WO2013159413A1 - 一种液晶材料的光配向方法及装置 - Google Patents

一种液晶材料的光配向方法及装置 Download PDF

Info

Publication number
WO2013159413A1
WO2013159413A1 PCT/CN2012/075634 CN2012075634W WO2013159413A1 WO 2013159413 A1 WO2013159413 A1 WO 2013159413A1 CN 2012075634 W CN2012075634 W CN 2012075634W WO 2013159413 A1 WO2013159413 A1 WO 2013159413A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal material
illuminance
stage
extinction coefficient
Prior art date
Application number
PCT/CN2012/075634
Other languages
English (en)
French (fr)
Inventor
徐亮
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/641,110 priority Critical patent/US9436025B2/en
Publication of WO2013159413A1 publication Critical patent/WO2013159413A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles

Definitions

  • the present invention relates to the field of liquid crystal displays, and in particular, to a light alignment method and apparatus for liquid crystal materials. ⁇ Background technique ⁇
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • OLEDs organic light emitting diode displays
  • the liquid crystal panel of the Polymer Sustained Vertical Alignment (PSVA) mode has been widely used in liquid crystal displays.
  • the electrode structure of the liquid crystal panel of the PSVA mode is shown in FIG. 1a, and it is shown in FIG. In the AA, the cross-sectional view of the line is shown in Figure lb, which is along the AA in Figure la in the applied state, and the cross-sectional view of the line is shown in Figure lc.
  • the reactive monomer 16 is added to the negative liquid crystal molecule 15, and the reactive monomer 16 is polymerized by applying a voltage and excited by ultraviolet light, thereby completing the optical alignment of the negative liquid crystal molecule 15. .
  • the transparent conductive layers 13 and 14 on the substrates 11 and 12 of this display technology are provided with no protrusions or openings, thereby saving manufacturing costs and improving the transmittance of the liquid crystal panel.
  • the reaction monomer is polymerized under the excitation of ultraviolet light to complete the light alignment of the liquid crystal material layer.
  • the ultraviolet light illuminates the liquid crystal material layer in an uninterrupted manner in such a manner that the illuminance remains unchanged.
  • the above reaction process is a radical polymerization excited by ultraviolet light, which is divided into three steps of chain initiation, chain growth and chain termination.
  • Ri ⁇ I 0 [M] (Equation 1-1)
  • Ri the initiation rate induced by the chain
  • the photon excitation efficiency, which means that several photons are required to activate one active radical
  • the molar extinction coefficient of the reactive monomer to ultraviolet light, I.
  • [ ⁇ ] is the concentration of the reactive monomer.
  • Chain termination reactions include both coupling termination and disproportionation termination.
  • coupling termination refers to radical pairing, that is, two reactive radicals are combined by a covalent bond to form a reaction of an inactive saturated molecule.
  • Disproportionation termination refers to the exchange of electrons or light atoms between two free radicals, but still two molecules, each of which loses its activity. Although the two termination reactions are different, they are all reactions that occur between free radicals.
  • the liquid crystal material has a substrate on both sides, and the liquid crystal material is optically aligned by ultraviolet light which is always in an open state and the illuminance remains unchanged, resulting in stability and uniformity of light alignment of the liquid crystal material. Not high enough and prone to macromolecular effects and cause light leakage.
  • the technical problem to be solved by the present invention is to provide a light alignment method and device for a liquid crystal material, and the light alignment method and device of the liquid crystal material can improve the stability and uniformity of light alignment of the liquid crystal material.
  • a technical solution adopted by the present invention is: providing a photo-alignment method of a liquid crystal material, the photo-alignment method of the liquid crystal material comprising: providing a liquid crystal material layer, the liquid crystal material layer is added with a reactive monomer; Under the action of the electric field, the liquid crystal material layer is irradiated by the radiation light to polymerize the reactive monomer, thereby achieving the alignment of the liquid crystal material layer, wherein the polymerization process of the reactive monomer includes the first stage and the first stage and the first stage In the second stage, the radiant light has a first illuminance in the first phase and a second illuminance in the second phase, the first illuminance being less than the second illuminance.
  • the reactive monomer has a first concentration at the beginning of the first phase, and the second phase has a second concentration at the beginning, wherein the second concentration is e- 12 times the first concentration, and the second illuminance is the first illuminance E 1 2 times.
  • the pulse width and/or the pulse frequency of the radiated light in the first phase and the second phase are controlled such that the first illuminance is smaller than the second illuminance.
  • the radiant light has a first photon excitation efficiency and a first molar extinction coefficient with respect to the reactive monomer in the first stage, and a second photon excitation efficiency and a second molar extinction coefficient with respect to the reactive monomer in the second stage, wherein The first photon excitation efficiency is less than the second photon excitation efficiency, and the first molar extinction coefficient is less than the second molar extinction coefficient.
  • the wavelengths of the radiant light in the first phase and the second phase are controlled such that the first photon excitation efficiency is less than the second photon excitation efficiency, and the first molar extinction coefficient is less than the second molar extinction coefficient.
  • the polymerization process of the reactive monomer further comprises a third stage after the second stage, wherein the radiant light has a third illuminance in the third stage and the second illuminance is less than the third illuminance.
  • the radiant light illuminates the liquid crystal material layer in an uninterrupted manner in the third stage.
  • the radiant light has a first photon excitation efficiency and a first molar extinction coefficient with respect to the reactive monomer in the first stage, and a second photon excitation efficiency and a second molar extinction coefficient with respect to the reactive monomer in the second stage, and
  • the third stage has a third photon excitation efficiency and a third molar extinction coefficient with respect to the reactive monomer, wherein the first photon excitation efficiency is less than the second photon excitation efficiency, and the second photon excitation efficiency is less than The third photon excitation efficiency, the first molar extinction coefficient is less than the second molar extinction coefficient, and the second molar extinction coefficient is less than the third molar extinction coefficient.
