WO2013157969A1 - Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins - Google Patents

Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins Download PDF

Info

Publication number
WO2013157969A1
WO2013157969A1 PCT/PL2013/000052 PL2013000052W WO2013157969A1 WO 2013157969 A1 WO2013157969 A1 WO 2013157969A1 PL 2013000052 W PL2013000052 W PL 2013000052W WO 2013157969 A1 WO2013157969 A1 WO 2013157969A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
medical material
blood vessels
vascular
reconstruction
Prior art date
Application number
PCT/PL2013/000052
Other languages
English (en)
Inventor
Izabella KRUCIŃSKA
Marcin Henryk STRUSZCZYK
Michał CHRZANOWSKI
Olga MAZALEVSKA
Original Assignee
Politechnika Łodzka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Politechnika Łodzka filed Critical Politechnika Łodzka
Priority to EP13729821.2A priority Critical patent/EP2838575A1/fr
Publication of WO2013157969A1 publication Critical patent/WO2013157969A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Definitions

  • the subject matter of invention concerns a medical material for blood vessels reconstruction, the method of its production, as well as the use of that medical material reconstruction of blood vessels. More precisely, the invention concerns textile vascular prostheses for the reconstruction of small diameter blood vessels and solvent-free manufacturing method used to obtain the aforementioned small diameter vascular prostheses.
  • the solution presented in this patent application concerns a new method of forming textile nanostructures to be applied in vascular surgery and cardiosurgery, especially in reconstruction of blood vessels below 6 mm in diameter, as well as a substrate for proliferation of vascular endothelium cells.
  • the related patent descriptions present large diameter (> 6mm) knitted vascular prostheses, made of polyester (polyethylene terephthalate - PET) - US3945052 (publ. 1976-03-23), polyester sealed with collagen - US6165489 (publ. 2000-12-26), gelatin, albumin - US6162247 (publ. 2000-12-19) or expanded polytetrafluroethylene (ePTFE) - US4187390 (publ. 1980-02-05).
  • polyester polyethylene terephthalate - PET
  • US3945052 Publ. 1976-03-23
  • polyester sealed with collagen - US6165489 publ. 2000-12-26
  • gelatin gelatin
  • albumin - US6162247 publ. 2000-12-19
  • ePTFE expanded polytetrafluroethylene
  • the prostheses mentioned above are inappropriate, primarily due to their high affinity to platelet activation and the risk of thrombosis (PET) or accumulation of calcium ions in the prostheses structure, promoting the process of implant occlusion, and no integration with natural tissue (ePTFE).
  • PET platelet activation
  • ePTFE thrombosis
  • vascular scaffolds and prostheses produced using the electrospinning from polymer solution technique. This technique makes it possible to obtain fibrous nanostructures, which can provide an alternative appropriate for production of tissue substrates, also in vascular surgery and cardiosurgery.
  • Electrospinning utilizing poly(L-lactide) in dichloromethane solution, or polyurethane in acetone solution for obtaining structures used as scaffolds for cell proliferation is also known from US 6790528 patent description (publ. 2004-09-14).
  • US20110076197 patent description (publ. 2011-03-31) describes a method of spinning flat structures from polyvinylidene fluoride (PVDF), polyurethane (PU), polylactide (PLA), copolymer of lactide and glycolide (PLGA), or polyacrylnitrile (PAN) solutions.
  • PVDF polyvinylidene fluoride
  • PU polyurethane
  • PLA polylactide
  • PLGA copolymer of lactide and glycolide
  • PAN polyacrylnitrile
  • the electrospinning technique utilizing polymer solution has one shortcoming involving the use of a solvent. It results in limitation of potential usefulness of this technique for obtaining medical devices because the solvents used may demonstrate toxic properties (local or systemic toxicity, intradermal reactivity, or allergenic effects).
  • US7824601 (publ. 2010-11-02) describes production of vascular stents (endo vascular prostheses) by the electrospinning at room temperature or at 55°C from poly(L-lactic acid); (PLLA), poly(lactide-co-glycolide); (PLGA) solutions.
  • WO2007/062393 (publ. 2007-05-31) presents the process of electrospinning polyolefins, poly-a-olefins from solution at high temperature.
  • US20100041804 (publ. 2010-02-18), WO/2008/1010151, WO/2010/065350 (publ. 2010-06-10), US20100064647 (publ. 2010-03-18), JP2011162636 (publ. 2011- 08-25), JP201183254, K 20110079249 (publ. 2011-07-07), US20110308386 (publ. 2011-12-22), WO/2008/121338 (publ. 2008-10-09) provide recommendations concerning formation of flat structures by the melt electrospinning for potential applications as filters, scaffolds or substrates for cell cultures.
  • US20110194304 (publ. 2011-08-11) presents a method of obtaining flat nonwovens, which have a smooth surface and a porous structure. Mixtures with solvents and melts with admixtures were prepared. Such polymers as: acrylonitrile, ethylenevinyl alcohol, fluoropolymer, polyamide, polyesters and polyimides, luminescent nanomolecules, catalyzers (Au, Pt, Pd, Pt/Au, Pd/Au etc.) were used.
  • US20100297443 (publ. 2010-25-11) describes the process of obtaining monofilament by the melt spinning and melt electrospinning from ethylvinyl alcohol copolymers, polyesters, polyurethanes, nylon and poly(lactic acid).
  • WO2011/035195 presents the method of obtaining nanofibers to be applied in filtration, components of nanofiber membranes, elements of medical products (dialyzers, blood filters, medical filters).
  • the nonwovens were melt blown from polypropylene, polyethylene terephthalate, polybutyleneterephthalate, or polystyrene.
  • US20090162276 (publ. 2009-06-25) presents the method of obtaining melt- blown materials from polyglycolide (PGA), polyhydroxyalkanoates (PHAs) for implantation purposes.
