WO2013157167A1 - Stereoscopic display device - Google Patents

Stereoscopic display device Download PDF

Info

Publication number
WO2013157167A1
WO2013157167A1 PCT/JP2012/082991 JP2012082991W WO2013157167A1 WO 2013157167 A1 WO2013157167 A1 WO 2013157167A1 JP 2012082991 W JP2012082991 W JP 2012082991W WO 2013157167 A1 WO2013157167 A1 WO 2013157167A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eye image
pixel
display device
sub
Prior art date
Application number
PCT/JP2012/082991
Other languages
French (fr)
Japanese (ja)
Inventor
昭憲 林
Original Assignee
Eizo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eizo株式会社 filed Critical Eizo株式会社
Publication of WO2013157167A1 publication Critical patent/WO2013157167A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses

Definitions

  • the present invention relates to a stereoscopic display device, and to a technique of a parallax division type stereoscopic display device.
  • the stereoscopic display device can display a stereoscopic image by displaying a left eye image and a right eye image.
  • Various methods for displaying the left-eye image and the right-eye image have been realized, but they are roughly classified into a space division method and a time division method.
  • a stereoscopic display device using a parallax division method which is a kind of space division method, will be described.
  • a lenticular lens or a parallax barrier is arranged on the front surface of the liquid crystal panel.
  • the left eye image and the right eye image displayed from the liquid crystal panel are imaged at the divided image forming points.
  • the viewer can see a three-dimensional image. This position of the viewer is called a normal viewing position.
  • Patent Document 1 discloses a parallax division type stereoscopic display device using a lenticular lens.
  • a peak point of illuminance is formed for each interval between the left and right eyes.
  • the image point of the left eye image and the image point of the right eye image are alternately formed.
  • This peak point will be described with reference to FIG. FIG. 13 shows that the image point RIp of the right eye image and the image point LIp of the left eye image are alternately formed on a plane parallel to the display surface of the stereoscopic display device 50.
  • the depth is reversed.
  • the image is recognized by the viewer.
  • a position where the left eye image and the right eye image are reversed and incident on the eyes of the viewer is referred to as a reverse viewing position.
  • the stereoscopic image to be displayed is a stereoscopic image that the viewer sees for the first time, there is a problem that the stereoscopic image with the reversed depth is recognized as a correct stereoscopic image without noticing that the stereoscopic image is in the reverse viewing position.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a stereoscopic display device that allows a viewer to notice that he / she is not at the normal viewing position.
  • the present invention has the following configuration. That is, the present invention provides a first display pixel that displays a left-eye image, a second display pixel that displays a right-eye image, and another image different from the left-eye image and the right-eye image.
  • a liquid crystal panel including a third display pixel to be displayed as a third display image, and formed by dividing an image formation point of each image displayed from the first display pixel, the second display pixel, and the third display pixel
  • An imaging point splitter that forms the imaging points of the left eye image, the right eye image, and the third display image in order, and the left eye image and Forming the image points of the right-eye image next to each other, and forming the image points of the third display image with the image points of the left-eye image and the right-eye image adjacent to each other.
  • the liquid crystal panel includes a first display pixel, a second display pixel, and a third display pixel.
  • An image for the left eye is displayed from the first display pixel.
  • An image for the right eye is displayed from the second display pixel.
  • From the third display pixel another image different from the left-eye image and the right-eye image is displayed as the third display image.
  • the image formation point divider divides the image formation points of each image displayed from the first display pixel, the second display pixel, and the third display pixel and sequentially forms them.
  • the image points of the left eye image and the right eye image are formed adjacent to each other.
  • the image formation point of the third display image is formed across the image formation points of the adjacent left-eye image and right-eye image.
  • the image formation point of the third display image is formed outside the image formation point of the adjacent left-eye image and right-eye image.
  • the viewer sees another image at the image formation point of the third display image that is neither the left-eye image nor the right-eye image, with the left or right eye at a position other than the normal viewing position.
  • the viewer feels uncomfortable with the displayed image.
  • the viewer cannot see the stereoscopic image, he / she notices that the viewer is not in the normal viewing position. In this way, the viewer can be made aware that he is not in the normal viewing position. Further, since the viewer does not see the image for the right eye with the left eye and the image for the left eye with the right eye, reverse vision can be prevented.
  • the imaging point divider is a lenticular lens disposed in front of the liquid crystal panel. If the imaging point divider is a lenticular lens disposed on the front surface of the liquid crystal panel, the images displayed from the first display pixel and the second display pixel are enlarged, thereby reducing a drop in luminance due to the pixel interval. Can do.
  • the liquid crystal panel may include a display pixel having the first display pixel, the second display pixel, and the third display pixel as sub-pixels. By having the first display pixel, the second display pixel, and the third display pixel as sub-pixels, resolution reduction can be prevented.
  • the lens width of the lenticular lens is preferably longer than twice the width of the sub-pixel and shorter than 3 times. Since the lens width is longer than twice the width of the sub-pixel and shorter than three times, the sub-pixels that are the first display pixel and the second display pixel can be suitably covered with the lens.
  • the third display image is preferably a black image. If the black image is displayed as the third display image, nothing is displayed at the imaging point of the third display pixel. As a result, when the viewer is not in the normal viewing position, only a dark planar image can be seen, so that it can be noticed that the viewer is not in the normal viewing position. *
  • the third display image is preferably a white image. If the white image is displayed as the third display image, a bright white image is displayed at the image point of the third display pixel. As a result, when the viewer is not at the normal viewing position, he / she can see that he / she is not at the normal viewing position because he / she sees a bright planar image.
  • the present invention it is possible to provide a stereoscopic display device that allows a viewer to notice that the user is not in the normal viewing position.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a stereoscopic display device according to Embodiment 1.
  • FIG. 2 is a perspective view illustrating a pixel and a lenticular lens according to Example 1.
  • FIG. 2 is a cross-sectional view illustrating a pixel and a lenticular lens according to Example 1.
  • FIG. 6 is an explanatory diagram showing the progress of light emitted from a pixel according to Example 1.
  • FIG. 6 is an explanatory diagram illustrating a positional relationship between a stereoscopic display device according to Example 1 and a viewer. It is explanatory drawing which shows the normal viewing position and missighting position which concern on Example 1.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a stereoscopic display device according to Embodiment 1.
  • FIG. 2 is a perspective view illustrating a pixel and a lenticular lens according to Example 1.
  • FIG. 2 is a cross-sectional view illustrating a pixel
  • FIG. 6 is an illuminance distribution diagram of the stereoscopic display device according to Embodiment 1.
  • FIG. FIG. 3 is a luminance distribution diagram when pixels are turned on according to the first embodiment.
  • 6 is a block diagram illustrating a schematic configuration of a stereoscopic display device according to Embodiment 2.
  • FIG. 6 is a perspective view illustrating a pixel and a lenticular lens according to Example 2.
  • FIG. FIG. 6 is an explanatory diagram showing the progress of light emitted from a pixel according to Example 2. It is explanatory drawing which shows advancing of the light radiate
  • FIG. 1 is a block diagram illustrating a schematic configuration of a stereoscopic display device according to the first embodiment.
  • FIG. 2 is a perspective view illustrating pixels and a lenticular lens according to the first embodiment.
  • the display surface side of the liquid crystal panel is the front, and the opposite side is the rear.
  • a stereoscopic display device 1 includes a liquid crystal panel 2 that displays a left-eye image and a right-eye image, a backlight 3 that emits light from behind the liquid crystal panel 2, and a backlight.
  • a backlight drive unit 4 that drives and controls the light 3
  • a video signal processing unit 5 that performs signal processing on a stereoscopic video signal input to the stereoscopic display device 1, and a liquid crystal panel 2 based on the processed stereoscopic video signal
  • a memory 9 in which data is stored.
  • the liquid crystal panel 2 adopts an active matrix type using thin film transistors (TFTs) in this embodiment.
  • TFTs thin film transistors
  • a plurality of pixels 6 are arranged in a two-dimensional matrix on the liquid crystal panel 2.
  • Each pixel 6 has three sub-pixels 10 to 12.
  • Each of the subpixels 10 to 12 is individually driven.
  • a glass sheet 13 for protecting the liquid crystal is disposed on the front surface of the pixel 6.
  • An imaging point divider 8 is disposed on the front surface of the glass sheet 13.
  • the liquid crystal panel 2 is a monochrome display panel including no color filter or a monochrome display panel including a single color filter.
  • the backlight 3 is disposed behind the liquid crystal panel 2.
  • a cold cathode fluorescent lamp (CCFL) or a light emitting diode (LED) is adopted.
  • the light emitted from the backlight 3 passes through the liquid crystal panel 2.
  • the backlight drive unit 4 controls the light amount of the backlight 3 to make the stereoscopic image displayed from the liquid crystal panel 2 have appropriate brightness.
  • the video signal processing unit 5 performs standard conversion, scaling and color correction of the input stereoscopic video signal.
  • the input stereoscopic video signal for one frame includes a left eye image and a right eye image.
  • the memory 9 stores a third image different from the left eye image and the right eye image included in the stereoscopic video signal.
  • the video signal processing unit 5 reads out the third image stored in the memory 9 and outputs it to the liquid crystal driving unit 7 together with the left-eye image and the right-eye image subjected to signal processing.
