WO2013157604A1 - Resin composition, two-part laminating adhesive, laminated film, and backsheet for solar cell - Google Patents

Resin composition, two-part laminating adhesive, laminated film, and backsheet for solar cell Download PDF

Info

Publication number
WO2013157604A1
WO2013157604A1 PCT/JP2013/061507 JP2013061507W WO2013157604A1 WO 2013157604 A1 WO2013157604 A1 WO 2013157604A1 JP 2013061507 W JP2013061507 W JP 2013061507W WO 2013157604 A1 WO2013157604 A1 WO 2013157604A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
molecular weight
acid
polyol
polyester
Prior art date
Application number
PCT/JP2013/061507
Other languages
French (fr)
Japanese (ja)
Inventor
晃生 海野
宇野 誠一
正巳 穂積
康二 秋田
戸田 哲也
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201380008286.1A priority Critical patent/CN104093760B/en
Priority to JP2013539032A priority patent/JP5413704B1/en
Publication of WO2013157604A1 publication Critical patent/WO2013157604A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4219Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from aromatic dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4615Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a resin composition excellent in substrate adhesiveness under wet heat conditions, a two-component laminating adhesive, a laminated film, and a solar cell backsheet.
  • the back sheet installed on the back of the solar cell module is a member for protecting the power generation mechanism such as cells and wiring from the external environment and maintaining insulation, and various functional films are bonded together with adhesives. It consists of a laminate. Adhesives used for such backsheets include high adhesion to various films with different characteristics, such as polyester film and polyvinyl fluoride film, and moisture resistance to maintain long-term adhesion even in open-air environments. A high level of heat is required.
  • the polyurethane adhesive has a weak coating strength after curing, and there is a problem in stability over time that the adhesive strength is deteriorated in the moisture and heat resistance test, and the appearance after lamination is poor. There was also a problem.
  • the problem to be solved by the present invention is that the coating film strength after curing is high, the adhesive strength is high, and in the moisture and heat resistance test, the adhesive strength is not deteriorated, and it is excellent in stability over time.
  • An object of the present invention is to provide an excellent resin composition, an adhesive for two-component laminating containing the resin composition, a laminated film having a layer made of the adhesive, and a solar cell backsheet.
  • the present inventors have (1) a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 100,000, and Polyester polyurethane polyol (A) having a molecular weight distribution (Mw / Mn) of 5.0 or more, (2) having a branched structure in the molecule, and having a weight average molecular weight (Mw) in the range of 10,000 to 50,000 And a component essentially comprising a polyester polyol (B) having a molecular weight distribution (Mw / Mn) of less than 5.0 is used as a main agent, and (3) a number average molecular weight (Mn) as necessary.
  • Mw molecular weight distribution
  • Mn number average molecular weight
  • the present invention is (1) having a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 100,000, and a molecular weight distribution (Mw / Mn) of 5.0.
  • the above polyester polyurethane polyol (A), and (2) a polyester polyol having a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 50,000, and a molecular weight distribution (Mw / Mn) of less than 5.0 It is related with the resin composition characterized by making B) into an essential component.
  • the present invention further relates to a two-component laminating adhesive containing (5) polyisocyanate (E) as a curing agent in addition to the component (A) and the component (B).
  • the present invention further relates to a laminated film having at least one film selected from the group consisting of a polyester film, a fluorine film, a polyolefin film, and a metal foil, and an adhesive layer made of the above two-component laminating adhesive.
  • the present invention further relates to a solar cell backsheet having an adhesive layer made of the above-mentioned two-component laminating adhesive.
  • the resin composition of the present invention and the two-component laminating adhesive containing the resin composition have high coating strength after curing, high adhesive strength, and stable over time that the adhesive strength does not deteriorate in a moist heat resistance test. It is useful as an adhesive for laminated films and back sheets of solar cells because of its excellent properties and excellent appearance after lamination.
  • the resin composition of the present invention has (1) a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 100,000, and a molecular weight distribution (Mw / Mn) of 5
  • the polyester polyurethane polyol (A) which is 0.0 or more is contained as an essential component.
  • the polyester polyurethane polyol (A) has a branched structure in the molecule, the final cured product has a high crosslink density, so that it does not swell even under wet heat conditions and maintains high adhesiveness. it can.
  • the polyester polyurethane polyol (A) has a weight average molecular weight (Mw) in the range of 10,000 to 100,000. When the weight average molecular weight (Mw) is within the above range, the cured product exhibits high strength, and the resin composition is excellent in initial adhesive strength. Moreover, the resin composition has a viscosity suitable for coating. When the weight average molecular weight (Mw) of the polyester polyurethane polyol (A) is less than 10,000, the initial adhesive strength tends to decrease, and since the viscosity is low, the resin composition is difficult to apply uniformly. .
  • the weight average molecular weight (Mw) of the polyester polyurethane polyol (A) exceeds 100,000, since the viscosity tends to increase, the resin composition is difficult to apply.
  • the weight average molecular weight (Mw) of such a polyester polyurethane polyol (A) is such that a resin composition having a high initial adhesive strength and excellent substrate adhesion under wet heat conditions can be obtained.
  • the molecular weight (Mw) is preferably in the range of 12,000 to 90,000.
  • the molecular weight distribution (Mw / Mn) of the polyester polyurethane polyol (A) is 5.0 or more.
  • the molecular weight distribution (Mw / Mn) is within the above range, the effect of improving the adhesion to the substrate due to the low molecular weight component and the effect of increasing the strength of the cured product due to the high molecular weight component are simultaneously achieved. Since it is exhibited, it becomes a resin composition having excellent base material adhesion under wet heat conditions and high initial adhesive strength.
  • the molecular weight distribution (Mw / Mn) is less than 5.0, the appearance after lamination tends to be inferior.
  • the molecular weight distribution of the polyester polyurethane polyol (A) is preferably in the range of 5 to 25 and preferably in the range of 5 to 15 in terms of obtaining a resin composition that is superior in substrate adhesion under wet heat conditions. Is more preferable.
  • the number average molecular weight (Mn) of the polyester polyurethane polyol (A) is 3,000 to 20 in that it is excellent in substrate adhesion under wet heat conditions and becomes a resin composition having a viscosity suitable for coating. , Preferably in the range of 5,000, more preferably in the range of 5,000 to 10,000.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device HLC-8220GPC manufactured by Tosoh Corporation Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation + TSK-GEL SuperHZM-M ⁇ 4 manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing; Multi-station GPC-8020 model II manufactured by Tosoh Corporation Measurement conditions; Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 ⁇ l)
  • the hydroxyl value of the polyester polyurethane polyol (A) is preferably in the range of 5 to 30 mgKOH / g, more preferably in the range of 7 to 15 mgKOH / g, from the viewpoint of excellent substrate adhesion under wet heat conditions. It is more preferable.
  • the hydroxyl value of the polyester polyurethane polyol (A) is larger than 30 mgKOH / g, the heat-and-moisture resistance tends to be inferior, and when the hydroxyl value of the polyester polyurethane polyol (A) is smaller than 5 mgKOH / g, the curing agent The reaction rate tends to decrease and the adhesiveness tends to be inferior.
  • the polyester polyurethane polyol (A) can be obtained, for example, by reacting a polybasic acid (E), a polyhydric alcohol (F), and a polyisocyanate (G).
  • a polybasic acid (E), a polyhydric alcohol (F), and a polyisocyanate (G) in order to introduce a branched structure into the molecule of the polyester polyurethane polyol (A), any one or more raw material components of the polybasic acid (E), the polyhydric alcohol (F), and the polyisocyanate (G) are used.
  • a trifunctional or higher functional compound is used.
  • polybasic acid (E) examples include a dibasic acid (E1) and a tribasic or more polybasic acid (E2).
  • dibasic acid (E1) examples include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedioic acid.
  • Aliphatic dibasic acids such as acids, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, icosanedioic acid; tetrahydrophthalic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, Aliphatic unsaturated dibasic acids such as itaconic acid and glutaconic acid and their anhydrides; aliphatic unsaturated dibasic acids such as tetrahydrophthalic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid and glutaconic acid And anhydrides thereof: phthalic acid, phthalic anhydride, terephthalic acid, isophthalic acid, orthophthalic acid Such aromatic dibasic acids and anhydrides, and the like.
  • trifunctional or higher polybasic acid examples include aliphatic tribasic acids such as 1,2,5-hexanetricarboxylic acid and 1,2,4-cyclohexanetricarboxylic acid; trimellitic acid, trimellitic anhydride And aromatic tribasic acids such as acid, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, and anhydrides thereof.
  • a branched structure can be introduced into the molecule of the polyester polyurethane polyol (A) of the present invention by using the tribasic or higher polybasic acid (E2).
  • polybasic acids (E) may be used alone or in combination of two or more.
  • polybasic acids (E) it is possible to use an aliphatic polybasic acid and an aromatic polybasic acid in combination in that a resin composition having a viscosity excellent in substrate adhesion under wet heat conditions and suitable for coating can be obtained.
  • the content of the aliphatic polybasic acid in the total polybasic acid component is preferably in the range of 10 to 30 mol%, and preferably in the range of 50 to 90 mol% of the aromatic polybasic acid.
  • the aliphatic polybasic acid is adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid in that it becomes a resin composition that is more excellent in substrate adhesion under wet heat conditions.
  • Acid tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, icosanedioic acid, 1,2,5-hexanetricarboxylic acid, 1,2,4- Aliphatic polybasic acids having 6 to 20 carbon atoms such as cyclohexanetricarboxylic acid are preferred, and suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, 1,2,5 -Aliphatic polybasic acids having 8 to 13 carbon atoms, such as hexanetricarboxylic acid and 1,2,4-cyclohexanetricarboxylic acid More preferable.
  • polyester polyurethane polyol (A) For the purpose of adjusting the molecular weight and viscosity of the polyester polyurethane polyol (A), as raw materials for the polyester polyurethane polyol (A), methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid are used.
  • Monocarboxylic acids such as octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, and benzoic acid can also be used.
  • polyhydric alcohol (F) examples include a diol (F1) and a trifunctional or higher functional polyol (F2).
  • diol (F1) examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-propanediol, and 2,2-dimethyl-3-isopropyl- 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, neo Aliphatic diols such as pentyl glycol, 1,6-hexanediol, 1,4-bis (hydroxymethyl) cyclohesan, 2,2,4-trimethyl-1,3-pentanediol; polyoxyethylene glycol, polyoxypropylene glycol An ether glycol such as A modified polyether diol obtained by ring-opening polymerization with a compound containing a cyclic
  • trifunctional or higher functional polyol (F2) examples include aliphatic polyols such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, and pentaerythritol; the aliphatic polyols, ethylene oxide, propylene oxide, tetrahydrofuran, and ethylglycidyl.
  • Modified polyether polyols obtained by ring-opening polymerization with cyclic ether bond-containing compounds such as ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether and allyl glycidyl ether; the aliphatic polyols and lactones such as ⁇ -caprolactone And lactone polyester polyols obtained by a polycondensation reaction with
  • a branched structure can be introduced into the molecule of the polyester polyurethane polyol (A) of the present invention.
  • polyhydric alcohols (F) may be used alone or in combination of two or more.
  • the content of the aliphatic polyhydric alcohol in the total polyhydric alcohol component is preferably 40 mol% or more and more preferably 80 mol% or more in that the resin composition has excellent coating properties.
  • the aliphatic polyhydric alcohol is preferably an aliphatic polyhydric alcohol having 5 or more carbon atoms, and the aliphatic diol is obtained in that a resin composition having better substrate adhesion under wet heat conditions is obtained. Is more preferable.
  • polyisocyanate (G) examples include a diisocyanate compound (G1) and a tri- or higher functional polyisocyanate compound (G2).
  • diisocyanate compound (G1) examples include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, m -Aliphatic diisocyanates such as tetramethylxylylene diisocyanate; cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate , Isopropylidene dicyclohexyl-4,4'-diisocyanate, norbornane diisocyanate Isocyanate; 1,5-naphth
  • Examples of the trifunctional or higher polyisocyanate compound (G2) include adduct type polyisocyanate compounds having a urethane bond site in the molecule and nurate type polyisocyanate compounds having an isocyanurate ring structure in the molecule.
  • the adduct type polyisocyanate compound having a urethane bond site in the molecule can be obtained, for example, by reacting a diisocyanate compound with a polyhydric alcohol.
  • the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound (G1). These may be used alone or in combination of two or more.
  • the polyol compound used in the reaction include various polyol compounds exemplified as the polyhydric alcohol (F), polyester polyols obtained by reacting polyhydric alcohols and polybasic acids, and the like. Each of these can be used alone or in combination of two or more.
  • the nurate type polyisocyanate compound having an isocyanurate ring structure in the molecule is obtained, for example, by reacting a diisocyanate compound with a monoalcohol and / or a diol.
  • the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound, and these may be used alone or in combination of two or more.
  • Examples of the monoalcohol used in the reaction include hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n-heptadecanol, n-octadecanol, n-nonadecanol, eicosanol, 5-ethyl-2-nonanol, trimethylnonyl alcohol, 2-hexyldecanol, 3,9-diethyl-6-tridecanol, 2-isoheptylisoun Examples include decanol, 2-octyldodecanol, and 2-decyltetradecanol.
  • Examples of the diol include aliphatic diols exemplified for the polyhydric alcohol
  • a branched structure can be introduced into the molecule of the polyester polyurethane polyol (A) of the present invention.
  • polyisocyanates (G) may be used alone or in combination of two or more.
  • the trifunctional or higher polyisocyanate compound (G2) is preferable, and a nurate polyisocyanate compound is more preferable in that a resin composition excellent in adhesive strength under wet heat conditions is obtained.
  • the mass ratio [(G1) / (G2)] of the two is 50/50 in terms of providing a resin composition having excellent substrate adhesion under wet heat conditions and exhibiting a viscosity suitable for coating. Is preferably in the range of ⁇ 5 / 95, more preferably in the range of 40/60 to 10/90, and particularly preferably in the range of 30/70 to 15/85.
  • the trifunctional or higher functional component used in producing the polyester polyurethane polyol (A) may be any of the polybasic acid (E2), the polyol (F2), and the polyisocyanate compound (G2).
  • the polyisocyanate compound (G2) is preferably used in that a resin composition having excellent adhesive strength under wet heat conditions can be obtained and the polyester polyurethane polyol (A) can be easily produced in a shorter time.
  • Examples of the method for producing the polyester polyurethane polyol (A) include, for example, the polybasic acid (E) and the polyhydric alcohol (F) in a temperature range of 150 to 270 ° C. in the presence of an esterification catalyst.
