WO2013157546A1 - Radar control device and radar control method - Google Patents

Radar control device and radar control method Download PDF

Info

Publication number
WO2013157546A1
WO2013157546A1 PCT/JP2013/061298 JP2013061298W WO2013157546A1 WO 2013157546 A1 WO2013157546 A1 WO 2013157546A1 JP 2013061298 W JP2013061298 W JP 2013061298W WO 2013157546 A1 WO2013157546 A1 WO 2013157546A1
Authority
WO
WIPO (PCT)
Prior art keywords
power mode
radio wave
distance
vehicle
speed
Prior art date
Application number
PCT/JP2013/061298
Other languages
French (fr)
Japanese (ja)
Inventor
北村 和也
浩司 大方
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013157546A1 publication Critical patent/WO2013157546A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • G01S7/4013Means for monitoring or calibrating of parts of a radar system of transmitters involving adjustment of the transmitted power

Definitions

  • the present invention relates to a radar control device and a radar control method for controlling the operation of a radar device that detects an object around a vehicle using, for example, millimeter waves.
  • a radar device detects an inter-vehicle distance from a preceding vehicle ahead of the host vehicle, a vehicle speed of the preceding vehicle, and the like, and controls the traveling state of the host vehicle based on this data.
  • an output for transmitting (transmitting) a radio wave is set to a high output in order to detect a preceding vehicle separated by 100 m or more.
  • the radio waves are stopped when the vehicle is stopped so that the radio waves are not excessively transmitted to the surroundings (for example, within a range that satisfies the US Radio Law (FCC)).
  • FCC US Radio Law
  • the vehicle when the vehicle is stopped, specifically, when the vehicle speed is low (for example, less than 2 km / hour) when the vehicle speed is substantially stopped, if the radio wave of the radar apparatus is stopped, naturally, Sometimes, the vehicle cannot be controlled using the detection data of the radar device.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a radar control capable of both reducing the influence of radio waves on the surroundings by the radar apparatus and providing information on objects detected in the surroundings. To provide an apparatus.
  • a high power mode in which the transmission output is large and a low power mode in which the transmission output is smaller than the high power mode are used.
  • the vehicle speed obtained by the vehicle speed detection device for detecting the speed of the vehicle the vehicle is set to the high power mode when the vehicle speed is higher than a predetermined value, and the vehicle speed is lower than the predetermined value.
  • the high power mode transmits radio waves at a predetermined transmission timing (for example, a constant transmission cycle), and reflects the transmitted radio waves.
  • a high power mode control unit that performs processing for recognizing an object around the vehicle at a predetermined recognition timing (for example, a constant recognition period) based on received data that has received a wave;
  • a predetermined recognition timing for example, a constant recognition period
  • the frequency of transmission of the radio wave is reduced as compared with the high power mode, and when the process for recognizing a vehicle peripheral object at the predetermined recognition timing is performed, the reception data is reduced by the reduction of the transmission frequency.
  • a radar control device including a low power mode control unit that performs processing for recognizing the object using past received data is provided (first radar control device according to the present invention). side).
  • the transmission output of the radar device according to the vehicle speed obtained by a vehicle speed detection device such as a vehicle speed sensor, according to the high power mode according to the high speed and the case of the low speed Switch to low power mode.
  • a process for recognizing a vehicle peripheral object (for example, a first fusion process described later) is performed at a predetermined recognition timing based on reception data obtained from the transmitted radio wave.
  • the frequency of radio wave transmission is reduced.
  • past reception data for example, the most recently obtained value
  • the process for recognizing the object at a predetermined recognition timing (for example, a second fusion process described later) is performed.
  • the information on the objects around the vehicle determined by the recognition processing can be output to an external device such as a vehicle control device at a predetermined transmission timing (for example, a constant transmission cycle).
  • a vehicle control device at a predetermined transmission timing (for example, a constant transmission cycle).
  • Various vehicle controls and the like can be performed based on object information obtained from the apparatus.
  • the vehicle speed detection device examples include a vehicle speed sensor that obtains the vehicle speed from the rotational speed of the wheel, for example.
  • the moving state of the scenery around the vehicle is detected by a camera, a radar, etc.
  • a device that detects the speed of the vehicle can be used. That is, any device that can detect the vehicle speed of the vehicle may be used.
  • low speed means, for example, a speed of less than 2 km / hour, which corresponds to a substantial stop state, and includes a state where the vehicle is stopped.
  • high speed means a speed larger than the low speed.
  • detection of a vehicle peripheral object include detection of the distance to the object, the speed of the object, and the direction (direction).
  • the radar control device transmits a long-distance radio wave for detecting a long-distance object, and transmits a short-distance radio wave for detecting a short-distance object rather than the long-distance,
  • the transmission frequency of the long-distance radio wave is reduced as compared with the high power mode, or the transmission of the long-distance radio wave is stopped and the transmission frequency of the short-distance radio wave is reduced. This is preferable (second aspect of the radar control device of the present invention).
  • the configuration of the second aspect exemplifies a suitable radio wave transmission state in the high power mode and the low power mode. Specifically, when traveling at high speed, it is necessary to detect the surroundings of the vehicle over a wide range regardless of whether it is a long distance or a short distance. A distance radio wave is transmitted, and a short distance radio wave for detecting an object around the vehicle in a short distance is transmitted. Accordingly, an object such as another vehicle far away from the vehicle can be easily detected, and an object close to the vehicle can be easily detected.
  • the transmission frequency of the long-distance radio waves is reduced, or the transmission of the long-distance radio waves is stopped and the transmission frequency of the short-distance radio waves is reduced.
  • the energy of the radio wave transmitted from the radar apparatus can be reduced, and a vehicle peripheral object close to the vehicle that needs to be detected at a low speed can be easily detected.
  • the “radio wave for long distance” is a radio wave having characteristics preferable for detecting an object at a long distance.
  • radio waves that reach far away or radio waves with high resolution when detecting distant objects specifically radio waves such as millimeter waves modulated at 100 MHz.
  • the “short distance radio wave” is a radio wave having a preferable characteristic for detecting a short distance object shorter than the long distance.
  • it is a radio wave having a short reach compared to the radio wave for long distance, or a radio wave having a high resolution when detecting an object at a short distance, specifically, a radio wave such as a millimeter wave modulated at 300 MHz. is there.
  • the radar control apparatus performs the process of recognizing the object at the predetermined recognition timing in the low power mode, if the reception data of the short-range radio wave cannot be obtained, It is preferable to use received radio wave data (third aspect of the radar control device of the present invention).
  • the transmission frequency of the short-range radio wave when the transmission frequency of the short-range radio wave is reduced, if the reception data of the short-range radio wave is not obtained, the past (for example, the value obtained most recently) Using short-distance radio wave reception data.
  • the radar control device may use a value used for object recognition (that is, the latest value) as the past received data (fourth aspect of the radar control device of the present invention).
  • the latest value used for object recognition is an example of preferred past received data used for recognition.
  • the radar control device when switching from the low power mode to the high power mode, the radar control device does not have to use the received data obtained by the long-distance radio wave until a predetermined standby time elapses from the switching timing ( (5th aspect of the radar control apparatus of this invention).
  • a newly detected object can be recognized as a highly reliable object for the first time when the object is detected a plurality of times. That is, when the vehicle speed has changed from low speed to high speed and not much time has passed, the reliability of the information of the object newly detected by the long-distance radio waves is low.
  • the configuration of the fifth aspect is It is determined that the reliability of the detected object information is low, and the object recognition process is performed without using the reception data obtained by the long-distance radio waves. This improves the accuracy of recognizing the object.
  • the radar control device may provide a difference between a speed threshold for switching to the low power mode and a speed threshold for switching to the high power mode (sixth aspect of the radar control device of the present invention).
  • the configuration of the sixth aspect provides a difference between the speed threshold for switching from the high power mode to the low power mode and the speed threshold for switching from the low power mode to the high power mode. It is possible to prevent frequent switching to one mode.
  • the radar control device reduces the energy of radio waves emitted around the vehicle when the vehicle is at a low speed by controlling the transmission state of the radio wave transmitted from the radar device according to the vehicle speed. Detection of an object around the vehicle and information on the detected object at a necessary timing can be output to an external device.
  • the vehicle includes a radar device 1 that detects the direction, distance, relative speed, and the like of a preceding vehicle in front of the vehicle, a vehicle speed sensor 3 that detects the speed of the vehicle, a radar device 1, A vehicle control device (vehicle control ECU) 5 that performs traveling control of the host vehicle based on information obtained from the vehicle speed sensor 3 is provided.
  • a radar device 1 that detects the direction, distance, relative speed, and the like of a preceding vehicle in front of the vehicle
  • a vehicle speed sensor 3 that detects the speed of the vehicle
  • a vehicle control device (vehicle control ECU) 5 that performs traveling control of the host vehicle based on information obtained from the vehicle speed sensor 3 is provided.
  • the radar device 1 is an FMCW millimeter wave radar that continuously modulates the frequency of the millimeter wave to be transmitted, and a radar control unit 11 that controls the operation of the radar device 1 such as control of the millimeter wave transmission state (claim).
  • a millimeter wave is transmitted in front of the vehicle, and the antenna unit 7 that receives the reflected wave, and a transmission that monitors the transmission power of the millimeter wave transmitted from the antenna unit 7 And a power monitor unit 9.
  • the transmission power monitor unit 9 may be omitted.
  • the vehicle control ECU 5 also provides information on the direction, distance, and relative speed of surrounding objects (for example, a vehicle such as a preceding vehicle) obtained from the radar device 1, information on the speed of the host vehicle obtained from the vehicle speed sensor 3, and the like.
  • the electronic control device performs various controls such as preceding vehicle follow-up control and constant speed traveling control.
  • the radar apparatus 1 includes the antenna unit 7 having a transmission antenna 13 and a reception antenna 15 and the transmission power monitor unit 9, and a dedicated integrated circuit 17 and a high-frequency circuit as a radar control unit 11. 19.
  • the receiving antenna 15 is a linear array antenna in which a plurality of antenna elements are arranged in a line at equal intervals.
  • the dedicated integrated circuit 17 includes an electronic control unit (microprocessor) 21 that controls operations such as transmission and reception of radio waves by the radar device 1, and an FM modulation voltage generation circuit that generates a triangular wave voltage signal for generating an FMCW signal. 23, a bias generation circuit 25 that generates a bias voltage, and an A / D converter 27.
  • the electronic control device 21 stores a computer program for executing various processes by the radar control unit 11 in a storage device (not shown). Mode switching, high power mode control, and low power mode control, which will be described later, can also be performed using such a program.
  • the high-frequency circuit 19 receives a triangular voltage signal and generates a FMCW signal, a voltage controlled oscillator (VCO) 29, an amplifier (AMP1) 31 that amplifies the signal, and a part of the FMCW signal on the transmission side.
  • a distributor 33 for supplying the signal as a local signal to the receiving side and an amplifier (AMP21) 35 for amplifying the signal are provided.
  • a mixer 37 that receives a local signal from the distributor 33 and a video amplifier 39 that amplifies the received signal and the like are provided.
  • the VCO 29 receives the triangular wave voltage signal from the FM modulation voltage generation circuit 23, and the rising modulation signal whose frequency rises with time and the lower modulation signal with time and falls with time.
  • An FMCW signal composed of a descending modulation signal is generated.
  • a part of the FMCW signal is supplied to the transmission antenna 13 via the distributor 33 and the like, and the millimeter-wave radio wave is irradiated from the transmission antenna 13 toward the vehicle peripheral object (target object).
  • the remaining FMCW signal is supplied to the mixer 37 as a local signal.
  • a 76 GHz millimeter-wave radio wave modulated at a modulation frequency of 300 MHz is transmitted as a short-distance radio wave at a predetermined timing (first period: 50 ms).
  • a predetermined timing (second period: 100 ms)
  • a 76 GHz millimeter-wave radio wave modulated with a modulation frequency of 100 MHz is transmitted as a long-distance radio wave.
  • a 76 GHz millimeter-wave radio wave modulated at a modulation frequency of 300 MHz is transmitted as a short-distance radio wave at a predetermined timing (third period: 200 ms).
  • the radar control unit 11 controls the voltage signal generated by the FM modulation voltage generation circuit 23 so as to generate the FMCW signal corresponding to each millimeter wave radio wave from the VCO 29 in order to output the millimeter wave radio wave according to the vehicle speed. To do. Switching between 100 MHz and 300 MHz is performed by changing the frequency (modulation frequency) of the triangular wave voltage signal output from the FM modulation voltage generation circuit 23.
  • the reflected wave from the object captured by the receiving antenna 15 is input to the mixer 37 as a received signal.
  • the mixer 37 mixes the received signal from the receiving antenna 15 and the local signal from the distributor 33, and outputs a beat signal having a frequency difference between the two.
  • the beat signal is amplified to an appropriate level by the video amplifier 39 and input to the electronic control unit 21 via the A / D converter 27.
  • the electronic control unit 21 obtains the distance to the object and the moving speed of the object (relative speed with respect to the host vehicle) from the frequency in the rising modulation period and the frequency in the falling modulation period of the input beat signal.
  • the method for obtaining the distance from the beat signal to the object and the moving speed of the object is well known in the FMCW radar technology (see, for example, the above-mentioned Japanese Patent Application Laid-Open No. 2003-161776), and detailed description thereof is omitted.
  • the radio wave transmission state and recognition processing of the radar apparatus 1 which is a main part of the embodiment will be described.
  • a case where the vehicle is substantially stopped for example, less than 2 km / hour is defined as a low speed, and a speed higher than that (including a medium speed) is defined as a high speed.
  • this mode is also referred to as a normal power mode.
  • FIG. 3 shows the change from the high power mode to the low power mode.
  • the high voltage mode is a mode in which radio waves are transmitted with high transmission power (energy).
  • the actually transmitted radio wave is indicated by a solid line, and the radio wave not transmitted is indicated by a broken line.
  • a 76 GHz millimeter wave radio wave (short range radio wave, hereinafter also referred to as a 300 MHz modulated wave) modulated at 300 MHz is transmitted once at a transmission timing (first period) of 50 ms.
  • the reason why the 300 MHz modulated wave is used as the short-distance radio wave is that this 300 MHz modulated wave has high resolution when detecting an object at a short distance.
  • a 76 GHz millimeter wave radio wave (long-distance radio wave; hereinafter also referred to as a 100 MHz modulated wave) is transmitted three times in succession at a transmission timing of 100 ms (second period).
  • the reason why the 100 MHz modulated wave is used as the long-distance radio wave is that the 100 MHz modulated wave has high resolution when detecting an object at a long distance.
  • the 300 MHz modulated wave and the 100 MHz modulated wave are transmitted at the same timing every 100 ms. Specifically, following the transmission of the first 300 MHz modulated wave, the 100 MHz modulated wave is continuously transmitted three times.
  • the reason why the 100 MHz modulated wave is transmitted three times in succession is that the direction detection accuracy is improved by increasing the number of input signals. Accordingly, it is possible to reliably detect an object at a long distance and also to detect an object at a short distance. Specifically, the distance, speed, and direction of the object can be detected.
  • a 300 MHz modulated wave that is a short-distance radio wave is transmitted, and calculation for detecting a short-distance object (distance, speed, direction) is performed based on the reflected wave.
  • the calculation takes a predetermined calculation time E1.
  • the triangular mark (in the short distance column) in FIG. 3 indicates the timing at which information on the detected short distance object is obtained.
  • a 100 MHz modulated wave which is a long-distance radio wave, is transmitted, and an object detection (distance, speed, direction) is calculated based on the reflected wave, but the calculation takes a predetermined calculation time E2. .
  • the ellipse mark in FIG. 3 indicates the timing at which information on an object at a long distance is obtained by calculation.
  • the calculation time E2 for detecting an object at a long distance is longer than the calculation time E1 for detecting an object at a short distance. This is because the calculation processing load for detecting the azimuth of the object detected by the long-distance radio wave is large.
  • the radar apparatus 1 is for a long distance in order to comprehensively output detected object information (that is, object information obtained by calculation) to other external devices (vehicle control ECU 5: FIG. 1). It is necessary to comprehensively grasp the information of the object by integrating (fusion) the information of the object detected by the radio wave and the information of the object detected by the short-range radio wave. Here, this is referred to as “recognition process (fusion process)”.
  • the transmission timing of the information determined by the recognition process is after the elapse of the calculation time E1 of the object at a short distance and the calculation time E2 of the object at a long distance. This transmission timing is indicated by a rectangle in “Fusion” in FIG.
  • the period of the recognition process and the transmission timing of the information determined by the recognition process is set every 50 ms as in the first period, but the transmission timing of the information determined by the recognition process is the calculation time. Considering that E1 and E2 are required, as shown in FIG. 3, it is set to be executed with a time delay (see t1 in FIG. 3).
  • the 300 MHz modulated wave which is a short-distance radio wave
  • the 100 MHz modulated wave which is a long-distance radio wave
  • past data that is, the previous value which is the latest value
  • the object information by the 100 MHz modulated wave which is the long-distance radio wave. Is set.
  • the low power mode is a mode in which radio waves are transmitted with lower transmission power (energy) than in the high power mode.
  • transmission of a 100 MHz modulated wave, which is a long-distance radio wave, is stopped or the transmission frequency (number of times) is reduced.
  • the transmission frequency (number of times) of the 300 MHz modulated wave which is a short-distance radio wave, is reduced as compared with the high power mode.
  • a 300 MHz modulated wave is transmitted at a transmission timing of 200 ms (third period).
  • the magnitudes of the first to third periods are as follows: first period (transmission period of 300 MHz modulated wave, which is a short-distance radio wave in the high power mode) ⁇ second period (for long distance in the high power mode) The transmission cycle of a 100 MHz modulated wave that is a radio wave) ⁇ the third cycle (the transmission cycle of a 300 MHz modulated wave that is a short-distance radio wave in the low power mode).
  • recognition processing is performed based only on information on a short-range object using a 300 MHz modulated wave.
  • the period of this recognition process is set every 50 ms, which is the same as the first period, as in the high power mode.
  • the recognition processing is set to be performed using the object information by the modulated wave.
  • FIG. 4 is a diagram illustrating a change from the low power mode to the high power mode. As shown in FIG. 4, radio waves are transmitted in the low power mode when the speed is low, and radio waves are transmitted by switching to the high power mode when the speed is high.
  • the object information obtained by the long-distance radio waves is not used until a predetermined standby time elapses from the time of switching.
  • FIG. 5 is a flowchart showing object detection processing by the radar control unit 11.
  • step (S) 100 the speed of the host vehicle is determined based on the speed of the host vehicle obtained from the vehicle speed sensor 3. Specifically, it is determined whether or not the vehicle speed (V) is equal to or higher than a determination value V1 (for example, 2 km / hour) indicating a low speed.
  • V1 for example, 2 km / hour
  • step 110 If it is determined that the vehicle speed (V) is equal to or higher than the determination value (V1), the process proceeds to step 110. On the other hand, if it is determined that the vehicle speed (V) is less than the determination value (V1). Proceeds to step 170.
  • step 110 since the vehicle speed is high, the mode for transmitting radio waves is set to a high power mode corresponding to high speed, and radio waves are transmitted in the high power mode. That is, normal power transmission is performed at each predetermined timing shown in FIG. Specifically, a 300 MHz modulated wave for short distance detection is transmitted in the first period (50 ms), and a 100 MHz modulated wave for long distance detection is transmitted in the second period (100 ms). Do.
  • step 120 a beat signal for transmission of a 300 MHz modulated wave is acquired.
  • step 130 the distance and speed of the object are calculated based on the beat signal and the like, and the direction of the object is calculated.
  • step 140 a beat signal for transmission of a 100 MHz modulated wave is acquired.
  • step 150 the distance and speed of the object are calculated and the azimuth of the object is calculated based on the beat signal and the like by the well-known method described above.
  • processing of the steps 120 and 130 and the processing of the steps 140 and 150 may be performed in parallel by different microcomputers, or may be performed in a time-sharing manner by one microcomputer as appropriate.
  • the first fusion process which is a recognition process corresponding to the high power mode, is performed, and the process is temporarily terminated.
  • the first fusion process comprehensively grasps information on an object detected by a 300 MHz modulated wave and information on an object detected by a 100 MHz modulated wave, and detects the detected object. This is a part of recognition processing for improving the accuracy of information (that is, the accuracy of object recognition).
  • Step 170 where the vehicle speed (V) is determined to be less than the determination value (V1) in Step 100 and the vehicle speed is low (stopped), the mode for transmitting radio waves corresponds to low speed.
  • the low power mode is selected, and radio waves are transmitted in the low power mode.
  • step 180 it is determined whether or not it is the timing (third period) at which transmission of a 300 MHz modulated wave is performed. If an affirmative determination is made here, the process proceeds to step 190, while a negative determination is made. If yes, go to Step 210.
  • step 190 since a 300 MHz modulated wave is actually transmitted, a beat signal for the transmission of the 300 MHz modulated wave is acquired.
  • step 200 the distance and speed of the object are calculated and the azimuth of the object is calculated based on the beat signal and the like by the known method described above.
  • step 210 since the 300 MHz modulated wave is not transmitted, not at the timing when the 300 MHz modulated wave is transmitted, it is not possible to obtain information on the distance, speed, and direction of a near object.
  • step 220 the information of the object (the previous value of distance, speed, and direction) obtained by the previous process is used as the information of the current object.
  • step 220 a second fusion process, which will be described later, which is a recognition process corresponding to the low voltage mode, is performed, and the process is temporarily terminated.
  • FIG. 6 is a flowchart showing the first fusion process by the radar control unit 11.
  • step 300 of FIG. 6 it is determined whether or not the elapsed time (T) after the vehicle speed (V) is equal to or higher than the determination value (V1) indicating the high speed is less than a predetermined determination time (T1). That is, it is determined whether or not much time has passed since the vehicle speed changed from low speed to high speed. If an affirmative determination is made here, the process proceeds to step 310, while if a negative determination is made, the process proceeds to step 320.
  • step 310 since not much time has passed since the vehicle speed changed from low speed to high speed, it is determined that the reliability of the information detected by the object at a long distance is low, and the information about the object around the host vehicle is Information on an object detected by a 300 MHz modulated wave that is a short-range radio wave is employed. Then, the information on the adopted object is transmitted to an external device (for example, the vehicle control ECU 5), and this process is temporarily terminated.
  • an external device for example, the vehicle control ECU 5
  • step 320 since sufficient time has elapsed since the vehicle speed has changed from low speed to high speed, information on the object detected by the 300 MHz modulated wave, which is a short-range radio wave, and 100 MHz modulation, which is a long-distance radio wave.
  • the object information detected by the waves is comprehensively determined to grasp the object information.
  • the weighted average of the distance, speed, and direction of the object is obtained (weighted average). Specifically, when the collision time with the object is short, the weighting of the object information detected by the 300 MHz modulation is increased to obtain a weighted average, and this processing is once ended.
  • a process for further determining an object that is, a process for increasing the recognition accuracy
  • information on the determined object is stored at a predetermined transmission timing (for example, 50 ms as in the first cycle). (Cycle) to the external device, and the process is temporarily terminated.
  • the process for determining the object after the fusion process is well known as described in, for example, Japanese Patent Laid-Open No. 2002-22832, and thus detailed description is omitted.
  • the object exists on the same traveling lane as the own vehicle.
  • Recognition whether the object is a stationary object or a moving object, whether the recognition status of the object is stable, the current estimated position obtained based on the previous position of the object and the current recognized position The accuracy of the recognition of the object is increased in consideration of the deviation. Then, the information of the object with high recognition accuracy is output to the external device as target (target) information.
  • the second fusion processing corresponding to the low voltage mode when there is information on an object actually detected by a 300 MHz modulated wave that is a short-range radio wave, the information on the object is the result of the fusion processing.
  • Adopt as.
  • the information on the object obtained last time is adopted as the information on the current object as the result of the fusion processing. Thereafter, similarly to the first fusion process, a process for determining an object is performed, and the result is transmitted to an external device at a predetermined transmission timing (for example, a period of 50 ms similar to the first period).
  • the transmission output of the radar apparatus 1 is switched between a high power mode according to the high speed mode and a low power mode according to the low speed mode according to the vehicle speed obtained by the vehicle speed sensor 3.
  • the object is recognized at the recognition timing of 50 ms based on the object information obtained by the 100 MHz modulated wave for long distance and the object information obtained by the 300 MHz modulated wave for short distance. For this purpose (first fusion process).
  • the transmission of the 100 MHz modulated wave is stopped and the transmission frequency of the 300 MHz modulated wave is reduced. If the object information by the 300 MHz modulated wave cannot be obtained due to the reduction of the transmission frequency of the 300 MHz modulated wave, the object information obtained at the latest time is used at the same recognition timing as the high power mode.
  • a process for recognizing (second fusion process) is performed. In the second fusion process, information on an object with a 100 MHz modulated wave (including past information) is not used.
  • the object fusion process is performed at the same recognition timing as in the high power mode.
  • the vehicle control ECU 5 obtains the object information obtained from the radar control unit 11. Based on the above, various vehicle controls can be performed.
  • the object information obtained by the 100 MHz modulated wave for long distance is used until a predetermined standby time elapses from the switching timing. Not in.
  • the object recognition information is obtained because the object information obtained by the 100 MHz modulated wave for long distance is not used, so that the object recognition accuracy is improved. There is.
  • the “mode switching unit” in the claims can be configured by a computer program that executes steps 100, 110, and 170 stored in the electronic control device 21 of the radar control unit 11. Further, the “high power mode control unit” and the “low power mode control unit” in the claims can also be configured by a computer program stored in the electronic control device 21 of the radar control unit 11 that executes each mode. .
  • the transmission of the long-distance radio waves is stopped in the low power mode.
  • the transmission frequency (number of times) of the long-distance radio waves may be reduced.
  • the transmission energy of the radio wave (as a total amount) in a predetermined period can be reduced.
  • step 100 of the above-described embodiment not the single determination value (speed threshold value: V1) but the speed threshold value (V2) for switching to the low power mode and the switching to the high power mode. It is desirable to provide a difference from the speed threshold value (V3) of (can be set to V2 ⁇ V3). In other words, by providing a difference between the speed threshold for switching from the high power mode to the low power mode and the speed threshold for switching from the low power mode to the high power mode, switching between the two modes due to speed fluctuations is possible. Frequent occurrence (chattering) can be prevented.
  • an FMCW radar can be used as a long-range radar device, and a monopulse radar that can detect only the direction of an object can be used as a long-range radar device, for example.
  • the radar control unit 11 radar control device
  • the contents of the control are also included in a program for controlling the radar device 1 and a recording medium storing the program. Applicable.
  • Examples of the recording medium include various recording media such as an electronic control device configured as a microcomputer, a microchip (semiconductor storage device), a flexible disk, a hard disk, and an optical disk. That is, there is no particular limitation as long as it stores a program for controlling the radar apparatus 1 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

By the present invention, in a low-power mode, transmission of 100 MHz modulated waves is stopped, and the frequency of transmitting 300 MHz modulated waves is reduced. When object information from 300 MHz modulated waves is not obtained as a result of reducing the frequency of transmitting 300 MHz modulated waves, processing is performed for recognizing the object at the same recognition timing as that of a high-power mode, using previous values of object information. In other words, when the frequency of transmitting radio waves is reduced by the low-power mode during low speed for the sake of reducing transmission power, processing for recognizing an object at the same recognition timing as that of the high-power mode is performed using the most recently obtained object information, even when object information is not actually obtained using 300 MHz modulated waves. A radar control device can thereby be provided that is capable both of reducing the effects of radio waves on the surroundings and of effectively detecting objects around a vehicle.

