WO2013155819A1 - 一种基于九相自耦移相变压器的对称式ups电源*** - Google Patents

一种基于九相自耦移相变压器的对称式ups电源*** Download PDF

Info

Publication number
WO2013155819A1
WO2013155819A1 PCT/CN2012/082210 CN2012082210W WO2013155819A1 WO 2013155819 A1 WO2013155819 A1 WO 2013155819A1 CN 2012082210 W CN2012082210 W CN 2012082210W WO 2013155819 A1 WO2013155819 A1 WO 2013155819A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
group
output
input
inverter
Prior art date
Application number
PCT/CN2012/082210
Other languages
English (en)
French (fr)
Inventor
徐海波
张胜发
汪家荣
唐朝阳
Original Assignee
广东易事特电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东易事特电源股份有限公司 filed Critical 广东易事特电源股份有限公司
Priority to EP12874540.3A priority Critical patent/EP2701276B1/en
Priority to US14/395,123 priority patent/US9478353B2/en
Publication of WO2013155819A1 publication Critical patent/WO2013155819A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • Symmetrical UPS power supply system based on nine-phase auto-transformer phase shifting transformer
  • the invention belongs to the technical field of power sources, and particularly relates to the technical field of high-power power frequency UPS power supply, and specifically refers to a symmetric UPS power supply system based on a nine-phase auto-transform phase shifting transformer.
  • the global industrialized information economy construction has a huge demand for medium and large power frequency UPS power supplies.
  • the power frequency UPS power supply has the advantages of strong adaptability to the power supply environment, high reliability, strong impact load resistance, etc., and is widely used in various industries.
  • the independent and stable zero ground potential unique to the power frequency UPS is the safe power supply for the high power UPS power supply equipment.
  • the current-frequency IGBT power supply has large current harmonics on the grid side, which causes very serious pollution to the power grid.
  • high-power power frequency UPS power supplies need to be equipped with network compensation and other related devices to meet the grid usage requirements.
  • the high-power system input generally adopts a full-isolation phase-shifting transformer based on type and / type structure, and multi-pulse with external balanced reactor.
  • Wave rectification structure For example, 12-pulse rectification technology is realized by parallel connection of two conventional 6-pulse phase-controlled rectifications of phase shifting 30 Q to suppress 5th and 7th harmonics generated by three-phase six-pulse rectification.
  • the isolated phase shifting transformer is bulky, cumbersome and costly, and it is not convenient for the expansion of the power unit of the AC-DC rectification part with higher power.
  • the 18-pulse rectification technology can further reduce the current harmonics on the grid side.
  • its 9-phase phase-shifting power supply is usually realized by an isolation transformer, which has the disadvantages of large volume, heavy weight and low economic efficiency.
  • the invention solves the deficiencies of the prior art and provides a symmetric UPS power supply system based on a nine-phase auto-transform phase shifting transformer.
  • the UPS power system effectively reduces the input current harmonics of the AC side of the AC-DC rectification section, effectively suppresses the 5th, 7th, 11th, and 13th harmonics, and effectively reduces the 17th and 19th harmonic levels, and is small in size. , low cost.
  • a symmetric UPS power supply system based on a nine-phase auto-transformer phase shifting transformer comprising a three-phase AC input terminal, a three-phase AC output terminal, a nine-phase auto-transformer phase shifting transformer, and a three-phase inverter output Synchronous control device, power frequency isolation transformer and three-way output device;
  • the nine-phase auto-transformation phase-shifting transformer is a symmetrical nine-phase auto-transformation phase-shifting transformer, a three-phase self-coupling phase-shifting transformer three-phase AC input terminal and a power supply three Intersect Pressure device set three or three
  • the power frequency isolation transformer is provided with three sets of three-phase AC input terminals, respectively Terminals U1, VI and Wl, original groups U0, V0 and W0, and hysteresis groups U2, V2 and W2; the output terminals U, V and W of the power frequency isolation transformer are connected to the three-phase AC output of the power supply;
  • the road output device is an advanced group output device, an original group output device and a hysteresis group output device;
  • the advanced group output device comprises a pre-group zero sequence suppression commutating inductor, a lead group three-phase six-pulse rectifier, a lead group three The phase inverter and the leading group filter inductor; the three-phase input terminal of the leading group zero sequence suppression commutating inductor is connected with the above-mentioned lead group output terminals A1, B1 and c
  • the synchronous control device is provided with three sets of control outputs, three sets of control outputs respectively with the control end of the lead three-phase inverter, the control end of the original three-phase inverter and the hysteresis
  • the control terminals of the rear group three-phase inverter are connected.
  • the power frequency isolation transformer is a power frequency four-port coupled isolation Y/Y connection three-phase transformer, and the power frequency isolation transformer is provided with U-phase, V-phase and W-phase magnetic columns; and the power frequency isolation transformer is each phase
  • the magnetic core column is provided with three independent identical input windings and one output winding, which constitute a four-port coupled isolated output mode with initial and secondary winding relationship of "Y/Y"structure; input winding on U-phase magnetic core column
  • the U1 phase of the output of the three-phase inverter of the lead group, the U0 phase of the original three-phase inverter output, and the U2 of the lag group three-phase inverter are respectively connected, and the output winding on the U-phase magnetic core column is U.
  • the input windings on the V-phase magnetic core column are respectively connected to the VI phase of the output of the three-phase inverter of the lead group, the V0 phase of the output of the original three-phase inverter, and the V2 of the output of the three-phase inverter of the lag group.
  • the output winding on the V-phase magnetic core column is a V-phase output;
  • the input winding on the W-phase magnetic core column is respectively compared with the W1 phase of the output of the three-phase inverter of the leading group and the W0 of the output of the original three-phase inverter.
  • W2 phase connection of the lag group three-phase inverter output, output on the W phase magnetic core column Output W-phase output windings. _ T TT ⁇ .
  • Axu is based on the UPS power supply,
  • the energy device further includes an energy storage device;
  • the energy storage device includes a charger, a battery pack, and a coupling unit for controlling current directional movement;
  • the three-phase AC input terminal of the charger is connected to the three-phase AC input terminal of the power supply, and the DC of the charger The output terminal is connected to the battery pack;
  • the coupling unit comprises six diodes, wherein the anodes of the three diodes are connected to the positive pole of the battery pack, and the cathodes of the three diodes are respectively connected to the DC input terminals of the lead group three-phase inverter The positive pole of the positive pole, the positive input of the original group three-phase inverter and the positive pole of the DC input of the lag group three-phase inverter;
  • the cathodes of the other three diodes are connected to the negative pole of the battery pack, and the anode of the three diodes Connected to the cathode of the DC input of the three-phase inverter of the lead group, the cath
  • the energy storage device further includes a contactor JK1 JK2 JK3; two diodes D1 to D2 respectively connected to the positive and negative terminals of the DC input end of the three-phase inverter of the advanced group are lead group diodes; respectively The two diodes D3 and D4 connected to the positive and negative terminals of the DC input of the inverter are the original group diodes; the two diodes D5 and D6 respectively connected to the positive and negative terminals of the DC input terminal of the three-phase inverter of the hysteresis group are hysteresis group diodes; The two diodes Dl D2 of the lead group diode are respectively connected to the main contact of the contactor JK1, the two diodes D3 D4 of the original group diode are respectively connected to the main contact of the contactor JK2, and the two diodes D5 D6 of the hysteresis group diode are respectively in parallel contact.
  • the UPS power supply system based on the nine-phase auto-transformer phase shift transformer further includes a bypass circuit, and the bypass circuit includes a bypass static switch device, and the output of the bypass static switch device is connected to the power three-phase AC output terminal. .
  • the controllable three-phase rectifier circuit comprises an inductor group consisting of three inductors, a water unidirectional thyristor component and an electric; a unidirectional thyristor component in the water unidirectional thyristor component Three branches are formed, and both ends of each branch are respectively connected with the positive and negative poles of the capacitor and form a loop.
  • One ends of the three inductors are respectively connected to the intermediate potential ends of the three branches, and the other ends of the three inductors are respectively connected to The input of a controllable three-phase rectifier circuit.
  • the circuit of the lead group three-phase inverter, the circuit of the original group three-phase inverter and the circuit of the lag group three-phase inverter are all three-phase full-bridge inverter circuits;
  • the inverter circuit is composed of three single-phase full-bridge circuits, and the single-phase full-bridge circuit includes an upper arm and a lower arm, and the upper arm and the lower arm are respectively composed of two insulated gate bipolar transistors, wherein the upper arm
  • the collectors of the two insulated gate bipolar transistors are connected to the anode of the DC input terminal of the three-phase full-bridge inverter circuit, and the two insulated gate bipolar transistors are emitted. / Two twin crystals, day
  • the emitters of the bipolar transistors are respectively connected to the negative terminals of the DC input terminals of the three-phase full-bridge inverter circuit; the two output ports of the output terminals of each single-phase full-bridge circuit are respectively connected to the upper bridge arms of the single-phase full-bridge circuit and The two connection points of the lower arm are connected.
  • the circuit of the leading group filter inductor, the circuit of the original group filter inductor and the circuit of the lag group filter inductor are all LC low-pass filter circuits connected to the output end of the single-phase full-bridge circuit; the LC low-pass filter circuit is A three-way filter circuit is formed.
  • Each filter circuit is mainly composed of an inductor and a capacitor, and each filter circuit is provided with two input terminals and two output terminals; the two input terminals of each filter circuit are respectively single-phase and single-phase.
  • the mid-point connection of the bridge arm of the full bridge structure is an input port; the two output ends of each filter circuit are an output port, which are respectively connected to the three-phase AC input port of the power frequency isolation transformer after being insured.
  • a main circuit static switching device is disposed between the power frequency isolation transformer and the three-phase AC output end of the power source, and the main circuit static switching device is mainly composed of three bidirectional thyristor components; one end of the three bidirectional thyristor components The three-phase AC output terminal of the power frequency isolation transformer is connected, and the other ends of the three bidirectional thyristor components are respectively connected with the three-phase AC output terminal of the power supply.