  • a light alignment device for a liquid crystal material comprising: an electric field generator for generating an electric field; a radiation light generator, For generating a radiant light, so that the reactive monomer added to the liquid crystal material layer is polymerized under the action of an electric field and a radiant light, thereby achieving alignment of the liquid crystal material layer, wherein the polymerization process of the reactive monomer includes the first The stage and the second stage after the first stage, the radiation light generator controls the radiation light to have a first illumination in the first phase and the second illumination in the second phase, the first illumination being less than the second illumination.
  • the polymerization process of the reactive monomer further comprises a third stage after the second stage, wherein the radiation light generator controls the radiation light to have a third illuminance in the third stage, and the second illuminance is less than the third illuminance.
  • the radiation light generator controls the radiation light to illuminate the liquid crystal material layer in an uninterrupted manner in the third stage.
  • the radiation illuminator controls the second illuminance of the radiant light to be e 1 2 times of the first illuminance.
  • the radiation light generator controls the pulse width and/or the pulse frequency of the radiant light in the first phase and the second phase such that the first illuminance is less than the second illuminance.
  • another technical solution adopted by the present invention is: providing a photo-alignment method of a liquid crystal material, wherein the photo-alignment method of the liquid crystal material comprises: providing a liquid crystal material layer, and adding a reactive monomer to the liquid crystal material layer Under the action of an electric field, the liquid crystal material layer is irradiated by the radiation light to polymerize the reactive monomer, thereby realizing the alignment of the liquid crystal material layer, wherein the polymerization process of the reactive monomer includes the first stage and after the first stage In the second stage, the reactive monomer has a first concentration at the beginning of the first phase, and the second phase initially has a second concentration, wherein the second concentration is the first concentration of e- 12 times, and the radiant light is at the first
  • the stage has a first illuminance and a second illuminance in the second stage, controlling the pulse width and/or pulse frequency of the radiant light in the first phase and the second phase such that the first illuminance is less than the second illumina
  • the second illuminance is e 1 2 times of the first illuminance.
  • the radiant light has a first photon excitation efficiency and a first molar extinction coefficient with respect to the reactive monomer in the first stage, and a second photon excitation efficiency and a second molar extinction coefficient with respect to the reactive monomer in the second stage, wherein The first photon excitation efficiency is less than the second photon excitation efficiency, and the first molar extinction coefficient is less than the second molar extinction coefficient.
  • the wavelengths of the radiant light in the first phase and the second phase are controlled such that the first photon excitation efficiency is less than the second photon excitation efficiency, and the first molar extinction coefficient is less than the second molar extinction coefficient.
  • the polymerization process of the reactive monomer further comprises a third stage after the second stage, wherein the radiant light has a third illuminance in the third stage and the second illuminance is less than the third illuminance.
  • the radiant light illuminates the liquid crystal material layer in an uninterrupted manner in the third stage.
  • the radiant light has a first photon excitation efficiency and a first molar extinction coefficient with respect to the reactive monomer in the first stage, and a second photon excitation efficiency and a second molar extinction coefficient with respect to the reactive monomer in the second stage, and
  • the third stage has a third photon excitation efficiency and a third molar extinction coefficient with respect to the reactive monomer, wherein the first photon excitation efficiency is less than the second photon excitation efficiency, the second photon excitation efficiency is less than the third photon excitation efficiency, and the first molar extinction The coefficient is less than the second molar extinction coefficient and the second molar extinction coefficient is less than the third molar extinction coefficient.
  • the invention has the beneficial effects that: the light alignment method and device of the liquid crystal material of the invention improve the stability and uniformity of the light alignment of the liquid crystal material, and can satisfy the photo-alignment reaction speed, while being different from the prior art.
  • the macromolecular effect which can cause light leakage is effectively avoided, thereby realizing the rapid alignment and high quality of the liquid alignment of the liquid crystal material, so that it has better mass productivity.
  • Figure la is a schematic structural view of a transparent electrode of a liquid crystal display using a polymer stabilized vertical alignment display technology
  • Figure lb is a cross-sectional view of the liquid crystal display shown in Figure la along the direction of AA in an unpowered state
  • Figure lc is a cross-sectional view of the liquid crystal display shown in Figure la along the direction of AA in a powered state
  • FIG. 3 is a timing chart of radiation of a liquid crystal material according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a light alignment device of a liquid crystal material according to an embodiment of the present invention.
  • the photo-alignment method and device of the liquid crystal material of the invention will consider the actual situation of the liquid crystal cell, deducing the chemical reaction kinetics formula of the photo-initiated radical polymerization reaction in the liquid crystal cell, and based on the derived formula, propose the use dynamics Pulsed light realizes a scheme of light alignment of liquid crystal materials.
  • the chain growth rate Rp is: (Formula 2-3) wherein kp is a chain growth rate constant and Kt is a chain termination rate constant.
  • the illuminance or the concentration of the reaction monomer must be lowered.
  • the present invention achieves the above three aspects of the optical alignment by irradiating the liquid crystal material layer with dynamic pulsed light.
  • FIG. 2 is a flow chart showing a method of photoalignment of a liquid crystal material according to an embodiment of the present invention. As shown in FIG. 2, a method for optical alignment of a liquid crystal material according to a preferred embodiment of the present invention includes the following steps:
  • Step S1 providing a liquid crystal material layer, the liquid crystal material layer is added with a reactive monomer
  • the liquid crystal material layer may be a negative liquid crystal material of the prior art, and the reactive monomer may be a reactive monomer capable of polymerizing under irradiation of radiation light and aligning the liquid crystal material, which will not be described herein.
  • Step S2 irradiating the liquid crystal material layer with the radiation light under the action of the electric field to cause the reaction monomer to undergo polymerization reaction, thereby realizing the alignment of the liquid crystal material layer.
  • the polymerization process of the reactive monomer includes a first stage and a second stage after the first stage, the radiant light has a first illuminance in the first stage, and the second illuminance in the second stage, the first illuminance is less than the first illuminance Two illuminations.
  • the polymerization process of the reactive monomer may further include a third stage, and the third stage is located after the second stage.
  • the radiant light has a third illuminance in the third phase, and the third illuminance is greater than the second illuminance.
  • the present invention will employ low-illumination irradiation at this stage.
  • the low illumination implementation can be illuminated with shorter, less radiated light pulses, as shown in the first stage T1 of Figure 3.
  • the concentration of the reaction monomer is lowered, and the probability of the termination of the coupling is lowered, but the reaction rate is also lowered due to the decrease in the concentration of the reaction monomer.
  • the stage is The invention will employ higher illumination illumination. Higher illumination can be implemented Long, more radiation pulses, as shown in the second phase T2 of Figure 3.
  • the concentration of the reactive monomer at the beginning of the first phase is the first concentration
  • the concentration at the beginning of the second phase is the second concentration.
  • the boundary between the first stage and the second stage of the reaction is demarcated by changing the kinetic chain length to 1/e, thus limiting the second concentration to e- 12 times the first concentration. Therefore, when the reaction monomer concentration [M] becomes the first concentration of e- 1 2 , it is necessary to change the illuminance, enter the second stage, and set the second illuminance of the second stage to the first illuminance of the first stage. e 1/2 times.
  • the concentration of the reaction monomer is further lowered, and the probability of the reaction at the end of the coupling is lowered to a very low level.
  • the present invention will employ higher illumination at this stage.
  • the higher illumination can be achieved by illuminating the light in an uninterrupted manner, as shown in the third stage T3 in Figure 3.
  • the demarcation points of the third and second phases can be determined experimentally.
  • the illuminance at different stages is controlled by the pulse width of the radiated light.
  • it is also possible to control the illumination of different stages by controlling the pulse frequency of the radiated light or the pulse width and pulse frequency of the simultaneously radiated light.
  • those skilled in the art can control the illumination of different stages by other means, and details are not described herein again.
  • the specific gravity of the coupling termination reaction in the overall termination reaction is related to the photon excitation efficiency ⁇ and the molar extinction coefficient ⁇ . Therefore, the present invention uses lower photons relative to the reactive monomer at the beginning of the reaction. Irradiation light having an excitation efficiency ⁇ or a molar extinction coefficient of £ is irradiated, and a source of higher photon excitation efficiency ⁇ and molar extinction coefficient ⁇ is used as the reaction phase continues.
  • the radiant light has a first photon excitation efficiency and a first molar extinction coefficient with respect to the reactive monomer in the first stage, and a second photon excitation efficiency and a second molar extinction coefficient with respect to the reactive monomer in the second stage, And in the third stage, there is a third photon excitation efficiency and a third molar extinction coefficient with respect to the reactive monomer.
  • the first photon excitation efficiency is less than the second photon excitation efficiency
  • the second photon excitation efficiency is less than the third photon excitation efficiency
  • the first molar extinction coefficient is less than the second molar extinction coefficient
  • the second molar extinction coefficient is less than the third molar extinction coefficient.
  • the radiation of different wavelengths or spectra may be used in the first phase, the second phase, and the third phase, respectively, so that the first photon excitation efficiency is less than the second photon excitation efficiency, and the second photon excitation efficiency is less than the third photon excitation efficiency.
  • the first molar extinction coefficient is less than The second molar extinction coefficient, and the second molar extinction coefficient is less than the third molar extinction coefficient.
  • the optical alignment of the liquid crystal material is achieved by ultraviolet light irradiation.
  • other radiation of the prior art can be used for the optical alignment of the liquid crystal material.
  • the optical alignment device 100 of liquid crystal material includes an electric field generator 10 and a radiation generator 20.
  • the electric field generator 10 is used to generate an electric field.
  • the radiation light generator 20 is for generating a radiation light to cause a reaction monomer added to the liquid crystal material layer to undergo polymerization under the action of an electric field and a radiation light, thereby achieving alignment of the liquid crystal material layer.
  • the radiant light generator 20 produces corresponding radiant light at different stages of the polymerization process in the manner described above, thereby achieving the above object, and will not be described herein.
  • the present invention achieves rapid and high quality optical alignment by using different pulses of light at different reaction stages to change the overall illuminance while satisfying the reaction speed, and trying to avoid the macromolecular effect of light leakage.
  • the light alignment method and device of the liquid crystal material of the invention improve the stability and uniformity of the light alignment of the liquid crystal material, and can greatly avoid the light leakage caused by satisfying the photoalignment reaction speed.
  • the macromolecular effect realizes the rapid and high quality of the light alignment of the liquid crystal material, so that it has better mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种液晶材料的光配向方法及装置(100)。该液晶材料的光配向方法包括:提供一液晶材料层,该液晶材料层添加有反应单体;在电场的作用下,利用辐射光照射液晶材料层,以使反应单体发生聚合反应,进而实现液晶材料层的配向。其中,反应单体的聚合反应过程包括第一阶段以及位于第一阶段之后的第二阶段,辐射光在第一阶段具有第一照度,且在第二阶段具有第二照度,第一照度小于第二照度。液晶材料的光配向方法及装置(100)提高了液晶材料的光配向的稳定性和均一性,并能在满足光配向反应速度的同时有效避免了能引起漏光的大分子效应。

Description

一种液晶材料的光配向方法及装置
【技术领域】
本发明涉及液晶显示器领域, 特别涉及一种液晶材料的光配向方法及装置。 【背景技术】
随着显示器技术的不断发展, 各种不同类型的显示器应运而生。 目前的平 板显示器主要包括液晶显示器(LCD )、 等离子体显示器(PDP )、 有机发光二极 管显示器(OLED )等。 其中, 液晶显示器由于其重量低、 体积小、 能耗低的优 点, 已广泛应用到各个领域中。
高分子稳定垂直配向( Polymer Sustained Vertical Alignment, PSVA )模式的 液晶面板已广泛应用于液晶显示器中, 该 PSVA模式的液晶面板的电极结构如 图 la所示, 其在不加电状态下沿图 la中的 A-A,线的截面图如图 lb所示, 其在 施加电状态下沿图 la中的 A-A,线的截面图如图 lc所示。 PSVA模式的液晶面板 是在负性液晶分子 15中添加了反应单体 16,通过施加电压并在紫外光的激化下, 使反应单体 16发生聚合反应, 从而完成负性液晶分子 15的光配向。 这种显示 技术的基板 11和 12上的透明导电层 13和 14上既不设置突起也不设置开口, 因而节省了制作成本, 并提高了液晶面板的透过率。
在 PSVA显示技术或者其他需要光配向的显示技术中, 在液晶盒两端施加 电压并在紫外光的激化下, 使反应单体发生聚合反应, 从而完成液晶材料层的 光配向。 在整个过程中, 紫外光以照度保持不变的方式不间断地照射液晶材料 层。
根据高分子聚合理论, 上述反应过程是一种紫外光激发的自由基聚合反应, 这种聚合反应分为链引发、 链增长以及链终止三个步骤。
Ri = <^I0[M] (式 1-1 ) 其中, Ri 为链引发的引发速率, Φ为光子激发效率, 其表示激活一个活性 自由基需要几个光子, ε为反应单体对紫外光的摩尔消光系数, I。为入射光照度, [Μ]为反应单体浓度。
根据化学反应动力学推导还可以得出链增长速率 Rp为:
Figure imgf000004_0001
(式 1-2 ) 其中, Rp为链增长速率, kp为链增长速率常数, kt为链终止速率常数。 链终止反应包括偶合终止和歧化终止两种。 其中, 偶合终止指自由基配对, 即两个活泼自由基以共价键相结合, 形成没有活性的饱和分子的反应。 歧化终 止指两个自由基发生电子或者轻原子交换, 但仍然是两个分子, 每个分子都失 去了活性。 两种终止反应虽然不同, 但都是发生在自由基之间的反应。
由于自由基是一种活性很高的反应引发物, 所以光引发自由基聚合反应表 现为一种慢引发、 快增长、 速终止的特点。 根据上述的式 1-1和式 1-2的反应速 率公式, 可以推导出其对应的动力学链长 V:
Ri ( Λ)1/2 (式丄― 3 ) 上述公式的推导建立在一个稳定体系上, 是在没有考虑器壁 (比如液晶材 料两侧的基板) 的影响的情况下得出的。
但是在现有技术的 PSVA显示技术中, 液晶材料的两侧具有基板, 采用一 直处于打开状态并且照度保持不变的紫外光对液晶材料进行光配向, 导致液晶 材料的光配向的稳定性和均一性不够高且易引起大分子效应并造成漏光。
因此, 有必要提供一种液晶材料的光配向方法及装置, 以提高液晶材料的 光配向的稳定性和均一性。 【发明内容】
本发明主要解决的技术问题是提供一种液晶材料的光配向方法及装置, 该 液晶材料的光配向方法及装置能提高液晶材料的光配向的稳定性和均一性。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种液晶材料 的光配向方法, 该液晶材料的光配向方法包括: 提供一液晶材料层, 液晶材料 层添加有反应单体; 在电场的作用下, 利用辐射光照射液晶材料层, 以使反应 单体发生聚合反应, 进而实现液晶材料层的配向, 其中反应单体的聚合反应过 程包括第一阶段以及位于第一阶段之后的第二阶段, 辐射光在第一阶段具有第 一照度, 且在第二阶段具有第二照度, 第一照度小于第二照度。
其中, 反应单体在第一阶段开始时具有第一浓度, 且第二阶段开始时具有 第二浓度,其中第二浓度为第一浓度的 e—1 2倍,且第二照度为第一照度的 e1 2倍。
其中, 控制辐射光在第一阶段和第二阶段的脉沖宽度和 /或脉沖频率, 以使 第一照度小于第二照度。
其中, 辐射光在第一阶段相对于反应单体具有第一光子激发效率和第一摩 尔消光系数, 且在第二阶段相对于反应单体具有第二光子激发效率和第二摩尔 消光系数, 其中第一光子激发效率小于第二光子激发效率, 第一摩尔消光系数 小于第二摩尔消光系数。
其中, 控制辐射光在第一阶段和第二阶段的波长, 以使第一光子激发效率 小于第二光子激发效率, 第一摩尔消光系数小于第二摩尔消光系数。
其中, 反应单体的聚合反应过程进一步包括位于第二阶段之后的第三阶段, 其中辐射光在第三阶段具有第三照度, 第二照度小于第三照度。
其中, 辐射光在第三阶段以不间断方式照射液晶材料层。
其中, 辐射光在第一阶段相对于反应单体具有第一光子激发效率和第一摩 尔消光系数, 在第二阶段相对于反应单体具有第二光子激发效率和第二摩尔消 光系数, 且在第三阶段相对于反应单体具有第三光子激发效率和第三摩尔消光 系数, 其中第一光子激发效率小于第二光子激发效率, 第二光子激发效率小于 第三光子激发效率, 第一摩尔消光系数小于第二摩尔消光系数, 且第二摩尔消 光系数小于第三摩尔消光系数。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种液晶材 料的光配向装置, 该液晶材料的光配向装置包括: 电场发生器, 用于产生一电 场; 辐射光发生器, 用于产生一辐射光, 以使添加于液晶材料层中的反应单体 在电场和辐射光的作用下发生聚合反应, 进而实现液晶材料层的配向, 其中反 应单体的聚合反应过程包括第一阶段以及位于第一阶段之后的第二阶段 , 辐射 光发生器控制辐射光在第一阶段具有第一照度, 且在第二阶段具有第二照度, 第一照度小于第二照度。