  • PGA polyglycolide
  • PHAs polyhydroxyalkanoates
  • WO2010/036697 presents the method of obtaining nonwoven which is a carrier of a medicinal product.
  • the matrix constituting the textile substrate can be produced by the electrospinning.
  • the fibers were formed from polyamide (PA), polyurethane (PU), fluoropolymers, polyolefins, polyimide, polyglycolide (PGA), poly(lactic acid) (PLA), poly(L-lactide-co-glycolide) (PLGA), polyethylene glycol (PEG), polycaprolactone (PCL). Growth factors such as: VEGF, FGF, PFGF, HIFla were used.
  • the medicinal products were applied onto the obtained tubular structure (4 mm in diameter).
  • US2010010022 (publ. 2010-01-14) describes a three-dimensional, porous medical product obtained from a biocompatible polymer using the melt blow technique. To reinforce the structure, horseshoe-shaped plastic fittings made of PUR, PET or PP were added. The above-mentioned products can be used for post-traumatic reconstruction of external tissues or organs (e.g. the ear) or for the promotion of cell growth.
  • US20110171335 (publ. 2011-07-14) presents also obtaining flat nonwovens by melt electroblowing with polyethylene oxide (PEO) used.
  • PEO polyethylene oxide
  • the goal of this invention is to obtain textile prosthetic structures for the reconstruction of small diameter blood vessels and the method of their production.
  • none of the available documents addresses obtaining tubular textile nanostructures to be used in prosthetics of small diameter ( ⁇ 6 mm) blood vessels made of non-degradable (polypropylene) and/or biodegradable (polylactide) polymers, melt blown, or produced by melt electrospinning or melt electroblowing.
  • a solution including a new method of formation of the textile nanostructures applicable in vascular and cardiac surgery, especially in reconstructions of blood vessels below 6 mm in diameter, or as substrates for cell proliferation, has been obtained.
  • the technique used according to the invention makes it possible to obtain fibrous nanostructures, which can provide an alternative for the production of tissue substrates, as well as for applications in vascular surgery and cardiosurgery.
  • the surface topography of nonwoven structures obtained by melt electrospinning, melt blowing and melt electroblowing, as well as the mechanical properties of the obtained structures are favorable for the application of nonwoven techniques in the vascular reconstructions.
  • the above factors have contributed to the utilization of solvent-free nonwoven techniques for obtaining a nonwoven structure optimal for the use in reconstruction surgery.
  • the subject of the invention is a medical material for the vascular reconstructions, characterized by the content of at least one compound selected from polypropylene and/or polylactide, with the melt flow index (MFI) of polypropylene falling within the 3 to 500 g/10 cm range, whereas the melt flow index (MFI) of polylactide falls within the 20 to 80 g/10 cm range, and the obtained material has a tubular structure and the surface mass of the medical material falls within the 10 - 170 g/m range, the structure porosity within the 60 - 95% range, and the fiber diameter between 0.07 and 20 ⁇ .
  • MFI melt flow index
  • MFI melt flow index
  • the material is obtained using one of the methods selected from among the following ones: melt blown, melt electrospinning or melt electroblowing.
  • the material is melt blown, its surface mass ranges from 20 to 170 g/m 2 , structure porosity from 60 to 90%, and fiber diameter from 0.08 to 5 ⁇ .
  • the material is obtained by melt electrospinning, its surface mass ranges from 10 to 60 g/m 2 , structure porosity from 70 to 90%, and fiber diameter from 0.17 to 20 ⁇ .
  • the material is obtained by the melt electroblowing, its surface mass ranges from 10 to 30 g/m , structure porosity from 60 to 95%, and fiber diameter from 0.07 to 10 ⁇ .
  • its form is tubular with the internal diameter ranging from 1 to 300 mm, preferably to 6 mm.
  • the product has a truncated cone form, with the smaller internal diameter ranging from 1 mm to 20 mm, preferably from 1 mm to 5 mm and the larger diameter ranging from 2 mm to 30 mm, preferably from 2 mm to 6 mm.
  • the product is designed for the reconstruction of small diameter blood vessels, preferably below 6 mm.
  • the polylactide used is selected from among amorphous, or semicrystalline polymers.
  • Another subject of the invention is the method of the production of the medical material for vascular reconstructions described above, characterized by the use of solvent-free techniques, formation of textile structures by melt-based technique selected from among melt blown, melt electrospining and/or melt electroblowing techniques, with the use of an extruder having up to seven heating zones.
  • the temperature in the subsequent heating sections amounts to 180 - 290°C, and extruder spinning head temperature to 320°C for polypropylene, whereas for polylactide it amounts to 100 - 210°C in heating sections, and in the extruder nozzle to 220°C, the rotary speed of the extruder screws fall within the 0 to 10 rpm, and the polymer stream is expanded with hot compressed air and/or high voltage; for polypropylene compressed air of 200 - 320°C temperature with air flow rate of 0 - 40 Nm 3 h is applied, with the respective parameters for polylactide 100 - 220°C and 0 - 40 Nm 3 /h.
  • the voltages used to expand the polymer stream range from 0 to 50 kV.
  • hot compressed air is used in combination with high voltage.
  • Another subject of the invention is the use of the medical material described above for the reconstruction of the blood vessels, and in particular for production of vascular prostheses, vascular implants, tubular scaffolds for proliferation of vascular endothelial cells.
