WO2013146631A1 - Organic device material precursor, method for producing same, light-emitting element using same, and method for producing same - Google Patents

Organic device material precursor, method for producing same, light-emitting element using same, and method for producing same Download PDF

Info

Publication number
WO2013146631A1
WO2013146631A1 PCT/JP2013/058479 JP2013058479W WO2013146631A1 WO 2013146631 A1 WO2013146631 A1 WO 2013146631A1 JP 2013058479 W JP2013058479 W JP 2013058479W WO 2013146631 A1 WO2013146631 A1 WO 2013146631A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
general formulas
organic device
device material
Prior art date
Application number
PCT/JP2013/058479
Other languages
French (fr)
Japanese (ja)
Inventor
城由香里
白沢信彦
谷村寧昭
藤森茂雄
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2013146631A1 publication Critical patent/WO2013146631A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/70Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with ring systems containing two or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/20Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/683Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings having unsaturation outside the aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/80Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/14Perylene derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/78Other dyes in which the anthracene nucleus is condensed with one or more carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/44Naphthacenes; Hydrogenated naphthacenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/50Pyrenes; Hydrogenated pyrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings
    • C07C2603/88Ethanoanthracenes; Hydrogenated ethanoanthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/90Ring systems containing bridged rings containing more than four rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to a precursor of an organic device material useful as a constituent material for an organic electroluminescence (hereinafter, “EL”) element, an organic field effect transistor, an organic electromotive element, and the like, a method for producing the precursor, and the same It relates to organic devices.
  • the technical field is light-emitting element materials used for light-emitting elements that can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators. is there.
  • An organic EL device is a light emitting device with an organic light emitting material sandwiched between a cathode and an anode, and emits energy generated by recombination of electrons injected from the cathode and holes injected from the anode in the organic layer. It is an element to which the principle of taking it out as energy is applied.
  • a dry process such as a vacuum deposition method is generally used to produce an organic device typified by an organic EL element.
  • the vacuum deposition method is expensive in manufacturing equipment and has low material utilization efficiency.
  • the patterning method using a shadow mask has problems such as difficulty in manufacturing a large area device.
  • Patent Documents 1 to 3 there are limitations on the compounds that can produce soluble precursors by the methods described in Patent Documents 1 to 3. For example, it cannot be applied to an anthracene derivative having a substituent at the 9- and 10-positions, and a 4-substituted tetracene derivative exemplified by rubrene. Thus, there are materials that cannot be applied to devices by a wet process in the prior art. It was.
  • An object of the present invention is to solve such a problem, and aims to provide a high-performance organic device by enabling a wide range of wet processes to be applied to organic device materials including light-emitting element materials. To do.
  • the present invention comprises the following contents. That is, the present invention is an organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8).
  • R 201 to R 210 and R 223 to R 284 may be the same or different, and hydrogen, alkyl group, cycloalkyl Group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl Selected from the group consisting of a group, a carbamoyl group, an amino group, a silyl group, and a phosphine oxide group, which may further have a substituent, wherein X is an atom selected from C ⁇ O, O or CHR 9 or an atomic group .R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group or an acyl group, bonded to one another
  • the wet process can be applied to various organic device materials that cannot be handled by the conventional method.
  • a device can be manufactured by applying and forming a solution containing an organic device material precursor by an inkjet method or a nozzle coating method, and then performing a conversion process to a device constituent material.
  • Sectional drawing which shows an example of the organic EL element by which the light emitting layer was patterned by this invention.
  • the figure which shows an example of the shape of ITO produced on the glass substrate.
  • the organic device material precursor of the present invention is represented by any of the following general formulas (1-2), (1-4) to (1-8).
  • R 201 to R 210 and R 223 to R 284 may be the same or different and are each hydrogen, an alkyl group, or a cycloalkyl group. , Heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl group , A carbamoyl group, an amino group, a silyl group, and a phosphine oxide group, and these may further have a substituent.
  • X is an atom or atomic group selected from C ⁇ O, O, or CHR 9 .
  • R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group, or an acyl group, and may have a bond with each other to form a ring.
  • the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group. It may or may not have a substituent. There are no particular limitations on the additional substituent when it is substituted, and examples thereof include an alkyl group, an aryl group, and a heteroaryl group. This point is also common to the following description.
  • the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group, which may or may not have a substituent.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. .
  • carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
  • the alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • An alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, and a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. .
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl thioether group may or may not have a substituent.
  • the aryl group is, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a terphenyl group, an anthracenyl group, and a pyrenyl group, or a group in which a plurality of these are connected, It can be unsubstituted or substituted.
  • aryl groups may have are alkyl groups, cycloalkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl ether groups, alkylthio groups, halogens, cyano groups, amino groups (amino groups are further An aryl group or a heteroaryl group, which may be substituted), a silyl group and a boryl group.
  • a heteroaryl group refers to an aromatic group having a non-carbon atom in the ring, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, or a carbazolyl group, which has a substituent. Even if it does not have.
  • the substituent that such a heteroaryl group may have is the same as the substituent that the aryl group may have.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • the carbonyl group refers to a substituent containing a carbon-oxygen double bond such as an acyl group or a formyl group.
  • An acyl group is a substituent in which hydrogen of a formyl group is substituted with an alkyl group, an aryl group, or a heteroaryl group.
  • the oxycarbonyl group refers to a substituent containing an ether bond on the carbon of the carbonyl group, such as t-butyloxycarbonyl group or benzyloxycarbonyl group.
  • the carbamoyl group indicates a substituent from which the hydroxyl group of carbamic acid is removed, and may or may not have a substituent.
  • the amino group represents a nitrogen compound group such as a dimethylamino group, which may be unsubstituted or substituted.
  • the silyl group refers to, for example, a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted.
  • the phosphine oxide group is a substituent containing a phosphorus-oxygen double bond, which may be unsubstituted or substituted.
  • X is an atom or atomic group selected from C ⁇ O, O, or CHR 9 .
  • R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group, or an acyl group, and may have a bond with each other to form a ring. R 9 may have a bond with each other to form a ring.
  • XX is represented as CH (R 9 ) —CH (R 9 ).
  • 9 refers to bonding to form a ring structure.
  • the ring structure can be, for example, a cyclohexyl structure.
  • R 9 is an alkoxy group
  • the alkyl groups in the alkoxy group have a bond with each other, so that this ring structure becomes a cyclic acetal, for example, a compound such as acetonide.
  • a compound in which R 9 is hydrogen is not preferred because it is easy to crystallize during coating film formation and it is difficult to obtain a uniform film, but in the case of an alkyl group or alkoxy group, a uniform film can be obtained without crystallization. Therefore, it can be suitably used.
  • R 201 to R 206 in the formula (1-2), R 223 to R 232 in the formula (1-4), R 237 to R 242 in the formula (1-5), R in the formula (1-6) 247 to R 254 , R 259 to R 266 in formula (1-7), and R 271 to R 280 in formula (1-8) are each an alkyl group, cycloalkyl group, which may have a substituent, It is preferably selected from the group consisting of an aryl group and hydrogen.
  • R 201 to R 206 , R 223 to R 232 , R 237 to R 242 , R 247 to R 254 , R 259 to R 266 , and R 271 to R 280 are preferably aryl groups for the following reasons.
  • the organic device material obtained by converting the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8) has an expanded conjugation in the molecule. , Thereby improving the flow of electrons and holes, resulting in high performance. For example, when the organic device material is used as a light emitting material of an organic EL element, the light emission efficiency can be improved.
  • R 201 to R 206 , R 223 to R 232 , R 237 to R 242 , R 247 to R 254 , R 259 to R 266 , and R 271 to R 280 are an alkyl group or a cycloalkyl group as follows. It is preferable for the reason. Since the electronic influence of these substituents on the central skeleton is almost negligible, the organic device material obtained by converting the organic device material precursor has the same performance as when hydrogen is bonded. Furthermore, in the process of forming a thin film during device fabrication, crystallization of the thin film is suppressed, and a uniform thin film can be obtained.
  • the above substituent groups may be used alone or in combination.
  • R 207 to R 210 , R 233 to R 236 , R 243 to R 246 , R 255 to R 258 , R 267 to R 270 , and R 281 to R 284 are independent groups. “Independent group” means that no ring is formed between adjacent substituents.
  • the organic device material precursor of the present invention is, for example, an organic device material precursor represented by the general formula (1-2). The site is eliminated and a new benzene ring is formed to become anthracene.
  • the organic device material precursors represented by the general formulas (1-4) to (1-8) are also converted into an organic device material having at least two condensed rings by performing the same conversion treatment.
  • R 207 to R 210 , R 233 to R 236 , R 243 to R 246 , R 255 to R 258 , R 267 to R 270 , and R 281 to R 284 are independent groups, and the benzene ring newly formed by the conversion treatment forms a ring at the end of the condensed ring. It becomes. That is, a precursor structure corresponding to anthracene derivatives having a substituent at the 9,10 positions, a 4-substituted tetracene derivative exemplified by rubrene, and the like, which have been particularly difficult to synthesize, can be provided.
  • R 207 to R 210 , R 233 to R 236 , R 243 to R 246 , R 255 to R 258 , R 267 to R 270 , and R 281 to R 284 are particularly hydrogen, an alkyl group, a cycloalkyl group, an alkoxy group, An aryl ether group, a heterocyclic group, an aryl group, and a heteroaryl group are preferable.
  • Alkyl groups, cycloalkyl groups, alkoxy groups, and aryl ether groups have the same effect as when hydrogen is bonded in that they do not electronically affect the central skeleton. Is preferable because of improvement.
  • a heterocyclic group, an aryl group, and a heteroaryl group are preferable because they can extend the conjugation in the molecular structure and can adjust the flow of electrons and holes. More preferred are hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group.
  • the above substituent groups may be used alone or in combination.
  • the organic device material precursor of the present invention includes R 201 to R 206 in the general formula (1-2), R 223 to R 232 in the formula (1-4), and R 237 to R 237 in the formula (1-5).
  • R 242 , R 247 to R 254 in formula (1-6), R 259 to R 266 in formula (1-7), and R 271 to R 280 in formula (1-8) are represented by the following general formula (2 It is preferable that any one of the skeletons represented by -1) to (2-11) is included.
  • a compound having a condensed ring made of such a hydrocarbon has wide conjugation in the molecule and has high performance as an organic device material.
  • since many molecules have low polarities and low solubility in solvents significant improvement in solubility can be expected by using the organic device material precursor of the present invention.
  • each substituent of R 10 to R 129 is the same as the explanation of the substituents of R 201 to R 210 and R 223 to R 283 .
  • R 10 to R 129 are preferably selected from hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkoxy group, an aryl ether group, an aryl group, a heteroaryl group, and a cyano group.
  • the organic device material precursor has a diketo cross-linked structure. That is, in the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8), X is preferably C ⁇ O. By setting it as the said structure, conversion from a precursor compound can be performed more efficiently.
  • Examples of the organic device material precursor represented by the general formula (1-2) include the following structures.
  • Examples of the organic device material precursor represented by the general formula (1-4) include the following structures.
  • Examples of the organic device material precursor represented by the general formula (1-5) include the following structures.
  • Examples of the organic device material precursor represented by the general formula (1-6) include the following structures.
  • Examples of the organic device material precursor represented by the general formula (1-7) include the following structures.
  • Examples of the organic device material precursor represented by the general formula (1-8) include the following structures.
  • another embodiment of the present invention is a compound represented by any one of the following general formulas (3-2) to (3-8).
  • These compounds include an organic device material precursor represented by any one of the above general formulas (1-2) and (1-4) to (1-8), and a general formula (1-3) described later. It is suitably used as a raw material for the organic device material precursor represented.
  • R 309 to R 392 may be the same or different, and hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group Groups consisting of groups, alkylthio groups, aryl ether groups, aryl thioether groups, aryl groups, heteroaryl groups, halogens, cyano groups, carbonyl groups, carboxyl groups, oxycarbonyl groups, carbamoyl groups, amino groups, silyl groups, and hydroxyl groups More selected.
  • R 354 , R 355 to R 366 in formula (3-6), R 367 to R 378 in formula (3-7), and at least one of R 379 to R 392 in formula (3-8) is Cl, Br, It is a substituent having either I or Cl, Br or I.
  • Y is an atom or atomic group selected from C ⁇ O, O, or CHR 393 .
  • R 393 is selected from an alkyl group, an alkenyl group, an alkoxy group, a hydroxyl group, and an acyl group, and may have a bond with each other to form a ring.
  • the description of each substituent of R 309 to R 392 and R 393 is the same as the description of R 201 to R 284 and R 9 described above.
  • the compounds represented by the general formulas (3-2) to (3-8) have a halogen (Cl, Br, I), they can be easily linked to other substituents using a known method.
  • the synthesis of the organic device material precursor in the present invention can be facilitated.
  • such a compound generates benzyne [152] from a naphthalene derivative substituted with a halogen as shown in the following compound [151], and then represents 3,5-cyclohexadiene-- represented by the following compound [153]. It can be synthesized by a Diels-Alder reaction with a diene compound such as a protected acetonide of a 1,2-diol derivative.
  • General formulas (3-3) to (3-8) can also be synthesized by the same method.
  • a method for generating benzyne in addition to the above-described halogen compound, a method using diazotization of anthranilic acid derivative, o-trimethylsilylphenyl triflate derivative, phenyl (o-trimethylsilylphenyl) iodonium triflate derivative, tetrabutyl
  • a known method such as a method of allowing ammonium fluoride to act can be used.
  • R other than R having halogen is particularly preferably hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heterocyclic group, or a heteroaryl group.
  • Examples of the compound represented by the general formula (3-2) include the following.
  • Examples of the compound represented by the general formula (3-3) include the following.
  • Examples of the compound represented by the general formula (3-4) include the following.
  • Examples of the compound represented by the general formula (3-5) include the following.
  • Examples of the compound represented by the general formula (3-6) include the following.
  • Examples of the compound represented by the general formula (3-7) include the following.
  • Examples of the compound represented by the general formula (3-8) include the following.
  • a known method can be used to synthesize an organic device precursor represented by any one of the following general formulas (1-2) to (1-8). -2) to (3-8) are preferably used.
  • R 201 to R 210 , R 223 to R 284 and X are as described above, and R 211 to R 222 are the same as R 201 to R 210. It is.
  • a carbon-carbon bond can be formed by a coupling reaction with an aryl group derivatized with a boronic acid in the presence of a palladium catalyst, or by allowing copper to act. It is also possible to carry out a coupling reaction with an amine using a palladium catalyst. When a compound having a vinyl group at the terminal is reacted in the presence of a palladium catalyst, a vinyl bond can be introduced, and a Sonogashira coupling reaction can be used for introducing acetylene.
  • coupling and other reactions can be performed by substituting from a halogen state to another reactive species by a nucleophilic substitution reaction. For example, it reacts with butyllithium to lithiate the halogen moiety for a coupling reaction, or reacts with magnesium for a coupling reaction as a Grignard reagent, or the halogen moiety itself is boronated to couple with an aryl halide. It is also possible to react.
  • a method for producing an organic device material precursor represented by any one of the general formulas (1-2) to (1-8), wherein any one of the general formulas (3-2) to (3-8) A catalytic cross-coupling step using Cl, Br or I possessed by the compound represented by formula (I), or Cl, Br or a compound represented by any one of formulas (3-2) to (3-8) It preferably includes a nucleophilic substitution reaction step at position I.
  • the coupling reaction using the compounds represented by the general formulas (3-2) to (3-8) can be achieved by using the above-described method. However, it can be selected depending on the compound to be coupled.
  • the portion represented by YY is different from XX in the general formulas (1-2) to (1-8) Further, the reaction for converting the YY portion into XX and making the organic device material precursor represented by the general formulas (1-2) to (1-8) is continuously performed. Specifically, for example, when the compound [182] is to be used as an organic device precursor having a diketone, the YY site is deprotected with an acid to form a diol, which is subjected to Swern oxidation to form the diketone. It is possible to synthesize organic device material precursors.
  • the YY moiety is deprotected with a base.
  • the formation of the XX moiety may be performed after coupling a substituent to the compounds represented by the above general formulas (3-2) to (3-8), or You may go before.
  • a quinone represented by the following general formulas (4-2) to (4-4) and (4-7) to (4-8) is converted into a metal reagent RV (R is represented by the general formula (1) -2) to (1-4) and (1-7) to (1-8)
  • R 201 , R 206 , R 211 , R 218 , R 223 , R 232 , R 259 , R 266 , R 271 , R 280 is either .
  • R 201 and R 206, R 211 and R 218, R 223 and R 232, R 259 and R 266, R 271 and R 280 are never simultaneously hydrogen .
  • R 400 to R 404 , R 405 , R 460 to R 461 in the general formula (6-2) is the same as the description of R 201 to R 210 in the general formula (1-2).
  • organic device material precursors of the general formulas (1-5) to (1-6) and the compounds of the general formulas (3-5) to (3-6) can be obtained by a method via benzyne as shown below. Can be synthesized.
  • R 500 to R 503 are the same as those described for the substituents of R 223 to R 283 . However, R 500 and R 501 and / or R 502 and R 503 are bonded to each other to form a condensed ring.
  • the organic device material precursor used in the present invention and the compounds represented by the general formulas (3-2) to (3-8) preferably remove impurities such as raw materials and by-products used in the synthesis process.
  • impurities such as raw materials and by-products used in the synthesis process.
  • silica gel columnography, recrystallization, reprecipitation, filtration, sublimation purification, and the like can be used. Two or more of these methods may be combined.
  • the organic device material precursor of the present invention is soluble, it can be dissolved or dispersed in a solvent according to the application and used as an ink for wet process applications.
  • a wet process method a known method such as an inkjet method, a nozzle coating method, a spin coating method, or a dipping method can be used.
  • the term “soluble” in the present invention specifically means that 0.5 part by weight or more of the organic device material precursor is dissolved or dispersed in 100 parts by weight of any of the following solvents at room temperature and normal pressure.
  • soluble specifically means that 0.5 part by weight or more of the organic device material precursor is dissolved or dispersed in 100 parts by weight of any of the following solvents at room temperature and normal pressure.
  • Solvents include toluene, xylene, chlorobenzene, chloroform, dichloromethane, dichloroethane, ethyl acetate, tetrahydrofuran, trimethylbenzene, ⁇ -butyrolactone, n-methylpyrrolidone, tetralin, o-dichlorobenzene, trichlorobenzene, ethyl benzoate, cyclohexanone, etc.
  • a general-purpose solvent can be used, and a boiling point and viscosity suitable for the coating method to be used can be selected. In addition, these solvents may be used alone, or a plurality of solvents may be mixed and used.
  • the ink contains the organic device material precursor of the present invention alone, and may contain a plurality thereof, and may further contain another soluble compound. Further, it may be dissolved and dispersed by applying ultrasonic irradiation or heat treatment, and a filtration step may be added after the preparation.
  • the organic device of the present invention can be suitably applied as long as it is a device that functions as an organic thin film, such as an organic thin film transistor, organic EL, or organic thin film solar cell.
  • These devices may be manufactured by a dry process such as a vacuum deposition method.
  • the organic device material precursor is soluble, the device is preferably manufactured using a wet process. .
  • the use of a wet process in organic EL facilitates patterning, and can cope with the production of a large panel as compared with the case of a conventional shadow mask deposition method. it can.
  • the organic device material precursor in the present invention is subjected to a conversion process from the precursor to the organic device material in order to finally function as an organic device regardless of whether the device is manufactured by a dry process or a wet process.
  • the conversion process described here is a process that causes a structural change of the organic device material precursor by heating, light irradiation, contact with a chemical solution, or the like, and converts it into a target organic device material.
  • a material that does not remain in the constituent material such as treatment with heat, light, or a volatile compound, is preferable in order not to deteriorate the characteristics of the organic device.
  • Volatile compounds refer to acids and alkalis that do not remain after hydrochloric acid ether complexes, ammonia gas, and the like.
  • a structural change by light irradiation and / or heat treatment is particularly preferable.
  • a hot plate, an inert oven, an infrared heater, or the like can be used for heating.
  • ultraviolet light when the structure is converted by light irradiation, it is preferable to use ultraviolet light to visible light. However, depending on the precursor used, an undesirable photoreaction may occur due to ultraviolet light. More preferred.
  • medical solution, etc. can be illustrated. In either case, the conversion may be promoted by heating after contact with the chemical solution.
  • the conversion reaction examples include a retro Diels-Alder reaction, a chirp peapy reaction, a decarboxylation reaction, a decarbonylation reaction from a carbonyl compound, and a deoxygenation reaction.
  • An optimal conversion process can be selected for each reaction. For example, in the general formulas (1-2) and (1-4) to (1-8), when X is C ⁇ O, decarbonylation reaction by light irradiation can be mentioned.
  • the time of light irradiation, the temperature and time of the heat treatment, the type of chemical solution and the treatment time, the general formulas (1-2), (1-4) to (1-4) to be finally contained in the organic device can be adjusted.
  • increasing the time of each treatment is generally effective for increasing the amount of conversion and reducing the amount of precursor.
  • performing light irradiation while heating also has the effect of increasing the reaction rate depending on the type of conversion reaction.
  • a coating liquid containing at least an organic device material precursor and a solvent is applied to a device substrate on which a hole transport layer is formed and dried. Thereafter, the organic device material precursor is subjected to a conversion treatment to be converted into an organic device material, and a light emitting layer can be laminated. At this time, a solvent to be used is selected so that the underlying layer does not dissolve or react.
  • the organic device material precursor is applied and converted on a substrate different from the device substrate, and the obtained film is transferred to the device substrate on which the hole transport layer is formed. It is also possible to form a light emitting layer having a high function.
  • the other substrate is hereinafter referred to as “donor substrate”.
  • the coating film containing the organic device material precursor prepared on the donor substrate is subjected to conversion treatment, and then transferred to the device substrate to produce a device constituent material layer. Even when coating unevenness occurs, the unevenness is eliminated during transfer, and a uniform device constituent material layer can be formed on the device substrate.
  • a known method can be used for the transfer step, and examples thereof include a method of heating the superimposed donor substrate and device substrate from the donor substrate side, and a method of irradiating light from the donor substrate side. Therefore, for example, if the organic device material precursor applied to the donor substrate is converted by heat, the remaining organic device material precursor can be reduced even by performing transfer by heating.
  • a conversion process of the organic device material precursor transferred onto the device substrate may be further added. Thereby, the organic device material precursor remaining after the conversion treatment on the donor substrate can be further reduced.
  • the light emitting layer of the organic EL device of the present invention contains organic device material precursors represented by the following general formulas (1-2) and (1-4) to (1-8).
  • the compounds represented by (5-2) and (5-4) to (5-8) are included.
  • R 201 to R 210 and R 223 to R 284 in the general formulas (5-2) and (5-4) to (5-8) are the general formulas (1-2), (1-4) to (1-8).
  • R 201 to R 210 and R 223 to R 284 are the general formulas (1-2), (1-4) to (1-8).
  • the compounds represented by general formulas (5-2) and (5-4) to (5-8) are represented by general formulas (1-2) and (1-4) to (1-8). It is obtained by converting the organic device material precursor, and more preferable, particularly preferable as R 201 to R 210 and R 223 to R 283 are as described above.
  • the content of the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8) included in the light emitting layer is represented by the general formula (( It is preferably 5.0 parts by weight or less, more preferably 0.001 part by weight, based on 100 parts by weight of the compound represented by any of 5-2) and (5-4) to (5-8).
  • the compound represented by any one of the general formulas (5-2) and (5-4) to (5-8) is a compound that exhibits a function as a light emitting material.
  • the organic device material precursor itself since the organic device material precursor itself has a low function as a light emitting material, the content of 5.0 parts by weight or less improves the purity of the light emitting material in the organic film of the organic EL element. As a result, a longer life can be achieved, more preferably 1.0 parts by weight or less, With 2.0 parts by weight or less, further longer life can be achieved.
  • the compounds represented by the general formulas (5-2), (5-4) to (5-8) are represented by the general formulas (1-2), (1-4) to (1-8) at the time of film formation. It may be formed by a dry process or a wet process together with an organic device material precursor represented by the general formula (1-2), (1-4) to (1-8). It is more preferable that the organic device material precursor to be produced is formed in the organic film as a result of performing the conversion treatment after the film formation.
  • an organic EL element containing the present organic device material precursor when producing an organic EL element containing the present organic device material precursor, it may contain a known dopant material or light emitting material.
  • a known dopant material or light emitting material known materials can be used, and examples thereof include indenoperylene, pyromethene, chrysene, anthracene, and derivatives and various metal complexes thereof.
  • examples of the organic device material precursor include the aforementioned compounds [73] and [74].
  • the weight concentration of the organic device material precursor relative to the converted organic device material in the light emitting layer is a value obtained by analysis by high performance liquid chromatography-ultraviolet absorptiometry.
  • Silica gel is used as the filler, and octadecyl group-bonded silica gel, octyl group-bonded silica gel, and phenyl group-bonded silica gel are preferably used, and these can be selected depending on the type of organic device material and organic device material precursor. it can. Acetonitrile, tetrahydrofuran, distilled water, phosphoric acid aqueous solution, methanol or the like can be used for the moving layer, and these may be used in combination. In particular, detection can be performed with high resolution by using only acetonitrile or a mixed solvent of acetonitrile-phosphoric acid aqueous solution. At this time, the liquid feeding pressure of the moving bed is preferably about 35 to 50 MPa.
  • FIG. 1 is a cross-sectional view showing an example of a typical structure of the organic EL element 10 (display).
  • An active matrix circuit including the TFT 12 and the planarization layer 13 is formed on the support 11.
  • the element portion is the first electrode 15 / hole transport layer 16 / light emitting layer 17 / electron transport layer 18 / second electrode 19 formed thereon.
  • An insulating layer 14 that prevents a short circuit from occurring at the electrode end and defines a light emitting region is formed at the end of the first electrode.
  • the configuration of the element is not limited to this example. For example, only one light emitting layer having a hole transport function and an electron transport function may be formed between the first electrode and the second electrode.
  • the hole transport layer may be a hole injection layer and a hole transport layer
  • the electron transport layer may be a multilayer structure of an electron transport layer and an electron injection layer
  • the light emitting layer has an electron transport function.
  • the electron transport layer may be omitted.
  • these layers may be a single layer or a plurality of layers.
  • a protective layer, a color filter, sealing, or the like may be performed using a known technique.
  • the photolithographic method is used up to the first electrode 15, the insulating layer 14 is patterned by a known technique using a photosensitive polyimide precursor material, and then the hole transport layer 16. Is formed on the entire surface by a known technique using a vacuum deposition method.
  • the hole transport layer 16 is used as a base layer, and the light emitting layers 17R, 17G, and 17B are patterned thereon.
  • a known technique such as vacuum deposition
  • the light emitting layer includes organic device materials represented by general formulas (5-2) and (5-4) to (5-8), and general formulas (1-2) and (1-4) to (1-8).
  • organic device material precursor represented it may be a single layer or a plurality of layers, and may further contain a material other than the organic device material precursor.
  • the light emitting layer preferably has a single layer structure of a mixture of a host material and a dopant material.
  • a known method such as vapor deposition, solution coating, ink jetting, or nozzle coating can be used as a method for forming the light emitting layer.
  • a film by a vapor deposition method it is preferable to form a film by vapor-depositing a material obtained by converting the organic device material precursor of the present invention into an organic device material. Furthermore, as described above, a method of forming a light-emitting layer by performing a conversion process on a coating film formed on a donor substrate using a wet process and then performing a transfer process onto a device substrate is particularly preferable.
  • the hole transport layer may be a single layer or a plurality of layers, and each layer may be a single material or a mixture of a plurality of materials.
  • a layer called a hole injection layer is also included in the hole transport layer. From the viewpoint of hole transportability (low driving voltage) and durability, an acceptor material that promotes hole transportability may be mixed in the hole transport layer. Therefore, the transfer material for forming the hole transport layer may be made of a single material or a mixture of a plurality of materials.
  • hole transport materials include N, N′-diphenyl-N, N′-dinaphthyl-1,1′-diphenyl-4,4′-diamine (NPD) and N, N′-biphenyl-N, N′—.
  • aromatic amines N-isopropylcarbazole, pyrazoline derivatives, stilbene compounds, hydrazone compounds, low molecular materials such as oxadiazole derivatives and heterocyclic compounds represented by phthalocyanine derivatives, and these low molecules
  • polymer materials such as polycarbonate having a compound in the side chain, styrene derivative, polyvinyl carbazole, and polysilane.
  • acceptor material examples include low molecular weight materials such as 7,7,8,8-tetracyanoquinodimethane (TCNQ), hexaazatriphenylene (HAT) and its cyano group derivative (HAT-CN6).
  • TCNQ 7,7,8,8-tetracyanoquinodimethane
  • HAT hexaazatriphenylene
  • HAT-CN6 cyano group derivative
  • metal oxides such as molybdenum oxide and silicon oxide that are thinly formed on the surface of the first electrode can also be exemplified as hole transport materials and acceptor materials.
  • the electron transport layer may be a single layer or a plurality of layers, and each layer may be a single material or a mixture of a plurality of materials.
  • a layer called a hole blocking layer or an electron injection layer is also included in the electron transport layer.
  • the electron transport layer may be mixed with a donor material that promotes electron transport properties.
  • a layer called the electron injection layer is often discussed as this donor material.
  • the transfer material for forming the electron transport layer may be made of a single material or a mixture of a plurality of materials.
  • electron transport materials include quinolinol complexes such as Alq 3 and 8-quinolinolatolithium (Liq), condensed polycyclic aromatic derivatives such as naphthalene and anthracene, and 4,4′-bis (diphenylethenyl) biphenyl.
  • quinolinol complexes such as Alq 3 and 8-quinolinolatolithium (Liq)
  • condensed polycyclic aromatic derivatives such as naphthalene and anthracene
  • 4,4′-bis (diphenylethenyl) biphenyl 4,4′-bis (diphenylethenyl) biphenyl.
  • Styryl aromatic ring derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, various metal complexes such as tropolone metal complexes and flavonol metal complexes, heterocycles containing electron-accepting nitrogen Examples thereof include low molecular materials such as compounds having an aryl ring structure, and polymer materials having these low molecular compounds in the side chain.
  • the donor material examples include alkali metals and alkaline earth metals such as lithium, cesium, magnesium, and calcium, various metal complexes such as quinolinol complexes, and oxides and fluorides such as lithium fluoride and cesium oxide. be able to.
  • At least one of the first electrode and the second electrode is transparent in order to extract light emitted from the light emitting layer.
  • the first electrode In the case of bottom emission in which light is extracted from the first electrode, the first electrode is transparent, and in the case of top emission in which light is extracted from the second electrode, the second electrode is transparent.
  • the organic EL element in the present invention is not generally limited to the active matrix type in which the second electrode is formed as a common electrode.
  • the organic EL element is formed of a stripe electrode in which the first electrode and the second electrode intersect each other. It may be a simple matrix type or a segment type in which the display unit is patterned so as to display predetermined information. Examples of these applications include televisions, personal computers, monitors, watches, thermometers, audio equipment, automobile display panels, and the like.
  • the measurement was performed using an octyl group-bonded silica gel as a packing material for HPLC (manufactured by Shimadzu Corporation) and an acetonitrile-phosphoric acid aqueous solution mixed solution as a moving layer.
  • Example 1 A glass substrate with ITO is subjected to UV-O 3 treatment for 30 minutes, and a PEDOT-PSS / IPA solution (Clerious P VP AI 4083 manufactured by Heraeus, diluted 1.5 times) is applied thereon as a hole injection layer. did.
  • the film of the extraction electrode part was wiped off and annealed on a hot plate at 200 ° C. for 10 minutes to form a PEDOT-PSS layer.
  • a 0.5 weight percent toluene solution of the compound [73] containing the compound [73] and the compound [D-1] represented by the following formula with respect to the compound [73] and the compound [73] was spin-coated. It was set as the light emitting layer.
  • annealing was performed under vacuum conditions in a multi-chamber deposition apparatus. After vacuum drying, light irradiation was performed as described later. After the light emitting layer, a multi-chamber vapor deposition apparatus was used to form a vapor deposition film in the order of compound [E-1] represented by the following formula as an electron transport layer, lithium fluoride as an electron injection layer, and aluminum as a cathode. Thereafter, a sealing process was performed in a glove box to produce an organic EL element.
  • compound [E-1] represented by the following formula as an electron transport layer, lithium fluoride as an electron injection layer, and aluminum as a cathode.
  • the substrate is set in a SUS perforated substrate holder, left in a heating chamber in a multi-chamber deposition apparatus, and is evacuated to 1 ⁇ 10 ⁇ 4 Pa or less. Then, light irradiation was performed under heating conditions.
  • a blue LED lamp peak top: 460 nm, light quantity at an irradiation distance of 20 cm: 2.81 mW / cm 2 ) was used as a light source, and light was irradiated through a window of the heating chamber.
  • Reference example 1 An organic EL device was produced in the same manner as in Example 1 except that a toluene solution of the compound [5-A] was used for forming the light emitting layer and no light irradiation was performed. After sealing the produced organic EL elements of Example 1 and Reference Example 1, a constant current of 2.5 mA / cm 2 was passed. The luminance immediately after starting to flow was set as the initial luminance, and a constant current was continuously supplied, and the time until the luminance decreased to half from the initial luminance was measured as the luminance half time. When the measurement value of Example 1 was 1.0, the relative ratio of the measurement value of Comparative Example 1 was 0.2 for the relative initial luminous efficiency and 0.1 for the relative luminance half life.
  • Organic EL elements (device substrates) 11 Support 12 TFT (including extraction electrode) 13 planarization layer 14 insulating layer 15 first electrode 16 hole transport layer 17 light emitting layer 18 electron transport layer 19 second electrode 20 glass substrate 21 ITO pattern

Abstract

With respect to organic device materials such as light-emitting element materials, this organic device material precursor has a specific structure, provides a high-performance organic device, and can be widely applied to wet processes.

Description

有機デバイス材料前駆体およびその製造方法ならびにこれを用いた発光素子およびその製造方法Organic device material precursor, method for producing the same, light emitting device using the same, and method for producing the same
 本発明は、有機エレクトロルミネッセンス(以下「EL」)素子、有機電界効果型トランジスタ、有機起電力素子などの構成材料として有用な有機デバイス材料の前駆体、該前駆体の製造方法およびこれを用いた有機デバイスに関する。特に表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子に使用される発光素子材料を技術分野とするものである。 The present invention relates to a precursor of an organic device material useful as a constituent material for an organic electroluminescence (hereinafter, “EL”) element, an organic field effect transistor, an organic electromotive element, and the like, a method for producing the precursor, and the same It relates to organic devices. In particular, the technical field is light-emitting element materials used for light-emitting elements that can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators. is there.
 有機EL素子は陰極と陽極の間に有機発光材料を挟んだ構造の発光素子であり、陰極から注入された電子と陽極から注入された正孔が有機層で再結合することで生じるエネルギーを発光エネルギーとして外部に取り出す原理を適用した素子である。 An organic EL device is a light emitting device with an organic light emitting material sandwiched between a cathode and an anode, and emits energy generated by recombination of electrons injected from the cathode and holes injected from the anode in the organic layer. It is an element to which the principle of taking it out as energy is applied.
 現在、有機EL素子に代表される有機デバイスの作製には、真空蒸着法などのドライプロセスが一般的であるが、真空蒸着法では製造装置が高価であること、材料の利用効率が低いこと、シャドーマスクを用いたパターニング法では大面積デバイスの作製が困難であることなどの問題があった。 Currently, a dry process such as a vacuum deposition method is generally used to produce an organic device typified by an organic EL element. However, the vacuum deposition method is expensive in manufacturing equipment and has low material utilization efficiency. The patterning method using a shadow mask has problems such as difficulty in manufacturing a large area device.
 それに対し、スピンコート法やインクジェット法などウェットプロセスによる有機デバイスの作製方法も検討されている。しかし、真空蒸着法にて一般的に用いられている有機デバイス材料は難溶性のものがほとんどであり、そのままウェットプロセスへ用いることは困難である。そのため有機デバイス材料の可溶化の検討がなされている。その中に、可溶性前駆体を用いる方法がある。これは、可溶性前駆体をデバイス基板に塗布・製膜し、その後加熱等の処理により有機デバイス材料に変換することで目的とする特性が得られる技術である(例えば、特許文献1~3参照)。この方法によれば、難溶性の材料であってもその前駆体が可溶性であればプロセス適用が可能となる。 On the other hand, methods for producing organic devices by a wet process such as a spin coating method and an ink jet method are also being studied. However, most organic device materials generally used in vacuum deposition are hardly soluble and are difficult to use in wet processes as they are. Therefore, studies on solubilization of organic device materials have been made. Among them, there is a method using a soluble precursor. This is a technique in which a desired characteristic is obtained by applying and forming a soluble precursor on a device substrate and then converting it into an organic device material by a treatment such as heating (see, for example, Patent Documents 1 to 3). . According to this method, even if it is a hardly soluble material, if the precursor is soluble, the process can be applied.
特開2003-304014号公報JP 2003-304014 A 特開2005-232136号公報JP 2005-232136 A 特開2008-135198号公報JP 2008-135198 A
 しかしながら、特許文献1~3記載の方法で可溶性前駆体を製造できる化合物には制限があった。例えば9,10位に置換基を有するアントラセン誘導体、そしてルブレンに例示される4置換テトラセン誘導体には適用することができず、このように、従来技術ではウェットプロセスで素子に適用できない材料も存在していた。 However, there are limitations on the compounds that can produce soluble precursors by the methods described in Patent Documents 1 to 3. For example, it cannot be applied to an anthracene derivative having a substituent at the 9- and 10-positions, and a 4-substituted tetracene derivative exemplified by rubrene. Thus, there are materials that cannot be applied to devices by a wet process in the prior art. It was.
 本発明の課題は、このような問題を解決するものであって、発光素子材料をはじめとする有機デバイス材料について、幅広くウェットプロセスを適用可能にし、高性能の有機デバイスを提供することを目的とする。 An object of the present invention is to solve such a problem, and aims to provide a high-performance organic device by enabling a wide range of wet processes to be applied to organic device materials including light-emitting element materials. To do.
 上記課題を解決するために本発明は以下の内容からなる。すなわち、本発明は一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体である。 In order to solve the above problems, the present invention comprises the following contents. That is, the present invention is an organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (一般式(1-2)、(1-4)~(1-8)中、R201~R210、R223~R284はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、およびホスフィンオキサイド基からなる群より選ばれ、これらはさらに置換基を有していてもよい。XはC=O、OまたはCHRから選ばれる原子または原子団である。Rはアルキル基、アルケニル基、アルコキシ基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。) (In the general formulas (1-2) and (1-4) to (1-8), R 201 to R 210 and R 223 to R 284 may be the same or different, and hydrogen, alkyl group, cycloalkyl Group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl Selected from the group consisting of a group, a carbamoyl group, an amino group, a silyl group, and a phosphine oxide group, which may further have a substituent, wherein X is an atom selected from C═O, O or CHR 9 or an atomic group .R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group or an acyl group, bonded to one another Has been may form a ring.)
 本発明によれば、従来法では対応できなかったさまざまな有機デバイス材料についてもウェットプロセスを適用することができる。また、有機デバイス材料前駆体を含む溶液をインクジェット法やノズル塗布法にて塗布・製膜し、その後デバイス構成材料へ変換処理を行うことでデバイスを製造することができる。 According to the present invention, the wet process can be applied to various organic device materials that cannot be handled by the conventional method. Moreover, a device can be manufactured by applying and forming a solution containing an organic device material precursor by an inkjet method or a nozzle coating method, and then performing a conversion process to a device constituent material.
本発明により発光層がパターニングされた有機EL素子の一例を示す断面図。Sectional drawing which shows an example of the organic EL element by which the light emitting layer was patterned by this invention. ガラス基板上に作製したITOの形状の一例を示す図。The figure which shows an example of the shape of ITO produced on the glass substrate.
 本発明の有機デバイス材料前駆体は下記一般式(1-2)、(1-4)~(1-8)のいずれかで表される。 The organic device material precursor of the present invention is represented by any of the following general formulas (1-2), (1-4) to (1-8).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(1-2)、(1-4)~(1-8)中、R201~R210、R223~R284はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、およびホスフィンオキサイド基からなる群より選ばれ、これらはさらに置換基を有していてもよい。XはC=O、OまたはCHRから選ばれる原子または原子団である。Rはアルキル基、アルケニル基、アルコキシ基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。 In general formulas (1-2) and (1-4) to (1-8), R 201 to R 210 and R 223 to R 284 may be the same or different and are each hydrogen, an alkyl group, or a cycloalkyl group. , Heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl group , A carbamoyl group, an amino group, a silyl group, and a phosphine oxide group, and these may further have a substituent. X is an atom or atomic group selected from C═O, O, or CHR 9 . R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group, or an acyl group, and may have a bond with each other to form a ring.
 これらの置換基のうち、水素は重水素であってもよい。また、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基およびtert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基およびヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。 Of these substituents, hydrogen may be deuterium. The alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group. It may or may not have a substituent. There are no particular limitations on the additional substituent when it is substituted, and examples thereof include an alkyl group, an aryl group, and a heteroaryl group. This point is also common to the following description.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基およびアダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。 The cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group, which may or may not have a substituent.
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。 The heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. . Although carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。 An alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、置換基を有していても有していなくてもよい。 The alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基およびプロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。 An alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, and a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。 The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent.
 アリールエーテル基とは例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。 An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. .
 アリールチオエーテル基とはアリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールチオエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。 The aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom. The aromatic hydrocarbon group in the aryl thioether group may or may not have a substituent.
 アリール基とは、例えばフェニル基、ナフチル基、ビフェニル基、フルオレニル基、フェナントリル基、ターフェニル基、アントラセニル基およびピレニル基などの芳香族炭化水素基、もしくはこれらが複数連結した基を示し、これは無置換でも置換されていてもかまわない。このようなアリール基が有していても良い置換基はアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールエーテル基、アルキルチオ基、ハロゲン、シアノ基、アミノ基(アミノ基はさらにアリール基やヘテロアリール基で置換されていてもよい)、シリル基およびボリル基などである。 The aryl group is, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a terphenyl group, an anthracenyl group, and a pyrenyl group, or a group in which a plurality of these are connected, It can be unsubstituted or substituted. Substituents that such aryl groups may have are alkyl groups, cycloalkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, aryl ether groups, alkylthio groups, halogens, cyano groups, amino groups (amino groups are further An aryl group or a heteroaryl group, which may be substituted), a silyl group and a boryl group.
 ヘテロアリール基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を環内に有する芳香族基を示し、これは置換基を有していても有していなくてもよい。このようなヘテロアリール基が有していても良い置換基は、アリール基が有していても良い置換基と同様である。 A heteroaryl group refers to an aromatic group having a non-carbon atom in the ring, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, or a carbazolyl group, which has a substituent. Even if it does not have. The substituent that such a heteroaryl group may have is the same as the substituent that the aryl group may have.
 ハロゲンとはフッ素、塩素、臭素、ヨウ素である。 Halogen is fluorine, chlorine, bromine or iodine.
 カルボニル基とはアシル基やホルミル基など炭素-酸素二重結合を含む置換基を示す。アシル基はホルミル基の水素がアルキル基、アリール基、ヘテロアリール基に置換した置換基を示す。 The carbonyl group refers to a substituent containing a carbon-oxygen double bond such as an acyl group or a formyl group. An acyl group is a substituent in which hydrogen of a formyl group is substituted with an alkyl group, an aryl group, or a heteroaryl group.
 オキシカルボニル基とはt-ブチルオキシカルボニル基やベンジルオキシカルボニル基のようにカルボニル基の炭素上にエーテル結合を含む置換基を示す。 The oxycarbonyl group refers to a substituent containing an ether bond on the carbon of the carbonyl group, such as t-butyloxycarbonyl group or benzyloxycarbonyl group.
 カルバモイル基とはカルバミン酸の水酸基を外した置換基を示し、置換基を有していても有していなくてもよい。 The carbamoyl group indicates a substituent from which the hydroxyl group of carbamic acid is removed, and may or may not have a substituent.
 アミノ基とは、例えばジメチルアミノ基などの窒素化合物基を示し、これは無置換でも置換されていてもかまわない。 The amino group represents a nitrogen compound group such as a dimethylamino group, which may be unsubstituted or substituted.
 シリル基とは、例えば、トリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。 The silyl group refers to, for example, a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted.
 ホスフィンオキサイド基とはリン-酸素二重結合を含む置換基を示し、これは無置換でも置換されていてもかまわない。 The phosphine oxide group is a substituent containing a phosphorus-oxygen double bond, which may be unsubstituted or substituted.
 XはC=O、OまたはCHRから選ばれる原子または原子団である。Rはアルキル基、アルケニル基、アルコキシ基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。Rが互いに結合を有して環を形成しても良いとは、XがCHRである場合、X-XはCH(R)-CH(R)と表現されるが、このR同士が結合して環構造を形成することを指す。この場合において、Rがアルキル基である場合はこの環構造は例えばシクロヘキシル構造などになりうる。またRがアルコキシ基である場合はアルコキシ基中のアルキル基部分同士が結合を有することにより、この環構造は環状アセタールとなり、例えばアセトニドのような化合物になりうる。Rが水素である化合物は塗布成膜時に結晶化しやすく、均一な膜を得るのが困難であるため好ましくないが、アルキル基やアルコキシ基の場合は結晶化することなく均一な膜が得られるため好適に用いることができる。 X is an atom or atomic group selected from C═O, O, or CHR 9 . R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group, or an acyl group, and may have a bond with each other to form a ring. R 9 may have a bond with each other to form a ring. When X is CHR 9 , XX is represented as CH (R 9 ) —CH (R 9 ). 9 refers to bonding to form a ring structure. In this case, when R 9 is an alkyl group, the ring structure can be, for example, a cyclohexyl structure. When R 9 is an alkoxy group, the alkyl groups in the alkoxy group have a bond with each other, so that this ring structure becomes a cyclic acetal, for example, a compound such as acetonide. A compound in which R 9 is hydrogen is not preferred because it is easy to crystallize during coating film formation and it is difficult to obtain a uniform film, but in the case of an alkyl group or alkoxy group, a uniform film can be obtained without crystallization. Therefore, it can be suitably used.
 また、前記式(1-2)においてR201~R206、式(1-4)においてR223~R232、式(1-5)においてR237~R242、式(1-6)においてR247~R254、式(1-7)においてR259~R266、式(1-8)においてR271~R280が、それぞれ、置換基を有していてもよいアルキル基、シクロアルキル基、アリール基、および水素からなる群より選ばれることが好ましい。 Also, R 201 to R 206 in the formula (1-2), R 223 to R 232 in the formula (1-4), R 237 to R 242 in the formula (1-5), R in the formula (1-6) 247 to R 254 , R 259 to R 266 in formula (1-7), and R 271 to R 280 in formula (1-8) are each an alkyl group, cycloalkyl group, which may have a substituent, It is preferably selected from the group consisting of an aryl group and hydrogen.
 上記R201~R206、R223~R232、R237~R242、R247~R254、R259~R266、およびR271~R280がアリール基であることは以下の理由により好ましい。一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体を変換処理して得られる有機デバイス材料は分子内での共役が拡張され、それによって電子や正孔の流れが改善されるため高い性能が得られる。これはたとえば、該有機デバイス材料を有機EL素子の発光材料として使用した場合は、発光効率の向上が可能となる。また、R201~R206、R223~R232、R237~R242、R247~R254、R259~R266、およびR271~R280がアルキル基やシクロアルキル基であることは以下の理由により好ましい。これらの置換基が中心骨格に与える電子的な影響はほぼ無視できることから、有機デバイス材料前駆体を変換処理して得られる有機デバイス材料は水素が結合した場合と同等の性能となる。さらにデバイス作製時の薄膜形成過程において、薄膜の結晶化が抑えられ、均一な薄膜が得られる。上述の置換基群は、単独で用いても、複数を組み合わせて用いてもよい。 R 201 to R 206 , R 223 to R 232 , R 237 to R 242 , R 247 to R 254 , R 259 to R 266 , and R 271 to R 280 are preferably aryl groups for the following reasons. The organic device material obtained by converting the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8) has an expanded conjugation in the molecule. , Thereby improving the flow of electrons and holes, resulting in high performance. For example, when the organic device material is used as a light emitting material of an organic EL element, the light emission efficiency can be improved. R 201 to R 206 , R 223 to R 232 , R 237 to R 242 , R 247 to R 254 , R 259 to R 266 , and R 271 to R 280 are an alkyl group or a cycloalkyl group as follows. It is preferable for the reason. Since the electronic influence of these substituents on the central skeleton is almost negligible, the organic device material obtained by converting the organic device material precursor has the same performance as when hydrogen is bonded. Furthermore, in the process of forming a thin film during device fabrication, crystallization of the thin film is suppressed, and a uniform thin film can be obtained. The above substituent groups may be used alone or in combination.
 また、R207~R210、R233~R236、R243~R246、R255~R258、R267~R270、およびR281~R284は独立した基である。「独立した基である」とは、隣接置換基との間で環を形成しないことをいう。本発明の有機デバイス材料前駆体は、たとえば一般式(1-2)で表される有機デバイス材料前駆体を例にとると、変換処理を施すことで以下の式に示すようにX-X架橋部位が脱離し、新しくベンゼン環を形成してアントラセンとなる。一般式(1-4)~(1-8)で表される有機デバイス材料前駆体も、同様の変換処理を施すことで、少なくとも2環以上の縮合環を有する有機デバイス材料に変換される。 R 207 to R 210 , R 233 to R 236 , R 243 to R 246 , R 255 to R 258 , R 267 to R 270 , and R 281 to R 284 are independent groups. “Independent group” means that no ring is formed between adjacent substituents. The organic device material precursor of the present invention is, for example, an organic device material precursor represented by the general formula (1-2). The site is eliminated and a new benzene ring is formed to become anthracene. The organic device material precursors represented by the general formulas (1-4) to (1-8) are also converted into an organic device material having at least two condensed rings by performing the same conversion treatment.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ここで、一般式(1-2)、(1-4)~(1-8)で表される有機デバイス材料前駆体において、R207~R210、R233~R236、R243~R246、R255~R258、R267~R270、およびR281~R284がそれぞれ独立した基であることで、変換処理によって新しく形成されるベンゼン環は該縮合環の端の環を形成することとなる。つまり、これまで合成が特に困難であった、9,10位に置換基を有するアントラセン誘導体、そしてルブレンに例示される4置換テトラセン誘導体などにも対応した前駆体構造を与えることができる。 Here, in the organic device material precursors represented by the general formulas (1-2) and (1-4) to (1-8), R 207 to R 210 , R 233 to R 236 , R 243 to R 246 , R 255 to R 258 , R 267 to R 270 , and R 281 to R 284 are independent groups, and the benzene ring newly formed by the conversion treatment forms a ring at the end of the condensed ring. It becomes. That is, a precursor structure corresponding to anthracene derivatives having a substituent at the 9,10 positions, a 4-substituted tetracene derivative exemplified by rubrene, and the like, which have been particularly difficult to synthesize, can be provided.
 R207~R210、R233~R236、R243~R246、R255~R258、R267~R270、およびR281~R284は特に水素、アルキル基、シクロアルキル基、アルコキシ基、アリールエーテル基、複素環基、アリール基、ヘテロアリール基であることが好ましい。アルキル基、シクロアルキル基、アルコキシ基、アリールエーテル基は中心骨格に対して、電子的な影響を与えない点で、水素が結合している場合と同じ効果が得られ、さらに成膜時の膜質が改善されることから好ましい。また、複素環基、アリール基、ヘテロアリール基は分子構造中の共役を拡張することができ、また、電子や正孔の流れを調整することができるため好ましい。さらに好ましくは水素、アルキル基、シクロアルキル基、複素環基、アリール基、ヘテロアリール基である。上述の置換基群は、単独で用いても、複数を組み合わせて用いてもよい。 R 207 to R 210 , R 233 to R 236 , R 243 to R 246 , R 255 to R 258 , R 267 to R 270 , and R 281 to R 284 are particularly hydrogen, an alkyl group, a cycloalkyl group, an alkoxy group, An aryl ether group, a heterocyclic group, an aryl group, and a heteroaryl group are preferable. Alkyl groups, cycloalkyl groups, alkoxy groups, and aryl ether groups have the same effect as when hydrogen is bonded in that they do not electronically affect the central skeleton. Is preferable because of improvement. In addition, a heterocyclic group, an aryl group, and a heteroaryl group are preferable because they can extend the conjugation in the molecular structure and can adjust the flow of electrons and holes. More preferred are hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group. The above substituent groups may be used alone or in combination.
 さらに、本発明の有機デバイス材料前駆体は、前記一般式(1-2)においてR201~R206、式(1-4)においてR223~R232、式(1-5)においてR237~R242、式(1-6)においてR247~R254、式(1-7)においてR259~R266、式(1-8)においてR271~R280の少なくとも1つが下記一般式(2-1)~(2-11)で表される骨格のいずれかを含むことが好ましい。このような炭化水素からなる縮合環を有する化合物は、分子内における共役が広がり、有機デバイス材料として高い性能を有する。一方で分子の極性が低く、溶媒への溶解性が低いものが多いため、本発明の有機デバイス材料前駆体とすることで大幅な溶解性の向上が期待できる。 Further, the organic device material precursor of the present invention includes R 201 to R 206 in the general formula (1-2), R 223 to R 232 in the formula (1-4), and R 237 to R 237 in the formula (1-5). R 242 , R 247 to R 254 in formula (1-6), R 259 to R 266 in formula (1-7), and R 271 to R 280 in formula (1-8) are represented by the following general formula (2 It is preferable that any one of the skeletons represented by -1) to (2-11) is included. A compound having a condensed ring made of such a hydrocarbon has wide conjugation in the molecule and has high performance as an organic device material. On the other hand, since many molecules have low polarities and low solubility in solvents, significant improvement in solubility can be expected by using the organic device material precursor of the present invention.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(2-1)においてR10~R15、式(2-2)においてR16~R23、式(2-3)においてR24~R33、式(2-4)においてR34~R43、式(2-5)においてR44~R55、式(2-6)においてR56~R67、式(2-7)においてR68~R77、式(2-8)においてR78~R89、式(2-9)においてR90~R101、式(2-10)においてR102~R115、式(2-11)においてR116~R129のそれぞれ少なくとも一つは直接、もしく間接的に結合して一般式(1-2)、(1-4)~(1-8)における有機デバイス材料前駆体との連結に用いられる。このとき間接的な結合としては、二重結合、三重結合、エーテル結合、アミド結合などを介した結合や、アミノ基、カルボニル基、オキシカルボニル基、アリーレン基などを介した結合が当てはまる。R10~R129の各置換基の説明はR201~R210、R223~R283の置換基の説明と同様である。 R 10 to R 15 in formula (2-1), R 16 to R 23 in formula (2-2), R 24 to R 33 in formula (2-3), R 34 to R in formula (2-4) 43 , R 44 to R 55 in formula (2-5), R 56 to R 67 in formula (2-6), R 68 to R 77 in formula (2-7), R 78 in formula (2-8) ~ R 89, wherein (2-9) R 90 ~ R 101 in, R 102 ~ R 115 in the formula (2-10), each of the at least one direct R 116 ~ R 129 in the formula (2-11), Alternatively, it is indirectly bonded and used for connection with the organic device material precursor in the general formulas (1-2) and (1-4) to (1-8). In this case, as an indirect bond, a bond via a double bond, a triple bond, an ether bond, an amide bond, or the like, or a bond via an amino group, a carbonyl group, an oxycarbonyl group, an arylene group, or the like applies. The explanation of each substituent of R 10 to R 129 is the same as the explanation of the substituents of R 201 to R 210 and R 223 to R 283 .
 この中でもR10~R129は水素、アルキル基、シクロアルキル基、複素環基、アルコキシ基、アリールエーテル基、アリール基、ヘテロアリール基、シアノ基から選ばれることが好ましい。 Among these, R 10 to R 129 are preferably selected from hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkoxy group, an aryl ether group, an aryl group, a heteroaryl group, and a cyano group.
 また、有機デバイス材料前駆体が、ジケト架橋構造であることがより好ましい。すなわち、一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体において、XがC=Oであることが好ましい。上記構造とすることで、前駆体化合物からの変換をより効率的に行うことができる。 Further, it is more preferable that the organic device material precursor has a diketo cross-linked structure. That is, in the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8), X is preferably C═O. By setting it as the said structure, conversion from a precursor compound can be performed more efficiently.
 上記一般式(1-2)で表される有機デバイス材料前駆体の例としては、下記のような構造が挙げられる。 Examples of the organic device material precursor represented by the general formula (1-2) include the following structures.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(1-4)で表される有機デバイス材料前駆体の例としては、下記のような構造が挙げられる。 Examples of the organic device material precursor represented by the general formula (1-4) include the following structures.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記一般式(1-5)で表される有機デバイス材料前駆体の例としては、下記のような構造が挙げられる。 Examples of the organic device material precursor represented by the general formula (1-5) include the following structures.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記一般式(1-6)で表される有機デバイス材料前駆体の例としては、下記のような構造が挙げられる。 Examples of the organic device material precursor represented by the general formula (1-6) include the following structures.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記一般式(1-7)で表される有機デバイス材料前駆体の例としては、下記のような構造が挙げられる。 Examples of the organic device material precursor represented by the general formula (1-7) include the following structures.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記一般式(1-8)で表される有機デバイス材料前駆体の例としては、下記のような構造が挙げられる。 Examples of the organic device material precursor represented by the general formula (1-8) include the following structures.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 次に、本発明の別の形態は下記一般式(3-2)~(3-8)のいずれかで表される化合物である。これらの化合物は、上記一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体および、後述される一般式(1-3)で表される有機デバイス材料前駆体等の原料として好適に用いられる。 Next, another embodiment of the present invention is a compound represented by any one of the following general formulas (3-2) to (3-8). These compounds include an organic device material precursor represented by any one of the above general formulas (1-2) and (1-4) to (1-8), and a general formula (1-3) described later. It is suitably used as a raw material for the organic device material precursor represented.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(3-2)~(3-8)中、R309~R392はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、およびヒドロキシル基からなる群より選ばれる。ただし、式(3-2)においてR309~R318、式(3-3)においてR319~R330、式(3-4)においてR331~R344、式(3-5)においてR345~R354、式(3-6)においてR355~R366、式(3-7)においてR367~R378、式(3-8)においてR379~R392の少なくともひとつはCl、Br、IまたはCl、BrもしくはIのいずれかを有する置換基である。YはC=O、OまたはCHR393から選ばれる原子または原子団である。R393はアルキル基、アルケニル基、アルコキシ基、ヒドロキシル基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。ここで、R309~R392およびR393の各置換基の説明は前述のR201~R284およびRの説明と同様である。 In general formulas (3-2) to (3-8), R 309 to R 392 may be the same or different, and hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group Groups consisting of groups, alkylthio groups, aryl ether groups, aryl thioether groups, aryl groups, heteroaryl groups, halogens, cyano groups, carbonyl groups, carboxyl groups, oxycarbonyl groups, carbamoyl groups, amino groups, silyl groups, and hydroxyl groups More selected. However, R 309 to R 318 in Formula (3-2), R 319 to R 330 in Formula (3-3), R 331 to R 344 in Formula (3-4), and R 345 in Formula (3-5) R 354 , R 355 to R 366 in formula (3-6), R 367 to R 378 in formula (3-7), and at least one of R 379 to R 392 in formula (3-8) is Cl, Br, It is a substituent having either I or Cl, Br or I. Y is an atom or atomic group selected from C═O, O, or CHR 393 . R 393 is selected from an alkyl group, an alkenyl group, an alkoxy group, a hydroxyl group, and an acyl group, and may have a bond with each other to form a ring. Here, the description of each substituent of R 309 to R 392 and R 393 is the same as the description of R 201 to R 284 and R 9 described above.
 一般式(3-2)~(3-8)で表される化合物は、ハロゲン(Cl、Br、I)を有することにより公知の方法を用いて他の置換基と連結することが容易であり、本発明における有機デバイス材料前駆体の合成を容易にすることができる。このような化合物はたとえば、下記化合物[151]に示すようなハロゲンで置換されたナフタレン誘導体からベンザイン[152]を発生させ、次いで下記化合物[153]で表される、3,5-シクロヘキサジエン-1,2-ジオール誘導体のアセトニド保護体のようなジエン化合物とDiels-Alder反応させることによって合成することができる。一般式(3-3)~(3-8)についても同様の手法によって合成が可能である。 Since the compounds represented by the general formulas (3-2) to (3-8) have a halogen (Cl, Br, I), they can be easily linked to other substituents using a known method. The synthesis of the organic device material precursor in the present invention can be facilitated. For example, such a compound generates benzyne [152] from a naphthalene derivative substituted with a halogen as shown in the following compound [151], and then represents 3,5-cyclohexadiene-- represented by the following compound [153]. It can be synthesized by a Diels-Alder reaction with a diene compound such as a protected acetonide of a 1,2-diol derivative. General formulas (3-3) to (3-8) can also be synthesized by the same method.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 ここで、ベンザインの発生方法としては上述のハロゲン化合物を用いる以外にも、アントラニル酸誘導体のジアゾ化を利用する方法、o-トリメチルシリルフェニルトリフラート誘導体やフェニル(o-トリメチルシリルフェニル)ヨードニウムトリフラート誘導体にテトラブチルアンモニウムフルオリドを作用させる方法など公知の方法を用いることができる。 Here, as a method for generating benzyne, in addition to the above-described halogen compound, a method using diazotization of anthranilic acid derivative, o-trimethylsilylphenyl triflate derivative, phenyl (o-trimethylsilylphenyl) iodonium triflate derivative, tetrabutyl A known method such as a method of allowing ammonium fluoride to act can be used.
 前記一般式(3-2)~(3-8)で表される化合物において、式(3-2)においてR309~R314、式(3-3)においてR319~R326、式(3-4)においてR331~R340、式(3-5)においてR345~R350、式(3-6)においてR355~R362、式(3-7)においてR367~R374、式(3-8)においてR379~R388の少なくともひとつがCl、Br、I、またはCl、BrもしくはIを有する置換基のいずれかを有する置換基であることがさらに好ましい。 In the compounds represented by the general formulas (3-2) to (3-8), R 309 to R 314 in the formula (3-2), R 319 to R 326 in the formula (3-3), -4) R 331 to R 340 , Formula (3-5) R 345 to R 350 , Formula (3-6) R 355 to R 362 , Formula (3-7) R 367 to R 374 , Formula In (3-8), at least one of R 379 to R 388 is more preferably a substituent having any of Cl, Br, I, or a substituent having Cl, Br, or I.
 上記各Rにおいてそのいずれかが上記ハロゲン元素を有するものであることで、カップリングできる置換基の種類が増え、また、置換基とのカップリング反応をより高い収率で進行させることができる。また、この際ハロゲンを有するR以外のRについては特に水素、アルキル基、シクロアルキル基、アリール基、複素環基、ヘテロアリール基であることが好ましい。これらの置換基を有することで、共役の拡張による、有機デバイス材料としての性能向上、および、成膜時の膜の均一性が向上することから好ましい。これらの置換基群は単独で用いても組み合わせて用いてもかまわない。 When any one of the Rs has the halogen element, the types of substituents that can be coupled are increased, and the coupling reaction with the substituents can proceed at a higher yield. In this case, R other than R having halogen is particularly preferably hydrogen, an alkyl group, a cycloalkyl group, an aryl group, a heterocyclic group, or a heteroaryl group. By having these substituents, the performance as an organic device material is improved by conjugation expansion, and the uniformity of the film during film formation is improved. These substituent groups may be used alone or in combination.
 一般式(3-2)で表される化合物の例として以下のようなものが挙げられる。 Examples of the compound represented by the general formula (3-2) include the following.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(3-3)で表される化合物の例として以下のようなものが挙げられる。 Examples of the compound represented by the general formula (3-3) include the following.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(3-4)で表される化合物の例として以下のようなものが挙げられる。 Examples of the compound represented by the general formula (3-4) include the following.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(3-5)で表される化合物の例として以下のようなものが挙げられる。 Examples of the compound represented by the general formula (3-5) include the following.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(3-6)で表される化合物の例として以下のようなものが挙げられる。 Examples of the compound represented by the general formula (3-6) include the following.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 一般式(3-7)で表される化合物の例として以下のようなものが挙げられる。 Examples of the compound represented by the general formula (3-7) include the following.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(3-8)で表される化合物の例として以下のようなものが挙げられる。 Examples of the compound represented by the general formula (3-8) include the following.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 本発明において、下記一般式(1-2)~(1-8)のいずれかで表される有機デバイス前駆体を合成するには、公知の方法を用いることができるが、上記一般式(3-2)~(3-8)のいずれかで表される化合物を用いることが好ましい。 In the present invention, a known method can be used to synthesize an organic device precursor represented by any one of the following general formulas (1-2) to (1-8). -2) to (3-8) are preferably used.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 一般式(1-2)~(1-8)中、R201~R210、R223~R284およびXは上記の説明の通りであり、R211~R222はR201~R210と同様である。 In the general formulas (1-2) to (1-8), R 201 to R 210 , R 223 to R 284 and X are as described above, and R 211 to R 222 are the same as R 201 to R 210. It is.
 というのも、一般式(3-2)~(3-8)で表される化合物はハロゲン(Cl、Br、I)を有していることから公知の触媒的クロスカップリング反応による置換基の導入が容易である。たとえば、炭素-炭素結合を形成するには、パラジウム触媒存在下、ボロン酸誘導体化したアリール基などとカップリング反応させたり、銅を作用させて炭素-炭素結合を形成することもできる。またパラジウム触媒を用いてアミンとカップリング反応させることも可能である。末端にビニル基を有する化合物をパラジウム触媒存在下で反応させるとビニル結合を導入することができ、また、アセチレンの導入には薗頭カップリング(Sonogashira coupling)反応を利用できる。 This is because the compounds represented by the general formulas (3-2) to (3-8) have halogens (Cl, Br, I), so that the substituents by the known catalytic cross-coupling reaction can be reduced. Easy to install. For example, in order to form a carbon-carbon bond, a carbon-carbon bond can be formed by a coupling reaction with an aryl group derivatized with a boronic acid in the presence of a palladium catalyst, or by allowing copper to act. It is also possible to carry out a coupling reaction with an amine using a palladium catalyst. When a compound having a vinyl group at the terminal is reacted in the presence of a palladium catalyst, a vinyl bond can be introduced, and a Sonogashira coupling reaction can be used for introducing acetylene.
 さらに、ハロゲンの状態から別の反応活性種へ求核置換反応によって置換して、カップリングやその他の反応を行うこともできる。たとえば、ブチルリチウムと反応させてハロゲン部位をリチオ化してカップリング反応させることや、マグネシウムと反応させてグリニャール試薬としてカップリング反応させたり、ハロゲン部位自体をボロン酸エステル化してハロゲン化アリールとカップリング反応させることも可能である。 Further, coupling and other reactions can be performed by substituting from a halogen state to another reactive species by a nucleophilic substitution reaction. For example, it reacts with butyllithium to lithiate the halogen moiety for a coupling reaction, or reacts with magnesium for a coupling reaction as a Grignard reagent, or the halogen moiety itself is boronated to couple with an aryl halide. It is also possible to react.
 すなわち、一般式(1-2)~(1-8)のいずれかで表される有機デバイス材料前駆体の製造方法であって、一般式(3-2)~(3-8)のいずれかで表される化合物が有するCl、BrもしくはIを利用した触媒的クロスカップリング工程、または一般式(3-2)~(3-8)のいずれかで表される化合物が有するCl、BrもしくはIの位置での求核置換反応工程を含むことが好ましい。 That is, a method for producing an organic device material precursor represented by any one of the general formulas (1-2) to (1-8), wherein any one of the general formulas (3-2) to (3-8) A catalytic cross-coupling step using Cl, Br or I possessed by the compound represented by formula (I), or Cl, Br or a compound represented by any one of formulas (3-2) to (3-8) It preferably includes a nucleophilic substitution reaction step at position I.
 このように、一般式(3-2)~(3-8)で表される化合物を用いたカップリング反応は上記の手法を用いて達成することができるが、その手法は上記に述べた手法の限りではなく、カップリングしたい化合物によって選択することができる。 As described above, the coupling reaction using the compounds represented by the general formulas (3-2) to (3-8) can be achieved by using the above-described method. However, it can be selected depending on the compound to be coupled.
 一般式(3-2)~(3-8)で表される化合物においてY-Yで表される部位が、一般式(1-2)~(1-8)におけるX-Xとは異なる場合、さらに、Y-Y部位をX-Xに変換し、一般式(1-2)~(1-8)で表される有機デバイス材料前駆体にするための反応を続けて行う。具体的には、たとえば、化合物[182]を、ジケトンを有する有機デバイス前駆体としたい場合には、Y-Y部位の酸による脱保護を行ってジオールとし、これをSwern酸化することでジケトンを有する有機デバイス材料前駆体を合成することができる。また化合物[209]のような炭酸エチレン誘導体の場合はY-Y部分の脱保護は塩基にて行なう。このX-X部位の形成については、上述の一般式(3-2)~(3-8)で表される化合物に対して置換基をカップリングした後に行ってもよいし、カップリング反応の前に行ってもよい。 In the compounds represented by the general formulas (3-2) to (3-8), the portion represented by YY is different from XX in the general formulas (1-2) to (1-8) Further, the reaction for converting the YY portion into XX and making the organic device material precursor represented by the general formulas (1-2) to (1-8) is continuously performed. Specifically, for example, when the compound [182] is to be used as an organic device precursor having a diketone, the YY site is deprotected with an acid to form a diol, which is subjected to Swern oxidation to form the diketone. It is possible to synthesize organic device material precursors. In the case of an ethylene carbonate derivative such as compound [209], the YY moiety is deprotected with a base. The formation of the XX moiety may be performed after coupling a substituent to the compounds represented by the above general formulas (3-2) to (3-8), or You may go before.
 一般式(3-2)~(3-8)で表される化合物において、一般式(3-2)~(3-4)、(3-7)~(3-8)で表される化合物が特に好ましく用いられる。 Compounds represented by general formulas (3-2) to (3-8), which are represented by general formulas (3-2) to (3-4), (3-7) to (3-8) Is particularly preferably used.
 一般式(1-2)~(1-4)、(1-7)~(1-8)で表される有機デバイス材料前駆体の製造方法であって、例えばXがC=Oの有機デバイス材料前駆体の製造方法として、下記一般式(4-2)~(4-4)、(4-7)~(4-8)で表されるキノンを金属試薬RV(Rは一般式(1-2)~(1-4)、(1-7)~(1-8)におけるR201、R206、R211、R218、R223、R232、R259、R266、R271、R280のいずれかである。R201とR206、R211とR218、R223とR232、R259とR266、R271とR280が同時に水素であることはない。VはLi、MgZ(Z=ハロゲン)である。)と反応させてジオール体とする工程、前記ジオール体を還元する工程、およびアセタール保護された架橋ジオール部分を脱保護および酸化する工程を含む方法が好ましく挙げられる。同様にして、XがC=O以外の有機デバイス材料前駆体の場合や、一般式(3-2)~(3-4)、(3-7)~(3-8)の化合物も合成することができる。 A method for producing an organic device material precursor represented by general formulas (1-2) to (1-4) and (1-7) to (1-8), for example, an organic device in which X is C═O As a method for producing a material precursor, a quinone represented by the following general formulas (4-2) to (4-4) and (4-7) to (4-8) is converted into a metal reagent RV (R is represented by the general formula (1) -2) to (1-4) and (1-7) to (1-8), R 201 , R 206 , R 211 , R 218 , R 223 , R 232 , R 259 , R 266 , R 271 , R 280 is either .R 201 and R 206, R 211 and R 218, R 223 and R 232, R 259 and R 266, R 271 and R 280 are never simultaneously hydrogen .V is Li, MGZ (Z = halogen)) to form a diol body, Step of reducing the body, and acetal protected manner the crosslinking diol moiety comprising the step of deprotection and oxidation are preferably exemplified. Similarly, when X is an organic device material precursor other than C═O, compounds of general formulas (3-2) to (3-4) and (3-7) to (3-8) are also synthesized. be able to.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 反応の詳細を下記反応スキームを例に取って説明する。下記一般式(4-2)で表されるキノンと金属試薬RVとを反応させ、次いで加水分解することにより中間体であるジオール体(下記一般式(6-2))を生成し、このジオール体を還元処理することで中間体のアセトニド化合物(下記一般式(6-3))を得ることができる。還元処理は公知の方法で実施することが可能である。塩酸/塩化錫を用いた還元処理が例示される。このアセトニド化合物を前記のように加水分解してジオール体に変換し、さらに酸化することで目的とする一般式(1-2)におけるXがC=Oの有機デバイス材料前駆体を製造することが可能である。 The details of the reaction will be explained using the following reaction scheme as an example. By reacting a quinone represented by the following general formula (4-2) with a metal reagent RV, followed by hydrolysis, an intermediate diol (the following general formula (6-2)) is produced. An intermediate acetonide compound (the following general formula (6-3)) can be obtained by reducing the product. The reduction treatment can be performed by a known method. A reduction treatment using hydrochloric acid / tin chloride is exemplified. The acetonide compound is hydrolyzed as described above to be converted into a diol, and further oxidized to produce the target organic device material precursor in which X in the general formula (1-2) is C═O. Is possible.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(6-2)におけるR400~~R404、R405、R460~R461の説明は一般式(1-2)におけるR201~R210の説明と同じである。 The description of R 400 to R 404 , R 405 , R 460 to R 461 in the general formula (6-2) is the same as the description of R 201 to R 210 in the general formula (1-2).
 本方法によれば、例えば一般式(1-2)であればR201とR206が同じ置換基である化合物をより効率的に製造することが可能である。ただし、R201とR206が異なる置換基の化合物であっても本方法で製造が可能である。
また、R201とR206に置換活性な置換基を有する置換基を導入することで、例えば一般式(1-2)を含む部分構造を有する高分子化合物の製造にも好適に利用することができる。下記に一例としてp-ブロモフェニル基の場合を示す。
According to this method, for example, in the general formula (1-2), it is possible to more efficiently produce a compound in which R 201 and R 206 are the same substituent. However, even if it is a compound of the substituent from which R201 and R206 differ, manufacture is possible by this method.
Further, by introducing a substituent having a substitution active substituent into R 201 and R 206 , it can be suitably used for the production of a polymer compound having a partial structure including, for example, general formula (1-2). it can. As an example, the case of p-bromophenyl group is shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 また、一般式(1-5)~(1-6)の有機デバイス材料前駆体および一般式(3-5)~(3-6)の化合物については下記で示すようなベンザインを経由する方法で合成することができる。ここでR500~R503はR223~R283の置換基の説明と同様である。ただしR500とR501及び/又はR502とR503は互いに結合して縮合環を形成する。 In addition, the organic device material precursors of the general formulas (1-5) to (1-6) and the compounds of the general formulas (3-5) to (3-6) can be obtained by a method via benzyne as shown below. Can be synthesized. Here, R 500 to R 503 are the same as those described for the substituents of R 223 to R 283 . However, R 500 and R 501 and / or R 502 and R 503 are bonded to each other to form a condensed ring.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 本発明で用いられる有機デバイス材料前駆体や一般式(3-2)~(3-8)で表される化合物は、合成過程で使用した原料や副生成物などの不純物を除去することが好ましく、例えば、シリカゲルカラムグラフィー法、再結晶法、再沈澱法、ろ過法、昇華精製法などを用いることができる。これらの方法を2種以上組み合わせてもよい。 The organic device material precursor used in the present invention and the compounds represented by the general formulas (3-2) to (3-8) preferably remove impurities such as raw materials and by-products used in the synthesis process. For example, silica gel columnography, recrystallization, reprecipitation, filtration, sublimation purification, and the like can be used. Two or more of these methods may be combined.
 本発明の有機デバイス材料前駆体は可溶性であることから、用途に応じた溶媒に溶解または分散し、ウェットプロセス用途のインクとして利用することができる。ウェットプロセスの方法としては、インクジェット法、ノズル塗布法、スピンコート法、ディップ法など公知の方法を用いることができる。 Since the organic device material precursor of the present invention is soluble, it can be dissolved or dispersed in a solvent according to the application and used as an ink for wet process applications. As a wet process method, a known method such as an inkjet method, a nozzle coating method, a spin coating method, or a dipping method can be used.
 ここで本発明における可溶性とは、具体的には室温、常圧下で以下のいずれかの溶媒100重量部に対し有機デバイス材料前駆体が0.5重量部以上溶解または分散するものである。上記溶解性を有することで、前述の塗布方法にて各種有機デバイスに好適な膜厚の有機薄膜を作製することができる。なお、1.0重量部以上溶解もしくは分散することがより好ましい。溶媒には、トルエン、キシレン、クロロベンゼン、クロロホルム、ジクロロメタン、ジクロロエタン、酢酸エチル、テトラヒドロフラン、トリメチルベンゼン、γ-ブチロラクトン、n-メチルピロリドン、テトラリン、o-ジクロロベンゼン、トリクロロベンゼン、安息香酸エチル、シクロヘキサノンなどの汎用溶媒を用いることができ、使用する塗布方法に見合った沸点、粘性のものを選択することができる。また、これらの溶媒は単独で用いてもよいし、複数の溶媒を混合して用いてもよい。また、該インクは本発明の有機デバイス材料前駆体を単独で含有していて複数含有していてもよく、さらに別の可溶性の化合物を含んでいてもかまわない。また、超音波照射や加熱処理を加えて溶解、分散してもよく、調液後にろ過の工程を加えてもかまわない。 Here, the term “soluble” in the present invention specifically means that 0.5 part by weight or more of the organic device material precursor is dissolved or dispersed in 100 parts by weight of any of the following solvents at room temperature and normal pressure. By having the above-mentioned solubility, an organic thin film having a thickness suitable for various organic devices can be produced by the above-described coating method. It is more preferable to dissolve or disperse 1.0 part by weight or more. Solvents include toluene, xylene, chlorobenzene, chloroform, dichloromethane, dichloroethane, ethyl acetate, tetrahydrofuran, trimethylbenzene, γ-butyrolactone, n-methylpyrrolidone, tetralin, o-dichlorobenzene, trichlorobenzene, ethyl benzoate, cyclohexanone, etc. A general-purpose solvent can be used, and a boiling point and viscosity suitable for the coating method to be used can be selected. In addition, these solvents may be used alone, or a plurality of solvents may be mixed and used. In addition, the ink contains the organic device material precursor of the present invention alone, and may contain a plurality thereof, and may further contain another soluble compound. Further, it may be dissolved and dispersed by applying ultrasonic irradiation or heat treatment, and a filtration step may be added after the preparation.
 本発明の有機デバイスとしては有機薄膜トランジスタ、有機EL、有機薄膜太陽電池など有機薄膜が機能するデバイスであれば好適に適用することができる。これらのデバイスは真空蒸着法などのドライプロセスで製造されるものであってもよいが、有機デバイス材料前駆体は可溶性であることから、ウェットプロセスを利用して製造されるものであることが好ましい。特に、有機ELにおいてはウェットプロセスを用いることで、パターニングが容易になり、従来のシャドーマスクによる蒸着法の場合よりも大型のパネルの作製にも対応することができることから、特に好適に用いることができる。 The organic device of the present invention can be suitably applied as long as it is a device that functions as an organic thin film, such as an organic thin film transistor, organic EL, or organic thin film solar cell. These devices may be manufactured by a dry process such as a vacuum deposition method. However, since the organic device material precursor is soluble, the device is preferably manufactured using a wet process. . In particular, the use of a wet process in organic EL facilitates patterning, and can cope with the production of a large panel as compared with the case of a conventional shadow mask deposition method. it can.
 本発明における有機デバイス材料前駆体は、ドライプロセス、ウェットプロセスのいずれの方法でデバイスを作製する場合にも、最終的に有機デバイスとして機能させるためには前駆体から有機デバイス材料へ変換処理を施す必要がある。ここで述べる変換処理とは、加熱や光照射、薬液との接触などによって有機デバイス材料前駆体の構造変化を引き起こし、目的とする有機デバイス材料へと変換する処理である。この場合、構造変化を引き起こす因子としては熱・光・揮発性化合物による処理などのように、構成材料の内部に残存しないものが有機デバイスの特性を低下させないために好ましい。揮発性化合物とは、塩酸エーテル錯体、アンモニアガスなど後に残らない酸やアルカリなどを言う。 The organic device material precursor in the present invention is subjected to a conversion process from the precursor to the organic device material in order to finally function as an organic device regardless of whether the device is manufactured by a dry process or a wet process. There is a need. The conversion process described here is a process that causes a structural change of the organic device material precursor by heating, light irradiation, contact with a chemical solution, or the like, and converts it into a target organic device material. In this case, as a factor causing the structural change, a material that does not remain in the constituent material, such as treatment with heat, light, or a volatile compound, is preferable in order not to deteriorate the characteristics of the organic device. Volatile compounds refer to acids and alkalis that do not remain after hydrochloric acid ether complexes, ammonia gas, and the like.
 これらの構造変化の中でも、光照射及び/または加熱処理による構造変化が特に好ましい。加熱にはホットプレートやイナートオーブン、赤外線ヒーターなどを用いることができる。また、光照射により構造を変換させる場合には、紫外光~可視光を用いるのが好ましいが、用いる前駆体によっては紫外光による望まない光反応が生じる場合もあるため、可視光を用いることがより好ましい。また、薬液との接触により構造を変換させる場合には、薬液を溜めた貯蔵層に基板を浸漬する方法や薬液をスプレー塗布する方法などを例示できる。いずれの場合も薬液と接触させた後に加熱して変換を促進しても良い。また変換後に薬液を洗浄する工程を導入しても良い。 Among these structural changes, a structural change by light irradiation and / or heat treatment is particularly preferable. A hot plate, an inert oven, an infrared heater, or the like can be used for heating. In addition, when the structure is converted by light irradiation, it is preferable to use ultraviolet light to visible light. However, depending on the precursor used, an undesirable photoreaction may occur due to ultraviolet light. More preferred. Moreover, when changing a structure by contact with a chemical | medical solution, the method of immersing a board | substrate in the storage layer which stored the chemical | medical solution, the method of spray-coating a chemical | medical solution, etc. can be illustrated. In either case, the conversion may be promoted by heating after contact with the chemical solution. Moreover, you may introduce the process of wash | cleaning a chemical | medical solution after conversion.
 前記変換反応の具体例としてRetro Diels-Alder反応、キレトロピー反応、脱炭酸反応、カルボニル化合物からの脱カルボニル反応、脱酸素反応などが挙げられる。このような反応ごとに最適な変換処理を選択することができる。例えば、一般式(1-2)、(1-4)~(1-8)においてXがC=Oの場合は光照射による脱カルボニル反応が挙げられる。 Specific examples of the conversion reaction include a retro Diels-Alder reaction, a chirp peapy reaction, a decarboxylation reaction, a decarbonylation reaction from a carbonyl compound, and a deoxygenation reaction. An optimal conversion process can be selected for each reaction. For example, in the general formulas (1-2) and (1-4) to (1-8), when X is C═O, decarbonylation reaction by light irradiation can be mentioned.
 また、光照射の時間、加熱処理の温度や時間、薬液の種類や処理時間を適宜調整することで、最終的に有機デバイス中に含まれる一般式(1-2)、(1-4)~(1-8)で表される有機デバイス前駆体の含有量を調整することができる。例えば、各処理の時間を長くすることは一般的に変換量を増やし前駆体量をより低減するのに有効である。また、加熱しながら光照射を行うことも、変換反応の種類によっては反応速度を速める効果がある。 Further, by appropriately adjusting the time of light irradiation, the temperature and time of the heat treatment, the type of chemical solution and the treatment time, the general formulas (1-2), (1-4) to (1-4) to be finally contained in the organic device The content of the organic device precursor represented by (1-8) can be adjusted. For example, increasing the time of each treatment is generally effective for increasing the amount of conversion and reducing the amount of precursor. Moreover, performing light irradiation while heating also has the effect of increasing the reaction rate depending on the type of conversion reaction.
 次に、ウェットプロセスにより有機デバイスを作製する具体的方法について、本発明の有機EL素子の発光層の作製を例に説明する。 Next, a specific method for producing an organic device by a wet process will be described by taking the production of the light emitting layer of the organic EL element of the present invention as an example.
 ウェットプロセスを用いる場合には、大きく分けて2通りの方法がある。まず、少なくとも有機デバイス材料前駆体と溶媒を含有する塗液を、正孔輸送層が成膜されたデバイス基板に塗布し、乾燥させる。その後、有機デバイス材料前駆体に対し変換処理を施すことにより、有機デバイス材料へと変換し、発光層を積層することができる。この際、用いる溶媒としては、下地となる層が溶解したり反応したりしないものを選択する。 When using a wet process, there are roughly two methods. First, a coating liquid containing at least an organic device material precursor and a solvent is applied to a device substrate on which a hole transport layer is formed and dried. Thereafter, the organic device material precursor is subjected to a conversion treatment to be converted into an organic device material, and a light emitting layer can be laminated. At this time, a solvent to be used is selected so that the underlying layer does not dissolve or react.
 また、別の方法として、デバイス基板とは別の基板上で有機デバイス材料前駆体の塗布と変換を行い、得られた膜を、正孔輸送層までが成膜されたデバイス基板に転写することで高い機能を有する発光層を形成することもできる。前記別の基板を、以下「ドナー基板」という。 As another method, the organic device material precursor is applied and converted on a substrate different from the device substrate, and the obtained film is transferred to the device substrate on which the hole transport layer is formed. It is also possible to form a light emitting layer having a high function. The other substrate is hereinafter referred to as “donor substrate”.
 ドナー基板を用いることは、以下のような利点があるため好ましい。すなわち、ドナー基板上に作製した有機デバイス材料前駆体を含む塗布膜に変換処理を施し、その後デバイス基板に転写して、デバイス構成材料層を作製することで、ドナー基板上で転写前の材料に塗布ムラが生じた場合においても、転写時にムラが解消され、デバイス基板上には均一なデバイス構成材料層を形成することができる。 It is preferable to use a donor substrate because of the following advantages. In other words, the coating film containing the organic device material precursor prepared on the donor substrate is subjected to conversion treatment, and then transferred to the device substrate to produce a device constituent material layer. Even when coating unevenness occurs, the unevenness is eliminated during transfer, and a uniform device constituent material layer can be formed on the device substrate.
 転写工程は公知の方法を利用することができ、例えば重ね合わせたドナー基板とデバイス基板をドナー基板側から加熱する方法や、ドナー基板側から光照射する方法などが挙げられる。そのため、例えば、ドナー基板に塗布された有機デバイス材料前駆体が熱によって変換されるものであれば、転写を加熱によって行うことでも残存する有機デバイス材料前駆体を低減することができる。 A known method can be used for the transfer step, and examples thereof include a method of heating the superimposed donor substrate and device substrate from the donor substrate side, and a method of irradiating light from the donor substrate side. Therefore, for example, if the organic device material precursor applied to the donor substrate is converted by heat, the remaining organic device material precursor can be reduced even by performing transfer by heating.
 さらに、転写工程の後に、デバイス基板上に転写された有機デバイス材料前駆体の変換処理をさらに加えてもかまわない。それにより、ドナー基板上での変換処理後に残存している有機デバイス材料前駆体をさらに低減することができる。 Furthermore, after the transfer process, a conversion process of the organic device material precursor transferred onto the device substrate may be further added. Thereby, the organic device material precursor remaining after the conversion treatment on the donor substrate can be further reduced.
 本発明の有機EL素子の発光層には、下記一般式(1-2)、(1-4)~(1-8)で表される有機デバイス材料前駆体が含まれ、さらに、下記一般式(5-2)、(5-4)~(5-8)で表される化合物が含まれる。 The light emitting layer of the organic EL device of the present invention contains organic device material precursors represented by the following general formulas (1-2) and (1-4) to (1-8). The compounds represented by (5-2) and (5-4) to (5-8) are included.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 一般式(5-2)、(5-4)~(5-8)におけるR201~R210、R223~R284は一般式(1-2)、(1-4)~(1-8)におけるR201~R210、R223~R284と同じである。すなわち、一般式(5-2)、(5-4)~(5-8)で表される化合物は一般式(1-2)、(1-4)~(1-8)で表される有機デバイス材料前駆を変換して得られるものであり、R201~R210、R223~R283としてより好ましいもの、特に好ましいものは前述の通りである。 R 201 to R 210 and R 223 to R 284 in the general formulas (5-2) and (5-4) to (5-8) are the general formulas (1-2), (1-4) to (1-8). ) Are the same as R 201 to R 210 and R 223 to R 284 . That is, the compounds represented by general formulas (5-2) and (5-4) to (5-8) are represented by general formulas (1-2) and (1-4) to (1-8). It is obtained by converting the organic device material precursor, and more preferable, particularly preferable as R 201 to R 210 and R 223 to R 283 are as described above.
 このとき、前記発光層中に含まれる一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体の含有量が、一般式((5-2)、(5-4)~(5-8)のいずれかで表される化合物100重量部に対して5.0重量部以下であることが好ましい。より好ましくは0.001重量部以上5.0重量部以下である。一般式(5-2)、(5-4)~(5-8)のいずれかで表される化合物は、発光材料としての機能を発揮する化合物である。これに対し、有機デバイス材料前駆体自体は発光材料としての機能が低いことから、含有量を5.0重量部以下とすることで、有機EL素子の有機膜中における発光材料の純度が向上し、これによって長寿命化が達成できる。より好ましくは1.0重量部以下であり、1.0重量部以下とすることで、さらなる長寿命化が達成できる。 At this time, the content of the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8) included in the light emitting layer is represented by the general formula (( It is preferably 5.0 parts by weight or less, more preferably 0.001 part by weight, based on 100 parts by weight of the compound represented by any of 5-2) and (5-4) to (5-8). The compound represented by any one of the general formulas (5-2) and (5-4) to (5-8) is a compound that exhibits a function as a light emitting material. On the other hand, since the organic device material precursor itself has a low function as a light emitting material, the content of 5.0 parts by weight or less improves the purity of the light emitting material in the organic film of the organic EL element. As a result, a longer life can be achieved, more preferably 1.0 parts by weight or less, With 2.0 parts by weight or less, further longer life can be achieved.
 このとき一般式(5-2)、(5-4)~(5-8)で表される化合物は、製膜時に一般式(1-2)、(1-4)~(1-8)で表される有機デバイス材料前駆体とともにドライプロセスまたはウェットプロセスで製膜されたものであってもかまわないが、一般式(1-2)、(1-4)~(1-8)で表される有機デバイス材料前駆体を製膜後に変換処理を行った結果、有機膜中に生成したものであることがより好ましい。 At this time, the compounds represented by the general formulas (5-2), (5-4) to (5-8) are represented by the general formulas (1-2), (1-4) to (1-8) at the time of film formation. It may be formed by a dry process or a wet process together with an organic device material precursor represented by the general formula (1-2), (1-4) to (1-8). It is more preferable that the organic device material precursor to be produced is formed in the organic film as a result of performing the conversion treatment after the film formation.
 また、本有機デバイス材料前駆体を含む有機EL素子を作製するときには、公知のドーパント材料や発光材料を含有していてもかまわない。ドーパント材料としては公知のものを用いることができ、例えば、インデノペリレン、ピロメテン、クリセン、アントラセン、およびそれらの誘導体や各種金属錯体などが挙げられる。 Moreover, when producing an organic EL element containing the present organic device material precursor, it may contain a known dopant material or light emitting material. As the dopant material, known materials can be used, and examples thereof include indenoperylene, pyromethene, chrysene, anthracene, and derivatives and various metal complexes thereof.
 一般式(5-2)で表される化合物を下記に示す化合物[5-A]とした場合、有機デバイス材料前駆体の例としては、前述の化合物[73]、[74]が挙げられる。 When the compound represented by the general formula (5-2) is the compound [5-A] shown below, examples of the organic device material precursor include the aforementioned compounds [73] and [74].
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 本発明における、発光層中の変換後の有機デバイス材料に対する有機デバイス材料前駆体の重量濃度は、高速液体クロマトグラフィー-紫外吸光光度計法により分析して得られた値である。 In the present invention, the weight concentration of the organic device material precursor relative to the converted organic device material in the light emitting layer is a value obtained by analysis by high performance liquid chromatography-ultraviolet absorptiometry.
 この分析方法における具体的な分析条件を述べる。充填材にはシリカゲルを用い、中でもオクタデシル基結合型シリカゲル、オクチル基結合型シリカゲル、フェニル基結合型シリカゲルが好適に用いられ、これらは有機デバイス材料および有機デバイス材料前駆体の種類によって選択することができる。移動層にはアセトニトリル、テトラヒドロフラン、蒸留水、リン酸水溶液、メタノールなどを用いることができ、これらを組み合わせて用いてもよい。中でも、アセトニトリルのみ、もしくはアセトニトリル-リン酸水溶液混合溶媒を用いることで、高い分離能にて検出することができる。またこのときの移動層の送液圧力は35~50MPa程度とすることが好ましい。 The specific analysis conditions for this analysis method will be described. Silica gel is used as the filler, and octadecyl group-bonded silica gel, octyl group-bonded silica gel, and phenyl group-bonded silica gel are preferably used, and these can be selected depending on the type of organic device material and organic device material precursor. it can. Acetonitrile, tetrahydrofuran, distilled water, phosphoric acid aqueous solution, methanol or the like can be used for the moving layer, and these may be used in combination. In particular, detection can be performed with high resolution by using only acetonitrile or a mixed solvent of acetonitrile-phosphoric acid aqueous solution. At this time, the liquid feeding pressure of the moving bed is preferably about 35 to 50 MPa.
 以下本発明の有機EL素子について詳細に説明する。図1は、有機EL素子10(ディスプレイ)の典型的な構造の例を示す断面図である。支持体11上にTFT12や平坦化層13などで構成されるアクティブマトリクス回路が構成されている。素子部分は、その上に形成された第一電極15/正孔輸送層16/発光層17/電子輸送層18/第二電極19である。第一電極の端部には、電極端における短絡発生を防止し、発光領域を規定する絶縁層14が形成される。素子の構成はこの例に限定されるものではなく、例えば、第一電極と第二電極との間に正孔輸送機能と電子輸送機能とを合わせもつ発光層が一層だけ形成されていてもよく、正孔輸送層は正孔注入層と正孔輸送層との、電子輸送層は電子輸送層と電子注入層との複数層の積層構造であってもよく、発光層が電子輸送機能をもつ場合には電子輸送層が省略されてもよい。また、第一電極/電子輸送層/発光層/正孔輸送層/第二電極の順に積層されていてもよい。また、これらの層はいずれも単層であっても複数層であってもよい。なお、図示されていないが、第二電極の形成後に、公知技術を利用して、保護層の形成やカラーフィルターの形成、封止などが行われてもよい。 Hereinafter, the organic EL device of the present invention will be described in detail. FIG. 1 is a cross-sectional view showing an example of a typical structure of the organic EL element 10 (display). An active matrix circuit including the TFT 12 and the planarization layer 13 is formed on the support 11. The element portion is the first electrode 15 / hole transport layer 16 / light emitting layer 17 / electron transport layer 18 / second electrode 19 formed thereon. An insulating layer 14 that prevents a short circuit from occurring at the electrode end and defines a light emitting region is formed at the end of the first electrode. The configuration of the element is not limited to this example. For example, only one light emitting layer having a hole transport function and an electron transport function may be formed between the first electrode and the second electrode. The hole transport layer may be a hole injection layer and a hole transport layer, the electron transport layer may be a multilayer structure of an electron transport layer and an electron injection layer, and the light emitting layer has an electron transport function. In some cases, the electron transport layer may be omitted. Moreover, you may laminate | stack in order of 1st electrode / electron transport layer / light emitting layer / hole transport layer / second electrode. In addition, these layers may be a single layer or a plurality of layers. Although not shown, after the second electrode is formed, a protective layer, a color filter, sealing, or the like may be performed using a known technique.
 次に、本発明の有機EL素子の作製について説明する。図1に示した有機EL素子の作製例としては、第一電極15まではフォトリソ法を、絶縁層14は感光性ポリイミド前駆体材料を利用した公知技術によりパターニングし、その後、正孔輸送層16を真空蒸着法を利用した公知技術によって全面形成する。この正孔輸送層16を下地層として、その上に、発光層17R、17G、17Bをパターニングする。その上に、電子輸送層18、第二電極19を真空蒸着法などの公知技術によって全面形成すれば、有機EL素子を完成することができる。 Next, production of the organic EL element of the present invention will be described. As an example of manufacturing the organic EL element shown in FIG. 1, the photolithographic method is used up to the first electrode 15, the insulating layer 14 is patterned by a known technique using a photosensitive polyimide precursor material, and then the hole transport layer 16. Is formed on the entire surface by a known technique using a vacuum deposition method. The hole transport layer 16 is used as a base layer, and the light emitting layers 17R, 17G, and 17B are patterned thereon. On top of this, if the electron transport layer 18 and the second electrode 19 are formed on the entire surface by a known technique such as vacuum deposition, an organic EL element can be completed.
 発光層は一般式(5-2)、(5-4)~(5-8)で表される有機デバイス材料と一般式(1-2)、(1-4)~(1-8)で表される有機デバイス材料前駆体を含んでいれば、単層でも複数層でもよく、有機デバイス材料前駆体以外の材料をさらに含んでいてもよい。発光効率、色純度の観点から、発光層はホスト材料とドーパント材料との混合物の単層構造であることが好ましい。発光層の作製方法は蒸着、溶液塗布、インクジェット、ノズル塗布など、公知の方法を用いることができる。蒸着法で成膜する場合、本発明の有機デバイス材料前駆体を有機デバイス材料へ変換した材料を蒸着して成膜することが好ましい。さらに、前述のように、ウェットプロセスを用いてドナー基板上に作製した塗布膜に変換処理を施し、その後、デバイス基板上への転写工程を経て、発光層を形成する方法が特に好ましい。 The light emitting layer includes organic device materials represented by general formulas (5-2) and (5-4) to (5-8), and general formulas (1-2) and (1-4) to (1-8). As long as the organic device material precursor represented is contained, it may be a single layer or a plurality of layers, and may further contain a material other than the organic device material precursor. From the viewpoint of light emission efficiency and color purity, the light emitting layer preferably has a single layer structure of a mixture of a host material and a dopant material. A known method such as vapor deposition, solution coating, ink jetting, or nozzle coating can be used as a method for forming the light emitting layer. When forming a film by a vapor deposition method, it is preferable to form a film by vapor-depositing a material obtained by converting the organic device material precursor of the present invention into an organic device material. Furthermore, as described above, a method of forming a light-emitting layer by performing a conversion process on a coating film formed on a donor substrate using a wet process and then performing a transfer process onto a device substrate is particularly preferable.
 正孔輸送層は単層でも複数層でもよく、各層は単一材料でも複数材料の混合物であってもよい。正孔注入層と呼ばれる層も正孔輸送層に含まれる。正孔輸送性(低駆動電圧)や耐久性の観点から、正孔輸送層には正孔輸送性を助長するアクセプタ材料が混合されていてもよい。従って、正孔輸送層を成膜する転写材料は単一材料からなっても複数材料の混合物からなってもよい。 The hole transport layer may be a single layer or a plurality of layers, and each layer may be a single material or a mixture of a plurality of materials. A layer called a hole injection layer is also included in the hole transport layer. From the viewpoint of hole transportability (low driving voltage) and durability, an acceptor material that promotes hole transportability may be mixed in the hole transport layer. Therefore, the transfer material for forming the hole transport layer may be made of a single material or a mixture of a plurality of materials.
 正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ジフェニル-4,4’-ジアミン(NPD)やN,N’-ビフェニル-N,N’-ビフェニル-1,1’-ジフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-(N-フェニルカルバゾリル)-1,1’-ジフェニル-4,4’-ジアミンなどに代表される芳香族アミン類、N-イソプロピルカルバゾール、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体に代表される複素環化合物などの低分子材料や、これら低分子化合物を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどの高分子材料を例示できる。アクセプタ材料としては、7,7,8,8-テトラシアノキノジメタン(TCNQ)、ヘキサアザトリフェニレン(HAT)やそのシアノ基誘導体(HAT-CN6)などの低分子材料を例示することができる。また、第一電極表面に薄く形成される酸化モリブデンや酸化ケイ素などの金属酸化物も正孔輸送材料やアクセプタ材料として例示できる。 Examples of hole transport materials include N, N′-diphenyl-N, N′-dinaphthyl-1,1′-diphenyl-4,4′-diamine (NPD) and N, N′-biphenyl-N, N′—. Biphenyl-1,1'-diphenyl-4,4'-diamine, N, N'-diphenyl-N, N '-(N-phenylcarbazolyl) -1,1'-diphenyl-4,4'-diamine Such as aromatic amines, N-isopropylcarbazole, pyrazoline derivatives, stilbene compounds, hydrazone compounds, low molecular materials such as oxadiazole derivatives and heterocyclic compounds represented by phthalocyanine derivatives, and these low molecules Examples thereof include polymer materials such as polycarbonate having a compound in the side chain, styrene derivative, polyvinyl carbazole, and polysilane. Examples of the acceptor material include low molecular weight materials such as 7,7,8,8-tetracyanoquinodimethane (TCNQ), hexaazatriphenylene (HAT) and its cyano group derivative (HAT-CN6). In addition, metal oxides such as molybdenum oxide and silicon oxide that are thinly formed on the surface of the first electrode can also be exemplified as hole transport materials and acceptor materials.
 電子輸送層は単層でも複数層でもよく、各層は単一材料でも複数材料の混合物であってもよい。正孔阻止層や電子注入層と呼ばれる層も電子輸送層に含まれる。電子輸送性(低駆動電圧)や耐久性の観点から、電子輸送層には電子輸送性を助長するドナー材料が混合されていてもよい。電子注入層と呼ばれる層は、このドナー材料として論じられることも多い。電子輸送層を成膜する転写材料は単一材料からなっても複数材料の混合物からなってもよい。 The electron transport layer may be a single layer or a plurality of layers, and each layer may be a single material or a mixture of a plurality of materials. A layer called a hole blocking layer or an electron injection layer is also included in the electron transport layer. From the viewpoint of electron transport properties (low drive voltage) and durability, the electron transport layer may be mixed with a donor material that promotes electron transport properties. A layer called the electron injection layer is often discussed as this donor material. The transfer material for forming the electron transport layer may be made of a single material or a mixture of a plurality of materials.
 電子輸送材料としては、Alqや8-キノリノラートリチウム(Liq)などのキノリノール錯体、ナフタレン、アントラセンなどの縮合多環芳香族誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体、電子受容性窒素を含むヘテロアリール環構造を有する化合物などの低分子材料や、これら低分子化合物を側鎖に有する高分子材料を例示できる。
ドナー材料としては、リチウムやセシウム、マグネシウム、カルシウムなどのアルカリ金属やアルカリ土類金属、それらのキノリノール錯体などの各種金属錯体、フッ化リチウムや酸化セシウムなどのそれらの酸化物やフッ化物を例示することができる。
Examples of electron transport materials include quinolinol complexes such as Alq 3 and 8-quinolinolatolithium (Liq), condensed polycyclic aromatic derivatives such as naphthalene and anthracene, and 4,4′-bis (diphenylethenyl) biphenyl. Styryl aromatic ring derivatives, quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, various metal complexes such as tropolone metal complexes and flavonol metal complexes, heterocycles containing electron-accepting nitrogen Examples thereof include low molecular materials such as compounds having an aryl ring structure, and polymer materials having these low molecular compounds in the side chain.
Examples of the donor material include alkali metals and alkaline earth metals such as lithium, cesium, magnesium, and calcium, various metal complexes such as quinolinol complexes, and oxides and fluorides such as lithium fluoride and cesium oxide. be able to.
 第一電極および第二電極は、発光層からの発光を取り出すために少なくとも一方が透明であることが好ましい。第一電極から光を取り出すボトムエミッションの場合には第一電極が、第二電極から光を取り出すトップエミッションの場合には第二電極が透明である。 It is preferable that at least one of the first electrode and the second electrode is transparent in order to extract light emitted from the light emitting layer. In the case of bottom emission in which light is extracted from the first electrode, the first electrode is transparent, and in the case of top emission in which light is extracted from the second electrode, the second electrode is transparent.
 本発明における有機EL素子は、一般的に第二電極が共通電極として形成されるアクティブマトリクス型に限定されるものではなく、例えば、第一電極と第二電極とが互いに交差するストライプ状電極からなる単純マトリクス型や、予め定められた情報を表示するように表示部がパターニングされるセグメント型であってもよい。これらの用途としては、テレビ、パソコン、モニター、時計、温度計、オーディオ機器、自動車用表示パネルなどを例示することができる。 The organic EL element in the present invention is not generally limited to the active matrix type in which the second electrode is formed as a common electrode. For example, the organic EL element is formed of a stripe electrode in which the first electrode and the second electrode intersect each other. It may be a simple matrix type or a segment type in which the display unit is patterned so as to display predetermined information. Examples of these applications include televisions, personal computers, monitors, watches, thermometers, audio equipment, automobile display panels, and the like.
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 1H-NMRは超伝導FT-NMR EX-270(日本電子(株)製)を用い、重クロロホルム溶液にて測定を行った。 1 H-NMR was measured using a superconducting FT-NMR EX-270 (manufactured by JEOL Ltd.) in a deuterated chloroform solution.
 HPLC((株)島津製作所製)の充填材にはオクチル基結合型シリカゲル、移動層にアセトニトリル-リン酸水溶液混合溶液を用いて測定を行った。 The measurement was performed using an octyl group-bonded silica gel as a packing material for HPLC (manufactured by Shimadzu Corporation) and an acetonitrile-phosphoric acid aqueous solution mixed solution as a moving layer.
 合成例1(化合物[73]の合成)
 以下の反応式に示す方法で化合物[73]を合成した。以下、具体的な過程を示す。
Synthesis Example 1 (Synthesis of Compound [73])
Compound [73] was synthesized by the method shown in the following reaction formula. The specific process is shown below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 <中間体[1]の合成>
 原料[M1]2gと原料[M2]1.9gをトルエン中70℃で10時間加熱・攪拌した。反応液を濃縮し、シリカゲルクロマトグラフィー(展開溶媒:ヘプタン/ジクロロメタン)で精製することで中間体[1]2.7gを得た。
<Synthesis of Intermediate [1]>
2 g of raw material [M1] and 1.9 g of raw material [M2] were heated and stirred in toluene at 70 ° C. for 10 hours. The reaction solution was concentrated and purified by silica gel chromatography (developing solvent: heptane / dichloromethane) to obtain 2.7 g of intermediate [1].
 <中間体[2]の合成>
 中間体[1]2.7gを0℃でヨウ化サマリウムのテトラヒドロフラン溶液(0.1M)175mLに溶解し、攪拌しながら室温まで昇温した。反応液に炭酸水素ナトリウム水溶液を加え、得られた混合液を分液した。有機層を飽和食塩水で分液した後、硫酸ナトリウムで乾燥後ろ過して得られた溶液を濃縮・乾固した。得られたオイル状物質をシリカゲルクロマトグラフィーで精製することで中間体[2]1.9gを得た。
<Synthesis of Intermediate [2]>
2.7 g of intermediate [1] was dissolved in 175 mL of a samarium iodide solution (0.1 M) at 0 ° C., and the temperature was raised to room temperature while stirring. An aqueous sodium hydrogen carbonate solution was added to the reaction solution, and the resulting mixture was separated. The organic layer was separated with saturated brine, dried over sodium sulfate, and then filtered and concentrated to dryness. The obtained oily substance was purified by silica gel chromatography to obtain 1.9 g of intermediate [2].
 <中間体[3]の合成>
 4-ブロモビフェニル(東京化成工業社製)(3.2g)、を脱水テトラヒドロフラン((株)和光純薬工業社製)20mLに溶解し、窒素気流下-80℃に冷却し、n-ブチルリチウム(1.6M,8.6mL)を滴下後、-80℃にて40分撹拌した。ここに中間体[2]1.9gを脱水テトラヒドロフラン10mLに溶解した溶液を加えて、反応液を徐々に室温まで昇温し、8時間室温にて撹拌した。反応溶液に飽和塩化アンモニウム水溶液を加えて撹拌し、トルエンを加えて分液した。有機層飽和食塩水で分液した後、硫酸ナトリウムで乾燥後ろ過して得られた溶液を濃縮・乾固した。得られた反応生成物をジクロロメタンに溶解し、シリカゲルのショートカラムを通過させて吸着成分を除去し得られた中間体[3]をそのまま次の反応に用いた。
<Synthesis of Intermediate [3]>
4-Bromobiphenyl (manufactured by Tokyo Chemical Industry Co., Ltd.) (3.2 g) was dissolved in 20 mL of dehydrated tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.), cooled to −80 ° C. under a nitrogen stream, and n-butyllithium. (1.6M, 8.6 mL) was added dropwise, and the mixture was stirred at −80 ° C. for 40 minutes. A solution prepared by dissolving 1.9 g of intermediate [2] in 10 mL of dehydrated tetrahydrofuran was added thereto, and the reaction solution was gradually warmed to room temperature and stirred at room temperature for 8 hours. Saturated aqueous ammonium chloride solution was added to the reaction solution and stirred, and toluene was added for liquid separation. The organic layer was separated with saturated brine, dried over sodium sulfate, and then filtered and concentrated to dryness. The obtained reaction product was dissolved in dichloromethane, passed through a short column of silica gel, and the adsorbed component was removed. Intermediate [3] obtained as such was directly used in the next reaction.
 <中間体[4](化合物[74])の合成>
 フラスコに中間体[3]、ジ亜リン酸ナトリウム一水和物、ヨウ化カリウム(6.5g)、酢酸80mLを加え、95℃で5.5時間加熱撹拌した。反応溶液を室温まで冷却後、イオン交換水50mLを加えて撹拌し、析出した固体をろ取した。得られた固体に水とメタノールの混合溶媒を加えて撹拌し、固体をろ取し、この操作を溶液が中性を示すまで繰り返した。回収した固体を減圧乾燥し、シリカゲルクロマトグラフィーで精製することで中間体[4]1.9gを得た。
<Synthesis of Intermediate [4] (Compound [74])>
Intermediate [3], sodium diphosphite monohydrate, potassium iodide (6.5 g), and 80 mL of acetic acid were added to the flask, and the mixture was heated and stirred at 95 ° C. for 5.5 hours. After cooling the reaction solution to room temperature, 50 mL of ion exchange water was added and stirred, and the precipitated solid was collected by filtration. A mixed solvent of water and methanol was added to the obtained solid and stirred, the solid was collected by filtration, and this operation was repeated until the solution became neutral. The collected solid was dried under reduced pressure and purified by silica gel chromatography to obtain 1.9 g of intermediate [4].
 <中間体[5]の合成>
 中間体[4]1.9gを1,4-ジオキサン30mlに溶解し、6N-塩酸水溶液30mlを加えて90℃にて3時間加熱撹拌した。反応溶液を室温まで冷却後、イオン交換水を加えて撹拌し、ジクロロメタンで抽出した。得られた溶液は硫酸マグネシウムにて乾燥し、ロータリーエバポレーターにて濃縮後、カラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/メタノール)にて精製し、中間体[5]を1.0g得た。
<Synthesis of Intermediate [5]>
1.9 g of intermediate [4] was dissolved in 30 ml of 1,4-dioxane, 30 ml of 6N-hydrochloric acid aqueous solution was added, and the mixture was heated and stirred at 90 ° C. for 3 hours. The reaction solution was cooled to room temperature, ion-exchanged water was added, and the mixture was stirred and extracted with dichloromethane. The resulting solution was dried over magnesium sulfate, concentrated on a rotary evaporator, and purified by column chromatography (filler: silica gel, eluent: dichloromethane / methanol) to obtain 1.0 g of intermediate [5]. It was.
 <化合物[73]の合成>
 脱水ジクロロメタン((株)和光純薬工業社製)(10ml)と脱水ジメチルスルホキシド(Aldrich社製)(1.2ml)を-80℃に冷却し、トリフルオロ酢酸無水物((株)和光純薬工業社製)(2.3ml)を滴下した。-80℃にて45分間撹拌した後、中間体[5]0.182gを溶解した脱水ジメチルスルホキシド(2.0ml)を滴下し、-80℃を保持したまま2時間撹拌した。N,N-ジイソプロピルエチルアミン((株)和光純薬工業社製)(3ml)をゆっくり滴下し、さらに2時間撹拌を続けた。反応液を室温に戻し、10%塩酸水溶液(25ml)とジクロロメタン(30ml)を加えて30分撹拌した。有機層を分取し、イオン交換水で洗浄後、硫酸ナトリウムで乾燥した。得られた溶液をロータリーエバポレーターで濃縮した後、カラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン)で精製し、化合物[73]を0.1g得た。
H-NMR(CDCl(d=ppm)):4.78(s,2H),6.23(d,2H),7.30-8.40(m,22H)。
<Synthesis of Compound [73]>
Dehydrated dichloromethane (Wako Pure Chemical Industries, Ltd.) (10 ml) and dehydrated dimethyl sulfoxide (Aldrich) (1.2 ml) were cooled to −80 ° C., and trifluoroacetic anhydride (Wako Pure Chemical Industries, Ltd.) was cooled. Kogyo) (2.3 ml) was added dropwise. After stirring at −80 ° C. for 45 minutes, dehydrated dimethyl sulfoxide (2.0 ml) in which 0.182 g of intermediate [5] was dissolved was added dropwise and stirred for 2 hours while maintaining at −80 ° C. N, N-diisopropylethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) (3 ml) was slowly added dropwise, and stirring was further continued for 2 hours. The reaction mixture was returned to room temperature, 10% aqueous hydrochloric acid (25 ml) and dichloromethane (30 ml) were added, and the mixture was stirred for 30 min. The organic layer was separated, washed with ion exchange water, and dried over sodium sulfate. The obtained solution was concentrated by a rotary evaporator and purified by column chromatography (filler: silica gel, eluent: dichloromethane) to obtain 0.1 g of Compound [73].
1 H-NMR (CDCl 3 (d = ppm)): 4.78 (s, 2H), 6.23 (d, 2H), 7.30-8.40 (m, 22H).
 実施例1
 ITO付きガラス基板にUV-O処理を30分行い、その上に、正孔注入層としてPEDOT-PSS/IPA溶液(Heraeus社製Clevious P VP AI 4083、1.5倍希釈)をスピンコート塗布した。取り出し電極部の膜をふき取り、ホットプレート上で200℃、10分アニールし、PEDOT-PSS層を形成した。その上に化合物[73]と化合物[73]に対して3重量パーセントの下記式で表される化合物[D-1]を含む化合物[73]の0.5重量パーセントトルエン溶液をスピンコート塗布し発光層とした。発光層塗布後は、マルチチャンバー蒸着装置中で真空条件下アニールを行った。真空乾燥後に続けて後述の通り光照射を行なった。発光層以降はマルチチャンバー蒸着装置で、電子輸送層として下記式で表される化合物[E-1]、電子注入層としてフッ化リチウム、陰極としてアルミニウムの順で蒸着膜を形成した。その後グローブボックス中で封止処理を行い、有機EL素子を作製した。
Example 1
A glass substrate with ITO is subjected to UV-O 3 treatment for 30 minutes, and a PEDOT-PSS / IPA solution (Clerious P VP AI 4083 manufactured by Heraeus, diluted 1.5 times) is applied thereon as a hole injection layer. did. The film of the extraction electrode part was wiped off and annealed on a hot plate at 200 ° C. for 10 minutes to form a PEDOT-PSS layer. A 0.5 weight percent toluene solution of the compound [73] containing the compound [73] and the compound [D-1] represented by the following formula with respect to the compound [73] and the compound [73] was spin-coated. It was set as the light emitting layer. After applying the light emitting layer, annealing was performed under vacuum conditions in a multi-chamber deposition apparatus. After vacuum drying, light irradiation was performed as described later. After the light emitting layer, a multi-chamber vapor deposition apparatus was used to form a vapor deposition film in the order of compound [E-1] represented by the following formula as an electron transport layer, lithium fluoride as an electron injection layer, and aluminum as a cathode. Thereafter, a sealing process was performed in a glove box to produce an organic EL element.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
光照射方法
 発光層を塗布、乾燥後に基板をSUS製の穴あき基板ホルダーにセットし、マルチチャンバー蒸着装置中の加熱室に静置して1×10-4Pa以下まで真空引きされた状態で、加熱条件下光照射を行なった。光源には青色LEDランプ(ピークトップ460nm、照射距離20cmでの光量:2.81mW/cm)を用い、加熱室の窓越しに光照射を行った。
Light irradiation method After the light emitting layer is applied and dried, the substrate is set in a SUS perforated substrate holder, left in a heating chamber in a multi-chamber deposition apparatus, and is evacuated to 1 × 10 −4 Pa or less. Then, light irradiation was performed under heating conditions. A blue LED lamp (peak top: 460 nm, light quantity at an irradiation distance of 20 cm: 2.81 mW / cm 2 ) was used as a light source, and light was irradiated through a window of the heating chamber.
 参考例1
 発光層の製膜に化合物[5-A]のトルエン溶液を用い、光照射を実施しなかった以外は実施例1と同様にして有機EL素子を作製した。
作製した実施例1と参考例1の有機EL素子を封止した後に、2.5mA/cmの一定電流を流した。流し始めた直後の輝度を初期輝度とし、さらに一定電流を流し続けて、輝度が初期輝度から半分に低下するまでの時間を輝度半減時間として測定した。実施例1の測定値を1.0とした場合の比較例1の測定値の相対比は相対初期発光効率が0.2であり、相対輝度半減寿命が0.1であった。
Reference example 1
An organic EL device was produced in the same manner as in Example 1 except that a toluene solution of the compound [5-A] was used for forming the light emitting layer and no light irradiation was performed.
After sealing the produced organic EL elements of Example 1 and Reference Example 1, a constant current of 2.5 mA / cm 2 was passed. The luminance immediately after starting to flow was set as the initial luminance, and a constant current was continuously supplied, and the time until the luminance decreased to half from the initial luminance was measured as the luminance half time. When the measurement value of Example 1 was 1.0, the relative ratio of the measurement value of Comparative Example 1 was 0.2 for the relative initial luminous efficiency and 0.1 for the relative luminance half life.
 10 有機EL素子(デバイス基板)
 11 支持体
 12 TFT(取り出し電極含む)
 13 平坦化層
 14 絶縁層
 15 第一電極
 16 正孔輸送層
 17 発光層
 18 電子輸送層
 19 第二電極
 20 ガラス基板
 21 ITOパターン
10 Organic EL elements (device substrates)
11 Support 12 TFT (including extraction electrode)
13 planarization layer 14 insulating layer 15 first electrode 16 hole transport layer 17 light emitting layer 18 electron transport layer 19 second electrode 20 glass substrate 21 ITO pattern

Claims (11)

  1. 下記一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1-2)、(1-4)~(1-8)中、R201~R210およびR223~R284はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、およびホスフィンオキサイド基からなる群より選ばれ、これらはさらに置換基を有していてもよい。XはC=O、OまたはCHRから選ばれる原子または原子団である。Rはアルキル基、アルケニル基、アルコキシ基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。)
    An organic device material precursor represented by any one of the following general formulas (1-2) and (1-4) to (1-8).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formulas (1-2) and (1-4) to (1-8), R 201 to R 210 and R 223 to R 284 may be the same or different, and hydrogen, an alkyl group, cycloalkyl Group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, arylether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl Selected from the group consisting of a group, a carbamoyl group, an amino group, a silyl group, and a phosphine oxide group, which may further have a substituent, wherein X is an atom selected from C═O, O or CHR 9 or an atomic group .R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group or an acyl group, together A case may form a ring.)
  2. 前記一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体化合物において、前記一般式(1-2)においてR201~R210、式(1-4)においてR223~R236、式(1-5)においてR237~R246、式(1-6)においてR247~R258、式(1-7)においてR259~R270、式(1-8)においてR271~R284の少なくともひとつが下記一般式(2-1)~(2-11)で表される骨格のいずれかを含む請求項1記載の有機デバイス材料前駆体。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2-1)~(2-11)において、R10~R129はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、およびホスフィンオキサイド基からなる群より選ばれる。これらはさらに置換基を有していてもよく、隣接置換基との間に結合を有して環を形成してもよい。また、式(2-1)においてR10~R15、式(2-2)においてR16~R23、式(2-3)においてR24~R33、式(2-4)においてR34~R43、式(2-5)においてR44~R55、式(2-6)においてR56~R67、式(2-7)においてR68~R77、式(2-8)においてR78~R89、式(2-9)においてR90~R101、式(2-10)においてR102~R115、式(2-11)においてR116~R129はそれぞれ少なくとも一つは直接結合もしくは間接結合にて一般式(1-2)、(1-4)~(1-8)における有機デバイス材料前駆体との連結に用いられる。)
    In the organic device material precursor compound represented by any one of the general formulas (1-2) and (1-4) to (1-8), R 201 to R 210 in the general formula (1-2), R 223 to R 236 in formula (1-4), R 237 to R 246 in formula (1-5), R 247 to R 258 in formula (1-6), and R 259 to R 258 in formula (1-7) 270. The organic device material according to claim 1, wherein at least one of R 271 to R 284 in formula (1-8) includes any of the skeletons represented by general formulas (2-1) to (2-11) below: precursor.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (2-1) to (2-11), R 10 to R 129 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, or a cycloalkenyl group. , Alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, silyl group, and These are selected from the group consisting of phosphine oxide groups, which may further have a substituent, may have a bond with an adjacent substituent to form a ring, and may have the formula (2-1) R 10 ~ R 15 in), R 16 ~ R 23 in the formula (2-2), the formula (2-3) R 24 ~ R 33, (2-4) R 34 ~ R 43 in, R 44 ~ R 55 in the formula (2-5), R 56 ~ R 67 in the formula (2-6), the formula (2-7) in R 68 ~ R 77 R 78 to R 89 in formula (2-8), R 90 to R 101 in formula (2-9), R 102 to R 115 in formula (2-10), R 116 to R 115 in formula (2-11) At least one R 129 is used for linking with the organic device material precursor in the general formulas (1-2), (1-4) to (1-8) by direct bonding or indirect bonding.
  3. 前記一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体において、XがC=Oである請求項1記載の有機デバイス材料前駆体。 2. The organic device material precursor according to claim 1, wherein X is C═O in the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8). body.
  4. 下記一般式(3-2)~(3-8)のいずれかで表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3-2)~(3-8)中、R309~R392はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アミノ基、およびヒドロキシル基からなる群より選ばれる。ただし、式(3-2)においてR309~R318、式(3-3)においてR319~R330、式(3-4)においてR331~R344、式(3-5)においてR345~R354、式(3-6)においてR355~R366、式(3-7)においてR367~R378、式(3-8)においてR379~R392の少なくともひとつはCl、Br、IまたはCl、BrもしくはIのいずれかを有する置換基である。YはC=O、OまたはCHR393から選ばれる原子または原子団である。R393はアルキル基、アルケニル基、アルコキシ基、ヒドロキシル基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。)
    A compound represented by any one of the following general formulas (3-2) to (3-8).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formulas (3-2) to (3-8), R 309 to R 392 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, It is selected from the group consisting of an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a halogen, a cyano group, an amino group, and a hydroxyl group, provided that R 309 in formula (3-2) R 318 , R 319 to R 330 in Formula (3-3), R 331 to R 344 in Formula (3-4), R 345 to R 354 in Formula (3-5), and Formula (3-6) R 355 ~ R 366, R 367 ~ R 378 in the formula (3-7), at least of R 379 ~ R 392 in the formula (3-8) Cl is also one, Br, I or Cl, Br or a substituent .Y is an atom or an atom group selected from C = O, O or CHR 393 .R 393 is an alkyl group having any of I, (It may be selected from an alkenyl group, an alkoxy group, a hydroxyl group, or an acyl group, and may have a bond with each other to form a ring.)
  5. 一般式(1-2)~(1-8)のいずれかで表される有機デバイス材料前駆体の製造方法であって、一般式(3-2)~(3-8)のいずれかで表される化合物が有するCl、BrもしくはIを利用した触媒的クロスカップリング工程、または一般式(3-2)~(3-8)のいずれかで表される化合物が有するCl、BrもしくはIの位置での求核置換反応工程を含む有機デバイス材料前駆体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1-2)~(1-8)中、R201~R284はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、アミノ基、およびホスフィンオキサイド基からなる群より選ばれ、これらはさらに置換基を有していてもよい。XはC=O、OまたはCHRから選ばれる原子または原子団である。Rはアルキル基、アルケニル基、アルコキシ基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。
     一般式(3-2)~(3-8)中、R309~R392はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アミノ基、およびヒドロキシル基からなる群より選ばれる。ただし、式(3-2)においてR309~R318、式(3-3)においてR319~R330、式(3-4)においてR331~R344、式(3-5)においてR345~R354、式(3-6)においてR355~R366、式(3-7)においてR367~R378、式(3-8)においてR379~R392の少なくともひとつはCl、Br、IまたはCl、BrもしくはIのいずれかを有する置換基である。YはC=O、OまたはCHR393から選ばれる原子または原子団である。R393はアルキル基、アルケニル基、アルコキシ基、ヒドロキシル基またはアシル基から選ばれ、互いに結合を有して環を形成しても良い。)
    A method for producing a precursor of an organic device material represented by any one of general formulas (1-2) to (1-8), which is represented by any one of general formulas (3-2) to (3-8) A catalytic cross-coupling step using Cl, Br or I possessed by the compound or a compound represented by any one of the general formulas (3-2) to (3-8) A method for producing an organic device material precursor comprising a nucleophilic substitution reaction step at a position.
    Figure JPOXMLDOC01-appb-C000004
    (In the general formulas (1-2) to (1-8), R 201 to R 284 may be the same or different, and hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group , An alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a cyano group, an amino group, and a phosphine oxide group, which further have a substituent. X is an atom or atomic group selected from C═O, O, or CHR 9. R 9 is selected from an alkyl group, an alkenyl group, an alkoxy group, or an acyl group, and is bonded to each other to form a ring. May be formed.
    In general formulas (3-2) to (3-8), R 309 to R 392 may be the same or different, and hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group Selected from the group consisting of a group, an alkylthio group, an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a halogen, a cyano group, an amino group, and a hydroxyl group. However, R 309 to R 318 in Formula (3-2), R 319 to R 330 in Formula (3-3), R 331 to R 344 in Formula (3-4), and R 345 in Formula (3-5) R 354 , R 355 to R 366 in formula (3-6), R 367 to R 378 in formula (3-7), and at least one of R 379 to R 392 in formula (3-8) is Cl, Br, It is a substituent having either I or Cl, Br or I. Y is an atom or atomic group selected from C═O, O, or CHR 393 . R 393 is selected from an alkyl group, an alkenyl group, an alkoxy group, a hydroxyl group, and an acyl group, and may have a bond with each other to form a ring. )
  6. 一般式(1-2)~(1-4)、(1-7)~(1-8)のいずれかで表される有機デバイス材料前駆体の製造方法であって、一般式(4-2)~(4-4)、(4-7)~(4-8)のいずれかで表されるキノンを金属試薬RV(Rは一般式(1-2)~(1-4)、(1-7)~(1-8)におけるR201、R206、R211、R218、R223、R232、R259、R266、R271、R280のいずれかであり、前記反応式におけるR460、R461である。R201とR206、R211とR218、R223とR232、R259とR266、R271とR280のそれぞれが同時に水素であることはない。VはLi、MgZ(Z=ハロゲン)である)と反応させてジオール体とする工程、前記ジオール体を還元する工程、およびアセタール保護された架橋ジオール部分を脱保護および酸化する工程を含む、有機デバイス材料前駆体の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(4-2)~(4-4)、(4-7)~(4-8)中、R400~R455はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、アミノ基、およびホスフィンオキサイド基からなる群より選ばれ、これらはさらに置換基を有していてもよい。
     一般式(1-2)~(1-4)、(1-7)~(1-8)中、R201、R206、R211、R218、R223、R232、R259、R266、R271、R280はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、アミノ基、からなる群より選ばれ、これらはさらに置換基を有していてもよい。ただしR201またはR206のいずれか一方、R211またはR218のいずれか一方、R223またはR232のいずれか一方、R259またはR266のいずれか一方、ならびにR271またはR280のいずれか一方は水素以外の基である。
    A method for producing an organic device material precursor represented by any one of general formulas (1-2) to (1-4) and (1-7) to (1-8), comprising: ) To (4-4) and (4-7) to (4-8) are converted to metal reagents RV (R is represented by the general formulas (1-2) to (1-4), (1 -7) to (1-8) are any one of R 201 , R 206 , R 211 , R 218 , R 223 , R 232 , R 259 , R 266 , R 271 , R 280 , and R in the reaction formula 460 and R 461. Each of R 201 and R 206 , R 211 and R 218 , R 223 and R 232 , R 259 and R 266 , R 271 and R 280 is not hydrogen at the same time. , Which is reacted with MgZ (Z = halogen) to form a diol The step of reducing the diol, and acetals containing a protected crosslinked diol moiety deprotection and process for oxidation method of an organic device material precursor.
    Figure JPOXMLDOC01-appb-C000005
    (In the general formulas (4-2) to (4-4) and (4-7) to (4-8), R 400 to R 455 may be the same or different and each represents hydrogen, an alkyl group, cycloalkyl A group consisting of a group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an arylether group, an arylthioether group, an aryl group, a heteroaryl group, a cyano group, an amino group, and a phosphine oxide group And these may further have a substituent.
    In general formulas (1-2) to (1-4) and (1-7) to (1-8), R 201 , R 206 , R 211 , R 218 , R 223 , R 232 , R 259 , R 266 , R 271 and R 280 may be the same or different and are each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl It is selected from the group consisting of a thioether group, an aryl group, a heteroaryl group, a cyano group, and an amino group, and these may further have a substituent. However, one of R 201 or R 206 , one of R 211 or R 218 , one of R 223 or R 232 , one of R 259 or R 266 , and one of R 271 or R 280 One is a group other than hydrogen.
  7. 請求項1~3のいずれか記載の有機デバイス材料前駆体を含むインク。 An ink comprising the organic device material precursor according to any one of claims 1 to 3.
  8. 少なくとも一対の電極間に挟持された発光層を含む有機化合物層を有し、前記発光層中に請求項1~3のいずれか記載の有機デバイス材料前駆体化合物および下記一般式(5-2)、(5-4)~(5-8)のいずれかで表される化合物を含有する有機EL素子。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(5-2)、(5-4)~(5-8)中、R201~R210およびR223~R284は一般式(1-2)、(1-4)~(1-8)におけるものと同じである。)
    An organic compound material layer including a light emitting layer sandwiched between at least a pair of electrodes, and the organic device material precursor compound according to any one of claims 1 to 3 and the following general formula (5-2) in the light emitting layer: , (5-4) to (5-8) An organic EL device containing the compound represented by any one of (5-8).
    Figure JPOXMLDOC01-appb-C000006
    (In the general formulas (5-2) and (5-4) to (5-8), R 201 to R 210 and R 223 to R 284 represent the general formulas (1-2), (1-4) to (1 Same as in -8).)
  9. 前記発光層中に存在する一般式(1-2)、(1-4)~(1-8)のいずれかで表される有機デバイス材料前駆体の含有量が、一般式(5-2)、(5-4)~(5-8)のいずれかで表される化合物100重量部に対して5.0重量部以下である請求項8記載の有機EL素子。 The content of the organic device material precursor represented by any one of the general formulas (1-2) and (1-4) to (1-8) present in the light emitting layer is represented by the general formula (5-2) 9. The organic EL device according to claim 8, wherein the amount is 5.0 parts by weight or less based on 100 parts by weight of the compound represented by any one of (5-4) to (5-8).
  10. 少なくとも請求項1~3のいずれかに記載の有機デバイス材料前駆体を含有する層を有機デバイス材料に変換する工程を含む有機EL素子の製造方法。 A method for producing an organic EL element comprising a step of converting a layer containing the organic device material precursor according to any one of claims 1 to 3 into an organic device material.
  11. 少なくとも請求項1~3のいずれかに記載の有機デバイス材料前駆体を含有する層をドナー基板上に形成する工程と、前記ドナー基板上の前記有機デバイス材料前駆体を有機デバイス材料に変換する工程と、前記ドナー基板上の層を有機EL素子のデバイス基板に転写する工程を含む請求項10記載の有機EL素子の製造方法。 Forming a layer containing at least the organic device material precursor according to any one of claims 1 to 3 on a donor substrate; and converting the organic device material precursor on the donor substrate into an organic device material. And a method of transferring the layer on the donor substrate to a device substrate of the organic EL element.
PCT/JP2013/058479 2012-03-28 2013-03-25 Organic device material precursor, method for producing same, light-emitting element using same, and method for producing same WO2013146631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-073335 2012-03-28
JP2012073335 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013146631A1 true WO2013146631A1 (en) 2013-10-03

Family

ID=49259882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058479 WO2013146631A1 (en) 2012-03-28 2013-03-25 Organic device material precursor, method for producing same, light-emitting element using same, and method for producing same

Country Status (3)

Country Link
JP (2) JPWO2013146631A1 (en)
TW (1) TW201348191A (en)
WO (1) WO2013146631A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016555A1 (en) * 2008-08-07 2010-02-11 三菱化学株式会社 Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, solar cell element, organic el display device, and organic el lighting utilizing same
WO2011024804A1 (en) * 2009-08-28 2011-03-03 帝人株式会社 NOVEL ADDUCT COMPOUND, METHODS FOR PURIFICATION AND PREPARATION OF FUSED POLYCYCLIC AROMATIC COMPOUND, SOLUTION FOR FORMATION OF ORGANIC SEMICONDUCTOR FILM, AND NOVEL α-DIKETONE COMPOUND
WO2011068083A1 (en) * 2009-12-03 2011-06-09 東レ株式会社 Organic el element and method for manufacturing organic el element
WO2011074428A1 (en) * 2009-12-16 2011-06-23 東レ株式会社 Method for producing material for light-emitting elements, material precursor for light-emitting elements, and method for producing light-emitting element
JP2012212662A (en) * 2011-03-18 2012-11-01 Toray Ind Inc Donor substrate for transfer
JP2012227244A (en) * 2011-04-18 2012-11-15 Toray Ind Inc Donor substrate for transfer
JP2012238445A (en) * 2011-05-11 2012-12-06 Toray Ind Inc Donor substrate for transfer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016555A1 (en) * 2008-08-07 2010-02-11 三菱化学株式会社 Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, solar cell element, organic el display device, and organic el lighting utilizing same
WO2011024804A1 (en) * 2009-08-28 2011-03-03 帝人株式会社 NOVEL ADDUCT COMPOUND, METHODS FOR PURIFICATION AND PREPARATION OF FUSED POLYCYCLIC AROMATIC COMPOUND, SOLUTION FOR FORMATION OF ORGANIC SEMICONDUCTOR FILM, AND NOVEL α-DIKETONE COMPOUND
WO2011068083A1 (en) * 2009-12-03 2011-06-09 東レ株式会社 Organic el element and method for manufacturing organic el element
WO2011074428A1 (en) * 2009-12-16 2011-06-23 東レ株式会社 Method for producing material for light-emitting elements, material precursor for light-emitting elements, and method for producing light-emitting element
JP2012212662A (en) * 2011-03-18 2012-11-01 Toray Ind Inc Donor substrate for transfer
JP2012227244A (en) * 2011-04-18 2012-11-15 Toray Ind Inc Donor substrate for transfer
JP2012238445A (en) * 2011-05-11 2012-12-06 Toray Ind Inc Donor substrate for transfer

Also Published As

Publication number Publication date
JPWO2013146631A1 (en) 2015-12-14
TW201348191A (en) 2013-12-01
JPWO2013146630A1 (en) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6697092B2 (en) Organic compound and organic electroluminescent device containing the same
JP5291463B2 (en) Compound having pyridoindole ring structure in which substituted pyridyl group is linked and organic electroluminescence device
JP5099220B2 (en) Light-emitting element material precursor and method for producing the same
CN106554319B (en) Quinazoline group-containing derivative and application thereof
WO2011068083A1 (en) Organic el element and method for manufacturing organic el element
CN112125813B (en) Compound, hole transport material and organic electroluminescent device
JP2009051764A (en) Substituted phenanthrene ring structure-having compound and organic electroluminescence element
WO2011074428A1 (en) Method for producing material for light-emitting elements, material precursor for light-emitting elements, and method for producing light-emitting element
CN111320615B (en) Small molecules based on S, S-dioxo-dibenzothiophene and phenanthroimidazole and application thereof in electroluminescent device
WO2023138254A1 (en) Heterocyclic compound, and organic electroluminescent material and element
CN113321649B (en) Compound, electron transport material and organic electroluminescent device
JP5376857B2 (en) Fused polycyclic compound and organic light emitting device using the same
WO2013146631A1 (en) Organic device material precursor, method for producing same, light-emitting element using same, and method for producing same
CN113004298A (en) Anthracene ketone five-membered ring organic compound and application thereof
WO2013146630A1 (en) Organic device material precursor, method for producing same, light-emitting element using same, and method for producing same
CN117069597B (en) Compound and application thereof
CN114560872B (en) Heterocyclic imidazole compound and application thereof
CN115784903A (en) Hole transport material and preparation method and application thereof
JP2023148087A (en) metal complex
CN116143738A (en) Anthracene asymmetric dibenzoheterocyclic compound and application thereof
CN116023274A (en) Hole transport material based on fluorene and triphenylethylene and preparation method and application thereof
CN114409685A (en) Organic small molecule electroluminescent material and preparation method and application thereof
CN113861218A (en) Spiro pyrrolocarbazole compound and application thereof
CN116813653A (en) Anthracene derivative containing boron atom and application thereof
CN117069598A (en) Compound and application thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514885

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769013

Country of ref document: EP

Kind code of ref document: A1