  • Examples thereof include a method of reacting the polyester polyol with the polyisocyanate (G) in the presence of a urethanization catalyst in a temperature range of 50 to 100 ° C. after obtaining the polyester polyol by reaction.
  • the resin composition of the present invention has (2) a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 50,000, and a molecular weight distribution (Mw / Mn).
  • the polyester polyol (B) having an N of 5.0 or less is contained as an essential component.
  • the polyester polyurethane polyol (A) has a branched structure in the molecule, the final cured product has a high crosslink density, so that it does not swell even under wet heat conditions and maintains high adhesiveness. it can.
  • the polyester polyol (B) has a branched structure in the molecule, and thus contributes to improvement of initial adhesion and wet heat resistance when used in a laminate adhesive.
  • the weight average molecular weight (Mw) of the polyester polyol (B) is in the range of 10,000 to 50,000.
  • the weight average molecular weight (Mw) is within the above range, the cured product exhibits high strength, and the resin composition is excellent in initial adhesive strength.
  • the resin composition has a viscosity suitable for coating.
  • the weight average molecular weight (Mw) of the polyester polyol (B) is less than 10,000, the initial adhesive strength tends to decrease, and the viscosity is low, so that the resin composition is difficult to apply uniformly.
  • the weight average molecular weight (Mw) of the polyester polyol (B) exceeds 50,000, the resin composition is difficult to apply because the viscosity tends to increase.
  • the weight average molecular weight (Mw) of such a polyester polyol (B) is such that a resin composition having high initial adhesive strength and excellent base material adhesion under wet heat conditions can be obtained.
  • (Mw) is preferably in the range of 12,000 to 40,000.
  • the molecular weight distribution (Mw / Mn) of the polyester polyol (B) is 5.0 or less. When the molecular weight distribution (Mw / Mn) is within the above range, when used as a two-component laminating adhesive, an effect of excellent appearance after laminating is exhibited. When the molecular weight distribution (Mw / Mn) of the polyester polyol (B) exceeds 6.0, the initial adhesiveness tends to decrease when used as a two-component laminating adhesive.
  • the molecular weight distribution (Mw / Mn) of the polyester polyol (B) is preferably in the range of 1.0 to 5.0, more preferably in the range of 2.0 to 4.0.
  • the number average molecular weight (Mn) of the polyester polyol (B) is excellent in adhesion to the substrate under wet heat conditions, and becomes a resin composition having a viscosity suitable for coating. It is preferably in the range of 000, more preferably in the range of 5,000 to 10,000.
  • the hydroxyl value of the polyester polyol (B) is preferably in the range of 5 to 30 mgKOH / g and in the range of 7 to 15 mgKOH / g in terms of excellent substrate adhesion under wet heat conditions. Is more preferable.
  • the polyester polyol (B) can be obtained, for example, by reacting a polybasic acid (E) with a polyhydric alcohol (F).
  • a polyhydric alcohol (F) in order to introduce a branched structure into the molecule of the polyester polyol (A), a trifunctional or higher functional compound is used as one or more raw material components of the polybasic acid (E) and the polyhydric alcohol (F). .
  • the same material as the reaction raw material of the polyester polyurethane polyol (A) can be used as the polybasic acid (E) and the polyhydric alcohol (F) as the reaction raw material of the polyester polyol (B).
  • the polyester polyol (B) for example, the polybasic acid (E) and the polyhydric alcohol (F) are reacted in a temperature range of 150 to 270 ° C. in the presence of an esterification catalyst.
  • the method of making it, etc. are mentioned.
  • the resin composition of the present invention contains the above-described polyester polyurethane polyol (A) and polyester polyol (B) as essential main component components in the two-component curable composition, and further has a number average molecular weight (Mn) of 300 to 300. Containing a hydroxyl group-containing epoxy resin (C) in the range of 5,000 is generally applicable to fluorine-based substrates such as PVF (polyvinyl fluoride) films and PVDF (polyvinylidene fluoride) films having low adhesion. From the point that high adhesiveness can be expressed.
  • PVF polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • the number average molecular weight (Mn) of the epoxy resin (C) is less than 300, sufficient adhesive strength cannot be obtained, and when the number average molecular weight (Mn) exceeds 5,000, the resin of the present invention. Solubility in the composition is reduced. Among them, those having a number average molecular weight (Mn) in the range of 400 to 2,000 are more preferable in that they are more excellent in solubility in the resin composition of the present invention and substrate adhesion under wet heat conditions.
  • hydroxyl group-containing epoxy resin (C) examples include bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins; biphenyl type epoxy resins such as biphenyl type epoxy resins and tetramethylbiphenyl type epoxy resins; And cyclopentadiene-phenol addition reaction type epoxy resin. These hydroxyl group-containing epoxy resins may be used alone or in combination of two or more. Among these, a bisphenol type epoxy resin is preferable in that a resin composition excellent in base material adhesion under wet heat conditions and initial adhesive strength can be obtained.
  • the resin composition of the present invention further contains a hydroxyl group-containing polycarbonate resin (D) having a number average molecular weight (Mn) in the range of 300 to 3,000 under wet heat conditions. It is preferable from the point which becomes the resin composition which is excellent in base material adhesiveness. When the number average molecular weight (Mn) is less than 300, sufficient adhesive strength cannot be obtained, and when the number average molecular weight (Mn) exceeds 3,000, the solubility in the resin composition of the present invention is lowered. To do. Among them, those having a number average molecular weight (Mn) in the range of 400 to 2,000 are more preferable in that they are more excellent in solubility in the resin composition of the present invention and substrate adhesion under wet heat conditions.
  • D hydroxyl group-containing polycarbonate resin having a number average molecular weight (Mn) in the range of 300 to 3,000 under wet heat conditions. It is preferable from the point which becomes the resin composition which is excellent in base material adhesiveness. When
  • the hydroxyl group-containing polycarbonate resin (D) preferably has a hydroxyl value in the range of 20 to 300 mgKOH / g, more preferably in the range of 40 to 250 mgKOH / g, from the viewpoint that it becomes a resin composition with more excellent curability. More preferred. Moreover, it is preferable that it is polycarbonate diol at the point which is excellent in the base-material adhesiveness on wet heat conditions.
  • the hydroxyl group-containing polycarbonate resin (D) can be produced, for example, by a method of polycondensation reaction between a polyhydric alcohol and a carbonylating agent.
  • Examples of the polyhydric alcohol used in the production of the hydroxyl group-containing polycarbonate resin (C) include various polyhydric alcohols exemplified as the polyhydric alcohol (F). Polyhydric alcohols can be used alone or in combination of two or more.
  • Examples of the carbonylating agent used in the production of the hydroxyl group-containing polycarbonate resin (C) include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate, and the like. These can be used alone or in combination of two or more.
  • the resin composition of the present invention comprises the polyester polyurethane polyol (A), the polyester polyol (B), the hydroxyl group-containing epoxy resin (C), and the hydroxyl group-containing polycarbonate resin (D).
  • the hydroxyl group-containing epoxy resin (C) is in the range of 5 to 20 parts by mass
  • the hydroxyl group-containing polycarbonate resin (D) is 5 to 20 parts per 100 parts by mass of the total of (A) and the polyester polyol (B).
  • the blending ratio of the polyester polyurethane polyol (A) and the polyester polyol (B) in the resin composition of the present invention is preferably in the range of 10:50 to 90:10 by mass ratio, and 20:80 A range of ⁇ 50: 50 is particularly preferred.
  • the resin composition of the present invention preferably uses the polyisocyanate (E) as a curing agent component.
  • the polyisocyanate (E) include various polyisocyanates listed as the polyisocyanate (G). These polyisocyanates (E) can be used alone or in combination of two or more.
  • the aliphatic diisocyanate compound is preferable in that the adhesive coating film is hardly yellowed.
  • mold polyisocyanate compound is preferable at the point which is excellent in the base-material adhesiveness on wet heat conditions.
  • the resin composition of the present invention comprises the polyester polyurethane polyol (A), the polyester polyol (B), the hydroxyl group-containing epoxy resin (C), the hydroxyl group-containing polycarbonate resin (D), and the polyisocyanate (E). Are contained as essential components.
  • the ratio [OH] / [NCO] of the isocyanate groups contained in the polyisocyanate compound (E) to the number of moles [NCO] is in the range of 1/1 to 1/2, more preferably 1 / 1.05 to 1/1. By setting it in the range of .5, the resin composition is excellent in curability.
  • the resin composition of the present invention may further contain various solvents.
  • the solvent include ketone compounds such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone; cyclic ether compounds such as tetrahydrofuran (THF) and dioxolane; ester compounds such as methyl acetate, ethyl acetate, and butyl acetate; toluene And aromatic compounds such as xylene; alcohol compounds such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether.
  • solvents can be used alone or in combination of two or more.
  • the resin composition of the present invention further contains various additives such as an ultraviolet absorber, an antioxidant, a silicon-based additive, a fluorine-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent. You may do it.
  • the resin composition of the present invention can be suitably used as a two-component laminating adhesive for adhering various plastic films.
  • the various plastic films include, for example, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, polyvinyl alcohol, ABS resin, norbornene resin, cyclic olefin resin, Examples include films made of polyimide resin, polyvinyl fluoride resin, polyvinylidene fluoride resin, and the like.
  • the two-pack type laminating adhesive of the present invention exhibits high adhesion to films made of polyvinyl fluoride resin or polyvinylidene fluoride resin, which are particularly difficult to bond among the various films.
  • the amount of the two-component laminating adhesive of the present invention is preferably in the range of 2 to 10 g / m2.
  • a laminated film obtained by adhering a plurality of films using the two-component laminating adhesive of the present invention has high adhesiveness even under wet heat conditions, and has a characteristic that the films are difficult to peel off. Accordingly, the two-component laminating adhesive of the present invention can be suitably used for laminated film applications used in harsh environments such as outdoors, and as such applications, for example, a solar cell backsheet is manufactured. For example, an adhesive may be used.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) were measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device HLC-8220GPC manufactured by Tosoh Corporation Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation + TSK-GEL SuperHZM-M ⁇ 4 manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing; Multi-station GPC-8020 model II manufactured by Tosoh Corporation Measurement conditions; Column temperature 40 ° C Solvent tetrahydrofuran flow rate 0.35 ml / min standard; monodisperse polystyrene sample; 0.2 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (100 ⁇ l)
  • the reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate.
  • 124 parts of hexamethylene diisocyanurate modified isocyanurate (Sumijoule N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 25 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring.
  • the urethanization reaction was performed by heating to ⁇ 80 ° C.
  • polyester polyurethane polyol having a number average molecular weight of 5,700, a weight average molecular weight of 35,000 and a hydroxyl value of 10.
  • a resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A1).
  • the reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate.
  • 247 parts of an isocyanurate modified form of hexamethylene diisocyanurate (Sumidule N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 40 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring.
  • the urethanization reaction was performed by heating to ⁇ 80 ° C.
  • polyester polyurethane polyol having a number average molecular weight of 7,800, a weight average molecular weight of 88,000, and a hydroxyl value of 12.
  • a resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A2).
  • polyester polyurethane polyol having a number average molecular weight of 5000, a weight average molecular weight of 51,000 and a hydroxyl value of 17.
  • a resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A3).
  • the reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate.
  • 132 parts of hexamethylene diisocyanurate modified isocyanurate (Sumijour N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 13 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring.
  • the urethanization reaction was performed by heating to ⁇ 80 ° C.
  • polyester polyurethane polyol having a number average molecular weight of 5500, a weight average molecular weight of 32000, and a hydroxyl value of 11.
  • a resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A4).
  • polyester polyol (B1) A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (B1).
  • polyester polyol (B2) A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (B2).
  • polyester polyol (B3) A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (B3).
  • polyester polyurethane polyol having a number average molecular weight of 10,000, a weight average molecular weight of 22,000, and a hydroxyl value of 9.
  • a resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (a1).
  • polyester polyurethane polyol having a number average molecular weight of 5500, a weight average molecular weight of 32,000, and a hydroxyl value of 12.
  • a resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (a2).
  • polyester polyol (b1) A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (b1).
  • polyester polyol (b2) A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (b2).
  • Epoxy resin (C1) number average molecular weight (Mn) 470, epoxy equivalent 245 g / eq bisphenol A type epoxy resin (“Epiclon 860” manufactured by DIC Corporation) ⁇ Epoxy resin (C2): number average molecular weight (Mn) 900 Bisphenol A type epoxy resin having an epoxy equivalent of 475 g / eq (“JER1001” manufactured by Mitsubishi Chemical Corporation)
  • Polycarbonate resin (D) used in Examples and Comparative Examples of the present invention is shown below.
  • Polycarbonate polyol (D1) polycarbonate diol having a number average molecular weight (Mn) of 1,000 and a hydroxyl value of 10 mgKOH / g (“Duranol T5651” manufactured by Asahi Kasei Corporation)
  • polyisocyanate (E) used in Examples and Comparative Examples of the present invention is shown below.
  • -Polyisocyanate (E1) a hexamethylene diisocyanate modified nurate ("Sumidule N3300" manufactured by Sumitomo Bayer Urethane Co., Ltd.)
  • Example 1 10 parts of the polyester polyurethane polyol (A1) solution obtained in Production Example 1-1, 90 parts of the polyester polyol (B1) solution obtained in Production Example 2-1, 10 parts of the epoxy resin (C1), the polycarbonate polyol ( C1) 10 parts and 10 parts of said polyisocyanate (D1) were mixed, the resin composition was obtained, the evaluation sample was created in the following way, and it evaluated by the method shown below. The results are shown in Table 1.
  • Evaluation 2 Measurement of adhesive strength under wet heat conditions About the evaluation sample created by the above method, using a tensile tester (“AGS500NG” manufactured by SHIMADZU), conditions of peeling speed of 300 mm / min, strength N / 15 mm A T-type peel test was performed below, and the strength was evaluated as adhesive strength. The initial adhesive strength of the evaluation sample and the adhesive strength of the sample after exposure for 25 hours, 50 hours, and 75 hours in an environment of 121 ° C. and 100% humidity were measured.
  • Example 2 to 14 An evaluation sample was prepared and evaluated in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Tables 1 and 2. The evaluation results are shown in Tables 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