  • bypass static switching device is mainly composed of three triac elements; one end of the three bidirectional thyristor elements is connected to the input end of the bypass circuit, and the other ends of the three bidirectional thyristor elements are respectively The three-phase AC output of the power supply is connected.
  • a UPS power supply system based on a nine-phase auto-transform phase shifting transformer, comprising a three-phase AC input terminal, a three-phase AC output terminal, a nine-phase auto-transformer phase shifting transformer, and a control three Synchronous control device for phase inverter output, power frequency isolation transformer and three-way output device, three-phase AC input terminal of the nine-phase auto-transform phase shifting transformer is connected with three-phase AC input terminal of power supply, nine-phase auto-transform phase shifting The transformer is provided with three sets of three-phase AC output terminals respectively for the leading group output terminals A1, Bl, CI and the original group output terminals A0, B0, CO and the hysteresis group output terminals A2, B2, C2, and the power frequency isolation transformer is provided with three groups.
  • the three-phase AC input terminals are the leading group input terminals U1, VI, Wl, the original group U0, V0, WO and the hysteresis group U2, V2, W2; the output terminals U, V, W and power supply three of the power frequency isolation transformer
  • the alternating current output terminal is connected;
  • the three-way output device is an advanced group output device, an original group output device, and a hysteresis group output device;
  • the advanced group output device includes a pre-group zero-sequence suppression commutation device Sense, advanced three-phase six-pulse rectifier, advanced three-phase inverter and leading group filter inductor, the three-phase input of the leading group zero-sequence suppression commutation inductor is connected with the above-mentioned lead group output terminals Al, Bl, CI,
  • the three-phase AC output end of the leading group filter inductor is connected to the above-mentioned lead group input terminals U1, VI, W1
  • the hysteresis group output device includes a hysteresis group zero sequence suppression commutation inductance, a hysteresis group three-phase six-pulse Wave rectifier, hysteresis group three-phase inverter and hysteresis filter inductor, hysteresis group zero sequence suppression commutation inductor three-phase input terminal is connected with the above-mentioned hysteresis group output terminal A2 B2 C2, hysteresis group filter inductor three-phase AC output terminal
  • the synchronous control device is provided with four sets of sampling input ends respectively connected to the power three-phase AC input end and the three-way inverter output end; the synchronous control device is provided with three The group control output ends, and the three sets of control outputs are respectively connected with the control end of the lead group three
  • the system topology of the parallel structure ensures that three sets of AC power supplies with phase difference of 20° work independently, providing the same power to the load, accurately achieving the “18-pulse rectification” of the entire power system, effectively reducing the grid current harmonics. .
  • the DC/AC inverter unit of the parallel structure not only ensures the balance of the three parallel channels, but also constitutes the redundant design of the system, and the reliability of the whole system is high.
  • the power frequency power system has no balanced reactor, the system design specification is symmetrical, the redundancy is high, and its topology is very suitable for wide power range and UPS power supply of 500KVA or above.
  • Figure 1 is a structural block diagram of the present invention
  • FIG. 1 The winding junction of the nine-phase autotransformer phase shifting transformer of the present invention:
  • Figure 4 is a schematic diagram of a three-phase inverter circuit of the present invention.
  • Figure 5 is a schematic diagram of the invention.
  • a symmetric UPS power supply system based on a nine-phase auto-transformation phase shifting transformer 1 includes a three-phase AC input terminal, a three-phase AC output terminal 18, and a nine-phase auto-coupling.
  • Phase shifting transformer 1 synchronous control device 14 for controlling the output of the three-phase inverter, power frequency isolation transformer 15 and three-way output device.
  • the nine-phase auto-transformation phase shifting transformer 1 is a symmetric nine-phase auto-transformer phase shifting transformer 1, and the three-phase AC input end of the nine-phase auto-transformer phase-shifting transformer 1 is connected to a three-phase AC input end of the power supply.
  • the nine-phase auto-transformer phase shifting transformer 1 is provided with three sets of three-phase AC output terminals, namely the leading group output terminals A1, B1 and Cl, the original group output terminals A0, B0 and CO, and the hysteresis group output terminals A2, B2 and C2.
  • the power frequency isolation transformer 15 is provided with three sets of three-phase AC input terminals, which are the leading group input terminals U1, VI and Wl, the original groups U0, V0 and W0 and the hysteresis groups U2, V2 and W2, respectively.
  • the output terminals 11, V and W of the power frequency isolation transformer 15 are connected to the power supply three-phase AC output terminal 18;
  • the three-way output device is a lead group output device, an original group output device and a hysteresis group output device.
  • the lead group output device comprises a leading group zero sequence suppression commutating inductor 2, a lead group three-phase six-pulse rectifier 5, a lead group three-phase inverter 8 and a leading group filter inductor 11; the leading group zero sequence suppression
  • the three-phase input terminals of the commutating inductor 2 are connected to the above-mentioned lead group output terminals A1, B1 and C1;
  • the three-phase AC output terminals of the leading group filter inductor 11 are connected to the above-mentioned lead group input terminals U1, VI and W1.
  • the original group output device comprises an original group zero sequence suppression commutating inductor 3, an original group three-phase six-pulse rectifier 6, an original group three-phase inverter 9 and an original group filter inductor 12; the original group zero sequence suppression
  • the three-phase input terminals of the commutating inductor 3 are connected to the original group output terminals A0, B0 and CO; the three-phase AC output terminals of the original group filter inductor 12 are connected to the original group input terminals U0, V0 and W0.
  • the hysteresis group output device comprises a hysteresis group zero sequence suppression commutating inductor 4, a hysteresis group three-phase six-pulse rectifier 7, a hysteresis group three-phase inverter 10 and a hysteresis group filter inductor 13; the hysteresis group zero sequence suppression
  • the three-phase input terminals of the commutating inductor 4 are connected to the hysteresis group output terminals A2, B2 and C2; the three-phase AC output terminals of the hysteresis group filter inductor 13 are connected to the hysteresis group input terminals U2, V2 and W2.
  • the synchronous control device is provided with four sets of sampling input terminals, respectively, with a power three-phase AC input terminal, and an output group of the lead group three-phase inverter, and an original group three. And three sets of control outputs; three sets of control outputs, three sets of control outputs respectively with the control end of the lead three-phase inverter, the control end of the original three-phase inverter and the three-phase inverter of the lag group
  • the console is connected.
  • the nine-phase auto-transformer phase shifting transformer 1 phase-shifts the input symmetrical three-phase AC power supply (A, B, C) into three sets of symmetrical three-phase AC power supplies with phase differences of 20 Q : the original group (A0, B0, C0), Lead group (A1, B1, C1) and lag group (A2, B2, C2).
  • the original group (A0, B0, C0) has the same phase as the input three-phase AC power supply (A, B, C).
  • the advanced group (A1, B1, C1) leads the original group (A0, B0, C0) with a phase of 20 Q , and the hysteresis group. (A2, B2, C2) lags the original group (A0, B0, C0) by 20°.
  • the original group (A0, B0, C0), the lead group (A1, B1, C1) and the lag group (A2, B2, C2) signals respectively pass through the respective connected zero-sequence suppression commutation inductors, three-phase
  • the six-pulse rectifiers respectively implement six-pulse rectification, and finally input to the respective connected three-phase inverters and filter inductors, and then pass through the power frequency isolation transformer 15, and perform AC isolation parallelization and power synthesis at the output.
  • the function of the zero sequence suppression commutating inductor is to suppress the zero sequence current of each group and to facilitate current commutation in the three-phase six-pulse rectifier.
  • FIG. 2 is a schematic diagram showing the winding structure and connection of the 18-pulse ⁇ 20 Q auto-transform phase shifting transformer, that is, the nine-phase auto-transformer phase shifting transformer 1 used in the present invention.
  • the original group (A0, B0, C0) is the input of the transformer body, and is connected to the mains 380V three-phase AC power supply.
  • (A1, B1, C1) and (A2, B2, C2) are two sets of three-phase AC outputs, respectively.
  • (A1, B1, C1) The corresponding advanced group (A0, B0, C0) phase 20 Q , (A2, B2, C2) each lags the original group (A0, B0, C0) phase 20 Q .
  • the original group (A0, B0, C0) of the transformer body is connected to the grid voltage (A, B, C) three phases, so that when the 18-pulse rectification effect is realized, the nine-phase auto-transformer phase shifting transformer 1 body
  • the power capacity does not exceed 20% of the total output power of the system.
  • the structure and weight of the body of the nine-phase autotransformer phase shifting transformer 1 are much smaller than that of the conventional isolated power frequency phase shifting transformer.
  • the power frequency isolation transformer 15 is a power frequency four-port coupled isolation/ ⁇ connection three-phase transformer, and the power frequency isolation transformer 15 is provided with three sets of AC input ports and a set of AC output ports, and the power frequency isolation transformer 15 Each phase of the magnetic core column is provided with three independent windings, and the three independent windings form a set of three-phase AC input ports, and the two ends of each independent winding are two input terminals of a three-phase AC input port.
  • the primary and secondary winding relationships of the power frequency isolation transformer 15 are " ⁇ / ⁇ " structure.
  • FIG. 3 is a schematic diagram showing the structure and winding of a four-port coupled isolated ⁇ / ⁇ connection three-phase transformer used in the present invention.
  • [U1, U0, U2] are the reference phase outputs of the three-phase sinusoidal output of the three-channel DC/AC inverter part with the initial phase angle of 0 Q , respectively, which are controlled to the same waveform, and The phase grid power input corresponds to the same phase.
  • the input and output are Y/Y type structure
  • the output voltage U and the three input voltages are respectively w2/wl
  • the output current is a parallel connection of three-phase [U1, U0, U2] input currents. Superimposed, both power superimposed.
  • the design method is also applied to the relationship between the output V phase and the input three phases [V1, V0, V2]. , , , T
  • the UPS power supply system based on the nine-phase auto-transformer phase shifting transformer 1 further includes an energy storage device including a charger 17, a battery pack 20, and a coupling unit 16 for controlling the directional movement of the current.
  • the three-phase AC input terminal of the charger 17 is connected to the three-phase AC input terminal of the power supply, and the DC output terminal of the charger 17 is connected to the battery pack 20.