  • the video signal processing unit 5 is composed of a microprocessor.
  • the liquid crystal driving unit 7 drives the liquid crystal provided in each pixel 6 of the liquid crystal panel 2 in accordance with input image data.
  • the liquid crystal driving unit 7 includes a sub-pixel driving unit 14 that controls a voltage applied to the liquid crystal of each of the sub-pixels 10 to 12. That is, the voltage applied to the liquid crystal of each of the sub-pixels 10 to 12 is individually controlled according to the left eye image, the right eye image, and the third image sent from the video signal processing unit 5. Since the light transmission amount is controlled in each of the sub-pixels 10 to 12, the left eye image, the right eye image, and the third image are displayed for each pixel 6.
  • FIG. 3 is a cross-sectional view showing a pixel and a lenticular lens
  • FIG. 4 is an explanatory view showing the progress of light emitted from the pixel.
  • a lenticular lens 15 is employed as the imaging point divider 8.
  • the lenticular lens 15 includes a sheet portion 16 and a lens 17 serving as a base material.
  • the convex portion 17a of the lens 17 is disposed on the pixel 6 side.
  • the lens 17 is a cylindrical lens that extends in the vertical direction of the liquid crystal panel 2, and is sequentially arranged in the horizontal direction of the liquid crystal panel 2.
  • the sub pixel 10 displays a right eye image
  • the sub pixel 12 displays a left eye image
  • the sub pixel 11 disposed between the sub pixel 10 and the sub pixel 12 displays a third image.
  • the third image a white image or a black image is displayed in the first embodiment, but an image other than the white image or the black image may be used as long as the image is different from the right eye image and the left eye image.
  • Both ends of the lens 17 are disposed on the sub-pixel 11 that displays the third image. That is, the lens 17 is disposed so as to straddle the sub-pixels 10 and 12 disposed between the sub-pixel 11 and the sub-pixel 11 disposed next thereto.
  • the lens pitch Pt1 of the lens 17 is the same as the pixel pitch Pt2 of the pixel 6.
  • the lens pitch Pt1 may be smaller than the pixel pitch Pt2. More preferably, the lens pitch Pt1 is not less than 2 times and not more than 3 times the subpixel pitch Pt3 of the subpixels 10 to 12.
  • the light LgR that has passed through the sub-pixel 10 is refracted in the process of passing through each lens 17 and is focused on the right-eye image imaging point RIp.
  • the light LgL that has passed through the sub-pixel 12 is refracted in the process of passing through each lens 17 and is focused on the left-eye image image formation point LIp.
  • the light LgT that has passed through the sub-pixels 11 is refracted in the process of passing through each lens 17 and is condensed on the third image image formation point TIp.
  • FIG. 5 is an explanatory diagram showing a positional relationship between the stereoscopic display device 1 and a viewer.
  • the optical system is such that the right and left eyes of the viewer are positioned at a distance De around the center of the liquid crystal panel 2 on a plane that is a distance DI from the lenticular lens 15 of the stereoscopic display device 1.
  • the distance DI is 500 mm to 600 mm
  • the interval De is 64 mm.
  • the left eye image formation point LIp and the right eye image formation point RIp are alternately formed in order on a plane parallel to the liquid crystal panel 2 (see FIG. 6).
  • the third image image formation point TIp is formed across the adjacent left eye image image formation point LIp and right eye image image formation point RIp.
  • the distance between the image forming points is preferably the binocular distance De of the viewer. If the viewer is positioned at the normal viewing position where the left eye of the viewer is positioned at the left eye image image formation point LIp and the right eye of the viewer is positioned at the right eye image image formation point RIp, the viewer is Can be accurately visualized.
  • the viewer's right eye is arranged at a position other than the normal viewing position, that is, the left eye image forming point LIp, and the viewer's left eye is arranged at the third image forming point TIp.
  • a stereoscopic image is recognized when the viewer's left eye is placed at the position or the right eye image imaging point RIp and the viewer's right eye is placed at the third image imaging point TIp. Instead, a planar image is recognized. In this way, the viewer can notice that he is not in the normal viewing position.
  • the third image is a white image
  • the white image is recognized at the third image image formation point TIp, and the viewer feels that the planar image recognized by both eyes is abnormally bright.
  • the viewer can easily notice that he / she is not in the normal viewing position.
  • the viewer can return to the normal viewing position by moving more to the center side with respect to the liquid crystal panel 2, and can correctly see the stereoscopic image.
  • the position other than the normal viewing position as described above is hereinafter referred to as an “erroneous viewing position”.
  • FIG. 7 is a diagram simulating the illuminance distribution seen by the viewer when a black image is adopted as the third image.
  • the left-eye image image formation point LIp and the right-eye image image formation point RIp are disposed at positions 32 mm from the center of the liquid crystal panel 2 respectively. That is, the left eye image image formation points LIp and the right eye image image formation points RIp are arranged at intervals of 64 mm in the horizontal direction with the center of the liquid crystal panel 2 as the center. Since black display is employed as the third image, black display is performed in which no image is formed at the third image image formation point TIp. In this case, the distance from the left eye image image formation point LIp at the normal viewing position to the right eye image image formation point RIp at the next normal viewing position is long and exceeds the distance between both eyes of the viewer. That is, a reverse viewing position in which the viewer sees the left-eye image and the right-eye image reversed is not formed. In this way, it is possible to prevent a viewer from seeing a stereoscopic image whose depth is reversed.
  • FIG. 8 is a luminance distribution diagram when the sub-pixels in the four pixels 6 located in the center of the liquid crystal panel 2 are lit at intervals of two sub-pixels.
  • the width of the luminance drop between the two sub-pixels is smaller than the width of the light emitted from each sub-pixel. That is, the left-eye image and the right-eye image are displayed only from one of the three sub-pixels 10 to 12 in each pixel 6, but the width of the three sub-pixels by the lens 17 is displayed. It is expanded to.
  • the light emitted from the pixel that displays the left eye image, the pixel that displays the right eye image, and the pixel that displays the third image is transmitted to each pixel using the lenticular lens 15.
  • the image formation points are formed by sequentially dividing the image. That is, the left eye image image formation point LIp at the normal vision position and the right eye image image formation point RIp at the next normal vision position, or the right eye image image formation point RIp at the normal vision position and the left eye image image formation point at the next normal vision position.
  • a third image imaging point TIp is formed between the LIp and the LIp. In other words, the third image image formation point TIp is formed with the left eye image image formation point LIp and the right eye image image formation point RIp formed adjacent to each other.
  • FIG. 9 is a block diagram illustrating a schematic configuration of the stereoscopic display device according to the second embodiment
  • FIG. 10 is a perspective view illustrating the pixels and the lenticular lens according to the second embodiment
  • FIG. 11 illustrates the pixels and the lenticular lens. It is sectional drawing. 9 to 11, the portions denoted by the same reference numerals as those shown in the first embodiment have the same configuration as that of the first embodiment, and thus the description thereof is omitted here.
  • the configuration of the stereoscopic display device 1 ′ other than those described below is the same as that of the first embodiment.
  • the left eye image, the right eye image, and the third image are displayed in units of sub-pixels.
  • the left eye image, the right eye image, and the third image are displayed in units of pixels. To do. That is, the width of the lens 17 'of the lenticular lens 15' is arranged so as to cover three pixels.
  • a feature of the second embodiment is that a left eye image, a right eye image, and a third image are displayed in units of 6 pixels.
  • Each pixel 6 includes three sub-pixels 10 'to 12' as in the first embodiment.
  • R, G, and B color filters are provided in front of the sub-pixels 10 'to 12'. Accordingly, the stereoscopic display device 1 ′ according to the second embodiment can display a color stereoscopic image.
  • the liquid crystal driving unit 20 in the second embodiment includes a video signal allocation unit 21 and a sub-pixel driving unit 22 in addition to the function of the liquid crystal driving unit 7 in the first embodiment.
  • the video signal assigning unit 21 assigns to which pixel 6 the left eye image signal, the right eye image signal, and the third image signal are sent.
  • the sub-pixel driver 22 controls the voltage applied to the liquid crystals of the sub-pixels 10 'to 12' based on the R, G, and B values of the image signal assigned to each pixel.
  • the lens 17 ′ of the lenticular lens 15 ′ in Example 2 has a width corresponding to three pixels 6. Both ends of the lens 17 ′ are disposed on the pixel 6 that displays the third image. That is, the lens 17 ′ is disposed so as to straddle the pixel 6 that displays the left-eye image and the pixel 6 that displays the right-eye image disposed adjacent thereto.
  • the lens pitch Pt1 'of the lens 17' is three times the pixel pitch Pt2 of the pixel 6.
  • the lens pitch Pt1 ' may be smaller than three times the pixel pitch Pt2. More preferably, the lens pitch Pt1 'is not less than 2 times and not more than 3 times the pixel pitch Pt2.
  • the stereoscopic display device 1 ′ of the second embodiment although the resolution is lower than that of the first embodiment, a three-dimensional display can be performed in color.
  • the stereoscopic image cannot be seen, so that the viewer can be aware that the viewer is not in the normal viewing position.
  • the reverse viewing position is not formed, it is possible to prevent the viewer from looking back on the stereoscopic image.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the lenticular lens 15 is used as the imaging point divider 8, but the present invention is not limited to this, and a parallax barrier may be used.
  • FIG. 12 shows the progress of light emitted from the pixel 6 when the parallax barrier 31 is used as the imaging point divider 8. Even using the parallax barrier 31, the left-eye image image formation point LIp, the right-eye image image formation point RIp, and the third image image formation point TIp can be formed in order. Thereby, when the viewer is not in the normal viewing position, this can be noticed by the viewer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

