WO2013151175A1 - Silicon dioxide solar cell and glass plate having silicon dioxide solar cell structure - Google Patents

Silicon dioxide solar cell and glass plate having silicon dioxide solar cell structure Download PDF

Info

Publication number
WO2013151175A1
WO2013151175A1 PCT/JP2013/060584 JP2013060584W WO2013151175A1 WO 2013151175 A1 WO2013151175 A1 WO 2013151175A1 JP 2013060584 W JP2013060584 W JP 2013060584W WO 2013151175 A1 WO2013151175 A1 WO 2013151175A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon dioxide
solar cell
dioxide solar
glass
light
Prior art date
Application number
PCT/JP2013/060584
Other languages
French (fr)
Japanese (ja)
Inventor
信明 小松
朋子 伊藤
眞一郎 南條
Original Assignee
国際先端技術総合研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際先端技術総合研究所株式会社 filed Critical 国際先端技術総合研究所株式会社
Publication of WO2013151175A1 publication Critical patent/WO2013151175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a solar cell, and more particularly to a silicon dioxide solar cell using silicon dioxide and a glass plate having a silicon dioxide solar cell structure.
  • a dry solar cell using a semiconductor such as silicon is in a practical stage.
  • a semiconductor solar cell is high in conversion efficiency but expensive because it uses a high-purity material.
  • As a relatively inexpensive solar cell there is a wet solar cell using titanium dioxide (TiO 2 ) and an electrolyte.
  • FIG. 1 is a titanium dioxide solar cell having a basic structure
  • (b) is a titanium dioxide solar cell called an improved dye-sensitized type.
  • reference numeral 1 denotes a glass substrate, and a transparent conductive film 2 such as FTO is formed on one surface to form a photoelectrode.
  • 3 is a porous titanium dioxide sintered body.
  • Reference numeral 4 denotes an electrolytic solution. Generally, an iodine electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used.
  • Reference numeral 5 denotes a platinum counter electrode, which is formed on a glass substrate 7 on which a conductive film 6 such as FTO is formed. Further, 8 is a sealing material, and 9 is an external load such as a resistor.
  • a transparent conductive film 2 such as FTO is formed on one surface to form a photoelectrode.
  • Reference numeral 10 denotes a porous titanium dioxide sintered body to which a ruthenium complex dye is attached.
  • Reference numeral 4 denotes an electrolytic solution. Generally, an iodine electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used.
  • Reference numeral 5 denotes a platinum counter electrode, which is formed on a glass substrate 7 on which a conductive film 6 such as FTO is formed. Further, 8 is a sealing material, and 9 is an external load such as a resistor.
  • the ultraviolet light incident through the transparent conductive film 2 on the glass substrate 1 is absorbed by the porous titanium dioxide sintered body 3.
  • the porous titanium dioxide oxide sintered body 3 that has absorbed light changes from an electronic ground state to an excited state, and the excited electrons are extracted from the transparent conductive film 2 to the outside by diffusion, and pass through the load 9 to form a transparent conductive film. 6 to the platinum counter electrode 5.
  • Titanium dioxide has a photocatalytic function.
  • fused quartz treated with hydrohalic acid as a material having a photocatalytic function is disclosed in Japanese Patent Application Laid-Open Nos. 2004-290748 and 2004-290747. Yes.
  • the artificial quartz photocatalyst functions as a photocatalyst in a wider wavelength region of 200 to 800 nm than the photocatalyst using fused silica as a raw material disclosed in JP-A-2004-290748 and JP-A-2004-290747.
  • reference numerals 11 and 17 denote a 30 mm ⁇ 30 mm glass substrate on which a transparent conductive layer FTO (fluorine-doped tin oxide) layer 12 and an FTO layer 16 are formed, and the size of the solar cell is 20 mm ⁇ 20 mm.
  • FTO fluorine-doped tin oxide
  • n-type semiconductor layer 13 such as zinc oxide (ZnO) or titanium oxide (TiO 2 ) is formed on the light incident side FTO layer, and a platinum film is formed on the FTO layer 16 facing the light incident side FTO layer 12. 15 is formed.
  • a solar cell material 20 in which a glass containing SiO 2 and an electrolyte are mixed with a thickness of 0.15 to 0.20 mm is enclosed.
  • a material such as glass containing SiO 2 is immersed in a 5% hydrofluoric acid aqueous solution for 5 minutes, washed with water, dried, and pulverized so that the particle size becomes 0.2 mm or less. ing.
  • Electrolyte 0.1 mol to LiI, the I 2 0.05 mol, a liquid electrolyte prepared by adding 4-tert-butylpyridine 0.5mol, tetrabutylammonium iodide in 0.5mol acetonitrile solvent.
  • the silicon dioxide photovoltaic cell mechanism Details of the silicon dioxide photovoltaic cell mechanism are unknown, but it is absorbed when irradiated with sunlight having a wavelength of 200 to 800 nm, and electrons are transferred from the silicon dioxide side electrode to the counter electrode via the load. In other words, there is a phenomenon that current flows from the counter electrode toward the silicon dioxide side electrode.
  • the present inventors have discovered that artificial quartz grains and fused quartz grains that have been treated with hydrohalic acid exhibit a further excellent solar cell function by being finely powdered.
  • the present inventors have found that artificial quartz or glass finely pulverized to near the wavelength of light exhibits a further excellent function as a solar cell material.
  • silicon dioxide solar cells generate electricity using visible light to infrared light.
  • Glass plates are often used for daylighting of buildings, for daylighting / temperature control of green houses for plant cultivation, for dimming of lighting equipment for stage / studio / photographing, and for securing visibility of transportation devices such as automobiles.
  • the glass plates used in these devices transmit the necessary visible light, but transmit ultraviolet light and infrared light other than visible light.
  • the amount of energy in sunlight is as small as 6%, an object irradiated with ultraviolet light having a short wavelength and a large energy causes a chemical change, which may cause an adverse effect such as discoloration or embrittlement.
  • Infrared light which has 48% of the amount of energy in sunlight, has a long wavelength and low energy, so it does not cause chemical changes to the irradiated object, but it is a heat ray, so the temperature of the irradiated object Raise.
  • a silicon dioxide solar cell with a titanium dioxide solar cell in a tandem configuration and taking out the output from the silicon dioxide solar cell side electrode and the titanium dioxide solar cell side electrode, it extends from ultraviolet light to infrared light.
  • a solar cell that generates electricity by light in all areas is obtained.
  • the silicon dioxide solar cell shown in International Publication WO2011 / 049156 which is a prior art, uses a liquid electrolyte.
  • liquid electrolytes such as iodine, which are frequently used, are highly reactive. If the sealing is not complete, there is a risk of damage to peripheral devices due to leakage, or damage to peripheral devices when damaged. There is. This is a particularly serious problem in the case of window glass that blocks ultraviolet rays and infrared rays.
  • an object of the invention according to this application is to provide a silicon dioxide solar cell that does not use a liquid electrolyte.
  • an object of the present invention is to provide a silicon dioxide solar cell composite glass plate that does not use a liquid electrolyte.
  • an artificial quartz particle that is a crystal treated with hydrohalic acid or an amorphous crystal treated with hydrohalic acid, quartz glass, alkali-free glass, borosilicate glass, soda A silicon dioxide solar cell using lime glass or the like and not using a liquid electrolyte is provided.
  • dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc.
  • a solar cell that does not use a liquid electrolyte is provided by combining a silicon solar cell with a titanium dioxide solar cell in a tandem configuration.
  • dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc.
  • a dye-sensitized titanium dioxide solar cell in which a ruthenium complex dye is attached to a silicon solar cell is combined in a tandem configuration to provide a solar cell that does not use a liquid electrolyte.
  • artificial quartz particles that are crystalline treated with hydrohalic acid or amorphous glass treated with hydrohalic acid, quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc.
  • a glass plate having a silicon dioxide solar cell structure without using any electrolyte.
  • dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc.
  • a glass plate having a silicon dioxide solar cell structure in which a titanium dioxide solar cell is combined with a silicon solar cell in a tandem configuration and a liquid electrolyte is not used.
  • dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc.
  • a glass plate having a silicon dioxide solar cell structure in which a dye-sensitized titanium dioxide solar cell in which a ruthenium complex dye is attached to a silicon solar cell is combined in a tandem configuration and no liquid electrolyte is used.
  • Two conductive substrates are arranged with their respective conductive surfaces facing each other, at least one of the substrates is transparent and has a light incident side substrate, and the silicon dioxide particle molded body is disposed facing the light incident side substrate. Placed on the substrate.
  • Two conductive substrates are arranged with their respective conductive surfaces facing each other, at least one of the substrates is transparent and has a light incident side substrate, and the silicon dioxide particle molded body is disposed facing the light incident side substrate. Further, a porous titanium oxide sintered body is disposed on the light incident side substrate.
  • FIG. 1 The schematic diagram of the porous titanium dioxide solar cell and dye-sensitized porous titanium dioxide solar cell of a prior art.