  • Figure 1 presents the view of a three-dimensional fibrous structures of 5 mm and 1 mm internal diameters
  • Figure 2 presents the view of wall structure of the variants described in example 1 , with Figs. 2a - 2d presenting melt-blown textile structures of 0.92 ( ⁇ 0.37) ⁇ to 0.53 ( ⁇ 0.46) ⁇ average fiber diameter for polypropylene, whereas Figs. 2e - 2h presenting melt-blown textile structures of 1.26 ( ⁇ 0.63) ⁇ to 0.41 ( ⁇ 0.21) ⁇ average fiber diameter for polylactide;
  • Figure 3 presents the view of the wall of the variants described in example 2, with Figs. 3a - 3d presenting tubular textile structures obtained by melt electrospinning, of average fiber diameter in the case of the utilization of polypropylene as the raw material, ranging from 3.48 ( ⁇ 1.81) ⁇ to 2.56 ( ⁇ 0.98) ⁇ , and in Figs. 3e and f those obtained for polylactide, ranging from 3.34 ( ⁇ 1.03) ⁇ to 0.8 ( ⁇ 1.44) ⁇ ;
  • Figure 4 presents the view of the wall of the variants described in example 3, obtained by melt electroblowing, with Figs. 4a and b presenting the average diameters for the structures obtained as a result of utilization of polypropylene: from 0.64 ( ⁇ 0.87) ⁇ to 0.38 ( ⁇ 0.28) ⁇ , whereas for polylactide they ranged from 0.83 ( ⁇ 0.64) ⁇ to 0.70 ( ⁇ 0.61) um (Fig.s 4. c, d).
  • Tubular structures were formed using a co-rotating double-screw extruder with seven heating zones and a collector making it possible to obtain textile structures with melt- based techniques, including in particular melt electrospinning, melt blown and melt electroblowing.
  • the temperature in the consecutive heating sections for the non-degradable polymer - polypropylene - was 180 - 290°C, and the extruder spinning head temperature up to 320°C.
  • the temperature in the heating sections was 100 - 210°C, and in the extruder spinning head up to 220°C.
  • the rotary speed of the extruder screws ranged from 0 to 10 rpm. Hot compressed air and/or high voltage was used to for extension of the polymer stream.
  • air of 200 to 320°C temperature was used and air flow rate ranged from 0 to 40 m 3 /h, whereas for polylactide the air temperature ranged from 100 to 220°C and the air flow rate from 0 to 40 m 3 /h.
  • the voltage within the 0 to 50 kV was used for all the processed polymers.
  • the collecting device allowing to obtain tubular structures of 1 mm or more in diameter was used.
  • the collector spindle speed ranged from 0 to 30 rpm, and the spindle oscillation speed from 0 to 11 mm/s.
  • the collector makes it possible to produce structures of up to 30 cm length.
  • the distance between the collector and the extruder ranged from 0.5 to 40 cm.
  • Fig. 1. presents the view of a three-dimensional fibrous structures of 5mm and 1mm internal diameters.
  • melt flow index (MFI) of the polymers was measured with a melt flow indexer (Bexhill on Sea TN39 3LG) according to the PN-EN ISO 1133:2011 standard. The nominal load of 2.16 kg was applied. The measurements were carried out at 230°C temperature.
  • polylactide 4060D • polylactide 4060D, amorphous, melt flow index (MFI) 40 g/10 cm or polylactide 620 ID, semicrystalline, melt flow index (MFI) 50 g/10 cm.
  • MFI melt flow index
  • the polymer granulate was processed using a co-rotating double-screw extruder, having seven heating zones.
  • Detailed characteristics of production parameters for the obtained tubular structures has been presented in Table 1.
  • the temperature in the consecutive heating sections ranged from 140 to 320°C; it was favorable when the temperature increased on the subsequent heating sections, with the temperature of the extruder spinning head no lower than the temperature of the last heating section.
  • the solution variant includes the extruder spinning head temperature within the 150 to 320°C range, and the rotary speed of the extruder screws from 0 to 30 rpm.
  • the distance between the extruder and the collector ranged from 5 to 30 cm.
  • the collector spindle speed ranged from 15 to 30 rpm, spindle oscillation speed from 1 to 11 mm/s.
  • Fig. 2 presents a view of wall structure of the described product variants.
  • polymer granulate used for production as well as the used processing parameters of the extruder and the collector are presented in example 1.
  • Expanding the formed polymer streams was possible owing to high voltage of 1 to 50 kV supply.
  • the distance between the extruder spinneret and the collector ranged from 4 to 30 cm.
  • a favorable variant of the solution involves positioning of the collector in relation to the extruder spinneret at 0 to 45° angle.
  • Fig. 3 presents a view of wall structure of the described product variants.
  • polymer granulate used for the production as well as the used processing parameters of the extruder and the collector are presented in example 1.
  • Melt blown textile structures are characterized by average fiber diameter for polypropylene of 0.92 ( ⁇ 0.37) ⁇ to 0.53 ( ⁇ 0.46) ⁇ (Fig. 2 a, c), and for polylactide of 1.26 ( ⁇ 0.63) ⁇ to 0.41 ( ⁇ 0.21) ⁇ (Fig. 2. f, h). Higher temperature set on the extruder head as well as air temperature, and increased air flow rate results in decreased fiber diameter.
  • tubular textile structures of the mean fiber diameter from 3.48 ( ⁇ 1.81) ⁇ to 2.56 ( ⁇ 0.98) ⁇ for propylene used as the raw material (Fig. 3. a, b), and from 3.34 ( ⁇ 1.03) ⁇ to 0,8 ( ⁇ 1.44) ⁇ for polylactide (Fig. 3 e, f) were obtained.
  • increase of the head temperature and decrease of the distance from the collector to the extruder spinneret is important for the parameters of the resultant structures.
  • the average diameter obtained for polypropylene-based structures ranged from 0.64 ( ⁇ 0.87) ⁇ to 0,38 ( ⁇ 0.28) ⁇ (Fig. 4. a, b), and in the case of polylactide from 0.83 ( ⁇ 0,64) ⁇ to 0.70 ( ⁇ 0.61) ⁇ (Fig. 4. c, d).

Abstract

La présente invention concerne un matériel médical pour la reconstruction de vaisseaux sanguins, son procédé de fabrication, ainsi que l'utilisation de ce matériel médical pour la reconstruction de vaisseaux sanguins. Plus précisément, l'invention concerne des prothèses vasculaires textiles pour la reconstruction de vaisseaux sanguins de petit diamètre, et un procédé de fabrication ne faisant pas intervenir de solvant utilisé pour obtenir lesdites prothèses vasculaires de petit diamètre. La solution présentée dans cette demande de brevet concerne un nouveau procédé de formation de nanostructures textiles destiné à la chirurgie vasculaire et la chirurgie cardiaque, notamment dans des prothèses de vaisseaux sanguins dont le diamètre est inférieur à 6 mm, ainsi qu'un substrat pour la prolifération des cellules endothéliales vasculaires.
PCT/PL2013/000052 2012-04-17 2013-04-17 Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins WO2013157969A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13729821.2A EP2838575A1 (fr) 2012-04-17 2013-04-17 Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PLP-398860 2012-04-17
PL398860A PL231639B1 (pl) 2012-04-17 2012-04-17 Materiał medyczny do rekonstrukcji naczyń krwionośnych oraz sposób wytwarzania materiału medycznego

Publications (1)

Publication Number Publication Date
WO2013157969A1 true WO2013157969A1 (fr) 2013-10-24

Family

ID=48652289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PL2013/000052 WO2013157969A1 (fr) 2012-04-17 2013-04-17 Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins

Country Status (3)

Country Link
EP (1) EP2838575A1 (fr)
PL (1) PL231639B1 (fr)
WO (1) WO2013157969A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134444A1 (fr) * 2018-12-28 2020-07-02 佛山科学技术学院 Procédé de préparation d'endoprothèse de génie tissulaire biologique par pulvérisation de solution