[Problem] To provide a stereoscopic display device for making an observer aware that the observer is not in the straight-ahead viewing position. [Solution] A stereoscopic display device provided with: a liquid crystal panel provided with sub-pixels (12) for displaying a left-eye image, sub-pixels (10) for displaying a right-eye image, and sub-pixels (11) for displaying a third image different from the left-eye image and the right-eye image; and a lenticular lens (15) for forming separate imaging points for the images displayed from the sub-pixels (12), the sub-pixels (10), and the sub-pixels (11); the lenticular lens (15) forming imaging points for the left-eye image, the right-eye image, and the third image in sequence, forming the imaging points for the left-eye image and the right-eye image so as to be adjacent to each other, and forming the imaging point for the third image so as to be between the imaging points of the mutually adjacent left-eye image and right-eye image.

Description

立体表示装置3D display device
 本発明は、立体表示装置に係り、視差分割方式の立体表示装置の技術に関する。 The present invention relates to a stereoscopic display device, and to a technique of a parallax division type stereoscopic display device.
 立体表示装置は、左眼画像と右眼画像とを表示することで、立体像を表示することができる。この左眼画像および右眼画像の表示方法に関しては、種々の方法が実現されているが、空間分割方式と時分割方式とに大別される。ここでは、空間分割方式の一種である視差分割方式の立体表示装置について説明する。 The stereoscopic display device can display a stereoscopic image by displaying a left eye image and a right eye image. Various methods for displaying the left-eye image and the right-eye image have been realized, but they are roughly classified into a space division method and a time division method. Here, a stereoscopic display device using a parallax division method, which is a kind of space division method, will be described.
 視差分割方式の立体表示装置には、液晶パネルの前面に、レンチキュラレンズまたはパララックスバリアが配置されている。これにより、液晶パネルから表示される左眼画像および右眼画像は、それぞれ分割された結像点で結像される。左眼画像の結像点に視覚者の左眼が、右眼画像の結像点に視覚者の右眼が位置すると、視覚者は立体像を見ることができる。この視覚者の位置を正視位置という。たとえば、特許文献1には、レンチキュラレンズを用いた視差分割方式の立体表示装置が開示されている。 In the parallax division type stereoscopic display device, a lenticular lens or a parallax barrier is arranged on the front surface of the liquid crystal panel. Thereby, the left eye image and the right eye image displayed from the liquid crystal panel are imaged at the divided image forming points. When the left eye of the viewer is positioned at the image point of the left eye image and the right eye of the viewer is positioned at the image point of the right eye image, the viewer can see a three-dimensional image. This position of the viewer is called a normal viewing position. For example, Patent Document 1 discloses a parallax division type stereoscopic display device using a lenticular lens.
特許4400172号公報Japanese Patent No. 4400172
 特許文献1に記載の立体表示装置では、特許文献1の図7に示されているように、左右両眼の間隔ごとに、照度のピーク点が形成されている。この照度のピーク点において、左眼画像の結像点と右眼画像の結像点とがそれぞれ交互に形成される。このピーク点について、図13を参照して説明する。図13は、右眼画像の結像点RIpと左眼画像の結像点LIpとが、立体表示装置50の表示面と平行な面上にそれぞれ交互に形成されることを示している。 In the stereoscopic display device described in Patent Document 1, as shown in FIG. 7 of Patent Document 1, a peak point of illuminance is formed for each interval between the left and right eyes. At the illuminance peak point, the image point of the left eye image and the image point of the right eye image are alternately formed. This peak point will be described with reference to FIG. FIG. 13 shows that the image point RIp of the right eye image and the image point LIp of the left eye image are alternately formed on a plane parallel to the display surface of the stereoscopic display device 50.
 このように結像点が形成されると、右眼画像の結像点に視覚者の左眼が、左眼画像の結像点に視覚者の右眼が位置した場合、奥行きが逆転した立体像が視覚者に認識される。この左眼画像と右眼画像が逆転して視覚者の眼に入射する位置を逆視位置という。表示される立体像が、視覚者にとって初めて見る立体像の場合、逆視位置にいることに気付かずに、奥行きが逆転した立体像を正しい立体像と認識してしまう問題がある。 When the imaging point is formed in this way, when the viewer's left eye is positioned at the imaging point of the right eye image and the viewer's right eye is positioned at the imaging point of the left eye image, the depth is reversed. The image is recognized by the viewer. A position where the left eye image and the right eye image are reversed and incident on the eyes of the viewer is referred to as a reverse viewing position. When the stereoscopic image to be displayed is a stereoscopic image that the viewer sees for the first time, there is a problem that the stereoscopic image with the reversed depth is recognized as a correct stereoscopic image without noticing that the stereoscopic image is in the reverse viewing position.
 本発明は、このような事情に鑑みてなされたものであって、正視位置にいないことを視覚者に気付かせる立体表示装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a stereoscopic display device that allows a viewer to notice that he / she is not at the normal viewing position.
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明は、左眼用画像を表示する第1表示画素と、右眼用画像を表示する第2表示画素と、前記左眼用画像および前記右眼用画像とは異なる別の画像を第3表示画像として表示する第3表示画素とを備える液晶パネルと、前記第1表示画素、前記第2表示画素および前記第3表示画素から表示される各画像の結像点を分割して形成する結像点分割器とを備え、前記結像点分割器は、前記左眼用画像、前記右眼用画像および前記第3表示画像の結像点を順に形成し、前記左眼用画像および前記右眼用画像の結像点を隣り合わせて形成し、前記第3表示画像の結像点を、隣り合う前記左眼用画像および前記右眼用画像の結像点を挟んで形成することを特徴とする立体表示装置である。
In order to achieve such an object, the present invention has the following configuration.
That is, the present invention provides a first display pixel that displays a left-eye image, a second display pixel that displays a right-eye image, and another image different from the left-eye image and the right-eye image. A liquid crystal panel including a third display pixel to be displayed as a third display image, and formed by dividing an image formation point of each image displayed from the first display pixel, the second display pixel, and the third display pixel An imaging point splitter that forms the imaging points of the left eye image, the right eye image, and the third display image in order, and the left eye image and Forming the image points of the right-eye image next to each other, and forming the image points of the third display image with the image points of the left-eye image and the right-eye image adjacent to each other. This is a featured stereoscopic display device.
 液晶パネルは第1表示画素、第2表示画素および第3表示画素を備える。第1表示画素から左眼用画像が表示される。第2表示画素から右眼用画像が表示される。第3表示画素からは、左眼用画像および右眼用画像とは異なる別の画像が第3表示画像として表示される。結像点分割器は、第1表示画素、第2表示画素および第3表示画素から表示される各画像の結像点を分割して順に形成する。左眼用画像および右眼用画像の結像点は、隣り合って形成される。第3表示画像の結像点は、隣り合う左眼用画像および右眼用画像の結像点を挟んで形成される。すなわち、隣り合う左眼用画像および右眼用画像の結像点の外側に第3表示画像の結像点が形成される。これにより、視覚者は、正視位置ではない位置においては、左右いずれかの眼で、左眼用画像でもなく右眼用画像でもない第3表示画像の結像点における別の画像を見る。 The liquid crystal panel includes a first display pixel, a second display pixel, and a third display pixel. An image for the left eye is displayed from the first display pixel. An image for the right eye is displayed from the second display pixel. From the third display pixel, another image different from the left-eye image and the right-eye image is displayed as the third display image. The image formation point divider divides the image formation points of each image displayed from the first display pixel, the second display pixel, and the third display pixel and sequentially forms them. The image points of the left eye image and the right eye image are formed adjacent to each other. The image formation point of the third display image is formed across the image formation points of the adjacent left-eye image and right-eye image. That is, the image formation point of the third display image is formed outside the image formation point of the adjacent left-eye image and right-eye image. As a result, the viewer sees another image at the image formation point of the third display image that is neither the left-eye image nor the right-eye image, with the left or right eye at a position other than the normal viewing position.
 このように、正視位置にいなければ、左眼と右眼とで見る画像が異なるので、視覚者は、表示されている画像に違和感を覚える。また、視覚者は立体像を見ることができないことからも、正視位置にいないことに気付く。このようにして、視覚者に正視位置にいないことを気付かせることができる。また、視覚者は、左眼で右眼用画像を、右眼で左眼用画像を見ることがないので、逆視を防止することができる。 Thus, since the images seen by the left eye and the right eye are different when not in the normal viewing position, the viewer feels uncomfortable with the displayed image. In addition, since the viewer cannot see the stereoscopic image, he / she notices that the viewer is not in the normal viewing position. In this way, the viewer can be made aware that he is not in the normal viewing position. Further, since the viewer does not see the image for the right eye with the left eye and the image for the left eye with the right eye, reverse vision can be prevented.
 また、前記結像点分割器は、前記液晶パネルの前面に配置されるレンチキュラレンズであることが好ましい。結像点分割器が液晶パネルの前面に配置されるレンチキュラレンズであれば、第1表示画素および第2表示画素からそれぞれ表示する画像が拡大されるので、画素間隔による輝度の落ち込みを低減することができる。 Further, it is preferable that the imaging point divider is a lenticular lens disposed in front of the liquid crystal panel. If the imaging point divider is a lenticular lens disposed on the front surface of the liquid crystal panel, the images displayed from the first display pixel and the second display pixel are enlarged, thereby reducing a drop in luminance due to the pixel interval. Can do.
 また、前記液晶パネルは、前記第1表示画素、前記第2表示画素、および前記第3表示画素をサブ画素として有する表示画素を備えてもよい。第1表示画素、第2表示画素および第3表示画素をサブ画素として有することで、解像度の低減を防止することができる。 The liquid crystal panel may include a display pixel having the first display pixel, the second display pixel, and the third display pixel as sub-pixels. By having the first display pixel, the second display pixel, and the third display pixel as sub-pixels, resolution reduction can be prevented.
 また、前記レンチキュラレンズのレンズ幅は、前記サブ画素の幅の2倍よりも長く、3倍よりも短いことが好ましい。レンズ幅がサブ画素の幅の2倍よりも長く、3倍よりも短いので、第1表示画素および第2表示画素であるサブ画素を好適にレンズで覆うことができる。 The lens width of the lenticular lens is preferably longer than twice the width of the sub-pixel and shorter than 3 times. Since the lens width is longer than twice the width of the sub-pixel and shorter than three times, the sub-pixels that are the first display pixel and the second display pixel can be suitably covered with the lens.
 また、前記第3表示画像は、黒画像であることが好ましい。黒画像が第3表示画像として表示されれば、第3表示画素の結像点には何も表示されない。これにより、視覚者が正視位置にいない場合、暗い平面画像しか見えないので、自ら正視位置にいないことに気付くことができる。  The third display image is preferably a black image. If the black image is displayed as the third display image, nothing is displayed at the imaging point of the third display pixel. As a result, when the viewer is not in the normal viewing position, only a dark planar image can be seen, so that it can be noticed that the viewer is not in the normal viewing position. *
 また、前記第3表示画像は、白画像であることが好ましい。白画像が第3表示画像として表示されれば、第3表示画素の結像点に明るい白画像が表示される。これにより、視覚者が正視位置にいない場合、明るい平面画像を見るので、自ら正視位置にいないことに気付くことができる。 The third display image is preferably a white image. If the white image is displayed as the third display image, a bright white image is displayed at the image point of the third display pixel. As a result, when the viewer is not at the normal viewing position, he / she can see that he / she is not at the normal viewing position because he / she sees a bright planar image.
 本発明によれば、正視位置にいないことを視覚者に気付かせる立体表示装置を提供することができる。 According to the present invention, it is possible to provide a stereoscopic display device that allows a viewer to notice that the user is not in the normal viewing position.
実施例1に係る立体表示装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a stereoscopic display device according to Embodiment 1. FIG. 実施例1に係る画素とレンチキュラレンズとを示す斜視図である。2 is a perspective view illustrating a pixel and a lenticular lens according to Example 1. FIG. 実施例1に係る画素とレンチキュラレンズとを示す断面図である。2 is a cross-sectional view illustrating a pixel and a lenticular lens according to Example 1. FIG. 実施例1に係る画素から出射した光の進行を示す説明図である。FIG. 6 is an explanatory diagram showing the progress of light emitted from a pixel according to Example 1. 実施例1に係る立体表示装置と視覚者の位置関係を示す説明図である。FIG. 6 is an explanatory diagram illustrating a positional relationship between a stereoscopic display device according to Example 1 and a viewer. 実施例1に係る正視位置と誤視位置とを示す説明図である。It is explanatory drawing which shows the normal viewing position and missighting position which concern on Example 1. FIG. 実施例1に係る立体表示装置の照度分布図である。6 is an illuminance distribution diagram of the stereoscopic display device according to Embodiment 1. FIG. 実施例1に係る画素点灯時の輝度分布図である。FIG. 3 is a luminance distribution diagram when pixels are turned on according to the first embodiment. 実施例2に係る立体表示装置の概略構成を示すブロック図である。6 is a block diagram illustrating a schematic configuration of a stereoscopic display device according to Embodiment 2. FIG. 実施例2に係る画素とレンチキュラレンズとを示す斜視図である。6 is a perspective view illustrating a pixel and a lenticular lens according to Example 2. FIG. 実施例2に係る画素から出射した光の進行を示す説明図である。FIG. 6 is an explanatory diagram showing the progress of light emitted from a pixel according to Example 2. 変形例に係る画素から出射した光の進行を示す説明図である。It is explanatory drawing which shows advancing of the light radiate | emitted from the pixel which concerns on a modification. 従来例に係る正視位置と逆視位置とを示す説明図である。It is explanatory drawing which shows the normal vision position and reverse vision position which concern on a prior art example.
 以下、図面を参照して本発明の実施例1を説明する。図1は実施例1における立体表示装置の概略構成を示すブロック図であり、図2は実施例1における画素とレンチキュラレンズとを示す斜視図である。なお、本明細書において、液晶パネルの表示面側を前方、その反対側を後方とする。 Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating a schematic configuration of a stereoscopic display device according to the first embodiment. FIG. 2 is a perspective view illustrating pixels and a lenticular lens according to the first embodiment. In this specification, the display surface side of the liquid crystal panel is the front, and the opposite side is the rear.
 1.立体表示装置の概略構成
 図1に示すように、立体表示装置1は、左眼画像および右眼画像を表示する液晶パネル2と、液晶パネル2の後方から光を照射するバックライト3と、バックライト3を駆動制御するバックライト駆動部4と、立体表示装置1に入力される立体映像信号に対して信号処理をする映像信号処理部5と、処理された立体映像信号に基づいて液晶パネル2の画素6に配置された液晶を駆動する液晶駆動部7と、画素6を透過した光の結像点を分割して形成する結像点分割器8と、入力される立体映像信号と異なる画像データが保管されているメモリ9とを備える。
1. Schematic Configuration of Stereoscopic Display Device As shown in FIG. 1, a stereoscopic display device 1 includes a liquid crystal panel 2 that displays a left-eye image and a right-eye image, a backlight 3 that emits light from behind the liquid crystal panel 2, and a backlight. A backlight drive unit 4 that drives and controls the light 3, a video signal processing unit 5 that performs signal processing on a stereoscopic video signal input to the stereoscopic display device 1, and a liquid crystal panel 2 based on the processed stereoscopic video signal A liquid crystal driving unit 7 for driving the liquid crystal disposed in the pixel 6, an image forming point divider 8 formed by dividing an image forming point of light transmitted through the pixel 6, and an image different from the input stereoscopic video signal And a memory 9 in which data is stored.
 液晶パネル2は、本実施例においては、薄膜トランジスタ(TFT)を用いたアクティブマトリックス型を採用している。液晶パネル2には、画素6が2次元マトリックス状に複数個配置されている。各画素6は3個のサブ画素10~12を有する。各サブ画素10~12はそれぞれ個別に駆動される。画素6の前面には、液晶を保護するためのガラスシート13が配置されている。ガラスシート13の前面に、結像点分割器8が配置される。実施例1において、液晶パネル2は、カラーフィルタを備えないモノクロ表示のパネル、あるいは、単色のカラーフィルタを備えるモノクロ表示のパネルである。 The liquid crystal panel 2 adopts an active matrix type using thin film transistors (TFTs) in this embodiment. A plurality of pixels 6 are arranged in a two-dimensional matrix on the liquid crystal panel 2. Each pixel 6 has three sub-pixels 10 to 12. Each of the subpixels 10 to 12 is individually driven. A glass sheet 13 for protecting the liquid crystal is disposed on the front surface of the pixel 6. An imaging point divider 8 is disposed on the front surface of the glass sheet 13. In the first embodiment, the liquid crystal panel 2 is a monochrome display panel including no color filter or a monochrome display panel including a single color filter.
 バックライト3は、液晶パネル2の後方に配置されている。バックライト3として、冷陰極管(CCFL)または発光ダイオード(LED)を採用する。バックライト3から照射された光が液晶パネル2を透過する。バックライト駆動部4は、バックライト3の光量を制御することで、液晶パネル2から表示される立体像を適切な明るさにする。 The backlight 3 is disposed behind the liquid crystal panel 2. As the backlight 3, a cold cathode fluorescent lamp (CCFL) or a light emitting diode (LED) is adopted. The light emitted from the backlight 3 passes through the liquid crystal panel 2. The backlight drive unit 4 controls the light amount of the backlight 3 to make the stereoscopic image displayed from the liquid crystal panel 2 have appropriate brightness.
 映像信号処理部5は、入力される立体映像信号の規格変換や、スケーリングおよび色補正を実施する。入力される1フレーム分の立体映像信号には、左眼画像と右眼画像とが含まれる。また、メモリ9には、立体映像信号に含まれる左眼画像および右眼画像とは異なる第3の画像が保管されている。映像信号処理部5は、メモリ9に保管されている第3の画像を読み出して、信号処理された左眼画像および右眼画像とともに液晶駆動部7へ出力する。映像信号処理部5は、マイクロプロセッサで構成される。 The video signal processing unit 5 performs standard conversion, scaling and color correction of the input stereoscopic video signal. The input stereoscopic video signal for one frame includes a left eye image and a right eye image. The memory 9 stores a third image different from the left eye image and the right eye image included in the stereoscopic video signal. The video signal processing unit 5 reads out the third image stored in the memory 9 and outputs it to the liquid crystal driving unit 7 together with the left-eye image and the right-eye image subjected to signal processing. The video signal processing unit 5 is composed of a microprocessor.
 液晶駆動部7は、入力される画像データに応じて液晶パネル2の各画素6に備わる液晶を駆動する。液晶駆動部7は、各サブ画素10~12の液晶に印加する電圧を制御するサブ画素駆動部14を備える。すなわち、映像信号処理部5から送られる左眼画像、右眼画像および第3の画像に応じて、各サブ画素10~12の液晶に印加する電圧が個別に制御される。各サブ画素10~12において光の透過量が制御されるので、画素6ごとに左眼画像、右眼画像および第3の画像が表示される。 The liquid crystal driving unit 7 drives the liquid crystal provided in each pixel 6 of the liquid crystal panel 2 in accordance with input image data. The liquid crystal driving unit 7 includes a sub-pixel driving unit 14 that controls a voltage applied to the liquid crystal of each of the sub-pixels 10 to 12. That is, the voltage applied to the liquid crystal of each of the sub-pixels 10 to 12 is individually controlled according to the left eye image, the right eye image, and the third image sent from the video signal processing unit 5. Since the light transmission amount is controlled in each of the sub-pixels 10 to 12, the left eye image, the right eye image, and the third image are displayed for each pixel 6.
 2.結像点分割器
 次に、図2~図4を参照して、結像点分割器の説明をする。図3は画素とレンチキュラレンズとを示す断面図であり、図4は画素から出射した光の進行を示す説明図である。実施例1では、結像点分割器8としてレンチキュラレンズ15を採用する。レンチキュラレンズ15は、基材となるシート部16とレンズ17とを有する。レンズ17の凸部17aは画素6側に配置されている。レンズ17は、液晶パネル2の縦方向に伸びるシリンドリカルレンズであり、液晶パネル2の横方向に順に配置されている。
2. Imaging Point Divider Next, the imaging point divider will be described with reference to FIGS. FIG. 3 is a cross-sectional view showing a pixel and a lenticular lens, and FIG. 4 is an explanatory view showing the progress of light emitted from the pixel. In the first embodiment, a lenticular lens 15 is employed as the imaging point divider 8. The lenticular lens 15 includes a sheet portion 16 and a lens 17 serving as a base material. The convex portion 17a of the lens 17 is disposed on the pixel 6 side. The lens 17 is a cylindrical lens that extends in the vertical direction of the liquid crystal panel 2, and is sequentially arranged in the horizontal direction of the liquid crystal panel 2.
 3個のサブ画素10~12のうち1個は左眼画像、1個は右眼画像、残りの1個が第3の画像を表示する。ここでは、サブ画素10は右眼画像を表示し、サブ画素12は左眼画像を表示し、サブ画素10とサブ画素12の間に配置されたサブ画素11が第3の画像を表示する。第3の画像として、実施例1では白画像または黒画像を表示するが、右眼画像および左眼画像と異なる画像であれば白画像または黒画像以外の画像でもよい。 Of the three sub-pixels 10 to 12, one displays the left eye image, one displays the right eye image, and the remaining one displays the third image. Here, the sub pixel 10 displays a right eye image, the sub pixel 12 displays a left eye image, and the sub pixel 11 disposed between the sub pixel 10 and the sub pixel 12 displays a third image. As the third image, a white image or a black image is displayed in the first embodiment, but an image other than the white image or the black image may be used as long as the image is different from the right eye image and the left eye image.
 レンズ17の両端は、第3の画像を表示するサブ画素11上に配置されている。すなわち、レンズ17はサブ画素11とその次に配置されたサブ画素11との間に配置されたサブ画素10および12を跨ぐように配置されている。 Both ends of the lens 17 are disposed on the sub-pixel 11 that displays the third image. That is, the lens 17 is disposed so as to straddle the sub-pixels 10 and 12 disposed between the sub-pixel 11 and the sub-pixel 11 disposed next thereto.
 レンズ17のレンズピッチPt1は、画素6の画素ピッチPt2と同じである。液晶パネル2の画面サイズが大きい場合、レンズピッチPt1を画素ピッチPt2よりも小さくしてもよい。より好ましくは、レンズピッチPt1は、サブ画素10~12のサブ画素ピッチPt3の2倍以上3倍以下である。 The lens pitch Pt1 of the lens 17 is the same as the pixel pitch Pt2 of the pixel 6. When the screen size of the liquid crystal panel 2 is large, the lens pitch Pt1 may be smaller than the pixel pitch Pt2. More preferably, the lens pitch Pt1 is not less than 2 times and not more than 3 times the subpixel pitch Pt3 of the subpixels 10 to 12.
 次に、サブ画素10~12を透過した光の進行について、図4を参照して説明する。サブ画素10を透過した光LgRは、各レンズ17を透過する過程で屈折し、右眼画像結像点RIpへ集光される。また、サブ画素12を透過した光LgLは、各レンズ17を透過する過程で屈折し、左眼画像結像点LIpへ集光される。サブ画素11を透過した光LgTは、各レンズ17を透過する過程で屈折し、第3画像結像点TIpへ集光される。 Next, the progress of light transmitted through the sub-pixels 10 to 12 will be described with reference to FIG. The light LgR that has passed through the sub-pixel 10 is refracted in the process of passing through each lens 17 and is focused on the right-eye image imaging point RIp. In addition, the light LgL that has passed through the sub-pixel 12 is refracted in the process of passing through each lens 17 and is focused on the left-eye image image formation point LIp. The light LgT that has passed through the sub-pixels 11 is refracted in the process of passing through each lens 17 and is condensed on the third image image formation point TIp.
 図5は、立体表示装置1と視覚者との位置関係を示す説明図である。実施例1では、立体表示装置1のレンチキュラレンズ15から距離DI離れた平面上に、液晶パネル2の中心を中心として、間隔Deの位置に視覚者の右眼および左眼が位置するように光学設計されている。実施例1において、距離DIは500mm~600mm、間隔Deを64mmとしている。 FIG. 5 is an explanatory diagram showing a positional relationship between the stereoscopic display device 1 and a viewer. In the first embodiment, the optical system is such that the right and left eyes of the viewer are positioned at a distance De around the center of the liquid crystal panel 2 on a plane that is a distance DI from the lenticular lens 15 of the stereoscopic display device 1. Designed. In the first embodiment, the distance DI is 500 mm to 600 mm, and the interval De is 64 mm.
 図5に示す光学モデルにおいて、左眼画像結像点LIpおよび右眼画像結像点RIpは、それぞれ、液晶パネル2と平行な平面上に順に交互に形成される(図6参照)。第3画像結像点TIpは、隣り合う左眼画像結像点LIpおよび右眼画像結像点RIpを挟んで形成される。各結像点の間隔は、視覚者の両眼間隔Deとなることが好ましい。左眼画像結像点LIpに視覚者の左眼が、右眼画像結像点RIpに視覚者の右眼が配置される正視位置に視覚者が位置していると、視覚者は、立体像を正確に視覚することができる。 In the optical model shown in FIG. 5, the left eye image formation point LIp and the right eye image formation point RIp are alternately formed in order on a plane parallel to the liquid crystal panel 2 (see FIG. 6). The third image image formation point TIp is formed across the adjacent left eye image image formation point LIp and right eye image image formation point RIp. The distance between the image forming points is preferably the binocular distance De of the viewer. If the viewer is positioned at the normal viewing position where the left eye of the viewer is positioned at the left eye image image formation point LIp and the right eye of the viewer is positioned at the right eye image image formation point RIp, the viewer is Can be accurately visualized.
 これに対して、視覚者が正視位置以外の位置、すなわち、左眼画像結像点LIpに視覚者の右眼が配置され、第3画像結像点TIpに視覚者の左眼が配置される位置、または、右眼画像結像点RIpに視覚者の左眼が配置され、第3画像結像点TIpに視覚者の右眼が配置される位置に視覚者が位置すると、立体像が認識されず平面画像が認識される。このようにして、視覚者は自らが正視位置にいないことに気付くことができる。また、第3の画像が白画像の場合、第3画像結像点TIpにて白画像が認識され、視覚者は、両眼で認識される平面画像が異常に明るく感じられる。これにより、視覚者は自らが正視位置にいないことにより簡易に気付くことができる。視覚者は、液晶パネル2に対して、より中央側に移動することで、正視位置に戻ることができ、立体像を正しく見ることができる。なお、上述のような正視位置以外の位置を、本明細書では、以下、「誤視位置」という。 On the other hand, the viewer's right eye is arranged at a position other than the normal viewing position, that is, the left eye image forming point LIp, and the viewer's left eye is arranged at the third image forming point TIp. A stereoscopic image is recognized when the viewer's left eye is placed at the position or the right eye image imaging point RIp and the viewer's right eye is placed at the third image imaging point TIp. Instead, a planar image is recognized. In this way, the viewer can notice that he is not in the normal viewing position. When the third image is a white image, the white image is recognized at the third image image formation point TIp, and the viewer feels that the planar image recognized by both eyes is abnormally bright. Thereby, the viewer can easily notice that he / she is not in the normal viewing position. The viewer can return to the normal viewing position by moving more to the center side with respect to the liquid crystal panel 2, and can correctly see the stereoscopic image. In the present specification, the position other than the normal viewing position as described above is hereinafter referred to as an “erroneous viewing position”.
 また、第3の画像として黒画像を表示する場合、第3画像結像点TIpにて黒画像が認識される。すなわち、視覚者が誤視位置にいると、異常に暗い平面画像を見ることになる。これにより、視覚者が自ら正視位置にいないことを認識することができる。図7は第3の画像として黒画像を採用した際の、視覚者が見る照度分布をシミュレーションした図である。 Further, when a black image is displayed as the third image, the black image is recognized at the third image imaging point TIp. That is, when the viewer is in the missight position, an abnormally dark planar image is seen. Thereby, it can be recognized that the viewer is not in the normal viewing position. FIG. 7 is a diagram simulating the illuminance distribution seen by the viewer when a black image is adopted as the third image.
 液晶パネル2の中心から左右それぞれ32mmのところに、左眼画像結像点LIpおよび右眼画像結像点RIpが配置されている。すなわち、液晶パネル2の中心を中心として横方向に64mmの間隔で左眼画像結像点LIpおよび右眼画像結像点RIpが配置されている。第3の画像として黒表示を採用しているので、第3画像結像点TIpには何も画像が結像されない黒表示となる。この場合、正視位置における左眼画像結像点LIpから、次の正視位置における右眼画像結像点RIpまで距離が長く、視覚者の両眼の間隔を越えている。すなわち、視覚者が、左眼画像および右眼画像を反転して見る逆視位置が形成されることがない。このようにして、視覚者が奥行きが反転した立体像を見ることを防止することができる。 The left-eye image image formation point LIp and the right-eye image image formation point RIp are disposed at positions 32 mm from the center of the liquid crystal panel 2 respectively. That is, the left eye image image formation points LIp and the right eye image image formation points RIp are arranged at intervals of 64 mm in the horizontal direction with the center of the liquid crystal panel 2 as the center. Since black display is employed as the third image, black display is performed in which no image is formed at the third image image formation point TIp. In this case, the distance from the left eye image image formation point LIp at the normal viewing position to the right eye image image formation point RIp at the next normal viewing position is long and exceeds the distance between both eyes of the viewer. That is, a reverse viewing position in which the viewer sees the left-eye image and the right-eye image reversed is not formed. In this way, it is possible to prevent a viewer from seeing a stereoscopic image whose depth is reversed.
 また、結像点分割器8としてレンチキュラレンズ15を採用することで、各画像を表示する各サブ画素間の落ち込みを低減することができる。この効果を図示したものが、図8である。図8は、液晶パネル2の中央に位置する4個の画素6内のサブ画素を、2個のサブ画素間隔で点灯した際の輝度分布図である。2個分のサブ画素間の輝度の落ち込みの幅は、各サブ画素から照射される光の幅よりも小さい。すなわち、左眼画像および右眼画像はそれぞれ各画素6において、3個のサブ画素10~12の内の1個のサブ画素からしか表示されないが、レンズ17により、3個分のサブ画素の幅にまで拡大される。 Further, by using the lenticular lens 15 as the imaging point divider 8, it is possible to reduce the drop between the sub-pixels displaying each image. This effect is illustrated in FIG. FIG. 8 is a luminance distribution diagram when the sub-pixels in the four pixels 6 located in the center of the liquid crystal panel 2 are lit at intervals of two sub-pixels. The width of the luminance drop between the two sub-pixels is smaller than the width of the light emitted from each sub-pixel. That is, the left-eye image and the right-eye image are displayed only from one of the three sub-pixels 10 to 12 in each pixel 6, but the width of the three sub-pixels by the lens 17 is displayed. It is expanded to.
 実施例1の発明によれば、左眼画像を表示する画素と、右眼画像を表示する画素と、第3の画像を表示する画素とから出射される光をレンチキュラレンズ15を用いて、各画像の結像点を順に分割して形成する。すなわち、正視位置における左眼画像結像点LIpと次の正視位置における右眼画像結像点RIp、または、正視位置における右眼画像結像点RIpと次の正視位置における左眼画像結像点LIpとの間に、第3画像結像点TIpを形成する。言い換えると、第3画像結像点TIpを、隣り合わせて形成する左眼画像結像点LIpおよび右眼画像結像点RIpを間に挟んで形成する。 According to the invention of the first embodiment, the light emitted from the pixel that displays the left eye image, the pixel that displays the right eye image, and the pixel that displays the third image is transmitted to each pixel using the lenticular lens 15. The image formation points are formed by sequentially dividing the image. That is, the left eye image image formation point LIp at the normal vision position and the right eye image image formation point RIp at the next normal vision position, or the right eye image image formation point RIp at the normal vision position and the left eye image image formation point at the next normal vision position. A third image imaging point TIp is formed between the LIp and the LIp. In other words, the third image image formation point TIp is formed with the left eye image image formation point LIp and the right eye image image formation point RIp formed adjacent to each other.
 これにより、正視位置における左眼画像結像点LIpと次の正視位置における右眼画像結像点RIp、または、正視位置における右眼画像結像点RIpと次の正視位置における左眼画像結像点LIpとの距離が視覚者の両眼間隔Deを越えるので、逆視位置が形成されず、視覚者が立体像を逆視することを防止することができる。また、視覚者が誤視位置にいると、左眼画像または右眼画像と第3の画像との合成画像である平面画像が見えるので、立体像を見ることができず、正視位置にいないことに自ら気付くことができる。また、サブ画素10、12単位で左眼画像および右眼画像を表示するので、解像度を低下させることなく単色立体像を表示することができる。 Thereby, the left eye image imaging point LIp at the normal vision position and the right eye image imaging point RIp at the next normal vision position, or the right eye image imaging point RIp at the normal vision position and the left eye image imaging point at the next normal vision position. Since the distance to the point LIp exceeds the binocular distance De of the viewer, no reverse viewing position is formed, and the viewer can be prevented from viewing the stereoscopic image backward. In addition, when the viewer is in the missighted position, a planar image that is a left-eye image or a composite image of the right-eye image and the third image can be seen, so that the stereoscopic image cannot be seen and is not in the right-viewing position. You can notice yourself. Further, since the left eye image and the right eye image are displayed in units of sub-pixels 10 and 12, a monochromatic stereoscopic image can be displayed without reducing the resolution.
 次に、図9から図11を参照して実施例2に係る立体表示装置1’について説明する。図9は、実施例2における立体表示装置の概略構成を示すブロック図であり、図10は実施例2における画素とレンチキュラレンズとを示す斜視図であり、図11は画素とレンチキュラレンズとを示す断面図である。図9から図11において、実施例1に示した符号と同一の符号で示した部分は、実施例1と同様の構成であるのでここでの説明は省略する。また、以下に記載した以外の立体表示装置1’の構成は実施例1と同様である。 Next, the stereoscopic display device 1 ′ according to the second embodiment will be described with reference to FIGS. 9 to 11. FIG. 9 is a block diagram illustrating a schematic configuration of the stereoscopic display device according to the second embodiment, FIG. 10 is a perspective view illustrating the pixels and the lenticular lens according to the second embodiment, and FIG. 11 illustrates the pixels and the lenticular lens. It is sectional drawing. 9 to 11, the portions denoted by the same reference numerals as those shown in the first embodiment have the same configuration as that of the first embodiment, and thus the description thereof is omitted here. The configuration of the stereoscopic display device 1 ′ other than those described below is the same as that of the first embodiment.
 実施例1では、サブ画素単位で左眼画像、右眼画像および第3の画像を表示しているが、実施例2では、画素単位で左眼画像、右眼画像および第3の画像を表示する。すなわち、レンチキュラレンズ15’のレンズ17’の幅が3画素を覆うように配置されている。 In the first embodiment, the left eye image, the right eye image, and the third image are displayed in units of sub-pixels. In the second embodiment, the left eye image, the right eye image, and the third image are displayed in units of pixels. To do. That is, the width of the lens 17 'of the lenticular lens 15' is arranged so as to cover three pixels.
 実施例2の特徴は、画素6単位で左眼画像、右眼画像および第3の画像を表示することにある。また、各画素6には、実施例1と同様に3個のサブ画素10’~12’を有する。サブ画素10’~12’の前面には、R,G、Bのカラーフィルタが設けられている。これにより、実施例2の立体表示装置1’は、カラーの立体像を表示することができる。 A feature of the second embodiment is that a left eye image, a right eye image, and a third image are displayed in units of 6 pixels. Each pixel 6 includes three sub-pixels 10 'to 12' as in the first embodiment. R, G, and B color filters are provided in front of the sub-pixels 10 'to 12'. Accordingly, the stereoscopic display device 1 ′ according to the second embodiment can display a color stereoscopic image.
 実施例2における液晶駆動部20は、実施例1における液晶駆動部7の機能に加えて、映像信号割当部21およびサブ画素駆動部22を備える。映像信号割当部21は、左眼画像信号、右眼画像信号および第3の画像信号をどの画素6に送るかを割り当てる。サブ画素駆動部22は、各画素に割り当てられた画像信号のR、G,B値を基に、サブ画素10’~12’の液晶に印加する電圧を制御する。 The liquid crystal driving unit 20 in the second embodiment includes a video signal allocation unit 21 and a sub-pixel driving unit 22 in addition to the function of the liquid crystal driving unit 7 in the first embodiment. The video signal assigning unit 21 assigns to which pixel 6 the left eye image signal, the right eye image signal, and the third image signal are sent. The sub-pixel driver 22 controls the voltage applied to the liquid crystals of the sub-pixels 10 'to 12' based on the R, G, and B values of the image signal assigned to each pixel.
 また、実施例2におけるレンチキュラレンズ15’のレンズ17’は、画素6の3個分の幅を有する。レンズ17’の両端は、第3の画像を表示する画素6上に配置される。すなわち、レンズ17’は左眼画像を表示する画素6とその隣に配置された右眼画像を表示する画素6を跨ぐように配置されている。 Further, the lens 17 ′ of the lenticular lens 15 ′ in Example 2 has a width corresponding to three pixels 6. Both ends of the lens 17 ′ are disposed on the pixel 6 that displays the third image. That is, the lens 17 ′ is disposed so as to straddle the pixel 6 that displays the left-eye image and the pixel 6 that displays the right-eye image disposed adjacent thereto.
 レンズ17’のレンズピッチPt1’は、画素6の画素ピッチPt2の3倍である。液晶パネル2の画面サイズが大きい場合、レンズピッチPt1’を画素ピッチPt2の3倍よりも小さくしてもよい。より好ましくは、レンズピッチPt1’は、画素ピッチPt2の2倍以上3倍以下である。 The lens pitch Pt1 'of the lens 17' is three times the pixel pitch Pt2 of the pixel 6. When the screen size of the liquid crystal panel 2 is large, the lens pitch Pt1 'may be smaller than three times the pixel pitch Pt2. More preferably, the lens pitch Pt1 'is not less than 2 times and not more than 3 times the pixel pitch Pt2.
 実施例2の立体表示装置1’によれば、実施例1と比べて解像度が低下するものの、カラーで立体表示することができる。また、視覚者が誤視位置にいると、立体像を見ることができないので、正視位置にいないことに自ら気付くことができる。また、逆視位置が形成されないので、視覚者が立体像を逆視することを防止することができる。 According to the stereoscopic display device 1 ′ of the second embodiment, although the resolution is lower than that of the first embodiment, a three-dimensional display can be performed in color. In addition, when the viewer is in the missighted position, the stereoscopic image cannot be seen, so that the viewer can be aware that the viewer is not in the normal viewing position. Moreover, since the reverse viewing position is not formed, it is possible to prevent the viewer from looking back on the stereoscopic image.
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, and can be modified as follows.
 上述した実施例では、結像点分割器8としてレンチキュラレンズ15を用いたがこれに限らず、パララックスバリアを用いてもよい。図12には、結像点分割器8としてパララックスバリア31を用いた場合の、画素6から出射した光の進行を示している。パララックスバリア31を用いても、左眼画像結像点LIp、右眼画像結像点RIpおよび第3画像結像点TIpを順に形成することができる。これにより、視覚者が正視位置にいない場合、そのことを視覚者に気付かせることができる。 In the above-described embodiment, the lenticular lens 15 is used as the imaging point divider 8, but the present invention is not limited to this, and a parallax barrier may be used. FIG. 12 shows the progress of light emitted from the pixel 6 when the parallax barrier 31 is used as the imaging point divider 8. Even using the parallax barrier 31, the left-eye image image formation point LIp, the right-eye image image formation point RIp, and the third image image formation point TIp can be formed in order. Thereby, when the viewer is not in the normal viewing position, this can be noticed by the viewer.
 1 … 立体表示装置
 2 … 液晶パネル
 6 … 画素
 8 … 結像点分割器
 10、11、12 … サブ画素
 15 … レンチキュラレンズ
 17 … レンズ
 LIp … 左眼画像結像点
 RIp … 右眼画像結像点
 TIp … 第3画像結像点
DESCRIPTION OF SYMBOLS 1 ... Stereoscopic display device 2 ... Liquid crystal panel 6 ... Pixel 8 ... Imaging point splitter 10, 11, 12 ... Sub pixel 15 ... Lenticular lens 17 ... Lens LIp ... Left eye image imaging point RIp ... Right eye image imaging point TIp ... Third image focus point

Claims (6)

  1.  左眼用画像を表示する第1表示画素と、
     右眼用画像を表示する第2表示画素と、
     前記左眼用画像および前記右眼用画像とは異なる別の画像を第3表示画像として表示する第3表示画素とを備える液晶パネルと、
     前記第1表示画素、前記第2表示画素および前記第3表示画素から表示される各画像の結像点を分割して形成する結像点分割器とを備え、
     前記結像点分割器は、
     前記左眼用画像、前記右眼用画像および前記第3表示画像の結像点を順に形成し、 
     前記左眼用画像および前記右眼用画像の結像点を隣り合わせて形成し、
     前記第3表示画像の結像点を、隣り合う前記左眼用画像および前記右眼用画像の結像点を挟んで形成する
     ことを特徴とする立体表示装置。
    A first display pixel that displays an image for the left eye;
    A second display pixel that displays an image for the right eye;
    A liquid crystal panel including a third display pixel that displays another image different from the left-eye image and the right-eye image as a third display image;
    An imaging point divider that divides and forms the imaging point of each image displayed from the first display pixel, the second display pixel, and the third display pixel;
    The imaging point divider is
    Forming the image point of the left eye image, the right eye image and the third display image in order;
    Forming the image points of the left-eye image and the right-eye image next to each other;
    An image forming point of the third display image is formed across an image forming point of the adjacent image for the left eye and the image for the right eye.
  2.  請求項1に記載の立体表示装置において、
     前記結像点分割器は、前記液晶パネルの前面に配置されるレンチキュラレンズである
     ことを特徴とする立体表示装置。
    The stereoscopic display device according to claim 1,
    The image forming point divider is a lenticular lens disposed in front of the liquid crystal panel.
  3.  請求項1または2に記載の立体表示装置において、
     前記液晶パネルは、
     前記第1表示画素、前記第2表示画素、および前記第3表示画素をサブ画素として有する表示画素を備える
     ことを特徴とする立体表示装置。
    The stereoscopic display device according to claim 1 or 2,
    The liquid crystal panel is
    A stereoscopic display device comprising: a display pixel having the first display pixel, the second display pixel, and the third display pixel as sub-pixels.
  4.  請求項3に記載の立体表示装置において、
     前記レンチキュラレンズのレンズ幅は、前記サブ画素の幅の2倍よりも長く、3倍よりも短い
     ことを特徴とする立体表示装置。
    The stereoscopic display device according to claim 3,
    The three-dimensional display device, wherein the lens width of the lenticular lens is longer than twice the width of the sub-pixel and shorter than three times.
  5.  請求項1から4のいずれか1つに記載の立体表示装置において、
     前記第3表示画像は、黒画像である
     ことを特徴とする立体表示装置。
    The stereoscopic display device according to any one of claims 1 to 4,
    The third display image is a black image. A stereoscopic display device, wherein:
  6.  請求項1から4のいずれか1つに記載の立体表示装置において、
     前記第3表示画像は、白画像である
     ことを特徴とする立体表示装置。
    The stereoscopic display device according to any one of claims 1 to 4,
    The stereoscopic display device, wherein the third display image is a white image.
PCT/JP2012/082991 2012-04-16 2012-12-20 Stereoscopic display device WO2013157167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092712A JP2013222012A (en) 2012-04-16 2012-04-16 Three-dimensional display device
JP2012-092712 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157167A1 true WO2013157167A1 (en) 2013-10-24

Family

ID=49383143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082991 WO2013157167A1 (en) 2012-04-16 2012-12-20 Stereoscopic display device

Country Status (2)

Country Link
JP (1) JP2013222012A (en)
WO (1) WO2013157167A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728015A (en) * 1993-07-08 1995-01-31 Sharp Corp Three-dimensional display device
JPH09297284A (en) * 1996-04-30 1997-11-18 Nec Corp Three-dimensional display device
JP2002318369A (en) * 2001-04-20 2002-10-31 Sanyo Electric Co Ltd Stereoscopic video display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728015A (en) * 1993-07-08 1995-01-31 Sharp Corp Three-dimensional display device
JPH09297284A (en) * 1996-04-30 1997-11-18 Nec Corp Three-dimensional display device
JP2002318369A (en) * 2001-04-20 2002-10-31 Sanyo Electric Co Ltd Stereoscopic video display device

Also Published As

Publication number Publication date
JP2013222012A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
US9613559B2 (en) Displays with sequential drive schemes
JP5649526B2 (en) Display device
KR100658545B1 (en) Apparatus for reproducing stereo-scopic picture
US8274556B2 (en) Backlight unit and 2D/3D switchable image display device employing the backlight unit
KR101222975B1 (en) Three-dimensional image Display
EP2466578A1 (en) 3d image display apparatus and driving method thereof
US9253479B2 (en) Method and apparatus for displaying partial 3D image in 2D image display area
KR101211343B1 (en) Display device and method of driving the same
US20090315883A1 (en) Autostereoscopic display with pixelated luminaire
US9167233B2 (en) Naked-eye stereoscopic display apparatus
WO2017092453A1 (en) 3d display apparatus and drive method therefor
JP2006228723A (en) Back light module and 2d/3d display device using this back light module
KR101406794B1 (en) Backlight unit, 2D-3D switchable image display apparatus employing the same, and method of the 2D-3D switchable image display apparatus
US20150237334A1 (en) Stereoscopic display device
KR20160058327A (en) Three dimensional image display device
TWI497469B (en) Display device
JP2004264762A (en) Stereoscopic image display device
KR20150065056A (en) Image display apparatus
JP2013161035A (en) Picture display device
JP3728013B2 (en) Stereoscopic image display device
US20140160378A1 (en) Display apparatus
JP2004294914A (en) Stereoscopic image display device
WO2013157167A1 (en) Stereoscopic display device
US10891909B2 (en) Display device and method for driving same
WO2020080403A1 (en) Image display device and image display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874441

Country of ref document: EP

Kind code of ref document: A1