  • Schematic diagram of a prior art silicon dioxide solar cell The schematic diagram of the glass which has the silicon dioxide solar cell of Example 1, and the silicon dioxide solar cell structure of Example 2.
  • FIG. The schematic diagram of the glass which has the solar cell using the dye-sensitized porous titanium dioxide and silicon dioxide of Example 5, and the silicon dioxide solar cell structure of Example 6.
  • FIG. 3 shows, as Example 1, a silicon dioxide solar cell and a silicon dioxide solar cell composite glass obtained by improving the silicon dioxide solar cell shown in FIG.
  • 11 and 17 are glass substrates each having a transparent conductive film 12 such as FTO and a transparent conductive film 16 such as FTO, and the transparent conductive film 12 and the transparent conductive film 16 function as power extraction electrodes.
  • the glass substrates 11 and 12 are arranged so that the transparent conductive film 12 on the glass substrate 11 and the FTO film 16 on the glass substrate 17 face each other.
  • Reference numeral 21 denotes a silicon dioxide (SiO 2 ) fired body having a thickness of 0.15 to 0.20 mm, and is disposed on the glass substrate 17 on the side where no light enters.
  • a platinum (Pt) film 15 is formed as a charge extraction electrode on the transparent conductive film 16 on the silicon dioxide side.
  • 18 is a sealing material, and 19 is an external load.
  • the silicon dioxide fired body 21 is made of 5% hydrofluoric acid aqueous solution of glass particles such as quartz crystal, non-alkali glass, borosilicate glass, soda lime, etc., which are crystalline or amorphous crystalline silicon dioxide. What was immersed for 5 minutes, washed with water, dried, and then pulverized to a particle size of 500 nm or less was used. Hydrochloric acid other than hydrofluoric acid can be used as the hydrohalic acid in the aqueous solution to be immersed.
  • the liquid electrolyte is once injected into the cell when the solar cell is manufactured. However, when it is used as a silicon dioxide solar cell and a silicon dioxide solar cell composite glass plate for removal, a liquid electrolyte is present in the cell. Although not, some electrolyte components remain.
  • Artificial quartz particles having a particle size of about 0.2 to 0.5 mm can be used, and those obtained by mixing with ethanol, applying onto the platinum electrode 15 and drying can be used without firing.
  • the light incident from the light incident side glass substrate 11 enters the silicon dioxide 21 and generates electricity.
  • the silicon dioxide solar cell of Example 1 has a short circuit current of 85 ⁇ A when an artificial quartz particle size is 0.2 mm or less, an open circuit voltage of 470 mV, and a short circuit of 348 ⁇ A when the particle size is 500 nm or less. A current, an open circuit voltage of 620 mV, was obtained.
  • the inventors measured the short-circuit current of an artificial quartz solar cell, which is a silicon dioxide solar cell, with a 300 W incandescent bulb, which is a light source that does not contain components in the ultraviolet region, at an illuminance almost equal to direct sunlight.
  • an open-circuit voltage of 400 mV and a short-circuit current of 0.5 ⁇ A were observed, respectively, and it was confirmed that the silicon dioxide solar cell was generated only by infrared light. For this reason, the silicon dioxide solar cell generates electricity by using light that does not contain components in the ultraviolet region without using a liquid electrolyte.
  • the configuration of the glass plate having the silicon dioxide solar cell structure according to the second embodiment is not different from the configuration of the silicon dioxide solar cell according to the first embodiment, the description thereof is omitted.
  • the silicon dioxide solar cell of Example 3 will be described with reference to FIG.
  • the solar cell of Example 3 is a combination of the silicon dioxide solar cell of Example 1 and the titanium dioxide solar cell of the prior art shown in FIG.
  • 11 is a transparent substrate made of glass or resin, and a transparent electrode film 12 such as FTO is formed on one surface to serve as a light incident side electrode.
  • 13 is porous titanium dioxide solidified by means such as sintering.
  • Reference numeral 21 denotes artificial quartz particles having a particle size of 0.2 mm or less, which are mixed with ethanol, applied onto the electrode 15 made of platinum or the like, and dried.
  • 16 is a transparent electrode such as FTO
  • 17 is a substrate made of glass or resin.
  • 18 is a sealing material
  • 19 is an external load.
  • Ultraviolet light incident from the light incident side transparent substrate 11 enters the porous titanium dioxide 13 to generate electricity, and ultraviolet light and visible light that have not contributed to the electromotive force enter the silicon dioxide 21 to generate electricity.
  • the silicon dioxide solar cell of Example 3 can be generated by light in the ultraviolet to visible light region.
  • the short circuit current of 20 ⁇ A and the open circuit voltage of 417 mV were obtained by the silicon dioxide solar cell of Example 3 irradiated with light of 1 kw / 1 m 2 , which is a solar constant, by a solar simulator.
  • the liquid electrolyte is once injected into the cell when the solar cell is manufactured. However, when it is used as a silicon dioxide solar cell and a silicon dioxide solar cell composite glass plate for removal, a liquid electrolyte is present in the cell. Although not, some electrolyte components remain.
  • Example 4 Since the configuration of the glass plate having the silicon dioxide solar cell structure according to Example 4 is the same as the configuration of the silicon dioxide solar cell according to Example 3, the description thereof is omitted.
  • the silicon dioxide solar cell of Example 5 will be described with reference to FIG.
  • the silicon dioxide solar cell of Example 5 is a solar cell in which a ruthenium complex dye is attached to a titanium dioxide sintered body of the silicon dioxide solar cell of Example 3.
  • 11 is a transparent substrate made of glass or resin, and a transparent electrode film 12 such as FTO is formed on one surface to serve as a light incident side electrode.
  • Reference numeral 23 denotes a titanium dioxide sintered body obtained by attaching a ruthenium complex dye to porous titanium dioxide that has been solidified by means such as sintering.
  • Reference numeral 21 denotes artificial quartz particles having a particle size of 0.2 mm or less, which are mixed with ethanol, applied onto the electrode 15 made of platinum or the like and dried.
  • 16 is a transparent electrode such as FTO
  • 17 is a substrate made of glass or resin.
  • 18 is a sealing material
  • 19 is an external load.
  • Ultraviolet light incident from the light incident side transparent substrate 11 enters the porous titanium dioxide 23 to generate electricity, and ultraviolet light and visible light that have not contributed to the electromotive force enter the silicon dioxide 21 to generate electricity.
  • the silicon dioxide solar cell of Example 3 can be generated by light in the ultraviolet to visible light region.
  • the liquid electrolyte is once injected into the cell when the solar cell is manufactured. However, when it is used as a silicon dioxide solar cell and a silicon dioxide solar cell composite glass plate for removal, a liquid electrolyte is present in the cell. Although not, some electrolyte components remain.
  • the container for containing the solar cell material and the electrolyte is made of a light transmissive material on the light incident side and a light transmissive or light opaque material on the light non-incident side.
  • Glass, plastics, amorphous silicon, and polyester film can be used as the light-transmitting material, and a metal plate such as stainless steel and nickel is used as the light-impermeable material.
  • Transparent conductor Most of the glass and plastic used as the light-transmitting material do not have conductivity, and when a material having no conductivity is used, it is necessary to impart conductivity.
  • carbon-based materials such as AZO (Al—ZN—O), carbon nanotubes, graphene, or conductive PET films can be used as light transmissive and conductive materials
  • a transparent conductive material such as ITO, carbon nanotube, or graphene is used, and an electrode formed on a transparent body such as glass or plastic is used. The transparent electrode is provided inside the solar cell.
  • the side facing the light incident side of the solar cell storage container is a transparent electrode such as FTO, ITO, carbon nanotube, or graphene formed on a transparent material such as glass or plastic when it is necessary to transmit light.
  • a transparent electrode such as FTO, ITO, carbon nanotube, or graphene formed on a transparent material such as glass or plastic when it is necessary to transmit light.
  • a metal plate on which a charge extracting conductor such as carbon nanotube or graphene is formed is used.
  • the electric charge extracting conductor is provided inside the solar cell.
  • the silicon dioxide particles are not treated with the hydrohalic acid, the silicon dioxide particles are pulverized to an average particle size of several tens of nanometers.
  • the treatment of silicon dioxide particles with hydrohalic acid can be carried out after pulverization, not before pulverization.
  • the silicon dioxide layer can be used even if a powder such as artificial quartz is mixed with platinum powder with ethanol and baked.
  • a silicon dioxide particle fired body having a particle size of about 0.5 mm can be used.
  • Counter electrode In addition to zinc oxide (ZnO), titanium oxide (TiO 2 ), copper oxide (CuO), magnesium oxide (MgO), strontium titanate (SrTiO 3 ), carbon nitride, graphene, etc. are used as the semiconductor layer for the counter electrode. Is possible.
  • the silicon dioxide fired body is disposed on the surface where light does not enter. Since there is no absolute reason for this arrangement, the silicon dioxide fired body can be arranged on the surface on which light is incident.
  • a useful solar cell can be obtained by being able to generate electricity by light in all regions from ultraviolet to infrared. .

Abstract

[Problem] To provide a silicon dioxide solar cell and a glass plate having a silicon dioxide solar cell structure that are easy to use. [Solution] A silicon dioxide solar cell is configured by: arranging two electroconductive substrates so that the respective electroconductive surfaces face each other, where at least one of the substrates is a transparent light-entry-side substrate; and arranging a silicon dioxide particle compact on the substrate that is arranged so as to face the light-entry-side substrate. A porous titanium oxide sintered body is then arranged on the light-entry-side substrate. A glass plate having a silicon dioxide solar cell structure is configured by: arranging two electroconductive substrates so that the respective electroconductive surfaces face each other, where at least one of the substrates is a transparent light-entry-side substrate; and arranging a silicon dioxide particle compact on the substrate that is arranged so as to face the light-entry-side substrate. A porous titanium oxide sintered body is then arranged on the light-entry-side substrate. The liquid electrolyte is first injected when the cell is manufactured, and then removed. As a result, the electrolyte in liquid form is not present the cell, but some of the electrolyte component remains. This silicon dioxide solar cell and glass plate having a silicon dioxide solar cell structure do not involve use of a liquid electrolyte, and are therefore easy to use.

Description

2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル構造を有するガラス板Glass plate having silicon dioxide solar cell and silicon dioxide solar cell structure
 本発明は、ソーラーセルに関し、特に2酸化ケイ素を用いた2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル構造を有するガラス板に関するものである。 The present invention relates to a solar cell, and more particularly to a silicon dioxide solar cell using silicon dioxide and a glass plate having a silicon dioxide solar cell structure.
 シリコン等の半導体を用いた乾式ソーラーセルが実用段階にある。半導体ソーラーセルは変換効率が高い反面、高純度の材料を使用するため高価である。
 比較的安価なソーラーセルとして2酸化チタン(TiO)と電解質を用いた湿式ソーラーセルがある。
A dry solar cell using a semiconductor such as silicon is in a practical stage. A semiconductor solar cell is high in conversion efficiency but expensive because it uses a high-purity material.
As a relatively inexpensive solar cell, there is a wet solar cell using titanium dioxide (TiO 2 ) and an electrolyte.
 図1により2酸化チタンソーラーセルの構成を説明する。
 図1において、(a)は基本的な構成の2酸化チタンソーラーセルであり、(b)に示すのは改良された色素増感型と呼ばれる2酸化チタンソーラーセルである。 (a)に示した基本的構成の2酸化チタンソーラーセルにおいて、1はガラス基板であり1方の面にFTO等の透明導電膜2が形成され、光電極とされる。3は多孔質2酸化チタン焼結体である。4は電解液であり、一般的には沃化カリウム水溶液に沃素を溶解した沃素系電解質が用いられる。5は白金対向電極であり、FTO等の導電膜6が形成されたガラス基板7上に形成されている。また、8は封止材、9は抵抗器等の外部負荷である。
The structure of the titanium dioxide solar cell will be described with reference to FIG.
In FIG. 1, (a) is a titanium dioxide solar cell having a basic structure, and (b) is a titanium dioxide solar cell called an improved dye-sensitized type. In the titanium dioxide solar cell having the basic configuration shown in FIG. 1A, reference numeral 1 denotes a glass substrate, and a transparent conductive film 2 such as FTO is formed on one surface to form a photoelectrode. 3 is a porous titanium dioxide sintered body. Reference numeral 4 denotes an electrolytic solution. Generally, an iodine electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used. Reference numeral 5 denotes a platinum counter electrode, which is formed on a glass substrate 7 on which a conductive film 6 such as FTO is formed. Further, 8 is a sealing material, and 9 is an external load such as a resistor.
 (b)に示した色素増感2酸化チタンソーラーセルにおいて、1はガラス基板であり1方の面にFTO等の透明導電膜2が形成され、光電極とされる。10はルテニウム錯体色素を付着させた多孔質2酸化チタン焼結体である。4は電解液であり、一般的には沃化カリウム水溶液に沃素を溶解した沃素系電解質が用いられる。5は白金対向電極であり、FTO等の導電膜6が形成されたガラス基板7上に形成されている。また、8は封止材、9は抵抗器等の外部負荷である。 In the dye-sensitized titanium dioxide solar cell shown in (b), 1 is a glass substrate, and a transparent conductive film 2 such as FTO is formed on one surface to form a photoelectrode. Reference numeral 10 denotes a porous titanium dioxide sintered body to which a ruthenium complex dye is attached. Reference numeral 4 denotes an electrolytic solution. Generally, an iodine electrolyte in which iodine is dissolved in an aqueous potassium iodide solution is used. Reference numeral 5 denotes a platinum counter electrode, which is formed on a glass substrate 7 on which a conductive film 6 such as FTO is formed. Further, 8 is a sealing material, and 9 is an external load such as a resistor.
 ガラス基板1上の透明導電膜2を透過して入射した紫外光は多孔質2酸化チタン焼結体3に吸収される。光を吸収した多孔質2酸化チタン焼結体3は電子的な基底状態から励起状態となり、励起された電子は拡散により透明導電膜2から外部へ取り出され、負荷9を経由して透明導電膜6から白金対向電極5へ導かれる。 The ultraviolet light incident through the transparent conductive film 2 on the glass substrate 1 is absorbed by the porous titanium dioxide sintered body 3. The porous titanium dioxide oxide sintered body 3 that has absorbed light changes from an electronic ground state to an excited state, and the excited electrons are extracted from the transparent conductive film 2 to the outside by diffusion, and pass through the load 9 to form a transparent conductive film. 6 to the platinum counter electrode 5.
 2酸化チタンは光触媒機能を有しており、同様に光触媒機能を有する材料としてハロゲン化水素酸で処理された溶融石英が特開2004-290748号公報及び特開2004-290747号公報に示されている。 Titanium dioxide has a photocatalytic function. Similarly, fused quartz treated with hydrohalic acid as a material having a photocatalytic function is disclosed in Japanese Patent Application Laid-Open Nos. 2004-290748 and 2004-290747. Yes.
 同様に、光触媒能を有する材料としてフッ化水素酸で処理された人工水晶が、国際公開公報WO2005/089941号に示されている。 Similarly, an artificial quartz treated with hydrofluoric acid as a material having photocatalytic ability is disclosed in International Publication No. WO2005 / 089941.
 人工水晶光触媒は、特開2004-290748号公報及び特開2004-290747号公報に示された溶融石英を原材料とする光触媒よりもさらに広い200~800nmという波長領域で光触媒として機能する。 The artificial quartz photocatalyst functions as a photocatalyst in a wider wavelength region of 200 to 800 nm than the photocatalyst using fused silica as a raw material disclosed in JP-A-2004-290748 and JP-A-2004-290747.
 本発明者等は、2酸化ケイ素である人工水晶又は溶融石英が、光起電能を有することを発見し、国際公開WO2011/049156号公報に記載された2酸化ケイ素ソーラーセルを提案した。 The present inventors have discovered that artificial quartz or fused quartz, which is silicon dioxide, has photovoltaic ability, and proposed a silicon dioxide solar cell described in International Publication No. WO2011 / 049156.
 図2により、国際公開WO2011/049156号公報に記載されたソーラーセルを説明する。
 この図において、11及び17は透明導電層FTO(フッ素ドープ酸化錫)層12及びFTO層16が形成された30mm×30mmのガラス基板であり、ソーラーセルの大きさは20mm×20mmである。
With reference to FIG. 2, a solar cell described in International Publication No. WO2011 / 049156 will be described.
In this figure, reference numerals 11 and 17 denote a 30 mm × 30 mm glass substrate on which a transparent conductive layer FTO (fluorine-doped tin oxide) layer 12 and an FTO layer 16 are formed, and the size of the solar cell is 20 mm × 20 mm.
 光入射側のFTO層には酸化亜鉛(ZnO),酸化チタン(TiO)等のn型半導体層13が形成されており、光入射側FTO層12と対向するFTO層16上には白金膜15が形成されている。 An n-type semiconductor layer 13 such as zinc oxide (ZnO) or titanium oxide (TiO 2 ) is formed on the light incident side FTO layer, and a platinum film is formed on the FTO layer 16 facing the light incident side FTO layer 12. 15 is formed.
 n型半導体層25と白金膜26の間に0.15~0.20mmの厚さでSiOを含むガラスと電解質を混合したソーラーセル材料20が封入されている。 Between the n-type semiconductor layer 25 and the platinum film 26, a solar cell material 20 in which a glass containing SiO 2 and an electrolyte are mixed with a thickness of 0.15 to 0.20 mm is enclosed.
 ソーラーセル材料27は、SiOを含むガラス等の粒を5%のフッ化水素酸水溶液に5分間浸漬し、水洗後に乾燥させ、粒径が0.2mm以下になるように粉砕したものを用いている。 As the solar cell material 27, a material such as glass containing SiO 2 is immersed in a 5% hydrofluoric acid aqueous solution for 5 minutes, washed with water, dried, and pulverized so that the particle size becomes 0.2 mm or less. ing.
 電解質は、LiIを0.1mol、Iを0.05mol,4-tert-ブチルピリジンを0.5mol,テトラブチルアンモニウムヨージドを0.5molアセトニトリル溶媒に添加した液体電解質である。 Electrolyte, 0.1 mol to LiI, the I 2 0.05 mol, a liquid electrolyte prepared by adding 4-tert-butylpyridine 0.5mol, tetrabutylammonium iodide in 0.5mol acetonitrile solvent.
 2酸化ケイ素の光電池機構の詳細は不明であるが、波長が200~800nmである太陽光が照射されると吸収され、2酸化ケイ素側の電極から負荷を経由して対向電極に向かって電子が流れる、いいかえれば、対向電極から2酸化ケイ素側の電極に向かって電流が流れるという現象がある。 Details of the silicon dioxide photovoltaic cell mechanism are unknown, but it is absorbed when irradiated with sunlight having a wavelength of 200 to 800 nm, and electrons are transferred from the silicon dioxide side electrode to the counter electrode via the load. In other words, there is a phenomenon that current flows from the counter electrode toward the silicon dioxide side electrode.