Provided is a resin composition which can form a cured coating film exhibiting high strength, high bond strength and excellent long-term stability such that little deterioration in the bond strength is observed in a damp heat test and which can ensure excellent surface appearance of a laminate. Also provided are: a two-part laminating adhesive containing said resin composition; a laminated film having a layer made from the adhesive; and a backsheet for a solar cell. The resin composition comprises: a polyester polyurethane polyol which has a branched structure in the molecule and which has a weight-average molecular weight of 10,000 to 100,000 and a molecular weight distribution of 5.0 or more; a polyester polyol which has a branched structure in the molecule and which has a weight-average molecular weight of 10,000 to 50,000 and a molecular weight distribution of less than 5.0; a hydroxyl-containing epoxy resin which has a number-average molecular weight of 300 to 5,000; a hydroxyl-containing polycarbonate resin which has a number-average molecular weight of 300 to 3,000; and a polyisocyanate. The two-part laminating adhesive contains the composition.

Description

樹脂組成物、2液型ラミネート接着剤、積層フィルム及び太陽電池のバックシートResin composition, two-component laminate adhesive, laminated film, and solar cell backsheet
 本発明は、湿熱条件下での基材接着性に優れる樹脂組成物、2液型ラミネート用接着剤、積層フィルム及び太陽電池のバックシートに関する。 The present invention relates to a resin composition excellent in substrate adhesiveness under wet heat conditions, a two-component laminating adhesive, a laminated film, and a solar cell backsheet.
 近年、クリーンエネルギーの代表として太陽光発電が注目されている。太陽電池モジュールの最背面に設置されるバックシートは、セルや配線などの発電機構を外部環境から保護して絶縁性を保つための部材であり、各種の機能性フィルムを接着剤で貼り合せた積層体で成る。このようなバックシートに用いられる接着剤には、ポリエステルフィルムやポリフッ化ビニルフィルム等の異なる特徴を有する種々のフィルムに対する高い接着性や、露天環境下でも長期的に接着性を維持するための耐湿熱性が高いレベルで要求される。 In recent years, solar power generation has attracted attention as a representative of clean energy. The back sheet installed on the back of the solar cell module is a member for protecting the power generation mechanism such as cells and wiring from the external environment and maintaining insulation, and various functional films are bonded together with adhesives. It consists of a laminate. Adhesives used for such backsheets include high adhesion to various films with different characteristics, such as polyester film and polyvinyl fluoride film, and moisture resistance to maintain long-term adhesion even in open-air environments. A high level of heat is required.
 このようなバックシート用接着剤として、ポリエステルポリオール、ポリエステルポリウレタンポリオール及びビスフェノール型エポキシ樹脂からなる主剤と、硬化剤を含有するポリウレタン系接着剤が提案されている(特許文献1参照)。 As such an adhesive for backsheet, a polyurethane-based adhesive containing a main agent composed of polyester polyol, polyester polyurethane polyol and bisphenol type epoxy resin and a curing agent has been proposed (see Patent Document 1).
特許第4416047号Patent No. 4416047
 しかしながら、前記ポリウレタン系接着剤は、硬化後の塗膜強度が弱く、また、耐湿熱性試験において、接着強度が劣化するという経時安定性に問題点があり、しかも、ラミネート加工後の外観が悪い、という問題点もあった。 However, the polyurethane adhesive has a weak coating strength after curing, and there is a problem in stability over time that the adhesive strength is deteriorated in the moisture and heat resistance test, and the appearance after lamination is poor. There was also a problem.
 本発明が解決しようとする課題は、硬化後の塗膜強度が強く、接着強度が高く、耐湿熱性試験において、接着強度が劣化しないという経時安定性に優れ、しかも、ラミネート加工後の外観にも優れる樹脂組成物、該樹脂組成物を含有してなる2液型ラミネート用接着剤、該接着剤からなる層を有する積層フィルム及び太陽電池のバックシートを提供することにある。 The problem to be solved by the present invention is that the coating film strength after curing is high, the adhesive strength is high, and in the moisture and heat resistance test, the adhesive strength is not deteriorated, and it is excellent in stability over time. An object of the present invention is to provide an excellent resin composition, an adhesive for two-component laminating containing the resin composition, a laminated film having a layer made of the adhesive, and a solar cell backsheet.
 本発明者らは上記課題を解決するために鋭意研究した結果、(1)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~100,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0以上であるポリエステルポリウレタンポリオール(A)、(2)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~50,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0未満であるポリエステルポリオール(B)を必須とする成分を主剤として用い、また、更にこれに必要に応じて(3)数平均分子量(Mn)が300~5,000の範囲である水酸基含有エポキシ樹脂(C)、(4)数平均分子量(Mn)が300~3,000の範囲である水酸基含有ポリカーボネート樹脂(D)を配合してなる主剤成分と、その硬化剤として(5)ポリイソシアネート(E)を用いた2液硬化型の樹脂組成物を用いることにより、硬化後の塗膜強度が強く、接着強度が高く、耐湿熱性試験において、接着強度が劣化しないという経時安定性に優れ、しかも、ラミネート加工後の外観にも優れることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have (1) a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 100,000, and Polyester polyurethane polyol (A) having a molecular weight distribution (Mw / Mn) of 5.0 or more, (2) having a branched structure in the molecule, and having a weight average molecular weight (Mw) in the range of 10,000 to 50,000 And a component essentially comprising a polyester polyol (B) having a molecular weight distribution (Mw / Mn) of less than 5.0 is used as a main agent, and (3) a number average molecular weight (Mn) as necessary. ) Having a hydroxyl group-containing epoxy resin (C) in the range of 300 to 5,000, and (4) a hydroxyl group-containing polycarbonate resin (D) having a number average molecular weight (Mn) in the range of 300 to 3,000. By using a two-component curable resin composition using (5) polyisocyanate (E) as the main agent component and its curing agent, the coating strength after curing is high, the adhesive strength is high, and the moisture and heat resistance test In this case, the present inventors have found that the adhesive strength does not deteriorate and the stability over time is excellent, and the appearance after lamination is also excellent, and the present invention has been completed.
 すなわち、本発明は、(1)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~100,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0以上であるポリエステルポリウレタンポリオール(A)、及び、
(2)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~50,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0未満であるポリエステルポリオール(B)を必須成分とすることを特徴とする樹脂組成物に関する。
That is, the present invention is (1) having a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 100,000, and a molecular weight distribution (Mw / Mn) of 5.0. The above polyester polyurethane polyol (A), and
(2) a polyester polyol having a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 50,000, and a molecular weight distribution (Mw / Mn) of less than 5.0 ( It is related with the resin composition characterized by making B) into an essential component.
 本発明は、更に、前記(A)成分及び前記(B)成分に加え、更に、硬化剤として(5)ポリイソシアネート(E)を含有する2液型ラミネート用接着剤に関する。 The present invention further relates to a two-component laminating adhesive containing (5) polyisocyanate (E) as a curing agent in addition to the component (A) and the component (B).
 本発明は、更に、ポリエステルフィルム、フッ素フィルム、ポリオレフィンフィルム、金属箔からなる群から選ばれる1種類以上のフィルムと、上記2液型ラミネート用接着剤からなる接着層とを有する積層フィルムに関する。 The present invention further relates to a laminated film having at least one film selected from the group consisting of a polyester film, a fluorine film, a polyolefin film, and a metal foil, and an adhesive layer made of the above two-component laminating adhesive.
 本発明は、更に、上記2液型ラミネート用接着剤からなる接着層を有する太陽電池のバックシートに関する。 The present invention further relates to a solar cell backsheet having an adhesive layer made of the above-mentioned two-component laminating adhesive.
 本発明の樹脂組成物及び該樹脂組成物を含有する2液型ラミネート用接着剤は、硬化後の塗膜強度が強く、接着強度が高く、耐湿熱性試験において、接着強度が劣化しないという経時安定性に優れ、しかも、ラミネート加工後の外観にも優れるので、積層フィルム及び太陽電池のバックシートの接着剤として有用である。 The resin composition of the present invention and the two-component laminating adhesive containing the resin composition have high coating strength after curing, high adhesive strength, and stable over time that the adhesive strength does not deteriorate in a moist heat resistance test. It is useful as an adhesive for laminated films and back sheets of solar cells because of its excellent properties and excellent appearance after lamination.
 本発明の樹脂組成物は、(1)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~100,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0以上であるポリエステルポリウレタンポリオール(A)を必須の成分として含有する。 The resin composition of the present invention has (1) a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 100,000, and a molecular weight distribution (Mw / Mn) of 5 The polyester polyurethane polyol (A) which is 0.0 or more is contained as an essential component.
 前記ポリエステルポリウレタンポリオール(A)が分子内に分岐構造を有することにより、最終硬化物が架橋密度の高いものとなるため、湿熱条件下であっても膨潤せず、高い接着性を維持することができる。 Since the polyester polyurethane polyol (A) has a branched structure in the molecule, the final cured product has a high crosslink density, so that it does not swell even under wet heat conditions and maintains high adhesiveness. it can.
 また、前記ポリエステルポリウレタンポリオール(A)の重量平均分子量(Mw)は、10,000~100,000の範囲である。重量平均分子量(Mw)が前記範囲内にあることにより、硬化物が高い強度を示すものとなり、初期の接着強度に優れる樹脂組成物となる。また、樹脂組成物が塗工に適した粘度のものとなる。前記ポリエステルポリウレタンポリオール(A)の重量平均分子量(Mw)が10,000未満の場合には、初期の接着強度が低下する傾向にあり、粘度が低いため均一に塗工しにくい樹脂組成物となる。
一方、前記ポリエステルポリウレタンポリオール(A)の重量平均分子量(Mw)が100,000を超える場合には、粘度が高くなる傾向にあるために塗工し難い樹脂組成物となる。そのようなポリエステルポリウレタンポリオール(A)の重量平均分子量(Mw)は、初期の接着強度が高く、かつ、湿熱条件下での基材接着性にも優れる樹脂組成物が得られる点で、重量平均分子量(Mw)は12,000~90,000の範囲であることが好ましい。
The polyester polyurethane polyol (A) has a weight average molecular weight (Mw) in the range of 10,000 to 100,000. When the weight average molecular weight (Mw) is within the above range, the cured product exhibits high strength, and the resin composition is excellent in initial adhesive strength. Moreover, the resin composition has a viscosity suitable for coating. When the weight average molecular weight (Mw) of the polyester polyurethane polyol (A) is less than 10,000, the initial adhesive strength tends to decrease, and since the viscosity is low, the resin composition is difficult to apply uniformly. .
On the other hand, when the weight average molecular weight (Mw) of the polyester polyurethane polyol (A) exceeds 100,000, since the viscosity tends to increase, the resin composition is difficult to apply. The weight average molecular weight (Mw) of such a polyester polyurethane polyol (A) is such that a resin composition having a high initial adhesive strength and excellent substrate adhesion under wet heat conditions can be obtained. The molecular weight (Mw) is preferably in the range of 12,000 to 90,000.
 前記ポリエステルポリウレタンポリオール(A)の分子量分布(Mw/Mn)は、5.0以上である。分子量分布(Mw/Mn)が前記範囲内にあることにより、低分子量成分に起因した基材との密着性が向上する効果と、高分子量成分に起因した硬化物が高強度となる効果が同時に発揮されるため、湿熱条件下での基材接着性に優れ、初期の接着強度が高い樹脂組成物となる。分子量分布(Mw/Mn)が5.0未満の場合には、ラミネート加工後の外観に劣る傾向にある。ポリエステルポリウレタンポリオール(A)の分子量分布は、湿熱条件下での基材接着性により優れる樹脂組成物が得られる点で、5~25の範囲であることが好ましく、5~15の範囲であることがより好ましい。 The molecular weight distribution (Mw / Mn) of the polyester polyurethane polyol (A) is 5.0 or more. When the molecular weight distribution (Mw / Mn) is within the above range, the effect of improving the adhesion to the substrate due to the low molecular weight component and the effect of increasing the strength of the cured product due to the high molecular weight component are simultaneously achieved. Since it is exhibited, it becomes a resin composition having excellent base material adhesion under wet heat conditions and high initial adhesive strength. When the molecular weight distribution (Mw / Mn) is less than 5.0, the appearance after lamination tends to be inferior. The molecular weight distribution of the polyester polyurethane polyol (A) is preferably in the range of 5 to 25 and preferably in the range of 5 to 15 in terms of obtaining a resin composition that is superior in substrate adhesion under wet heat conditions. Is more preferable.
 また、前記ポリエステルポリウレタンポリオール(A)の数平均分子量(Mn)は、湿熱条件下での基材接着性に優れ、塗工に適した粘度の樹脂組成物となる点で、3,000~20,000の範囲であることが好ましく、5,000~10,000の範囲であることがより好ましい。 Further, the number average molecular weight (Mn) of the polyester polyurethane polyol (A) is 3,000 to 20 in that it is excellent in substrate adhesion under wet heat conditions and becomes a resin composition having a viscosity suitable for coating. , Preferably in the range of 5,000, more preferably in the range of 5,000 to 10,000.
 なお、本願発明において、重量平均分子量(Mw)及び数平均分子量(Mn)は、下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定される値である。 In the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) under the following conditions.
 測定装置 ;東ソー株式会社製 HLC-8220GPC
 カラム  ;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L       +東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII 測定条件 ;カラム温度 40℃ 
      溶媒    テトラヒドロフラン
      流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220GPC manufactured by Tosoh Corporation
Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation + TSK-GEL SuperHZM-M × 4 manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing; Multi-station GPC-8020 model II manufactured by Tosoh Corporation Measurement conditions; Column temperature 40 ° C
Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)
 また、前記ポリエステルポリウレタンポリオール(A)の水酸基価は、湿熱条件下での基材接着性に優れる点で、5~30mgKOH/gの範囲であることが好ましく、7~15mgKOH/gの範囲であることがより好ましい。前記ポリエステルポリウレタンポリオール(A)の水酸基価が30mgKOH/gよりも大きい場合、耐湿熱接着性が劣る傾向にあり、前記ポリエステルポリウレタンポリオール(A)の水酸基価が5mgKOH/gよりも小さい場合、硬化剤との反応率が低下し、接着性が劣る傾向にある。 In addition, the hydroxyl value of the polyester polyurethane polyol (A) is preferably in the range of 5 to 30 mgKOH / g, more preferably in the range of 7 to 15 mgKOH / g, from the viewpoint of excellent substrate adhesion under wet heat conditions. It is more preferable. When the hydroxyl value of the polyester polyurethane polyol (A) is larger than 30 mgKOH / g, the heat-and-moisture resistance tends to be inferior, and when the hydroxyl value of the polyester polyurethane polyol (A) is smaller than 5 mgKOH / g, the curing agent The reaction rate tends to decrease and the adhesiveness tends to be inferior.
 前記ポリエステルポリウレタンポリオール(A)は、例えば、多塩基酸(E)と、多価アルコール(F)と、ポリイソシアネート(G)を反応させることにより得られる。この場合、ポリエステルポリウレタンポリオール(A)の分子内に分岐構造を導入するために、多塩基酸(E)、多価アルコール(F)及びポリイソシアネート(G)のいずれか一種類以上の原料成分に3官能以上の化合物を用いる。 The polyester polyurethane polyol (A) can be obtained, for example, by reacting a polybasic acid (E), a polyhydric alcohol (F), and a polyisocyanate (G). In this case, in order to introduce a branched structure into the molecule of the polyester polyurethane polyol (A), any one or more raw material components of the polybasic acid (E), the polyhydric alcohol (F), and the polyisocyanate (G) are used. A trifunctional or higher functional compound is used.
 前記多塩基酸(E)は、二塩基酸(E1)と3官能以上の多塩基酸(E2)とが挙げられる。 Examples of the polybasic acid (E) include a dibasic acid (E1) and a tribasic or more polybasic acid (E2).
 前記二塩基酸(E1)としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカンニ酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、イコサン二酸の如き脂肪族二塩基酸;テトラヒドロフタル酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸の如き脂肪族不飽和二塩基酸及びその無水物;テトラヒドロフタル酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸の如き脂肪族不飽和二塩基酸及びその無水物;フタル酸、無水フタル酸、テレフタル酸、イソフタル酸、オルソフタル酸の如き芳香族二塩基酸及びその無水物などが挙げられる。 Examples of the dibasic acid (E1) include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedioic acid. Aliphatic dibasic acids such as acids, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, icosanedioic acid; tetrahydrophthalic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, Aliphatic unsaturated dibasic acids such as itaconic acid and glutaconic acid and their anhydrides; aliphatic unsaturated dibasic acids such as tetrahydrophthalic acid, maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid and glutaconic acid And anhydrides thereof: phthalic acid, phthalic anhydride, terephthalic acid, isophthalic acid, orthophthalic acid Such aromatic dibasic acids and anhydrides, and the like.
 前記3官能以上の多塩基酸(E2)としては、例えば、1,2,5-ヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸の如き脂肪族三塩基酸;トリメリット酸、無水トリメリット酸、1,2,5-ベンゼントリカルボン酸、2,5,7-ナフタレントリカルボン酸の如き芳香族三塩基酸及びその無水物などが挙げられる。 Examples of the trifunctional or higher polybasic acid (E2) include aliphatic tribasic acids such as 1,2,5-hexanetricarboxylic acid and 1,2,4-cyclohexanetricarboxylic acid; trimellitic acid, trimellitic anhydride And aromatic tribasic acids such as acid, 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, and anhydrides thereof.
 ここで、前記3官能以上の多塩基酸(E2)を用いることにより、本願発明のポリエスエルポリウレタンポリオール(A)の分子内に分岐構造を導入することができる。 Here, a branched structure can be introduced into the molecule of the polyester polyurethane polyol (A) of the present invention by using the tribasic or higher polybasic acid (E2).