其中, 反应单体的聚合反应过程进一步包括位于第二阶段之后的第三阶段, 其中辐射光发生器控制辐射光在第三阶段具有第三照度, 第二照度小于第三照 度。
其中, 辐射光发生器控制辐射光在第三阶段以不间断方式照射液晶材料层。 其中, 辐射光发生器控制辐射光的第二照度为第一照度的 e1 2倍。
其中, 辐射光发生器控制辐射光在第一阶段和第二阶段的脉沖宽度和 /或脉 沖频率, 以使第一照度小于第二照度。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种液晶材 料的光配向方法, 其中, 液晶材料的光配向方法包括: 提供一液晶材料层, 液 晶材料层添加有反应单体; 在电场的作用下, 利用辐射光照射液晶材料层, 以 使反应单体发生聚合反应, 进而实现液晶材料层的配向, 其中反应单体的聚合 反应过程包括第一阶段以及位于第一阶段之后的第二阶段, 反应单体在第一阶 段开始时具有第一浓度, 且第二阶段开始时具有第二浓度, 其中第二浓度为第 一浓度的 e—1 2倍,辐射光在第一阶段具有第一照度,且在第二阶段具有第二照度, 控制辐射光在第一阶段和第二阶段的脉沖宽度和 /或脉沖频率, 以使第一照度小 于第二照度。
其中, 第二照度为第一照度的 e1 2倍。 其中, 辐射光在第一阶段相对于反应单体具有第一光子激发效率和第一摩 尔消光系数, 且在第二阶段相对于反应单体具有第二光子激发效率和第二摩尔 消光系数, 其中第一光子激发效率小于第二光子激发效率, 第一摩尔消光系数 小于第二摩尔消光系数。
其中, 控制辐射光在第一阶段和第二阶段的波长, 以使第一光子激发效率 小于第二光子激发效率, 第一摩尔消光系数小于第二摩尔消光系数。
其中, 反应单体的聚合反应过程进一步包括位于第二阶段之后的第三阶段, 其中辐射光在第三阶段具有第三照度, 第二照度小于第三照度。
其中, 辐射光在第三阶段以不间断方式照射液晶材料层。
其中, 辐射光在第一阶段相对于反应单体具有第一光子激发效率和第一摩 尔消光系数, 在第二阶段相对于反应单体具有第二光子激发效率和第二摩尔消 光系数, 且在第三阶段相对于反应单体具有第三光子激发效率和第三摩尔消光 系数, 其中第一光子激发效率小于第二光子激发效率, 第二光子激发效率小于 第三光子激发效率, 第一摩尔消光系数小于第二摩尔消光系数, 且第二摩尔消 光系数小于第三摩尔消光系数。
本发明的有益效果是: 区别于现有技术的情况, 本发明的液晶材料的光配 向方法及装置提高了液晶材料的光配向的稳定性和均一性, 并能在满足光配向 反应速度的同时有效地避免了能引起漏光的大分子效应, 从而实现了液晶材料 的光配向的快速化和高品质, 使其具备更佳的量产性。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 其中: 图 l a是一种采用高分子稳定垂直配向显示技术的液晶显示器的透明电极的 结构示意图; 图 lb是图 la所示的液晶显示器在不加电状态下沿 A-A,方向的截面图; 图 lc是图 la所示的液晶显示器在加电状态下沿 A-A,方向的截面图; 图 2是本发明实施例的液晶材料的光配向方法的流程图;
图 3是本发明实施例的液晶材料的光配向方法的辐射光的时序示意图; 图 4是本发明实施例的液晶材料的光配向装置的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
本发明的液晶材料的光配向方法及装置将考虑液晶盒的实际情况, 推导液 晶盒内的光引发自由基聚合反应的化学反应动力学公式, 并在推导出的公式的 基础上, 提出使用动态脉沖光实现液晶材料光配向的方案。
由于液晶盒的厚度大约只有 4微米,这样的反应体系并不适合式 1-1、式 1-2 及式 1-3的光引发自由基聚合的化学动力学公式, 原因是:
1 )在液晶盒内发生的链终止反应不仅仅有偶合终止和歧化终止, 还有自由 基和上下基板发生的有效碰撞造成的自由基湮灭;
2 )在液晶盒内, 由于反应单体的浓度很低, 当采用高波长且低照度的紫外 线照射时, 产生的自由基浓度也较低, 偶合终止和歧化终止可以忽略, 但反应 速度将降低;
3 )在液晶盒内, 虽然反应单体的浓度很低, 但如果采用较低波长且较高照 度的紫外线照射时, 产生的自由基浓度也较高, 这时偶合终止和歧化终止不可 以忽略;
4 )若在液晶盒内的光配向过程中发生较多的偶合中止反应, 将得到较大分 子量的分子, 容易造成光线发生散射、 漏光以及对比度降低的问题。
基于上述的分析, 可以推导出在液晶盒内的链引发的引发速率 Ri为:
Κί = φεΙ0[Μ]
(式 2-1 ) 其中, Ri 为链引发的引发速率, Φ为光子激发效率, 其表示激活一个活性 自由基需要几个光子, ε为反应单体对紫外光的摩尔消光系数, I。为入射光照度, [Μ]为反应单体浓度。
当采用高波长、 低照度的紫外光照射时, 达到稳态的自由基浓度 [Ml]为:
[Ml] = (式 2
k. 而链增长速率 Rp为:
Figure imgf000009_0001
(式 2-3 ) 其中, kp为链增长速率常数, Kt为链终止速率常数。
根据上述的式 2-1和式 2-3的反应速率公式,可以推导出其对应的的动力学 链长 V为:
Figure imgf000009_0002
(式 2-4 ) 根据式 2-4, 可以看出在液晶盒内的光引发自由基聚合反应其动力学链长在 较温和的条件下(高波长,低照度), 其动力学链长基本只和反应单体浓度相关。 而动力学链长对于液晶分子的取向稳定性有较大影响。
此外, 可以推导出偶合终止反应在总体的终止反应中所占的比重: α∞Κί = εΙ0 [Μ] (式 2-5 ) 所以得出如下的矛盾: 1 )为了提高配向的速度, 必须提高链增长速率 Rp, 也就是需要提高照度或 者提高反应单体浓度;
2 )为了得到合适的动力学链长, 反应单体的浓度只有一个较窄范围, 不能 较大程度变更;
3 ) 为了降低偶合终止反应的比重, 必须降低照度或者反应单体浓度。 本发明通过使用动态脉沖光照射液晶材料层, 实现光配向对上述三个方面 的要求。
图 2是本发明实施例的液晶材料的光配向方法的流程图。 如图 2所示, 本 发明一优选实施例的液晶材料的光配向方法包括如下步骤:
步骤 S1 : 提供一液晶材料层, 液晶材料层添加有反应单体;
液晶材料层可采用现有技术的负性液晶材料, 反应单体则可以采用现有技 术的能在辐射光照射下聚合并使液晶材料配向的反应单体, 此处不再赘述。
步骤 S2: 在电场的作用下, 利用辐射光照射液晶材料层, 以使反应单体发 生聚合反应, 进而实现液晶材料层的配向。
所述反应单体的聚合反应过程包括第一阶段以及位于第一阶段之后的第二 阶段, 辐射光在第一阶段具有第一照度, 且在第二阶段具有第二照度, 第一照 度小于第二照度。
进一步, 反应单体的聚合反应过程还可以包括第三阶段, 第三阶段位于第 二阶段之后。 在本实施例中, 辐射光在第三阶段具有第三照度, 第三照度大于 第二照度。
在反应的第一阶段(即初始阶段), 由于反应单体浓度较高, 这时非常容易 发生偶合终止, 因此, 该阶段本发明将采用低照度照射。 低照度的实现方式可 采用较短、 较少的辐射光脉沖照射, 具体可如图 3中的第一阶段 T1所示。
在反应的第二阶段(即中间阶段), 反应单体浓度降低, 这时偶合终止的反 应几率降低, 但是由于反应单体浓度降低, 反应速度也降低, 为了保证一定的 反应速度, 该阶段本发明将采用较高照度照射。 较高照度的实现方式可采用较 长、 较多的辐射光脉沖, 具体可如图 3中的第二阶段 T2所示。
在本实施例中, 反应单体在第一阶段开始时的浓度为第一浓度, 在第二阶 段开始时的浓度为第二浓度。 优选将反应的第一阶段与第二阶段的分界线采用 动力学链长变为 1/e来分界, 因此将第二浓度限定为第一浓度的 e—1 2倍。 因此, 当反应单体浓度 [M]变为第一浓度的 e-1 2时, 需要改变照度, 进入第二阶段, 并 将第二阶段的第二照度设置成第一阶段的第一照度的 e 1/2倍。
在反应的第三阶段(即后续阶段), 反应单体浓度进一步降低, 这时偶合终 止的反应几率降低到很低, 为了保证反应速度, 该阶段本发明将采用更高照度 照射。 更高照度的实现方式可采用辐射光以不间断方式进行照射, 具体可如图 3 中的第三阶段 T3所示。第三阶段和第二阶段的分界点可通过试验方式进行确定。
在图 3 中, 通过辐射光的脉沖宽度来控制不同阶段的照度。 然而, 还可以 通过控制辐射光的脉沖频率或同时辐射光的脉沖宽度和脉沖频率来控制不同阶 段的照度。 当然, 本领域技术人员还可以通过其他方式控制不同阶段的照度, 在此不再赘述。
由式 2-5可知,偶合终止反应在总体终止反应中所占的比重与光子激发效率 Φ以及摩尔消光系数 ε皆相关, 因此, 本发明在反应开始阶段使用相对于反应 单体具有较低光子激发效率 Φ或摩尔消光系数£的辐射光进行照射, 随着反应 阶段的延续则使用较高光子激发效率 Φ和摩尔消光系数 ε的光源。
具体来说, 辐射光在第一阶段相对于反应单体具有第一光子激发效率和第 一摩尔消光系数, 在第二阶段相对于反应单体具有第二光子激发效率和第二摩 尔消光系数, 且在第三阶段相对于反应单体具有第三光子激发效率和第三摩尔 消光系数。 第一光子激发效率小于第二光子激发效率, 第二光子激发效率小于 第三光子激发效率, 第一摩尔消光系数小于第二摩尔消光系数, 且第二摩尔消 光系数小于第三摩尔消光系数。 具体可以通过在第一阶段、 第二阶段以及第三 阶段分别使用不同波长或者频谱的辐射光, 以使第一光子激发效率小于第二光 子激发效率, 第二光子激发效率小于第三光子激发效率第一摩尔消光系数小于 第二摩尔消光系数, 且第二摩尔消光系数小于第三摩尔消光系数。
在本实施例中, 采用紫外光照射实现液晶材料的光配向, 当然还可以采用 现有技术的其他辐射光进行液晶材料的光配向。
图 4是本发明实施例的液晶材料的光配向装置。 如图 4所示, 液晶材料的 光配向装置 100包括电场发生器 10和辐射光发生器 20。
其中, 电场发生器 10用于产生一电场。
辐射光发生器 20用于产生一辐射光, 以使添加于液晶材料层中的反应单体 在电场和辐射光的作用下发生聚合反应, 进而实现液晶材料层的配向。 在本实 施例中, 辐射光发生器 20以上文描述的方式在聚合反应过程的不同阶段产生相 应的辐射光, 进而实现上述目的, 此处不再赘述。
综上所述, 本发明通过在不同反应阶段采用不同脉沖的光来改变总体照度, 同时满足反应速度, 又尽力避免造成漏光的大分子效应, 来实现光配向的快速 化和高品质。
区别于现有技术的情况, 本发明的液晶材料的光配向方法及装置提高了液 晶材料的光配向的稳定性和均一性, 并能在满足光配向反应速度的同时极大地 避免能引起漏光的大分子效应, 从而实现了液晶材料的光配向的快速化和高品 质, 使其具备更佳的量产性。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1. 一种液晶材料的光配向方法, 其中, 所述液晶材料的光配向方法包括: 提供一液晶材料层, 所述液晶材料层添加有反应单体;
在电场的作用下, 利用辐射光照射所述液晶材料层, 以使所述反应单体发 生聚合反应, 进而实现所述液晶材料层的配向, 其中所述反应单体的聚合反应 过程包括第一阶段以及位于所述第一阶段之后的第二阶段, 所述辐射光在所述 第一阶段具有第一照度, 且在所述第二阶段具有第二照度, 所述第一照度小于 所述第二照度。
2. 根据权利要求 1所述的液晶材料的光配向方法, 其中, 所述反应单体在 所述第一阶段开始时具有第一浓度, 且所述第二阶段开始时具有第二浓度, 其 中所述第二浓度为所述第一浓度的 e—1 2倍, 且所述第二照度为所述第一照度的 e1/2倍。
3. 根据权利要求 1所述的液晶材料的光配向方法, 其中, 控制所述辐射光 在所述第一阶段和所述第二阶段的脉沖宽度和 /或脉沖频率, 以使所述第一照度 小于所述第二照度。
4. 根据权利要求 1所述的液晶材料的光配向方法, 其中, 所述辐射光在所 述第一阶段相对于所述反应单体具有第一光子激发效率和第一摩尔消光系数, 且在所述第二阶段相对于所述反应单体具有第二光子激发效率和第二摩尔消光 系数, 其中所述第一光子激发效率小于所述第二光子激发效率, 所述第一摩尔 消光系数小于所述第二摩尔消光系数。
5. 根据权利要求 4所述的液晶材料的光配向方法, 其中, 控制所述辐射光 在所述第一阶段和所述第二阶段的波长, 以使所述第一光子激发效率小于所述 第二光子激发效率, 所述第一摩尔消光系数小于所述第二摩尔消光系数。
6. 根据权利要求 1所述的液晶材料的光配向方法, 其中, 所述反应单体的 聚合反应过程进一步包括位于所述第二阶段之后的第三阶段, 其中所述辐射光 在所述第三阶段具有第三照度, 所述第二照度小于所述第三照度。
7. 根据权利要求 6所述的液晶材料的光配向方法, 其中, 所述辐射光在所 述第三阶段以不间断方式照射所述液晶材料层。
8. 根据权利要求 6所述的液晶材料的光配向方法, 其中, 所述辐射光在所 述第一阶段相对于所述反应单体具有第一光子激发效率和第一摩尔消光系数, 在所述第二阶段相对于所述反应单体具有第二光子激发效率和第二摩尔消光系 数, 且在所述第三阶段相对于所述反应单体具有第三光子激发效率和第三摩尔 消光系数, 其中所述第一光子激发效率小于所述第二光子激发效率, 所述第二 光子激发效率小于所述第三光子激发效率, 所述第一摩尔消光系数小于所述第 二摩尔消光系数, 且所述第二摩尔消光系数小于所述第三摩尔消光系数。
9. 一种液晶材料的光配向装置, 其中, 所述液晶材料的光配向装置包括: 电场发生器, 用于产生一电场;
辐射光发生器, 用于产生一辐射光, 以使添加于液晶材料层中的反应单体 在所述电场和所述辐射光的作用下发生聚合反应, 进而实现所述液晶材料层的 配向, 其中所述反应单体的聚合反应过程包括第一阶段以及位于所述第一阶段 之后的第二阶段, 所述辐射光发生器控制所述辐射光在所述第一阶段具有第一 照度, 且在所述第二阶段具有第二照度, 所述第一照度小于所述第二照度。
10. 根据权利要求 9所述的液晶材料的光配向装置, 其中, 所述反应单体 的聚合反应过程进一步包括位于所述第二阶段之后的第三阶段, 其中所述辐射 光发生器控制辐射光在所述第三阶段具有第三照度, 所述第二照度小于所述第 三照度。
11. 根据权利要求 9所述的液晶材料的光配向装置, 其中, 所述辐射光发 生器控制所述辐射光在所述第三阶段以不间断方式照射所述液晶材料层。
12. 根据权利要求 9所述的液晶材料的光配向装置, 其中, 所述辐射光发 生器控制所述辐射光的第二照度为所述第一照度的 e1 2倍。
13. 根据权利要求 9所述的液晶材料的光配向装置, 其中, 所述辐射光发 生器控制所述辐射光在所述第一阶段和所述第二阶段的脉沖宽度和 /或脉沖频 率, 以使所述第一照度小于所述第二照度。
14. 一种液晶材料的光配向方法, 其中, 所述液晶材料的光配向方法包括: 提供一液晶材料层, 所述液晶材料层添加有反应单体;
在电场的作用下, 利用辐射光照射所述液晶材料层, 以使所述反应单体发 生聚合反应, 进而实现所述液晶材料层的配向, 其中所述反应单体的聚合反应 过程包括第一阶段以及位于所述第一阶段之后的第二阶段, 所述反应单体在所 述第一阶段开始时具有第一浓度, 且所述第二阶段开始时具有第二浓度, 其中 所述第二浓度为所述第一浓度的 e— 1 2倍,所述辐射光在所述第一阶段具有第一照 度, 且在所述第二阶段具有第二照度, 控制所述辐射光在所述第一阶段和所述 第二阶段的脉沖宽度和 /或脉沖频率, 以使所述第一照度小于所述第二照度。
15. 根据权利要求 14所述的液晶材料的光配向方法, 其中, 所述第二照度 为所述第一照度的 e1 2倍。
16. 根据权利要求 14所述的液晶材料的光配向方法, 其中, 所述辐射光在 所述第一阶段相对于所述反应单体具有第一光子激发效率和第一摩尔消光系 数, 且在所述第二阶段相对于所述反应单体具有第二光子激发效率和第二摩尔 消光系数, 其中所述第一光子激发效率小于所述第二光子激发效率, 所述第一 摩尔消光系数小于所述第二摩尔消光系数。
17. 根据权利要求 16所述的液晶材料的光配向方法, 其中, 控制所述辐射 光在所述第一阶段和所述第二阶段的波长, 以使所述第一光子激发效率小于所 述第二光子激发效率, 所述第一摩尔消光系数小于所述第二摩尔消光系数。
18. 根据权利要求 14所述的液晶材料的光配向方法, 其中, 所述反应单体 的聚合反应过程进一步包括位于所述第二阶段之后的第三阶段, 其中所述辐射 光在所述第三阶段具有第三照度, 所述第二照度小于所述第三照度。
19. 根据权利要求 18所述的液晶材料的光配向方法, 其中, 所述辐射光在 所述第三阶段以不间断方式照射所述液晶材料层。
20. 根据权利要求 18所述的液晶材料的光配向方法, 其中, 所述辐射光在 所述第一阶段相对于所述反应单体具有第一光子激发效率和第一摩尔消光系 数, 在所述第二阶段相对于所述反应单体具有第二光子激发效率和第二摩尔消 光系数, 且在所述第三阶段相对于所述反应单体具有第三光子激发效率和第三 摩尔消光系数, 其中所述第一光子激发效率小于所述第二光子激发效率, 所述 第二光子激发效率小于所述第三光子激发效率, 所述第一摩尔消光系数小于所 述第二摩尔消光系数, 且所述第二摩尔消光系数小于所述第三摩尔消光系数。
PCT/CN2012/075634 2012-04-28 2012-05-17 一种液晶材料的光配向方法及装置 WO2013159413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/641,110 US9436025B2 (en) 2012-04-28 2012-05-17 Method and device of liquid crystal photo-alignment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210132839.1A CN102681259B (zh) 2012-04-28 2012-04-28 一种液晶材料的光配向方法及装置
CN201210132839.1 2012-04-28

Publications (1)

Publication Number Publication Date
WO2013159413A1 true WO2013159413A1 (zh) 2013-10-31

Family

ID=46813405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075634 WO2013159413A1 (zh) 2012-04-28 2012-05-17 一种液晶材料的光配向方法及装置

Country Status (2)

Country Link
CN (1) CN102681259B (zh)
WO (1) WO2013159413A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102929017B (zh) * 2012-11-19 2015-06-10 深圳市华星光电技术有限公司 一种光配向液晶材料的终点检测方法及装置
CN103309074B (zh) 2013-05-24 2016-02-24 京东方科技集团股份有限公司 一种pdlc液晶面板的制备方法
CN103336389B (zh) * 2013-06-03 2016-01-06 深圳市华星光电技术有限公司 光配向装置和方法
CN104635382A (zh) * 2013-11-06 2015-05-20 群创光电股份有限公司 曝光***与曝光工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305329A (ja) * 2000-04-20 2001-10-31 Fuji Photo Film Co Ltd コレステリック液晶カラーフィルタの製造方法
TW200532297A (en) * 2003-12-18 2005-10-01 Fujitsu Display Tech Liquid crystal display device and method of manufacture of same
CN101354500A (zh) * 2008-09-25 2009-01-28 友达光电股份有限公司 液晶显示面板及其制造方法
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN102402069A (zh) * 2011-11-11 2012-04-04 深圳市华星光电技术有限公司 液晶显示面板的配向膜制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305329A (ja) * 2000-04-20 2001-10-31 Fuji Photo Film Co Ltd コレステリック液晶カラーフィルタの製造方法
TW200532297A (en) * 2003-12-18 2005-10-01 Fujitsu Display Tech Liquid crystal display device and method of manufacture of same
CN101354500A (zh) * 2008-09-25 2009-01-28 友达光电股份有限公司 液晶显示面板及其制造方法
CN102087440A (zh) * 2009-12-08 2011-06-08 华映视讯(吴江)有限公司 液晶显示面板的制作方法
CN102402069A (zh) * 2011-11-11 2012-04-04 深圳市华星光电技术有限公司 液晶显示面板的配向膜制作方法

Also Published As

Publication number Publication date
CN102681259A (zh) 2012-09-19
CN102681259B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
Wong et al. Perovskite‐initiated photopolymerization for singly dispersed luminescent nanocomposites
Chen et al. Light-controlled radical polymerization: mechanisms, methods, and applications
Chen et al. Controlling polymer composition in organocatalyzed photoredox radical ring-opening polymerization of vinylcyclopropanes
TWI333109B (en) Liquid crystal display device and method of producing the same
WO2013159413A1 (zh) 一种液晶材料的光配向方法及装置
TWI597296B (zh) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer and liquid crystal alignment agent
CN101266366B (zh) 液晶配向方法
TW201005394A (en) Liquid crystal display panel and fabricating method thereof
JP2008179781A (ja) 波長変換構造およびその製造方法並びに使用方法
US20160341875A1 (en) Backlight moudle and lcd device with the backlight module
US10948774B2 (en) Photoaligned quantum rod enhancement films
TW201109802A (en) Manufacturing method and equipment for liquid crystal panel
TWI386730B (zh) 液晶配向製程
Zhu et al. Independent dispersed and highly water-oxygen environment stable FAPbBr3 QDs-polymer composite for down-conversion display films
US20130135570A1 (en) Composition for forming liquid crystal layer, liquid crystal display device, and method for producing liquid crystal display device
CN104765199A (zh) 一种配向装置及配向方法
KR101526937B1 (ko) 광소결 공정을 위한 백색광 조사장치
JP4387931B2 (ja) ポリマーネットワーク型液晶表示装置、及び、その製造方法
JP2011146363A (ja) 蛍光ランプ
US9557609B2 (en) Method for manufacturing polymer dispersed liquid crystal (PDLC) panel
TWM329236U (en) Light emitting module
Ko et al. Enhanced light extraction from SrGa2S4: Eu2+ film phosphors coated with various sizes of polystyrene nanosphere monolayers
CN102121677B (zh) 荧光灯
US9436025B2 (en) Method and device of liquid crystal photo-alignment
TWI453511B (zh) 液晶顯示器之製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13641110

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875271

Country of ref document: EP

Kind code of ref document: A1