Description

レーダ制御装置及びレーダ制御方法Radar control device and radar control method
 本発明は、例えばミリ波等を用いて車両の周囲の物体を検知するレーダ装置の動作を制御するレーダ制御装置及びレーダ制御方法に関するものである。 The present invention relates to a radar control device and a radar control method for controlling the operation of a radar device that detects an object around a vehicle using, for example, millimeter waves.
 従来より、車両の走行を自動的に制御する車両制御装置として、車両を一定の車速で走行するように制御する定速走行制御装置や、先行車両に対して所定の車間距離を保って追従するように制御する追従制御装置が知られている(特許文献1~3参照)。 Conventionally, as a vehicle control device that automatically controls the travel of a vehicle, a constant speed travel control device that controls the vehicle to travel at a constant vehicle speed, or a preceding vehicle that keeps a predetermined inter-vehicle distance is followed. There is known a follow-up control device that controls the above (see Patent Documents 1 to 3).
 例えば追従制御を行う車両制御装置では、レーダ装置によって自車両の前方の先行車両との車間距離や先行車両の車速等を検出し、このデータに基づいて自車両の走行状態を制御している。 For example, in a vehicle control device that performs follow-up control, a radar device detects an inter-vehicle distance from a preceding vehicle ahead of the host vehicle, a vehicle speed of the preceding vehicle, and the like, and controls the traveling state of the host vehicle based on this data.
 この種のレーダ装置(例えば車間制御ミリ波レーダ装置)では、例えば100m以上離れた先行車両を検知するために、電波を送信(発信)する出力は高出力に設定されているが、周囲への電波の影響を低減する目的で、過度に電波を周囲に発信しないように(例えば米国電波法(FCC)を満足する範囲となるように)、車両停止時には電波の発信を停止している。 In this type of radar device (for example, an inter-vehicle control millimeter wave radar device), for example, an output for transmitting (transmitting) a radio wave is set to a high output in order to detect a preceding vehicle separated by 100 m or more. For the purpose of reducing the influence of radio waves, the radio waves are stopped when the vehicle is stopped so that the radio waves are not excessively transmitted to the surroundings (for example, within a range that satisfies the US Radio Law (FCC)).
特開2003-161776号公報JP 2003-161776 A 特開2006-46962号公報JP 2006-46962 A 特開2000-258524号公報JP 2000-258524 A
 しかしながら、上述の様に、車両の停止時に、具体的には車速が実質的に停止状態である(例えば2km/時未満の)低速の場合に、レーダ装置の電波を停止すると、当然ながら、低速時には、レーダ装置の検出データを利用した車両の制御ができない。 However, as described above, when the vehicle is stopped, specifically, when the vehicle speed is low (for example, less than 2 km / hour) when the vehicle speed is substantially stopped, if the radio wave of the radar apparatus is stopped, naturally, Sometimes, the vehicle cannot be controlled using the detection data of the radar device.
 つまり、従来は、レーダ装置による検知データを利用した車両制御は、車両の中速以上に限定されてしまうので、車両の停止から発進に至る、いわゆる全車速追従制御等の制御ができないという問題がある。 In other words, conventionally, vehicle control using detection data by the radar device is limited to a medium speed or higher of the vehicle. Therefore, there is a problem that control such as so-called full vehicle speed tracking control from stopping to starting of the vehicle cannot be performed. is there.
 この対策として、車両が低速の場合には、例えばレーダ装置から送信する電波の送信頻度(回数)を低減することが考えられるが、この場合には、電波の反射波から求められる物体の検知データが得られる回数も少なくなる。そのため、レーダ装置によって得られる物体の情報に基づいた各種の制御を好適に行うことができないという問題がある。 As a countermeasure, when the vehicle is at a low speed, for example, it may be possible to reduce the transmission frequency (number of times) of the radio wave transmitted from the radar device. In this case, the object detection data obtained from the reflected wave of the radio wave The number of times that can be obtained is also reduced. Therefore, there is a problem that various controls based on the object information obtained by the radar apparatus cannot be suitably performed.
 つまり、低速時における周囲への電波の影響の低減と周囲の検知した物体の情報の(外部装置等への)提供との両立が難しいという問題がある。本発明は、前記課題を解決するためになされたものであり、その目的は、レーダ装置による周囲への電波の影響の低減と周囲の検知した物体の情報の提供との両立が可能なレーダ制御装置を提供することにある。 That is, there is a problem that it is difficult to achieve both reduction of the influence of radio waves on the surroundings at low speed and provision of information on objects detected in the surroundings (to an external device or the like). The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a radar control capable of both reducing the influence of radio waves on the surroundings by the radar apparatus and providing information on objects detected in the surroundings. To provide an apparatus.
 (1)上記課題解決のため、本願では、レーダ装置の電波の送信出力を調節する電力モードとして、前記送信出力が大きな高電力モードと該高電力モードよりも送信出力の小さな低電力モードとを有し、当該車両の速度を検出する車速検出装置によって得られた車速に応じて、車速が所定値以上の高速の場合には前記高電力モードに設定し、車速が所定値未満の低速の場合には前記低電力モードに設定するモード切換部を備えたレーダ制御装置において、前記高電力モードでは、所定の送信タイミング(例えば一定の送信周期)で電波を送信するとともに、該送信した電波の反射波を受信した受信データに基づいて、所定の認識タイミング(例えば一定の認識周期)で車両周辺物体を認識するための処理を行う高電力モード制御部と、前記低電力モードでは、前記高電力モードに比べて前記電波の送信頻度を低減するとともに、前記所定の認識タイミングで車両周辺物体を認識するための処理を行う場合に、前記送信頻度の低減によって前記受信データが得られないときには、過去の受信データを用いて前記物体を認識するための処理を行う低電力モード制御部と、を備えたレーダ制御装置を提供する(本発明のレーダ制御装置の第1の側面)。 (1) In order to solve the above problem, in the present application, as a power mode for adjusting a radio wave transmission output of a radar apparatus, a high power mode in which the transmission output is large and a low power mode in which the transmission output is smaller than the high power mode are used. According to the vehicle speed obtained by the vehicle speed detection device for detecting the speed of the vehicle, the vehicle is set to the high power mode when the vehicle speed is higher than a predetermined value, and the vehicle speed is lower than the predetermined value. In the radar control device including a mode switching unit for setting the low power mode, the high power mode transmits radio waves at a predetermined transmission timing (for example, a constant transmission cycle), and reflects the transmitted radio waves. A high power mode control unit that performs processing for recognizing an object around the vehicle at a predetermined recognition timing (for example, a constant recognition period) based on received data that has received a wave; In the power mode, the frequency of transmission of the radio wave is reduced as compared with the high power mode, and when the process for recognizing a vehicle peripheral object at the predetermined recognition timing is performed, the reception data is reduced by the reduction of the transmission frequency. Is not obtained, a radar control device including a low power mode control unit that performs processing for recognizing the object using past received data is provided (first radar control device according to the present invention). side).
 この構成では、マイコン等を使用して、車速センサなどの車速検出装置によって得られた車速に応じて、レーダ装置の送信出力を、高速の場合に応じた高電力モードと低速の場合に応じた低電力モードに切り換える。 In this configuration, using a microcomputer or the like, the transmission output of the radar device according to the vehicle speed obtained by a vehicle speed detection device such as a vehicle speed sensor, according to the high power mode according to the high speed and the case of the low speed Switch to low power mode.
 そして、高電力モードでは、送信した電波によって得られた受信データに基づいて、所定の認識タイミングで、車両周辺物体を認識するための処理(例えば後述する第1フュージョン処理)を行う。一方、低電力モードでは、高電力モードに比べて、電波の送信頻度を低減し、この送信頻度の低減によって受信データが得られないときには、過去の受信データ(例えば直近に得られた値)を用いて、所定の認識タイミングで物体を認識するための処理(例えば後述する第2フュージョン処理)を行う。 In the high power mode, a process for recognizing a vehicle peripheral object (for example, a first fusion process described later) is performed at a predetermined recognition timing based on reception data obtained from the transmitted radio wave. On the other hand, in the low power mode, compared to the high power mode, the frequency of radio wave transmission is reduced. When reception data cannot be obtained due to this reduction in transmission frequency, past reception data (for example, the most recently obtained value) is used. The process for recognizing the object at a predetermined recognition timing (for example, a second fusion process described later) is performed.
 つまり、本構成では、低速時の低電力モードによって、送信電力の低減のために電波の送信頻度を低減した場合において、受信データが得られないときでも、過去の受信データを今回の受信データとして用いることにより、(例えば高電力モードと同様な)所定の認識タイミングで物体の認識処理を行う。 In other words, in this configuration, when the transmission frequency of radio waves is reduced to reduce transmission power by the low power mode at low speed, past reception data is used as current reception data even when reception data cannot be obtained. By using it, an object recognition process is performed at a predetermined recognition timing (for example, similar to the high power mode).
 よって、その認識処理によって確定された車両周辺物体の情報を、車両の制御装置等の外部装置に所定の送信タイミング(例えば一定の送信周期)で出力することができるので、外部装置では、レーダ制御装置から得られた物体の情報に基づいて、各種の車両制御などを行うことができる。 Therefore, the information on the objects around the vehicle determined by the recognition processing can be output to an external device such as a vehicle control device at a predetermined transmission timing (for example, a constant transmission cycle). Various vehicle controls and the like can be performed based on object information obtained from the apparatus.
 これにより、低速時において、レーダ装置による周囲への電波の影響の低減と検知した周囲の物体の情報の(他の外部装置等への)提供との両立が可能であるという顕著な効果を奏する。 As a result, at the time of low speed, there is a remarkable effect that it is possible to simultaneously reduce the influence of radio waves on the surroundings by the radar device and provide information on the detected surrounding objects (to other external devices and the like). .
 以下、本発明の第1の側面のレーダ制御装置の各構成について説明する。車速検出装置としては、例えば車輪の回転速度などから車速を求める車速センサ等が挙げられるが、それ以外にも、例えば車両の周囲の風景の移動状態を、カメラやレーダ等で検知し、それから当該車両の速度を検出する装置などを用いることができる。つまり、当該車両の車速を検出できるものであればどのようなものであってもよい。 Hereinafter, each configuration of the radar control device according to the first aspect of the present invention will be described. Examples of the vehicle speed detection device include a vehicle speed sensor that obtains the vehicle speed from the rotational speed of the wheel, for example. In addition to this, for example, the moving state of the scenery around the vehicle is detected by a camera, a radar, etc. A device that detects the speed of the vehicle can be used. That is, any device that can detect the vehicle speed of the vehicle may be used.
 なお、“低速”とは、例えば実質的な停止状態に相当する例えば2km/時未満の速度をいい、車両が停車している状態を含む。これに対し、“高速”とは、低速より大きな速度をいう。また、車両周辺物体の検知としては、当該物体との距離、当該物体の速度、方位(方向)の検知などが挙げられる。 Note that “low speed” means, for example, a speed of less than 2 km / hour, which corresponds to a substantial stop state, and includes a state where the vehicle is stopped. On the other hand, “high speed” means a speed larger than the low speed. Further, examples of the detection of a vehicle peripheral object include detection of the distance to the object, the speed of the object, and the direction (direction).
 また、レーダ制御装置は、前記高電力モードでは、遠距離の物体を探知する遠距離用電波を送信するとともに、前記遠距離よりは近距離の物体を探知する近距離用電波を送信し、前記低電力モードでは、前記遠距離用電波の送信頻度を前記高電力モードよりは低減し、若しくは前記遠距離用電波の送信を停止するとともに、前記近距離用電波の送信頻度を低減するように構成するとよい(本発明のレーダ制御装置の第2の側面)。 In the high power mode, the radar control device transmits a long-distance radio wave for detecting a long-distance object, and transmits a short-distance radio wave for detecting a short-distance object rather than the long-distance, In the low power mode, the transmission frequency of the long-distance radio wave is reduced as compared with the high power mode, or the transmission of the long-distance radio wave is stopped and the transmission frequency of the short-distance radio wave is reduced. This is preferable (second aspect of the radar control device of the present invention).
 本第2の側面の構成は、高電力モードと低電力モードとにおける好適な電波の送信状態を例示したものである。具体的には、高速で走行している場合には、当該車両の周囲を遠距離や近距離に拘わらず広範囲に検知する必要があるので、高電力モードにおいて、遠距離の物体を検知する遠距離用電波を送信するとともに、近距離の車両周辺物体を検知する近距離用電波を送信する。これにより、当該車両より遠く離れた他車両などの物体を容易に検知できるとともに、当該車両に近接した物体も容易に検知できる。 The configuration of the second aspect exemplifies a suitable radio wave transmission state in the high power mode and the low power mode. Specifically, when traveling at high speed, it is necessary to detect the surroundings of the vehicle over a wide range regardless of whether it is a long distance or a short distance. A distance radio wave is transmitted, and a short distance radio wave for detecting an object around the vehicle in a short distance is transmitted. Accordingly, an object such as another vehicle far away from the vehicle can be easily detected, and an object close to the vehicle can be easily detected.
 一方、低速で走行している場合には、高速で走行している場合に比べて、それほど遠方の物体を検知する必要性が少ないので、低速で走行している場合には、低電力モードにおいて、遠距離用電波の送信頻度を低減し、若しくは遠距離用電波の送信を停止するとともに、近距離用電波の送信頻度を低減する。これにより、レーダ装置から送信される電波のエネルギーを低減できるとともに、低速時に検知が必要な、当該車両に近接した車両周辺物体を容易に検知できる。 On the other hand, when traveling at a low speed, it is less necessary to detect an object far away than when traveling at a high speed. The transmission frequency of the long-distance radio waves is reduced, or the transmission of the long-distance radio waves is stopped and the transmission frequency of the short-distance radio waves is reduced. As a result, the energy of the radio wave transmitted from the radar apparatus can be reduced, and a vehicle peripheral object close to the vehicle that needs to be detected at a low speed can be easily detected.
 以下、本発明の第2の側面のレーダ制御装置の各構成について説明する。遠距離用電波及び近距離用電波の送信は、周期的に行うことができる。この場合、送信の周期を長くすることにより、送信頻度(従って送信回数)を低減することができる。ここで、“遠距離用電波”とは、遠距離の物体を検知するのに好ましい特性を有する電波である。 Hereinafter, each configuration of the radar control device according to the second aspect of the present invention will be described. Transmission of long-distance radio waves and short-distance radio waves can be performed periodically. In this case, the transmission frequency (and hence the number of transmissions) can be reduced by increasing the transmission cycle. Here, the “radio wave for long distance” is a radio wave having characteristics preferable for detecting an object at a long distance.
 例えば、遠方まで到達する電波や、遠方の物体を検知する際の分解能が高い電波であり、具体的には、100MHzで変調されるミリ波の様な電波である。 For example, radio waves that reach far away or radio waves with high resolution when detecting distant objects, specifically radio waves such as millimeter waves modulated at 100 MHz.
 一方、“近距離用電波”とは、前記遠距離より距離の短い近距離の物体を検知するのに好ましい特性を有する電波である。例えば、前記遠距離用電波に比べて到達距離が短い電波や、近距離の物体を検知する際の分解能が高い電波であり、具体的には、300MHzで変調されるミリ波の様な電波である。 On the other hand, the “short distance radio wave” is a radio wave having a preferable characteristic for detecting a short distance object shorter than the long distance. For example, it is a radio wave having a short reach compared to the radio wave for long distance, or a radio wave having a high resolution when detecting an object at a short distance, specifically, a radio wave such as a millimeter wave modulated at 300 MHz. is there.
 また、レーダ制御装置は、前記低電力モードにおいて、前記所定の認識タイミングにて、前記物体を認識する処理を行う場合に、前記近距離用電波の受信データが得られないときには、過去の近距離用電波の受信データを用いるとよい(本発明のレーダ制御装置の第3の側面)。 In addition, when the radar control apparatus performs the process of recognizing the object at the predetermined recognition timing in the low power mode, if the reception data of the short-range radio wave cannot be obtained, It is preferable to use received radio wave data (third aspect of the radar control device of the present invention).
 本第3の側面の構成は、低電力モードにおいて、近距離用電波の送信頻度を低減した場合に、近距離用電波の受信データが得られないときには、過去(例えば直近に得られた値)の近距離用電波の受信データを用いる。 In the configuration of the third aspect, in the low power mode, when the transmission frequency of the short-range radio wave is reduced, if the reception data of the short-range radio wave is not obtained, the past (for example, the value obtained most recently) Using short-distance radio wave reception data.
 これにより、所定の送信タイミングにて、当該車両に近接した物体の情報を、間断なく、外部装置に送信することができる。なお、低電力モードにおいて、所定の認識タイミングにて物体を認識する処理を行う場合に、遠距離電波の受信データが得られないときには、遠距離用電波の過去の受信データは用いないことが望ましい。 Thereby, information on an object close to the vehicle can be transmitted to an external device without interruption at a predetermined transmission timing. In the low-power mode, when processing to recognize an object at a predetermined recognition timing, if it is not possible to obtain long-distance radio wave reception data, it is desirable not to use past long-distance radio wave reception data. .
 つまり、低電力モードにおいては、近距離の物体の情報は必要であるが、遠距離の物体の情報の必要性は低い。よって、遠距離用電波の過去の受信データは用いないようにすれば、演算の負荷を低減できる。 That is, in the low power mode, information on an object at a short distance is necessary, but information on an object at a long distance is low. Therefore, if the past received data of the long-distance radio waves is not used, the calculation load can be reduced.
 また、レーダ制御装置は、前記過去の受信データとして、物体の認識に使用した値(即ち最新の値)を使用するとよい(本発明のレーダ制御装置の第4の側面)。物体の認識に使用した最新の値は、認識に使用する好ましい過去の受信データの例示である。 Also, the radar control device may use a value used for object recognition (that is, the latest value) as the past received data (fourth aspect of the radar control device of the present invention). The latest value used for object recognition is an example of preferred past received data used for recognition.
 また、レーダ制御装置は、低電力モードから高電力モードに切り換える場合に、当該切換タイミングから所定の待機時間が経過するまでは、前記遠距離用電波によって得られた受信データを用いないとよい(本発明のレーダ制御装置の第5の側面)。 Further, when switching from the low power mode to the high power mode, the radar control device does not have to use the received data obtained by the long-distance radio wave until a predetermined standby time elapses from the switching timing ( (5th aspect of the radar control apparatus of this invention).
 新たに検知された物体は、通常、複数回その物体が検知された場合、初めて確実性の高い物体として認識することができる。即ち、車速が低速から高速に変化してからあまり時間が経過していない場合には、遠距離用電波によって新たに検知された物体の情報の信頼性は低い。 A newly detected object can be recognized as a highly reliable object for the first time when the object is detected a plurality of times. That is, when the vehicle speed has changed from low speed to high speed and not much time has passed, the reliability of the information of the object newly detected by the long-distance radio waves is low.
 よって、本第5の側面の構成は、車速が低速から高速に変化してからあまり時間が経過していない場合(即ち所定の待機時間が経過していない場合)には、遠距離用電波によって検知された物体の情報の信頼性が低いと判断し、遠距離用電波によって得られた受信データを用いないで、物体の認識処理を行う。これによって、物体を認識する精度が向上する。 Therefore, when the vehicle speed has changed from low speed to high speed and the time has not passed (that is, when the predetermined standby time has not passed), the configuration of the fifth aspect is It is determined that the reliability of the detected object information is low, and the object recognition process is performed without using the reception data obtained by the long-distance radio waves. This improves the accuracy of recognizing the object.
 また、レーダ制御装置は、前記低電力モードに切り換えるための速度閾値と、前記高電力モードに切り換えるための速度閾値とに差を設けるとよい(本発明のレーダ制御装置の第6の側面)。本第6の側面の構成は、高電力モードから低電力モードに切り換えるための速度閾値と、低電力モードから高電力モードに切り換えるための速度閾値とに差を設けるので、速度のばたつきによる前記2つのモードへの切り換えが頻発することを防止できる。 Also, the radar control device may provide a difference between a speed threshold for switching to the low power mode and a speed threshold for switching to the high power mode (sixth aspect of the radar control device of the present invention). The configuration of the sixth aspect provides a difference between the speed threshold for switching from the high power mode to the low power mode and the speed threshold for switching from the low power mode to the high power mode. It is possible to prevent frequent switching to one mode.
実施形態例のレーダ装置を含む車載システムを示すブロック図である。It is a block diagram which shows the vehicle-mounted system containing the radar apparatus of the example of an embodiment. レーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of a radar apparatus. 高電力モードから低電力モードに切り換わる際の電波の送信タイミングや演算タイミング等を示すタイミングチャートである。It is a timing chart which shows the transmission timing of radio waves, the calculation timing, etc. at the time of switching from a high power mode to a low power mode. 低電力モードから高電力モードに切り換わる際の電波の送信タイミングや演算タイミング等を示すタイミングチャートである。It is a timing chart which shows the transmission timing of radio waves, the calculation timing, etc. at the time of switching from a low power mode to a high power mode. レーダ制御装置による物体検知処理を示すフローチャートである。It is a flowchart which shows the object detection process by a radar control apparatus. レーダ制御装置による第1フュージョン処理を示すフローチャートである。It is a flowchart which shows the 1st fusion process by a radar control apparatus.
 次に、本発明のレーダ制御装置の実施形態例について、図面に基づいて説明する。 Next, an embodiment of the radar control device of the present invention will be described based on the drawings.
 本実施形態例のレーダ制御装置は、レーダ装置から送信する電波の送信状態を、車速に応じて制御することによって、車両が低速の場合に、車両周辺に発する電波のエネルギーを低減するとともに、当該車両周辺の物体の検知及び必要なタイミングでの当該検知物体の情報を外部機器に出力することができるものである。 The radar control device according to the present embodiment reduces the energy of radio waves emitted around the vehicle when the vehicle is at a low speed by controlling the transmission state of the radio wave transmitted from the radar device according to the vehicle speed. Detection of an object around the vehicle and information on the detected object at a necessary timing can be output to an external device.
 はじめに、本実施形態例のレーダ制御装置を含む車載システムの概略構成について、図1を用いて説明する。図1に示す様に、車両には、車両の前方の先行車等の方位や距離、相対速度などを検出するレーダ装置1と、自車の速度を検出する車速センサ3と、レーダ装置1や車速センサ3から得られた情報に基づいて自車の走行制御を行う車両制御装置(車両制御ECU)5を備えている。 First, a schematic configuration of an in-vehicle system including a radar control device according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the vehicle includes a radar device 1 that detects the direction, distance, relative speed, and the like of a preceding vehicle in front of the vehicle, a vehicle speed sensor 3 that detects the speed of the vehicle, a radar device 1, A vehicle control device (vehicle control ECU) 5 that performs traveling control of the host vehicle based on information obtained from the vehicle speed sensor 3 is provided.
 このうち、レーダ装置1は、送信するミリ波の周波数を連続的に変調するFMCWミリ波レーダであり、ミリ波の送信状態の制御等、レーダ装置1の動作を制御するレーダ制御部11(請求の範囲の“レーダ制御装置”に相当)と、車両の前方等にミリ波を送信し、その反射波を受信するアンテナ部7と、アンテナ部7から送信するミリ波の送信電力をモニタする送信電力モニタ部9とを備えている。なお、送信電力モニタ部9は省略してもよい。 Among these, the radar device 1 is an FMCW millimeter wave radar that continuously modulates the frequency of the millimeter wave to be transmitted, and a radar control unit 11 that controls the operation of the radar device 1 such as control of the millimeter wave transmission state (claim). (Equivalent to a “radar control device” in the range), a millimeter wave is transmitted in front of the vehicle, and the antenna unit 7 that receives the reflected wave, and a transmission that monitors the transmission power of the millimeter wave transmitted from the antenna unit 7 And a power monitor unit 9. The transmission power monitor unit 9 may be omitted.
 また、車両制御ECU5は、レーダ装置1から得られた周囲の物体(例えば先行車等の車両)の方位や距離、相対速度の情報や、車速センサ3から得られた自車両の速度の情報などに基づいて、例えば先行車追従制御や定速走行制御等の各種の制御を行う電子制御装置である。 The vehicle control ECU 5 also provides information on the direction, distance, and relative speed of surrounding objects (for example, a vehicle such as a preceding vehicle) obtained from the radar device 1, information on the speed of the host vehicle obtained from the vehicle speed sensor 3, and the like. For example, the electronic control device performs various controls such as preceding vehicle follow-up control and constant speed traveling control.
 次に、前記レーダ装置1の構成について、図2を用いて詳細に説明する。レーダ装置1は、図2に示す様に、送信アンテナ13及び受信アンテナ15を有する前記アンテナ部7と前記送信電力モニタ部9とを備えるとともに、レーダ制御部11として、専用集積回路17と高周波回路19とを備えている。なお、受信アンテナ15は、複数個のアンテナ素子が、一列に等間隔で配置されたリニアアレーアンテナである。 Next, the configuration of the radar apparatus 1 will be described in detail with reference to FIG. As shown in FIG. 2, the radar apparatus 1 includes the antenna unit 7 having a transmission antenna 13 and a reception antenna 15 and the transmission power monitor unit 9, and a dedicated integrated circuit 17 and a high-frequency circuit as a radar control unit 11. 19. The receiving antenna 15 is a linear array antenna in which a plurality of antenna elements are arranged in a line at equal intervals.
 前記専用集積回路17は、レーダ装置1による電波の送信や受信などの動作を制御する電子制御装置(マイクロプロセッサ)21と、FMCW信号の発生のための三角波電圧信号を生成するFM変調電圧生成回路23と、バイアス電圧を生成するバイアス生成回路25と、A/D変換器27とを備えている。電子制御装置21は、レーダ制御部11による各種処理を実行するためのコンピュータプログラムを不図示の記憶装置に記憶している。後述するモード切替、高電力モード制御、並びに低電力モード制御も斯かるプログラムを用いて実行され得る。 The dedicated integrated circuit 17 includes an electronic control unit (microprocessor) 21 that controls operations such as transmission and reception of radio waves by the radar device 1, and an FM modulation voltage generation circuit that generates a triangular wave voltage signal for generating an FMCW signal. 23, a bias generation circuit 25 that generates a bias voltage, and an A / D converter 27. The electronic control device 21 stores a computer program for executing various processes by the radar control unit 11 in a storage device (not shown). Mode switching, high power mode control, and low power mode control, which will be described later, can also be performed using such a program.
 前記高周波回路19は、送信系として、三角波電圧信号を受けてFMCW信号を発生する電圧制御発振器(VCO)29と、信号を増幅する増幅器(AMP1)31と、FMCW信号の一部を送信側に与えるとともに一部をローカル信号として受信側に与える分配器33と、信号を増幅する増幅器(AMP21)35とを備えている。また、受信系として、分配器33からローカル信号を受信するミキサ37と、受信した信号等を増幅するビデオ増幅器39を備えている。 As the transmission system, the high-frequency circuit 19 receives a triangular voltage signal and generates a FMCW signal, a voltage controlled oscillator (VCO) 29, an amplifier (AMP1) 31 that amplifies the signal, and a part of the FMCW signal on the transmission side. A distributor 33 for supplying the signal as a local signal to the receiving side and an amplifier (AMP21) 35 for amplifying the signal are provided. As a receiving system, a mixer 37 that receives a local signal from the distributor 33 and a video amplifier 39 that amplifies the received signal and the like are provided.
 次に、レーダ装置1の基本的な計測動作について概略説明する。図2に示す様に、レーダ装置1では、VCO29は、FM変調電圧生成回路23から三角波電圧信号を受けて、周波数が一定期間、時間と共に上昇する上昇変調信号と、一定期間、時間と共に下降する下降変調信号とからなるFMCW信号を発生する。 Next, the basic measurement operation of the radar apparatus 1 will be outlined. As shown in FIG. 2, in the radar apparatus 1, the VCO 29 receives the triangular wave voltage signal from the FM modulation voltage generation circuit 23, and the rising modulation signal whose frequency rises with time and the lower modulation signal with time and falls with time. An FMCW signal composed of a descending modulation signal is generated.
 このFMCW信号の一部が分配器33等を介して送信アンテナ13に供給され、送信アンテナ13からミリ波電波が車両周辺物体(目標物)に向けて照射される。なお、残りのFMCW信号はローカル信号としてミキサ37に供給される。 A part of the FMCW signal is supplied to the transmission antenna 13 via the distributor 33 and the like, and the millimeter-wave radio wave is irradiated from the transmission antenna 13 toward the vehicle peripheral object (target object). The remaining FMCW signal is supplied to the mixer 37 as a local signal.
 例えば、後述する様に、車両が高速の場合には、所定のタイミング(第1の周期:50ms)で、近距離用電波として、300MHzの変調周波数で変調した76GHzのミリ波電波が送信されるとともに、所定のタイミング(第2の周期:100ms)で、遠距離用電波として、100MHzの変調周波数で変調した76GHzのミリ波電波が送信される。 For example, as described later, when the vehicle is at a high speed, a 76 GHz millimeter-wave radio wave modulated at a modulation frequency of 300 MHz is transmitted as a short-distance radio wave at a predetermined timing (first period: 50 ms). At the same time, at a predetermined timing (second period: 100 ms), a 76 GHz millimeter-wave radio wave modulated with a modulation frequency of 100 MHz is transmitted as a long-distance radio wave.
 一方、車両が低速の場合には、所定のタイミング(第3の周期:200ms)で、近距離用電波として、300MHzの変調周波数で変調した76GHzのミリ波電波が送信される。 On the other hand, when the vehicle is at a low speed, a 76 GHz millimeter-wave radio wave modulated at a modulation frequency of 300 MHz is transmitted as a short-distance radio wave at a predetermined timing (third period: 200 ms).
 つまり、レーダ制御部11では、車速に応じた上記ミリ波電波を出力するために、各ミリ波電波に対応したFMCW信号をVCO29から発生させるようFM変調電圧生成回路23で生成する電圧信号を制御する。なお、100MHzと300MHzの切り換えは、FM変調電圧生成回路23から出力される三角波電圧信号の周波数(変調周波数)を変更することにより行われる。 That is, the radar control unit 11 controls the voltage signal generated by the FM modulation voltage generation circuit 23 so as to generate the FMCW signal corresponding to each millimeter wave radio wave from the VCO 29 in order to output the millimeter wave radio wave according to the vehicle speed. To do. Switching between 100 MHz and 300 MHz is performed by changing the frequency (modulation frequency) of the triangular wave voltage signal output from the FM modulation voltage generation circuit 23.
 受信アンテナ15で捕捉された物体からの反射波は、受信信号としてミキサ37に入力する。ミキサ37は、受信アンテナ15からの受信信号と分配器33からのローカル信号とをミキシングし、両者の周波数差を周波数に持つビート信号を出力する。 The reflected wave from the object captured by the receiving antenna 15 is input to the mixer 37 as a received signal. The mixer 37 mixes the received signal from the receiving antenna 15 and the local signal from the distributor 33, and outputs a beat signal having a frequency difference between the two.
 このビート信号は、ビデオ増幅器39にて適宜のレベルに増幅され、A/D変換器27を介して電子制御装置21に入力される。電子制御装置21は、入力したビート信号の上昇変調期間での周波数と下降変調期間での周波数とから、物体までの距離と物体の移動速度(自車両との相対速度)とを求める。 The beat signal is amplified to an appropriate level by the video amplifier 39 and input to the electronic control unit 21 via the A / D converter 27. The electronic control unit 21 obtains the distance to the object and the moving speed of the object (relative speed with respect to the host vehicle) from the frequency in the rising modulation period and the frequency in the falling modulation period of the input beat signal.
 なお、このビート信号から物体までの距離と物体の移動速度を求める手法は、FMCWレーダ技術において周知であるので(例えば前記特開2003-161776号公報参照)、その詳細な説明は省略する。 Note that the method for obtaining the distance from the beat signal to the object and the moving speed of the object is well known in the FMCW radar technology (see, for example, the above-mentioned Japanese Patent Application Laid-Open No. 2003-161776), and detailed description thereof is omitted.
 また、物体の方位(方向)については、周知の様に(例えば特開2008-145178号公報参照)、アレーアンテナの各アンテナ素子が受信する到来波に、到来方向に応じた位相差が生じることを利用して検出することができる。 Further, as is well known (for example, see Japanese Patent Application Laid-Open No. 2008-145178) regarding the azimuth (direction) of an object, a phase difference corresponding to the direction of arrival occurs in the incoming wave received by each antenna element of the array antenna. Can be detected.
 次に、本実施形態例の要部であるレーダ装置1の電波の送信状態や認識処理について説明する。なお、以下では、実質的に車両の停止状態を示す例えば2km/時未満の場合を低速とし、それ以上の(中速を含む)速度を高速と定義する。また、車両の走行中は、通常、高電力モードであるので、このモードを通常電力モードとも称する。 Next, the radio wave transmission state and recognition processing of the radar apparatus 1 which is a main part of the embodiment will be described. In the following, a case where the vehicle is substantially stopped, for example, less than 2 km / hour is defined as a low speed, and a speed higher than that (including a medium speed) is defined as a high speed. Further, since the vehicle is normally in the high power mode while the vehicle is traveling, this mode is also referred to as a normal power mode.
  <高電力モードから低電力モードへの変化>
 図3は、高電力モードから低電力モードへの変化を示す。図3に示す様に、高速の場合には、高電力モードで電波の送信を行う。高電圧モードとは、高い送信電力(エネルギー)で電波を送信するモードである。なお、図3の“送信変調パターン”に示す様に、実際に送信される電波は実線で、送信されない電波は破線で示している。
<Change from high power mode to low power mode>
FIG. 3 shows the change from the high power mode to the low power mode. As shown in FIG. 3, in the case of high speed, radio waves are transmitted in the high power mode. The high voltage mode is a mode in which radio waves are transmitted with high transmission power (energy). As shown in the “transmission modulation pattern” in FIG. 3, the actually transmitted radio wave is indicated by a solid line, and the radio wave not transmitted is indicated by a broken line.
 高電力モードでは、50msの送信タイミング(第1の周期)で、300MHzで変調した76GHzのミリ波電波(近距離用電波。以下300MHz変調波とも記す)を1回送信する。なお、近距離用電波として、300MHz変調波を用いるのは、この300MHz変調波が、近距離における物体を検出する際の分解能が高いからである。 In the high power mode, a 76 GHz millimeter wave radio wave (short range radio wave, hereinafter also referred to as a 300 MHz modulated wave) modulated at 300 MHz is transmitted once at a transmission timing (first period) of 50 ms. The reason why the 300 MHz modulated wave is used as the short-distance radio wave is that this 300 MHz modulated wave has high resolution when detecting an object at a short distance.
 それとともに、100msの送信タイミング(第2の周期)で、100MHzで変調した76GHzのミリ波電波(遠距離用電波。以下100MHz変調波とも記す)を連続して3回送信する。なお、遠距離用電波として、100MHz変調波を用いるのは、この100MHz変調波が、遠距離における物体を検出する際の分解能が高いからである。 At the same time, a 76 GHz millimeter wave radio wave (long-distance radio wave; hereinafter also referred to as a 100 MHz modulated wave) is transmitted three times in succession at a transmission timing of 100 ms (second period). The reason why the 100 MHz modulated wave is used as the long-distance radio wave is that the 100 MHz modulated wave has high resolution when detecting an object at a long distance.
 従って、高電力モードでは、100ms毎に、300MHz変調波と100MHz変調波とが同じタイミングで送信されることになる。詳しくは、1回目の300MHz変調波の送信に続いて、100MHz変調波が3回、連続的に送信される。 Therefore, in the high power mode, the 300 MHz modulated wave and the 100 MHz modulated wave are transmitted at the same timing every 100 ms. Specifically, following the transmission of the first 300 MHz modulated wave, the 100 MHz modulated wave is continuously transmitted three times.
 なお、100MHz変調波の送信を連続して3回実施するのは、入力信号を増やすことで方向検出精度が向上するからである。これにより、遠距離の物体を確実に検知できるとともに、近距離の物体も確実に検知することができる。詳しくは、物体の距離、速度、方位を検知することができる。 The reason why the 100 MHz modulated wave is transmitted three times in succession is that the direction detection accuracy is improved by increasing the number of input signals. Accordingly, it is possible to reliably detect an object at a long distance and also to detect an object at a short distance. Specifically, the distance, speed, and direction of the object can be detected.
 また、図3に示す様に、近距離用電波である300MHz変調波が送信され、その反射波に基づいて近距離物体の検知(距離、速度、方位)のための演算が行われるが、その演算には所定の演算時間E1がかかる。図3の(近距離の欄の)三角のマークが、検知された近距離の物体の情報が得られるタイミングを示している。 In addition, as shown in FIG. 3, a 300 MHz modulated wave that is a short-distance radio wave is transmitted, and calculation for detecting a short-distance object (distance, speed, direction) is performed based on the reflected wave. The calculation takes a predetermined calculation time E1. The triangular mark (in the short distance column) in FIG. 3 indicates the timing at which information on the detected short distance object is obtained.
 同様に、遠距離用電波である100MHz変調波が送信され、その反射波に基づいて物体の検知(距離、速度、方位)の演算が行われるが、その演算には所定の演算時間E2がかかる。図3の楕円のマークが、演算によって遠距離の物体の情報が得られるタイミングを示している。 Similarly, a 100 MHz modulated wave, which is a long-distance radio wave, is transmitted, and an object detection (distance, speed, direction) is calculated based on the reflected wave, but the calculation takes a predetermined calculation time E2. . The ellipse mark in FIG. 3 indicates the timing at which information on an object at a long distance is obtained by calculation.
 図3から明らかな様に、近距離の物体を検知するための演算時間E1より遠距離の物体を検知するための演算時間E2の方が長くかかる。これは、遠距離用電波で検知された物体の方位検出のための演算処理負荷が大きいからである。 As is clear from FIG. 3, the calculation time E2 for detecting an object at a long distance is longer than the calculation time E1 for detecting an object at a short distance. This is because the calculation processing load for detecting the azimuth of the object detected by the long-distance radio wave is large.
 更に、レーダ装置1は、他の外部装置(車両制御ECU5:図1)等に、検知した物体の情報(即ち演算によって得られた物体の情報)を統括的に出力するために、遠距離用電波で検知された物体の情報と近距離用電波で検知された物体の情報とを統合(フュージョン)して総合的に物体の情報を把握する必要がある。ここでは、これを“認識処理(フュージョン処理)”と称する。 Furthermore, the radar apparatus 1 is for a long distance in order to comprehensively output detected object information (that is, object information obtained by calculation) to other external devices (vehicle control ECU 5: FIG. 1). It is necessary to comprehensively grasp the information of the object by integrating (fusion) the information of the object detected by the radio wave and the information of the object detected by the short-range radio wave. Here, this is referred to as “recognition process (fusion process)”.
 この認識処理は、遠距離用電波による物体の情報と近距離用電波による物体の情報が演算によって得られた後に実施する必要がある。従って、認識処理によって確定された情報の送信タイミングは、近距離の物体の演算時間E1と遠距離の物体の演算時間E2の経過後となる。この送信タイミングを、図3の“フュージョン”において、長方形で示している。 This recognition processing needs to be performed after the object information by the long-distance radio wave and the object information by the short-distance radio wave are obtained by calculation. Therefore, the transmission timing of the information determined by the recognition process is after the elapse of the calculation time E1 of the object at a short distance and the calculation time E2 of the object at a long distance. This transmission timing is indicated by a rectangle in “Fusion” in FIG.
 認識処理及び該認識処理によって確定された情報の送信タイミングの周期は、前記第1の周期と同様な50ms毎に設定されているが、認識処理によって確定された情報の送信タイミングは、前記演算時間E1、E2がかかることを考慮して、図3に示す様に、時間的に遅れて実施されるように設定されている(図3のt1参照)。 The period of the recognition process and the transmission timing of the information determined by the recognition process is set every 50 ms as in the first period, but the transmission timing of the information determined by the recognition process is the calculation time. Considering that E1 and E2 are required, as shown in FIG. 3, it is set to be executed with a time delay (see t1 in FIG. 3).
 また、近距離用電波である300MHz変調波は50ms毎に送信されるので、それによる物体の情報は50ms毎に得られるが、遠距離用電波である100MHz変調波は100ms毎に送信されるので、それによる物体の情報は50ms毎に得られない。 Also, since the 300 MHz modulated wave, which is a short-distance radio wave, is transmitted every 50 ms, information on the object is obtained every 50 ms, but the 100 MHz modulated wave, which is a long-distance radio wave, is transmitted every 100 ms. Thus, information on the object cannot be obtained every 50 ms.
 よって、認識処理の際には、遠距離用電波である100MHz変調波による物体の情報として、図3のt2に示す様に、過去のデータ(即ち最新の値である前回値)を用いるように設定されている。 Therefore, in the recognition process, as shown by t2 in FIG. 3, past data (that is, the previous value which is the latest value) is used as the object information by the 100 MHz modulated wave which is the long-distance radio wave. Is set.
 一方、低速の場合には、低電力モードにて電波の送信を行う。低電力モードとは、高電力モードに比べて低い送信電力(エネルギー)で電波を送信するモードである。この低電力モードでは、遠距離用電波である100MHz変調波の送信は停止するか、若しくは送信頻度(回数)を低減する。 On the other hand, when the speed is low, radio waves are transmitted in the low power mode. The low power mode is a mode in which radio waves are transmitted with lower transmission power (energy) than in the high power mode. In this low power mode, transmission of a 100 MHz modulated wave, which is a long-distance radio wave, is stopped or the transmission frequency (number of times) is reduced.
 それとともに、高電力モードの場合に比べて、近距離用電波である300MHz変調波の送信頻度(回数)を少なくする。具体的には、200msの送信タイミング(第3の周期)で、300MHz変調波の送信を行う。 At the same time, the transmission frequency (number of times) of the 300 MHz modulated wave, which is a short-distance radio wave, is reduced as compared with the high power mode. Specifically, a 300 MHz modulated wave is transmitted at a transmission timing of 200 ms (third period).
 これにより、送信電力を低減できるとともに、近距離の物体を検知することができる。なお、第1~第3の各周期の大きさは、第1の周期(高電力モードにおける近距離用電波である300MHz変調波の送信周期)<第2の周期(高電力モードにおける遠距離用電波である100MHz変調波の送信周期)<第3の周期(低電力モードにおける近距離用電波である300MHz変調波の送信周期)である。 This makes it possible to reduce transmission power and detect an object at a short distance. The magnitudes of the first to third periods are as follows: first period (transmission period of 300 MHz modulated wave, which is a short-distance radio wave in the high power mode) <second period (for long distance in the high power mode) The transmission cycle of a 100 MHz modulated wave that is a radio wave) <the third cycle (the transmission cycle of a 300 MHz modulated wave that is a short-distance radio wave in the low power mode).
 低電力モードでは、100MHz変調波による物体の情報は得られないので、図3に示す様に、300MHz変調波による近距離物体の情報のみに基づいて、認識処理を行う。なお、この認識処理の周期は、高電力モードと同様に、前記第1の周期と同じ50ms毎に設定されている。 In the low-power mode, information on an object using a 100 MHz modulated wave cannot be obtained. Therefore, as shown in FIG. 3, recognition processing is performed based only on information on a short-range object using a 300 MHz modulated wave. The period of this recognition process is set every 50 ms, which is the same as the first period, as in the high power mode.
 また、低電力モードでは、300MHz変調波の送信頻度は低減しているので、300MHz変調波による物体の情報が得られない場合には、図3のt3に示す様に、直近に得られた300MHz変調波による物体の情報を用いて認識処理を行うように設定されている。 In the low power mode, since the transmission frequency of the 300 MHz modulated wave is reduced, if the object information by the 300 MHz modulated wave cannot be obtained, the latest 300 MHz obtained as shown at t3 in FIG. The recognition processing is set to be performed using the object information by the modulated wave.
<低電力モードから高電力モードへの変化>
 図4は、低電力モードから高電力モードへの変化を示す図である。図4に示す様に、低速の場合には低電力モードで電波の送信を行い、高速になった場合には高電力モードに切り換えて電波の送信を行う。
<Change from low power mode to high power mode>
FIG. 4 is a diagram illustrating a change from the low power mode to the high power mode. As shown in FIG. 4, radio waves are transmitted in the low power mode when the speed is low, and radio waves are transmitted by switching to the high power mode when the speed is high.
 低電力モードの場合には、遠距離用電波による物体の情報は得られないので、近距離用電波による物体の情報のみにより認識処理が行われる。特に本実施形態例では、低電力モードから高電力モードに切り換える場合には、切換時から所定の待機時間が経過するまでは、遠距離用電波によって得られた物体の情報を用いない。 In the low power mode, since object information by long-distance radio waves cannot be obtained, recognition processing is performed only by object information by short-distance radio waves. In particular, in the present embodiment, when switching from the low power mode to the high power mode, the object information obtained by the long-distance radio waves is not used until a predetermined standby time elapses from the time of switching.
 つまり、車速が低速から高速に変化してからあまり時間が経過していない場合(即ち所定の待機時間が経過していない場合)には、遠距離用電波によって物体の情報が得られても、その信頼性が低いと判断し、遠距離用電波によって得られた物体の情報を用いないで、物体の認識処理(例えば図4のt3~t5でのフュージョン処理)を行う。なお、待機時間の経過後は、通常の高電圧モードと同様に、遠距離用電波である100MHz変調波によって得られた物体の情報も用いて認識処理を行う。 In other words, if not much time has passed since the vehicle speed changed from low speed to high speed (that is, when a predetermined waiting time has not passed), even if information on the object is obtained by the long-distance radio wave, It is determined that the reliability is low, and the object recognition process (for example, the fusion process at t3 to t5 in FIG. 4) is performed without using the object information obtained by the long-distance radio waves. After the standby time has elapsed, recognition processing is also performed using object information obtained by a 100 MHz modulated wave, which is a long-distance radio wave, as in the normal high voltage mode.
 <物体検知処理>
 次に、レーダ制御部11によって行われる物体検知処理について、図5を用いて説明する。図5は、レーダ制御部11による物体検知処理を示すフローチャートである。図5に示す様に、ステップ(S)100では、車速センサ3から得られた自車両の速度に基づいて、自車両の速度を判定する。具体的には、車速(V)が低速を示す判定値V1(例えば2km/時)以上か否かを判定する。
<Object detection processing>
Next, the object detection process performed by the radar control unit 11 will be described with reference to FIG. FIG. 5 is a flowchart showing object detection processing by the radar control unit 11. As shown in FIG. 5, in step (S) 100, the speed of the host vehicle is determined based on the speed of the host vehicle obtained from the vehicle speed sensor 3. Specifically, it is determined whether or not the vehicle speed (V) is equal to or higher than a determination value V1 (for example, 2 km / hour) indicating a low speed.
 ここで、車速(V)が判定値(V1)以上であると判定された場合には、ステップ110に進み、一方、車速(V)が判定値(V1)未満であると判定された場合には、ステップ170に進む。 If it is determined that the vehicle speed (V) is equal to or higher than the determination value (V1), the process proceeds to step 110. On the other hand, if it is determined that the vehicle speed (V) is less than the determination value (V1). Proceeds to step 170.
 ステップ110では、車速が高速であるので、電波を送信するモードを、高速に対応した高電力モードとし、高電力モードにて電波の送信を行う。つまり、図3に示した所定の各タイミングにて、通常電力送信を行う。具体的には、第1の周期(50ms)にて、近距離検知用の300MHz変調波の送信を行うとともに、第2の周期(100ms)にて、遠距離検知用の100MHz変調波の送信を行う。 In step 110, since the vehicle speed is high, the mode for transmitting radio waves is set to a high power mode corresponding to high speed, and radio waves are transmitted in the high power mode. That is, normal power transmission is performed at each predetermined timing shown in FIG. Specifically, a 300 MHz modulated wave for short distance detection is transmitted in the first period (50 ms), and a 100 MHz modulated wave for long distance detection is transmitted in the second period (100 ms). Do.
 そして、ステップ120では、300MHz変調波の送信に対するビート信号を取得する。続くステップ130では、前記ビート信号等に基づいて、上述の周知の手法によって、物体の距離及び速度を算出するとともに、物体の方位を算出する。 In step 120, a beat signal for transmission of a 300 MHz modulated wave is acquired. In the following step 130, the distance and speed of the object are calculated based on the beat signal and the like, and the direction of the object is calculated.
 また、ステップ140では、100MHz変調波の送信に対するビート信号を取得する。続くステップ150では、前記ビート信号等に基づいて、上述の周知の手法によって、物体の距離及び速度を算出するとともに、物体の方位を算出する。 In step 140, a beat signal for transmission of a 100 MHz modulated wave is acquired. In the subsequent step 150, the distance and speed of the object are calculated and the azimuth of the object is calculated based on the beat signal and the like by the well-known method described above.
 なお、前記ステップ120、130の処理と、前記ステップ140、150の処理とは、異なるマイコンによって並列に処理しても良いし、1つのマイコンで適宜時分割して処理を行ってもよい。 Note that the processing of the steps 120 and 130 and the processing of the steps 140 and 150 may be performed in parallel by different microcomputers, or may be performed in a time-sharing manner by one microcomputer as appropriate.
 そして、ステップ160では、高電力モードに対応した認識処理である第1フュージョン処理を行って、一旦本処理を終了する。なお、この第1フュージョン処理とは、後に詳述するように、300MHz変調波によって検出した物体の情報と、100MHz変調波によって検出した物体の情報とを総合的に把握して、検知した物体の情報の精度(即ち物体の認識の精度)を高めるための認識処理の一部である。 In step 160, the first fusion process, which is a recognition process corresponding to the high power mode, is performed, and the process is temporarily terminated. As will be described in detail later, the first fusion process comprehensively grasps information on an object detected by a 300 MHz modulated wave and information on an object detected by a 100 MHz modulated wave, and detects the detected object. This is a part of recognition processing for improving the accuracy of information (that is, the accuracy of object recognition).
 また、前記ステップ100で、車速(V)が判定値(V1)未満であると判定されて進むステップ170では、車速が低速(停止状態)であるので、電波を送信するモードを、低速に対応した低電力モードとし、低電力モードにて電波の送信を行う。 In Step 170, where the vehicle speed (V) is determined to be less than the determination value (V1) in Step 100 and the vehicle speed is low (stopped), the mode for transmitting radio waves corresponds to low speed. The low power mode is selected, and radio waves are transmitted in the low power mode.
 具体的には、前記図3に示した所定のタイミング(第3の周期:200ms)にて、近距離検知用の300MHz変調波の送信(即ち低出力電力送信)を行う。そして、ステップ180では、300MHz変調波の送信が実施されるタイミング(第3の周期)であるか否かを判定し、ここで肯定判断された場合には、ステップ190に進み、一方否定判断された場合には、ステップ210に進む。 Specifically, transmission of a 300 MHz modulated wave for short distance detection (that is, low output power transmission) is performed at the predetermined timing (third period: 200 ms) shown in FIG. In step 180, it is determined whether or not it is the timing (third period) at which transmission of a 300 MHz modulated wave is performed. If an affirmative determination is made here, the process proceeds to step 190, while a negative determination is made. If yes, go to Step 210.
 ステップ190では、実際に300MHz変調波の送信が実施されたので、当該300MHz変調波の送信に対するビート信号を取得する。続くステップ200では、前記ビート信号等に基づいて、上述の周知の手法によって、物体の距離及び速度を算出するとともに、物体の方位を算出する。 In step 190, since a 300 MHz modulated wave is actually transmitted, a beat signal for the transmission of the 300 MHz modulated wave is acquired. In the subsequent step 200, the distance and speed of the object are calculated and the azimuth of the object is calculated based on the beat signal and the like by the known method described above.
 一方、ステップ210では、300MHz変調波の送信が実施されるタイミングではなく、当然ながら、300MHz変調波の送信がなされないので、近距離の物体の距離、速度、方位の情報が得られない。 On the other hand, in step 210, since the 300 MHz modulated wave is not transmitted, not at the timing when the 300 MHz modulated wave is transmitted, it is not possible to obtain information on the distance, speed, and direction of a near object.
 よって、ここでは、前回の処理によって得られた物体の情報(距離、速度、方位の前回値)を、今回の物体の情報とする処理を行う。そして、ステップ220では、低電圧モードに対応した認識処理である、後述する第2フュージョン処理を行って、一旦本処理を終了する。 Therefore, here, the information of the object (the previous value of distance, speed, and direction) obtained by the previous process is used as the information of the current object. In step 220, a second fusion process, which will be described later, which is a recognition process corresponding to the low voltage mode, is performed, and the process is temporarily terminated.
 <フュージョン処理>
 以下、フュージョン処理について説明する。まず、図6に基づいて、高電圧モードに対応した第1フュージョン処理について説明する。図6は、レーダ制御部11による第1フュージョン処理を示すフローチャートである。図6のステップ300では、車速(V)が高速を示す判定値(V1)以上になってからの経過時間(T)が、所定の判定時間(T1)未満か否かを判定する。即ち、車速が低速から高速に変化してから、あまり時間が経過していないかどうかを判定する。ここで、肯定判断されるとステップ310に進み、一方否定判断されるとステップ320に進む。
<Fusion processing>
Hereinafter, the fusion process will be described. First, the first fusion process corresponding to the high voltage mode will be described with reference to FIG. FIG. 6 is a flowchart showing the first fusion process by the radar control unit 11. In step 300 of FIG. 6, it is determined whether or not the elapsed time (T) after the vehicle speed (V) is equal to or higher than the determination value (V1) indicating the high speed is less than a predetermined determination time (T1). That is, it is determined whether or not much time has passed since the vehicle speed changed from low speed to high speed. If an affirmative determination is made here, the process proceeds to step 310, while if a negative determination is made, the process proceeds to step 320.
 ステップ310では、車速が低速から高速に変化してからあまり時間が経過していないので、遠距離の物体の検知した情報の信頼性が低いと判断し、自車両の周囲の物体の情報として、短距離用電波である300MHz変調波によって検知された物体の情報を採用する。そして、この採用した物体の情報を外部機器(例えば車両制御ECU5)に送信し、一旦本処理を終了する。 In step 310, since not much time has passed since the vehicle speed changed from low speed to high speed, it is determined that the reliability of the information detected by the object at a long distance is low, and the information about the object around the host vehicle is Information on an object detected by a 300 MHz modulated wave that is a short-range radio wave is employed. Then, the information on the adopted object is transmitted to an external device (for example, the vehicle control ECU 5), and this process is temporarily terminated.
 一方、ステップ320では、車速が低速から高速に変化してから十分な時間が経過したので、短距離用電波である300MHz変調波によって検知された物体の情報と、遠距離用電波である100MHz変調波によって検知された物体の情報とを総合的に判断して、物体の情報を把握する。 On the other hand, in step 320, since sufficient time has elapsed since the vehicle speed has changed from low speed to high speed, information on the object detected by the 300 MHz modulated wave, which is a short-range radio wave, and 100 MHz modulation, which is a long-distance radio wave. The object information detected by the waves is comprehensively determined to grasp the object information.
 つまり、物体の距離、速度、方位を重み付けして平均した値(重み付け平均)を求める。具体的には、物体との衝突時間が短い場合は、300MHz変調で検知された物体情報の重み付けを大きくするようにして、重み付け平均を求め、一旦本処理を終了する。 That is, the weighted average of the distance, speed, and direction of the object is obtained (weighted average). Specifically, when the collision time with the object is short, the weighting of the object information detected by the 300 MHz modulation is increased to obtain a weighted average, and this processing is once ended.
 そして、この重み付け平均結果を用いて、更に物体を確定する処理(即ち認識精度を上げる処理)を行い、その確定した物体の情報を、所定の送信タイミング(例えば第1の周期と同様な50msの周期)で外部機器に送信して、一旦本処理を終了する。 Then, using this weighted average result, a process for further determining an object (that is, a process for increasing the recognition accuracy) is performed, and information on the determined object is stored at a predetermined transmission timing (for example, 50 ms as in the first cycle). (Cycle) to the external device, and the process is temporarily terminated.
 なお、遠距離用電波である100MHz変調波によって物体が検知されなかった場合には、短距離用電波である300MHz変調波によって検知された物体の情報を、フュージョン処理された結果として採用する。 When an object is not detected by a 100 MHz modulated wave that is a long-distance radio wave, information on the object detected by a 300 MHz modulated wave that is a short-distance radio wave is used as a result of the fusion process.
 また、前記フュージョン処理後の物体を確定する処理は、例えば2002-22832号公報等に記載の様に周知であるので詳しい説明は省略するが、例えば物体が自車と同一の走行レーン上に存在する確率、物体が停止物体であるか移動物体であるかの認識、物体の認識状態が安定しているかどうかの判定、物体の前回位置を基にして得た今回の推定位置と今回の認識位置との偏差、などを考慮して、その物体の認識精度を高める。そして、その認識精度の高い物体の情報を、物標(ターゲット)の情報として外部装置に出力する。 In addition, the process for determining the object after the fusion process is well known as described in, for example, Japanese Patent Laid-Open No. 2002-22832, and thus detailed description is omitted. For example, the object exists on the same traveling lane as the own vehicle. Recognition, whether the object is a stationary object or a moving object, whether the recognition status of the object is stable, the current estimated position obtained based on the previous position of the object and the current recognized position The accuracy of the recognition of the object is increased in consideration of the deviation. Then, the information of the object with high recognition accuracy is output to the external device as target (target) information.
 一方、低電圧モードに対応した第2フュージョン処理では、実際に、短距離用電波である300MHz変調波によって検知された物体の情報がある場合には、その物体の情報を、フュージョン処理された結果として採用する。 On the other hand, in the second fusion processing corresponding to the low voltage mode, when there is information on an object actually detected by a 300 MHz modulated wave that is a short-range radio wave, the information on the object is the result of the fusion processing. Adopt as.
 また、300MHz変調波の送信がなされない場合には、前回得られた物体の情報を今回の物体の情報として、同様に、フュージョン処理された結果として採用する。その後、前記第1フュージョン処理と同様に、物体を確定する処理を行い、その結果を、所定の送信タイミング(例えば第1の周期と同様な50msの周期)で外部装置に送信する。 Also, when the 300 MHz modulated wave is not transmitted, the information on the object obtained last time is adopted as the information on the current object as the result of the fusion processing. Thereafter, similarly to the first fusion process, a process for determining an object is performed, and the result is transmitted to an external device at a predetermined transmission timing (for example, a period of 50 ms similar to the first period).
 次に、本実施形態例の効果について説明する。本実施形態例では、車速センサ3によって得られた車速に応じて、レーダ装置1の送信出力を、高速の場合に応じた高電力モードと低速の場合に応じた低電力モードに切り換える。 Next, the effect of this embodiment will be described. In the present embodiment, the transmission output of the radar apparatus 1 is switched between a high power mode according to the high speed mode and a low power mode according to the low speed mode according to the vehicle speed obtained by the vehicle speed sensor 3.
 そして、高電力モードでは、遠距離用の100MHz変調波によって得られた物体の情報と近距離用の300MHz変調波によって得られた物体の情報とに基づいて、50msの認識タイミングで、物体を認識するための処理(第1フュージョン処理)を行う。 In the high power mode, the object is recognized at the recognition timing of 50 ms based on the object information obtained by the 100 MHz modulated wave for long distance and the object information obtained by the 300 MHz modulated wave for short distance. For this purpose (first fusion process).
 一方、低電力モードでは、100MHz変調波の送信を停止するとともに、300MHz変調波の送信頻度を低減する。そして、300MHz変調波の送信頻度の低減によって、300MHz変調波による物体の情報が得られない場合には、直近に得られた物体の情報を用いて、高電力モードと同様な認識タイミングで、物体を認識するための処理(第2フュージョン処理)を行う。なお、この第2フュージョン処理では、100MHz変調波の物体の情報は(過去の情報も含め)用いない。 On the other hand, in the low power mode, the transmission of the 100 MHz modulated wave is stopped and the transmission frequency of the 300 MHz modulated wave is reduced. If the object information by the 300 MHz modulated wave cannot be obtained due to the reduction of the transmission frequency of the 300 MHz modulated wave, the object information obtained at the latest time is used at the same recognition timing as the high power mode. A process for recognizing (second fusion process) is performed. In the second fusion process, information on an object with a 100 MHz modulated wave (including past information) is not used.
 つまり、本実施形態例では、低速時の低電力モードにおいて、送信電力の低減のために電波の送信頻度を低減した場合、実際に300MHz変調波による物体の情報が得られないときでも、直近に得られた物体の情報を用いることにより、高電力モードと同様な認識タイミングで物体のフュージョン処理を行う。 That is, in the present embodiment, when the frequency of radio wave transmission is reduced to reduce transmission power in the low-power mode at low speed, even when information on an object using a 300 MHz modulated wave cannot actually be obtained, By using the obtained object information, the object fusion process is performed at the same recognition timing as in the high power mode.
 よって、そのフュージョン処理を含む認識処理によって確定された物体の情報を、車両制御ECU5に所定の送信タイミングで出力することができるので、車両制御ECU5では、レーダ制御部11から得られた物体の情報に基づいて、各種の車両制御などを行うことができる。 Therefore, since the object information determined by the recognition process including the fusion process can be output to the vehicle control ECU 5 at a predetermined transmission timing, the vehicle control ECU 5 obtains the object information obtained from the radar control unit 11. Based on the above, various vehicle controls can be performed.
 これにより、本実施形態例では、低速時において、レーダ装置1による周囲への電波の影響の低減と周囲の検知した物体の情報の(車両制御ECU5への)提供との両立が可能であるという顕著な効果を奏する。 As a result, in this embodiment, at the time of low speed, it is possible to reduce both the influence of the radio wave on the surroundings by the radar device 1 and to provide information on the surrounding detected objects (to the vehicle control ECU 5). Has a remarkable effect.
 また、本実施形態例では、低電力モードから高電力モードに切り換える場合には、切換タイミングから所定の待機時間が経過するまでは、遠距離用の100MHz変調波によって得られた物体の情報を用いない。 In this embodiment, when switching from the low power mode to the high power mode, the object information obtained by the 100 MHz modulated wave for long distance is used until a predetermined standby time elapses from the switching timing. Not in.
 これによって、低電力モードから高電力モードに切り換えた直後に、遠距離用の100MHz変調波によって得られた物体の情報を用いないので認識処理を行うので、物体を認識する精度が向上するという利点がある。 Thus, immediately after switching from the low power mode to the high power mode, the object recognition information is obtained because the object information obtained by the 100 MHz modulated wave for long distance is not used, so that the object recognition accuracy is improved. There is.
<請求の範囲と実施形態例との関係>
 請求の範囲の“モード切換部”は、レーダ制御部11の電子制御装置21に記憶されている、ステップ100、110、170を実行するコンピュータプログラムにより構成され得る。また、請求の範囲の“高電力モード制御部”及び“低電力モード制御部”も、それぞれのモードを実行する、レーダ制御部11の電子制御装置21に記憶されているコンピュータプログラムにより構成され得る。
<Relationship between Claims and Embodiment>
The “mode switching unit” in the claims can be configured by a computer program that executes steps 100, 110, and 170 stored in the electronic control device 21 of the radar control unit 11. Further, the “high power mode control unit” and the “low power mode control unit” in the claims can also be configured by a computer program stored in the electronic control device 21 of the radar control unit 11 that executes each mode. .
 尚、本発明は前記実施形態例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment examples, and it goes without saying that the present invention can be implemented in various modes without departing from the present invention.
 例えば、
 (1)前記実施形態例では、低電力モードにて、遠距離用電波の送信を停止したが、遠距離用電波の送信頻度(回数)を低減してもよい。これにより、所定期間における(総量としての)電波の送信エネルギーを低減することができる。
For example,
(1) In the above embodiment, the transmission of the long-distance radio waves is stopped in the low power mode. However, the transmission frequency (number of times) of the long-distance radio waves may be reduced. Thereby, the transmission energy of the radio wave (as a total amount) in a predetermined period can be reduced.
 (2)また、前記実施形態例のステップ100の様に、単一の判定値(速度閾値:V1)ではなく、低電力モードに切り換えるための速度閾値(V2)と、高電力モードに切り換えるための速度閾値(V3)とに差を設けることが望ましい(V2<V3に設定できる)。つまり、高電力モードから低電力モードに切り換えるための速度閾値と、低電力モードから高電力モードに切り換えるための速度閾値とに差を設けることにより、速度のばたつきによる前記2つのモードへの切り換えが頻発すること(チャタリング)を防止できる。 (2) Further, as in step 100 of the above-described embodiment, not the single determination value (speed threshold value: V1) but the speed threshold value (V2) for switching to the low power mode and the switching to the high power mode. It is desirable to provide a difference from the speed threshold value (V3) of (can be set to V2 <V3). In other words, by providing a difference between the speed threshold for switching from the high power mode to the low power mode and the speed threshold for switching from the low power mode to the high power mode, switching between the two modes due to speed fluctuations is possible. Frequent occurrence (chattering) can be prevented.
 (3)更に、遠距離用のレーダ装置として、例えばFMCWレーダを用い、遠距離用のレーダ装置として、例えば、物体の方向のみを検知できるモノパルスレーダを用いることもできる。 (3) Further, for example, an FMCW radar can be used as a long-range radar device, and a monopulse radar that can detect only the direction of an object can be used as a long-range radar device, for example.
 (4)また、前記実施形態例では、レーダ制御部11(レーダ制御装置)について述べたが、その制御内容については、レーダ装置1を制御するプログラムやそのプログラムを記憶している記録媒体にも適用できる。 (4) In the above-described embodiment, the radar control unit 11 (radar control device) has been described. However, the contents of the control are also included in a program for controlling the radar device 1 and a recording medium storing the program. Applicable.
 この記録媒体としては、マイクロコンピュータとして構成される電子制御装置、マイクロチップ(半導体記憶装置)、フレキシブルディスク、ハードディスク、光ディスク等の各種の記録媒体が挙げられる。つまり、上述したレーダ装置1を制御するプログラムを記憶したものであれば、特に限定はない。 Examples of the recording medium include various recording media such as an electronic control device configured as a microcomputer, a microchip (semiconductor storage device), a flexible disk, a hard disk, and an optical disk. That is, there is no particular limitation as long as it stores a program for controlling the radar apparatus 1 described above.
 1…レーダ装置
 3…車速センサ
 5…車両制御ECU
 7…アンテナ部
 11…レーダ制御部
 17…専用集積回路
 19…高周波回路
 
DESCRIPTION OF SYMBOLS 1 ... Radar apparatus 3 ... Vehicle speed sensor 5 ... Vehicle control ECU
7 ... Antenna unit 11 ... Radar control unit 17 ... Dedicated integrated circuit 19 ... High frequency circuit

Claims (12)

  1.  レーダ装置の電波の送信出力を調節する電力モードとして、前記送信出力が大きな高電力モードと該高電力モードよりも送信出力の小さな低電力モードとを有し、当該車両の速度を検出する車速検出装置によって得られた車速に応じて、車速が所定値以上の高速の場合には前記高電力モードに設定し、車速が所定値未満の低速の場合には前記低電力モードに設定するモード切換部を備えたレーダ制御装置において、
     前記高電力モードでは、所定の送信タイミングで電波を送信するとともに、該送信した電波の反射波を受信した受信データに基づいて、所定の認識タイミングで車両周辺物体を認識するための処理を行う高電力モード制御部と、
     前記低電力モードでは、前記高電力モードに比べて、前記電波の送信頻度を低減するとともに、前記所定の認識タイミングで車両周辺物体を認識するための処理を行う場合に、前記送信頻度の低減によって前記受信データが得られないときには過去の受信データを用いて、前記物体を認識するための処理を行う低電力モード制御部と、
     を備えたことを特徴とするレーダ制御装置。
    Vehicle speed detection for detecting the speed of the vehicle, which has a high power mode in which the transmission output is large and a low power mode in which the transmission output is smaller than that of the high power mode as power modes for adjusting the radio wave transmission output of the radar apparatus A mode switching unit that sets the high power mode when the vehicle speed is higher than a predetermined value according to the vehicle speed obtained by the device, and sets the low power mode when the vehicle speed is lower than the predetermined value. In a radar control device comprising:
    In the high power mode, a radio wave is transmitted at a predetermined transmission timing, and processing for recognizing an object around the vehicle at a predetermined recognition timing is performed based on reception data received from a reflected wave of the transmitted radio wave. A power mode control unit;
    In the low power mode, when the processing for recognizing a vehicle peripheral object at the predetermined recognition timing is performed as compared with the high power mode, the transmission frequency of the radio wave is reduced. A low power mode control unit that performs processing for recognizing the object using past received data when the received data cannot be obtained;
    A radar control device comprising:
  2.  前記高電力モードでは、遠距離の物体を探知する遠距離用電波を送信するとともに、前記遠距離よりは近距離の物体を探知する近距離用電波を送信し、前記低電力モードでは、前記遠距離用電波の送信頻度を前記高電力モードよりは低減し、若しくは前記遠距離用電波の送信を停止するとともに、前記近距離用電波の送信頻度を低減することを特徴とする請求項1に記載のレーダ制御装置。 In the high-power mode, a long-distance radio wave for detecting a long-distance object is transmitted, and a short-distance radio wave for detecting a short-distance object than the long-distance object is transmitted. In the low-power mode, the long-distance radio wave is detected. 2. The transmission frequency of the short-distance radio wave is reduced while the transmission frequency of the short-distance radio wave is stopped while the transmission frequency of the long-distance radio wave is reduced as compared with the high power mode. Radar control device.
  3.  前記低電力モードにおいて、前記所定の認識タイミングにて前記物体を認識する処理を行う場合に、前記近距離用電波の受信データが得られないときには過去の近距離用電波の受信データを用いることを特徴とする請求項2に記載のレーダ制御装置。 In the low power mode, when performing the process of recognizing the object at the predetermined recognition timing, if the reception data of the short distance radio waves cannot be obtained, the past reception data of the short distance radio waves is used. The radar control apparatus according to claim 2, wherein
  4.  前記過去の受信データとして、物体の認識に使用した直近の値を使用することを特徴とする請求項1乃至請求項3のいずれか1項に記載のレーダ制御装置。 The radar control device according to any one of claims 1 to 3, wherein a latest value used for object recognition is used as the past received data.
  5.  前記低電力モードから前記高電力モードに切り換える場合には、切換タイミングから所定の待機時間が経過するまでは、前記遠距離用電波によって得られた受信データを用いないことを特徴とする請求項2乃至請求項4のいずれか1項に記載のレーダ制御装置。 3. When switching from the low power mode to the high power mode, reception data obtained by the long-distance radio waves is not used until a predetermined standby time elapses from the switching timing. The radar control device according to claim 1.
  6.  前記低電力モードに切り換えるための速度閾値と、前記高電力モードに切り換えるための速度閾値とに差を設けることを特徴とする請求項1乃至請求項5のいずれか1項に記載のレーダ制御装置。 The radar control device according to any one of claims 1 to 5, wherein a difference is provided between a speed threshold for switching to the low power mode and a speed threshold for switching to the high power mode. .
  7.  当該車両の速度を検出する車速検出装置によって得られた車速に応じて、車速が所定値以上の高速の場合には高電力モードに設定し、車速が所定値未満の低速の場合には低電力モードに設定するレーダ制御方法において、
     前記高電力モードでは、所定の送信タイミングで電波を送信するとともに、該送信した電波の反射波を受信した受信データに基づいて、所定の認識タイミングで車両周辺物体を認識するための処理を行い、
     前記低電力モードでは、前記高電力モードに比べて、前記電波の送信頻度を低減するとともに、前記所定の認識タイミングで車両周辺物体を認識するための処理を行う場合に、前記送信頻度の低減によって前記受信データが得られないときには過去の受信データを用いて、前記物体を認識するための処理を行う、
     ことを特徴とするレーダ制御方法。
    According to the vehicle speed obtained by the vehicle speed detection device that detects the speed of the vehicle, the vehicle is set to the high power mode when the vehicle speed is a high speed that is equal to or higher than a predetermined value, and low power when the vehicle speed is a low speed that is less than the predetermined value. In the radar control method to set the mode,
    In the high power mode, a radio wave is transmitted at a predetermined transmission timing, and a process for recognizing an object around the vehicle at a predetermined recognition timing is performed based on reception data received from a reflected wave of the transmitted radio wave.
    In the low power mode, when the processing for recognizing a vehicle peripheral object at the predetermined recognition timing is performed as compared with the high power mode, the transmission frequency of the radio wave is reduced. When the received data cannot be obtained, processing for recognizing the object is performed using past received data.
    A radar control method characterized by the above.
  8.  前記高電力モードでは、遠距離の物体を探知する遠距離用電波を送信するとともに、前記遠距離よりは近距離の物体を探知する近距離用電波を送信し、前記低電力モードでは、前記遠距離用電波の送信頻度を前記高電力モードよりは低減し、若しくは前記遠距離用電波の送信を停止するとともに、前記近距離用電波の送信頻度を低減することを特徴とする請求項7に記載のレーダ制御方法。 In the high-power mode, a long-distance radio wave for detecting a long-distance object is transmitted, and a short-distance radio wave for detecting a short-distance object than the long-distance object is transmitted. In the low-power mode, the long-distance radio wave is detected. The transmission frequency of the short-distance radio wave is reduced while the transmission frequency of the short-distance radio wave is stopped while the transmission frequency of the long-distance radio wave is reduced as compared with the high power mode. Radar control method.
  9.  前記低電力モードにおいて、前記所定の認識タイミングにて前記物体を認識する処理を行う場合に、前記近距離用電波の受信データが得られないときには過去の近距離用電波の受信データを用いることを特徴とする請求項8に記載のレーダ制御方法。 In the low power mode, when performing the process of recognizing the object at the predetermined recognition timing, if the reception data of the short distance radio waves cannot be obtained, the past reception data of the short distance radio waves is used. The radar control method according to claim 8, wherein:
  10.  前記過去の受信データとして、物体の認識に使用した直近の値を使用することを特徴とする請求項7乃至請求項9のいずれか1項に記載のレーダ制御方法。 The radar control method according to any one of claims 7 to 9, wherein a latest value used for object recognition is used as the past received data.
  11.  前記低電力モードから前記高電力モードに切り換える場合には、切換タイミングから所定の待機時間が経過するまでは、前記遠距離用電波によって得られた受信データを用いないことを特徴とする請求項8乃至請求項10のいずれか1項に記載のレーダ制御方法。 9. When switching from the low power mode to the high power mode, reception data obtained by the long-distance radio waves is not used until a predetermined standby time elapses from the switching timing. The radar control method according to any one of claims 10 to 10.
  12.  前記低電力モードに切り換えるための速度閾値と、前記高電力モードに切り換えるための速度閾値とに差を設けることを特徴とする請求項7乃至請求項11のいずれか1項に記載のレーダ制御方法。 The radar control method according to any one of claims 7 to 11, wherein a difference is provided between a speed threshold for switching to the low power mode and a speed threshold for switching to the high power mode. .
PCT/JP2013/061298 2012-04-16 2013-04-16 Radar control device and radar control method WO2013157546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-093159 2012-04-16
JP2012093159A JP2013221838A (en) 2012-04-16 2012-04-16 Radar control device

Publications (1)

Publication Number Publication Date
WO2013157546A1 true WO2013157546A1 (en) 2013-10-24

Family

ID=49383502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061298 WO2013157546A1 (en) 2012-04-16 2013-04-16 Radar control device and radar control method

Country Status (2)

Country Link
JP (1) JP2013221838A (en)
WO (1) WO2013157546A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661406A (en) * 2019-04-10 2021-11-16 株式会社电装 Radar apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032899A (en) * 2000-07-17 2002-01-31 Honda Motor Co Ltd Object detecting device for moving body
JP2006046962A (en) * 2004-07-30 2006-02-16 Toyota Motor Corp Target detection device
JP2009019914A (en) * 2007-07-10 2009-01-29 Toyota Motor Corp Object detecting device
JP2010256027A (en) * 2009-04-21 2010-11-11 Mitsubishi Electric Corp On-board radar system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002032899A (en) * 2000-07-17 2002-01-31 Honda Motor Co Ltd Object detecting device for moving body
JP2006046962A (en) * 2004-07-30 2006-02-16 Toyota Motor Corp Target detection device
JP2009019914A (en) * 2007-07-10 2009-01-29 Toyota Motor Corp Object detecting device
JP2010256027A (en) * 2009-04-21 2010-11-11 Mitsubishi Electric Corp On-board radar system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661406A (en) * 2019-04-10 2021-11-16 株式会社电装 Radar apparatus
CN113661406B (en) * 2019-04-10 2024-06-07 株式会社电装 Radar apparatus

Also Published As

Publication number Publication date
JP2013221838A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
US9709674B2 (en) Radar device and signal processing method
US6812882B2 (en) Stationary on-road object detection method for use with radar
US7642950B2 (en) Radar device with transmission output control and transmission output control function abnormality determining means
US7737882B2 (en) Radar device
US11754668B2 (en) Detection method, detection apparatus, and system
US8130138B2 (en) Object detecting apparatus
EP1602937B1 (en) FMCW radar
US20210239824A1 (en) Radar signal processing method and apparatus
US9874634B1 (en) Radar apparatus
US10823846B2 (en) Object detection method and object detection device
JP4931956B2 (en) In-vehicle radio wave radar system
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
JP2010038704A (en) Signal processing apparatus, radar device, and signal processing method
JP2014227000A (en) Vehicle control device, method and program
JP2004069693A (en) Radio wave radar system and inter-vehicle distance controller
CN107356919A (en) The radar and its length distance measurement method of length distance measurement can be carried out simultaneously
US7973700B2 (en) Dual transmitting antenna system
US7271761B2 (en) Distance calculating method and system
JP2008268072A (en) On-vehicle radar
JP2013221893A (en) Radar control device
JP2009058316A (en) Radar device, object detection method, and vehicle
JP2008107158A (en) On-vehicle radar device
WO2013157546A1 (en) Radar control device and radar control method
JP5284035B2 (en) Radar equipment
US10520585B2 (en) Radar device and signal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778313

Country of ref document: EP

Kind code of ref document: A1