WO2013159633A1 - 用于多输入多输出mimo的传输方法和设备 - Google Patents

用于多输入多输出mimo的传输方法和设备 Download PDF

Info

Publication number
WO2013159633A1
WO2013159633A1 PCT/CN2013/073520 CN2013073520W WO2013159633A1 WO 2013159633 A1 WO2013159633 A1 WO 2013159633A1 CN 2013073520 W CN2013073520 W CN 2013073520W WO 2013159633 A1 WO2013159633 A1 WO 2013159633A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream data
data
rank value
stream
rtt
Prior art date
Application number
PCT/CN2013/073520
Other languages
English (en)
French (fr)
Inventor
赵悦莹
马雪利
王宗杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2013252287A priority Critical patent/AU2013252287B2/en
Priority to EP13780866.3A priority patent/EP2843865A4/en
Publication of WO2013159633A1 publication Critical patent/WO2013159633A1/zh
Priority to US14/526,075 priority patent/US9485759B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present invention relates to the field of communications, and in particular, to a transmission method and apparatus for multiple input multiple output MIMO. Background technique
  • Multi-Input Multi-Output (MIMO) technology one of the important technologies to improve the peak rate of users, has become an important performance of many communication systems, such as LTE (Long Term Evolution) system, UMTS HSDPA. (Universal Mobile Telecommunications System High Speed Downlink Packet Access) system, etc.
  • LTE Long Term Evolution
  • UMTS HSDPA Universal Mobile Telecommunications System High Speed Downlink Packet Access
  • Hybrid Automatic Repeat Quest is a channel coding technology that can effectively guarantee the correct transmission of data.
  • the number of HARQ processes is equal to the Hybrid Automatic Repeat Quest Round Trip Time (HARQ RTT).
  • HARQ RTT Hybrid Automatic Repeat Quest Round Trip Time
  • the UE User Equipment
  • the base station NodeB
  • the present invention provides a transmission method for multiple-input multiple-output MIMO. Under the independent indication of rank value and acknowledgment characters, the user equipment UE can correctly perform MIMO HARQ transmission under the mechanism of not changing the current uplink HARQ. The performance of MIMO is effectively guaranteed.
  • a transmission method for multiple input multiple output MIMO comprising:
  • the user equipment UE sends the first data to the base station NodeB in the first process of the hybrid automatic repeat request-loopback time HARQ_RTT, and receives the acknowledgement word associated with the first data returned by the NodeB;
  • a user equipment including:
  • a processing module configured to send, by the first process of the hybrid automatic repeat request-loopback time HARQ-RTT, the first data to the base station NodeB, and receive the acknowledgement character related to the first data returned by the NodeB;
  • a determining module configured to determine, according to the acknowledgement character and a rank value to be used for the next transmission, a data transmission of the first process in the next HARQ RTT.
  • a base station including:
  • a control module configured to detect a channel code of the first enhanced dedicated channel E-DCH dedicated physical control channel and the second enhanced dedicated channel E-DCH dedicated physical control channel to determine the first stream data and the second stream data.
  • the embodiment of the present invention has the following beneficial effects:
  • the present invention determines data transmission of the same process in the next HARQ-RTT according to the acknowledgment character associated with the previous transmission data and the rank value of the next transmission to be used, so that the user equipment UE is Under the premise of not changing the current uplink HARQ mechanism, the MIMO HARQ transmission is correctly performed, and the performance of the MIMO is effectively ensured; and the base station can also identify the data transmission of the primary and secondary streams when the rank value is 1.
  • FIG. 1 illustrates a schematic diagram of a transmission method for multiple input multiple output MIMO according to an embodiment of the present invention.
  • FIG. 2 illustrates a schematic diagram of a transmission structure of multiple input multiple output MIMO according to an embodiment of the present invention.
  • FIG. 3 illustrates a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a base station according to an embodiment of the present invention. detailed description
  • FIG. 1 a schematic diagram of a transmission method for multiple-input multiple-output MIMO according to an embodiment of the present invention is illustrated.
  • the method may specifically include:
  • the user equipment UE sends the first data to the base station NodeB in the first process of the hybrid automatic repeat request-loopback time HARQ_RTT, and receives the acknowledgement character related to the first data returned by the NodeB;
  • the UE determines, according to the acknowledgement character and a rank value to be used for a next transmission, data transmission of the first process in a next HARQ RTT.
  • step S100 the UE sends the first data to the base station NodeB in the first process in the HARQ-RTT.
  • the first process may be
  • the first process of the HARQ-RTT in the embodiment of the present invention may belong to the data initial transmission or the data retransmission process, and the first process of the next HARQ-RTT may correspond to the first retransmission or the next retransmission, respectively.
  • the rank of the user equipment UE in the MIMO communication may be adaptive. In other words, the rank value may change during each scheduling period, and the first data may include different data streams according to the rank value.
  • the first data can be A single stream data consisting of a block of data, a rank value of 2 corresponds to dual stream data transmission, and a first data may include dual stream data composed of two data blocks, and may further include more streams according to rank values. data.
  • the single stream data is referred to as mainstream data
  • the above dual stream data is referred to as mainstream data and auxiliary stream data, or primary and secondary stream data.
  • the user equipment UE sends the first data to the base station NodeB after the first process of the HARQ-RTT (hereinafter, the description is convenient, the first process is referred to as process D1, and the process D1 may be any one of the HARQ-RTT).
  • the base station NodeB feeds back to the UE an acknowledgement character (ACK/NACK) related to the first data, where the confirmation character is used to indicate information related to whether the first data is transmitted correctly or not, for example, when the first data is used.
  • ACK/NACK acknowledgement character
  • the confirmation character may be the case where the mainstream data is correct and the mainstream data is incorrect.
  • the confirmation character may be correct for the primary auxiliary stream data
  • the mainstream data is correct
  • the auxiliary stream data is incorrect
  • the mainstream data is incorrect
  • the auxiliary stream data is correct
  • the primary and secondary stream data are both correct. There are four cases of error.
  • the UE After receiving the acknowledgment character sent by the NodeB, the UE determines the data transmission of the same process D1 (ie, the first process described above) in the next HARQ_RTT according to the received acknowledgment character and the rank value of the next transmission to be used.
  • the next transmission ie: the next HARQ - the transmission of the process D1 in the RTT
  • the rank value to be used can be adaptively determined in the MIM0 transmission (the rank value is 1 for the single stream transmission form) and 2 (the rank value is 2). Corresponding to the dual stream transmission format), or other values. In the embodiment of the present invention, only the rank values 1 and 2 are taken as an example to illustrate that the UE determines the next time according to the rank value and the confirmation character.
  • the user equipment UE sends the mainstream data to the NodeB according to the single-stream transmission form corresponding to the rank value of 1 in the process D1 of the HARQ-RTT, and the acknowledgement character received by the UE from the NodeB regarding the mainstream data indicates that the mainstream data is correct, and the next
  • the UE transmits new mainstream data in the single-stream transmission format corresponding to the rank value 1 in the process D1 of the next HARQ-RTT, and uses the next HARQ. – RTT process D1 newly scheduled power offset.
  • the power offset of the new scheduling is notified by the base station to the UE in the form of a power offset determined according to the scheduling algorithm.
  • the base station determines the scheduling grant available to the UE according to the current priority of the UE, the network load, and the like, and the scheduling grant is equivalent to how much power the UE can transmit, and the UE sends the power according to the scheduled power, which can be guaranteed. Does not exceed the base station load, thus ensuring the performance of network transmission.
  • the confirmation character received at the UE indicates that the mainstream data is correct, and the next scheduled transmission is used.
  • the UE sends new mainstream data and new auxiliary stream data in the next HARQ-RTT process D1 according to the dual-stream transmission format corresponding to the rank value 2 used in the current transmission, and uses the next A HARQ-RTT process D1 newly scheduled power offset.
  • the primary data is sent by the UE in the process of the HARQ-RTT process D1 to the NodeB according to the single stream transmission corresponding to the rank value of 1.
  • the received acknowledgement character indicates that the mainstream data is incorrect, and the next time the rank value is 1, the UE may be next.
  • the HARQ-RTT process D1 retransmits the mainstream data according to the single stream transmission corresponding to the rank value 1, and uses the historical power offset (for the convenience of description, here and below, the historical power offset represents the last HARQ – RTT process D1 scheduled power offset).
  • the primary data is sent by the UE to the NodeB according to the single-stream transmission format corresponding to the rank value of 1.
  • the UE When the received acknowledgement character indicates that the mainstream data is incorrect, and the next transmission rank value is 2, the UE corresponds to the rank value 2 in the next transmission.
  • the dual stream transmission form retransmits the main stream data and simultaneously transmits new auxiliary stream data, and uses the main stream data to be offset according to the new power corresponding to the rank value 2.
  • the new power offset for the same block length data can effectively suppress the inter-stream interference and ensure the performance of data transmission.
  • the UE sends the mainstream data to the NodeB according to the rank value of 1.
  • the UE When the received acknowledgment character indicates that the mainstream data is erroneous and the next transmission rank value is 2, even if the rank value is 2, the UE The main stream data can still be retransmitted according to the single stream transmission format corresponding to the rank value 1, and the historical power offset is used.
  • the UE may retransmit only the process of the previous HARQ-RTT in the single stream form in the process D1 of the next HARQ RTT. D1 transmits the wrong mainstream data or auxiliary stream data.
  • the user equipment UE sends the primary and secondary stream data to the NodeB in the dual-stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received acknowledgement character indicates that the data of the primary and secondary streams are correct, and the rank value of the next transmission is At 1 o'clock, the UE may transmit new mainstream data in the single HARD transmission form corresponding to the rank value 1 in the next HARQ-RTT process D1, and use the newly scheduled power offset of the process D1 of the next HARQ-RTT.
  • the UE sends the primary and secondary stream data to the NodeB according to the rank value of 2 in the process D1 of the HARQ-RTT.
  • the received acknowledgement character indicates that the primary and secondary stream data are correct, and the next time the rank value of the transmission is 2, the UE may be in the next HARQ-RTT process D1 sends new mainstream data and new auxiliary stream data according to the dual stream transmission corresponding to rank value 2, and uses the next one.
  • the UE performs the dual-stream transmission shape corresponding to the rank value of 2 in the process D1 of the HARQ-RTT to the NodeB.
  • the main auxiliary stream data is sent, and the received confirmation character indicates that the mainstream data is correct and the auxiliary stream data is incorrect, and when the rank value of the next transmission is 1, the UE may follow the rank value in the process D1 of the next HARQ-RTT.
  • Retransmitting the auxiliary stream data in the corresponding single stream transmission mode wherein the retransmission of the auxiliary stream data may use the auxiliary stream data according to the new power offset corresponding to the rank value 1 or may use the next HARQ-RTT
  • the power offset of the newly scheduled process D1, or the maximum of the two, that is, Max ⁇ the auxiliary stream data is offset according to the new power corresponding to the rank value 1, and the next HARQ-RTT process D1 is newly scheduled.
  • Power offset ⁇ In other words, when the mainstream data of the last transmission described above is correct and the auxiliary stream data is incorrect and the rank value of the next transmission to be used is 1, the power offset of the UE retransmitting the auxiliary stream data may be the above three. Forms.
  • Different power offsets can be used in different application scenarios. For example, in the case where the quality of the two transmission channels does not change much, the historical power offset is used, and a better combining gain can be obtained.
  • the mainstream data may not be scheduled, that is, the base station may schedule new power for the mainstream data, but the mainstream data uses the historical power for the retransmission of the auxiliary stream data.
  • using the newly scheduled power offset can overcome the above problems and can be scheduled in real time, but if the power offset of the new schedule is smaller than the historical power offset, it may affect the combined gain of the auxiliary stream data, ⁇ Use the maximum of the two to make the two compromise.
  • the UE may use the primary enhanced dedicated channel E-DCH dedicated physical data channel E-DPDCH and the secondary enhanced dedicated channel E-DCH dedicated physical control channel SE-DPCCH to carry the auxiliary stream data and control information, and the base station NodeB
  • the side may determine, according to the detection of the channel code, that the data stream transmitted this time is the auxiliary stream data.
  • the UE may also indicate the mainstream data and the auxiliary stream data by bit information in the non-pilot bits of the S-DPCCH when performing data transmission in the form of single stream transmission, for example, by using Table 1 or Table 2 below. The form shown is indicated.
  • the auxiliary stream data is carried on the E-DPDCH data channel, and weighted by the weighting coefficient of the main precoding weight.
  • mainstream data is weighted by W1 and W2
  • auxiliary stream data is weighted by W3 and W4.
  • the E-DPDCH is used to carry the retransmitted auxiliary stream data
  • the weighted W1 and W2 used for weighting the general mainstream data are used to perform the retransmission of the auxiliary stream data.
  • the UE sends the primary and secondary stream data to the NodeB in the dual-stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received acknowledgement character indicates that the mainstream data is correct and the auxiliary stream data is incorrect, and the rank value of the next transmission is At 2 o'clock, the UE may retransmit the new mainstream data and retransmit the auxiliary stream data according to the dual stream transmission corresponding to the rank value 2 in the next HARQ-RTT process D1, and may use the historical power configuration, or the next HARQ-RTT.
  • the power offset ⁇ that is, the UE can use the above three forms of power offset when transmitting the new mainstream data and retransmitting the auxiliary stream data in the form of dual stream transmission.
  • the historical power offset is used, and a better combined benefit can be obtained.
  • the UE sends the primary and secondary stream data to the NodeB in the dual-stream transmission format corresponding to the rank value of 2 in the process of the HARQ-RTT process D1, and the received confirmation character indicates that the mainstream data is correct and the auxiliary stream is If the data is incorrect, and the rank value of the next transmission is 2, the UE may retransmit the auxiliary stream data according to the dual stream transmission format corresponding to the rank value 2 in the next HARQ-RTT process D1, that is, the mainstream and the auxiliary stream should be transmitted.
  • the auxiliary stream data is retransmitted on the channels of both data streams, and the historical power offset is used.
  • the UE in the case that no new data can be transmitted in the process D1 of the next HARQ-RTT, the UE can retransmit only the auxiliary stream data according to the single stream transmission format.
  • the UE sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT.
  • the received acknowledgement character indicates that the mainstream data is incorrect and the auxiliary stream data is correct, and the rank value of the next transmission is At 1 o'clock, the UE may retransmit the main stream data according to the single stream transmission format corresponding to the rank value 1 in the process D1 of the next HARQ-RTT, and use the main data to be offset according to the new power corresponding to the rank value 1.
  • the new power offset corresponding to the new rank value can be used to ensure data transmission in the case of the rank change of the same HARQ-RTT process and the next HARQ-RTT transmission of the same process. Performance.
  • the UE sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received confirmation character indicates that the mainstream data is incorrect and the auxiliary stream data is correct. And when the rank value of the next transmission is 2, the UE may retransmit the mainstream data according to the dual stream transmission format corresponding to the rank value 2 in the process D1 of the next HARQ-RTT, and simultaneously transmit the new auxiliary stream data, and use the historical power. Offset.
  • the UE sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received confirmation character indicates that the mainstream data is incorrect and the auxiliary stream data
  • the UE may retransmit the mainstream data in the process of DH of the next HARQ-RTT according to the dual stream transmission corresponding to the rank value 2, that is, on the channel on which the primary and secondary streams should be transmitted.
  • the mainstream data is retransmitted and the historical power configuration is used.
  • the UE in the case that no new data can be transmitted on the UE side, the UE can retransmit only the mainstream data according to the single stream transmission format.
  • the UE sends the primary and secondary stream data to the NodeB according to the rank value of 2 in the process D1 of the HARQ-RTT.
  • the received acknowledgement character indicates that the primary and secondary stream data are all wrong, and the next time the rank value of the transmission is 1, the UE may be next.
  • the HARQ-RTT process D1 retransmits the mainstream data according to the single-stream transmission format corresponding to the rank value 1, discards the auxiliary stream data, and uses the mainstream data to be offset according to the new power corresponding to the rank value 1.
  • the UE sends the primary and secondary stream data to the NodeB in the dual-stream transmission format corresponding to the rank value of 2 in the process of the HARQ-RTT process D1, and the received acknowledgement character indicates that the primary and secondary stream data are all wrong, and the next transmission rank value is 2
  • the UE may retransmit the primary and secondary stream data according to the dual stream transmission format corresponding to the rank value 2 in the process D1 of the next HARQ-RTT, and use the historical power offset.
  • the user equipment 300 may specifically include:
  • the processing module 302 is configured to send the first data to the base station NodeB in the first process of the hybrid automatic repeat request-loopback time HARQ-RTT, and receive the acknowledged character associated with the first data returned by the NodeB;
  • the determining module 304 is configured to determine, according to the acknowledgement character and the rank value to be used for the next transmission, data transmission of the first process in the next HARQ RTT.
  • the processing module sends the first data to the NodeB according to the rank value in the first process of the HARQ-RTT (hereinafter, referred to as the process D1 for the description), where the first data includes the mainstream data (corresponding to the rank value) A single stream transmission format of 1), and primary and secondary stream data (corresponding to a dual stream transmission form with a rank value of 2).
  • the first process of the HARQ-RTT in the embodiment of the present invention may belong to the data initial transmission or the data retransmission process, and the first process of the next HARQ-RTT may correspond to the first retransmission respectively. Or the next retransmission.
  • the confirmation character received by the processing module is used to indicate the information about whether the first data is transmitted correctly.
  • the confirmation character when the first data is the mainstream data, the confirmation character may be the mainstream data and the mainstream data error.
  • the confirmation character may be correct for the primary auxiliary stream data
  • the mainstream data is correct
  • the auxiliary stream data is incorrect
  • the mainstream data is incorrect
  • the auxiliary stream data is correct
  • the primary and secondary stream data are both correct. There are four cases of error.
  • the processing module sends the mainstream data to the NodeB in the process of the single-stream transmission corresponding to the rank value of 1 in the process D1 of the HARQ-RTT, and the received confirmation character from the NodeB about the mainstream data indicates that the mainstream data is correct, and the rank of the next transmission is When the value is 1, the determination module determines the next one
  • the process of HARQ RTT D1 sends new mainstream data according to the single stream transmission corresponding to rank value 1, and uses the power offset of the newly scheduled HARQ-RTT process D1.
  • the power offset of the new scheduling is notified to the UE by the base station in the form of a power offset determined according to the scheduling algorithm. Specifically, the base station determines, according to the current priority of the UE, the network load, and the like, the scheduling grant that is available to the UE, where the scheduling grant is equivalent to how much power the UE can transmit, and the UE sends the power according to the scheduled power, which can be guaranteed. Does not exceed the base station load, thus ensuring the performance of network transmission.
  • the confirmation character received by the processing module indicates that the mainstream data is correct, and the next time the reserved rank value is 2, the module is determined to be next.
  • the process of the HARQ RTT D1 transmits the new mainstream data and the new auxiliary stream data according to the dual stream transmission format corresponding to the rank value 2 used in this transmission, and uses the power offset of the newly scheduled HARQ-RTT process D1.
  • the processing module sends the mainstream data to the NodeB in the single-stream transmission format corresponding to the rank value of 1 in the process D1 of the HARQ-RTT.
  • the received acknowledgement character indicates that the mainstream data is incorrect, and the next time the rank value is 1, the determining module can be under A HARQ-RTT process D1 retransmits the main stream data according to the single stream transmission format corresponding to the rank value 1, and uses the historical power offset.
  • the determining module retransmits the mainstream data according to the dual stream transmission format corresponding to the rank value 2 in the next transmission and simultaneously transmits the new auxiliary stream data, and uses the mainstream data corresponding to the rank value 2 New power offset.
  • the new power offset for the same block length data can effectively suppress the inter-stream interference and ensure the performance of data transmission.
  • the processing module sends the mainstream data to the NodeB according to the rank value of 1 in the process D1 of the HARQ-RTT, and the received acknowledgement character indicates that the mainstream data is incorrect, and the next transmission rank value is 2 Even if the rank value is 2, the determining module can retransmit the main stream according to the single stream transmission corresponding to the rank value 1, and use the historical power offset.
  • the determining module can only retransmit the last HARQ-RTT process D1 in the next HARQ-RTT process D1. Mainstream data or auxiliary stream data.
  • the processing module sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received confirmation character indicates that the data of the primary and secondary streams are correct, and the rank value of the next transmission is 1
  • the determining module may send the new mainstream data in the process of the next HARQ-RTT process D1 according to the single stream transmission corresponding to the rank value 1, and adopt the power offset of the newly scheduled process of the next HARQ-RTT process D1.
  • the determining module may send the new mainstream data and the new auxiliary stream data in the dual stream transmission format corresponding to the rank value 2 in the process D1 of the next HARQ-RTT, and use the next HARQ-RTT.
  • the processing module sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received confirmation character indicates that the mainstream data is correct and the auxiliary stream data is incorrect, and the rank value of the next transmission is performed.
  • the determining module may retransmit the auxiliary stream data according to the single stream transmission format corresponding to the rank value 1 in the process D1 of the next HARQ-RTT, where the retransmission of the auxiliary stream data may be used according to the auxiliary stream data.
  • the power offset of the UE retransmitting the auxiliary stream data may be the above three. Forms. Different power offsets can be used in different application scenarios.
  • the mainstream data may not be scheduled, that is, the base station may schedule new power for the mainstream data, but the mainstream data uses the historical power for the retransmission of the auxiliary stream data.
  • the newly scheduled power offset can overcome the above problems and can be scheduled in real time, but if the power offset of the new schedule is smaller than the historical power offset, it may affect the combined gain of the auxiliary stream data, ⁇ Use the maximum of the two to make the two compromise.
  • the determining module may use the E-DCH Dedicated Physical Control Channel (E-DPDCH) and the E-DCH Dedicated Physical Control Channel (E-DPDCH) and the auxiliary enhanced channel E-DCH dedicated physical control auxiliary stream data and control.
  • Information and the base station NodeB side can determine the current transmission based on the detection of the channel code.
  • the data stream that is transmitted is the auxiliary stream data.
  • the configuration module may use the bit information in the non-pilot bits of the S-DPCCH to indicate the mainstream data and the auxiliary stream data when the data transmission is performed by using the single stream transmission format, for example, by using Table 1 or a table. The form shown in 2 is indicated.
  • the auxiliary stream data is carried on the E-DPDCH data channel, and weighted by the weighting coefficient of the main precoding weight.
  • mainstream data is weighted by W1 and W2
  • auxiliary stream data is weighted by W3 and W4.
  • the retransmitted auxiliary stream data is carried by the E-DPDCH, and the retransmitted auxiliary stream data is weighted by the weights W1 and W2 used for weighting the general mainstream data.
  • the processing module sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received confirmation character indicates that the mainstream data is correct and the auxiliary stream data is incorrect, and the rank value of the next transmission is performed.
  • the determining module may send the new mainstream data in the process of the next HARQ-RTT process D1 according to the dual stream transmission corresponding to the rank value 2, and retransmit the auxiliary stream data, and may use the historical power configuration, or the next HARQ- The power offset of the new scheduling of process D1 in RTT, or the maximum of the above-mentioned historical power offset and the power offset of the new scheduling of process D1, namely: Max ⁇ historical power offset, next HARQ-RTT process D1 new The scheduled power offset ⁇ , that is, the UE can use the above three forms of power offset when transmitting the new mainstream data and retransmitting the auxiliary stream data in the form of dual stream transmission.
  • Those skilled in the art can select according to different application scenarios.
  • the determining module may further retransmit the auxiliary stream data according to the dual stream transmission format corresponding to the rank value 2 in the process D1 of the next HARQ-RTT, that is, on the channel that should transmit both the mainstream stream and the auxiliary stream.
  • the auxiliary stream data is transmitted, and the historical power offset is used.
  • the auxiliary stream data can be retransmitted according to the single stream transmission form.
  • the processing module sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received confirmation character indicates that the mainstream data is incorrect and the auxiliary stream data is correct, and the rank value of the next transmission is performed.
  • the determining module may retransmit the main stream data in the single stream transmission format corresponding to the rank value 1 in the process D1 of the next HARQ-RTT, and use the main data to be offset according to the new power corresponding to the rank value 1.
  • the new power offset corresponding to the new rank value can be used to ensure data transmission in the case of the rank change of the same HARQ-RTT process and the next HARQ-RTT transmission of the same process. Performance.
  • the processing module sends the primary and secondary stream data to the NodeB in the dual stream transmission format corresponding to the rank value of 2 in the HARQ-RTT process D1, and the received confirmation character indicates that the mainstream data is incorrect and the auxiliary stream data is correct, and the rank value of the next transmission is performed.
  • the determining module can retransmit the main stream data according to the dual stream transmission form corresponding to the rank value 2 in the process D1 of the next HARQ-RTT, and simultaneously transmit the new auxiliary stream data, and use the historical power offset.
  • the processing module is
  • the process D1 of the HARQ RTT sends the primary and secondary stream data to the NodeB according to the dual stream transmission format corresponding to the rank value of 2.
  • the received acknowledgement character indicates that the mainstream data is incorrect and the auxiliary stream data is correct, and the next transmission rank value is 2,
  • the determining module may retransmit the mainstream data according to the dual stream transmission format corresponding to the rank value 2 in the process D1 of the next HARQ-RTT, that is, retransmit the mainstream data on the channel on which the primary and secondary stream data should be transmitted, and use the historical power. Configuration.
  • the UE can retransmit only the mainstream data according to the single stream transmission format.
  • the processing module sends the primary and secondary stream data to the NodeB according to the rank value of 2 in the process D1 of the HARQ-RTT, and the received confirmation character indicates that the primary and secondary stream data are all wrong, and the next transmission rank value is 1, the determining module can In the next HARQ-RTT process D1, the mainstream data is retransmitted according to the single-stream transmission format corresponding to the rank value 1, the auxiliary stream data is discarded, and the mainstream data is offset according to the new power corresponding to the rank value 1.
  • the processing module sends the primary and secondary stream data to the NodeB in the dual-stream transmission format corresponding to the rank value of 2 in the process D1 of the HARQ-RTT, and the received acknowledgement character indicates that the primary and secondary stream data are all wrong, and the rank value of the next transmission is 2
  • the determining module may retransmit the primary and secondary stream data according to the dual stream transmission format corresponding to the rank value 2 in the process D1 of the next HARQ-RTT, and use the historical power offset.
  • the base station 400 may specifically include:
  • the control module 402 is configured to detect channel codes of the first E-DCH dedicated physical control channel and the second E-DCH dedicated physical control channel to determine the first stream data and the second stream data.
  • the mainstream data and the control information are carried by the data channel E-DPDCH and the control channel E-DPCCH
  • the data channel SE-DPDCH and the control channel SE - DPCCH carries auxiliary stream data and data information.
  • the control module can determine the mainstream data and the auxiliary stream data by detecting the channel codes of the E-DPCCH and the SE-DPCCH, in other words, indicating the mainstream data according to the difference between the E-DPCCH and the SE-DPCCH channel code. And auxiliary stream data.
  • the UE performs primary and secondary stream indication by using bits in the non-pilot bits of the physical channel S-DPCCH, and the control module of the base station NodeB may indicate the bit according to the non-pilot bits of the S-DPCCH.
  • the information determines the first stream data and the second stream data. For example, as shown in Table 3 below: Table 3
  • bits in a slot in the S-DPCCH 8 are pilot bits, and the remaining 2 are non-pilot bits.
  • the remaining 2 bits can be used as the bits indicated by the primary and secondary streams. 1 or Table 2.
  • the user equipment UE can correctly perform the HARQ of the MIM0 under the independent indication of the rank value and the ACK/NACK without changing the current uplink HARQ mechanism. Transmission, effectively guarantee the performance of MIM0 such as inter-stream interference suppression. Moreover, the base station NodeB can also correctly identify the primary and secondary stream data transmission when the rank value is 1.
  • the machine can be read into a storage medium, and when executed, the program can include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种用于上行MIMO的传输方法,包括UE在HARQ_RTT的第一进程发送第一数据到基站NodeB,接收所述NodeB返回的与所述第一数据相关的确认字符,所述UE根据所述确认字符和下一次传输待用的秩值确定下一个HARQ_RTT中所述第一进程的数据传输。本发明还提供了相应的用户设备和基站。实施本发明提供的方法和设备可使UE正确地进行MIMO 的HARQ传输,有效保证MIMO的性能。

Description

用于多输入多输出 MIMO的传输方法和设备 本申请要求于 2012 年 4 月 28 日提交中国专利局、 申请号为 201210132496.9、 发明名称为"用于多输入多输出 MIMO 的传输方法和设备"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种用于多输入多输出 MIMO的传输方法 和设备。 背景技术
多输入多输出 ( Multi-Input Multi-Output, MIMO )技术作为提升用户峰值速 率的重要技术之一, 目前已成为许多通信***的重要性能, 例如 LTE( Long Term Evolution,长期演进 )***、 UMTS HSDPA ( Universal Mobile Telecommunications System High Speed Downlink Packet Access, 通用移动通信***高速下行链路分 组接入) ***等。
在 UMTS上行通信***中, 为了进一步提升用户的峰值速率, 即由原来的 11Mbps (兆位 /秒)加倍提升, MIMO技术成为重要的解决方案。 在 UMTS***中, 混合自动重复请求( Hybrid Automatic Repeat Quest, HARQ )作为一种信道编码 技术, 能够有效保障数据的正确传输。 HARQ进程数等于 HARQ回环时间(Hybrid Automatic Repeat Quest Round Trip Time, HARQ RTT ) 。 2ms TTI ( Transmission Time Interval,传输时间间隔)时, HARQ— RTT等于 8; lOmsTTI时, HARQ— RTT 等于 4。
高速上行链路分组接入 (High-Speed Uplink Packet Access, HSUPA)通信中, 当本 HARQ— RTT内某进程数据传输不正确时, UE ( User Equipment, 用户设备) 可以在下一个 HARQ— RTT的同一个进程进行该数据的重传; 基站(NodeB )接 收到重传数据后, 可以将它与上一次传输的数据进行合并, 从而提高数据的传 输正确率。
然而, HSUPA通信中引入 MIMO技术后, 同时可能有多于一个的数据流发 送, 且两个数据流之间传输的正确与否是相互独立的, 因此目前的 HARQ机制 无法支持 MIMO的数据传输。 此外, 由于 MIMO中的秩值 ( rank ) 自适应, 即每一个调度周期内的 rank值可能发生变化 当 rank变化与 HARQ重传相结合 的时候, 如何进行相应的 HARQ处理, 仍然是目前的方案无法解决的问题。 发明内容
本发明提供了一种用于多输入多输出 MIMO的传输方法, 在秩值和确认字 符的独立指示下, 同时在不改变目前上行 HARQ的机制下, 用户设备 UE可以 正确进行 MIMO的 HARQ传输, 有效地保证了 MIMO的性能。
根据本发明的第一方面, 提供了一种用于多输入多输出 MIMO的传输方 法, 包括:
用户设备 UE在混合自动重复请求—回环时间 HARQ— RTT的第一进程发送 第一数据到基站 NodeB, 接收所述 NodeB返回的与所述第一数据相关的确认字 付;
所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个
HARQ RTT中所述第一进程的数据传输。
根据本发明的第二方面, 提供了一种用户设备, 包括:
处理模块, 用于在混合自动重复请求—回环时间 HARQ— RTT的第一进程发 送第一数据到基站 NodeB, 接收所述 NodeB返回的与所述第一数据相关的确认 字符;
确定模块, 用于根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ RTT中所述第一进程的数据传输。
根据本发明的第三方面, 提供了一种基站, 包括:
控制模块, 用于检测第一增强专用信道 E-DCH专用物理控制信道和第二增 强专用信道 E-DCH专用物理控制信道的信道码以确定第一流数据和第二流数 据。
实施本发明实施例, 具有如下有益效果: 本发明根据与前次传输数据相关 的确认字符和下一次传输待用的秩值确定下一个 HARQ— RTT中同一进程的数据 传输, 使得用户设备 UE在不改变目前上行 HARQ机制的前提下, 正确地进行 MIMO的 HARQ传输, 有效地确保了 MIMO的性能; 还可以使基站能够识别秩 值为 1时主辅流的数据传输。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1图示了根据本发明实施方式的用于多输入多输出 MIMO的传输方法的 示意图。
图 2图示了根据本发明实施方式的多输入多输出 MIMO的发射结构示意图。 图 3图示了根据本发明实施方式的用户设备的结构示意图。
图 4图示了根据本发明实施方式的基站的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
参见图 1 , 图示了根据本发明实施方式的用于多输入多输出 MIMO的传输 方法的示意图, 所述方法具体可包括:
S 100 , 用户设备 UE在混合自动重复请求—回环时间 HARQ— RTT的第一进 程发送第一数据到基站 NodeB , 接收所述 NodeB返回的与所述第一数据相关的 确认字符;
S102, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ RTT中所述第一进程的数据传输。
本发明的实施方式中, 步骤 S100中, UE在 HARQ— RTT中第一进程发送第 一数据到基站 NodeB, 需要说明的是, 本发明实施方式中第一进程可以是
HARQ RTT中的任一进程。 本发明实施方式中的 HARQ— RTT的第一进程可以 属于数据初传或数据重传过程, 那么下一个 HARQ— RTT的第一进程可分别对应 第一次重传或下一次重传。 用户设备 UE在 MIMO通信中秩值( rank ) 可以自 适应, 换而言之, 在每个调度周期内 rank值都可能发生变化, 第一数据根据 rank 值的不同可包括不同的数据流。 rank值为 1时对应单流数据传输, 第一数据可 包括由一个数据块( block )构成的单流数据, rank值为 2时对应双流数据传输, 第一数据可包括由两个数据块构成的双流数据, 根据秩值不同还可以包括更多 流的数据。 其中, 下文中, 将称单流数据为主流数据, 上述的双流数据, 称为 主流数据和辅流数据, 或者主辅流数据。
用户设备 UE在 HARQ— RTT的第一进程(下文中为描述方便, 将第一进程 称为进程 D1, 进程 D1可以是 HARQ— RTT中的任一进程 )将第一数据发送至基 站 NodeB后, 基站 NodeB进行相应的数据处理后向 UE反馈与第一数据相关的 确认字符( ACK/NACK ), 所述确认字符用来表示第一数据的传输正确与否相关 的信息, 例如, 当第一数据为主流数据时, 所述确认字符可以为主流数据正确、 主流数据错误两种情形。 又例如, 当第一数据为主辅流数据时, 所述确认字符 可以为主辅流数据均正确、 主流数据正确而辅流数据错误、 主流数据错误而辅 流数据正确、 主辅流数据均错误四种情形。
用户设备 UE在接收 NodeB发送的确认字符后, 根据所接收的确认字符和 下一次传输待用的秩值确定下一个 HARQ— RTT中同一进程 D1 (即: 上述的第 一进程) 的数据传输。 其中下一次传输(即: 下一个 HARQ— RTT中进程 D1的 传输)待用的秩值可以 MIM0传输中自适应确定的 1 ( rank值为 1对应单流传 输形式)和 2 ( rank值为 2对应双流传输形式), 或者是其他数值。 本发明实施 方式中仅以秩值为 1和 2为例说明 UE根据秩值和确认字符确定下一次
HARQ RQQ中同一进程的数据传输情形, 本领域技术人员可以根据本发明实施 方式所披露的教导进行秩值为其他数值时的数据传输确定。
在用户设备 UE在 HARQ— RTT的进程 D1按照 rank值为 1对应的单流传输 形式向 NodeB发送主流数据, 并且 UE接收的来自 NodeB的有关该主流数据的 确认字符表明该主流数据正确, 并且下一次传输待用的 rank值为 1 (对应单流 数据传输 ) 时, UE在下一个 HARQ— RTT的进程 D1中按照秩值 1对应的单流 传输形式发送新的主流数据, 并且釆用下一个 HARQ— RTT的进程 D1新调度的 功率偏置。 其中新调度的功率偏置是基站根据调度算法确定的以功率偏置形式 通知给 UE的。 具体而言, 基站是根据目前该 UE的优先级、 网络负载等因素确 定 UE可获得的调度授权, 该调度授权相当于 UE发送可获得多大的功率, UE 按照上述调度的功率进行发送, 可保证不超过基站负载, 从而确保网络传输的 性能。 在 UE接收的确认字符表明该主流数据正确, 并且下一次传输待用的 rank 值为 2 (对应双流数据传输)时, UE在下一个 HARQ— RTT的进程 D1按照本次 传输所用的 rank值 2对应的双流传输形式发送新的主流数据和新的辅流数据, 并且釆用下一个 HARQ— RTT的进程 D1新调度的功率偏置。
在 UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 1对应的单流传输 形式发送主流数据,接收的确认字符表明该主流数据错误, 并且下一次传输 rank 值为 1时, UE可以在下一个 HARQ— RTT的进程 D1中按照秩值 1对应的单流 传输形式重传该主流数据, 并且釆用历史功率偏置 (为了描述的方便, 在此及下 文中, 历史功率偏置表示上一个 HARQ— RTT的进程 D1调度的功率偏置)。 在 UE向 NodeB按照 rank值为 1对应的单流传输形式发送主流数据, 在接收的确 认字符表明该主流数据错误, 并且下一次传输 rank值为 2时, UE在下一次传输 中按照秩值 2对应的双流传输形式重传该主流数据并同时发送新的辅流数据, 并且釆用该主流数据按照秩值 2对应的新的功率偏置。 在本实施方式中, 在 rank 值由 1变为 2的情形下, 对于同一块长的数据, 釆用的新的功率偏置可有效地 抑制流间干扰, 确保数据传输的性能。 在本发明的另一些实施方式中, UE向 NodeB按照 rank值为 1发送主流数据,在接收的确认字符表明该主流数据错¾ 并且下一次传输 rank值为 2时, 即使秩值为 2, UE仍然可以按照秩值 1对应的 单流传输形式重传主流数据, 并且釆用历史功率偏置。 在本发明的一些应用场 景下, 在 UE侧没有新的主流数据或辅流数据可传的情形下, UE可以在下一个 HARQ RTT的进程 D1按照单流形式仅重传上一个 HARQ— RTT的进程 D1传输 错误的主流数据或辅流数据。
用户设备 UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双 流传输形式发送主辅流数据, 接收的确认字符表明所述主辅流数据均正确, 且 下一次传输的秩值为 1时, UE可以在下一个 HARQ— RTT的进程 Dl中按照秩 值 1对应的单流传输形式发送新的主流数据, 并且釆用下一个 HARQ— RTT的进 程 D1新调度的功率偏置。 UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值 为 2发送主辅流数据, 接收的确认字符表明所述主辅流数据均正确, 且下一次 传输的秩值为 2时, UE可以在下一个 HARQ— RTT的进程 D1按照 rank值 2对 应的双流传输形式发送新的主流数据和新的辅流数据, 并且釆用下一个
HARQ RTT中进程 Dl新调度的功率偏置。
UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流传输形 式发送主辅流数据, 接收的确认字符表明所述主流数据正确而辅流数据错误, 且下一次传输的秩值为 1时, UE可以在下一个 HARQ— RTT的进程 D1中按照 所述秩值 1对应的单流传输形式重传该辅流数据, 其中辅流数据的重传可以釆 用该辅流数据按照上述秩值 1对应的新的功率偏置, 或者可以釆用下一个 HARQ— RTT的进程 D1新调度的功率偏置, 或者上述二者之中的最大值, 即 Max{该辅流数据按照秩值 1对应的新的功率偏置, 下一个 HARQ— RTT的进程 D1新调度的功率偏置 }。 换而言之, 在上述的上次传输的主流数据正确而辅流 数据错误并且下一次传输待用的秩值为 1时, UE重传辅流数据可以釆用的功率 偏置有上述的三种形式。 在不同的应用场景下, 可以釆用不同的功率偏置。 例 如, 在两次传输信道质量变化不大的情形下, 釆用历史功率偏置, 可以获得较 好的合并增益。 但是这样的情形下, 主流数据可能就调度不起来了, 也就是说, 可能基站会给主流数据调度新的功率, 但是主流数据为了辅流数据的重传而釆 用历史的功率。 然而, 釆用新调度的功率偏置可以克服上面所说的问题能够实 时调度起来, 但是如果新调度的功率偏置比历史功率偏置的小, 那么可能会影 响辅流数据的合并增益, 釆用两者的最大可以使两者折中。 本实施方式中, UE 可以釆用主增强专用信道 E-DCH专用物理数据信道 E-DPDCH和辅增强专用信 道 E-DCH专用物理控制信道 S-E-DPCCH承载辅流数据和控制信息, 而在基站 NodeB侧可以根据信道码的检测确定出本次传输的数据流为辅流数据。 除此之 外, UE还可以在釆用单流传输形式进行数据传输时通过 S-DPCCH的非导频位 中的比特信息来指示主流数据和辅流数据, 例如, 通过下表 1或表 2所示的形 式进行指示。
表 1
Figure imgf000007_0001
需要说明的是, 在上述重传辅流数据中, 该辅流数据承载在 E-DPDCH数据 信道上, 釆用主预编码加权的加权系数进行加权。 如图 2所示, 一般而言, 在 双流的 MIMO中, 主流数据通过 W1和 W2进行加权, 辅流数据通过 W3和 W4 进行加权。 在本发明的重传辅流数据的实施方式中, 釆用 E-DPDCH承载重传的 辅流数据,釆用一般主流数据加权所用的加权 W1和 W2对该重传的辅流数据进 行力口权。
UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流传输形 式发送主辅流数据, 接收的确认字符表明所述主流数据正确而辅流数据错误, 且下一次传输的秩值为 2时, UE可以在下一个 HARQ— RTT的进程 D1中按照 rank值 2对应的双流传输形式发送新的主流数据同时重传该辅流数据, 可以釆 用历史功率配置, 或者下一个 HARQ— RTT中进程 D1新调度的功率偏置, 或者 上述历史功率偏置和进程 D1新调度的功率偏置之中的最大值, 即: Max{历史 功率偏置, 下一个 HARQ— RTT中进程 D1新调度的功率偏置 },也就是说, UE在 按照双流传输形式发送新的主流数据和重传辅流数据时可以釆用上述三种形式 的功率偏置。 本领域技术人员可根据不同的应用场景进行选择, 例如, 在两次 传输信道质量变化不大的情形下, 釆用历史功率偏置, 可以获得较好的合并增 益。 在本发明的另一些实施方式中, 在 UE在 HARQ— RTT的进程 D1向 NodeB 按照 rank值为 2对应的双流传输形式发送主辅流数据, 接收的确认字符表明所 述主流数据正确而辅流数据错误, 且下一次传输的秩值为 2时, UE可以在下一 个 HARQ— RTT的进程 D1按照上述秩值 2对应的双流传输形式重传辅流数据, 即, 在本应传输主流和辅流两个数据流的信道上均重传辅流数据, 并且釆用历 史功率偏置。 在本发明的一些应用场景下, 在下一个 HARQ— RTT的进程 D1中 没有新的数据可传的情形下, UE可按照单流传输形式仅重传辅流数据。
UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流传输形 式发送主辅流数据, 接收的确认字符表明所述主流数据错误而辅流数据正确, 且下一次传输的秩值为 1时, UE可以在下一个 HARQ— RTT的进程 D1按照秩 值 1对应的单流传输形式重传该主流数据, 并且釆用该主流数据按照秩值 1对 应的新的功率偏置。 对于一定块长的数据, 在上一个 HARQ— RTT的进程和下一 个 HARQ— RTT的同一进程传输所用秩值变化的情况下釆用新的秩值对应的新的 功率偏置, 可以确保数据传输的性能。
UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流传输形 式发送主辅流数据, 接收的确认字符表明所述主流数据错误而辅流数据正确, 且下一次传输的秩值为 2时, UE可以在下一个 HARQ— RTT的进程 D1中根据 rank值 2对应的双流传输形式重传该主流数据而同时发送新的辅流数据, 并且 釆用历史功率偏置。 在本发明的另一些实施方式中, UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流传输形式发送主辅流数据, 接收的确 认字符表明所述主流数据错误而辅流数据正确, 且下一次传输的秩值为 2时, UE可以在下一个 HARQ— RTT的进程 D1中按照 rank值 2对应的双流传输形式 重传主流数据, 即在本应传输主辅流数据的信道上均重传该主流数据, 并且釆 用历史功率配置。 在本发明的一些应用场景下, 在 UE侧没有新的数据可传的情 形下, UE可以按照单流传输形式仅重传主流数据。
UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2发送主辅流数据, 接收的确认字符表明所述主辅流数据均错误, 且下一次传输的秩值为 1时, UE 可以在下一个 HARQ— RTT的进程 D1按照秩值 1对应的单流传输形式中重传该 主流数据, 丟弃辅流数据, 并且釆用该主流数据按照秩值 1对应的新的功率偏 置。
UE在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流传输形 式发送主辅流数据, 接收的确认字符表明所述主辅流数据均错误, 且下一次传 输的秩值为 2时, UE可以在下一个 HARQ— RTT的进程 D1中根据 rank值 2对 应的双流传输形式重传主辅流数据, 并且釆用历史功率偏置。
参见图 3, 图示了根据本发明实施方式的用户设备的结构示意图, 用户设备 300具体可以包括:
处理模块 302用于在混合自动重复请求—回环时间 HARQ— RTT的第一进程 发送第一数据到基站 NodeB , 接收所述 NodeB返回的与所述第一数据相关的确 认字符;
确定模块 304, 用于根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ RTT中所述第一进程的数据传输。
本发明实施方式中, 处理模块在 HARQ— RTT的第一进程(下文中, 为描述 方面, 称为进程 D1 )根据 rank值向 NodeB发送第一数据, 其中第一数据包括 主流数据(对应秩值为 1的单流传输形式), 以及主辅流数据(对应秩值为 2的 双流传输形式)。 本发明实施方式中的 HARQ— RTT的第一进程可以属于数据初 传或数据重传过程, 那么下一个 HARQ— RTT的第一进程可分别对应第一次重传 或下一次重传。 处理模块所接收的确认字符用来表示第一数据的传输正确与否 相关的信息, 例如, 当第一数据为主流数据时, 所述确认字符可以为主流数据 正确、 主流数据错误两种情形。 又例如, 当第一数据为主辅流数据时, 所述确 认字符可以为主辅流数据均正确、 主流数据正确而辅流数据错误、 主流数据错 误而辅流数据正确、 主辅流数据均错误四种情形。
处理模块在 HARQ— RTT的进程 D1按照 rank值为 1对应的单流传输形式向 NodeB发送主流数据, 接收的来自 NodeB的有关该主流数据的确认字符表明该 主流数据正确, 并且下一次传输的 rank值为 1时, 确定模块确定在下一个
HARQ RTT的进程 D1按照秩值 1对应的单流传输形式发送新的主流数据, 釆 用下一个 HARQ— RTT的进程 Dl新调度的功率偏置。 其中新调度的功率偏置是 基站根据调度算法确定的以功率偏置形式通知给 UE的。 具体而言, 基站是根据 目前该 UE的优先级、 网络负载等因素确定 UE可获得的调度授权, 该调度授权 相当于 UE发送可获得多大的功率, UE按照上述调度的功率进行发送, 可保证 不超过基站负载, 从而确保网络传输的性能。 处理模块接收的确认字符表明该 主流数据正确, 并且下一次传输待用的 rank值为 2时, 确定模块在下一个
HARQ RTT的进程 D1按照本次传输所用的 rank值 2对应的双流传输形式发送 新的主流数据和新的辅流数据, 并且釆用下一个 HARQ— RTT的进程 D1新调度 的功率偏置。
处理模块在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 1对应的单流 传输形式发送主流数据, 接收的确认字符表明该主流数据错误, 并且下一次传 输 rank值为 1时, 确定模块可以在下一个 HARQ— RTT的进程 Dl中按照秩值 1 对应的单流传输形式重传该主流数据, 并且釆用历史功率偏置。 在下一次传输 rank值为 2时, 确定模块在下一次传输中按照秩值 2对应的双流传输形式重传 该主流数据并同时发送新的辅流数据, 并且釆用该主流数据按照秩值 2对应的 新的功率偏置。 在本实施方式中, 在 rank值由 1变为 2的情形下, 对于同一块 长的数据, 釆用的新的功率偏置可有效地抑制流间干扰, 确保数据传输的性能。 在本发明的另一些实施方式中, 处理模块在 HARQ— RTT的进程 D1向 NodeB按 照 rank值为 1发送主流数据, 在接收的确认字符表明该主流数据错误, 并且下 一次传输 rank值为 2时, 即使秩值为 2 , 确定模块仍然可以按照秩值 1对应的 单流传输形式重传主流数据, 并且釆用历史功率偏置。 在本发明的一些应用场 景下, 在 UE侧没有新的主流数据或辅流数据可传的情形下, 确定模块可以在下 一个 HARQ— RTT的进程 D1按照单流形式仅重传上一个 HARQ— RTT的进程 D1 传输错误的主流数据或辅流数据。
处理模块在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流 传输形式发送主辅流数据, 接收的确认字符表明所述主辅流数据均正确, 且下 一次传输的秩值为 1时, 确定模块可以在下一个 HARQ— RTT的进程 D1中按照 秩值 1对应的单流传输形式发送新的主流数据, 并且釆用下一个 HARQ— RTT的 进程 D1新调度的功率偏置。 在下一次传输的秩值为 2时, 确定模块可以在下一 个 HARQ— RTT的进程 D1按照 rank值 2对应的双流传输形式发送新的主流数据 和新的辅流数据, 并且釆用下一个 HARQ— RTT中进程 D1新调度的功率偏置。
处理模块在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流 传输形式发送主辅流数据, 接收的确认字符表明所述主流数据正确而辅流数据 错误, 且下一次传输的秩值为 1时, 确定模块可以在下一个 HARQ— RTT的进程 D1中按照所述秩值 1对应的单流传输形式重传该辅流数据, 其中辅流数据的重 传可以釆用该辅流数据按照上述秩值 1对应的新的功率偏置, 或者可以釆用下 一个 HARQ— RTT的进程 D1新调度的功率偏置, 或者上述二者之中的最大值, 即 Max{该辅流数据按照秩值 1对应的新的功率偏置, 下一个 HARQ— RTT的进 程 D1新调度的功率偏置 }。 换而言之, 在上述的上次传输的主流数据正确而辅 流数据错误并且下一次传输待用的秩值为 1时, UE重传辅流数据可以釆用的功 率偏置有上述的三种形式。 在不同的应用场景下, 可以釆用不同的功率偏置。 例如, 在两次传输信道质量变化不大的情形下, 釆用历史功率偏置, 可以获得 较好的合并增益。 但是这样的情形下, 主流数据可能就调度不起来了, 也就是 说, 可能基站会给主流数据调度新的功率, 但是主流数据为了辅流数据的重传 而釆用历史的功率。 然而, 釆用新调度的功率偏置可以克服上面所说的问题能 够实时调度起来, 但是如果新调度的功率偏置比历史功率偏置的小, 那么可能 会影响辅流数据的合并增益, 釆用两者的最大可以使两者折中。 本实施方式中, 确定模块可以釆用主增强专用信道 E-DCH专用物理数据信道( E-DCH Dedicated Physical Control Channel , E-DPDCH )和辅增强专用信道 E-DCH专用物理控制 辅流数据和控制信息, 而在基站 NodeB侧可以根据信道码的检测确定出本次传 输的数据流为辅流数据。 除此之外, 还可以通过配置模块在釆用单流传输形式 进行数据传输时利用 S-DPCCH的非导频位中的比特信息来指示主流数据和辅 流数据, 例如可以通过表 1或表 2中所示的形式进行指示。 需要说明的是, 在 上述重传辅流数据中, 该辅流数据承载在 E-DPDCH数据信道上, 釆用主预编码 加权的加权系数进行加权。 如图 2所示, 一般而言, 在双流的 MIMO中, 主流 数据通过 W1和 W2进行加权, 辅流数据通过 W3和 W4进行加权。 在本发明的 重传辅流数据的实施方式中, 釆用 E-DPDCH承载重传的辅流数据, 釆用一般主 流数据加权所用的加权 W1和 W2对该重传的辅流数据进行加权。
处理模块在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流 传输形式发送主辅流数据, 接收的确认字符表明所述主流数据正确而辅流数据 错误, 且下一次传输的秩值为 2时, 确定模块可以在下一个 HARQ— RTT的进程 D1中按照 rank值 2对应的双流传输形式发送新的主流数据同时重传该辅流数 据, 可以釆用历史功率配置, 或者下一个 HARQ— RTT中进程 D1新调度的功率 偏置, 或者上述历史功率偏置和进程 D1新调度的功率偏置之中的最大值, 即: Max{历史功率偏置, 下一个 HARQ— RTT中进程 D1新调度的功率偏置 },也就是 说, UE在按照双流传输形式发送新的主流数据和重传辅流数据时可以釆用上述 三种形式的功率偏置。 本领域技术人员可根据不同的应用场景进行选择, 例如, 在两次传输信道质量变化不大的情形下, 釆用历史功率偏置, 可以获得较好的 合并增 ϋ在本发明的另一些实施方式中,确定模块还可以在下一个 HARQ— RTT 的进程 D1按照上述秩值 2对应的双流传输形式重传辅流数据, 即, 在本应传输 主流和辅流两个数据流的信道上均重传辅流数据, 并且釆用历史功率偏置。 在 本发明的一些应用场景下, 在下一个 HARQ— RTT的进程 D1中没有新的数据可 传的情形下, 可按照单流传输形式仅重传辅流数据。
处理模块在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流 传输形式发送主辅流数据, 接收的确认字符表明所述主流数据错误而辅流数据 正确, 且下一次传输的秩值为 1时, 确定模块可以在下一个 HARQ— RTT的进程 D1按照秩值 1对应的单流传输形式重传该主流数据, 并且釆用该主流数据按照 秩值 1对应的新的功率偏置。 对于一定块长的数据, 在上一个 HARQ— RTT的进 程和下一个 HARQ— RTT的同一进程传输所用秩值变化的情况下釆用新的秩值对 应的新的功率偏置, 可以确保数据传输的性能。 处理模块在 HARQ— RTT的进程 Dl向 NodeB按照 rank值为 2对应的双流 传输形式发送主辅流数据, 接收的确认字符表明所述主流数据错误而辅流数据 正确, 且下一次传输的秩值为 2时, 确定模块可以在下一个 HARQ— RTT的进程 D1中根据 rank值 2对应的双流传输形式重传该主流数据而同时发送新的辅流数 据, 并且釆用历史功率偏置。 在本发明的另一些实施方式中, 处理模块在
HARQ RTT的进程 D1向 NodeB按照 rank值为 2对应的双流传输形式发送主辅 流数据, 接收的确认字符表明所述主流数据错误而辅流数据正确, 且下一次传 输的秩值为 2时, 确定模块可以在下一个 HARQ— RTT的进程 D1中按照 rank值 2对应的双流传输形式重传主流数据, 即在本应传输主辅流数据的信道上均重传 该主流数据, 并且釆用历史功率配置。 在本发明的一些应用场景下, 在 UE侧没 有新的数据可传的情形下, UE可以按照单流传输形式仅重传主流数据。
处理模块在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2发送主辅流 数据, 接收的确认字符表明所述主辅流数据均错误, 且下一次传输的秩值为 1 时, 确定模块可以在下一个 HARQ— RTT的进程 D1按照秩值 1对应的单流传输 形式中重传该主流数据, 丟弃辅流数据, 并且釆用该主流数据按照秩值 1对应 的新的功率偏置。
处理模块在 HARQ— RTT的进程 D1向 NodeB按照 rank值为 2对应的双流 传输形式发送主辅流数据, 接收的确认字符表明所述主辅流数据均错误, 且下 一次传输的秩值为 2时, 确定模块可以在下一个 HARQ— RTT的进程 D1中根据 rank值 2对应的双流传输形式重传主辅流数据, 并且釆用历史功率偏置。
参见图 4, 图示了根据本发明实施方式的基站的结构示意图, 基站 400具体 可以包括:
控制模块 402用于检测第一 E-DCH专用物理控制信道和第二 E-DCH专用 物理控制信道的信道码以确定第一流数据和第二流数据。
本发明实施方式中,用户设备 UE发送主流数据时,通过数据信道 E-DPDCH 和控制信道 E-DPCCH承载主流数据和控制信息, UE发送辅流数据时, 通过数 据信道 S-E-DPDCH和控制信道 S-E-DPCCH承载辅流数据和数据信息。 在基站 NodeB侧, 控制模块可通过检测 E-DPCCH和 S-E-DPCCH的信道码来确定主流 数据和辅流数据, 换而言之, 根据 E-DPCCH和 S-E-DPCCH信道码的不同来指 示主流数据和辅流数据。 通过信道码来指示主辅流的实施方式可适用于上述的 所有数据传输的方式, 既适用于按照单流传输形式进行主流或辅流传输的情 形, 又适用于按照双流形式传输主辅流两个数据流的情形。
在本发明的另一些实施方式中, UE在通过物理信道 S-DPCCH的非导频位 中的比特进行主辅流指示, 基站 NodeB的控制模块可以根据 S-DPCCH的非导 频位的比特指示信息确定第一流数据和第二流数据。 例如, 如下表 3所示: 表 3
Figure imgf000014_0001
1 subframe = 2 m
1 radio frame: T = 10 ms
S-DPCCH中一个时隙中共有 10个比特, 有 8个是导频比特, 剩下 2个是 非导频比特, 剩余的 2个比特可作为主辅流指示的比特, 其中比特指示可以如 表 1或表 2所示。
通过实施本发明的多输入多输出 MIM0的传输方法和设备, 能够在 rank值 和 ACK/NACK的独立指示下, 同时在不改变目前上行 HARQ机制的前提下, 用户设备 UE正确地进行 MIM0的 HARQ传输, 有效地保证流间干扰抑制等 MIM0的性能。 而且, 也能够使基站 NodeB正确地识别 rank值为 1时的主辅流 数据传输。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权利要求书
1、 一种用于上行多输入多输出 MIMO的传输方法, 其特征在于, 包括: 用户设备 UE在混合自动重复请求—回环时间 HARQ— RTT的第一进程发送 第一数据到基站 NodeB, 接收所述 NodeB返回的与所述第一数据相关的确认字 付;
所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个
HARQ RTT中所述第一进程的数据传输。
2、 如权利要求 1所述的方法, 其特征在于, 所述下一次传输待用的秩值包 括 1和 2。
3、 如权利要求 2所述的方法, 其特征在于, 所述第一数据为第一流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ— RTT中 所述第一进程的数据传输包括:
所述确认字符表明所述第一流数据正确并且所述秩值为 1时, 所述 UE在下 一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流传输形式发送新的 第一流数据, 并且釆用所述第一进程新调度的功率偏置;
所述确认字符表明所述第一流数据正确并且所述秩值为 2时, 所述 UE在下 一个 HARQ— RTT中所述第一进程按照所述秩值 2对应的双流传输形式发送新的 第一流数据和新的第二流数据, 并且釆用所述第一进程新调度的功率偏置。
4、 如权利要求 3所述的方法, 其特征在于, 所述第一数据为第一流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ— RTT中 所述第一进程的数据传输还包括:
所述确认字符表明所述第一流数据错误并且所述秩值为 1时, 所述 UE在下 一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流传输形式重传所述 第一流数据, 并且釆用历史功率偏置;
所述确认字符表明所述第一流数据错误并且所述秩值为 2时, 所述 UE在下 一个 HARQ— RTT中所述第一进程按照所述秩值 2对应的双流传输形式重传所述 第一流数据和发送新的第二流数据, 均釆用所述第一流数据按照所述秩值 2对 应的新的功率偏置。
5、 如权利要求 3所述的方法, 其特征在于, 所述第一数据为第一流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ— RTT中 所述第一进程的数据传输还包括:
所述确认字符表明所述第一流数据错误并且所述秩值为 1时, 所述 UE在下 一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流传输形式重传所述 第一流数据, 并且釆用历史功率偏置;
所述确认字符表明所述第一流数据错误并且所述秩值为 2时, 所述 UE在下 一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流传输形式重传所述 第一流数据, 并且釆用历史功率偏置。
6、 如权利要求 2所述的方法, 其特征在于, 所述第一数据为第一流数据和 第二流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ RTT中所述第一进程的数据传输包括:
所述确认字符表明所述第一流数据和第二流数据均正确并且所述秩值为 1 时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流 传输形式发送新的第一流数据, 釆用所述第一进程新调度的功率偏置;
所述确认字符表明所述第一流数据和第二流数据均正确并且所述秩值为 2 时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 2对应的双流 传输形式发送新的第一流数据和新的第二流数据, 釆用所述第一进程新调度的 功率偏置。
7、 如权利要求 6所述的方法, 其特征在于, 所述第一数据为第一流数据和 第二流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ RTT中所述第一进程的数据传输还包括:
所述确认字符表明所述第一流数据正确而所述第二流数据错误并且所述秩 值为 1时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应 的单流传输形式重传所述第二流数据, 釆用第二流数据按照所述秩值 1对应的 新的功率偏置, 或者所述第一进程新调度的功率偏置, 或者所述按照所述秩值 1 对应的新的功率偏置和所述第一进程新调度的功率偏置之中的最大值;
所述确认字符表明所述第一流数据正确而所述第二流数据错误并且所述秩 值为 2时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 2对应 的双流传输形式发送新的第一流数据和重传所述第二流数据, 并且釆用历史功 率偏置, 或者所述第一进程新调度的功率偏置, 或者所述历史功率偏置和所述 第一进程新调度的功率偏置之中的最大值。
8、 如权利要求 6所述的方法, 其特征在于, 所述第一数据为第一流数据和 第二流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ RTT中所述第一进程的数据传输还包括:
所述确认字符表明所述第一流数据正确而所述第二流数据错误并且所述秩 值为 1时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应 的单流传输形式重传所述第二流数据, 釆用第二流数据按照所述秩值 1对应的 新的功率偏置, 或者所述第一进程新调度的功率偏置, 或者所述按照所述秩值 1 对应的新的功率偏置和所述第一进程新调度的功率偏置之中的最大值;
所述确认字符表明所述第一流数据正确而所述第二流数据错误并且所述秩 值为 2时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 2对应 的双流传输形式重传所述第二流数据, 釆用历史功率偏置。
9、 如权利要求 6所述的方法, 其特征在于, 所述第一数据为第一流数据和 第二流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一个 HARQ RTT中所述第一进程的数据传输还包括:
所述确认字符表明所述第一流数据错误而所述第二流数据正确并且所述秩 值为 1时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应 的单流传输形式重传所述第一流数据, 釆用所述第一流数据按照所述秩值 1对 应的新的功率偏置;
所述确认字符表明所述第一流数据错误而所述第二流数据正确并且所述秩 值为 2时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 2对应 的双流传输形式重传第一流数据和发送新的第二流数据, 并且釆用历史功率偏 置。
10、 如权利要求 6所述的方法, 其特征在于, 所述第一数据为第一流数据 和第二流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一 个 HARQ— RTT中所述第一进程的数据传输还包括:
所述确认字符表明所述第一流数据错误而所述第二流数据正确并且所述秩 值为 1时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应 的单流传输形式重传所述第一流数据, 釆用所述第一流数据按照所述秩值 1对 应的新的功率偏置; 所述确认字符表明所述第一流数据错误而所述第二流数据正确并且所述秩 值为 2时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 2对应 的双流传输形式重传第一流数据, 并且釆用历史功率配置。
11、 如权利要求 6所述的方法, 其特征在于, 所述第一数据为第一流数据 和第二流数据时, 所述 UE根据所述确认字符和下一次传输待用的秩值确定下一 个 HARQ— RTT中所述第一进程的数据传输还包括:
所述确认字符表明所述第一流数据和第二流数据均错误并且所述秩值为 1 时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流 传输形式重传所述第一流数据, 釆用所述第一流数据按照所述秩值 1对应的新 的功率偏置;
所述确认字符表明所述第一流数据和第二流数据均错误并且所述秩值为 2 时, 所述 UE在下一个 HARQ— RTT中所述第一进程按照所述秩值 2对应的双流 传输形式重传所述第一流数据和所述第二流数据, 并且釆用历史功率偏置。
12、 如权利要求 7或 8所述的方法, 其特征在于, 所述 UE在下一个 HARQ RTT中所述第一进程按照所述秩值 1对应的单流传输形式重传所述第二 流数据包括:
所述 UE在下一个 HARQ— RTT中所述第一进程通过增强专用信道 E-DCH 专用物理数据信道 E-DPDCH和辅增强专用信道 E-DCH专用物理控制信道 S-E-DPCCH承载所述第二流数据和所述第二流数据的控制信息来重传所述第二 流数据。
13、 如权利要求 7至 10中任意一项所述的方法, 其特征在于, 还包括: 所述 UE在按照单流传输形式进行数据传输时使用辅专用物理控制信道
S-DPCCH的非导频位的比特指示所述第一流数据和第二流数据。
14、 一种用户设备, 其特征在于, 包括:
处理模块, 在混合自动重复请求—回环时间 HARQ— RTT的第一进程发送第 一数据到基站 NodeB接收所述 NodeB返回的与所述第一数据相关的确认字符 确定模块, 根据所述确认字符和下一次传输待用的秩值确定下一个
HARQ RTT中所述第一进程的数据传输。
15、 如权利要求 14所述的用户设备, 其特征在于, , 所述下一次传输待用 的秩值包括 1和 2。
16、 如权利要求 15所述的用户设备, 其特征在于, 所述第一数据为第一流 数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据正确并且所述 秩值为 1时, 在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流 传输形式发送新的第一流数据, 并且釆用所述第一进程新调度的功率偏置, 所 述确认字符表明所述第一流数据正确并且所述秩值为 2时, 在下一个
HARQ RTT中所述第一进程按照所述秩值 2对应的双流传输形式发送新的第一 流数据和新的第二流数据, 并且釆用所述第一进程新调度的功率偏置。
17、 如权利要求 16所述的用户设备, 其特征在于, 所述第一数据为第一流 数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据错误并且所述 秩值为 1时, 在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单流 传输形式重传所述第一流数据, 并且釆用历史功率偏置, 所述确认字符表明所 述第一流数据错误并且所述秩值为 2时, 在下一个 HARQ— RTT中所述第一进程 按照所述秩值 2对应的双流传输形式重传所述第一流数据和发送新的第二流数 据, 均釆用所述第一流数据按照所述秩值 2对应的新的功率偏置。
18、 如权利要求 16所述的用户设备, 其特征在于, 所述第一数据为第一流 数据时, 所述确定模块, 还用于所述确认字符表明所述第一流数据错误并且所 述秩值为 1时, 在下一个 HARQ— RTT中所述第一进程按照所述秩值 1对应的单 流传输形式重传所述第一流数据, 并且釆用历史功率偏置, 所述确认字符表明 所述第一流数据错误并且所述秩值为 2时, 在下一个 HARQ— RTT中所述第一进 程按照所述秩值 1对应的单流传输形式重传所述第一流数据, 并且釆用历史功 率偏置。
19、 如权利要求 15所述的用户设备, 其特征在于, 所述第一数据为第一流 数据和第二流数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据 和第二流数据均正确并且所述秩值为 1时, 在下一个 HARQ— RTT中所述第一进 程按照所述秩值 1对应的单流传输形式发送新的第一流数据, 釆用所述第一进 程新调度的功率偏置, 所述确认字符表明所述第一流数据和第二流数据均正确 并且所述秩值为 2时, 在下一个 HARQ— RTT中所述第一进程按照所述秩值 2对 应的双流传输形式发送新的第一流数据和新的第二流数据, 釆用所述第一进程 新调度的功率偏置。
20、 如权利要求 19所述的用户设备, 其特征在于, 所述第一数据为第一流 数据和第二流数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据 正确而所述第二流数据错误并且所述秩值为 1时, 在下一个 HARQ— RTT中所述 第一进程按照所述秩值 1对应的单流传输形式重传所述第二流数据, 釆用第二 流数据按照所述秩值 1对应的新的功率偏置, 或者所述第一进程新调度的功率 偏置, 或者所述按照所述秩值 1对应的新的功率偏置和所述第一进程新调度的 功率偏置之中的最大值, 所述确认字符表明所述第一流数据正确而所述第二流 数据错误并且所述秩值为 2时, 在下一个 HARQ— RTT中所述第一进程按照所述 秩值 2对应的双流传输形式发送新的第一流数据和重传所述第二流数据, 并且 釆用历史功率偏置, 或者所述第一进程新调度的功率偏置, 或者所述历史功率 偏置和所述第一进程新调度的功率偏置之中的最大值。
21、 如权利要求 19所述的用户设备, 其特征在于, 所述第一数据为第一流 数据和第二流数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据 正确而所述第二流数据错误并且所述秩值为 1时, 在下一个 HARQ— RTT中所述 第一进程按照所述秩值 1对应的单流传输形式重传所述第二流数据, 釆用第二 流数据按照所述秩值 1对应的新的功率偏置, 或者所述第一进程新调度的功率 偏置, 或者所述按照所述秩值 1对应的新的功率偏置和所述第一进程新调度的 功率偏置之中的最大值, 所述确认字符表明所述第一流数据正确而所述第二流 数据错误并且所述秩值为 2时, 在下一个 HARQ— RTT中所述第一进程按照所述 秩值 2对应的双流传输形式重传所述第二流数据, 釆用历史功率偏置。
22、 如权利要求 19所述的用户设备, 其特征在于, 所述第一数据为第一流 数据和第二流数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据 错误而所述第二流数据正确并且所述秩值为 1时, 在下一个 HARQ— RTT中所述 第一进程按照所述秩值 1对应的单流传输形式重传所述第一流数据, 釆用所述 第一流数据按照所述秩值 1对应的新的功率偏置, 所述确认字符表明所述第一 流数据错误而所述第二流数据正确并且所述秩值为 2时, 在下一个 HARQ— RTT 中所述第一进程按照所述秩值 2对应的双流传输形式重传第一流数据和发送新 的第二流数据, 并且釆用历史功率偏置。
23、 如权利要求 19所述的用户设备, 其特征在于, 所述第一数据为第一流 数据和第二流数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据 错误而所述第二流数据正确并且所述秩值为 1时, 在下一个 HARQ— RTT中所述 第一进程按照所述秩值 1对应的单流传输形式重传所述第一流数据, 釆用所述 第一流数据按照所述秩值 1对应的新的功率偏置, 所述确认字符表明所述第一 流数据错误而所述第二流数据正确并且所述秩值为 2时, 在下一个 HARQ— RTT 中所述第一进程按照所述秩值 2对应的双流传输形式重传第一流数据, 并且釆 用历史功率配置。
24、 如权利要求 19所述的用户设备, 其特征在于, 所述第一数据为第一流 数据和第二流数据时, 所述确定模块, 用于所述确认字符表明所述第一流数据 和第二流数据均错误并且所述秩值为 1时, 在下一个 HARQ— RTT中所述第一进 程按照所述秩值 1对应的单流传输形式重传所述第一流数据, 釆用所述第一流 数据按照所述秩值 1对应的新的功率偏置, 所述确认字符表明所述第一流数据 和第二流数据均错误并且所述秩值为 2时, 在下一个 HARQ— RTT中所述第一进 程按照所述秩值 2对应的双流传输形式重传所述第一流数据和所述第二流数 据, 并且釆用历史功率偏置。
25、 如权利要求 20或 21所述的用户设备, 其特征在于, 所述确定模块, 还用于在下一个 HARQ— RTT中所述第一进程通过增强专用信道 E-DCH专用物 理数据信道 E-DPDCH和辅增强专用信道 E-DCH专用物理控制信道 S-E-DPCCH 承载所述第二流数据和所述第二流数据的控制信息来重传所述第二流数据。
26、 如权利要求 20至 23中任意一项所述的用户设备, 其特征在于, 还包 括:
配置模块, 用于在按照单流传输形式进行数据传输时使用辅专用物理控制 信道 S-DPCCH的非导频位的比特指示所述第一流数据和第二流数据。
27、 一种基站, 其特征在于, 包括:
控制模块, 用于检测第一增强专用信道 E-DCH专用物理控制信道和第二增 强专用信道 E-DCH专用物理控制信道的信道码以确定第一流数据和第二流数 据。
28、 如权利要求 27所述的基站, 其特征在于, 所述控制模块, 还用于以单 流传输形式进行数据传输时根据辅专用物理控制信道 S-DPCCH的非导频位的 比特指示信息确定第一流数据和第二流数据。
PCT/CN2013/073520 2012-04-28 2013-03-30 用于多输入多输出mimo的传输方法和设备 WO2013159633A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2013252287A AU2013252287B2 (en) 2012-04-28 2013-03-30 Multiple-input multiple-output (mimo) transmission method and apparatus
EP13780866.3A EP2843865A4 (en) 2012-04-28 2013-03-30 TRANSMISSION METHOD AND DEVICE FOR MULTI-INPUT MULTI-OUTPUT (MIMO)
US14/526,075 US9485759B2 (en) 2012-04-28 2014-10-28 Multiple-input multiple-output (MIMO) transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101324969A CN103378947A (zh) 2012-04-28 2012-04-28 用于上行多输入多输出mimo的传输方法和设备
CN201210132496.9 2012-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/526,075 Continuation US9485759B2 (en) 2012-04-28 2014-10-28 Multiple-input multiple-output (MIMO) transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2013159633A1 true WO2013159633A1 (zh) 2013-10-31

Family

ID=49463540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073520 WO2013159633A1 (zh) 2012-04-28 2013-03-30 用于多输入多输出mimo的传输方法和设备

Country Status (5)

Country Link
US (1) US9485759B2 (zh)
EP (1) EP2843865A4 (zh)
CN (1) CN103378947A (zh)
AU (1) AU2013252287B2 (zh)
WO (1) WO2013159633A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10491497B2 (en) * 2014-09-05 2019-11-26 Qualcomm Incorporated Round trip time determination
CN107306446B (zh) * 2016-04-23 2019-10-01 上海朗帛通信技术有限公司 一种窄带移动通信的方法和装置
WO2018000119A1 (zh) * 2016-06-27 2018-01-04 华为技术有限公司 上行传输的方法和装置
US10790885B1 (en) * 2019-02-22 2020-09-29 Sprint Spectrum L.P. Control of MIMO configuration based on retransmission rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031094A (zh) * 2006-03-03 2007-09-05 华为技术有限公司 E-dch数据传输方法
US20110235586A1 (en) * 2010-03-29 2011-09-29 Samsung Electronics Co., Ltd. Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting mimo

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999432B2 (en) * 2000-07-13 2006-02-14 Microsoft Corporation Channel and quality of service adaptation for multimedia over wireless networks
US20060133325A1 (en) * 2004-12-17 2006-06-22 Harris John M Method and apparatus for determing when to begin communication resource acquisition
CN101212782B (zh) * 2006-12-31 2014-03-19 中兴通讯股份有限公司 高速上行分组接入的调度方法和***
JP4932521B2 (ja) * 2007-02-09 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される基地局装置及び方法
PL2168293T3 (pl) * 2007-06-18 2013-09-30 Optis Wireless Technology Llc Rozszerzenie transmisji połączenia wstępującego poprzez pakietowanie TTI
MX2010001643A (es) * 2007-08-14 2010-03-15 Ntt Docomo Inc Dispositivo de esta estacion de base, dispositivo de estacion movil y metodo de control de comunicaciones.
US20100202386A1 (en) * 2007-09-28 2010-08-12 Panasonic Corporation Wireless communication apparatus and mapping method
KR101430470B1 (ko) * 2008-01-04 2014-08-19 엘지전자 주식회사 Harq 방식을 이용하는 다중 안테나 시스템에서 신호재전송 방법
WO2009126902A2 (en) * 2008-04-11 2009-10-15 Interdigital Patent Holdings, Inc. Methods for transmission time interval bundling in the uplink
WO2010087449A1 (ja) * 2009-02-02 2010-08-05 株式会社 エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置及び方法
KR101737833B1 (ko) * 2009-03-16 2017-05-19 엘지전자 주식회사 동기식 harq 방식에서의 다중안테나를 지원하는 재전송 수행 방법
EP2484074B1 (en) * 2009-09-30 2014-06-25 Telefonaktiebolaget L M Ericsson (PUBL) Reconfiguration of active component carrier set in multi-carrier wireless systems
WO2011068385A2 (ko) * 2009-12-03 2011-06-09 엘지전자 주식회사 무선 통신 시스템에서 효율적인 경합 기반 전송 방법 및 장치
JP5975981B2 (ja) * 2010-03-29 2016-08-23 エルジー エレクトロニクス インコーポレイティド アップリンク多重アンテナ伝送を支援するための効率的な制御情報伝送方法及び装置
US9019854B2 (en) * 2010-04-26 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Method for setting and adjusting a parameter dependent on a round trip time
CN106455100B (zh) * 2010-06-18 2019-06-28 寰发股份有限公司 通信设备间协调传输及指定近似空白子帧模式的方法
US8982796B2 (en) * 2010-06-22 2015-03-17 Lg Electronics Inc. Method and device for determining precoding information for uplink multi-antenna transmission
KR101614096B1 (ko) * 2010-08-12 2016-04-29 한국전자통신연구원 이동통신 시스템에서 멀티 캐리어 구조를 위한 채널 관리 방법
KR101688546B1 (ko) * 2010-09-29 2016-12-21 삼성전자주식회사 Lte시스템에서 phich에 의한 역방향 mimo 재전송을 위한 송수신 방법 및 장치
US9125188B2 (en) * 2011-04-29 2015-09-01 Interdigital Patent Holdings, Inc. Carrier aggregation of carriers with subframe restrictions
US20140071860A1 (en) * 2012-01-30 2014-03-13 Telefonaktiebolaget Lm Ericsson (Publ) Setting Timers when Using Radio Carrier Aggregation
EP2834934B1 (en) * 2012-04-02 2022-08-17 Nokia Solutions and Networks Oy Hybrid automatic repeat request in communications
KR102057864B1 (ko) * 2012-04-25 2019-12-20 엘지전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101031094A (zh) * 2006-03-03 2007-09-05 华为技术有限公司 E-dch数据传输方法
US20110235586A1 (en) * 2010-03-29 2011-09-29 Samsung Electronics Co., Ltd. Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting mimo

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843865A4 *

Also Published As

Publication number Publication date
US20150049742A1 (en) 2015-02-19
CN103378947A (zh) 2013-10-30
AU2013252287A1 (en) 2014-11-20
US9485759B2 (en) 2016-11-01
EP2843865A1 (en) 2015-03-04
EP2843865A4 (en) 2015-05-06
AU2013252287B2 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
US10778377B2 (en) Methods, apparatuses and user equipment for hybrid automatic repeat request transmission
KR101606947B1 (ko) 스케줄링 모드를 표시하는 코드 포인트를 사용하는 제어 채널 시그널링
RU2686849C2 (ru) Способ передачи/приема и устройство для повторной mimo-передачи по восходящей линии связи в системе lte
US8230290B2 (en) Method for retransmitting signals in MIMO system employing HARQ scheme
EP2946511B1 (en) Outer-loop control in wireless communication link adaptation
EP2719110B1 (en) Controlling retransmissions
JP6692536B2 (ja) フィードバック情報を送信するための方法および装置
US20090175369A1 (en) Mobile station and a base station
EP2437565A1 (en) Method and communication device for assigning scheduling grant
WO2011157098A1 (zh) 一种在物理上行控制信道上传输信息的方法及装置
WO2013040969A1 (zh) 传输控制信息的方法、用户设备和基站
US20120327882A1 (en) Base station, mobile station, mimo feedback receiving method, and mimo feedback transmitting method
US8737369B2 (en) Method and apparatus for transmitting and receiving control information in multi-antenna system
US20160218837A1 (en) Method and apparatus to use more transmission opportunities in a distributed network topology with limited harq processes
JP2013502862A (ja) 半永続スケジューリングデータを送信するための方法および装置
WO2014046592A1 (en) Method and apparatus in a wireless communication system
WO2015154310A1 (zh) 一种控制信道资源分配方法及装置
CN108886436A (zh) 无线电网络节点、无线设备以及其中执行的方法
WO2013159633A1 (zh) 用于多输入多输出mimo的传输方法和设备
CN102916792B (zh) 数据传输方法和用户设备
CA2877000A1 (en) System and method for uplink mimo transmission
WO2017075770A1 (zh) 一种传输上行数据的方法、装置和***
EP2675096A1 (en) Method for transmitting acknowledgement/negative acknowledgement and terminal for implementing the same
EP2850872B1 (en) System and method for uplink mimo transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013780866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013780866

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013252287

Country of ref document: AU

Date of ref document: 20130330

Kind code of ref document: A