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945052A (en) 1972-05-01 1976-03-23 Meadox Medicals, Inc. Synthetic vascular graft and method for manufacturing the same
US4187390A (en) 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
US4323525A (en) 1978-04-19 1982-04-06 Imperial Chemical Industries Limited Electrostatic spinning of tubular products
US4689196A (en) 1985-06-24 1987-08-25 Gte Products Corporation Silver-tungsten carbide-graphite electrical contact
US5024789A (en) 1988-10-13 1991-06-18 Ethicon, Inc. Method and apparatus for manufacturing electrostatically spun structure
US5141699A (en) 1987-12-21 1992-08-25 Minnesota Mining And Manufacturing Company Process for making oriented melt-blown microfibers
US5409642A (en) 1993-10-06 1995-04-25 Exxon Chemical Patents Inc. Melt blowing of tubular filters
US5582907A (en) 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
US6162247A (en) 1994-08-12 2000-12-19 Meadox Medicals, Inc. Vascular graft impregnated with a heparin-containing collagen sealant
US6165489A (en) 1994-11-23 2000-12-26 Cohesion Technologies, Inc. Crosslinked collagen compositions for in situ administration
US20010010022A1 (en) * 1999-12-08 2001-07-26 Martin Dauner Medical product, method for its manufacture and use
US6342283B1 (en) 1999-03-30 2002-01-29 Usf Filtration & Separations, Inc. Melt-blown tubular core elements and filter cartridges including the same
US20020160033A1 (en) * 2001-04-25 2002-10-31 Noel Caplice Implantable medical devices
US6695804B2 (en) 2001-04-24 2004-02-24 Charles Dennis Rugenstein Device for removal of fatty debris from blood
US6790528B2 (en) 2000-08-18 2004-09-14 Transmit Gesellschaft Fuer Technologietransfer Mbh Production of polymer fibres having nanoscale morphologies
WO2005065079A2 (fr) 2003-11-10 2005-07-21 Angiotech International Ag Implants medicaux et agents inducteurs de fibrose
US7112293B2 (en) 2000-12-19 2006-09-26 Nicast Ltd. Method and apparatus for manufacturing polymer fiber shells via electrospinning
WO2007062393A2 (fr) 2005-11-28 2007-05-31 University Of Delaware Procede de preparation d'une solution de polymeres polyolefiniques au moyen d'un procede d'electrofilage
US20080026173A1 (en) * 2006-07-31 2008-01-31 3M Innovative Properties Company Molded Monocomponent Monolayer Respirator With Bimodal Monolayer Monocomponent Media
US20080081323A1 (en) 2006-09-29 2008-04-03 Daniel Keeley Regenerative Medicine Devices and Melt-Blown Methods of Manufacture
WO2008101015A1 (fr) 2007-02-14 2008-08-21 Google Inc. Production d'une mise au point automatique pour un champ de recherche dans une interface utilisateur
WO2008121338A2 (fr) 2007-03-29 2008-10-09 E. I. Du Pont De Nemours And Company Production de nanofibres grâce à un filage par fusion
US20080268011A1 (en) * 2004-09-24 2008-10-30 Helmut Goldmann Antimicrobial Implant with a Flexible Porous Structure
WO2008134305A2 (fr) 2007-04-26 2008-11-06 Johnson & Johnson Regenerative Therapeutics, Llc Dispositifs et procédés de manipulation de tissus pour organes à lumière
US7501085B2 (en) 2004-10-19 2009-03-10 Aktiengesellschaft Adolph Saurer Meltblown nonwoven webs including nanofibers and apparatus and method for forming such meltblown nonwoven webs
US20090162276A1 (en) 2007-12-19 2009-06-25 Tepha, Inc. Medical devices containing melt-blown non-wovens of poly-4-hydroxybutyrate and copolymers thereof
US20090232874A1 (en) 2005-12-16 2009-09-17 Cornell University Fibrous membrane for biomedical application based on poly(ester-amide)s
US7592277B2 (en) 2005-05-17 2009-09-22 Research Triangle Institute Nanofiber mats and production methods thereof
US20100010022A1 (en) 2004-04-16 2010-01-14 Smithkline Beecham Corporation Cancer treatment method
US20100041804A1 (en) 2008-08-13 2010-02-18 Brands Gerrit J Fabricating fibers
US20100064647A1 (en) 2007-02-14 2010-03-18 Brands Gerrit J Polymer or oligomer fibers by solvent-free electrospinning
WO2010036697A1 (fr) 2008-09-26 2010-04-01 Abbott Cardiovascular Systems Inc. Elément extensible formé d’une matrice fibreuse pour distribution de médicament intraluminale
WO2010065350A1 (fr) 2008-11-25 2010-06-10 Dow Global Technologies Inc. Extrusion de polymères organiques à auto-assemblage moléculaire
US7824601B1 (en) 2007-11-14 2010-11-02 Abbott Cardiovascular Systems Inc. Process of making a tubular implantable medical device
US20100297443A1 (en) 2007-11-30 2010-11-25 Daiwabo Holdings Co., Ltd. Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure
US20100305687A1 (en) 2007-06-19 2010-12-02 Abdellah Ajji Non-woven mat and metho of producing same
WO2011035195A1 (fr) 2009-09-18 2011-03-24 Nano Terra Inc. Nanofibres fonctionnelles et leurs procédés de fabrication et d'utilisation
US20110076197A1 (en) 2009-09-30 2011-03-31 Amomedi Co., Ltd. Nano-fibered membrane for western blot and manufacturing method of the same
US20110148005A1 (en) 2004-06-29 2011-06-23 Yong Lak Joo Method for Elevated Temperature Electrospinning
US20110151738A1 (en) 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, melt blown fine fibers, and methods of making and using the same
KR20110079249A (ko) 2009-12-31 2011-07-07 주식회사 효성 용융전기방사장치 및 이를 위한 멀티 노즐블럭
US20110171335A1 (en) 2004-12-27 2011-07-14 E. I. Du Pont De Nemours And Company Electroblowing web formation process
US20110194304A1 (en) 2008-05-13 2011-08-11 Research Triangle Institute Porous and non-porous nanostructures and application thereof
US20110196327A1 (en) 2010-02-10 2011-08-11 Rajeev Chhabra Web Material(s) for Absorbent Articles
JP2011162636A (ja) 2010-02-09 2011-08-25 Japan Polypropylene Corp 溶融紡糸型エレクトロスピニング用プロピレン系樹脂材料及び極細繊維の溶融紡糸方法
JP2011183254A (ja) 2010-03-04 2011-09-22 Daiwabo Holdings Co Ltd 濾過材及びその製造方法
US8052407B2 (en) 2004-04-08 2011-11-08 Research Triangle Institute Electrospinning in a controlled gaseous environment
US20110308386A1 (en) 2010-06-16 2011-12-22 Jerome Claracq Efficiency-enhanced gas filter medium
US8088324B2 (en) 2004-04-08 2012-01-03 Research Triangle Institute Electrospray/electrospinning apparatus and method
US20120015331A1 (en) 2009-03-23 2012-01-19 Simon Wood Scaffold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014501A1 (fr) * 2010-07-29 2012-02-02 三井化学株式会社 Étoffe en fibres non tissées, procédé et dispositif pour sa production

Patent Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187390A (en) 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
US3945052A (en) 1972-05-01 1976-03-23 Meadox Medicals, Inc. Synthetic vascular graft and method for manufacturing the same
US4323525A (en) 1978-04-19 1982-04-06 Imperial Chemical Industries Limited Electrostatic spinning of tubular products
US4689196A (en) 1985-06-24 1987-08-25 Gte Products Corporation Silver-tungsten carbide-graphite electrical contact
US5141699A (en) 1987-12-21 1992-08-25 Minnesota Mining And Manufacturing Company Process for making oriented melt-blown microfibers
US5024789A (en) 1988-10-13 1991-06-18 Ethicon, Inc. Method and apparatus for manufacturing electrostatically spun structure
US5409642A (en) 1993-10-06 1995-04-25 Exxon Chemical Patents Inc. Melt blowing of tubular filters
US5582907A (en) 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
US6162247A (en) 1994-08-12 2000-12-19 Meadox Medicals, Inc. Vascular graft impregnated with a heparin-containing collagen sealant
US6165489A (en) 1994-11-23 2000-12-26 Cohesion Technologies, Inc. Crosslinked collagen compositions for in situ administration
US6342283B1 (en) 1999-03-30 2002-01-29 Usf Filtration & Separations, Inc. Melt-blown tubular core elements and filter cartridges including the same
US6662842B2 (en) 1999-03-30 2003-12-16 Pall Corporation Apparatus for making melt-blown filter cartridges
US20010010022A1 (en) * 1999-12-08 2001-07-26 Martin Dauner Medical product, method for its manufacture and use
US6790528B2 (en) 2000-08-18 2004-09-14 Transmit Gesellschaft Fuer Technologietransfer Mbh Production of polymer fibres having nanoscale morphologies
US7112293B2 (en) 2000-12-19 2006-09-26 Nicast Ltd. Method and apparatus for manufacturing polymer fiber shells via electrospinning
US6695804B2 (en) 2001-04-24 2004-02-24 Charles Dennis Rugenstein Device for removal of fatty debris from blood
US20020160033A1 (en) * 2001-04-25 2002-10-31 Noel Caplice Implantable medical devices
WO2005065079A2 (fr) 2003-11-10 2005-07-21 Angiotech International Ag Implants medicaux et agents inducteurs de fibrose
US8088324B2 (en) 2004-04-08 2012-01-03 Research Triangle Institute Electrospray/electrospinning apparatus and method
US8052407B2 (en) 2004-04-08 2011-11-08 Research Triangle Institute Electrospinning in a controlled gaseous environment
US20100010022A1 (en) 2004-04-16 2010-01-14 Smithkline Beecham Corporation Cancer treatment method
US20110148005A1 (en) 2004-06-29 2011-06-23 Yong Lak Joo Method for Elevated Temperature Electrospinning
US20080268011A1 (en) * 2004-09-24 2008-10-30 Helmut Goldmann Antimicrobial Implant with a Flexible Porous Structure
US7501085B2 (en) 2004-10-19 2009-03-10 Aktiengesellschaft Adolph Saurer Meltblown nonwoven webs including nanofibers and apparatus and method for forming such meltblown nonwoven webs
US20110171335A1 (en) 2004-12-27 2011-07-14 E. I. Du Pont De Nemours And Company Electroblowing web formation process
US7592277B2 (en) 2005-05-17 2009-09-22 Research Triangle Institute Nanofiber mats and production methods thereof
WO2007062393A2 (fr) 2005-11-28 2007-05-31 University Of Delaware Procede de preparation d'une solution de polymeres polyolefiniques au moyen d'un procede d'electrofilage
US8083983B2 (en) 2005-11-28 2011-12-27 Rabolt John F Method of solution preparation of polyolefin class polymers for electrospinning processing included
US20090232874A1 (en) 2005-12-16 2009-09-17 Cornell University Fibrous membrane for biomedical application based on poly(ester-amide)s
US20080026173A1 (en) * 2006-07-31 2008-01-31 3M Innovative Properties Company Molded Monocomponent Monolayer Respirator With Bimodal Monolayer Monocomponent Media
US20080081323A1 (en) 2006-09-29 2008-04-03 Daniel Keeley Regenerative Medicine Devices and Melt-Blown Methods of Manufacture
US20100064647A1 (en) 2007-02-14 2010-03-18 Brands Gerrit J Polymer or oligomer fibers by solvent-free electrospinning
WO2008101015A1 (fr) 2007-02-14 2008-08-21 Google Inc. Production d'une mise au point automatique pour un champ de recherche dans une interface utilisateur
WO2008121338A2 (fr) 2007-03-29 2008-10-09 E. I. Du Pont De Nemours And Company Production de nanofibres grâce à un filage par fusion
WO2008134305A2 (fr) 2007-04-26 2008-11-06 Johnson & Johnson Regenerative Therapeutics, Llc Dispositifs et procédés de manipulation de tissus pour organes à lumière
US20100305687A1 (en) 2007-06-19 2010-12-02 Abdellah Ajji Non-woven mat and metho of producing same
US7824601B1 (en) 2007-11-14 2010-11-02 Abbott Cardiovascular Systems Inc. Process of making a tubular implantable medical device
US20100297443A1 (en) 2007-11-30 2010-11-25 Daiwabo Holdings Co., Ltd. Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure
US20090162276A1 (en) 2007-12-19 2009-06-25 Tepha, Inc. Medical devices containing melt-blown non-wovens of poly-4-hydroxybutyrate and copolymers thereof
US20110194304A1 (en) 2008-05-13 2011-08-11 Research Triangle Institute Porous and non-porous nanostructures and application thereof
US20100041804A1 (en) 2008-08-13 2010-02-18 Brands Gerrit J Fabricating fibers
WO2010036697A1 (fr) 2008-09-26 2010-04-01 Abbott Cardiovascular Systems Inc. Elément extensible formé d’une matrice fibreuse pour distribution de médicament intraluminale
WO2010065350A1 (fr) 2008-11-25 2010-06-10 Dow Global Technologies Inc. Extrusion de polymères organiques à auto-assemblage moléculaire
US20120015331A1 (en) 2009-03-23 2012-01-19 Simon Wood Scaffold
WO2011035195A1 (fr) 2009-09-18 2011-03-24 Nano Terra Inc. Nanofibres fonctionnelles et leurs procédés de fabrication et d'utilisation
US20110076197A1 (en) 2009-09-30 2011-03-31 Amomedi Co., Ltd. Nano-fibered membrane for western blot and manufacturing method of the same
US20110151738A1 (en) 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, melt blown fine fibers, and methods of making and using the same
KR20110079249A (ko) 2009-12-31 2011-07-07 주식회사 효성 용융전기방사장치 및 이를 위한 멀티 노즐블럭
JP2011162636A (ja) 2010-02-09 2011-08-25 Japan Polypropylene Corp 溶融紡糸型エレクトロスピニング用プロピレン系樹脂材料及び極細繊維の溶融紡糸方法
US20110196327A1 (en) 2010-02-10 2011-08-11 Rajeev Chhabra Web Material(s) for Absorbent Articles
JP2011183254A (ja) 2010-03-04 2011-09-22 Daiwabo Holdings Co Ltd 濾過材及びその製造方法
US20110308386A1 (en) 2010-06-16 2011-12-22 Jerome Claracq Efficiency-enhanced gas filter medium

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BROWN, T.D. SLOTOSCH; A. THIBAUDEAU; L. TAUBENBERGER; A. LOESSNER; D. VAQUETTE; C. DALTON; P.D. HUTMACHER D. W.: "Design and Fabrication of Tubular Scaffolds via Direct Writing in a Melt Electrospinning Mode", BIOINTERPHASES, vol. 7, no. 13, 2012, pages 1 - 13
CHUNG S; INGLE NP; MONTERO GA; KIM SH; KING MW: "Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning", ACTA BIOMATER., vol. 6, no. 6, 11 December 2009 (2009-12-11), pages 1958 - 67, XP027035711
GULBINS, H.; DAUNER, M.; PETZOLD, R.; GOLDEMUND, A.; ANDERSON, I.; DOSER, M.; MEISER, B.; REICHART B.: "Development of an artificial vessel lined with human vascular cells", CARDIOPULMONARY SUPPORT AND PHYSIOLOGY, vol. 128, 2004, pages 372 - 377, XP004571515, DOI: doi:10.1016/j.jtcvs.2003.11.029
KIM, J.S. JANG; D.H. PARK; W. H. MIN B.M.: "Fabrication and Characterization of 3 Dimensional PLGA Nanofibre/Microfibre composite scaffolds", POLYMER, vol. 51, 2010, pages 1320 - 27
MORENO, MJ.; AJJI, A.; MOHEBBI-KALHORI, D.; RUKHLOVA, M.; HADJIZADEH, A.; BUREAU, MN.: "Development of a compliant and cytocompatible micro-fibrous polyethylene terephthalate vascular scaffold", J BIOMED MATER RES B APPL BIOMATER, vol. 97, no. 2, 2011, pages 201 - 14
OLGA MAZALEVSKA ET AL: "Design of vascular prostheses by melt electrospinning-structural characterizations", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 129, no. 2, 3 December 2012 (2012-12-03), pages 779 - 792, XP055060329, ISSN: 0021-8995, DOI: 10.1002/app.38818 *
See also references of EP2838575A1

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134444A1 (fr) * 2018-12-28 2020-07-02 佛山科学技术学院 Procédé de préparation d'endoprothèse de génie tissulaire biologique par pulvérisation de solution

Also Published As

Publication number Publication date
EP2838575A1 (fr) 2015-02-25
PL398860A1 (pl) 2013-10-28
PL231639B1 (pl) 2019-03-29

Similar Documents

Publication Publication Date Title
US9457127B2 (en) Micro-fiber webs of poly-4-hydroxybutyrate and copolymers thereof produced by centrifugal spinning
Chung et al. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning
ES2638689T3 (es) Fibras ultrafinas electrohiladas de poli-4-hidroxibutirato y copolímeros del mismo
JP6172471B2 (ja) 医療用途のためのセグメント化された、ε−カプロラクトンを多く含むポリ(ε−カプロラクトン−コ−p−ジオキサン)コポリマー及びそれから得られる用具
JP2020110599A (ja) 時間依存性の合成生物学的バリア材料
CA2933746C (fr) Implants medicaux comprenant des stratifies de poly-4-hydroxybutyrate et des copolymeres de ce dernier
US11883279B2 (en) Implant with fillable reservoir
Kanmaz et al. Electrospun polylactic acid based nanofibers for biomedical applications
Sebe et al. Polymers and formulation strategies of nanofibrous systems for drug delivery application and tissue engineering
Chang et al. Medical fibers and biotextiles
Jeun et al. Electrospinning of Poly (L-lactide-co-D, L-lactide)
Malik et al. Electrospun biomimetic polymer nanofibers as vascular grafts
KR101816286B1 (ko) 생분해성 고분자 나노 파이버의 배열이 서로 다른 내막과 외막이 연속적으로 연결된 다중막 구조의 튜브형 다공성 스캐폴드 및 이의 제조방법.
Fattahi et al. Nano-fibrous and tubular poly (lactic acid) scaffolds for vascular tissue engineering
WO2013157969A1 (fr) Matériel médical pour reconstruction de vaisseaux sanguins, son procédé de fabrication et utilisation du matériel médical pour la reconstruction de vaisseaux sanguins
US20240130854A1 (en) Implant with fillable reservoir
Tornello et al. Micro/nanofiber-based scaffolds for soft tissue engineering applications: Potential and current challenges
Wu et al. Colloid and Interface Science Communications
Ngadiman et al. Developments in tissue engineering scaffolding using an electrospinning process
Şensu Design of electrospun cardiovascular bypass graft using derivative of poly (Alkylene terephthalate)
Park et al. Biomedical polymer nanofibers for emerging technology
Chung Vascular tissue engineering scaffolds from elastomeric biodegradable poly (L-lactide-co-epsilon-caprolactone)(PLCL) via melt spinning and electrospinning
AU2022318569A1 (en) Particle-form hybrid-scale fiber matrix
CA3227438A1 (fr) Matrice de fibres combinees macro et microporeuses a l'echelle hybride
de Valence et al. Nanofi bre-based Vascular Grafts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13729821

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013729821

Country of ref document: EP