 ソーラーセル材料としては、人工水晶が最も有用であるが、溶融石英ガラス,ソーダ石灰ガラス,無アルカリガラス,ホウケイ酸ガラスでも、起電する。 人工 Artificial quartz is the most useful solar cell material, but molten quartz glass, soda-lime glass, alkali-free glass, and borosilicate glass can also generate electricity.
特開2004-290748号公報JP 2004-290748 A 特開2004-290747号公報JP 2004-290747 A 国際公開WO2005/089941号公報International Publication WO2005 / 089941 国際公開WO2011/049156号公報International Publication WO2011 / 049156
 本発明者等は、ハロゲン化水素酸処理をした人工水晶粒及び溶融石英粒は、微粉末化することにより、さらに優れたソーラーセル機能を発揮することを発見した。 The present inventors have discovered that artificial quartz grains and fused quartz grains that have been treated with hydrohalic acid exhibit a further excellent solar cell function by being finely powdered.
 本発明者等は、光の波長近くにまで微粉砕された人工水晶あるいはガラスがソーラーセル材料としてさらに優れた機能を発揮することを発見した。 The present inventors have found that artificial quartz or glass finely pulverized to near the wavelength of light exhibits a further excellent function as a solar cell material.
 本発明者等は2酸化ケイ素ソーラーセルが可視光~赤外光を利用して起電することを発見した。 The present inventors have discovered that silicon dioxide solar cells generate electricity using visible light to infrared light.
 建築物の採光用、植物栽培用グリーンハウスの採光・温調用、舞台・スタジオ・撮影用照明器具の調光用、自動車等の輸送装置の視界確保用に、ガラス板が多用されている。 Glass plates are often used for daylighting of buildings, for daylighting / temperature control of green houses for plant cultivation, for dimming of lighting equipment for stage / studio / photographing, and for securing visibility of transportation devices such as automobiles.
 これらの装置に用いられているガラス板は必要な可視光を透過させるが、可視光以外の紫外光及び赤外光を透過させる。太陽光中のエネルギー量は6%と少ないが、波長が短くエネルギーが大きい紫外光により照射された物体は化学変化を起こし、変色あるいは脆化等の悪影響が生じることがある。 The glass plates used in these devices transmit the necessary visible light, but transmit ultraviolet light and infrared light other than visible light. Although the amount of energy in sunlight is as small as 6%, an object irradiated with ultraviolet light having a short wavelength and a large energy causes a chemical change, which may cause an adverse effect such as discoloration or embrittlement.
 太陽光中のエネルギー量として48%もある赤外光は波長が長くエネルギーが小さいため照射された物体に対して化学変化を起こさせることは少ないが、熱線であるため照射された物体の温度を上昇させる。 Infrared light, which has 48% of the amount of energy in sunlight, has a long wavelength and low energy, so it does not cause chemical changes to the irradiated object, but it is a heat ray, so the temperature of the irradiated object Raise.
 2酸化ケイ素ソーラーセルに2酸化チタンソーラーセルをタンデム構成で組みあわせ、2酸化ケイ素ソーラーセル側の電極と2酸化チタンソーラーセル側の電極とから出力を取り出すことにより、紫外光から赤外光にわたる全ての領域の光によって起電する、ソーラーセルを得る。 Combining a silicon dioxide solar cell with a titanium dioxide solar cell in a tandem configuration and taking out the output from the silicon dioxide solar cell side electrode and the titanium dioxide solar cell side electrode, it extends from ultraviolet light to infrared light. A solar cell that generates electricity by light in all areas is obtained.
 先行技術である国際公開WO2011/049156号公報に示した2酸化ケイ素ソーラーセルは液体の電解質を用いている。また、多用される沃素係を初めとする液体電解質は反応性が高いため、封止が完全でないと漏液による周辺機器への影響、あるいは破損した場合の周辺機器の汚損等の被害が生じるおそれがある。
 これは、紫外線及び赤外線を遮断する窓ガラスの場合には特に大きな問題となる。
The silicon dioxide solar cell shown in International Publication WO2011 / 049156, which is a prior art, uses a liquid electrolyte. In addition, liquid electrolytes such as iodine, which are frequently used, are highly reactive. If the sealing is not complete, there is a risk of damage to peripheral devices due to leakage, or damage to peripheral devices when damaged. There is.
This is a particularly serious problem in the case of window glass that blocks ultraviolet rays and infrared rays.
 発明者等は2酸化ケイ素ソーラーセルについてさらに検討を加えた結果、液体電解質を用いなくても起電が可能であることを見出した。 As a result of further investigation on the silicon dioxide solar cell, the inventors have found that it is possible to generate electricity without using a liquid electrolyte.
 このことはソーラーセルとして使用する際に有用であるだけでなく、窓ガラスに用いたときにはさらに有用である。 This is not only useful when used as a solar cell, but more useful when used for window glass.
 この知見に基づいて、この出願に係る発明は液体電解質を用いない2酸化ケイ素ソーラーセルを提供することを課題とする。 Based on this knowledge, an object of the invention according to this application is to provide a silicon dioxide solar cell that does not use a liquid electrolyte.
 さらに、この出願に係る発明は液体電解質を用いない2酸化ケイ素ソーラーセル複合ガラス板を提供することを課題とする。 Furthermore, an object of the present invention is to provide a silicon dioxide solar cell composite glass plate that does not use a liquid electrolyte.
 これらの課題を解決するためにこの出願においては、ハロゲン化水素酸処理した結晶質である人工水晶粒子あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等を用い、液状の電解質を用いない2酸化ケイ素ソーラーセルを提供する。 In order to solve these problems, in this application, an artificial quartz particle that is a crystal treated with hydrohalic acid or an amorphous crystal treated with hydrohalic acid, quartz glass, alkali-free glass, borosilicate glass, soda A silicon dioxide solar cell using lime glass or the like and not using a liquid electrolyte is provided.
 この出願においてはさらに、ハロゲン化水素酸処理した結晶質である人工水晶粒子あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等からなる2酸化ケイ素ソーラーセルに2酸化チタンソーラーセルをタンデム構成で組み合わせ、液状の電解質を用いないソーラーセルを提供する。 Further, in this application, dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc. A solar cell that does not use a liquid electrolyte is provided by combining a silicon solar cell with a titanium dioxide solar cell in a tandem configuration.
 この出願においてはさらに、ハロゲン化水素酸処理した結晶質である人工水晶粒子あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等からなる2酸化ケイ素ソーラーセルにルテニウム錯体色素を付着させた色素増感2酸化チタンソーラーセルをタンデム構成で組み合わせ、液状の電解質を用いないソーラーセルを提供する。 Further, in this application, dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc. A dye-sensitized titanium dioxide solar cell in which a ruthenium complex dye is attached to a silicon solar cell is combined in a tandem configuration to provide a solar cell that does not use a liquid electrolyte.
 この出願においてはさらに、ハロゲン化水素酸処理した結晶質である人工水晶粒子あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等を用い、液状の電解質を用いない2酸化ケイ素ソーラーセル構造を有するガラス板を提供する。 In this application, further, artificial quartz particles that are crystalline treated with hydrohalic acid or amorphous glass treated with hydrohalic acid, quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc. Provided is a glass plate having a silicon dioxide solar cell structure without using any electrolyte.
 この出願においてはさらに、ハロゲン化水素酸処理した結晶質である人工水晶粒子あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等からなる2酸化ケイ素ソーラーセルに2酸化チタンソーラーセルをタンデム構成で組み合わせ、液状の電解質を用いない2酸化ケイ素ソーラーセル構造を有するガラス板を提供する。 Further, in this application, dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc. Provided is a glass plate having a silicon dioxide solar cell structure in which a titanium dioxide solar cell is combined with a silicon solar cell in a tandem configuration and a liquid electrolyte is not used.
 この出願においてはさらに、ハロゲン化水素酸処理した結晶質である人工水晶粒子あるいはハロゲン化水素酸処理した非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラス等からなる2酸化ケイ素ソーラーセルにルテニウム錯体色素を付着させた色素増感2酸化チタンソーラーセルをタンデム構成で組み合わせ、液状の電解質を用いない2酸化ケイ素ソーラーセル構造を有するガラス板を提供する。 Further, in this application, dioxygenated crystal grains made of hydrohalic acid-treated crystalline quartz or hydrohalic acid-treated amorphous quartz glass, alkali-free glass, borosilicate glass, soda-lime glass, etc. Provided is a glass plate having a silicon dioxide solar cell structure in which a dye-sensitized titanium dioxide solar cell in which a ruthenium complex dye is attached to a silicon solar cell is combined in a tandem configuration and no liquid electrolyte is used.
 この出願に係る発明の2酸化ケイ素ソーラーセルの具体的な特徴は以下のとおりである。 The specific features of the silicon dioxide solar cell of the invention according to this application are as follows.
 導電性を有する2枚の基板を各々の導電面を向かい合わせて配置し、基板の少なくとも一方を透明で光入射側基板とし、2酸化ケイ素粒成形体を光入射側基板と向かい合わせて配置された基板上に配置する。 Two conductive substrates are arranged with their respective conductive surfaces facing each other, at least one of the substrates is transparent and has a light incident side substrate, and the silicon dioxide particle molded body is disposed facing the light incident side substrate. Placed on the substrate.
 導電性を有する2枚の基板を各々の導電面を向かい合わせて配置し、基板の少なくとも一方を透明で光入射側基板とし、2酸化ケイ素粒成形体を光入射側基板と向かい合わせて配置された基板上に配置し、さらに、光入射側基板上に多孔質酸化チタン焼結体を配置する。 Two conductive substrates are arranged with their respective conductive surfaces facing each other, at least one of the substrates is transparent and has a light incident side substrate, and the silicon dioxide particle molded body is disposed facing the light incident side substrate. Further, a porous titanium oxide sintered body is disposed on the light incident side substrate.
 この出願に係る発明の2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル複合ガラス板は液体電解質を用いていないため漏液の問題が無い。 Since the silicon dioxide solar cell and the silicon dioxide solar cell composite glass plate of the invention according to this application do not use a liquid electrolyte, there is no problem of leakage.
先行技術の多孔質2酸化チタンソーラーセル及び色素増感多孔質2酸化チタンソーラーセルの模式図。The schematic diagram of the porous titanium dioxide solar cell and dye-sensitized porous titanium dioxide solar cell of a prior art. 先行技術の2酸化ケイ素ソーラーセルの模式図。Schematic diagram of a prior art silicon dioxide solar cell. 実施例1の2酸化ケイ素ソーラーセル及び実施例2の2酸化ケイ素ソーラーセル構造を有するガラスの模式図。The schematic diagram of the glass which has the silicon dioxide solar cell of Example 1, and the silicon dioxide solar cell structure of Example 2. FIG. 実施例3の多孔質2酸化チタンと2酸化ケイ素を用いたソーラーセル及び実施例4の2酸化ケイ素ソーラーセル構造を有するガラスの模式図。The schematic diagram of the glass which has the silicon dioxide solar cell structure of the solar cell using the porous titanium dioxide and silicon dioxide of Example 3, and Example 4. FIG. 実施例5の色素増感多孔質2酸化チタンと2酸化ケイ素を用いたソーラーセル及び実施例6の2酸化ケイ素ソーラーセル構造を有するガラスの模式図。The schematic diagram of the glass which has the solar cell using the dye-sensitized porous titanium dioxide and silicon dioxide of Example 5, and the silicon dioxide solar cell structure of Example 6. FIG.
 以下図面を参照して発明を実施するための形態を説明する。 DETAILED DESCRIPTION Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings.
 図3に図2に示した2酸化ケイ素ソーラーセルを改良した2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル複合ガラスを実施例1として示す。
 この図において、11及び17は各々FTO等の透明導電膜12及びFTO等の透明導電膜16を有するガラス基板であり、透明導電膜12及び透明導電膜16は電力取り出し電極として機能する。ガラス基板11上の透明導電膜12とガラス基板17上のFTO膜16が向かい合うようにガラス基板11と12を配置する。
FIG. 3 shows, as Example 1, a silicon dioxide solar cell and a silicon dioxide solar cell composite glass obtained by improving the silicon dioxide solar cell shown in FIG.
In this figure, 11 and 17 are glass substrates each having a transparent conductive film 12 such as FTO and a transparent conductive film 16 such as FTO, and the transparent conductive film 12 and the transparent conductive film 16 function as power extraction electrodes. The glass substrates 11 and 12 are arranged so that the transparent conductive film 12 on the glass substrate 11 and the FTO film 16 on the glass substrate 17 face each other.
 21は0.15~0.20mmの厚さを有する2酸化ケイ素(SiO)焼成体であり、光が入射しない側のガラス基板17上に配置する。
 2酸化ケイ素側の透明導電膜16上には電荷取り出し電極として、白金(Pt)膜15を形成してある。
 また、18は封止材であり、19は外部負荷である。
Reference numeral 21 denotes a silicon dioxide (SiO 2 ) fired body having a thickness of 0.15 to 0.20 mm, and is disposed on the glass substrate 17 on the side where no light enters.
A platinum (Pt) film 15 is formed as a charge extraction electrode on the transparent conductive film 16 on the silicon dioxide side.
Further, 18 is a sealing material, and 19 is an external load.
 2酸化ケイ素焼成体21は2酸化ケイ素の結晶質である人工水晶あるいは非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰等のガラス粒を5%のフッ化水素酸水溶液に5分間浸漬し、水洗後に乾燥し、その後粒径500nm以下に微粉砕したものを用いた。
 浸漬する水溶液にはフッ化水素酸以外に塩化水素酸がハロゲン化水素酸として使用可能である。
The silicon dioxide fired body 21 is made of 5% hydrofluoric acid aqueous solution of glass particles such as quartz crystal, non-alkali glass, borosilicate glass, soda lime, etc., which are crystalline or amorphous crystalline silicon dioxide. What was immersed for 5 minutes, washed with water, dried, and then pulverized to a particle size of 500 nm or less was used.
Hydrochloric acid other than hydrofluoric acid can be used as the hydrohalic acid in the aqueous solution to be immersed.
 液体電解質はソーラーセルを製造する際にはセル内に一旦注入されるが、その後取り除くため2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル複合ガラス板として使用するときにはセル内には液状の電解質は存在していないが、電解質の成分が若干残存している。 The liquid electrolyte is once injected into the cell when the solar cell is manufactured. However, when it is used as a silicon dioxide solar cell and a silicon dioxide solar cell composite glass plate for removal, a liquid electrolyte is present in the cell. Although not, some electrolyte components remain.
 人工水晶粒子は、粒径は0.2~0.5mm程度の大きさでも使用でき、焼成しなくてもエタノールと混合して白金電極15上に塗布し乾燥させたものも使用できる。 Artificial quartz particles having a particle size of about 0.2 to 0.5 mm can be used, and those obtained by mixing with ethanol, applying onto the platinum electrode 15 and drying can be used without firing.
 光入射側ガラス基板11から入射した光は2酸化ケイ素21に入射して起電する。 The light incident from the light incident side glass substrate 11 enters the silicon dioxide 21 and generates electricity.
 実施例1の2酸化ケイ素ソーラーセルは、人工水晶の粒径が0.2mm以下の場合に、85μAの短絡電流、470mVの開放電圧が得られ、粒径が500nm以下の場合に、348μAの短絡電流、620mVの開放電圧が得られた。 The silicon dioxide solar cell of Example 1 has a short circuit current of 85 μA when an artificial quartz particle size is 0.2 mm or less, an open circuit voltage of 470 mV, and a short circuit of 348 μA when the particle size is 500 nm or less. A current, an open circuit voltage of 620 mV, was obtained.
 それだけでなく、本発明者等は2酸化ケイ素ソーラーセルである人工水晶ソーラーセルについて、紫外領域の成分を含まない光源である300Wの白熱電球により、ほぼ直射日光に等しい照度で短絡電流を測定したところ、それぞれ400mVの解放電圧及び0.5μAの短絡電流を観測し、2酸化ケイ素ソーラーセルは赤外光のみによっても起電することを確認した。
 このことから、2酸化ケイ素ソーラーセルは、液体電解質を使用することなく、紫外領域の成分を含まない光によっても起電する。
In addition, the inventors measured the short-circuit current of an artificial quartz solar cell, which is a silicon dioxide solar cell, with a 300 W incandescent bulb, which is a light source that does not contain components in the ultraviolet region, at an illuminance almost equal to direct sunlight. However, an open-circuit voltage of 400 mV and a short-circuit current of 0.5 μA were observed, respectively, and it was confirmed that the silicon dioxide solar cell was generated only by infrared light.
For this reason, the silicon dioxide solar cell generates electricity by using light that does not contain components in the ultraviolet region without using a liquid electrolyte.
 実施例2である2酸化ケイ素ソーラーセル構造を有するガラス板の構成は実施例1の2酸化ケイ素ソーラーセルの構成と変わらないので説明は省略する。 Since the configuration of the glass plate having the silicon dioxide solar cell structure according to the second embodiment is not different from the configuration of the silicon dioxide solar cell according to the first embodiment, the description thereof is omitted.
 図4により実施例3の2酸化ケイ素ソーラーセルを説明する。
 実施例3のソーラーセルは実施例1の2酸化ケイ素ソーラーセルに図1(a)に示した従来技術の2酸化チタンソーラーセルをタンデム型に組み合わせたものである。
 この図において、11はガラスあるいは樹脂からなる透明な基板であり一方の面にFTO等の透明電極膜12が形成され、光入射側電極とされる。13は焼結等の手段により固体化された多孔質2酸化チタンである。
The silicon dioxide solar cell of Example 3 will be described with reference to FIG.
The solar cell of Example 3 is a combination of the silicon dioxide solar cell of Example 1 and the titanium dioxide solar cell of the prior art shown in FIG.
In this figure, 11 is a transparent substrate made of glass or resin, and a transparent electrode film 12 such as FTO is formed on one surface to serve as a light incident side electrode. 13 is porous titanium dioxide solidified by means such as sintering.
 21は粒径が0.2mm以下の人工水晶粒子であり、エタノールと混合して白金等からなる電極15上に塗布し乾燥させたものである。
 16はFTO等の透明電極であり、17はガラスあるいは樹脂からなる基板である。また、18は封止材であり、19は外部負荷である。
Reference numeral 21 denotes artificial quartz particles having a particle size of 0.2 mm or less, which are mixed with ethanol, applied onto the electrode 15 made of platinum or the like, and dried.
16 is a transparent electrode such as FTO, and 17 is a substrate made of glass or resin. Further, 18 is a sealing material, and 19 is an external load.
 光入射側透明基板11から入射した紫外光は多孔質2酸化チタン13に入射して起電し、起電に寄与しなかった紫外光及び可視光は2酸化ケイ素21に入射して起電する。
 このように実施例3の2酸化ケイ素ソーラーセルは紫外光~可視光領域の光により起電することができる。
Ultraviolet light incident from the light incident side transparent substrate 11 enters the porous titanium dioxide 13 to generate electricity, and ultraviolet light and visible light that have not contributed to the electromotive force enter the silicon dioxide 21 to generate electricity. .
As described above, the silicon dioxide solar cell of Example 3 can be generated by light in the ultraviolet to visible light region.
 ソーラーシミュレータにより太陽常数である1kw/1mの光を照射した実施例3の2酸化ケイ素ソーラーセルにより、20μAの短絡電流、417mVの開放電圧が得られた。 The short circuit current of 20 μA and the open circuit voltage of 417 mV were obtained by the silicon dioxide solar cell of Example 3 irradiated with light of 1 kw / 1 m 2 , which is a solar constant, by a solar simulator.
 液体電解質はソーラーセルを製造する際にはセル内に一旦注入されるが、その後取り除くため2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル複合ガラス板として使用するときにはセル内には液状の電解質は存在していないが、電解質の成分が若干残存している。 The liquid electrolyte is once injected into the cell when the solar cell is manufactured. However, when it is used as a silicon dioxide solar cell and a silicon dioxide solar cell composite glass plate for removal, a liquid electrolyte is present in the cell. Although not, some electrolyte components remain.
 実施例4である2酸化ケイ素ソーラーセル構造を有するガラス板の構成は実施例3の2酸化ケイ素ソーラーセルの構成と変わらないので説明は省略する。 Since the configuration of the glass plate having the silicon dioxide solar cell structure according to Example 4 is the same as the configuration of the silicon dioxide solar cell according to Example 3, the description thereof is omitted.
 図5により実施例5の2酸化ケイ素ソーラーセルを説明する。
 実施例5の2酸化ケイ素ソーラーセルは実施例3の2酸化ケイ素ソーラーセルにの2酸化チタン焼結体にルテニウム錯体色素を付着させたソーラーセルである。
 この図において、11はガラスあるいは樹脂からなる透明な基板であり一方の面にFTO等の透明電極膜12が形成され、光入射側電極とされる。23は焼結等の手段により固体化された多孔質2酸化チタンにルテニウム錯体色素を付着させた2酸化チタン焼結体である。
The silicon dioxide solar cell of Example 5 will be described with reference to FIG.
The silicon dioxide solar cell of Example 5 is a solar cell in which a ruthenium complex dye is attached to a titanium dioxide sintered body of the silicon dioxide solar cell of Example 3.
In this figure, 11 is a transparent substrate made of glass or resin, and a transparent electrode film 12 such as FTO is formed on one surface to serve as a light incident side electrode. Reference numeral 23 denotes a titanium dioxide sintered body obtained by attaching a ruthenium complex dye to porous titanium dioxide that has been solidified by means such as sintering.
 21は粒径が0.2mm以下の人工水晶粒子であり、エタノールと混合して白金等からなる電極15上に塗布し乾燥させたものである。
 16はFTO等の透明電極であり、17はガラスあるいは樹脂からなる基板である。また、18は封止材であり、19は外部負荷である。
Reference numeral 21 denotes artificial quartz particles having a particle size of 0.2 mm or less, which are mixed with ethanol, applied onto the electrode 15 made of platinum or the like and dried.
16 is a transparent electrode such as FTO, and 17 is a substrate made of glass or resin. Further, 18 is a sealing material, and 19 is an external load.
 光入射側透明基板11から入射した紫外光は多孔質2酸化チタン23に入射して起電し、起電に寄与しなかった紫外光及び可視光は2酸化ケイ素21に入射して起電する。
 このように実施例3の2酸化ケイ素ソーラーセルは紫外光~可視光領域の光により起電することができる。
Ultraviolet light incident from the light incident side transparent substrate 11 enters the porous titanium dioxide 23 to generate electricity, and ultraviolet light and visible light that have not contributed to the electromotive force enter the silicon dioxide 21 to generate electricity. .
As described above, the silicon dioxide solar cell of Example 3 can be generated by light in the ultraviolet to visible light region.
 液体電解質はソーラーセルを製造する際にはセル内に一旦注入されるが、その後取り除くため2酸化ケイ素ソーラーセル及び2酸化ケイ素ソーラーセル複合ガラス板として使用するときにはセル内には液状の電解質は存在していないが、電解質の成分が若干残存している。 The liquid electrolyte is once injected into the cell when the solar cell is manufactured. However, when it is used as a silicon dioxide solar cell and a silicon dioxide solar cell composite glass plate for removal, a liquid electrolyte is present in the cell. Although not, some electrolyte components remain.
 実施例4である2酸化ケイ素ソーラーセル構造を有するガラス板の構成は実施例5の2酸化ケイ素ソーラーセルの構成と変わらないので説明は省略する。 Since the configuration of the glass plate having the silicon dioxide solar cell structure according to Example 4 is the same as the configuration of the silicon dioxide solar cell according to Example 5, the description thereof is omitted.
 以下に、代替可能な構造及び材料について説明する。 The following describes alternative structures and materials.
[基板]
 各実施例においてソーラーセル材料及び電解質を収容する容器は、光入射側には光透過性の材料が、光が入射しない側には光透過性あるいは光不透過性の材料が用いられる。
 光透過性の材料としてガラス,プラスティックス,アモルファスシリコン,ポリエステルフィルムが使用可能であり、光不透過性の材料としてはステンレス、ニッケル等の金属板が用いられる。
[substrate]
In each embodiment, the container for containing the solar cell material and the electrolyte is made of a light transmissive material on the light incident side and a light transmissive or light opaque material on the light non-incident side.
Glass, plastics, amorphous silicon, and polyester film can be used as the light-transmitting material, and a metal plate such as stainless steel and nickel is used as the light-impermeable material.
[透明導電体]
 光透過性材料として用いるガラス及びプラスティックスは導電性を有しないものが殆どであり、導電性を有しない材料を用いた場合には導電性を付与する必要がある。光透過性であり導電性を有する材料として、FTOあるいはITO等の錫の酸化物の他に、AZO(Al-ZN-O),カーボンナノチューブ,グラフェン等の炭素系の材料あるいは導電性PETフィルム等がITO,カーボンナノチューブ,グラフェン等の透明導電材料が用いられ、電極をガラスあるいはプラスティックス等の透明体上に形成したものを使用する。透明電極はソーラーセルの内側に設ける。
[Transparent conductor]
Most of the glass and plastic used as the light-transmitting material do not have conductivity, and when a material having no conductivity is used, it is necessary to impart conductivity. In addition to tin oxides such as FTO or ITO, carbon-based materials such as AZO (Al—ZN—O), carbon nanotubes, graphene, or conductive PET films can be used as light transmissive and conductive materials However, a transparent conductive material such as ITO, carbon nanotube, or graphene is used, and an electrode formed on a transparent body such as glass or plastic is used. The transparent electrode is provided inside the solar cell.
 ソーラーセル収納容器の光入射側と対面する側は、光を透過させる必要がある場合にはFTO,ITO,カーボンナノチューブ,グラフェン等の透明電極をガラスあるいはプラスティックス等の透明体上に形成したものを使用し、光を透過させる必要があない場合にはカーボンナノチューブ,グラフェン等の電荷取り出し用導電体を形成した金属板を使用する。電荷取り出し用導電体はソーラーセルの内側に設ける。
 プラスティックスを導電性プラスティックスとすることにより、透明導電体を不要とすることもできる。
The side facing the light incident side of the solar cell storage container is a transparent electrode such as FTO, ITO, carbon nanotube, or graphene formed on a transparent material such as glass or plastic when it is necessary to transmit light. When there is no need to transmit light, a metal plate on which a charge extracting conductor such as carbon nanotube or graphene is formed is used. The electric charge extracting conductor is provided inside the solar cell.
By using conductive plastic as the plastic, a transparent conductor can be eliminated.
[2酸化ケイ素粒] 
 ハロゲン化水素酸処理した結晶質人工水晶粒又は非結晶質ガラス粒は以下のようにして調製した。
 2酸化ケイ素(SiO)の結晶質である人工水晶あるいは非結晶質である石英ガラス、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰等のガラス粒をフッ化水素酸水溶液に浸漬し、次いで人工水晶粒あるいはガラス粒を水洗後に乾燥し、その後微粉砕粉した。
 フッ化水素酸以外に塩化水素酸がハロゲン化水素酸として用いられるが、フッ化水素酸が好ましい。
 また、他のハロゲン化水素酸も利用可能である。
[Silicon dioxide grains]
Crystalline artificial quartz grains or amorphous glass grains treated with hydrohalic acid were prepared as follows.
Artificial quartz that is crystalline of silicon dioxide (SiO 2 ) or amorphous quartz glass, alkali-free glass, borosilicate glass, soda lime, etc. are immersed in hydrofluoric acid aqueous solution, and then artificial quartz The grains or glass grains were washed with water, dried, and then finely pulverized.
In addition to hydrofluoric acid, hydrochloric acid is used as hydrohalic acid, but hydrofluoric acid is preferred.
Other hydrohalic acids can also be used.
 2酸化ケイ素粒をハロゲン水素酸による処理を行わない場合には、2酸化ケイ素粒の試料の場合は平均粒径が数10nmまで微粉末化する。 When the silicon dioxide particles are not treated with the hydrohalic acid, the silicon dioxide particles are pulverized to an average particle size of several tens of nanometers.
 2酸化ケイ素粒のハロゲン水素酸による処理は、微粉末化前にするのではなく、微粉末化後にすることもできる。 The treatment of silicon dioxide particles with hydrohalic acid can be carried out after pulverization, not before pulverization.
[2酸化ケイ素層]
 2酸化ケイ素層は、人工水晶等の粉末を白金粉末とともにエタノールと混合して焼成したでものでも使用できる。
 2酸化ケイ素粒子焼成体の粒径は0.5mm程度程度のものまで使用可能である。
[Silicon dioxide layer]
The silicon dioxide layer can be used even if a powder such as artificial quartz is mixed with platinum powder with ethanol and baked.
A silicon dioxide particle fired body having a particle size of about 0.5 mm can be used.
[対向電極]
 対向電極とする半導体層として,酸化亜鉛(ZnO)の他に酸化チタン(TiO),酸化銅(CuO),酸化マグネシウム(MgO),チタン酸ストロンチウム(SrTiO),窒化炭素、グラフェン等が使用可能である。 
[Counter electrode]
In addition to zinc oxide (ZnO), titanium oxide (TiO 2 ), copper oxide (CuO), magnesium oxide (MgO), strontium titanate (SrTiO 3 ), carbon nitride, graphene, etc. are used as the semiconductor layer for the counter electrode. Is possible.
[入射側面]
 これまでに説明した全ての実施例では2酸化ケイ素焼成体は光が入射しない側の面に配置されている。この配置に絶対的な理由はないので、2酸化ケイ素焼成体を光が入射する側の面に配置することもできる。
[Incoming side]
In all of the embodiments described so far, the silicon dioxide fired body is disposed on the surface where light does not enter. Since there is no absolute reason for this arrangement, the silicon dioxide fired body can be arranged on the surface on which light is incident.
 2酸化チタンソーラーセルの容器にさらに2酸化ケイ素ソーラーセルをタンデム構成で組みあわせたこの出願に係る発明により、紫外から赤外にわたる全ての領域の光によって起電でき、有用なソーラーセルが得られる。 By the invention according to this application in which a silicon dioxide solar cell is further combined with a titanium dioxide solar cell container in a tandem configuration, a useful solar cell can be obtained by being able to generate electricity by light in all regions from ultraviolet to infrared. .
1,7,11,17 基板
2,6,12,16 透明導電膜
3,13 多孔質酸化チタン焼結体
10,23 色素増感多孔質酸化チタン焼結体
4 電解質
5,15 対向電極
8,18 封止材
9,19 外部負荷
1, 7, 11, 17 Substrate 2, 6, 12, 16 Transparent conductive film 3, 13 Porous titanium oxide sintered body 10, 23 Dye-sensitized porous titanium oxide sintered body 4 Electrolyte 5, 15 Counter electrode 8, 18 Sealant 9, 19 External load

Claims (6)

  1.  導電性を有する2枚の基板が各々の導電面を向かい合わせて配置され、
     前記基板の少なくとも一方が透明で光入射側基板とされ、
     前記2枚の基板の間に2酸化ケイ素粒成形体が配置された2酸化ケイ素ソーラーセルであって:
     前記2酸化ケイ素粒成形体は前記光入射側基板と向かい合わせて配置された基板上に配置され;
     前記2酸化ケイ素ソーラーセル内には液状の電解質は存在せず、電解質の成分が若干残存していることを特徴とする2酸化ケイ素ソーラーセル。
    Two conductive substrates are arranged with their conductive surfaces facing each other,
    At least one of the substrates is transparent and is a light incident side substrate,
    A silicon dioxide solar cell in which a silicon dioxide particle compact is disposed between the two substrates:
    The silicon dioxide grain compact is disposed on a substrate disposed to face the light incident side substrate;
    The silicon dioxide solar cell is characterized in that no liquid electrolyte is present in the silicon dioxide solar cell, and some components of the electrolyte remain.
  2.  前記光入射側基板上に多孔質酸化チタン焼結体が配置されていることを特徴とする、請求項1の2酸化ケイ素ソーラーセル。 2. The silicon dioxide solar cell according to claim 1, wherein a porous titanium oxide sintered body is disposed on the light incident side substrate.
  3.  前記多孔質酸化チタン焼結体が色素増感多孔質酸化チタン焼結体であることを特徴とする、請求項2の2酸化ケイ素ソーラーセル。 3. The silicon dioxide solar cell according to claim 2, wherein the porous titanium oxide sintered body is a dye-sensitized porous titanium oxide sintered body.
  4.  導電性を有する2枚の基板が各々の導電面を向かい合わせて配置され、
     前記基板の少なくとも一方が透明で光入射側基板とされ、
     前記2枚の基板の間に2酸化ケイ素粒成形体が配置された2酸化ケイ素ソーラーセル構造を有するガラス板であって:
     前記2酸化ケイ素粒成形体が前記光入射側基板と向かい合わせて配置された基板上に配置され;
     前記2酸化ケイ素ソーラーセル複合ガラス板内には液状の電解質は存在せず、電解質の成分が若干残存していることを特徴とする2酸化ケイ素ソーラーセル構造を有するガラス板。
    Two conductive substrates are arranged with their conductive surfaces facing each other,
    At least one of the substrates is transparent and is a light incident side substrate,
    A glass plate having a silicon dioxide solar cell structure in which a silicon dioxide particle compact is disposed between the two substrates:
    The silicon dioxide grain compact is disposed on a substrate disposed to face the light incident side substrate;
    A glass plate having a silicon dioxide solar cell structure characterized in that a liquid electrolyte does not exist in the silicon dioxide solar cell composite glass plate, and some components of the electrolyte remain.
  5.  前記光入射側基板上に多孔質酸化チタン焼結体が配置されていることを特徴とする、請求項4の2酸化ケイ素ソーラーセル構造を有するガラス板。 The glass plate having a silicon dioxide solar cell structure according to claim 4, wherein a porous titanium oxide sintered body is disposed on the light incident side substrate.
  6.  前記多孔質酸化チタン焼結体が色素増感多孔質酸化チタン焼結体であることを特徴とする、請求項4の2酸化ケイ素ソーラーセル構造を有するガラス板。
     
    The glass plate having a silicon dioxide solar cell structure according to claim 4, wherein the porous titanium oxide sintered body is a dye-sensitized porous titanium oxide sintered body.
PCT/JP2013/060584 2012-04-06 2013-04-08 Silicon dioxide solar cell and glass plate having silicon dioxide solar cell structure WO2013151175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-087925 2012-04-06
JP2012087925 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013151175A1 true WO2013151175A1 (en) 2013-10-10

Family

ID=49300650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060584 WO2013151175A1 (en) 2012-04-06 2013-04-08 Silicon dioxide solar cell and glass plate having silicon dioxide solar cell structure

Country Status (2)

Country Link
TW (1) TW201351673A (en)
WO (1) WO2013151175A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306554A (en) * 1996-05-08 1997-11-28 Kagaku Gijutsu Shinko Jigyodan Manufacture of color sensitized system dry photocell
JP2001320068A (en) * 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd Transparent photoelectric converting element, photo cell using the same, optical sensor and window glass
JP2010140860A (en) * 2008-12-15 2010-06-24 Sekisui Chem Co Ltd Photovoltaic generator
WO2011049156A1 (en) * 2009-10-21 2011-04-28 国際先端技術総合研究所株式会社 Photoelectrode material and photocell material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306554A (en) * 1996-05-08 1997-11-28 Kagaku Gijutsu Shinko Jigyodan Manufacture of color sensitized system dry photocell
JP2001320068A (en) * 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd Transparent photoelectric converting element, photo cell using the same, optical sensor and window glass
JP2010140860A (en) * 2008-12-15 2010-06-24 Sekisui Chem Co Ltd Photovoltaic generator
WO2011049156A1 (en) * 2009-10-21 2011-04-28 国際先端技術総合研究所株式会社 Photoelectrode material and photocell material

Also Published As

Publication number Publication date
TW201351673A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
JP5848324B2 (en) Silicon dioxide solar cell
Hafez et al. Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells
Zhang et al. Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells
US20110155223A1 (en) Dye-sensitized solar cell and a method of manufacturing the same
KR101721120B1 (en) Photoelectrode material and photocell material
EP2716855A1 (en) Glass sheet for window
WO2012169530A1 (en) Composite glass plate
JP4883559B2 (en) Photoelectric conversion electrode
WO2013151175A1 (en) Silicon dioxide solar cell and glass plate having silicon dioxide solar cell structure
JP6227735B2 (en) Tandem solar cell
Lee et al. Effect of process parameters on the efficiency of dye sensitized solar cells
JP2012234693A (en) Solar cell
WO2014104327A2 (en) Dye-sensitized tandem silicon dioxide solar cell
KR20010069499A (en) SnO2/TiO2 coupled oxide semiconductor and dye-sensitized solar cell
KR101066511B1 (en) Dye-sensitized solar cell and its fabrication method
Pichot et al. Self-powered electrochromic coatings
WO2014092081A1 (en) Dye-sensitized tandem silicon dioxide solar cell
KR20110048773A (en) Dye-sensitized sollar cell and its fabrication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP