canal d'étranglement précité ménagé dans la cloison intermédiaire disposée en travers du compartiment central.
De cette manière, on pourra contrôler de façon pertinente le niveau de la masse de liquide dans le compartiment central et la dépression dans le canal d'étranglement, favorisant ainsi un « gavage » adapté de la turbine, y compris si elle est disposée près de la surface libre supérieure du compartiment central.
Selon un mode de réalisation, on peut prévoir que l'obturateur réglable comprenne une turbine secondaire.
Celle-ci assurera alors (au moins une part notable de) la perte de charge précitée. On recommande de la coupler avec la turbine principale, pour donc gaver cette dernière de préférence en permanence. Un contrôle électronique de sa charge sera préféré.
En complément, ou préférentiellement en alternative, il est prévu que l'obturateur réglable comprenne un diaphragme à parois mobiles.
Une solution pour réaliser cet obturateur réglage, qui peut donc être sous forme de diaphragme, est qu'il se règle intrinsèquement, par exemple comme une membrane souple et élastique dont l'ouverture se déforme élastiquement en fonction du débit ou de la pression exercée sur elle.
Le temps de réaction pour ouvrir ou fermer plus ou moins le canal d'étranglement peut alors être très rapide. La encore, on recommande un couplage avec la turbine principale.
Même si, dispositif, et donc récipient, au repos, on prévoit une installation avec une première turbine tournant, dans la portion supérieure du compartiment central, autour d'un axe vertical central, avec, sous elle, un canal d'étranglement coaxial, on prévoit aussi, avec alors une possibilité de prendre en compte certaines spécificités opérationnelles (mer avec certaines houles ou vents particuliers...) que ledit canal et/ou l'obturateur réglable soi(en)t situé(s) à l'écart de l'axe de rotation de la première turbine.
Ceci pourra être le cas notamment si l'on dispose une ou plusieurs (premières) turbines immergées, de type hydroliennes, dans le courant du vortex de ladite portion supérieure du compartiment central. Sous un autre aspect, l'invention concerne également un procédé pour récupérer, sous forme d'énergie électrique, de l'énergie issue de mouvements d'oscillations.
Selon ce procédé, sont prévues les étapes suivantes :
- on pourvoit un récipient contenant un liquide de premier et deuxième compartiments et d'un compartiment central :
* interposé entre eux,
* entre une portion supérieure et une portion inférieure duquel on interpose une cloison intermédiaire que l'on pourvoit d'un canal formant un étranglement de passage du liquide de la portion supérieure à la portion inférieure,
* dans la portion supérieure duquel on dispose au moins une première turbine couplée à un alternateur,
* présentant et au moins une paroi latérale où l'on dispose un premier et un deuxième systèmes de vannes, de sorte que certaines desdites vannes, situées, au repos, à un niveau d'élévation supérieur aux autres vannes, font passer, lors des oscillations, du liquide des premier et deuxième compartiments vers la portion supérieure du compartiment central, lesdites autres vannes faisant alors passer du liquide de la portion inférieure du compartiment central vers les premier et deuxième compartiments,
- sous l'effet desdits mouvements, on fait osciller le récipient autour d'au moins un axe perpendiculaire à un axe central du récipient, vertical au repos, le liquide circulant alors entre les premier et deuxième compartiments, via le compartiment central :
* où il entraîne en rotation la turbine,
* et dans la portion supérieure duquel on crée un mouvement rotationnel du liquide tel que les particules de ce liquide ont des vitesses différentes les unes par rapport aux autres, à des distances radiales différentes par rapport à l'axe central précité.
Ainsi, on emmagasinera dans le compartiment central une énorme énergie disponible pour la première turbine.
Un tourbillon se crée au-dessus du canal d'étranglement, autour de la/des première turbine, qui remue leur rotor tournant, via l'écoulement tourbillonnaire. Le générateur associé, ainsi actionné, produit à son tour le courant électrique qui alimente le réseau. L'efficacité de la/chaque turbine est fonction de la vitesse du liquide à sa périphérie et de la hauteur d'immersion de ses pales.
Pour favoriser ou entretenir la vorticité créée autour, et au niveau de la turbine concernée, on recommande :
- de piloter en ouverture/fermeture et/ou en débit, par une boucle de régulation, au moins les vannes « hautes » qui font passer du liquide des premier et deuxième compartiments vers la portion supérieure du compartiment central,
- et/ou de les pourvoir de volets orientant, en position ouverte, le flux de liquide de sorte à l'injecter dans le compartiment central avec une vitesse tangentielle à la paroi latérale correspondante du compartiment central, avec un angle a par rapport à la normale N à la paroi latérale d'au moins 45°.
Dans le compartiment central, le liquide circulera toujours du haut vers le bas, plus particulièrement de la portion supérieure vers la portion inférieure, quels que soient les mouvements du récipient. La turbine sera donc toujours entraînée dans le même sens quel que soit le sens de circulation du liquide. Ceci améliorera le rendement de la turbine en évitant les phases d'accélération et de décélération.
La portion supérieure du compartiment central, appelée également cuve centrale, forme une cuve tampon propre à contenir une réserve de liquide garantissant un entraînement en rotation régulier de la turbine.
Le volume de cette portion supérieure est au moins égale à au moins égale à un tiers, de préférence au moins égale à la moitié du volume du premier ou deuxième compartiment, mieux encore au moins égale au volume de ce premier ou deuxième compartiment, chacun d'eux passant successivement d'une situation amont (haut) à aval (bas), en fonction des oscillations.
La source d'énergie initiale est ainsi générée par la différence de hauteur d'eau entre les compartiments amont (haut) et aval (bas).
L'énergie du mouvement initial se retrouvera en pratique en très grande partie (4/5) dans l'énergie cinétique emmagasinée par le tourbillon généré dans le compartiment central. Le dispositif peut comprendre une pluralité de turbines, par exemple deux turbines, disposées sur le trajet du liquide circulant entre lesdits premier et deuxième compartiments.
Selon une particularité, le premier système de vannes et le deuxième système de vannes sont chacun aptes à injecter le liquide dans la portion supérieure du compartiment central de manière à engendrer le vortex précité, dans ladite portion supérieure, ledit compartiment central étant de préférence équipé d'au moins une turbine à axe de rotation vertical, de préférence sensiblement confondu avec l'axe principal du récipient.
L'axe de rotation vertical de la turbine se comprend comme orienté suivant l'attraction terrestre.
Dans ce mode de réalisation, le dispositif récupère l'énergie potentielle du liquide, résultant d'une différence de hauteur d'eau entre les premier et deuxième compartiments, tel que décrit précédemment, ainsi que l'énergie cinétique de (quasiment) toute la masse de liquide qui est en rotation dans le compartiment central. La mise en mouvement de rotation de la masse de liquide contenue dans la portion supérieure du compartiment ou réservoir central résulte
- de l'injection d'eau des compartiments périphériques par différence de hauteur d'eau,
- du mouvement rotatif du liquide dans le compartiment central généré par les mouvements du récipient, et
- de l'évacuation de l'eau par le canal d'étranglement, avec différence de pression entre le compartiment central et les compartiments périphériques.
Des résultats d'essais montrent que l'énergie transmise par le débit qui passe à travers le canal d'étranglement correspond à environ 1/5 de l'énergie totale récupérée par le dispositif, la plus grande partie de l'énergie transmise, environ les 4/5, est constitué par l'énergie cinétique du liquide en rotation. Ainsi, une grande partie de l'énergie cinétique du liquide en rotation provient directement des mouvements du récipient. Le vortex agit comme une sorte de "volant d'inertie hydraulique", dont le mouvement et la vitesse sont entretenus par le mouvement du récipient. Le mouvement en rotation du liquide à l'intérieur du compartiment central est une énorme réserve d'énergie qui permet d'" aplatir" les variations de débit liées à la variabilité du delta de hauteur d'eau. De ce fait, la turbine subit moins les variations de débit.
Avantageusement, le dispositif terrestre est équipé de moyens de rappel élastique disposés entre le dispositif de récupération d'énergie et ledit dispositif terrestre pour entretenir, si nécessaire, les mouvements du dispositif de récupération d'énergie.
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, en se référant ci-dessous aux dessins annexés, lesquels :
- la figure 1 est une vue schématique de dessus d'un dispositif selon un premier mode de réalisation de l'invention, sans ladite première turbine placée en portion supérieure du compartiment central ;
- la figure 2, est une vue schématique en coupe selon un plan médian du dispositif de la figure 1 ;
- la figure 3 est une vue en coupe selon un plan médian d'un dispositif selon une variante du premier mode de réalisation ;
- les figures 4A à 4H sont des vues illustrant le fonctionnement du dispositif des figures 1 et 2 ;
- les figures 5 et 6 sont respectivement une vue de dessus (sans ladite première turbine) et une vue schématique selon un plan médian vertical d'un dispositif selon un deuxième mode de réalisation ;
- les figures 7A et 7B sont des vues schématiques de vannes d'injection du dispositif des figures 5 et 6, respectivement en position fermée et en position ouverte ;
- les figures 8A à 8D sont des vues schématiques illustrant le fonctionnement du dispositif des figures 5 et 6 (sans ladite première turbine);
- les figures 9 et 10 sont respectivement une vue de dessus (sans ladite première turbine) et une vue schématique selon un plan médian vertical d'un dispositif selon un troisième mode de réalisation ;
- les figures 11A à 11F sont des vues schématiques (sans ladite première turbine) illustrant le fonctionnement du dispositif des figures 9 et 10,
- la figure 12 illustre une autre variante suivant une coupe verticale toujours schématique, - les figures 13 et 14 illustrent encore une autre variante, suivant des coupes respectivement verticale et horizontale (flèches XIV-XIV), à nouveau schématiques,
- et les figures 15,16 schématisent, respectivement en coupes horizontale et verticale (coupe XVI-XVI), une solution à compartiment(s) tampon intermédiaire(s) , qui peu(ven)t être (chacun s'il y en a plusieurs superposés) à la manière d'un tore de répartition d'eau.
L'invention sera décrite dans le cadre d'un dispositif de récupération de l'énergie de la houle sans qu'on puisse y voir une quelconque limitation de la portée de l'invention à ce type d'énergie. Le dispositif est applicable pour la récupération de l'énergie issue de tout corps en mouvement. Il est aussi applicable pour la récupération de l'énergie vibratoire issue de secousses sismiques.
Le principe général du dispositif de l'invention consiste à transformer l'énergie cinétique d'un solide en mouvement de rotation ou d'oscillation non uniforme autour d'un ou plusieurs axes en énergie potentielle d'un liquide en transformant le mouvement du solide en une hauteur de liquide. Cette énergie potentielle du liquide est ensuite transformée, par un écoulement quasi-continu sur une turbine couplée à un alternateur, en une énergie électrique. Cette énergie électrique est ensuite transmise au réseau électrique ou stockée sous une forme exploitable ultérieurement.
Un premier mode de réalisation imaginé est représenté schématiquement aux figures 1 et 2.
En référence à ces figures, le dispositif comprend un récipient 1 comportant un compartiment central 11 comprenant un axe principal A et huit compartiments périphériques 12x à 128 disposés tout autour du compartiment central. Les compartiments périphériques sont disposés par couple autour du compartiment central, les deux compartiments de chaque couple étant disposés symétriquement par rapport à l'axe principal A. Le récipient comporte également, en partie inférieure, un caisson 20 rempli d'air et étanche à l'eau servant de flotteur pour maintenir le récipient à la surface de la mer. L'axe A est ici vertical, dispositif au repos.
Le compartiment central et les compartiments périphériques contiennent du liquide F. Ce liquide est apte à circuler entre les compartiments périphériques en passant par le compartiment central lorsque le récipient oscille ou pivote autour d'au moins un axe perpendiculaire à l'axe A.
Le compartiment central et les compartiments périphériques sont fermés vis-à-vis de l'extérieur : s'ils communiquent entre eux, ils ne communiquent pas avec l'extérieur. En mer, de l'eau n'y entre pas au passage des vagues.
Le compartiment central est séparé entre une portion supérieure l ia et une portion inférieure 11b, via une cloison ou paroi intermédiaire transversale 11c où est défini un étranglement.
Une turbine principale 313 est disposée dans la portion supérieure l ia du compartiment central, de préférence. Cette turbine est disposée sur le trajet du liquide circulant entre les compartiments périphériques. Elle est couplée à un alternateur 22 (figure 2) pour produire de l'énergie électrique lorsque la turbine est entraînée par le liquide circulant dans le compartiment central. Figure 2, mais également figs.6,10,12, cette turbine principale 313 est disposée à la surface libre du compartiment central, permettant un rendement élevé.
Des systèmes de vannes anti-retour sont prévus dans la paroi intérieure des compartiments périphériques, entre ces compartiments périphériques et le compartiment central. Ces vannes anti-retour sont référencées 14, 15, 16 et 17 pour les compartiments périphériques 127 et 123. Les vannes 14 et 16 sont disposées au niveau de la portion supérieure, référencée l ia, du compartiment central 11 et les vannes 15 et 17 sont disposées au niveau de la portion inférieure, référencée 11b, du compartiment central.
Les vannes anti-retour 14 et 17 sont prévues pour respectivement laisser passer du liquide du compartiment 127 vers le compartiment central 11 et du compartiment central 11 vers le compartiment 123. A l'inverse, les vannes anti-retour 16 et 15 sont prévues pour respectivement laisser passer du liquide du compartiment 123 vers le compartiment central 11 et du compartiment central 11 vers le compartiment 127.
La turbine 313 est ainsi immergée, dans une zone du compartiment central intermédiaire entre son sommet 110 (haut de sa portion supérieure l ia) et son fond 120 (bas de sa portion inférieure 11b), de sorte que, lorsque du liquide circule de la portion supérieure vers la portion inférieure sous l'effet de la gravité, ledit liquide entraine en rotation ladite turbine.
La cloison intermédiaire 11c présente un canal 18 de section réduite par rapport à la section (horizontale) des portions l ia et 11b. Ainsi, ce canal 18 définit un étranglement de passage du liquide de la portion supérieure l ia à la portion inférieure. Il est ici coaxial à l'axe de rotation de la turbine 313. Cet axe est ici aligné avec l'axe central A et est donc vertical, récipient au repos, comme fig.2 par exemple.
Une turbine secondaire 13 est disposée à l'endroit du canal 18. Figure 3, l'axe de la turbine secondaire 13 pourrait, en alternative, être perpendiculaire à l'axe A. La turbine serait alors pivotée de 90° par rapport au schéma.
On conseille de coupler électroniquement par la liaison 315 les variations de charge qui pilotent les turbines principale et secondaire. On pourrait imaginer un couplage mécanique des deux turbines par des boîtes de vitesses.
La turbine secondaire 13 est reliée à un alternateur 220. Ce principe est également valable pour les autres variantes concernées.
Par variation de la vitesse de rotation de cette turbine secondaire, on pourra obtenir une obturation réglable de ce canal. L'évacuation centrée, avec cette turbine dont on contrôlera la charge électroniquement, en couplage avec la turbine principale, ici 313, permettra de gaver cette dernière en permanence, par régulation de la perte de charge. L'axe de rotation de la turbine secondaire 13 est ici placé sur l'axe A.
Le compartiment central est avantageusement équipé, à l'endroit de la cloison intermédiaire 11c, d'un convergent 19 disposé en amont du canal 18 pour diriger le liquide provenant de la portion supérieure l ia vers le canal 18. Il comprend également avantageusement un divergent 21, disposé en aval du canal 18, pour le rendement de la turbine selon le principe de conservation des masses.
Un divergent 25 peut être prévu à la sortie du canal, en aval de la turbine.
Le fonctionnement du dispositif des figures 1 et 2, lorsqu'il est soumis aux actions de la houle, est décrit en référence aux figures 4A à 4H. Dans ces figures, le récipient 1 oscille autour d'un axe parallèle à la direction de propagation de la houle.
Selon un mode de réalisation préféré, les vannes anti-retour 14 à 17 sont pilotées en ouverture/fermeture et/ou en débit par une boucle de régulation pour maintenir une circulation permanente de liquide entre la portion supérieure l ia et la portion inférieure 11b. Cela permet aux turbines de fonctionner de manière continue dans une fourchette de vitesse et de pression pour laquelle elle a été conçue. Cette boucle de régulation peut également agir sur le pas de la turbine pour s'adapter au débit de liquide transféré entre compartiments.
La boucle de régulation agit sur le niveau d'ouverture des diaphragmes des vannes anti-retour et éventuellement sur le pas de la turbine en fonction d'une pluralité de paramètres d'entrée parmi les paramètres suivants:
- les hauteurs d'eau dans les différents compartiments,
- l'angle du récipient selon l'axe Ox (gîte) et/ou l'axe Oy (assiette) et/ou l'axe Oz (lacet);
- la période de la houle et/ou la période de roulis et/ou la période de tangage;
- l'accélération selon les axes Ox, Oy et Oz;
- la puissance captée par la turbine;
- des paramètres de stabilité du récipient;
- la puissance électrique instantanée en sortie d'alternateur;
- la puissance disponible.
Les figures 5 et 6 illustrent un dispositif selon un deuxième mode de réalisation imaginé. Le dispositif comprend comme précédemment un récipient 101 comportant un réservoir ou compartiment central 111 d'axe principal A, avec quatre plans de symétrie, et huit réservoirs ou compartiments périphériques 112i à 1128. Le compartiment central comprend une portion supérieure 111a et une portion inférieure 111b, délimitée par une paroi intermédiaire 111c horizontale.
Dans sa position initiale stable, l'axe principal A est vertical, les niveaux de liquide dans les compartiments périphériques et le compartiment central sont identiques. La portion supérieure forme une cuve tampon. Une turbine secondaire 13, d'axe de rotation vertical, est encore disposée dans le compartiment central au niveau d'un orifice d'évacuation central ou conduit central 118, son axe de rotation étant confondu avec l'axe principal A. Au-dessus, on trouve à nouveau la turbine principale 313 montée comme précédemment (voir fig.6).
Pour chaque couple de compartiments périphériques, les systèmes de vannes montés sur la paroi latérale 130 comprennent, des vannes dites d'injection 114, 116 permettant d'injecter le liquide depuis les compartiments périphériques dans la portion supérieure 111a du compartiment central, de manière à générer et entretenir un vortex V dans ladite portion supérieure, et des vannes dites inférieures 115, 117 permettant le transfert du liquide depuis la portion inférieure 111b du compartiment central vers les compartiments périphériques.
En référence aux figures 7A et 7B, chaque vanne d'injection 114 comprend trois clapets 114a chacun monté pivotant autour d'un axe vertical. Les clapets assurent chacun l'ouverture et la fermeture de l'orifice concerné entre le compartiment périphérique considéré et le compartiment central, ainsi que l'orientation du flux de liquide pour générer et entretenir le vortex précité.
Les vannes inférieures 115, 117 sont formées de simples clapets anti-retour montées au niveau d'une ouverture ou tuyau de la paroi latérale de la portion inférieure.
Les figures 8A à 8D illustrent différentes phases d'un cycle d'oscillation sinusoïdale de période T, dans le cas d'un cycle correspondant à un mouvement composé d'une rotation autour de l'axe X et d'une rotation autour de l'axe Y, de même amplitude et de même période, mais en décalage de phase de T/4. Dans ce cas, tous les compartiments périphériques sont utilisés pour le transfert de liquide. Pour la description, on considère que le compartiment 1127 est du côté gauche du récipient, le compartiment 1123 est du côté droit, le compartiment 112i est à l'avant du récipient, et le compartiment 1125 est à l'arrière du récipient.
Pour augmenter la quantité d'énergie récupérée, le dispositif est avantageusement dupliqué sur plusieurs niveaux.
Les figures 9 et 10 illustrent un dispositif selon un troisième mode de réalisation selon l'invention comprenant des couples de compartiments périphériques décalés verticalement sur trois niveaux ou étages. Le dispositif comprend comme précédemment un récipient 201 comportant un réservoir ou compartiment central 211 d'axe principal A, avec quatre plans de symétrie, et trois étages de huit réservoirs ou compartiments périphériques. Sur chaque étage, les compartiments périphériques sont disposés autour du compartiment central.
Le compartiment central comprend une portion supérieure 211a et une portion inférieure 211b, délimitée par une paroi intermédiaire 211c. La portion supérieure 211a forme une cuve tampon, dont le volume est au moins égale au volume de chaque compartiment périphérique. La paroi intermédiaire présente l'orifice d'évacuation central ou conduit central 218, sensiblement au niveau duquel est une nouvelle fois montée une turbine secondaire 213 formant obturateur variable. Son axe de rotation a été choisi vertical. Au-dessus, on trouve à nouveau la turbine principale 313 ; voir fig.10.
Chaque système d'injection 214, 216 est formé d'un déflecteur monté fixe sur la paroi latérale, au niveau d'une ouverture de la paroi latérale, de manière à créer un mouvement de rotation du liquide dans le sens horaire, tel qu'illustré à la figure 9. Les vannes inférieures 215, 217 sont formées de clapets anti-retour montés au niveau d'une ouverture ou tuyau de la paroi latérale de la portion inférieure.
Les vannes de type 3 -voies et les vannes inférieures sont pilotées en ouverture et fermeture, en fonction des mouvements d'oscillation du récipient.
Dans ce mode de réalisation, le compartiment central est toujours plein pour permettre le transfert de liquide entre les compartiments périphériques inférieurs, intermédiaires et supérieurs.
Les figures 11A à 11F illustrent différentes phases d'un cycle d'oscillation sinusoïdale de période T, dans le cas d'un cycle simple correspondant à un mouvement de rotation autour de l'axe X
Comme montré figures 2, 6,10 notamment, les vannes supérieures 14,16, 114,116, 214,216 d'apport de liquide dans le compartiment central peuvent être situées latéralement au niveau (en élévation) de la turbine principale 313, voire plus bas (fig.6, 10). Dans la version de la figure 12, la première turbine 313 couplée à son alternateur 22 est disposée dans la portion supérieure du compartiment central 311, en zone intermédiaire de celui-ci.
Plus bas, le canal 318 définit à nouveau, dans la cloison transversale 311c, l'étranglement de passage du liquide de la portion supérieure 31 la du compartiment 311 à sa portion inférieure 31 lb.
Latéralement, les (au moins deux) compartiments périphériques (ici les deux qui sont représentés : 312l 53124) communiquent avec le compartiment central, via les systèmes de vannes 314-317 lesquels, montés à deux niveaux différents d'élévation à l'endroit de la paroi latérale 330 font, comme déjà expliqué, communiquer entre eux les compartiments respectivement central 311 et latéraux 312l 5 3124 (au moins).
On retrouve donc là un mode de fonctionnement déjà expliqué en liaison avec les figures précédentes. Une différence importante avec ces solutions réside toutefois dans la réalisation, sensiblement à l'endroit du canal d'étranglement 318, de l'obturateur réglable 333 comme un diaphragme à parois mobiles telles 333a,333b.
En agissant, par exemple via une motorisation, sur ces parois mobiles, on va pouvoir (d'une autre manière que précédemment) faire varier la section de passage de cet étranglement 318 et donc adapter la perte de charge et la hauteur de liquide en 311a, de manière que la turbine 313 soit de préférence tout le temps totalement immergée.
Une autre solution est que le canal d'étranglement 318 (ou chaque passage d'écoulement de ce canal, s'il est réalisé en plusieurs sous- canaux comme figure 13) se règle intrinsèquement, par exemple comme une membrane souple et élastique dont l'ouverture, ou passage d'écoulement du liquide vers la portion inférieure (telle 311b) du compartiment central (tel 311) se déforme élastiquement en fonction du débit ou de la pression exercée sur elle.
Bien que non représenté ci-avant, on peut prévoir que l'obturateur réglable 13,113,213,333 et/ou, sur la cloison intermédiaire, le canal 18, 118...318 soi(en)t situé(s) à l'écart de l'axe de rotation de la première turbine 313.
On peut s'attendre ainsi à contrôler plus finement certains mouvementés d'oscillations, lorsque par exemple il peut exister un déséquilibre entre des hauteurs de basculement dans un sens et dans l'autre.
On notera toutefois qu'une évacuation, par le canal d'étranglement précité, décentrée par rapport à l'axe vertical du Vortex créerait un mouvement rotatif de la masse d'eau (le volume d'eau tournerait en même temps, l'écoulement est uniforme). Au contraire, l'évacuation centrée comme illustré, crée un mouvement rotationnel (la masse d'eau tourne sur elle-même). Les particules de liquide ont, radialement à l'axe A, des vitesses différentes les unes par rapport aux autres.
Ainsi, sur ces figures, par comparaison avec la figure 12, on trouve plusieurs, ici deux, turbines 413 immergées, type hydroliennes, dans le courant du vortex V créé par les moyens déjà cités que l'identité visuelle entre les figures 12 et 13 (hormis donc les turbines 313 et 413) permet de retrouver.
Les turbines 413 du compartiment central sont couplées à un alternateur. En outre, elles sont orientées, récipient 401 au repos (donc axe A vertical), sensiblement horizontalement, et surtout à deux distances radiales différentes de l'axe central A, tandis que le canal d'étranglement 318 est centré suivant cet axe A. Ces turbines vont donc voir passer des particules de liquide animées d'un même mouvement rotationnel, mais ayant donc des vitesses différentes les unes par rapport aux autres.
Dans ce qui précède, il doit être clair que le terme « canal » utilisé ne doit pas être limité à un conduit ou canalisation. Comme montré notamment figures 6,10, 12,13, il peut être limité à une simple section réduite de passage ménagé dans une paroi fine. Ce qu'il qualifie est un passage étranglé ou diaphragme d'écoulement du liquide.
On notera encore que, concernant l'obturateur réglable précité (13, 113, 213, 333), on recommande :
- s'il s'agit d'(au moins) une turbine secondaire (13,113,213), de faire varier la charge de cette turbine secondaire pour optimiser, au-dessus, le niveau de liquide disponible pour la turbine principale, et/ou
- s'il s'agit d'un diaphragme à parois mobiles (333), d'adapter l'ouverture et la fermeture de l'obturateur, là encore pour optimiser, au- dessus, le niveau de liquide disponible pour la turbine principale. En augmentant la charge de la turbine secondaire et/ou en fermant les parois mobiles, on limitera la section du diaphragme 18,118... et donc on pourra élever au mieux la hauteur de liquide dans la partie supérieure l la,l l la... Ainsi, la régularité de fonctionnement et le rendement seront favorisés.
En référence aux figures 15 et 16, on va maintenant présenter une solution favorisant encore le rendement de la (des) turbine(s) et visant à passer d'un apport de liquide discontinu dans le compartiment où se situe la(les) turbine(s), en quelques points, avec des différences de hauteur d'eau variables, à un apport de liquide quasi continu, à la pression maximale à l'instant t, en tous points d'apport, simultanément ou quasi- simultanément.
Pour cela, il est proposé que le dispositif comprenne en outre au moins une chambre intermédiaire 510,511 de répartition du liquide transféré, interposée entre :
* le compartiment central 512, avec lequel cette chambre intermédiaire communique par plusieurs passages ou ouvertures 513a,513b, ...513f qui peuvent être concomitamment ouverts, pour le transfert du liquide, et
* certains au moins des compartiments périphériques 515a, 515b,...515f, desquels ladite chambre intermédiaire est séparée par la paroi latérale 516 et avec plusieurs desquels elle communique par certains au moins des systèmes de vannes 517a,517b, ...517f qui peuvent également être concomitamment ouverts pour ceux qui alimentent en liquide la chambre intermédiaire (voir 517b,517c figure 15) au moment considéré, alors que le dispositif est incliné/oscille.
Ainsi, de l'axe principal, central, A vers l'extérieur, on trouve successivement, et dans l'exemple de manière concentrique, le compartiment central 512, la(les) chambre(s) intermédiaire(s) 510,511, des compartiments périphériques 515a,515b, ...515f. Comme précédemment ces compartiments périphériques définissent donc des ballasts.
Les chambres intermédiaires 510,511 sont superposées. La chambre supérieure 511 peut communiquer avec celle 510 du dessous par des clapets 529, de préférence alors pilotés à l'ouverture et à la fermeture. Pour être le plus efficace possible dans l'apport au compartiment central 512 et donc à l'entretien du vortex et de la rotation la turbine 519 couplée à l'alternateur 520 (figure 16), on recommande que la (chaque) chambre intermédiaire 510,511 soit refermée sur elle-même autour du compartiment central et puisse communiquer avec tous les systèmes de vannes et/ou toutes les ouvertures ou passages 513a,513b, ...513f précités.
Ces ouvertures ou passages pourront consister en des tubes ouverts en permanence, traversant la paroi latérale intérieure 521 qui sépare la chambre intermédiaire 510,511 du compartiment central 512 et orientés chacun de biais pour favoriser le vortex comme déjà évoqué et illustré figure 15 (alimentation sensiblement tangentielle).
Les systèmes de vannes 517a,517b,...517f peuvent consister en des clapets anti-retour assurant une circulation du liquide uniquement dans un sens (voir figure 16). Ils peuvent être non pilotés, donc s'ouvrir et/ou se fermer sous la seule sollicitation du liquide en circulation entre les ballasts concernés et la chambre intermédiaire 510.
Selon un mode de réalisation, la (chaque) chambre intermédiaire (que l'on pourrait dénommer tore d'injection d'eau sous pression) présentera une succession verticale de niveaux.
Ces niveaux sont, ou non, reliés entre eux par des clapets antiretour, tels 529. Autre solution : dupliquer la structure de « tore » 510, avec alors plusieurs chambres intermédiaires superposées identiques à celle 510, avec ses systèmes de vannes 517a,517b,... et ses ouvertures ou passages 513a,513b,... (qui définiront donc typiquement des injecteurs d'eau sensiblement tangentiels). Suivant la hauteur d'eau dans les ballasts périphériques 515a,...., l'eau pourrait ainsi passer au niveau 510 ou aux niveaux 510 et 511.
Figures 15,16, la chambre intermédiaire 510 se présente sous la forme d'un réservoir tampon entre les ballasts amont (dans l'exemple 515b,515c) et le compartiment ou bassin central 512. Dans cette configuration, les systèmes de vannes 517a,517b, ...et les injecteurs (105) sont découplés : dès qu'une hauteur de charge liquide existe (lors d'un basculement comme figure 16), la pression fait s'ouvrir le(s) systèmes de vannes 517a,517b, ..., concernés et le liquide transite par la chambre intermédiaire 510 où il s'y répartit de sorte qu'il s'écoule alors dans le compartiment central par au moins un, et a priori plusieurs, des ouvertures ou passages 513a,513b,...513f, comme illustré. Parvenu à l'étranglement de fond 523 formé dans la paroi transversale intermédiaire 525 qui sépare les parties respectivement supérieure 512a et inférieure 512b du compartiment central.
Il sera noté que la partie inférieure 512b (peut) s'étend(re) périphériquement au-delà de la verticale de la cloison 521 du compartiment central, et comme ici jusque sous la chambre intermédiaire 510 et les compartiments périphériques tels 515a,515e .
Dans le mode de réalisation des figures 15,16, performant en termes de circulation de liquide, une série de clapets anti-retour 527 est disposé entre la partie 525 et chacun des compartiments périphériques 515a,515b, ...515f.
Chaque clapet anti-retour 527 peut s'ouvrir pour laisser le liquide parvenu dans la partie 525 passer de cette partie aux compartiments périphériques concernés, à un instant Ldes mouvements en cours, et se ferme pour éviter une circulation en sens inverse.
Les clapets anti-retour 527 pourraient être pilotés pour s'ouvrir et se fermer.
Sur la base des figures 15,16, on comprend donc que, lors des oscillations du dispositif, du liquide, devant passer (toujours en circuit fermé) de plusieurs des compartiments périphériques vers le compartiment central :
- transitera par la(les) chambre(s) intermédiaire(s), telle(s) 510 ou 511 puis 510, ce qui permettra d'y collecter le liquide de ces différents compartiments périphériques, et
- passera alors de cette chambre intermédiaire vers le compartiment central par les, ou plusieurs des, passages 513a,513b,... ouverts dans la chambre intermédiaire.
Ainsi, quel que soit le mouvement du dispositif/récipient, à l'instant t et dans l'absolu, le niveau de liquide dans au moins un des ballasts amont est supérieur à celui des autres ballasts amont. La chambre intermédiaire, qui contient toujours du liquide en transit, est en contact via les clapets anti-retour 517a,517b,...avec de préférence tous les ballasts amont, et donc à l'instant t à la pression du ballast le plus haut. La conception du système dans son ensemble fait qu'il existe en permanence un ballast amont dont la hauteur de liquide est égale ou supérieure à celle du bassin/compartiment central 512. Dans le cas considéré, la chambre intermédiaire se retrouve donc en « surpression » par rapport au bassin/compartiment central. Figure 16, le clapet 517a est alors ouvert et l'écoulement se fait donc naturellement par un nombre important de, voire l'ensemble des, passages 513a,513b,... en même temps, d'où une performance effective de l'écoulement à l'instant t, puisque l'injection dans le bassin/compartiment central 510 est « multi- points ». A l'instant t+Δί, le ballast 515c figure 15 s'est vidé en partie, le mouvement s'est poursuivi et génère une hauteur d'eau absolue maximale supérieure dans un autre ballast (compartiment adjacent, 515b par exemple). Le clapet 517c est alors fermé, tandis que le clapet adjacent 517b s'ouvre, mettant la chambre intermédiaire 510 à la pression du ballast 515b dans l'exemple et l'écoulement se poursuit à travers un nombre important de, voire l'ensemble des, passages 513a,513b, ...
En conséquence, le dispositif en cause va jouer à la fois le rôle de support de flottabilité pour l'ensemble des fonctions décrites ci-après et de stockage temporaire d'énergie (dans la/les chambre(s) intermédiaire(s) 510,511) sous forme d'un volume d'eau (101) situé en élévation par rapport au bassin d'énergie cinétique (compartiment central 510).
On aura noté que, dans la solution ci-dessus, les ballasts/ compartiments périphériques tels 515a...515e... ne fonctionneront pas par couple unique entre un ballast amont/ un ballast aval.
A noter également que, suivant un autre aspect inventif lié à la recherche d'un apport de liquide quasi continu dans le compartiment où se situe la(les) turbine(s) (bassin/compartiment central dans les exemples qui précèdent), de préférence à la pression maximale à l'instant t, en tous points d'apport, simultanément ou quasi-simultanément, les solutions suivantes sont considérées comme innovantes, en tant que telle :
- un dispositif de récupération de l'énergie de mouvements sous forme d'énergie électrique, le dispositif comprenant:
- un récipient :
* comportant plusieurs compartiments périphériques (515a ...515e...) et un compartiment central (512) interposé entre un premier et un deuxième compartiments desdits compartiments périphériques,
* présentant un axe principal (A) vertical au repos, et au moins une paroi latérale (516) interposée entre plusieurs des compartiments périphériques et le compartiment central,
* apte à osciller autour d'au moins un axe perpendiculaire audit axe principal sous l'effet desdits mouvements, et
* contenant un liquide (F) qui, lorsque le récipient oscille, circule entre les premier et deuxième compartiments (515a...515e...) via le compartiment central,
- plusieurs systèmes de vannes (517a,517b,...) disposés à l'endroit de ladite paroi latérale et situés chacun pour transférer du liquide de l'un des compartiments périphériques vers la portion supérieure du compartiment central et de la portion inférieure du compartiment central vers au moins un autre desdits compartiments périphériques, quand le récipient est incliné, le compartiment central comportant une portion supérieure (512a) et une portion inférieure (512b) séparées par une cloison intermédiaire (525) pourvue d'un canal formant un étranglement de passage du liquide de la portion supérieure à la portion inférieure,
- au moins une première turbine (519) couplée à un alternateur et disposée dans le compartiment central, et
- au moins une chambre intermédiaire (510,511) de répartition du liquide transféré, interposée entre :
* le compartiment central, avec lequel elle communique par plusieurs ouvertures (513a...) qui peuvent être concomitamment ouvertes, pour le transfert du liquide, et
* certains au moins des compartiments périphériques, desquels la chambre intermédiaire est séparée par ladite paroi latérale (516) et avec plusieurs desquels elle communique par certains au moins des systèmes de vannes (517a,517b,...) qui peuvent également être concomitamment ouverts pour ceux qui alimentent en liquide la chambre intermédiaire.
On conseille que la chambre intermédiaire soit refermée sur elle- même autour du compartiment central et puisse communiquer avec tous les systèmes de vannes et/ou toutes les ouvertures. Est également concerné un procédé pour récupérer, sous forme d'énergie électrique, de l'énergie de mouvements d'oscillations, le procédé comprenant des étapes où :
- on pourvoit un récipient contenant un liquide (F) de plusieurs compartiments périphériques (515a ...515e...) et d'un compartiment central (512)
* interposé entre un premier et un deuxième compartiments desdits compartiments périphériques :
* où on dispose au moins une turbine (519) couplée à un alternateur,
* entre une portion supérieure et une portion inférieure duquel on interpose une cloison intermédiaire (525) que l'on pourvoit d'un canal (523) formant un étranglement de passage du liquide de la portion supérieure à la portion inférieure,
* présentant au moins une paroi latérale (516) où l'on dispose des systèmes de vannes (517a...),
- sous l'effet desdits mouvements, on fait osciller le récipient de sorte que, lors des oscillations, certaines desdites vannes, situées à un niveau d'élévation supérieur aux autres vannes, font passer du liquide d'une partie des compartiments périphériques vers la portion supérieure du compartiment central, d'autres parmi ces dites vannes faisant passer du liquide de la portion inférieure du compartiment central vers d'autres parmi les compartiments périphériques, le liquide (F) circulant alors via le compartiment central où il entraîne en rotation une turbine (519),
- avec pour particularité notable que l'on fait transiter du liquide devant passer de plusieurs des compartiments périphériques vers le compartiment central par au moins une chambre intermédiaire (510,511) collectant le liquide de ces différents compartiments périphériques, et on fait alors passer ledit liquide de cette chambre intermédiaire vers le compartiment central par plusieurs passages ouverts dans la chambre intermédiaire.
On conseille en outre que, dans la portion supérieure compartiment ou bassin central (512), soit créé un mouvement rotationnel du liquide tel que les particules de ce liquide ont des vitesses différentes les unes par rapport aux autres, à des distances radiales différentes par rapport à un axe central (A) du récipient, vertical au repos.

Claims

REVENDICATIONS
1. Dispositif de récupération de l'énergie de mouvements sous forme d'énergie électrique, le dispositif comprenant:
- un récipient (1, 101...):
* comprenant plusieurs compartiments périphériques (112 1128...312i , 3124) et un compartiment central (11,111,211,311) interposé entre un premier et un deuxième desdits compartiments périphériques,
* présentant un axe principal (A) vertical au repos, et au moins une paroi latérale interposée entre plusieurs des compartiments périphériques et le compartiment central,
* apte à osciller autour d'au moins un axe perpendiculaire audit axe principal sous l'effet desdits mouvements, et
* contenant un liquide (F) qui, lorsque le récipient oscille, circule entre les premier et deuxième compartiments (112i-1128...312i, 3124) via le compartiment central (11,111,211,311),
- plusieurs systèmes de vannes (14- 17 ; 114-117 ; 214, 217, 234-236, 314-317) disposés à l'endroit de ladite paroi latérale et situés chacun pour transférer du liquide de l'un des compartiments périphériques vers la portion supérieure du compartiment central et de la portion inférieure du compartiment central vers au moins un autre desdits compartiments périphériques, quand le récipient est incliné, le compartiment central comportant une portion supérieure (l la,l l la,211a,311a) et une portion inférieure (11b, 111b, 211b) séparées par une cloison intermédiaire (11c, l l lc,211c,311c) pourvue d'un canal (18..318) formant un étranglement de passage du liquide de la portion supérieure à la portion inférieure, et sensiblement au niveau duquel est disposé un obturateur réglable (13,113,213,333), et,
- au moins une première turbine (313,413) couplée à un alternateur et disposée dans la portion supérieure du compartiment central.
2. Dispositif selon la revendication 1, caractérisé en ce que l'obturateur réglable comprend une turbine secondaire (13,113,213).
3. Dispositif selon l'une des revendications précédentes, où l'obturateur réglable comprend un diaphragme (333).
4. Dispositif selon l'une des revendications précédentes, où, sur la cloison intermédiaire, le canal (18) est situé à l'écart de l'axe de rotation de la première turbine (413).
5. Dispositif selon l'une des revendications précédentes, où l'obturateur réglable est situé à l'écart de l'axe de rotation de la première turbine (413).
6. Dispositif selon l'une des revendications précédentes qui comprend en outre au moins une chambre intermédiaire (510,511) de répartition du liquide transféré, interposée entre :
* le compartiment central, avec lequel elle communique par plusieurs ouvertures (513a...) qui peuvent être concomitamment ouvertes, pour le transfert du liquide, et
* certains au moins des compartiments périphériques, desquels elle est séparée par ladite paroi latérale et avec plusieurs desquels elle communique par certains au moins des systèmes de vannes qui peuvent également être concomitamment ouverts pour ceux qui alimentent en liquide la chambre intermédiaire.
7. Dispositif selon l'une des revendications précédentes, où la chambre intermédiaire est refermée sur elle-même autour du compartiment central et peut communiquer avec tous les systèmes de vannes et/ou toutes les ouvertures.
8. Procédé pour récupérer, sous forme d'énergie électrique, de l'énergie de mouvements d'oscillations, le procédé comprenant des étapes où :
- on pourvoit un récipient (1,101..) contenant un liquide (F) de premier et deuxième compartiments (112i-1128...) et d'un compartiment central (11, 111, 211,311) :
* interposé entre eux,
* entre une portion supérieure et une portion inférieure duquel on interpose une cloison intermédiaire (l lc,l l lc,211c,311c) que l'on pourvoit d'un canal (18) formant un étranglement de passage du liquide de la portion supérieure à la portion inférieure,
* dans la portion supérieure duquel on dispose au moins une première turbine (313,413) couplée à un alternateur,
* présentant au moins une paroi latérale où l'on dispose un premier et un deuxième systèmes de vannes (14- 17...), de sorte que certaines desdites vannes, situées, au repos, à un niveau d'élévation supérieur aux autres vannes, font passer, lors des oscillations, du liquide des premier et deuxième compartiments vers la portion supérieure du compartiment central, lesdites autres vannes faisant alors passer du liquide de la portion inférieure du compartiment central vers les premier et deuxième compartiments,
- sous l'effet desdits mouvements, on fait osciller le récipient autour d'au moins un axe perpendiculaire à un axe principal (A) du récipient, vertical au repos, le liquide (F) circulant alors entre les premier et deuxième compartiments, via le compartiment central :
* où il entraîne en rotation ladite première turbine (313,413),
* et dans la portion supérieure duquel on crée un mouvement rotationnel du liquide tel que les particules de ce liquide ont des vitesses différentes les unes par rapport aux autres, à des distances radiales différentes par rapport à un axe central (A) du récipient, vertical au repos.
9. Procédé selon la revendication 8, où :
- on pilote en ouverture et fermeture et/ou en débit, par une boucle de régulation, au moins les vannes (114,116...) qui font passer du liquide des premier et deuxième compartiments vers la portion supérieure du compartiment central,
- et/ou on les pourvoit de volets orientant, en position ouverte, le flux de liquide de sorte à l'injecter dans le compartiment central avec une vitesse tangentielle à la paroi latérale correspondante du compartiment central, avec un angle a par rapport à la normale N à la paroi latérale d'au moins 45°.
10. Procédé selon la revendication 8 ou 9, où :
- sensiblement au niveau du canal d'étranglement (18..318), on dispose un obturateur réglable (13,113,213,333) comprenant une turbine secondaire (13,113,213), et,
- on fait varier la charge de la turbine secondaire pour optimiser, au- dessus, le niveau de liquide disponible pour la turbine principale.
11. Procédé selon la revendication 8 ou 9, où :
- sensiblement au niveau du canal d'étranglement (18..318), on dispose un obturateur réglable (13,113,213,333) comprenant un diaphragme à parois mobiles (333), et,
- on adapte l'ouverture et la fermeture de l'obturateur pour optimiser, au-dessus, le niveau de liquide disponible pour la turbine principale.
12. Procédé selon l'une des revendications 8 à 11 où on fait transiter du liquide devant passer de plusieurs des compartiments périphériques vers le compartiment central par au moins une chambre intermédiaire (510,511) collectant le liquide de ces différents compartiments périphériques, et on fait alors passer ledit liquide de cette chambre intermédiaire vers le compartiment central par plusieurs passages (513,513b...) ouverts dans la chambre intermédiaire.
PCT/FR2013/050915 2012-04-25 2013-04-24 Dispositif de recuperation d'energie WO2013160617A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/396,517 US9410538B2 (en) 2012-04-25 2013-04-24 Energy recovering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1253803 2012-04-25
FR1253803A FR2981992B1 (fr) 2011-10-26 2012-04-25 Dispositif de recuperation d'energie a perte de charge pilotee

Publications (3)

Publication Number Publication Date
WO2013160617A2 true WO2013160617A2 (fr) 2013-10-31
WO2013160617A3 WO2013160617A3 (fr) 2014-03-06
WO2013160617A4 WO2013160617A4 (fr) 2014-04-24

Family

ID=48093229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050915 WO2013160617A2 (fr) 2012-04-25 2013-04-24 Dispositif de recuperation d'energie

Country Status (3)

Country Link
US (1) US9410538B2 (fr)
FR (1) FR2981992B1 (fr)
WO (1) WO2013160617A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617972B1 (en) * 2015-10-01 2017-04-11 Robert Georges Skaf Apparatus for converting wave motion on a body of water into electrical power
NO344172B1 (en) * 2017-06-15 2019-09-30 Vard Electro As Stabilisation arrangement for a vessel
US10989164B2 (en) * 2018-03-05 2021-04-27 Richard W. Carter Resonant unidirectional wave energy converter
BE1027069A1 (nl) * 2019-02-20 2020-09-11 Van Rompay Boudewijn Gabriel Inrichting voor het opwekken van hydro-elektrische energie
CN110863936A (zh) * 2019-12-06 2020-03-06 宁波市镇海捷登应用技术研究所 一种利用海浪发电装置及用该装置发电的方法
ES2970266A1 (es) * 2022-10-20 2024-05-27 Revaliente Santiago Martinez Procedimiento y dispositivo para la captación de energía undimotriz, mediante desplazamiento de fluido interior

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2375463A1 (fr) 1976-12-22 1978-07-21 Scarpi Bruno Procede de recuperation de l'energie de la houle et dispositif de mise en oeuvre

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064137A (en) * 1960-05-11 1962-11-13 Thiokol Chemical Corp Power generator actuated by wave motion
US3231749A (en) * 1963-04-12 1966-01-25 Thiokol Chemical Corp Wave power generator
US3870893A (en) * 1973-10-15 1975-03-11 Henry A Mattera Wave operated power plant
US3912938A (en) * 1974-01-25 1975-10-14 Gregory D Filipenco Electrical stations operated by waves
US3922739A (en) * 1974-04-18 1975-12-02 Ivan Andreevich Babintsev Apparatus for converting sea wave energy into electrical energy
US4111610A (en) * 1974-06-03 1978-09-05 Brown Henry C Wave-powered, pivoted float pumping system with increasing opposition to extreme movement of lever arm
US3970415A (en) * 1975-04-10 1976-07-20 Kaj Widecrantz One way valve pressure pump turbine generator station
AR215844A1 (es) * 1975-09-03 1979-11-15 Gutierrez Atencio F Un conjunto hidromotriz transportable y sumergible para ser acoplado a presas de contencion de masas fluidicas de saltos de baja altura
US4009396A (en) * 1975-11-19 1977-02-22 Mattera Henry A Wave operated power plant
US4110630A (en) * 1977-04-01 1978-08-29 Hendel Frank J Wave powered electric generator
US4196591A (en) * 1978-02-01 1980-04-08 Robert L. Busselman Wave powered energy generator
US4266143A (en) * 1979-09-19 1981-05-05 Ng Ting F Apparatus for producing electrical energy from ocean waves
US4423334A (en) * 1979-09-28 1983-12-27 Jacobi Edgar F Wave motion electric generator
US4340821A (en) * 1980-06-19 1982-07-20 Slonim David Meir Apparatus for harnessing wave energy
FR2500887A1 (fr) 1981-02-27 1982-09-03 Dubois Yves Dispositif permettant d'utiliser l'energie de la houle et des vagues
US4438343A (en) * 1982-11-12 1984-03-20 Marken John P Wave power generator
US4851704A (en) * 1988-10-17 1989-07-25 Rubi Ernest P Wave action electricity generation system and method
JP2522175Y2 (ja) * 1990-09-25 1997-01-08 黒石鉄工株式会社 波動振動式発電発光フロート
US5186822A (en) * 1991-02-25 1993-02-16 Ocean Resources Engineering, Inc. Wave powered desalination apparatus with turbine-driven pressurization
ATE145450T1 (de) * 1992-04-14 1996-12-15 Ente Naz Energia Elettrica Steuerung von druck- und leistungsschwankungen in wasserturbinen
ATE149639T1 (de) * 1992-05-27 1997-03-15 Ente Naz Energia Elettrica Steuereinrichtung für die druck- und leistungsschwankungen in hydraulischen reaktionsturbinen
US20030137150A1 (en) * 2002-01-23 2003-07-24 Chao-Fu Shu Conversion device for nature energy at sea
US20040222638A1 (en) * 2003-05-08 2004-11-11 Vladimir Bednyak Apparatus and method for providing electrical energy generated from motion to an electrically powered device
WO2005008805A2 (fr) * 2003-05-08 2005-01-27 Power Estimate Company Appareil et procede permettant de produire de l'energie electrique a partir de mouvement
US20050023836A1 (en) * 2003-07-28 2005-02-03 Abdalla John A. Variable buoyancy float engine
FR2876751B1 (fr) * 2004-10-15 2007-01-19 Centre Nat Rech Scient Cnrse Appareil pour convertir l'energie des vagues en energie electrique
US7239038B1 (en) * 2005-12-16 2007-07-03 Harris Corporation Apparatus for electrical signal generation based upon movement and associated methods
ES2567628T3 (es) * 2006-05-16 2016-04-25 Ocean Power Technologies, Inc. Convertidor de energía de ola con compresión de aire (WECWAC)
NO325962B1 (no) * 2006-05-31 2008-08-25 Fobox As Anordning for omforming av bolgeenergi
US8679331B2 (en) * 2008-01-03 2014-03-25 The Invention Science Fund I Llc Water alteration structure movement method and system
US8715496B2 (en) * 2008-01-03 2014-05-06 The Invention Science Fund I Llc Water alteration structure and system having below surface valves or wave reflectors
US8702982B2 (en) * 2008-01-03 2014-04-22 The Invention Science Fund I Llc Water alteration structure and system
FR2932231B1 (fr) * 2008-06-04 2010-07-30 Nantes Ecole Centrale Dispositif pour convertir une energie de houle en energie utilisable notamment electrique et procede associe
KR101082076B1 (ko) * 2008-10-08 2011-11-10 신익수 파력 발전 모듈, 그 파력 발전 모듈을 포함하는 파력 발전 유닛 및 그 파력 발전 유닛을 포함하는 파력 발전 장치
US8963352B2 (en) * 2009-06-09 2015-02-24 James W. Healy Wave energy electrical power generation
US9068554B2 (en) * 2009-06-09 2015-06-30 James W. Healy Wave energy electrical power generation
US8487459B2 (en) * 2009-10-09 2013-07-16 Ocean Power Technologies, Inc. Wave energy converter and power take off system
ES2377292B1 (es) * 2010-08-26 2013-06-05 Diego García Garrido Dispositivo generador de energía eléctrica a partir del aprovechamiento de la energía de las olas.
BRPI1004764B1 (pt) * 2010-11-04 2020-07-28 Marcelo Regattieri Sampaio conversor de energia de ondas
US9234494B2 (en) * 2011-06-28 2016-01-12 Mark R. Anteau Power generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2375463A1 (fr) 1976-12-22 1978-07-21 Scarpi Bruno Procede de recuperation de l'energie de la houle et dispositif de mise en oeuvre

Also Published As

Publication number Publication date
FR2981992A1 (fr) 2013-05-03
WO2013160617A4 (fr) 2014-04-24
FR2981992B1 (fr) 2018-08-31
WO2013160617A3 (fr) 2014-03-06
US9410538B2 (en) 2016-08-09
US20150167649A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
WO2013160617A2 (fr) Dispositif de recuperation d'energie
EP2140135B1 (fr) Dispositif et procede pour capter une energie cinetique d'un fluide naturellement en mouvement
US20090152870A1 (en) Apparatus for receiving and transferring kinetic energy from a flow and wave
EP2633183B1 (fr) Dispositif de recuperation d'energie
NL2000840C2 (nl) Inrichting voor het omzetten van kinetische energie van een stromend water in kinetische energie van een roteerbare rotoras.
EP0059652A1 (fr) Dispositif permettant d'utiliser l'énergie de la houle et des vagues
WO2015001229A1 (fr) Dispositif hybride de production d'énergie électrique
WO2008043886A1 (fr) Appareil hydroelectrique pour la production d'energie electrique, notamment a partir de courants de marees
CA2505625A1 (fr) Moteur revolutionnaire
EP2084397A1 (fr) Dispositif et procede de production d'electricite
CN102678436B (zh) 潮汐发电模块以及利用该潮汐发电模块的潮汐发电方法
EP1503008A1 (fr) Système pour créer des vagues ou un mouvement à la surface d'un liquide
EP0150646B1 (fr) Installation pour le traitement par coagulation et floculation de liquides contenant des matières colloidales et/ou non colloidales
FR2564534A1 (fr) Dispositif pneumatique de production de vagues dans un milieu liquide et son procede de mise en oeuvre.
WO2016042235A1 (fr) Dispositif et procede pour structure soumise a oscillations
EP3194763B1 (fr) Production d'energie sur une structure soumise a la houle
FR2580337A1 (fr) Dispositif de production d'energie electrique a partir de l'energie des vagues d'eau de mer
FR3026148A1 (fr) Dispositif et procede de controle des oscillations d'un navire soumis a la houle.
FR3069031B1 (fr) Turbine
FR3028297A1 (fr) Dispositif hydroelectrique a l'aide du courant d'un cours d'eau
FR3010151A1 (fr) Dispositif de production d'electricite a l'aide du courant d'un cours d'eau.
FR3044367A1 (fr) Accumulateur gravitationnel et procedes associes
FR3087853A1 (fr) Moteur hydro-pneumatique
GB2513178A (en) Gokhman tidal power plant for lagoon
FR2486165A1 (fr) Machine utilisant la houle pour emmagasiner l'energie

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14396517

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13724856

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13724856

Country of ref document: EP

Kind code of ref document: A2