 これら多塩基酸(E)はそれぞれ単独で用いても良いし、二種類以上を併用しても良い。中でも、湿熱条件下での基材接着性に優れ、かつ、塗工に適した粘度の樹脂組成物が得られる点で、脂肪族多塩基酸と、芳香族多塩基酸とを併用することが好ましく、その場合、全多塩基酸成分中に占める脂肪族多塩基酸の含有量が10~30モル%の範囲で、芳香族多塩基酸50~90モル%の範囲であることが好ましい。また、湿熱条件下での基材接着性により優れる樹脂組成物となる点で、前記脂肪族多塩基酸は、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカンニ酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、イコサン二酸、1,2,5-ヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸の如き炭素原子数が6~20の範囲である脂肪族多塩基酸が好ましく、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、1,2,5-ヘキサントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸の如き炭素原子数が8~13の範囲である脂肪族多塩基酸がより好ましい。 These polybasic acids (E) may be used alone or in combination of two or more. Among them, it is possible to use an aliphatic polybasic acid and an aromatic polybasic acid in combination in that a resin composition having a viscosity excellent in substrate adhesion under wet heat conditions and suitable for coating can be obtained. In this case, the content of the aliphatic polybasic acid in the total polybasic acid component is preferably in the range of 10 to 30 mol%, and preferably in the range of 50 to 90 mol% of the aromatic polybasic acid. In addition, the aliphatic polybasic acid is adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid in that it becomes a resin composition that is more excellent in substrate adhesion under wet heat conditions. Acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, icosanedioic acid, 1,2,5-hexanetricarboxylic acid, 1,2,4- Aliphatic polybasic acids having 6 to 20 carbon atoms such as cyclohexanetricarboxylic acid are preferred, and suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, 1,2,5 -Aliphatic polybasic acids having 8 to 13 carbon atoms, such as hexanetricarboxylic acid and 1,2,4-cyclohexanetricarboxylic acid More preferable.
 また、前記ポリエステルポリウレタンポリオール(A)の分子量や粘度を調整する目的で、前記ポリエステルポリウレタンポリオール(A)の原料として、メタン酸、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、安息香酸の如きモノカルボン酸を用いることもできる。 For the purpose of adjusting the molecular weight and viscosity of the polyester polyurethane polyol (A), as raw materials for the polyester polyurethane polyol (A), methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid are used. Monocarboxylic acids such as octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, and benzoic acid can also be used.
 前記多価アルコール(F)は、ジオール(F1)と、3官能以上のポリオール(F2)が挙げられる。 Examples of the polyhydric alcohol (F) include a diol (F1) and a trifunctional or higher functional polyol (F2).
 前記ジオール(F1)としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2,2-トリメチル-1,3-プロパンジオール、2,2-ジメチル-3-イソプロピル-1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、3-メチル1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,4-ビス(ヒドロキシメチル)シクロヘサン、2,2,4-トリメチル-1,3-ペンタンジオールの如き脂肪族ジオール;ポリオキシエチレングリコール、ポリオキシプロピレングリコールの如きエーテルグリコール;前記脂肪族ジオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテルの如き環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルジオール;前記脂肪族ジオールと、ε-カプロラクトン等の種々のラクトン類との重縮合反応によって得られるラクトン系ポリエステルポリオール;ビスフェノールA、ビスフェノールFの如きビスフェノール;ビスフェノールA、ビスフェノールFの如きビスフェノールにエチレンオキサイド、プロプレンオキサイド等を付加して得られるビスフェノールのアルキレンオキサイド付加物、などが挙げられる。 Examples of the diol (F1) include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,2,2-trimethyl-1,3-propanediol, and 2,2-dimethyl-3-isopropyl- 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, neo Aliphatic diols such as pentyl glycol, 1,6-hexanediol, 1,4-bis (hydroxymethyl) cyclohesan, 2,2,4-trimethyl-1,3-pentanediol; polyoxyethylene glycol, polyoxypropylene glycol An ether glycol such as A modified polyether diol obtained by ring-opening polymerization with a compound containing a cyclic ether bond such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, and allyl glycidyl ether; Lactone polyester polyols obtained by polycondensation reaction with ε-caprolactone and other lactones; bisphenols such as bisphenol A and bisphenol F; ethylene oxide, propylene oxide and the like in bisphenols such as bisphenol A and bisphenol F Examples include an alkylene oxide adduct of bisphenol obtained by addition.
 前記3官能以上のポリオール(F2)としては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ペンタエリスリトールの如き脂肪族ポリオール;前記脂肪族ポリオールと、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテルの如き環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルポリオール;前記脂肪族ポリオールと、ε-カプロラクトンの如きラクトン類との重縮合反応によって得られるラクトン系ポリエステルポリオール、などが挙げられる。 Examples of the trifunctional or higher functional polyol (F2) include aliphatic polyols such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, and pentaerythritol; the aliphatic polyols, ethylene oxide, propylene oxide, tetrahydrofuran, and ethylglycidyl. Modified polyether polyols obtained by ring-opening polymerization with cyclic ether bond-containing compounds such as ether, propyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether and allyl glycidyl ether; the aliphatic polyols and lactones such as ε-caprolactone And lactone polyester polyols obtained by a polycondensation reaction with
 前記3官能以上のポリオール(F2)を用いることにより、本願発明のポリエスエルポリウレタンポリオール(A)の分子内に分岐構造を導入することができる。 By using the trifunctional or higher functional polyol (F2), a branched structure can be introduced into the molecule of the polyester polyurethane polyol (A) of the present invention.
 これら多価アルコール(F)は、それぞれ単独で用いても良いし、二種類以上を併用しても良い。塗工性に優れる樹脂組成物となる点で、全多価アルコール成分中に占める前記脂肪族多価アルコールの含有量が40モル%以上であることが好ましく、80モル%以上であることがより好ましい。また、湿熱条件下での基材接着性がより優れる樹脂組成物が得られる点で、前記脂肪族多価アルコールが、炭素原子数が5以上の脂肪族多価アルコールが好ましく、前記脂肪族ジオールがより好ましい。 These polyhydric alcohols (F) may be used alone or in combination of two or more. The content of the aliphatic polyhydric alcohol in the total polyhydric alcohol component is preferably 40 mol% or more and more preferably 80 mol% or more in that the resin composition has excellent coating properties. preferable. In addition, the aliphatic polyhydric alcohol is preferably an aliphatic polyhydric alcohol having 5 or more carbon atoms, and the aliphatic diol is obtained in that a resin composition having better substrate adhesion under wet heat conditions is obtained. Is more preferable.
 前記ポリイソシアネート(G)は、ジイソシアネート化合物(G1)と、3官能以上のポリイソシアネート化合物(G2)とが挙げられる。 Examples of the polyisocyanate (G) include a diisocyanate compound (G1) and a tri- or higher functional polyisocyanate compound (G2).
 前記ジイソシアネート化合物(G1)としては、例えば、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネートの如き脂肪族ジイソシアネート;シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート、ノルボルナンジイソシアネートの如き脂環族ジイソシアネート;1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネートの如き芳香族ジイソシアネート、などが挙げられる。 Examples of the diisocyanate compound (G1) include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, xylylene diisocyanate, m -Aliphatic diisocyanates such as tetramethylxylylene diisocyanate; cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methylcyclohexane diisocyanate , Isopropylidene dicyclohexyl-4,4'-diisocyanate, norbornane diisocyanate Isocyanate; 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 4,4′-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3- And aromatic diisocyanates such as phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate.
 前記3官能以上のポリイソシアネート化合物(G2)は、例えば、分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物や、分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物が挙げられる。 Examples of the trifunctional or higher polyisocyanate compound (G2) include adduct type polyisocyanate compounds having a urethane bond site in the molecule and nurate type polyisocyanate compounds having an isocyanurate ring structure in the molecule.
 前記分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物は、例えば、ジイソシアネート化合物と多価アルコールとを反応させて得られる。該反応で用いるジイソシアネート化合物は、例えば、前記ジイソシアネート化合物(G1)として例示した各種のジイソシアネート化合物が挙げられ、これらはそれぞれ単独で使用しても良いし、二種類以上を併用しても良い。また、該反応で用いるポリオール化合物は、前記多価アルコール(F)として例示した各種のポリオール化合物や、多価アルコールと多塩基酸とを反応させて得られるポリエステルポリオール等が挙げられ、これらは、それぞれ単独で用いることも、二種類以上を併用して用いることもできる。 The adduct type polyisocyanate compound having a urethane bond site in the molecule can be obtained, for example, by reacting a diisocyanate compound with a polyhydric alcohol. Examples of the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound (G1). These may be used alone or in combination of two or more. Examples of the polyol compound used in the reaction include various polyol compounds exemplified as the polyhydric alcohol (F), polyester polyols obtained by reacting polyhydric alcohols and polybasic acids, and the like. Each of these can be used alone or in combination of two or more.
 前記分子内に分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物は、例えば、ジイソシアネート化合物とモノアルコールおよび/又はジオールとを反応させて得られる。該反応で用いるジイソシアネート化合物は、例えば、前記ジイソシアネート化合物として例示した各種のジイソシアネート化合物が挙げられ、これらはそれぞれ単独で使用しても良いし、二種類以上を併用することもできる。また、該反応で用いるモノアルコールとしては、例えば、ヘキサノール、2-エチルヘキサノール、オクタノール、n-デカノール、n-ウンデカノール、n-ドデカノール、n-トリデカノール、n-テトラデカノール、n-ペンタデカノール、n-ヘプタデカノール、n-オクタデカノール、n-ノナデカノール、エイコサノール、5-エチル-2-ノナノール、トリメチルノニルアルコール、2-ヘキシルデカノール、3,9-ジエチル-6-トリデカノール、2-イソヘプチルイソウンデカノール、2-オクチルドデカノール、2-デシルテトラデカノールなどが挙げられ、ジオールとしては前記多価アルコール(F)で例示した脂肪族ジオールなどが挙げられる。これらのモノアルコールやジオールは、それぞれ単独で用いることも、二種類以上を併用して用いることもできる。 The nurate type polyisocyanate compound having an isocyanurate ring structure in the molecule is obtained, for example, by reacting a diisocyanate compound with a monoalcohol and / or a diol. Examples of the diisocyanate compound used in the reaction include various diisocyanate compounds exemplified as the diisocyanate compound, and these may be used alone or in combination of two or more. Examples of the monoalcohol used in the reaction include hexanol, 2-ethylhexanol, octanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol, n-tetradecanol, n-pentadecanol, n-heptadecanol, n-octadecanol, n-nonadecanol, eicosanol, 5-ethyl-2-nonanol, trimethylnonyl alcohol, 2-hexyldecanol, 3,9-diethyl-6-tridecanol, 2-isoheptylisoun Examples include decanol, 2-octyldodecanol, and 2-decyltetradecanol. Examples of the diol include aliphatic diols exemplified for the polyhydric alcohol (F). These monoalcohols and diols can be used alone or in combination of two or more.
 ここで、前記3官能以上のポリイソシアネート化合物(G2)を用いることにより、本願発明のポリエスエルポリウレタンポリオール(A)の分子内に分岐構造を導入することができる。 Here, by using the tri- or higher functional polyisocyanate compound (G2), a branched structure can be introduced into the molecule of the polyester polyurethane polyol (A) of the present invention.
 これらポリイソシアネート(G)は、それぞれ単独で用いても良いし、二種類以上を併用しても良い。中でも、湿熱条件下での接着強度に優れる樹脂組成物が得られる点で、前記3官能以上のポリイソシアネート化合物(G2)が好ましく、ヌレート型ポリイソシアネート化合物がより好ましい。また、樹脂組成物を塗工に適した粘度に調節することが容易となる点で、前記ジイソシアネート化合物(G1)と、前記3官能以上のポリイソシアネート化合物(G2)とを併用することが好ましい。この場合、湿熱条件下での基材接着性に優れ、かつ、塗工に適した粘度を示す樹脂組成物となる点で、両者の質量比[(G1)/(G2)]が50/50~5/95の範囲であることが好ましく、40/60~10/90の範囲であることがより好ましく、30/70~15/85の範囲であることが特に好ましい。 These polyisocyanates (G) may be used alone or in combination of two or more. Among these, the trifunctional or higher polyisocyanate compound (G2) is preferable, and a nurate polyisocyanate compound is more preferable in that a resin composition excellent in adhesive strength under wet heat conditions is obtained. Moreover, it is preferable to use together the said diisocyanate compound (G1) and the said polyisocyanate compound (G2) more than trifunctional from the point which becomes easy to adjust the resin composition to the viscosity suitable for coating. In this case, the mass ratio [(G1) / (G2)] of the two is 50/50 in terms of providing a resin composition having excellent substrate adhesion under wet heat conditions and exhibiting a viscosity suitable for coating. Is preferably in the range of ˜5 / 95, more preferably in the range of 40/60 to 10/90, and particularly preferably in the range of 30/70 to 15/85.
 前記ポリエステルポリウレタンポリオール(A)を製造する際に用いる3官能以上の成分は、前記多塩基酸(E2)、前記ポリオール(F2)及び前記ポリイソシアネート化合物(G2)のいずれでも良いが、前述の通り、湿熱条件下での接着強度に優れる樹脂組成物が得られる点、及び前記ポリエステルポリウレタンポリオール(A)をより短時間で簡便に製造できる点で、ポリイソシアネート化合物(G2)を用いることが好ましい。 The trifunctional or higher functional component used in producing the polyester polyurethane polyol (A) may be any of the polybasic acid (E2), the polyol (F2), and the polyisocyanate compound (G2). The polyisocyanate compound (G2) is preferably used in that a resin composition having excellent adhesive strength under wet heat conditions can be obtained and the polyester polyurethane polyol (A) can be easily produced in a shorter time.
 前記ポリエステルポリウレタンポリオール(A)を製造する方法としては、例えば、前記多塩基酸(E)と、前記多価アルコール(F)とを、エステル化触媒の存在下、150~270℃の温度範囲で反応させてポリエステルポリオールを得た後、該ポリエステルポリオールと前記ポリイソシアネート(G)とを、ウレタン化触媒の存在下、50~100℃の温度範囲で反応させる方法などが挙げられる。 Examples of the method for producing the polyester polyurethane polyol (A) include, for example, the polybasic acid (E) and the polyhydric alcohol (F) in a temperature range of 150 to 270 ° C. in the presence of an esterification catalyst. Examples thereof include a method of reacting the polyester polyol with the polyisocyanate (G) in the presence of a urethanization catalyst in a temperature range of 50 to 100 ° C. after obtaining the polyester polyol by reaction.
 また、本発明の樹脂組成物は、(2)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~50,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0以下であるポリエステルポリオール(B)を必須の成分として含有する。 The resin composition of the present invention has (2) a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 50,000, and a molecular weight distribution (Mw / Mn). The polyester polyol (B) having an N of 5.0 or less is contained as an essential component.
 前記ポリエステルポリウレタンポリオール(A)が分子内に分岐構造を有することにより、最終硬化物が架橋密度の高いものとなるため、湿熱条件下であっても膨潤せず、高い接着性を維持することができる。 Since the polyester polyurethane polyol (A) has a branched structure in the molecule, the final cured product has a high crosslink density, so that it does not swell even under wet heat conditions and maintains high adhesiveness. it can.
 前記ポリエステルポリオール(B)は、その分子内に分岐構造を有することにより、特に、ラミネート接着剤に用いた場合に、初期の接着性と耐湿熱接着性の向上に寄与するものである。 The polyester polyol (B) has a branched structure in the molecule, and thus contributes to improvement of initial adhesion and wet heat resistance when used in a laminate adhesive.
 また、前記ポリエステルポリオール(B)の重量平均分子量(Mw)は、10,000~50,000の範囲である。重量平均分子量(Mw)が前記範囲内にあることにより、硬化物が高い強度を示すものとなり、初期の接着強度に優れる樹脂組成物となる。また、樹脂組成物が塗工に適した粘度のものとなる。前記ポリエステルポリオール(B)の重量平均分子量(Mw)が10,000未満の場合には、初期の接着強度が低下する傾向にあり、粘度が低いため均一に塗工しにくい樹脂組成物となる。一方、前記ポリエステルポリオール(B)の重量平均分子量(Mw)が50,000を超える場合には、粘度が高くなる傾向にあるために塗工し難い樹脂組成物となる。そのようなポリエステルポリオール(B)の重量平均分子量(Mw)は、初期の接着強度が高く、かつ、湿熱条件下での基材接着性にも優れる樹脂組成物が得られる点で、重量平均分子量(Mw)は12,000~40,000の範囲であることが好ましい。 The weight average molecular weight (Mw) of the polyester polyol (B) is in the range of 10,000 to 50,000. When the weight average molecular weight (Mw) is within the above range, the cured product exhibits high strength, and the resin composition is excellent in initial adhesive strength. Moreover, the resin composition has a viscosity suitable for coating. When the weight average molecular weight (Mw) of the polyester polyol (B) is less than 10,000, the initial adhesive strength tends to decrease, and the viscosity is low, so that the resin composition is difficult to apply uniformly. On the other hand, when the weight average molecular weight (Mw) of the polyester polyol (B) exceeds 50,000, the resin composition is difficult to apply because the viscosity tends to increase. The weight average molecular weight (Mw) of such a polyester polyol (B) is such that a resin composition having high initial adhesive strength and excellent base material adhesion under wet heat conditions can be obtained. (Mw) is preferably in the range of 12,000 to 40,000.
 前記ポリエステルポリオール(B)の分子量分布(Mw/Mn)は、5.0以下である。分子量分布(Mw/Mn)が前記範囲内とすることにより、2液型ラミネート用接着剤として用いた場合に、ラミネート加工後の外観に優れるという効果が発揮される。前記ポリエステルポリオール(B)の分子量分布(Mw/Mn)が6.0を越える場合には、2液型ラミネート用接着剤として用いた場合に、初期接着性が低下する傾向にある。前記ポリエステルポリオール(B)の分子量分布(Mw/Mn)は、1.0~5.0の範囲であることが好ましく、2.0~4.0の範囲であることがより好ましい。 The molecular weight distribution (Mw / Mn) of the polyester polyol (B) is 5.0 or less. When the molecular weight distribution (Mw / Mn) is within the above range, when used as a two-component laminating adhesive, an effect of excellent appearance after laminating is exhibited. When the molecular weight distribution (Mw / Mn) of the polyester polyol (B) exceeds 6.0, the initial adhesiveness tends to decrease when used as a two-component laminating adhesive. The molecular weight distribution (Mw / Mn) of the polyester polyol (B) is preferably in the range of 1.0 to 5.0, more preferably in the range of 2.0 to 4.0.
 また、前記ポリエステルポリオール(B)の数平均分子量(Mn)は、湿熱条件下での基材接着性に優れ、塗工に適した粘度の樹脂組成物となる点で、3,000~20,000の範囲であることが好ましく、5,000~10,000の範囲であることがより好ましい。 Further, the number average molecular weight (Mn) of the polyester polyol (B) is excellent in adhesion to the substrate under wet heat conditions, and becomes a resin composition having a viscosity suitable for coating. It is preferably in the range of 000, more preferably in the range of 5,000 to 10,000.
 また、前記ポリエステルポリオール(B)の水酸基価は、湿熱条件下での基材接着性に優れる点で、5~30mgKOH/gの範囲であることが好ましく、7~15mgKOH/gの範囲であることがより好ましい。 Further, the hydroxyl value of the polyester polyol (B) is preferably in the range of 5 to 30 mgKOH / g and in the range of 7 to 15 mgKOH / g in terms of excellent substrate adhesion under wet heat conditions. Is more preferable.
 前記ポリエステルポリオール(B)は、例えば、多塩基酸(E)と、多価アルコール(F)とを反応させることにより得られる。この場合、ポリエステルポリオール(A)の分子内に分岐構造を導入するために、多塩基酸(E)及び多価アルコール(F)のいずれか一種類以上の原料成分に3官能以上の化合物を用いる。 The polyester polyol (B) can be obtained, for example, by reacting a polybasic acid (E) with a polyhydric alcohol (F). In this case, in order to introduce a branched structure into the molecule of the polyester polyol (A), a trifunctional or higher functional compound is used as one or more raw material components of the polybasic acid (E) and the polyhydric alcohol (F). .
 前記ポリエステルポリオール(B)の反応原料となる多塩基酸(E)及び多価アルコール(F)は、前記ポリエステルポリウレタンポリオール(A)の反応原料と同様の材料を用いることができる。 The same material as the reaction raw material of the polyester polyurethane polyol (A) can be used as the polybasic acid (E) and the polyhydric alcohol (F) as the reaction raw material of the polyester polyol (B).
 前記ポリエステルポリオール(B)を製造する方法としては、例えば、前記多塩基酸(E)と、前記多価アルコール(F)とを、エステル化触媒の存在下、150~270℃の温度範囲で反応させる方法などが挙げられる。 As a method for producing the polyester polyol (B), for example, the polybasic acid (E) and the polyhydric alcohol (F) are reacted in a temperature range of 150 to 270 ° C. in the presence of an esterification catalyst. The method of making it, etc. are mentioned.
 本発明の樹脂組成物は、上記したポリエステルポリウレタンポリオール(A)及びポリエステルポリオール(B)を2液硬化型組成物における必須の主剤成分として含むものであるが、更に、数平均分子量(Mn)が300~5,000の範囲である水酸基含有エポキシ樹脂(C)を含有することが、一般に接着性の低いPVF(ポリフッ化ビニル)フィルムやPVDF(ポリフッ化ビニリデン)フィルム等のフッ素系基材に対しても、高い接着性を発現することができる点から好ましい。前記エポキシ樹脂(C)の数平均分子量(Mn)が300未満の場合には、十分な接着強度が得られず、数平均分子量(Mn)が5,000を超える場合には、本発明の樹脂組成物への溶解性が低下する。中でも、本発明の樹脂組成物への溶解性及び湿熱条件下での基材接着性により優れる点で、数平均分子量(Mn)が400~2,000の範囲であるものがより好ましい。 The resin composition of the present invention contains the above-described polyester polyurethane polyol (A) and polyester polyol (B) as essential main component components in the two-component curable composition, and further has a number average molecular weight (Mn) of 300 to 300. Containing a hydroxyl group-containing epoxy resin (C) in the range of 5,000 is generally applicable to fluorine-based substrates such as PVF (polyvinyl fluoride) films and PVDF (polyvinylidene fluoride) films having low adhesion. From the point that high adhesiveness can be expressed. When the number average molecular weight (Mn) of the epoxy resin (C) is less than 300, sufficient adhesive strength cannot be obtained, and when the number average molecular weight (Mn) exceeds 5,000, the resin of the present invention. Solubility in the composition is reduced. Among them, those having a number average molecular weight (Mn) in the range of 400 to 2,000 are more preferable in that they are more excellent in solubility in the resin composition of the present invention and substrate adhesion under wet heat conditions.
 前記水酸基含有エポキシ樹脂(C)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂の如きビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂の如きビフェニル型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、などが挙げられる。これらの水酸基含有エポキシ樹脂は、それぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、湿熱条件下での基材接着性及び初期の接着強度に優れる樹脂組成物が得られる点で、ビスフェノール型エポキシ樹脂が好ましい。 Examples of the hydroxyl group-containing epoxy resin (C) include bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins; biphenyl type epoxy resins such as biphenyl type epoxy resins and tetramethylbiphenyl type epoxy resins; And cyclopentadiene-phenol addition reaction type epoxy resin. These hydroxyl group-containing epoxy resins may be used alone or in combination of two or more. Among these, a bisphenol type epoxy resin is preferable in that a resin composition excellent in base material adhesion under wet heat conditions and initial adhesive strength can be obtained.
 本発明の樹脂組成物は、上記した各成分に加え、更に、数平均分子量(Mn)が300~3,000の範囲である水酸基含有ポリカーボネート樹脂(D)を含有することが、湿熱条件下での基材接着性に優れる樹脂組成物となる点から好ましい。数平均分子量(Mn)が300未満の場合には、十分な接着強度が得られず、数平均分子量(Mn)が3,000を超える場合には本発明の樹脂組成物への溶解性が低下する。中でも、本発明の樹脂組成物への溶解性及び湿熱条件下での基材接着性により優れる点で、数平均分子量(Mn)が400~2,000の範囲であるものがより好ましい。 In addition to the above components, the resin composition of the present invention further contains a hydroxyl group-containing polycarbonate resin (D) having a number average molecular weight (Mn) in the range of 300 to 3,000 under wet heat conditions. It is preferable from the point which becomes the resin composition which is excellent in base material adhesiveness. When the number average molecular weight (Mn) is less than 300, sufficient adhesive strength cannot be obtained, and when the number average molecular weight (Mn) exceeds 3,000, the solubility in the resin composition of the present invention is lowered. To do. Among them, those having a number average molecular weight (Mn) in the range of 400 to 2,000 are more preferable in that they are more excellent in solubility in the resin composition of the present invention and substrate adhesion under wet heat conditions.
 前記水酸基含有ポリカーボネート樹脂(D)は、より硬化性に優れる樹脂組成物となる点で、水酸基価が20~300mgKOH/gの範囲であることが好ましく、40~250mgKOH/gの範囲であることがより好ましい。また、湿熱条件下での基材接着性に優れる点で、ポリカーボネートジオールであることが好ましい。 The hydroxyl group-containing polycarbonate resin (D) preferably has a hydroxyl value in the range of 20 to 300 mgKOH / g, more preferably in the range of 40 to 250 mgKOH / g, from the viewpoint that it becomes a resin composition with more excellent curability. More preferred. Moreover, it is preferable that it is polycarbonate diol at the point which is excellent in the base-material adhesiveness on wet heat conditions.
 前記水酸基含有ポリカーボネート樹脂(D)は、例えば、多価アルコールとカルボニル化剤とを重縮合反応させる方法により製造することができる。 The hydroxyl group-containing polycarbonate resin (D) can be produced, for example, by a method of polycondensation reaction between a polyhydric alcohol and a carbonylating agent.
 前記水酸基含有ポリカーボネート樹脂(C)の製造で用いる多価アルコールとしては、例えば、前記多価アルコール(F)として例示した各種の多価アルコールが挙げられる。
多価アルコールは、それぞれ単独で用いることも、二種類以上を併用して用いることもできる。
Examples of the polyhydric alcohol used in the production of the hydroxyl group-containing polycarbonate resin (C) include various polyhydric alcohols exemplified as the polyhydric alcohol (F).
Polyhydric alcohols can be used alone or in combination of two or more.
 前記水酸基含有ポリカーボネート樹脂(C)の製造で用いるカルボニル化剤は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート等を挙げることができる。
これらは、それぞれ単独で用いることも、二種類以上を併用して用いることもできる。
Examples of the carbonylating agent used in the production of the hydroxyl group-containing polycarbonate resin (C) include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate, and the like.
These can be used alone or in combination of two or more.
 本発明の樹脂組成物は、前記ポリエステルポリウレタンポリオール(A)と、前記ポリエステルポリオール(B)と、前記水酸基含有エポキシ樹脂(C)と、前記水酸基含有ポリカーボネート樹脂(D)とを、前記ポリエステルポリウレタンポリオール(A)と前記ポリエステルポリオール(B)の合計100質量部に対し、前記水酸基含有エポキシ樹脂(C)が5~20質量部の範囲となり、かつ、前記水酸基含有ポリカーボネート樹脂(D)が5~20質量部の範囲となる割合で含有することにより、種々の基材に対する接着性に優れ、湿熱条件下であっても高い基材接着性を維持できる樹脂組成物となる。 The resin composition of the present invention comprises the polyester polyurethane polyol (A), the polyester polyol (B), the hydroxyl group-containing epoxy resin (C), and the hydroxyl group-containing polycarbonate resin (D). The hydroxyl group-containing epoxy resin (C) is in the range of 5 to 20 parts by mass, and the hydroxyl group-containing polycarbonate resin (D) is 5 to 20 parts per 100 parts by mass of the total of (A) and the polyester polyol (B). By containing in the ratio which becomes the range of a mass part, it becomes the resin composition which is excellent in the adhesiveness with respect to a various base material, and can maintain high base-material adhesiveness also on wet heat conditions.
 また、本発明の樹脂組成物中の前記ポリエステルポリウレタンポリオール(A)と、前記ポリエステルポリオール(B)との配合割合は、質量比で、10:50~90:10の範囲が好ましく、20:80~50:50の範囲が特に好ましい。 Further, the blending ratio of the polyester polyurethane polyol (A) and the polyester polyol (B) in the resin composition of the present invention is preferably in the range of 10:50 to 90:10 by mass ratio, and 20:80 A range of ˜50: 50 is particularly preferred.
 本発明の樹脂組成物は、硬化剤成分として前記ポリイソシアネート(E)を用いることが好ましい。該ポリイソシアネート(E)は、例えば、前記ポリイソシアネート(G)として列記した種々のポリイソシアネートが挙げられる。これらポリイソシアネート(E)は、一種類を単独で用いることも、二種類以上を併用して用いることもできる。 The resin composition of the present invention preferably uses the polyisocyanate (E) as a curing agent component. Examples of the polyisocyanate (E) include various polyisocyanates listed as the polyisocyanate (G). These polyisocyanates (E) can be used alone or in combination of two or more.
 これらポリイソシアネート(E)の中でも、接着剤塗膜が黄変し難い点では、前記脂肪族ジイソシアネート化合物が好ましい。また、湿熱条件下での基材密着性に優れる点では、前記ヌレート型ポリイソシアネート化合物が好ましい。 Among these polyisocyanates (E), the aliphatic diisocyanate compound is preferable in that the adhesive coating film is hardly yellowed. Moreover, the said nurate type | mold polyisocyanate compound is preferable at the point which is excellent in the base-material adhesiveness on wet heat conditions.
 本願発明の樹脂組成物は、前記ポリエステルポリウレタンポリオール(A)と、前記ポリエステルポリオール(B)と、前記水酸基含有エポキシ樹脂(C)と、前記水酸基含有ポリカーボネート樹脂(D)と、ポリイソシアネート(E)とを必須の成分として含有する。本発明では、前記ポリエステルポリウレタンポリオール(A)、前記ポリエステルポリオール(B)、前記水酸基含有エポキシ樹脂(C)及び前記水酸基含有ポリカーボネート樹脂(D)に含まれる水酸基の合計モル数[OH]と、前記ポリイソシアネート化合物(E)に含まれるイソシアネート基のモル数[NCO]との比[OH]/[NCO]を1/1~1/2の範囲、より好ましくは1/1.05~1/1.5の範囲とすることにより、硬化性に優れる樹脂組成物となる。 The resin composition of the present invention comprises the polyester polyurethane polyol (A), the polyester polyol (B), the hydroxyl group-containing epoxy resin (C), the hydroxyl group-containing polycarbonate resin (D), and the polyisocyanate (E). Are contained as essential components. In the present invention, the total number of moles [OH] of hydroxyl groups contained in the polyester polyurethane polyol (A), the polyester polyol (B), the hydroxyl group-containing epoxy resin (C) and the hydroxyl group-containing polycarbonate resin (D), The ratio [OH] / [NCO] of the isocyanate groups contained in the polyisocyanate compound (E) to the number of moles [NCO] is in the range of 1/1 to 1/2, more preferably 1 / 1.05 to 1/1. By setting it in the range of .5, the resin composition is excellent in curability.
 本願発明の樹脂組成物は、更に、各種の溶剤を含有していても良い。前記溶剤は、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトンの如きケトン系化合物;テトラヒドロフラン(THF)、ジオキソランの如き環状エーテル系化合物;酢酸メチル、酢酸エチル、酢酸ブチルの如きエステル系化合物;トルエン、キシレンの如き芳香族系化合物;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルの如きアルコール系化合物、などが挙げられる。これらの溶剤は、単独で使用することも、二種類以上を併用して使用することもできる。 The resin composition of the present invention may further contain various solvents. Examples of the solvent include ketone compounds such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone; cyclic ether compounds such as tetrahydrofuran (THF) and dioxolane; ester compounds such as methyl acetate, ethyl acetate, and butyl acetate; toluene And aromatic compounds such as xylene; alcohol compounds such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether. These solvents can be used alone or in combination of two or more.
 本発明の樹脂組成物は、更に、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤等の各種添加剤を含有しても良い。 The resin composition of the present invention further contains various additives such as an ultraviolet absorber, an antioxidant, a silicon-based additive, a fluorine-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent. You may do it.
 本願発明の樹脂組成物は、種々のプラスチックフィルムを接着する為の2液型ラミネート用接着剤として好適に用いることができる。 The resin composition of the present invention can be suitably used as a two-component laminating adhesive for adhering various plastic films.
 前記種々のプラスチックフィルムは、例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ポリビニルアルコール、ABS樹脂、ノルボルネン系樹脂、環状オレフィン系樹脂、ポリイミド樹脂、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂等からなるフィルムが挙げられる。本願発明の2液型ラミネート用接着剤は、上記各種フィルムの中でも特に接着が難しいポリフッ化ビニル樹脂やポリフッ化ビニリデン樹脂からなるフィルムに対しても高い接着性を示す。 The various plastic films include, for example, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, polyvinyl alcohol, ABS resin, norbornene resin, cyclic olefin resin, Examples include films made of polyimide resin, polyvinyl fluoride resin, polyvinylidene fluoride resin, and the like. The two-pack type laminating adhesive of the present invention exhibits high adhesion to films made of polyvinyl fluoride resin or polyvinylidene fluoride resin, which are particularly difficult to bond among the various films.
 前記各種フィルム同士を接着する際、本願発明の2液型ラミネート用接着剤の使用量は、2~10g/m2の範囲であることが好ましい。 When adhering the various films, the amount of the two-component laminating adhesive of the present invention is preferably in the range of 2 to 10 g / m2.
 本願発明の2液型ラミネート用接着剤を用い、複数のフィルムを接着して得られる積層フィルムは、湿熱条件下でも高い接着性を有し、フィルム同士が剥がれ難い特徴がある。
従って、本願発明の2液型ラミネート用接着剤は、屋外等の厳しい環境下で用いる積層フィルム用途に好適に用いることができ、このような用途としては、例えば、太陽電池のバックシートを製造する際の接着剤などが挙げられる。
A laminated film obtained by adhering a plurality of films using the two-component laminating adhesive of the present invention has high adhesiveness even under wet heat conditions, and has a characteristic that the films are difficult to peel off.
Accordingly, the two-component laminating adhesive of the present invention can be suitably used for laminated film applications used in harsh environments such as outdoors, and as such applications, for example, a solar cell backsheet is manufactured. For example, an adhesive may be used.
 以下、本発明を具体的な合成例、実施例を挙げてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の例において、「部」及び「%」は、特に断りがない限り、「質量部」及び「質量%」をそれぞれ表わす。 Hereinafter, the present invention will be described in more detail with reference to specific synthesis examples and examples, but the present invention is not limited to these examples. In the following examples, “parts” and “%” represent “parts by mass” and “mass%”, respectively, unless otherwise specified.
 尚、本願実施例では、数平均分子量(Mn)及び重量平均分子量(Mw)は、下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定した。 In Examples of the present application, the number average molecular weight (Mn) and the weight average molecular weight (Mw) were measured by gel permeation chromatography (GPC) under the following conditions.
 測定装置 ;東ソー株式会社製 HLC-8220GPC
 カラム  ;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L       +東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
標準   ;単分散ポリスチレン
試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220GPC manufactured by Tosoh Corporation
Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation + TSK-GEL SuperHZM-M × 4 manufactured by Tosoh Corporation
Detector: RI (differential refractometer)
Data processing; Multi-station GPC-8020 model II manufactured by Tosoh Corporation Measurement conditions; Column temperature 40 ° C
Solvent tetrahydrofuran flow rate 0.35 ml / min standard; monodisperse polystyrene sample; 0.2 mass% tetrahydrofuran solution filtered in terms of resin solids with a microfilter (100 μl)
(合成例1-1)〔ポリエステルポリウレタンポリオール(A1)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1131部、イソフタル酸737部、無水フタル酸342部、セバシン酸534部、無水トリメリット酸20部及び有機チタン化合物1.3部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80%に希釈した。次いで、ヘキサメチレンジイソシアヌレートのイソシアヌレート変性体(スミジュール N-3300;住化バイエルウレタン株式会社製)124部、ヘキサメチレンジイソシアネート25部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70~80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量が5,700、重量平均分子量が35,000で、水酸基価が10のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリウレタンポリオール(A1)とする。
(Synthesis Example 1-1) [Synthesis of Polyester Polyurethane Polyol (A1)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 1131 parts of neopentyl glycol, 737 parts of isophthalic acid, 342 parts of phthalic anhydride, 534 parts of sebacic acid, 20 parts of trimellitic anhydride and 1.3 parts of organotitanium compound Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate. Next, 124 parts of hexamethylene diisocyanurate modified isocyanurate (Sumijoule N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 25 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring. The urethanization reaction was performed by heating to ~ 80 ° C. When the isocyanate content became 0.3% or less, the reaction was stopped to obtain a polyester polyurethane polyol having a number average molecular weight of 5,700, a weight average molecular weight of 35,000 and a hydroxyl value of 10. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A1).
(合成例1-2)〔ポリエステルポリウレタンポリオール(A2)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1155部、イソフタル酸755部、無水フタル酸325部、セバシン酸507部、無水トリメリット酸20部及び有機チタン化合物1.3部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80%に希釈した。次いで、ヘキサメチレンジイソシアヌレートのイソシアヌレート変性体(スミジュール N-3300;住化バイエルウレタン株式会社製)247部、ヘキサメチレンジイソシアネート40部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70~80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量が7800、重量平均分子量が88000で、水酸基価が12のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリウレタンポリオール(A2)とする。
(Synthesis Example 1-2) [Synthesis of Polyester Polyurethane Polyol (A2)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 1155 parts of neopentyl glycol, 755 parts of isophthalic acid, 325 parts of phthalic anhydride, 507 parts of sebacic acid, 20 parts of trimellitic anhydride and 1.3 parts of organotitanium compound Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate. Next, 247 parts of an isocyanurate modified form of hexamethylene diisocyanurate (Sumidule N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 40 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring. The urethanization reaction was performed by heating to ~ 80 ° C. When the isocyanate content became 0.3% or less, the reaction was stopped to obtain a polyester polyurethane polyol having a number average molecular weight of 7,800, a weight average molecular weight of 88,000, and a hydroxyl value of 12. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A2).
(合成例1-3)〔ポリエステルポリウレタンポリオール(A3)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1144部、イソフタル酸753部、無水フタル酸464部、セバシン酸373部、無水トリメリット酸19部及び有機チタン化合物1.3部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80%に希釈した。次いで、ヘキサメチレンジイソシアヌレートのイソシアヌレート変性体(スミジュール N-3300;住化バイエルウレタン株式会社製)132部、ヘキサメチレンジイソシアネート13部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70~80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量が5000、重量平均分子量が51000で、水酸基価が17のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリウレタンポリオール(A3)とする。
(Synthesis Example 1-3) [Synthesis of Polyester Polyurethane Polyol (A3)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 1144 parts of neopentyl glycol, 753 parts of isophthalic acid, 464 parts of phthalic anhydride, 373 parts of sebacic acid, 19 parts of trimellitic anhydride and 1.3 parts of organic titanium compound Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate. Next, 132 parts of hexamethylene diisocyanurate modified isocyanurate (Sumijour N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 13 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring. The urethanization reaction was performed by heating to ~ 80 ° C. When the isocyanate content became 0.3% or less, the reaction was stopped to obtain a polyester polyurethane polyol having a number average molecular weight of 5000, a weight average molecular weight of 51,000 and a hydroxyl value of 17. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A3).
(合成例1-4)〔ポリエステルポリウレタンポリオール(A4)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール941部、1,6-ヘキサンジオール201部、イソフタル酸757部、無水フタル酸301部、アジピン酸68部、セバシン酸470部、無水トリメリット酸19部及び有機チタン化合物1.3部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80%に希釈した。次いで、ヘキサメチレンジイソシアヌレートのイソシアヌレート変性体(スミジュール N-3300;住化バイエルウレタン株式会社製)132部、ヘキサメチレンジイソシアネート13部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70~80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量が5500、重量平均分子量が32000で、水酸基価が11のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリウレタンポリオール(A4)とする。
(Synthesis Example 1-4) [Synthesis of Polyester Polyurethane Polyol (A4)]
In a flask having a stir bar, a temperature sensor, and a rectifying tube, neopentyl glycol 941 parts, 1,6-hexanediol 201 parts, isophthalic acid 757 parts, phthalic anhydride 301 parts, adipic acid 68 parts, sebacic acid 470 parts, 19 parts of trimellitic anhydride and 1.3 parts of an organic titanium compound were charged, and dry nitrogen was flowed into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate. Next, 132 parts of hexamethylene diisocyanurate modified isocyanurate (Sumijour N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 13 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring. The urethanization reaction was performed by heating to ~ 80 ° C. When the isocyanate content became 0.3% or less, the reaction was stopped to obtain a polyester polyurethane polyol having a number average molecular weight of 5500, a weight average molecular weight of 32000, and a hydroxyl value of 11. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A4).
(合成例2-1)〔ポリエステルポリオール(B1)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール828部、イソフタル酸588部、無水フタル酸274部、セバシン酸407部、無水トリメリット酸15部及び有機チタン化合物1.0部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、数平均分子量が6700、重量平均分子量が22000で、水酸基価が12のポリエステルポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリオール(B1)とする。
(Synthesis Example 2-1) [Synthesis of Polyester Polyol (B1)]
In a flask having a stir bar, temperature sensor and rectifying tube, 828 parts of neopentyl glycol, 588 parts of isophthalic acid, 274 parts of phthalic anhydride, 407 parts of sebacic acid, 15 parts of trimellitic anhydride and 1.0 part of organotitanium compound Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less to obtain a polyester polyol having a number average molecular weight of 6700, a weight average molecular weight of 22000, and a hydroxyl value of 12. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (B1).
(合成例2-2)〔ポリエステルポリオール(B2)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1114部、イソフタル酸717部、無水フタル酸456部、セバシン酸407部、無水トリメリット酸19部及び有機チタン化合物1.0部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、数平均分子量が6200、重量平均分子量が23000で、水酸基価が15のポリエステルポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリオール(B2)とする。
(Synthesis Example 2-2) [Synthesis of Polyester Polyol (B2)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 1114 parts of neopentyl glycol, 717 parts of isophthalic acid, 456 parts of phthalic anhydride, 407 parts of sebacic acid, 19 parts of trimellitic anhydride and 1.0 part of organotitanium compound Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. When the acid value became 1.0 mgKOH / g or less, the reaction was stopped to obtain a polyester polyol having a number average molecular weight of 6200, a weight average molecular weight of 23,000, and a hydroxyl value of 15. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (B2).
(合成例2-3)〔ポリエステルポリオール(B3)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール985部、1,6-ヘキサンジオール70部、イソフタル酸600部、テレフタル酸144部、無水フタル酸349部、アジピン酸25部、セバシン酸514部、無水トリメリット酸19部及び有機チタン化合物1.3部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、数平均分子量が6000、重量平均分子量が20000で、水酸基価が13のポリエステルポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリオール(B3)とする。
(Synthesis Example 2-3) [Synthesis of Polyester Polyol (B3)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 985 parts neopentyl glycol, 70 parts 1,6-hexanediol, 600 parts isophthalic acid, 144 parts terephthalic acid, 349 parts phthalic anhydride, 25 parts adipic acid, 514 parts of sebacic acid, 19 parts of trimellitic anhydride, and 1.3 parts of an organic titanium compound were charged, and dry nitrogen was flowed into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less to obtain a polyester polyol having a number average molecular weight of 6000, a weight average molecular weight of 20000 and a hydroxyl value of 13. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (B3).
(比較合成例1-1)〔ポリエステルポリウレタンポリオール(a1)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1130部、イソフタル酸759部、無水フタル酸342部、セバシン酸534部及び有機チタン化合物1.2部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80%に希釈した。次いで、ヘキサメチレンジイソシアネート108部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70~80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量が10000、重量平均分子量が22000で、水酸基価が9のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリウレタンポリオール(a1)とする。
(Comparative Synthesis Example 1-1) [Synthesis of Polyester Polyurethane Polyol (a1)]
A flask having a stirring bar, a temperature sensor, and a rectifying tube was charged with 1130 parts of neopentyl glycol, 759 parts of isophthalic acid, 342 parts of phthalic anhydride, 534 parts of sebacic acid, and 1.2 parts of an organic titanium compound, and dry nitrogen was added to the flask. The esterification reaction was carried out by heating to 230 to 250 ° C. while stirring and flowing. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate. Next, 108 parts of hexamethylene diisocyanate was charged, dry nitrogen was flowed into the flask, and heated to 70 to 80 ° C. with stirring to conduct a urethanization reaction. The reaction was stopped when the isocyanate content became 0.3% or less to obtain a polyester polyurethane polyol having a number average molecular weight of 10,000, a weight average molecular weight of 22,000, and a hydroxyl value of 9. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (a1).
(比較合成例1-2)〔ポリエステルポリウレタンポリオール(a2)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1210部、イソフタル酸679部、無水フタル酸346部、アジピン酸539部、無水トリメリット酸20部及び有機チタン化合物1.2部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80%に希釈した。次いで、ヘキサメチレンジイソシアヌレートのイソシアヌレート変性体(スミジュール N-3300;住化バイエルウレタン株式会社製)132部、ヘキサメチレンジイソシアネート25部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70~80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量が5500、重量平均分子量が32000で、水酸基価が12のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリウレタンポリオール(a2)とする。
(Comparative Synthesis Example 1-2) [Synthesis of Polyester Polyurethane Polyol (a2)]
In a flask having a stir bar, temperature sensor, and rectifying tube, neopentyl glycol 1210 parts, isophthalic acid 679 parts, phthalic anhydride 346 parts, adipic acid 539 parts, trimellitic anhydride 20 parts and organotitanium compound 1.2 parts Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate. Next, 132 parts of hexamethylene diisocyanurate modified isocyanurate (Sumijour N-3300; manufactured by Sumika Bayer Urethane Co., Ltd.) and 25 parts of hexamethylene diisocyanate were charged, and dry nitrogen was allowed to flow into the flask while stirring. The urethanization reaction was performed by heating to ~ 80 ° C. When the isocyanate content became 0.3% or less, the reaction was stopped to obtain a polyester polyurethane polyol having a number average molecular weight of 5500, a weight average molecular weight of 32,000, and a hydroxyl value of 12. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (a2).
(比較合成例2-1)〔ポリエステルポリオール(b1)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1088部、イソフタル酸727部、無水フタル酸336部、セバシン酸524部、無水トリメリット酸19部及び有機チタン化合物1.2部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、数平均分子量が2300、重量平均分子量が5000で、水酸基価が50のポリエステルポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリオール(b1)とする。
(Comparative Synthesis Example 2-1) [Synthesis of Polyester Polyol (b1)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 1088 parts neopentyl glycol, 727 parts isophthalic acid, 336 parts phthalic anhydride, 524 parts sebacic acid, 19 parts trimellitic anhydride and 1.2 parts organotitanium compound Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, and a polyester polyol having a number average molecular weight of 2300, a weight average molecular weight of 5000 and a hydroxyl value of 50 was obtained. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (b1).
(比較合成例2-2)〔ポリエステルポリオール(b1)の合成〕
 攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール1105部、イソフタル酸898部、無水フタル酸421部、アジピン酸272部、無水トリメリット酸19部及び有機チタン化合物1.2部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、数平均分子量が7200、重量平均分子量が21000で、水酸基価が15のポリエステルポリオールを得た。これを酢酸エチルで希釈して得られた固形分62%の樹脂溶液をポリエステルポリオール(b2)とする。
(Comparative Synthesis Example 2-2) [Synthesis of Polyester Polyol (b1)]
In a flask having a stir bar, temperature sensor, and rectifying tube, neopentyl glycol 1105 parts, isophthalic acid 898 parts, phthalic anhydride 421 parts, adipic acid 272 parts, trimellitic anhydride 19 parts and organotitanium compound 1.2 parts Then, dry nitrogen was allowed to flow into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. When the acid value became 1.0 mgKOH / g or less, the reaction was stopped, and a polyester polyol having a number average molecular weight of 7200, a weight average molecular weight of 21,000 and a hydroxyl value of 15 was obtained. A resin solution having a solid content of 62% obtained by diluting this with ethyl acetate is designated as polyester polyol (b2).
 本発明の実施例及び比較例で用いたエポキシ樹脂(C)を以下に示す。
・エポキシ樹脂(C1):数平均分子量(Mn)470、エポキシ当量245g/eqのビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン860」)・エポキシ樹脂(C2):数平均分子量(Mn)900、エポキシ当量475g/eqのビスフェノールA型エポキシ樹脂(三菱化学社製「JER1001」)
The epoxy resin (C) used in Examples and Comparative Examples of the present invention is shown below.
Epoxy resin (C1): number average molecular weight (Mn) 470, epoxy equivalent 245 g / eq bisphenol A type epoxy resin (“Epiclon 860” manufactured by DIC Corporation) ・ Epoxy resin (C2): number average molecular weight (Mn) 900 Bisphenol A type epoxy resin having an epoxy equivalent of 475 g / eq (“JER1001” manufactured by Mitsubishi Chemical Corporation)
 本発明の実施例及び比較例で用いたポリカーボネート樹脂(D)を以下に示す。
・ポリカーボネートポリオール(D1):数平均分子量(Mn)1,000、水酸基価10mgKOH/gのポリカーボネートジオール(旭化成社製「デュラノールT5651」)
The polycarbonate resin (D) used in Examples and Comparative Examples of the present invention is shown below.
Polycarbonate polyol (D1): polycarbonate diol having a number average molecular weight (Mn) of 1,000 and a hydroxyl value of 10 mgKOH / g (“Duranol T5651” manufactured by Asahi Kasei Corporation)
 本発明の実施例及び比較例で用いたポリイソシアネート(E)を以下に示す。
・ポリイソシアネート(E1):ヘキサメチレンジイソシアネートのヌレート変性体(住友バイエルウレタン社製「スミジュールN3300」)
The polyisocyanate (E) used in Examples and Comparative Examples of the present invention is shown below.
-Polyisocyanate (E1): a hexamethylene diisocyanate modified nurate ("Sumidule N3300" manufactured by Sumitomo Bayer Urethane Co., Ltd.)
(実施例1)
 前記製造例1-1で得たポリエステルポリウレタンポリオール(A1)溶液10部、前記製造例2-1で得たポリエステルポリオール(B1)溶液90部、前記エポキシ樹脂(C1)10部、前記ポリカーボネートポリオール(C1)10部及び前記ポリイソシアネート(D1)10部を混合して樹脂組成物を得、下記の要領で評価サンプルを作成し、以下に示す方法で評価を行った。結果を表1に示す。
Example 1
10 parts of the polyester polyurethane polyol (A1) solution obtained in Production Example 1-1, 90 parts of the polyester polyol (B1) solution obtained in Production Example 2-1, 10 parts of the epoxy resin (C1), the polycarbonate polyol ( C1) 10 parts and 10 parts of said polyisocyanate (D1) were mixed, the resin composition was obtained, the evaluation sample was created in the following way, and it evaluated by the method shown below. The results are shown in Table 1.
(評価サンプルの作成)
 125μm厚のPETフィルム(東レ株式会社製「X10S」)を基材とし、上記実施例1で得た樹脂組成物を、溶剤乾燥後の固形分の質量が5~6g/m2の範囲となるように塗装した後、25μm厚のフッ素フィルム(旭硝子株式会社製「アフレックス25PW」)を貼合して積層フィルムを得た。これを、50℃で72時間エージングして、評価サンプルを得た。
(Creation of evaluation sample)
Using the resin film obtained in Example 1 above as a base material with a 125 μm-thick PET film (“X10S” manufactured by Toray Industries, Inc.), the solid content after drying the solvent is in the range of 5 to 6 g / m 2. Then, a 25 μm-thick fluorine film (“Aflex 25PW” manufactured by Asahi Glass Co., Ltd.) was bonded to obtain a laminated film. This was aged at 50 ° C. for 72 hours to obtain an evaluation sample.
(評価1):外観 前記方法で作成した評価サンプルについて、フッ素フィルム側よりラミネート外観を目視評価した。
 ○:フィルム表面が平滑 △:フィルム表面に若干のクレーターが存在 ×:フィルム表面に多数のクレーター(凹み)が存在
(Evaluation 1): Appearance For the evaluation sample prepared by the above method, the laminate appearance was visually evaluated from the fluorine film side.
○: The film surface is smooth Δ: Some craters are present on the film surface ×: Many craters (dents) are present on the film surface
(評価2):湿熱条件下での接着力の測定 前記方法で作成した評価サンプルについて、引っ張り試験機(SHIMADZU社製「AGS500NG」)を用い、剥離速度スピード300mm/min、強度N/15mmの条件下でT型剥離試験を行い、その強度を接着力として評価した。評価サンプルの初期の接着力と、121℃、湿度100%環境下で25時間、50時間、75時間暴露した後のサンプルの接着力を測定した。 (Evaluation 2): Measurement of adhesive strength under wet heat conditions About the evaluation sample created by the above method, using a tensile tester (“AGS500NG” manufactured by SHIMADZU), conditions of peeling speed of 300 mm / min, strength N / 15 mm A T-type peel test was performed below, and the strength was evaluated as adhesive strength. The initial adhesive strength of the evaluation sample and the adhesive strength of the sample after exposure for 25 hours, 50 hours, and 75 hours in an environment of 121 ° C. and 100% humidity were measured.
(評価3):耐湿熱性の評価 前記評価2で測定した評価サンプルの初期の接着力と、121℃、湿度100%環境下で75時間暴露した後のサンプルの接着力とを比較し、暴露後の接着力が初期の接着力の60%以上であったものを○、40%以上60%未満であったものを△、40%未満であったものを×として評価した。 (Evaluation 3): Evaluation of moist heat resistance The initial adhesion force of the evaluation sample measured in the evaluation 2 was compared with the adhesion force of the sample after exposure for 75 hours in an environment of 121 ° C. and 100% humidity. The case where the adhesive strength was 60% or more of the initial adhesive strength was evaluated as ◯, the case where it was 40% or more and less than 60% was evaluated as Δ, and the case where it was less than 40% was evaluated as ×.
(実施例2~14)
 樹脂組成物の配合を表1~2に示したように変更した以外は、実施例1と同様にして評価サンプルを作成し、評価した。評価結果を表1~2に示した。
(Examples 2 to 14)
An evaluation sample was prepared and evaluated in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Tables 1 and 2. The evaluation results are shown in Tables 1 and 2.
(比較例1~10) 樹脂組成物の配合を表3~4に示したように変更した以外は、実施例1と同様にして評価サンプルを作成し、評価した。評価結果を表3~4に示した。 (Comparative Examples 1 to 10) Evaluation samples were prepared and evaluated in the same manner as in Example 1 except that the composition of the resin composition was changed as shown in Tables 3 to 4. The evaluation results are shown in Tables 3-4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (16)

  1. (1)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~100,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0以上であるポリエステルポリウレタンポリオール(A)、及び、
    (2)分子内に分岐構造を有し、重量平均分子量(Mw)が10,000~50,000の範囲であり、かつ、分子量分布(Mw/Mn)が5.0未満であるポリエステルポリオール(B)を必須成分とすることを特徴とする樹脂組成物。
    (1) Polyester polyurethane polyol having a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 100,000, and a molecular weight distribution (Mw / Mn) of 5.0 or more (A) and
    (2) a polyester polyol having a branched structure in the molecule, a weight average molecular weight (Mw) in the range of 10,000 to 50,000, and a molecular weight distribution (Mw / Mn) of less than 5.0 ( A resin composition comprising B) as an essential component.
  2. 前記ポリエステルポリウレタンポリオール(A)が、多塩基酸(E)と、多価アルコール(F)と、3官能以上のポリイソシアネート化合物(G2)とを必須の成分として反応させて得られるものである請求項1記載の樹脂組成物。 The polyester polyurethane polyol (A) is obtained by reacting a polybasic acid (E), a polyhydric alcohol (F), and a trifunctional or higher polyisocyanate compound (G2) as essential components. Item 2. The resin composition according to Item 1.
  3. 前記ポリエステルポリウレタンポリオール(A)が、ジイソシアネート化合物(G1)と3官能以上のポリイソシアネート化合物(G2)とを、両者の質量比[(G1)/(G2)]が50/50~5/95となる範囲で含有するポリイソシアネート(G)を必須の成分として反応させて得られるポリエステルポリウレタンポリオールである請求項1記載の樹脂組成物。 The polyester polyurethane polyol (A) is a diisocyanate compound (G1) and a tri- or higher functional polyisocyanate compound (G2), and the mass ratio [(G1) / (G2)] is 50/50 to 5/95. The resin composition according to claim 1, which is a polyester polyurethane polyol obtained by reacting polyisocyanate (G) contained in a range as an essential component.
  4. 前記ポリエステルポリウレタンポリオール(A)の水酸基価が、5~30mgKOH/gの範囲である請求項3記載の樹脂組成物。 The resin composition according to claim 3, wherein the hydroxyl value of the polyester polyurethane polyol (A) is in the range of 5 to 30 mgKOH / g.
  5. 前記多塩基酸(E)が、炭素原子数が8以上の脂肪族二塩基酸10~30モル%と芳香族二塩基酸50~90モル%とを含む二塩基酸成分であり、前記多価アルコール(F)が、炭素原子数が5以上の脂肪族多価アルコール40~100モル%を含むことを必須とする請求項2記載の樹脂組成物。 The polybasic acid (E) is a dibasic acid component containing 10 to 30 mol% of an aliphatic dibasic acid having 8 or more carbon atoms and 50 to 90 mol% of an aromatic dibasic acid, The resin composition according to claim 2, wherein the alcohol (F) essentially contains 40 to 100 mol% of an aliphatic polyhydric alcohol having 5 or more carbon atoms.
  6. 前記ポリエステルポリウレタンポリオール(A)が、3官能以上のポリイソシアネート化合物(G2)を必須の成分として反応させて得られるものである請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the polyester polyurethane polyol (A) is obtained by reacting a tri- or higher functional polyisocyanate compound (G2) as an essential component.
  7. 前記ポリエステルポリオール(B)が、炭素原子数8以上の脂肪族二塩基酸10~30モル%と芳香族二塩基酸50~90モル%とを含む二塩基酸成分と、炭素原子数5以上の脂肪族ポリオール40~100モル%からなるポリエステルポリオールである請求項1記載の樹脂組成物。 The polyester polyol (B) comprises a dibasic acid component containing 10 to 30 mol% of an aliphatic dibasic acid having 8 or more carbon atoms and 50 to 90 mol% of an aromatic dibasic acid, and 5 or more carbon atoms. The resin composition according to claim 1, which is a polyester polyol comprising 40 to 100 mol% of an aliphatic polyol.
  8. 前記ポリエステルポリオール(B)の水酸基価が、5~30mgKOH/gの範囲である請求項6記載の樹脂組成物。 The resin composition according to claim 6, wherein the hydroxyl value of the polyester polyol (B) is in the range of 5 to 30 mgKOH / g.
  9. 前記(A)成分及び前記(B)成分に加え、(3)数平均分子量(Mn)が300~5,000の範囲である水酸基含有エポキシ樹脂(C)を含む請求項1記載の樹脂組成物。 The resin composition according to claim 1, further comprising (3) a hydroxyl group-containing epoxy resin (C) having a number average molecular weight (Mn) in the range of 300 to 5,000 in addition to the component (A) and the component (B). .
  10. 前記(A)成分、前記(B)成分、及び前記(C)成分に加え、更に(4)数平均分子量(Mn)が300~3,000の範囲である水酸基含有ポリカーボネート樹脂(D)を含有する請求項9記載の樹脂組成物。 In addition to the component (A), the component (B), and the component (C), further includes (4) a hydroxyl group-containing polycarbonate resin (D) having a number average molecular weight (Mn) in the range of 300 to 3,000. The resin composition according to claim 9.
  11. 前記(A)成分及び前記(B)成分に加え、更に、硬化剤として(5)ポリイソシアネート(E)を含有する請求項9又は10記載の樹脂組成物。 The resin composition according to claim 9 or 10, further comprising (5) a polyisocyanate (E) as a curing agent in addition to the component (A) and the component (B).
  12. 前記ポリエステルポリウレタンポリオール(A)、前記ポリエステルポリオール(B)、前記エポキシ樹脂(C)及び前記ポリカーボネート樹脂(D)に含まれる水酸基の合計モル数[OH]と、前記ポリイソシアネート化合物(E)に含まれるイソシアネート基のモル数[NCO]との比[OH]/[NCO]が1/1~1/2の範囲である請求項11記載の樹脂組成物。 Included in the polyisocyanate compound (E), the total number of moles [OH] of hydroxyl groups contained in the polyester polyurethane polyol (A), the polyester polyol (B), the epoxy resin (C) and the polycarbonate resin (D). 12. The resin composition according to claim 11, wherein the ratio [OH] / [NCO] to the number of moles of isocyanate groups [NCO] to be produced is in the range of 1/1 to 1/2.
  13. 前記ポリエステルポリウレタンポリオール(A)と前記ポリエステルポリオール(B)との合計100質量部に対し、前記エポキシ樹脂(C)を5~20質量部の範囲で含有し、かつ、前記ポリカーボネート樹脂(D)を5~20質量部の範囲で含有する請求項10記載の樹脂組成物。 The epoxy resin (C) is contained in a range of 5 to 20 parts by mass with respect to a total of 100 parts by mass of the polyester polyurethane polyol (A) and the polyester polyol (B), and the polycarbonate resin (D) is contained. The resin composition according to claim 10, which is contained in the range of 5 to 20 parts by mass.
  14. 請求項11記載の樹脂組成物を含有する2液型ラミネート用接着剤。 A two-component laminating adhesive comprising the resin composition according to claim 11.
  15. ポリエステルフィルム、フッ素フィルム、ポリオレフィンフィルム、金属箔からなる群から選ばれる1種類以上のフィルムと、請求項14記載の接着剤からなる接着層とを有する積層フィルム。 The laminated film which has 1 or more types of films chosen from the group which consists of a polyester film, a fluorine film, a polyolefin film, and metal foil, and the contact bonding layer which consists of an adhesive agent of Claim 14.
  16. 請求項14記載の接着剤からなる接着層を有する太陽電池のバックシート。 The back sheet | seat of the solar cell which has the contact bonding layer which consists of an adhesive agent of Claim 14.
PCT/JP2013/061507 2012-04-19 2013-04-18 Resin composition, two-part laminating adhesive, laminated film, and backsheet for solar cell WO2013157604A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380008286.1A CN104093760B (en) 2012-04-19 2013-04-18 The backboard of resin combination, two-component-type laminating adhesive, laminated film and solar cell
JP2013539032A JP5413704B1 (en) 2012-04-19 2013-04-18 Resin composition, two-component laminate adhesive, laminated film, and solar cell backsheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-095546 2012-04-19
JP2012095546 2012-04-19

Publications (1)

Publication Number Publication Date
WO2013157604A1 true WO2013157604A1 (en) 2013-10-24

Family

ID=49383556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061507 WO2013157604A1 (en) 2012-04-19 2013-04-18 Resin composition, two-part laminating adhesive, laminated film, and backsheet for solar cell

Country Status (4)

Country Link
JP (1) JP5413704B1 (en)
CN (1) CN104093760B (en)
TW (1) TWI557148B (en)
WO (1) WO2013157604A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231204A (en) * 2014-09-18 2014-12-24 东莞市吉鑫高分子科技有限公司 Thermoplastic polyurethane elastomer for solar cells and preparation method of elastomer
WO2015033857A1 (en) * 2013-09-06 2015-03-12 Dic株式会社 Polyester polyol, polyol preparation for laminating adhesive agent, resin composition, curable resin composition, adhesive agent for laminating use, and back sheet for solar cell
JP2015120819A (en) * 2013-12-24 2015-07-02 Dic株式会社 Resin composition, two pack-type adhesive for laminate, laminated film and back sheet of solar battery
WO2016010132A1 (en) * 2014-07-18 2016-01-21 Dic株式会社 Adhesive for solar-cell backsheet, polyol composition for solar-cell backsheet adhesive, solar-cell backsheet, and solar cell module
JP2019034466A (en) * 2017-08-15 2019-03-07 東洋製罐グループホールディングス株式会社 Gas barrier film laminate
JP2019156925A (en) * 2018-03-09 2019-09-19 三井化学株式会社 Laminate adhesive and packaging material
CN115073715A (en) * 2021-10-22 2022-09-20 上海联景高分子材料有限公司 Polyester polyol for adhesive, and preparation method and application thereof
JP7190542B1 (en) 2021-07-16 2022-12-15 大日精化工業株式会社 glue
WO2023286644A1 (en) * 2021-07-16 2023-01-19 大日精化工業株式会社 Adhesive
WO2023190462A1 (en) * 2022-03-31 2023-10-05 日東シンコー株式会社 Hot-melt adhesive sheet
WO2023190463A1 (en) * 2022-03-31 2023-10-05 日東シンコー株式会社 Hot-melt adhesive sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202106745A (en) * 2019-06-27 2021-02-16 日商旭化成股份有限公司 Polyisocyanate composition, composition for film formation, film, film laminated body, adhesive resin composition, adhesive resin cured product, composition for coating materials, and coating material cured product
CN112143437A (en) * 2020-09-08 2020-12-29 沈阳化工研究院有限公司 Lithium battery aluminum plastic film outer layer adhesive resin and preparation and application thereof
CN116761867A (en) * 2021-02-02 2023-09-15 Dic株式会社 Adhesive, laminate and packaging material
CN113462341B (en) * 2021-07-01 2022-12-09 河南省科学院化学研究所有限公司 Double-component solvent-free reaction type polyurethane hot melt adhesive

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335771A (en) * 2000-05-29 2001-12-04 Dainippon Ink & Chem Inc Adhesive composition for lamination excellent in hot water resistance
JP2006182652A (en) * 2004-12-24 2006-07-13 Bando Chem Ind Ltd Substrate sheet for percutaneous absorption preparation and percutaneous absorption preparation
JP2010043238A (en) * 2008-07-16 2010-02-25 Toyo Ink Mfg Co Ltd Polyurethane adhesive for outdoor use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492444B (en) * 2011-04-22 2015-02-25 Dic株式会社 Resin composition, two-pack type adhesive for laminates, multilayer film, and back sheet for solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335771A (en) * 2000-05-29 2001-12-04 Dainippon Ink & Chem Inc Adhesive composition for lamination excellent in hot water resistance
JP2006182652A (en) * 2004-12-24 2006-07-13 Bando Chem Ind Ltd Substrate sheet for percutaneous absorption preparation and percutaneous absorption preparation
JP2010043238A (en) * 2008-07-16 2010-02-25 Toyo Ink Mfg Co Ltd Polyurethane adhesive for outdoor use

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033857A1 (en) * 2013-09-06 2015-03-12 Dic株式会社 Polyester polyol, polyol preparation for laminating adhesive agent, resin composition, curable resin composition, adhesive agent for laminating use, and back sheet for solar cell
JP2015120819A (en) * 2013-12-24 2015-07-02 Dic株式会社 Resin composition, two pack-type adhesive for laminate, laminated film and back sheet of solar battery
WO2016010132A1 (en) * 2014-07-18 2016-01-21 Dic株式会社 Adhesive for solar-cell backsheet, polyol composition for solar-cell backsheet adhesive, solar-cell backsheet, and solar cell module
JPWO2016010132A1 (en) * 2014-07-18 2017-04-27 Dic株式会社 Adhesive for solar cell backsheet, polyol composition for solar cell backsheet adhesive, solar cell backsheet, and solar cell module
CN106661417A (en) * 2014-07-18 2017-05-10 Dic株式会社 Adhesive for solar-cell backsheet, polyol composition for solar-cell backsheet adhesive, solar-cell backsheet, and solar cell module
CN104231204A (en) * 2014-09-18 2014-12-24 东莞市吉鑫高分子科技有限公司 Thermoplastic polyurethane elastomer for solar cells and preparation method of elastomer
JP2019034466A (en) * 2017-08-15 2019-03-07 東洋製罐グループホールディングス株式会社 Gas barrier film laminate
JP2019156925A (en) * 2018-03-09 2019-09-19 三井化学株式会社 Laminate adhesive and packaging material
JP7137937B2 (en) 2018-03-09 2022-09-15 三井化学株式会社 Laminating adhesives and packaging materials
JP7190542B1 (en) 2021-07-16 2022-12-15 大日精化工業株式会社 glue
WO2023286644A1 (en) * 2021-07-16 2023-01-19 大日精化工業株式会社 Adhesive
JP2023013723A (en) * 2021-07-16 2023-01-26 大日精化工業株式会社 Adhesive
CN115073715A (en) * 2021-10-22 2022-09-20 上海联景高分子材料有限公司 Polyester polyol for adhesive, and preparation method and application thereof
WO2023190462A1 (en) * 2022-03-31 2023-10-05 日東シンコー株式会社 Hot-melt adhesive sheet
WO2023190463A1 (en) * 2022-03-31 2023-10-05 日東シンコー株式会社 Hot-melt adhesive sheet

Also Published As

Publication number Publication date
TWI557148B (en) 2016-11-11
CN104093760A (en) 2014-10-08
CN104093760B (en) 2016-01-20
JP5413704B1 (en) 2014-02-12
TW201348280A (en) 2013-12-01
JPWO2013157604A1 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5413704B1 (en) Resin composition, two-component laminate adhesive, laminated film, and solar cell backsheet
JP5170349B2 (en) Resin composition, two-component laminating adhesive, laminated film and solar cell backsheet
JP6210307B2 (en) Resin composition, two-component laminating adhesive, laminated film and solar cell backsheet
US20180155589A1 (en) Polyester polyol, polyol preparation for laminating adhesive agent, resin composition, curable resin composition, adhesive agent for laminating use, and back sheet for solar cell
JP6439237B2 (en) Novel polyester polyurethane polyol, polyol component for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet
JP2013194131A (en) Adhesive for solar battery back sheet
JP2009091522A (en) Adhesive composition and laminate obtained by using the same
JP2016089034A (en) Polyester polyisocyanate, curing agent for two-liquid type urethane adhesive using the same, two-liquid type urethane adhesive, laminate film and back sheet for solar battery
JP5880939B2 (en) Resin composition, two-component laminating adhesive, laminated film and solar cell backsheet
JPWO2016010132A1 (en) Adhesive for solar cell backsheet, polyol composition for solar cell backsheet adhesive, solar cell backsheet, and solar cell module
JP2010180290A (en) Pressure-sensitive adhesive composition and adherent laminate obtained by using the same
JP5978776B2 (en) Curable composition, adhesive, laminated film and solar cell backsheet
JP2016089035A (en) Polyester polyisocyanate, curing agent for two-liquid type urethane adhesive using the same, two-liquid type urethane adhesive, laminate film and back sheet for solar battery
JP2013087150A (en) Moisture-curable polyurethane hot melt adhesive and decorative finishing member
JP2017110103A (en) Adhesive composition, polyol mixture, adhesive for two-liquid type laminate, laminated film and back sheet of solar cell
JP2015067669A (en) Resin composition, two liquid type laminate adhesive agent, laminate film and back sheet for solar cell
WO2018193957A1 (en) Urethane-modified polyisocyanate compound, curing agent for two-part curable urethane adhesive agent, adhesive agent, and back sheet for solar cell
EP4405409A1 (en) Adhesive compositions, layered articles and photovoltaic sheets
JP6123347B2 (en) Polyol agent for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet
JP2023022367A (en) Solvent-free adhesive, laminate and package
JP2018044117A (en) Thermosetting resin composition, thermosetting adhesive composition, and thermosetting adhesive sheet and diaphragm for thin flat-plate speakers prepared therewith

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013539032

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778328

Country of ref document: EP

Kind code of ref document: A1