  • the coupling unit 16 includes six diodes, wherein the anodes of the three diodes are all connected to the positive pole of the battery pack 20, and the cathodes of the three diodes are respectively connected to the positive pole and the original group of the DC input terminal of the lead group three-phase inverter 8.
  • the positive pole of the DC input of the three-phase inverter 9 and the positive pole of the DC input of the three-phase inverter 10 of the hysteresis group are connected.
  • the cathodes of the other three diodes are all connected to the negative pole of the battery pack 20, and the anodes of the three diodes are respectively connected to the negative pole of the DC input terminal of the lead group three-phase inverter 8 and the DC input terminal of the original group three-phase inverter 9.
  • the negative electrode and the negative electrode of the DC input terminal of the hysteresis group three-phase inverter 10 are connected.
  • the voltage at the DC input of the three-phase inverter 8 of the lead group, the voltage at the DC input of the original three-phase inverter 9 and the voltage at the DC input of the hysteresis three-phase inverter 10 are both greater than the voltage of the battery pack 20.
  • the battery pack 20 voltage is slightly lower than the DC voltage output from the three-phase six-pulse rectifier of each channel, and has no effect on the two DC output terminals of the three-phase six-pulse rectifier.
  • the battery pack 20 supplies power to the three-way three-phase inverter through the diode unidirectional path.
  • the energy storage device further includes contactors JK1, JK2, and JK3, respectively, and two diodes D1 and D2 connected to the positive and negative terminals of the DC input terminal of the three-phase inverter 8 of the advanced group are advanced group diodes, respectively.
  • the two diodes D3 and D4 connected to the positive and negative terminals of the DC input terminal of the original group three-phase inverter 9 are original group diodes;
  • two diodes respectively connected to the positive and negative terminals of the DC input terminal of the hysteresis group three-phase inverter 10 D5 and D6 are hysteresis group diodes.
  • the two diodes D1 and D2 of the lead group diode are respectively connected to the main contact of the contactor JK1, and the two diodes D3 and D4 of the original group diode are respectively connected to the main contact of the contactor JK2, and the two diodes D5 and D6 of the hysteresis group diode are respectively connected.
  • the main contacts of the contactor JK3 are respectively connected in parallel.
  • the design of the contactors JK1, JK2, JK3 can reduce the energy consumption of the coupling unit 16; for example, when the system works normally, the contactors JK1, JK2, JK3 are in the off state, when the grid is powered off, the contactor JK1 JK2 and JK3 are in a closed state, and the battery pack 20 directly supplies power to the three-phase inverters of the respective paths, and the coupling unit 16 is in a short-circuit state; the energy consumption of the diodes of the coupling unit 16 is reduced.
  • the UPS power supply system based on the nine-phase auto-transformation phase shifting transformer 1 further includes a bypass circuit, and the bypass circuit includes a bypass static switching device, and the output end of the bypass static switching device and the three-phase AC output terminal of the power supply 18 connections.
  • the mains connection can also be connected to other power supply equipment.
  • the circuits of the advanced three-phase six-pulse rectifier 5, the original three-phase six-pulse rectifier 6 and the lag group three-phase six-pulse rectifier 7 are controllable three-phase rectifier circuits.
  • the controllable three-phase rectification circuit comprises an inductor group consisting of three inductors, six unidirectional thyristor components, and a capacitor.
  • the unidirectional thyristor elements of the six unidirectional thyristor elements form two branches in series in the same direction, and each end of each branch is respectively connected with the positive and negative poles of the capacitor and form a loop, three inductors One end is respectively connected to the intermediate potential end of the three branches, and the other ends of the three inductors are respectively connected to the input end of the controllable three-phase rectifier circuit;
  • the input of the controllable three-phase rectifier circuit here is equivalent to the input of the advanced three-phase six-pulse rectifier 5 or the original three-phase six-pulse rectifier 6 or the lag group three-phase six-pulse rectifier 7.
  • the circuit of the lead group three-phase inverter 8 , the circuit of the original group three-phase inverter 9 and the circuit of the hysteresis group three-phase inverter 10 are all three-phase full-bridge inverter circuits.
  • the three-phase full-bridge inverter circuit is composed of three single-phase full-bridge circuits, and the single-phase full-bridge circuit includes an upper arm and a lower arm, and the upper and lower arms are respectively composed of two insulated gate bipolar transistors.
  • composition wherein the collectors of the two insulated gate bipolar transistors of the upper arm are connected to the anode of the DC input of the three-phase full-bridge inverter circuit, and the emitters of the two insulated gate bipolar transistors are respectively lower and lower
  • the collector of the two insulated gate bipolar transistors of the bridge arm, the emitters of the two insulated gate bipolar transistors of the lower arm are respectively connected with the negative pole of the DC input end of the three-phase full-bridge inverter circuit; each single phase is completely
  • the two output ports of the output of the bridge circuit are respectively connected to the two connection points of the upper arm and the lower arm of the single-phase full bridge circuit.
  • the invention avoids the use of a bulky balanced reactor, and adopts three parallel independent inverter channels with the same main circuit (see FIG. 1), so that the three sets of six-pulse rectification cannot form a circulating current through the DC side parallel connection, thereby The nine-phase auto-transformer phase-shifting transformer accurately realizes 18-pulse rectification, which greatly reduces the input current harmonics.
  • the "synchronous control device 14" is to ensure that the parallel independent inverter channels work according to the same law, and output the three-phase voltages of the phase frequencies, phases and amplitudes corresponding to each other, and output the three-phase voltage (U, V, W). Synchronized with the input grid voltage (A, B, C).
  • the invention adopts a three-phase full-bridge structure, which not only improves system reliability and redundancy, but also enables the system to have a stronger unbalanced load capacity, and is also beneficial to the system for modular specification design.
  • the circuit of the leading group filter inductor 11, the circuit of the original group filter inductor 12, and the circuit of the lag group filter inductor 13 are all LC low-pass filter circuits connected to the output of the single-phase full-bridge circuit; LC low-pass
  • the filter circuit is composed of three filter circuits, each of which mainly consists of an inductor and an electric Two inputs and two outputs are provided; ⁇ 'input ends are respectively connected with the midpoint of the bridge arm of the single-phase full-bridge structure, and are one input port; the two output ends of each filter circuit are one output port, respectively, after insurance The three-phase AC input port of the frequency isolation transformer is connected.
  • a main circuit static switching device is disposed between the power frequency isolation transformer 15 and the power supply three-phase AC output terminal 18, and the main circuit static switching device is mainly composed of three bidirectional thyristor components; three triacs One end is connected to the three-phase AC output end of the power frequency isolation transformer 15, and the other ends of the three bidirectional thyristor elements are respectively connected to the power supply three-phase AC output terminal 18.
  • bypass static switching device is mainly composed of three triac elements; one end of the three bidirectional thyristor elements is connected to the input end of the bypass circuit, and the other ends of the three bidirectional thyristor elements are respectively The power three-phase AC output terminal 18 is connected.
  • T1 is a 18-pulse ⁇ 20° autotransformer phase shifting transformer.
  • L1, SCR1, SCR3, SCR5, SCR4, SCR6, SCR2 and CI form a forward group controllable three-phase rectifier;
  • IGBT1 ⁇ IGBT12 form a leading group three-phase inverter;
  • L4, C4, L5, C5, L6, C6 form a lead Three single-phase inverter full-bridge LC low-pass filter circuits for group inverters.
  • L2, SCR1, SCR3, SCR5, SCR4, SCR6, SCR2, and C2 form the original three-phase six-pulse rectifier
  • IGBT13 ⁇ IGBT24 form the original three-phase inverter
  • L7, C7, L8, C8, L9 and C9 form the LC low-pass filter circuit of the three single-phase inverter full bridges of the original group inverter.
  • L3, SCR1 ", SCR3", SCR5 “, SCR4", SCR6", SCR2" and ⁇ C3 form a lag group three-phase six-pulse rectifier; IGBT25 ⁇ IGBT36 form a lag group three-phase inverter; L10, C10, Lll, Cll L12 and C12 form the LC low-pass filter of three single-phase inverter full bridges of the lag group inverter.
  • T2 is a four-port coupled isolated three-phase transformer, and the single-phase full-bridge inverter outputs of the lead group, the original group, and the hysteresis group are superimposed by the power frequency isolation transformer 15 to superimpose power.
  • SCR7-9 is a bypass static switch and SCR10-12 is an inverter static switch.
  • the three-phase power is sent to the 18-pulse wave ⁇ 20 through the rectifier input switch CB1, the fuse FUSE1-3, and the Hall current sensor HP1-3 that detects the input current of the rectifier.
  • the auto-transformer phase-shifting transformer shifts the input three-phase AC power supply into three sets of three-phase AC power supplies with phase differences of 20°: Leading group (U1, V1, W1), original group (U0, V0, W0) and hysteresis group (U2, V2, W2). (The zero-sequence suppression commutation inductance of each channel is omitted in Figure 5.)
  • the lead group (U1, V1, W1) three-phase AC power is rectified into DC by the advanced group controllable three-phase rectifier, and then passed through the lead group three-phase inverter.
  • the pure three-phase power is output through the LC low-pass filter circuit.
  • the three sets of output AC power are in the synchronous control device
  • the advanced three-phase six-pulse rectifier, the original three-phase six-pulse rectifier, and the hysteresis three-phase six-pulse rectifier are all stopped.
  • the battery supplies power to the advanced three-phase inverter through the diodes D1, D2 and JK1, and supplies the original three-phase inverter through the diodes D3, D4 and JK2, and supplies the three-phase inverter of the hysteresis group through the diodes D5, D6 and JK3. Power supply ensures that the three inverters can work uninterrupted, and the power supply to the load will not be interrupted.
  • the advanced three-phase six-pulse rectifier, the original three-phase six-pulse rectifier and the lag group three-phase six-pulse rectifier resume operation, JK1, JK2, JK3 are disconnected, and the charger 17 is also restored. Enter the normal working mode. Due to the redundancy of this UPS system, when any one of the three-phase six-pulse rectifiers or three-phase inverters fails, the others can work normally. Since three single-phase full-bridges are used to form a three-phase full-bridge inverter circuit, it can adapt to 100% imbalance of load.
  • the UPS can be switched to the bypass operation without interruption
  • CB3 is the bypass input breaker.
  • the load can be supplied to the load without interruption through the maintenance bypass of the UPS.
  • CB4 is the circuit breaker for maintenance bypass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种基于九相自耦移相变压器的对称式UPS电源***,包括电源三相交流输入端、电源三相交流输出端(18)、九相自耦移相变压器(1)、用于控制三相逆变器输出的同步控制装置(14)、工频隔离变压器(15)和三路输出装置。九相自耦移相变压器(1)的三相交流输入端与电源三相交流输入端连接。每路输出装置包括依次连接的零序抑制换向电感、三相六脉波整流器、三相逆变器和滤波电感。每路的零序抑制换向电感与自耦移相变压器(1)的三相交流输出端连接。每路的滤波电感与工频隔离变压器(15)的输入端连接。该UPS电源***结构体积小、成本低且使用效果好。

Description

一种基于九相自耦移相变压器的对称式 UPS电源*** 技术领域
本发明属于电源技术领域, 特别涉及到大功率工频 UPS电源技术领域, 具体 是指基于九相自耦移相变压器的对称式 UPS电源***。
背景技术
全球工业化信息化经济建设对中大功率工频 UPS电源的需求非常巨大。在中 大功率领域, 工频 UPS电源具有对供电环境适应能力强、 可靠性高、 抗冲击负载 能力强等优点, 在各行业领域得到广泛应用。 特别是工频 UPS所特有的独立稳定 的零地电位是大功率 UPS供电设备的安全用电保障。但常规工频 UPS电源的网侧 电流谐波大, 对电网产生非常严重的污染, 目前大功率工频 UPS电源需要配置电 网补偿等相关装置才能满足电网使用要求。
为解决传统大功率工频 UPS电源的输入侧整流导致的电力谐波污染问题, 大 功率***输入一般采用基于 型和 / 型结构"的全隔离型移相变压器, 和 外加平衡电抗器的多脉波整流结构。 例如, 用移相 30Q的两个传统 6脉波相控整 流的并联来实现 12脉波整流技术, 抑制由三相六脉波整流产生的 5、 7次谐波。 该种方式存在隔离移相变压器体积大、 笨重和成本高的问题, 而且不便于功率更 大的 AC-DC整流部分功率单元的扩展。 用 18脉波整流技术可以更进一步减小网 侧电流谐波, 但其 9相移相电源通常是用隔离变压器来实现的, 存在体积大, 笨 重, 经济效益低的缺点。
发明内容
本发明解决了现有技术的不足, 提供了基于九相自耦移相变压器的对称式 UPS电源***。 该 UPS电源***有效降低了 AC-DC整流部分的网侧输入电流谐 波, 有效抑制了 5、 7、 11、 13次谐波, 并有效减小了 17、 19次谐波含量, 且体 积小, 成本低。
为达到上述目的, 本发明采用的技术方案为:
一种基于九相自耦移相变压器的对称式 UPS电源***, 包括电源三相交流输 入端、 电源三相交流输出端、 九相自耦移相变压器、 用于控制三相逆变器输出的 同步控制装置、 工频隔离变压器和三路输出装置; 所述九相自耦移相变压器为对 称型九相自耦移相变压器, 九相自耦移相变压器的三相交流输入端与电源三相交 压器设 三 三 出
出端 Al、 B1和 Cl, 和原始组输出端 A0、 BO和 CO , 以及滞后组输出端 A2、 B2和 C2; 所述工频隔离变压器设有三组三相交流输入端, 分别为超前组输入端 Ul、 VI 和 Wl, 原始组 U0、 V0和 W0, 以及滞后组 U2、 V2和 W2; 所述工频隔离变压器的 输出端 U、 V和 W与电源三相交流输出端连接; 所述三路输出装置为超前组输出装 置、 原始组输出装置和滞后组输出装置; 所述超前组输出装置包括依次连接的超 前组零序抑制换向电感、 超前组三相六脉波整流器、 超前组三相逆变器和超前组 滤波电感; 超前组零序抑制换向电感的三相输入端与上述超前组输出端 Al、 B1和 ci连接, 超前组滤波电感的三相交流输出端与上述超前组输入端 υι、 VI和 n连 接; 所述原始组输出装置包括依次连接的原始组零序抑制换向电感、 原始组三相 六脉波整流器、 原始组三相逆变器和原始组滤波电感, 原始组零序抑制换向电感 的三相输入端与上述原始组输出端 A0、 BO和 CO连接, 原始组滤波电感的三相交 流输出端与上述原始组输入端 U0、 V0和 WO连接; 所述滞后组输出装置包括依次 连接的滞后组零序抑制换向电感、 滞后组三相六脉波整流器、 滞后组三相逆变器 和滞后组滤波电感, 滞后组零序抑制换向电感的三相输入端与上述滞后组输出端 A2、 B2和 C2连接, 滞后组滤波电感的三相交流输出端与上述滞后组输入端 U2、 V2和 W2连接; 所述同步控制装置设有四组采样输入端, 分别与电源三相交流输 入端、 和超前组三相逆变器的输出端、 原始组三相逆变器的输出端以及滞后组三 相逆变器的输出端连接; 所述同步控制装置设有三组控制输出端, 三组控制输出 端分别与超前组三相逆变器的控制端、 原始组三相逆变器的控制端以及滞后组三 相逆变器的控制端连接。
进一步地,所述工频隔离变压器为工频四端口耦合隔离 Y/Y连接三相变压器, 该工频隔离变压器设有 U相、 V相和 W相磁性柱; 且该工频隔离变压器每相磁芯 柱上设有三个独立的完全相同的输入绕组和一个输出绕组, 构成初、 次级绕组关 系为 "Y/Y"结构的四端口耦合隔离输出方式; U相磁芯柱上的输入绕组分别与超 前组三相逆变器输出的 U1相、 原始组三相逆变器输出的 U0相和滞后组三相逆变 器输出的 U2相连接, U相磁芯柱上的输出绕组为 U相输出; V相磁芯柱上的输入 绕组分别与超前组三相逆变器输出的 VI相、 原始组三相逆变器输出的 V0相和滞 后组三相逆变器输出的 V2相连接, V相磁芯柱上的输出绕组为 V相输出; W相磁 芯柱上的输入绕组分别与超前组三相逆变器输出的 W1相、原始组三相逆变器输出 的 W0相和滞后组三相逆变器输出的 W2相连接, W相磁芯柱上的输出绕组输出绕 组为 W相输出。 . _ T TT^ . 一 旭 所 基于 压器 对 UPS电源杀统,
能装置, 还包括储能装置; 所述储能装置包括充电器、 蓄电池组和控制电流定向 移动的耦合单元; 充电器的三相交流输入端与电源三相交流输入端连接, 充电器 的直流输出端与蓄电池组连接; 所述耦合单元包括六个二极管, 其中三个二极管 的阳极均与蓄电池组的正极连接, 且该三个二极管的阴极分别与超前组三相逆变 器的直流输入端的正极、 原始组三相逆变器的直流输入端的正极以及滞后组三相 逆变器的直流输入端的正极连接;另三个二极管的阴极均与蓄电池组的负极连接, 且该三个二极管的阳极分别与超前组三相逆变器的直流输入端的阴极、 原始组三 相逆变器的直流输入端的阴极以及滞后组三相逆变器的直流输入端的阴极连接; 超前组三相逆变器的直流输入端的电压、 原始组三相逆变器的直流输入端的电压 以及滞后组三相逆变器的直流输入端的电压均大于蓄电池组的电压。
进一步地, 所述储能装置还包括接触器 JK1 JK2 JK3; 分别与超前组三相 逆变器的直流输入端的正极和负极连接的两个二极管 Dl D2为超前组二极管; 分别与原始组三相逆变器的直流输入端的正极和负极连接的两个二极管 D3 D4 为原始组二极管; 分别与滞后组三相逆变器的直流输入端的正极和负极连接的两 个二极管 D5 D6为滞后组二极管; 超前组二极管的两个二极管 Dl D2分别并 联接触器 JK1的主触头,原始组二极管的两个二极管 D3 D4分别并联接触器 JK2 的主触头, 滞后组二极管的两个二极管 D5 D6分别并联接触器 JK3的主触头。
进一步地,所述基于九相自耦移相变压器的 UPS电源***,还包括旁路电路, 旁路电路包括旁路静态开关装置, 旁路静态开关装置的输出端与电源三相交流输 出端连接。
进一步地, 所述超前组三相六脉波整流器、 原始组三相六脉波整流器和滞后 组三相六脉波整流器的电路均为可控三相整流电路。 所述可控三相整流电路包括 三个电感组成的电感组、 -水单向可控硅元件以及一个电; -水单向可控硅元 件中的单向可控硅元件两两同向串联形成三条支路, 每条支路的两端均分别与电 容的正极和负极连接并形成回路, 三个电感的一端分别连接于三条支路的中间电 势端, 三个电感的另一端分别连接于可控三相整流电路的输入端。
进一步地, 所述超前组三相逆变器的电路、 原始组三相逆变器的电路和滞后 组三相逆变器的电路均为三相全桥逆变电路; 所述三相全桥逆变电路由三个单相 全桥电路组成单相全桥电路包括上桥臂和下桥臂, 且上桥臂和下桥臂分别由两个 绝缘栅双极型晶体管组成, 其中上桥臂的两个绝缘栅双极型晶体管的集电极均与 三相全桥逆变电路的直流输入端的正极连接, 且该两个绝缘栅双极型晶体管的发 / 两 双 晶 , 日
双极型晶体管的发射极分别与三相全桥逆变电路的直流输入端的负极连接; 每个 单相全桥电路的输出端的两个输出端口分别与该单相全桥电路的上桥臂和下桥臂 的两个连接点连接。
进一步地, 所述超前组滤波电感的电路、 原始组滤波电感的电路和滞后组滤 波电感的电路均为与单相全桥电路的输出端连接的 LC低通滤波电路; LC低通滤 波电路由三路滤波电路组成, 每路的滤波电路主要由一个电感和一个电容组成, 且每路滤波电路设有两个输入端和两个输出端; 每路滤波电路的两个输入端分别 与单相全桥结构的桥臂中点连接, 为一个输入端口; 每路滤波电路的两个输出端 为一个输出端口, 通过保险后分别与工频隔离变压器的三相交流输入端口对应连 接。
进一步地, 工频隔离变压器与电源三相交流输出端之间设有主路静态开关装 置, 主路静态开关装置主要由三个双向可控硅元件组成; 三个双向可控硅元件的 一端与工频隔离变压器的三相交流输出端连接, 三个双向可控硅元件的另一端分 别与电源三相交流输出端连接。
进一步地, 所述旁路静态开关装置主要由三个双向可控硅元件组成; 三个双 向可控硅元件的一端与旁路电路输入端连接, 三个双向可控硅元件的另一端分别 与电源三相交流输出端连接。
本发明取得的有益效果为: 一种基于九相自耦移相变压器的 UPS电源***, 包括电源三相交流输入端、 电源三相交流输出端、 九相自耦移相变压器、 用于控 制三相逆变器输出的同步控制装置、 工频隔离变压器和三路输出装置, 所述九相 自耦移相变压器的三相交流输入端与电源三相交流输入端连接, 九相自耦移相变 压器设有三组三相交流输出端分别为超前组输出端 Al、 Bl、 CI和原始组输出端 A0、 B0、 CO 以及滞后组输出端 A2、 B2、 C2,所述工频隔离变压器设有三组三相 交流输入端分别为超前组输入端 Ul、 VI、 Wl、 原始组 U0、 V0、 WO以及滞后组 U2、 V2、 W2; 所述工频隔离变压器的输出端 U、 V、 W与电源三相交流输出端 连接; 所述三路输出装置为超前组输出装置、 原始组输出装置和滞后组输出装置; 所述超前组输出装置包括依次连接的超前组零序抑制换向电感、 超前组三相六脉 波整流器、 超前组三相逆变器和超前组滤波电感, 超前组零序抑制换向电感的三 相输入端与上述超前组输出端 Al、 Bl、 CI连接, 超前组滤波电感的三相交流输 出端与上述超前组输入端 Ul、 VI、 W1连接; 所述原始组输出装置包括依次连接 的原始组零序抑制换向电感、 原始组三相六脉波整流器、 原始组三相逆变器和原 Α ^ 源敉¾愁, 尿 序 二 入 还尿%ί組湔出 Α0
B0 CO连接, 原始组滤波电感的三相交流输出端与上述原始组输入端 U0 V0 WO连接;所述滞后组输出装置包括依次连接的滞后组零序抑制换向电感、滞后组 三相六脉波整流器、 滞后组三相逆变器和滞后组滤波电感, 滞后组零序抑制换向 电感的三相输入端与上述滞后组输出端 A2 B2 C2连接, 滞后组滤波电感的三 相交流输出端与上述滞后组输入端 U2 V2 W2连接; 所述同步控制装置设有四 组采样输入端, 分别与电源三相交流输入端、 和三路逆变的输出端连接; 所述同 步控制装置设有三组控制输出端, 三组控制输出端分别与超前组三相逆变器的控 制端、 原始组三相逆变器的控制端以及滞后组三相逆变器的控制端连接。
本发明具有如下特点:
1 )独特的对称结构九相自耦移相变压器, 其本体的额定功率不超过***总输 出功率的 17%
(2) 并列结构的***拓扑保证三组相位互差 20°的交流电源独立工作, 向负 载提供相同的功率, 精确实现了整个电源***的 " 18 脉波整流", 有效降低了电 网电流谐波。
(3 ) 并列结构的 DC/AC逆变单元既保证了三个并列通道的平衡, 又构成了 ***的冗余设计, 整个***可靠性高。
(4) 独特设计的工频 "四端口耦合隔离 Y/Y连接三相变压器", 实现了三个 独立并列通道交流输出的隔离耦合, 并且使得变压器三相输出独立, 适合不平衡 负载运用场合。
(5 )该工频电源***无平衡电抗器, ***设计规范对称, 冗余度高, 其拓扑 结构非常适合宽功率范围和 500KVA级以上的 UPS电源〕 :统'
附图说明
图 1 为本发明的结构框图;
图 2 本发明的九相自耦移相变压器的绕组结:
图 3 本发明的工频隔离变压器的绕组结构 ^
图 4 本发明的三相逆变电路示意图;
图 5 本发明的原理图。
附图标记说明:
1——九相自耦移相变压器 2- -超前组零序抑制换向电感
3——原始组零序抑制换向电感 4- -滞后组零序抑制换向电感
5——超前组三相六脉波整流器 6- -原始组三相六脉波整流器 ^ Β 0α一 口、
7 組一相八脉波 器 8 — 器
9——一原始组三相逆变器 10- 滞后组三相逆变器
11-一超前组滤波电感 12- —原始组滤波电感
13-一滞后组滤波电感 14- 同步控制装置
15-一工频隔离变压器 16- 牵禺 π单兀
17- 充电器 18——电源三相交流输出端
19-一旁路电路输入端 20——蓄电池组。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的说明。
实施例: 如图 1至图 4所示, 一种基于九相自耦移相变压器 1的对称式 UPS 电源***, 包括电源三相交流输入端、 电源三相交流输出端 18、 九相自耦移相变 压器 1、用于控制三相逆变器输出的同步控制装置 14、工频隔离变压器 15和三路 输出装置。 所述九相自耦移相变压器 1 为对称型九相自耦移相变压器 1, 九相自 耦移相变压器 1 的三相交流输入端与电源三相交流输入端连接。 九相自耦移相变 压器 1设有三组三相交流输出端分别为超前组输出端 Al、 B1和 Cl、 原始组输出 端 A0、 B0和 CO以及滞后组输出端 A2、 B2和 C2。 所述工频隔离变压器 15设有 三组三相交流输入端, 分别为超前组输入端 Ul、 VI和 Wl、 原始组 U0、 V0和 W0以及滞后组 U2、 V2和 W2。 所述工频隔离变压器 15的输出端11、 V和 W与 电源三相交流输出端 18连接; 所述三路输出装置为超前组输出装置、 原始组输出 装置和滞后组输出装置。 所述超前组输出装置包括依次连接的超前组零序抑制换 向电感 2、超前组三相六脉波整流器 5、超前组三相逆变器 8和超前组滤波电感 11 ; 超前组零序抑制换向电感 2的三相输入端与上述超前组输出端 Al、B1和 C1连接; 超前组滤波电感 11的三相交流输出端与上述超前组输入端 Ul、 VI和 W1连接。 所述原始组输出装置包括依次连接的原始组零序抑制换向电感 3、 原始组三相六 脉波整流器 6、 原始组三相逆变器 9和原始组滤波电感 12; 原始组零序抑制换向 电感 3的三相输入端与上述原始组输出端 A0、 B0和 CO连接; 原始组滤波电感 12的三相交流输出端与上述原始组输入端 U0、 V0和 W0连接。 所述滞后组输出 装置包括依次连接的滞后组零序抑制换向电感 4、滞后组三相六脉波整流器 7、滞 后组三相逆变器 10和滞后组滤波电感 13; 滞后组零序抑制换向电感 4的三相输 入端与上述滞后组输出端 A2、 B2和 C2连接; 滞后组滤波电感 13的三相交流输 出端与上述滞后组输入端 U2、 V2和 W2连接。 所述同步控制装置设有四组采样 输入端, 分别与电源三相交流输入端、 和超前组三相逆变器的输出端、 原始组三 以及 后 三 器 出 ; 设 三组控制输出端, 三组控制输出端分别与超前组三相逆变器的控制端、 原始组三 相逆变器的控制端以及滞后组三相逆变器的控制端连接。
九相自耦移相变压器 1将输入对称三相交流电源 (A,B,C)移相为三组相位对应 互差 20Q的对称三相交流电源: 原始组 (A0,B0,C0)、 超前组 (A1,B1,C1)和滞后组 (A2,B2,C2)。 原始组 (A0,B0,C0)相位与输入三相交流电源 (A,B,C)相同, 超前组 (A1,B1,C1)超前原始组 (A0,B0,C0)相位 20Q, 滞后组 (A2,B2,C2)滞后原始组 (A0,B0,C0)相位 20°。
如图 1所示, 原始组 (A0,B0,C0)、 超前组 (A1,B1,C1)和滞后组 (A2,B2,C2)信号 分别经过各自连接的零序抑制换向电感、三相六脉波整流器分别实现六脉波整流, 最后输入到各自连接的三相逆变器和滤波电感后, 经过工频隔离变压器 15, 在输 出时进行交流隔离并联和功率合成。 零序抑制换向电感的作用是抑制各组的零序 电流, 且有利于三相六脉波整流器内电流换向。
如图 2所示为本发明采用的 18脉波 ±20Q自耦移相变压器, 即九相自耦移相 变压器 1的绕组结构和连接示意图。 图 2中原始组 (A0,B0,C0)为变压器本体输入, 接市电 380V三相交流电源。 图 2中 (A1,B1,C1)和 (A2,B2,C2)分别为两组三相交流 输出。 (A1,B1,C1)各相对应超前原始组 (A0,B0,C0)相位 20Q, (A2,B2,C2)各相对应 滞后原始组 (A0,B0,C0)相位 20Q。 正常工作时, 将变压器本体的原始组 (A0,B0,C0) 接电网电压 (A,B,C)三相,这样在实现 18脉波整流效果时,该九相自耦移相变压器 1本体的功率容量不超过***总输出功率的 20%, 该九相自耦移相变压器 1本体 的结构和重量都极大的小于常规隔离型工频移相变压器。
进一步地,所述工频隔离变压器 15为工频四端口耦合隔离 Υ/Υ连接三相变压 器, 该工频隔离变压器 15设有三组交流输入端口和一组交流输出端口, 工频隔离 变压器 15的每相磁芯柱上设有三段独立的绕组,且该三段独立的绕组形成一组三 相交流输入端口, 每段独立绕组的两个端部为一个三相交流输入端口的两个输入 端, 工频隔离变压器 15的初、 次级的绕组关系为 "Υ/Υ"结构。
如图 3所示为本发明采用的四端口耦合隔离 Υ/Υ连接三相变压器结构和绕组 示意图。 图 3中 [U1,U0,U2]分别是三个通道 DC/AC逆变部分的三相正弦输出中的 初相角为 0Q的基准相输出, 它们被控制为相同的波形, 且与三相电网电源输入对 应同相。 按图 3中绕组配置, 输入与输出是 Y/Y型结构, 输出电压 U分别与三个 输入电压的变比为 w2/wl, 输出电流是三相 [U1,U0,U2]输入电流的并联叠加, 既 功率叠加。 同理, 该设计方法也运用于输出 V相与输入三相 [V1,V0,V2]的关系、 , , , T
出 日^湔入二 [W1,W0,W2] 。
进一步地, 所述基于九相自耦移相变压器 1的 UPS电源***, 还包括储能装 置, 所述储能装置包括充电器 17、 蓄电池组 20和控制电流定向移动的耦合单元 16。 充电器 17的三相交流输入端与电源三相交流输入端连接, 充电器 17的直流 输出端与蓄电池组 20连接。 所述耦合单元 16包括六个二极管, 其中三个二极管 的阳极均与蓄电池组 20的正极连接,且该三个二极管的阴极分别与超前组三相逆 变器 8的直流输入端的正极、 原始组三相逆变器 9的直流输入端的正极以及滞后 组三相逆变器 10 的直流输入端的正极连接。 另三个二极管的阴极均与蓄电池组 20的负极连接, 且该三个二极管的阳极分别与超前组三相逆变器 8的直流输入端 的负极、原始组三相逆变器 9的直流输入端的负极以及滞后组三相逆变器 10的直 流输入端的负极连接。 超前组三相逆变器 8的直流输入端的电压、 原始组三相逆 变器 9的直流输入端的电压以及滞后组三相逆变器 10的直流输入端的电压均大于 蓄电池组 20的电压。
实际操作中,正常情况下蓄电池组 20电压略低于各路的三相六脉波整流器输 出的直流电压, 对三相六脉波整流器的两直流输出端不产生影响。 当电网断电时, 蓄电池组 20通过二极管单向通路给三路三相逆变器供电。
进一步地, 所述储能装置还包括接触器 JK1、 JK2、 JK3 o 分别与超前组三相 逆变器 8的直流输入端的正极和负极连接的两个二极管 Dl、 D2为超前组二极管, 分别与原始组三相逆变器 9的直流输入端的正极和负极连接的两个二极管 D3、D4 为原始组二极管;分别与滞后组三相逆变器 10的直流输入端的正极和负极连接的 两个二极管 D5、 D6为滞后组二极管。 超前组二极管的两个二极管 Dl、 D2分别 并联接触器 JK1的主触头, 原始组二极管的两个二极管 D3、 D4分别并联接触器 JK2的主触头, 滞后组二极管的两个二极管 D5、 D6分别并联接触器 JK3的主触 头。
[0032] 设计接触器 JK1、 JK2、 JK3, 可以减少耦合单元 16的能耗; 如当系 统正常工作时,接触器 JK1、 JK2、 JK3处于断开状态,当电网断电时,接触器 JK1、 JK2、 JK3处于闭合状态, 蓄电池组 20直接对各路的三相逆变器进行供电, 耦合 单元 16处于短路状态; 减少耦合单元 16的二极管的能耗。
进一步地, 所述基于九相自耦移相变压器 1的 UPS电源***, 还包括旁路电 路, 旁路电路包括旁路静态开关装置, 旁路静态开关装置的输出端与电源三相交 流输出端 18连接。
设计旁路电路, 增加***的稳定性, 当各路的三相逆变器出现故障时, 旁路 开 、, 通 行 ; ι
市电连接, 也可以连接于其他供电设备。
进一步地, 所述超前组三相六脉波整流器 5、 原始组三相六脉波整流器 6和 滞后组三相六脉波整流器 7的电路均为可控三相整流电路。 所述可控三相整流电 路包括三个电感组成的电感组、 六个单向可控硅元件以及一个电容。 六个单向可 控硅元件中的单向可控硅元件两两同向串联形成三条支路, 每条支路的两端均分 别与电容的正极和负极连接并形成回路, 三个电感的一端分别连接于三条支路的 中间电势端, 三个电感的另一端分别连接于可控三相整流电路的输入端;
此处的可控三相整流电路的输入端相当于超前组三相六脉波整流器 5或原始 组三相六脉波整流器 6或滞后组三相六脉波整流器 7的输入端。
进一步地, 所述超前组三相逆变器 8的电路、 原始组三相逆变器 9的电路和 滞后组三相逆变器 10的电路均为三相全桥逆变电路。所述三相全桥逆变电路由三 个单相全桥电路组成单相全桥电路包括上桥臂和下桥臂, 且上桥臂和下桥臂分别 由两个绝缘栅双极型晶体管组成, 其中上桥臂的两个绝缘栅双极型晶体管的集电 极均与三相全桥逆变电路的直流输入端的正极连接, 且该两个绝缘栅双极型晶体 管的发射极分别与下桥臂两个绝缘栅双极型晶体管的集电极连接, 下桥臂两个绝 缘栅双极型晶体管的发射极分别与三相全桥逆变电路的直流输入端的负极连接; 每个单相全桥电路的输出端的两个输出端口分别与该单相全桥电路的上桥臂和下 桥臂的两个连接点连接。
在常规情况下, 需要利用大电感耦合的大电流平衡电抗器, 才能实现三组六 脉波整流器输出的直流侧并联, 这样便抵消了 18脉波整流带来的经济效益。本发 明避开了使用笨重的平衡电抗器, 分别采用三个主电路完全相同的并列独立逆变 通道 (参见附图 1 ), 这样三组六脉波整流就不能通过直流侧并联形成环流, 从而 使九相自耦移相变压器精确实现了 18脉波整流, 极大的减小了输入电流谐波。
图 1中 "同步控制装置 14 "是保证并列独立逆变通道按相同规律工作, 输出 各相频率、 相位和幅值对应相同的三相电压, 并使输出三相电压 (U,V,W)与输入电 网电压 (A,B,C)同步。
本发明采用三相全桥结构, 既提高***可靠性和冗余能力, 又使***有更强 的带不平衡负载能力, 还利于***进行模块化规范设计。
进一步地, 所述超前组滤波电感 11的电路、 原始组滤波电感 12的电路和滞 后组滤波电感 13的电路均为与单相全桥电路的输出端连接的 LC低通滤波电路; LC低通滤波电路由三路滤波电路组成, 每路的滤波电路主要由一个电感和一个电 设 两 入 和两 出 ; ί ' 入端分别与单相全桥结构的桥臂中点连接, 为一个输入端口; 每路滤波电路的两 个输出端为一个输出端口, 通过保险后分别与工频隔离变压器的三相交流输入端 口对应连接。
进一步地, 工频隔离变压器 15与电源三相交流输出端 18之间设有主路静态 开关装置, 主路静态开关装置主要由三个双向可控硅元件组成; 三个双向可控硅 元件的一端与工频隔离变压器 15的三相交流输出端连接,三个双向可控硅元件的 另一端分别与电源三相交流输出端 18连接。
进一步地, 所述旁路静态开关装置主要由三个双向可控硅元件组成; 三个双 向可控硅元件的一端与旁路电路输入端连接, 三个双向可控硅元件的另一端分别 与电源三相交流输出端 18连接。
下面结合附图 5对本发明的工作原理作进一步的详细说明。
如图 5所示, T1为 18脉波 ±20° 自耦移相变压器。 L1、SCR1、SCR3、SCR5、 SCR4、 SCR6、 SCR2和 CI组成超前组可控三相整流器; IGBT1〜IGBT12组成超 前组三相逆变器; L4、 C4、 L5、 C5、 L6、 C6组成了超前组逆变器的 3个单相逆 变全桥的 LC低通滤波电路。同样, L2、 SCR1,、 SCR3,、 SCR5,、 SCR4,、 SCR6,、 SCR2, 和 C2组成原始组三相六脉整流器; IGBT13〜IGBT24组成原始组三相逆 变器; L7、 C7、 L8、 C8、 L9、 C9组成了原始组逆变器的 3个单相逆变全桥的 LC 低通滤电路。 L3、 SCR1 "、 SCR3 "、 SCR5 "、 SCR4"、 SCR6"、 SCR2"禾卩 C3组成 滞后组三相六脉整流器; IGBT25〜IGBT36组成滞后组三相逆变器; L10、 C10、 Lll、 Cll、 L12、 C12组成了滞后组逆变器的 3个单相逆变全桥的 LC低通滤波器。 T2为四端口耦合隔离三相变压器, 超前组、 原始组、 滞后组的各单相全桥逆变器 输出通过该工频隔离变压器 15 将功率叠加在一起。 SCR7-9 为旁路静态开关, SCR10-12为逆变静态开关。
在整流输入三相电源正常的情况下, 三相电经过整流器输入开关 CB1、 熔断 器 FUSE1-3和检测整流器输入电流的霍尔电流传感器 HP1-3, 送到 18脉波 ±20
° 自耦移相变压器的输入端, 自耦移相变压器将输入三相交流电源移相为三组相 位对应互差 20° 的三相交流电源: 超前组 (U1,V1,W1)、 原始组 (U0,V0,W0)和滞后 组 (U2,V2,W2)。(图 5中省略了各路的零序抑制换向电感)超前组 (U1,V1,W1)三相 交流电经过超前组可控三相整流器整流成直流, 再经过超前组三相逆变器逆变成 交流电, 通过 LC低通滤波电路输出纯净三相电。 同理, 原始组 (U0,V0,W0)三相 交流电经过原始组三相六脉整流器整流成直流, 再经过原始组三相逆变器逆变成 ! 通 出 三 。 后 (u
经过滞后组三相六脉整流器整流成直流,再经过滞后组三相逆变器逆变成交流电, 通过 LC 低通滤波电路输出纯净三相电。 这三组输出的交流电在同步控制装置
14(图 5中未画出)的控制下, 与旁路输入交流电源同频同相, 幅值也相差很小, 通 过四端口耦合隔离三相变压器, 将功率叠加在一起, 经过逆变静态开关、 输出断 路器 CB3给负载供电。 同时, 整流输入三相电源经过隔离型充电器 17给蓄电池 组 20充电。
当整流输入三相电源不正常时, 超前组三相六脉整流器、 原始组三相六脉整 流器和滞后组三相六脉整流器都停止工作。 蓄电池通过二极管 Dl、 D2、 JK1给超 前组三相逆变器供电, 通过二极管 D3、 D4、 JK2给原始组三相逆变器供电, 通过 二极管 D5、 D6、 JK3给滞后组三相逆变器供电,保证三组逆变器能不间断的工作, 给负载的供电也不会中断。 如整流输入三相电源恢复正常, 超前组三相六脉整流 器、 原始组三相六脉整流器和滞后组三相六脉整流器恢复工作, JK1、 JK2、 JK3 断开, 充电器 17也恢复工作, 进入正常工作模式。 由于本 UPS***具有一定的 冗余性, 当其中任意一组三相六脉整流器或三相逆变器出现故障时, 其他的都能 正常工作。 由于采用 3个单相全桥组成三相全桥逆变电路, 能适应负载 100%不平 衡。如当三组三相逆变器均不能正常工作时, 逆变输出的三相静态开关 SCR10-12 会切断,旁路三相静态开关 SCR7-9导通, 由于此前逆变输出的三相电与旁路输入 的交流电源同频、 同相, 因此 UPS可不间断的切换到旁路工作, CB3为旁路输入 断路器。 当需要维护时, 可通过 UPS的维护旁路不间断给负载供电, CB4为维护 旁路的断路器。
以上仅是本申请的较佳实施例, 在此基础上的等同技术方案仍落入申请保护 范围。

Claims

WO 2013/155819 ^.. ^→ 上、 PCT/CN2012/082210 权 利 要 求 书
1. 一种基于九相自耦移相变压器的对称式 UPS电源***, 其特征在于: 其包 括电源三相交流输入端、 电源三相交流输出端、 九相自耦移相变压器、 用 于控制三相逆变器输出的同步控制装置、工频隔离变压器和三路输出装置; 所述九相自耦移相变压器为对称型九相自耦移相变压器, 九相自耦移相变 压器的三相交流输入端与电源三相交流输入端连接; 九相自耦移相变压器 设有三组三相交流输出端, 分别为超前组输出端 Al、 B1和 Cl, 和原始组 输出端 A0、 BO和 CO, 以及滞后组输出端 A2、 B2和 C2 ; 所述工频隔离变压 器设有三组三相交流输入端, 分别为超前组输入端 Ul、 VI和 Wl, 原始组 U0、 V0和 W0, 以及滞后组 U2、 V2和 W2; 所述工频隔离变压器的输出端 U、 V和 W与电源三相交流输出端连接;所述三路输出装置为超前组输出装置、 原始组输出装置和滞后组输出装置; 所述超前组输出装置包括依次连接的 超前组零序抑制换向电感、 超前组三相六脉波整流器、 超前组三相逆变器 和超前组滤波电感; 超前组零序抑制换向电感的三相输入端与上述超前组 输出端 Al、 B1和 C1连接, 超前组滤波电感的三相交流输出端与上述超前 组输入端 Ul、 VI和 W1连接; 所述原始组输出装置包括依次连接的原始组 零序抑制换向电感、 原始组三相六脉波整流器、 原始组三相逆变器和原始 组滤波电感, 原始组零序抑制换向电感的三相输入端与上述原始组输出端 A0、 BO和 CO连接, 原始组滤波电感的三相交流输出端与上述原始组输入 端 U0、 V0和 WO连接; 所述滞后组输出装置包括依次连接的滞后组零序抑 制换向电感、 滞后组三相六脉波整流器、 滞后组三相逆变器和滞后组滤波 电感, 滞后组零序抑制换向电感的三相输入端与上述滞后组输出端 A2、 B2 和 C2连接, 滞后组滤波电感的三相交流输出端与上述滞后组输入端 U2、 V2和 W2连接; 所述同步控制装置设有四组采样输入端, 分别与电源三相 交流输入端、 和超前组三相逆变器的输出端、 原始组三相逆变器的输出端 以及滞后组三相逆变器的输出端连接; 所述同步控制装置设有三组控制输 出端, 三组控制输出端分别与超前组三相逆变器的控制端、 原始组三相逆 变器的控制端以及滞后组三相逆变器的控制端连接。
2. 根据权利要求 1所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 所述工频隔离变压器为工频四端口耦合隔离 Y/Y连接三 相变压器, 该工频隔离变压器设有 U相、 V相和 W相磁性柱; 且该工频隔 离变压器每相磁芯柱上设有三个独立的完全相同的输入绕组和一个输出绕 组, 构成初、 次级绕组关系为 " Y/ Y"结构的四端口耦合隔离输出方式; U 相磁芯柱上的输入绕组分别与超前组三相逆变器输出的 U1相、原始组三相 逆变器输出的 U0相和滞后组三相逆变器输出的 U2相连接, U相磁芯柱上 的输出绕组为 u相输出; V相磁芯柱上的输入绕组分别与超前组三相逆变 器输出的 VI相、 原始组三相逆变器输出的 V0相和滞后组三相逆变器输出 的 V2相连接, V相磁芯柱上的输出绕组为 V相输出; W相磁芯柱上的输入 绕组分别与超前组三相逆变器输出的 相、 原始组三相逆变器输出的 wo 相和滞后组三相逆变器输出的 W2相连接, W相磁芯柱上的输出绕组输出 绕组为 w相输出。
3. 根据权利要求 2所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 还包括储能装置; 所述储能装置包括充电器、 蓄电池组 和控制电流定向移动的耦合单元; 充电器的三相交流输入端与电源三相交 流输入端连接, 充电器的直流输出端与蓄电池组连接; 所述耦合单元包括 六个二极管, 其中三个二极管的阳极均与蓄电池组的正极连接, 且该三个 二极管的阴极分别与超前组三相逆变器的直流输入端的正极、 原始组三相 逆变器的直流输入端的正极以及滞后组三相逆变器的直流输入端的正极连 接; 另三个二极管的阴极均与蓄电池组的负极连接, 且该三个二极管的阳 极分别与超前组三相逆变器的直流输入端的阴极、 原始组三相逆变器的直 流输入端的阴极以及滞后组三相逆变器的直流输入端的阴极连接; 超前组 三相逆变器的直流输入端的电压、 原始组三相逆变器的直流输入端的电压 以及滞后组三相逆变器的直流输入端的电压均大于蓄电池组的电压。
4. 根据权利要求 3所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 所述储能装置还包括接触器 JK1、 JK2、 JK3; 分别与超 前组三相逆变器的直流输入端的正极和负极连接的两个二极管 Dl、 D2为 超前组二极管; 分别与原始组三相逆变器的直流输入端的正极和负极连接 的两个二极管 D3、 D4为原始组二极管; 分别与滞后组三相逆变器的直流 输入端的正极和负极连接的两个二极管 D5、 D6为滞后组二极管; 超前组 二极管的两个二极管 Dl、 D2分别并联接触器 JK1的主触头, 原始组二极 管的两个二极管 D3、 D4分别并联接触器 JK2的主触头, 滞后组二极管的 两个二极管 D5、 D6分别并联接触器 JK3的主触头。
5. 根据权利要求 4所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 还包括旁路电路, 旁路电路包括旁路静态开关装置, 旁 路静态开关装置的输出端与电源三相交流输出端连接。
6. 根据权利要求 5所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 所述超前组三相六脉波整流器、 原始组三相六脉波整流 器和滞后组三相六脉波整流器的电路均为可控三相整流电路。 所述可控三 相整流电路包括三个电感组成的电感组、 六个单向可控硅元件以及一个电 容。六个单向可控硅元件中的单向可控硅元件两两同向串联形成三条支路, 每条支路的两端均分别与电容的正极和负极连接并形成回路, 三个电感的 一端分别连接于三条支路的中间电势端, 三个电感的另一端分别连接于可 控三相整流电路的输入端。
7. 根据权利要求 6所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 所述超前组三相逆变器的电路、 原始组三相逆变器的电 路和滞后组三相逆变器的电路均为三相全桥逆变电路; 所述三相全桥逆变 电路由三个单相全桥电路组成单相全桥电路包括上桥臂和下桥臂, 且上桥 臂和下桥臂分别由两个绝缘栅双极型晶体管组成, 其中上桥臂的两个绝缘 栅双极型晶体管的集电极均与三相全桥逆变电路的直流输入端的正极连 接, 且该两个绝缘栅双极型晶体管的发射极分别与下桥臂两个绝缘栅双极 型晶体管的集电极连接, 下桥臂的两个绝缘栅双极型晶体管的发射极分别 与三相全桥逆变电路的直流输入端的负极连接; 每个单相全桥电路的输出 端的两个输出端口分别与该单相全桥电路的上桥臂和下桥臂的两个连接点 连接。
8. 根据权利要求 7所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 所述超前组滤波电感的电路、 原始组滤波电感的电路和 滞后组滤波电感的电路均为与单相全桥电路的输出端连接的 LC低通滤波 电路; LC低通滤波电路由三路滤波电路组成, 每路的滤波电路主要由一个 电感和一个电容组成, 且每路滤波电路设有两个输入端和两个输出端; 每 路滤波电路的两个输入端分别与单相全桥结构的桥臂中点连接, 为一个输 入端口; 每路滤波电路的两个输出端为一个输出端口, 通过保险后分别与 工频隔离变压器的三相交流输入端口对应连接。
9. 根据权利要求 8所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统, 其特征在于: 工频隔离变压器与电源三相交流输出端之间设有主路静 态开关装置, 主路静态开关装置主要由三个双向可控硅元件组成; 三个双 O 2013/155819 一 ^ ^ Λ PCT/CN2012/082210 , 向可控硅元件的一端与工频隔呙变压器的三相交流输出端连接, 三个双向 可控硅元件的另一端分别与电源三相交流输出端连接。
根据权利要求 9所述的一种基于九相自耦移相变压器的对称式 UPS电源系 统,其特征在于:所述旁路静态开关装置主要由三个双向可控硅元件组成; 三个双向可控硅元件的一端与旁路电路输入端连接, 三个双向可控硅元件 的另一端分别与电源三相交流输出端连接。
PCT/CN2012/082210 2012-04-20 2012-09-27 一种基于九相自耦移相变压器的对称式ups电源*** WO2013155819A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12874540.3A EP2701276B1 (en) 2012-04-20 2012-09-27 Symmetrical ups power system based on nine-phase self-coupling phase-shifting transformer
US14/395,123 US9478353B2 (en) 2012-04-20 2012-09-27 Symmetric-type UPS power system based on a nine-phase phase-shifting autotransformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210117736.8 2012-04-20
CN201210117736.8A CN102624070B (zh) 2012-04-20 2012-04-20 一种基于九相自耦移相变压器的对称式ups电源***

Publications (1)

Publication Number Publication Date
WO2013155819A1 true WO2013155819A1 (zh) 2013-10-24

Family

ID=46563806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082210 WO2013155819A1 (zh) 2012-04-20 2012-09-27 一种基于九相自耦移相变压器的对称式ups电源***

Country Status (4)

Country Link
US (1) US9478353B2 (zh)
EP (1) EP2701276B1 (zh)
CN (1) CN102624070B (zh)
WO (1) WO2013155819A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624070B (zh) * 2012-04-20 2014-05-07 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源***
CN104253464B (zh) * 2013-06-28 2017-05-03 比亚迪股份有限公司 电动汽车之间相互充电的***及充电连接器
US9673658B2 (en) * 2014-03-06 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus
CN104361982B (zh) * 2014-10-24 2016-12-07 南京航空航天大学 一种12脉波自耦移相整流变压器
US10049811B2 (en) * 2015-03-20 2018-08-14 The Boeing Company Multi-phase autotransformer
CN108054928A (zh) * 2015-06-23 2018-05-18 张琴 基于载波移相技术无滤波器大功率变频岸电电源装置
US10345831B2 (en) * 2016-09-30 2019-07-09 Rockwell Automation Technologies, Inc. Methods and systems for using a tapped transformer to generate voltage sags
RU2655922C1 (ru) * 2017-02-01 2018-05-30 Дмитрий Иванович Панфилов Фазоповоротное устройство
CN107134780A (zh) * 2017-06-29 2017-09-05 西安交通大学 一种模块化中压三端口柔性多状态开关拓扑
US10665384B2 (en) * 2017-07-31 2020-05-26 Thales Voltage step-up autotransformer, and AC-to-DC converter comprising such an autotransformer
CN108900136A (zh) * 2018-07-31 2018-11-27 中车永济电机有限公司 一种多相压裂机组电驱动控制***
GB2579193B (en) * 2018-11-22 2021-12-15 Murata Manufacturing Co Multi-phase shift transformer based AC-DC converter
CN112737368A (zh) * 2020-12-09 2021-04-30 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高性能整流电源装置
US20220302845A1 (en) * 2021-03-18 2022-09-22 Product Development Associates, Inc. Unit level isolated bus transfer device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232786A (ja) * 1999-02-12 2000-08-22 Fuji Electric Co Ltd 12パルス電力変換装置
CN101138141A (zh) * 2005-03-09 2008-03-05 西门子公司 十二脉冲高压直流传输装置
CN100449923C (zh) * 2006-07-12 2009-01-07 哈尔滨九洲电气股份有限公司 失电时继续运行的变频器
CN201323531Y (zh) * 2008-12-29 2009-10-07 郑州电力机械厂 由三电平h桥功率单元模块直接构成的6kv高压变频器
CN102624070A (zh) * 2012-04-20 2012-08-01 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源***
CN202535132U (zh) * 2012-04-20 2012-11-14 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385064B1 (en) * 2001-05-07 2002-05-07 Rockwell Technologies, Llc Harmonic blocking reactor for nine-phase converter system
US7535738B2 (en) * 2006-08-23 2009-05-19 Rockwell Automation Technologies, Inc. Method and apparatus including multi-drive configurations for medium voltage loads
KR100973546B1 (ko) * 2008-06-09 2010-08-02 한국전력공사 배전변압기 및 저압선로 무정전 교체시스템 및 배전변압기 및 저압선로 무정전 교체방법
US8299732B2 (en) * 2009-01-15 2012-10-30 Rockwell Automation Technologies, Inc. Power conversion system and method
US8339820B2 (en) * 2009-11-04 2012-12-25 Rockwell Automation Technologies, Inc. Thirty-six pulse power transformer and power converter incorporating same
CN201536325U (zh) * 2009-11-23 2010-07-28 杨义根 单相用电器具的三相交流供电装置
CN102029926A (zh) * 2010-12-08 2011-04-27 浙江省电力试验研究院 电动汽车及分布式电源的标准化换流装置
US8730686B2 (en) * 2011-09-29 2014-05-20 Hamilton Sundstrand Corporation Dual-input nine-phase autotransformer for electric aircraft AC-DC converter
US8737097B1 (en) * 2012-11-29 2014-05-27 Yaskawa America, Inc. Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232786A (ja) * 1999-02-12 2000-08-22 Fuji Electric Co Ltd 12パルス電力変換装置
CN101138141A (zh) * 2005-03-09 2008-03-05 西门子公司 十二脉冲高压直流传输装置
CN100449923C (zh) * 2006-07-12 2009-01-07 哈尔滨九洲电气股份有限公司 失电时继续运行的变频器
CN201323531Y (zh) * 2008-12-29 2009-10-07 郑州电力机械厂 由三电平h桥功率单元模块直接构成的6kv高压变频器
CN102624070A (zh) * 2012-04-20 2012-08-01 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源***
CN202535132U (zh) * 2012-04-20 2012-11-14 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源***

Also Published As

Publication number Publication date
CN102624070B (zh) 2014-05-07
US9478353B2 (en) 2016-10-25
US20150069955A1 (en) 2015-03-12
CN102624070A (zh) 2012-08-01
EP2701276A4 (en) 2015-11-04
EP2701276A1 (en) 2014-02-26
EP2701276B1 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2013155819A1 (zh) 一种基于九相自耦移相变压器的对称式ups电源***
US9917534B2 (en) Power conversion device with a plurality of series circuits
CN102624258B (zh) 一种非隔离对称型自耦式18脉波整流电源***
US9502991B2 (en) Hybrid converter and wind power generating system
CN105490552B (zh) 一种基于mmc的固态变压器以及控制方法
CN111525826B (zh) 一种模块化电容换相换流器和方法
EP3387745B1 (en) System and method for integrating energy storage into modular power converter
CN102624248B (zh) 基于自耦移相变压器和双六脉波整流的ups电源
WO2012010053A1 (zh) 基于模块化多电平逆变器(mmc)的无变压器静止同步补偿器(statc0m)拓扑结构
WO2017024641A1 (zh) 一种三相整流升压电路及其控制方法以及不间断电源
WO2023134225A1 (zh) 一种低频输电***及其控制方式
CN202535279U (zh) 基于自耦移相变压器和双六脉波整流的ups电源
KR101297080B1 (ko) 직렬보상 하프 브릿지 다중 모듈 컨버터
CN100468947C (zh) 具有直流励磁功能的交流电机矩阵式控制器
CN106100361B (zh) 一种交直流变换电路及电力电子变压器
CN202535132U (zh) 一种基于九相自耦移相变压器的对称式ups电源***
Zhang et al. A thyristor-based auto-passing neutral section scheme with auxiliary transformers for AC electrified railway
CN202513840U (zh) 一种非隔离对称型自耦式18脉波整流电源***
Ismail et al. A review of recent HVDC tapping topologies
Hong et al. Multi-layer fault-tolerant control of MMC for shipboard MVDC power system
Chakraborty et al. Transformer Isolated Fault Tolerant Three Phase Active Front End Converter for EV Charging
Bakas et al. Design considerations and comparison of hybrid line-commutated and cascaded full-bridge converters with reactive-power compensation and active filtering capabilities
EP2904681A1 (en) System and method for a mesh power system
Gupta et al. Novel topologies of power electronic transformers with reduced switch-count
JPS596148B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012874540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012874540

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14395123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE