WO2013146477A1 - Silica-containing coating resin composition and laminate body - Google Patents

Silica-containing coating resin composition and laminate body Download PDF

Info

Publication number
WO2013146477A1
WO2013146477A1 PCT/JP2013/057842 JP2013057842W WO2013146477A1 WO 2013146477 A1 WO2013146477 A1 WO 2013146477A1 JP 2013057842 W JP2013057842 W JP 2013057842W WO 2013146477 A1 WO2013146477 A1 WO 2013146477A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
weight
silica
parts
meth
Prior art date
Application number
PCT/JP2013/057842
Other languages
French (fr)
Japanese (ja)
Inventor
美幸 神谷
齋藤 憲
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Publication of WO2013146477A1 publication Critical patent/WO2013146477A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to a silica-containing coating resin composition and a laminate, and is a resin composition suitable for forming a hard coat layer on the surface of a transparent thermoplastic resin molded article, and a laminate thereof,
  • the present invention relates to a coating resin composition and a laminate thereof that can satisfy the abrasion resistance equivalent to that of inorganic glass while ensuring transparency after curing.
  • the standard of abrasion resistance in plastic glass requires a high wear resistance equivalent to that of inorganic glass, with a haze change of 2% or less (ANSI Z 26.1) before and after the Taber abrasion test.
  • a method of forming a SiO thin film on a PC surface by plasma CVD, and a method of applying and curing a thermosetting silicone resin have been proposed.
  • the former method is excellent in abrasion resistance with a Taber abrasion resistance of about 2%, but has a drawback that the process cost is high because a dry process such as a vacuum chamber is required.
  • the latter method is low in process cost because it can be formed by a wet process, but it requires a high temperature and a long time for curing, so that the productivity is poor and the Taber abrasion resistance is not sufficiently satisfactory.
  • Patent Document 1 discloses a coating resin composition comprising a photocurable silica-containing acrylic resin to which an ultraviolet absorber is added, and a laminate in which this composition is coated on a polycarbonate molded product.
  • This laminate has excellent wear resistance with 4.2% haze change before and after the Taber abrasion test, but the average particle size of silica that guarantees wear resistance has not been optimized, and the resin
  • the silica content in the composition is 50 parts by weight, which is not high.
  • Patent Document 2 discloses a coating resin composition comprising a ladder-type polysilsesquioxane having a (meth) acryl group and an acrylic resin, and a laminate in which this composition is coated on a polycarbonate molded article. . Although this laminated body has little curing shrinkage at the time of photocuring and can be directly applied to a PC without using an adhesion layer, its wear resistance is not satisfactory.
  • JP 57-13214 A Japanese Patent Laid-Open No. 4-33936
  • An object of the present invention is to apply a wet process that does not use a dry process such as a vacuum chamber, and to use a photocuring that can be cured in a short period of time compared to a thermal curing, and a glass for a polycarbonate molded article or the like.
  • An object of the present invention is to provide a resin composition capable of forming a hard coat layer having transparency and abrasion resistance close to those of the above.
  • the inventors have highly blended silica fine particles having a specific average particle diameter with a radical polymerizable compound having a (meth) acryl group and a hydroxyl group.
  • the present inventors have found that a resin composition capable of imparting transparency and abrasion resistance close to glass to a transparent thermoplastic resin such as polycarbonate can be obtained.
  • a top coat layer obtained by photocuring the composition on the surface of a transparent thermoplastic resin molded article such as polycarbonate via an adhesion layer obtained by photocuring radically polymerizable (meth) acrylate.
  • the present inventors have found that a laminate having transparency close to glass and wear resistance can be obtained.
  • R is an organic functional group having a (meth) acryloyl group
  • X is an organic functional group having hydrogen or a (meth) acryloyl group
  • n is an integer of 0 or 1.
  • the silica-containing coating resin composition is characterized in that the silica fine particles (B) are contained in the range of 60 to 85 parts by weight in a total of 100 parts by weight.
  • the present invention also provides a photocurable resin composition
  • a photocurable resin composition comprising a topcoat layer (I) obtained by photocuring the above silica-containing coating resin composition, a radically polymerizable (meth) acrylate, and a photopolymerization initiator.
  • a laminate in which a hard coat layer comprising two layers of an adhesive layer (II) to be cured is provided on at least one surface of a thermoplastic resin molded product, comprising a silica-containing coating resin composition and a photocurable resin
  • Each of the compositions is coated and photocured to form a hard coat layer.
  • the radically polymerizable compound (A) having a (meth) acryl group and a hydroxyl group in the present invention is represented by the general formula (1).
  • R is an organic functional group having a (meth) acryloyl group
  • X is an organic functional group having hydrogen or a (meth) acryloyl group.
  • n is an integer of 0 or 1.
  • the unsaturated compound contains a hydroxyl group. This is presumably because the hydroxyl group acts on the silanol groups present on the surface of the silica fine particles to suppress the aggregation of the silica fine particles and enhance the dispersibility of the silica fine particles in the resin.
  • the dispersion may not be uniformly dispersed in the resin due to agglomeration, and transparency may be deteriorated.
  • Specific examples of the general formula (1) include pentaerythritol triacrylate, glycerin dimethacrylate, glycerol acrylate methacrylate, and the like. Since these compounds have a hydroxyl group in the molecule, for example, they can interact with the hydroxyl groups present on the surface of silica fine particles typified by colloidal silica, and it is possible to control the colloidal silica in the resin composition. Enables a large amount of uniform mixing in. These radically polymerizable compounds may be used alone or in combination of two or more.
  • the silica fine particle (B) in the present invention is not particularly limited as long as it is a silicon oxide, but it may be colloidal silica (colloidal silica) dispersed in an organic solvent from the viewpoint of dispersibility in the resin. preferable. Furthermore, the silica fine particles (B) are more preferably surface-treated with a silane coupling agent having a (meth) acryl group.
  • the surface treatment method of the silica fine particles is not particularly limited, and a commercially available product that has been surface-treated with a silane coupling agent having a (meth) acryl group in advance may be used. When used, the surface treatment with a silane coupling agent may be performed by a known method.
  • the silica fine particles (B) are blended in the range of 60 to 85 parts by weight, preferably in the range of 75 to 85 parts by weight, in a total of 100 parts by weight of the radical polymerizable compound (A) and the silica fine particles (B). It is good to have. If the blending amount of the silica fine particles (B) is less than 60 parts by weight, the abrasion resistance cannot be sufficiently exhibited. On the other hand, if it exceeds 85 parts by weight, the transparency may be lowered.
  • the average particle diameter of the silica fine particles (B) is preferably 1 to 100 nm in order to ensure the transparency of the silica-containing coating resin composition (C). Furthermore, if the average particle size is in the range of 1 to 100 nm, a plurality of silica fine particles having different particle sizes can be used in combination.
  • the average particle diameter of the silica fine particles represents the number average particle diameter measured by a dynamic light scattering method.
  • the silica-containing coating resin composition (C) and the photocurable resin composition (D) are applied in two coats and two baked so that coating and photocuring are performed for each composition.
  • two-coat one-bake coating photocuring together after applying two compositions
  • resin mixing occurs at the interface between the topcoat layer (I) and the adhesion layer (II), so that improvement in interlayer adhesion can be expected.
  • the silica-containing coating resin composition (C) containing only finer silica particles having an average particle size of 15 nm or less is used in 2-coat 1-bake coating, the topcoat layer (I) and the adhesion layer ( As the resin of II) is mixed, the silica fine particles flow out to the adhesion layer (II) side, and wear resistance is reduced.
  • the outflow of the silica fine particles occurs because the radical polymerizable (meth) acrylate used in the photocurable resin composition (D) and the silica fine particles having an average particle size of 15 nm or less are easily compatible.
  • silica fine particles having an average particle diameter of 16 to 100 nm, which is difficult to be compatible with the radical polymerizable (meth) acrylate used in the photocurable resin composition (D), are used. More preferably, silica fine particles having an average particle diameter of 30 to 100 nm are preferably used.
  • the silica fine particles having an average particle diameter of 16 to 100 nm are contained in the silica-containing coating resin composition (C) ( B) If 50 parts by weight or more is contained with respect to 100 parts by weight, a part of silica fine particles of 15 nm or less may be mixed.
  • the photopolymerization initiator contained in the silica-containing coating resin composition (C) compounds such as acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based compounds can be suitably used.
  • trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do.
  • photopolymerization initiators may be used alone or in combination of two or more. Further, for the purpose of accelerating the photocuring reaction, a photoinitiator assistant or a sharpening agent that exhibits an effect in combination with a photopolymerization initiator can be used in combination.
  • the addition amount of the photopolymerization initiator of the silica-containing coating resin composition (C) is based on a total of 100 weights of the radical polymerizable compound (A) having a (meth) acrylic group and a hydroxyl group and the silica fine particles (B).
  • the range is 0.1 to 10 parts by weight, and preferably 0.5 to 10 parts by weight. If this addition amount is less than 0.1 parts by weight, curing will be insufficient, and the strength and rigidity of the resulting laminate will be low, while if it exceeds 10 parts by weight, problems such as coloring of the laminate may occur. is there.
  • the silica-containing coating resin composition (C) of the present invention may further contain a cage silsesquioxane resin represented by the following general formula (3). [RSiO 3/2 ] n (3) (In the formula, R represents a (meth) acryloyl group or the following formula (4), and n represents 8, 10, 12 or 14). (Wherein R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3)
  • the cage silsesquioxane resin has the following general formula (5) RSix 3 (5) (In the formula, R represents a (meth) acryloyl group or the following general formula (4), and X represents a hydrolysis group selected from an alkoxy group or an acetoxy group) (Wherein R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3) is hydrolyzed and partially condensed in the presence of an organic polar solvent and a basic catalyst. The obtained hydrolysis product can be obtained by recondensing in the presence of a nonpolar solvent and a basic catalyst.
  • Such a cage silsesquioxane resin has a reactive functional group composed of an organic functional group having a (meth) acryloyl group on all silicon atoms in the resin, and has a controlled molecular weight distribution and molecular structure.
  • a cage silsesquioxane resin is preferred.
  • the molecular structure of such a cage silsesquioxane resin may not be a completely closed polyhedron, and may be a structure in which a part is cleaved, for example.
  • the average molecular weight of such cage-type silsesquioxane resin is not particularly limited, and such cage-type silsesquioxane resin may be an oligomer.
  • Such a cage silsesquioxane resin can be contained in an amount of 1 to 100 parts by weight with respect to 100 parts by weight of the radical polymerizable compound (C) having a (meth) acryl group and a hydroxyl group.
  • the content is less than 1 part by weight, the effect of improving the pencil hardness cannot be obtained, and if the content exceeds 100 parts by weight, no further improvement of the effect can be seen, and it has a (meth) acryl group and a hydroxyl group. Since the effect of the hydroxyl group which a radically polymerizable compound (C) has is reduced, it is not preferable.
  • additives can be added to the silica-containing coating resin composition (C) without departing from the object of the present invention.
  • various additives include solvents, organic / inorganic fillers, antioxidants, light stabilizers, ultraviolet absorbers, leveling agents, antistatic agents, colorants, crosslinking agents, dispersion aids, resin components, and the like.
  • the solvent can be used for the purpose of adjusting the viscosity when the silica-containing coating resin composition (C) is applied.
  • specific examples include alcohols such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol and n-butyl alcohol, and ketones such as methyl ethyl ketone and methyl isobutyl ketone.
  • the radically polymerizable (meth) acrylate used in the photocurable resin composition (D) is preferably a polyfunctional acrylate, and more preferably a bifunctional acrylate or an acrylate oligomer. Since the bifunctional or higher polyfunctional acrylate has a large volume shrinkage at the time of photocuring, the adhesion may be lowered.
  • Specific examples of the bifunctional acrylate include 1,9-nonanediol diacrylate, tetraethylene glycol dimethacrylate, dicyclopentanyl dimethylol di (meth) acrylate and the like.
  • These radically polymerizable (meth) acrylates may be used singly or as a mixture of two or more kinds, or these oligomers may be used.
  • dicyclopentanyl dimethylol di (meth) acrylate moderately erodes the surface of the polycarbonate resin, so that adhesion is improved.
  • the linear expansion coefficient of the photocured product is 70 ppm / K, which is close to the linear expansion coefficient (60 to 80 ppm / K) of a general polycarbonate resin, it is preferable because the heat resistance is improved. .
  • an acrylate such as tetraethylene glycol dimethacrylate having high erodibility to polycarbonate
  • it is preferably mixed with other acrylates or acrylate oligomers for the purpose of preventing a decrease in transparency.
  • the photopolymerization initiator contained in the fluorescent curable resin composition (D) compounds such as acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based compounds can be preferably used.
  • trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • a photoinitiator assistant or a sensitizer that exhibits an effect in combination with a photopolymerization initiator can be used in combination.
  • additives can be added to the fluorescent curable resin composition (D) without departing from the object of the present invention.
  • various additives include solvents, organic / inorganic fillers, antioxidants, light stabilizers, ultraviolet absorbers, heat ray absorbers, leveling agents, colorants, and the like.
  • the solvent can be used for the purpose of adjusting the viscosity when the photocurable resin composition (D) is applied.
  • specific examples include using alcohols such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol and n-butyl alcohol, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and the like. it can.
  • the method for applying the silica-containing coating resin composition (C) and the photocurable resin composition (D) onto the transparent thermoplastic resin molded product is not particularly limited, but includes a cast method and a spin coat method. , Spray coating method, dip coating method, flow coating method and the like.
  • the heating conditions for drying when the solvent is contained in the silica-containing coating resin composition (C) and the photocurable resin composition (D) are not particularly limited. It is preferable that the time is from minute to one hour.
  • the silica-containing coating resin composition (C) is applied after the photocurable resin composition (D) is applied onto a thermoplastic resin molded article such as polycarbonate and then photocured (2 coats 2 bake). Coating) or coating without photocuring (2 coats and 1 bake coating), but the latter method is used to improve the interlayer adhesion between the topcoat layer (I) and the adhesion layer (II). Is preferred.
  • the topcoat layer is irradiated by irradiating ultraviolet rays having a wavelength of 10 to 400 nm or visible rays having a wavelength of 400 to 700 nm.
  • a hard coat layer comprising (I) and the adhesion layer (II) can be formed.
  • the wavelength of light to be used is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is particularly preferably used.
  • a lamp used as an ultraviolet ray generation source As a lamp used as an ultraviolet ray generation source, a low-pressure mercury lamp (output: 0.4 to 4 W / cm), a high-pressure mercury lamp (40 to 160 W / cm), an ultra-high pressure mercury lamp (173 to 435 W / cm), a metal halide lamp (80 to 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like.
  • Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photopolymerization initiator used.
  • the transparent thermoplastic resin molded product used in the present invention is preferably made of polycarbonate.
  • the shape of the molded product is not particularly limited, and may be a flat plate or a curved surface. Moreover, you may contain various additives in the range which does not deviate from the objective of this invention. Specific examples include colorants, organic / inorganic fillers, antioxidants, light stabilizers, ultraviolet absorbers, heat ray absorbers, and the like.
  • a product made of polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), cycloolefin polymer (COP), or cycloolefin copolymer (COC) may be used as the transparent thermoplastic resin molded product. May be.
  • the thickness of the transparent thermoplastic resin molded article of the present invention is preferably 1000 to 5000 ⁇ m. This is because it is disadvantageous in terms of strength if it is thinner than 1000 ⁇ m, and transparency may be lowered if it exceeds 5000 ⁇ m. If strength or transparency is not questioned, it may be outside this range.
  • the laminate of the present invention is formed between the topcoat layer (I) obtained by photocuring the silica-containing coating resin composition (C) and a transparent thermoplastic resin molded product such as polycarbonate which is a transparent thermoplastic resin.
  • the thickness of the adhesion layer (II) is preferably 1 to 100 ⁇ m.
  • the thickness of the topcoat layer (I) is smaller than this range, the intended wear resistance will not be exhibited, and if it is larger than this range, the molded product may be deformed by curing shrinkage. Further, if the thickness of the adhesion layer (II) is smaller than this range, the adhesion force as the adhesion layer cannot be ensured, and if it is larger than this range, wear resistance may be lowered.
  • the silica-containing coating resin composition of the present invention comprises a transparent thermoplastic resin such as polycarbonate by highly blending silica fine particles having an average particle diameter of 1 to 100 nm with a radical polymerizable compound having a (meth) acryl group and a hydroxyl group. It is possible to impart abrasion resistance without impairing the transparency of the film. Also, a top coat layer obtained by photocuring the silica-containing coating resin composition is applied to the surface of a transparent thermoplastic resin molded product such as polycarbonate via an adhesion layer obtained by photocuring radically polymerizable (meth) acrylate. And by making it photocure, the laminated body which has transparency and abrasion resistance close
  • a transparent thermoplastic resin such as polycarbonate by highly blending silica fine particles having an average particle diameter of 1 to 100 nm with a radical polymerizable compound having a (meth) acryl group and a hydroxyl group. It is possible to
  • FIG. 1 is a cross-sectional view of the laminate obtained in Example 1.
  • silsesquioxane was obtained by filtering off anhydrous magnesium sulfate and concentrating. This silsesquioxane was a colorless viscous liquid soluble in various organic solvents.
  • Example 1 In a reaction vessel, 20 parts by weight of pentaerythritol triacrylate, 5 parts by weight of a cage-type silsesquioxane resin having a methacryl group obtained in Synthesis Example 1 above, a colloidal surface modified with a silane coupling agent having a methacryl group 75 parts by weight of silica fine particles (average particle diameter 40 nm) (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 0.7 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator After stirring and stirring, the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  • a colloidal surface modified with a silane coupling agent having a methacryl group 75 parts by weight of silica fine particles (average particle diameter 40 nm) (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd
  • the photocurable resin composition was applied to the surface of a polycarbonate flat plate (Carbo Glass Polish Clear: manufactured by Asahi Glass Co., Ltd.) having a thickness of 3 mm and a square of 100 ⁇ 100 mm using a spin coater.
  • the silica-containing coating resin composition was applied using a spin coater so as to have a film thickness of 15 ⁇ m, and then irradiated with ultraviolet light at 8400 mJ / cm 2 using a high-pressure mercury lamp to form a top coat as shown in FIG.
  • a laminate comprising the layer (I), the adhesion layer (II) and the polycarbonate substrate was obtained.
  • Example 2 In a reaction vessel, 15 parts by weight of pentaerythritol triacrylate, 10 parts by weight of glycerin dimethacrylate, 10 parts by weight of a cage silsesquioxane obtained in Synthesis Example 1 above, and a silane coupling agent having a methacrylic group 65 parts by weight of surface-modified colloidal silica fine particles (average particle diameter 40 nm) (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator After 0.9 part by weight was added and stirred, the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  • a silane coupling agent having a methacrylic group 65 parts by weight of surface-modified colloidal silica fine particles (average particle diameter 40 nm) MEK-AC-4101 manufactured
  • Example 3 In a reaction vessel, 10 parts by weight of pentaerythritol triacrylate, 12 parts by weight of glycerin dimethacrylate, 3 parts by weight of a cage silsesquioxane resin having a methacryl group obtained in Synthesis Example 1 above, and a methacryl group having an average particle diameter of 15 nm Colloidal silica fine particles (MEK-AC-2101 manufactured by Nissan Chemical Co., Ltd.) whose surface is modified with a silane coupling agent having a silane coupling agent and whose surface is modified with a silane coupling agent having a methacryl group having an average particle diameter of 40 nm 45 parts by weight of fine silica particles (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 0.7 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan Co., Ltd .: Irgacure 184) as a photopolymerization initiator were added and stirred. Remove the volatile
  • Example 4 55.5 parts by weight of pentaerythritol triacrylate, 10 parts by weight of glycerin dimethacrylate, 25.5 parts by weight of colloidal silica fine particles surface-modified with a silane coupling agent having a methacryl group having an average particle diameter of 15 nm (Nissan Chemical) MEK-AC-2101), colloidal silica fine particles surface-modified with a silane coupling agent having a methacryl group having an average particle size of 40 nm (MEK-AC-4101, Nissan Chemical Co., Ltd.), 8.5 parts by weight, average 51 parts by weight of colloidal silica fine particles (MEK-AC-5101 manufactured by Nissan Chemical Co., Ltd.) surface-modified with a silane coupling agent having a methacryl group having a particle diameter of 100 nm, and 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan KK made: Irgacure1 4) Place the
  • Example 5 In a reaction vessel, 5 parts by weight of pentaerythritol triacrylate, 20 parts by weight of glycerin dimethacrylate, colloidal silica fine particles (average particle size 40 nm) surface-modified with a silane coupling agent having a methacryl group (MEK-AC manufactured by Nissan Chemical Co., Ltd.) -4101) and 75 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator, and after stirring, the volatile solvent was removed under reduced pressure. A silica-containing coating resin composition was obtained.
  • a silane coupling agent having a methacryl group MEK-AC manufactured by Nissan Chemical Co., Ltd.
  • 1-hydroxycyclohexyl phenyl ketone manufactured by BASF Japan Ltd .: Irgacure 184
  • Example 6 In a reaction vessel, 25 parts by weight of pentaerythritol triacrylate, 75 parts by weight of colloidal silica fine particles (average particle size 40 nm) surface-modified with a silane coupling agent having a methacryl group, 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan Co., Ltd. product: Irgacure 184) 0.7 part by weight was added and stirred, and then the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  • a silane coupling agent having a methacryl group 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan Co., Ltd. product: Irgacure 184
  • Example 2 the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
  • Example 7 In a reaction vessel, 25 parts by weight of glycerin dimethacrylate, 75 parts by weight of colloidal silica fine particles (average particle size 40 nm) surface-modified with a silane coupling agent having a methacryl group, 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan Co., Ltd. product: Irgacure 184) 0.7 part by weight was added and stirred, and then the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  • a silane coupling agent having a methacryl group 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan Co., Ltd. product: Irgacure 184
  • Example 2 the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
  • Example 8 Colloidal silica surface-modified with 20 parts by weight of glycerin dimethacrylate, 5 parts by weight of a caged silsesquioxane resin having a methacrylic group obtained in Synthesis Example 1, and a silane coupling agent having a methacrylic group.
  • Example 2 the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
  • colloidal silica fine particles (average particle diameter: 40 nm) (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator
  • the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  • the photocurable resin composition is applied to the surface of a 3 mm thick polycarbonate flat plate (Carbo Glass Polish: manufactured by Asahi Glass Co., Ltd.) using a spin coater so as to have a film thickness of 50 ⁇ m, and using a high pressure mercury lamp. Ultraviolet rays were irradiated at 2800 mJ / cm 2 to form an adhesion layer.
  • the coating resin composition was applied onto the adhesion layer using a spin coater so as to have a film thickness of 15 ⁇ m, and then irradiated with ultraviolet rays at 8400 mJ / cm 2 using a high-pressure mercury lamp to obtain a laminate. It was.
  • Example 2 the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
  • Top coat layer 2 Adhesion layer 3: Polycarbonate substrate

Abstract

Provided are: a coating resin composition that can impart wear resistance close to glass using light curing, which can cure in a shorter time period than thermal curing, and can be applied to a wet process without using a dry process such as in a vacuum chamber; and a laminate body. The silica-containing coating resin composition contains: a radical polymerizable compound (A) having a hydroxyl group and a (meth)acrylic group and is represented by general formula (1) (where R is an organic functional group having a (meth)acryloyl group, X is hydrogen or an organic functional group having a (meth)acryloyl group, and n is an integer that is 0 or 1); a photoinitiator; and silica microparticles (B) having an average particle size of 1-100 nm. For every total of 100 parts by weight of the radical polymerizable compound (A) and the silica microparticles (B), the silica microparticles (B) are contained in the range of 60-85 parts by weight. The laminate body is provided with a hard coating layer formed using the silica-containing coating resin composition.

Description

シリカ含有コーティング用樹脂組成物及び積層体Silica-containing coating resin composition and laminate
  本発明は、シリカ含有コーティング用樹脂組成物、及び積層体に関し、透明熱可塑性樹脂成形品の表面にハードコート層を形成するのに適した樹脂組成物、及びその積層体であって、詳しくは、硬化後の透明性を確保しつつ、無機ガラスと同等の耐磨耗性を満たすことができるコーティング用樹脂組成物及びその積層体に関する。 The present invention relates to a silica-containing coating resin composition and a laminate, and is a resin composition suitable for forming a hard coat layer on the surface of a transparent thermoplastic resin molded article, and a laminate thereof, The present invention relates to a coating resin composition and a laminate thereof that can satisfy the abrasion resistance equivalent to that of inorganic glass while ensuring transparency after curing.
  近年、自動車の燃費向上と二酸化炭素排出削減の為、車体の軽量化が求められており、その手法の一つとして適応が進みつつあるのが、自動車窓ガラスの樹脂化である。従来、ポリカーボネート等の熱可塑性樹脂の成形品は、ガラスに比べて軽量であるため、これらの代替材料として広く使用されている。しかし、ポリカーボネート(PC)はガラスよりも表面硬度が低く傷が付きやすいことから、それを防ぐために表面にハードコートを施す手法、硬化性フィルムを貼り合わせる手法などにより表面の保護が行われている。 Recently, in order to improve the fuel efficiency of automobiles and reduce carbon dioxide emissions, weight reduction of vehicle bodies has been demanded, and one of the methods that is being applied is the use of resin for automobile window glass. Conventionally, a molded article of a thermoplastic resin such as polycarbonate is lighter than glass, and thus is widely used as an alternative material. However, since polycarbonate (PC) has a lower surface hardness than glass and is easily scratched, the surface is protected by a method of applying a hard coat to the surface or a method of attaching a curable film to prevent it. .
  樹脂ガラスにおける耐磨耗性の規格は、テーバー磨耗試験前後のヘイズ変化が2%以下(ANSI  Z  26.1)と無機ガラス同等の高い耐磨耗性が要求されている。これを満たす代表的な方法として、PC表面にプラズマCVDでSiO薄膜を形成する方法や、熱硬化性シリコーン樹脂を塗布・硬化する方法が提案されている。しかしながら、前者の方法は、耐テーバー磨耗性が2%程度と耐磨耗性に優れるが、真空チャンバー等のドライプロセスを必要とすることからプロセスコストが高いという欠点がある。これに対し後者の方法は、ウェットプロセスで成膜可能な為プロセスコストは低いが、硬化に高温でかつ長時間を要する為生産性に乏しく、また耐テーバー磨耗性も十分満足できるものではない。 The standard of abrasion resistance in plastic glass requires a high wear resistance equivalent to that of inorganic glass, with a haze change of 2% or less (ANSI Z 26.1) before and after the Taber abrasion test. As typical methods satisfying this, a method of forming a SiO thin film on a PC surface by plasma CVD, and a method of applying and curing a thermosetting silicone resin have been proposed. However, the former method is excellent in abrasion resistance with a Taber abrasion resistance of about 2%, but has a drawback that the process cost is high because a dry process such as a vacuum chamber is required. On the other hand, the latter method is low in process cost because it can be formed by a wet process, but it requires a high temperature and a long time for curing, so that the productivity is poor and the Taber abrasion resistance is not sufficiently satisfactory.
  上述の課題を解決すべく、短時間で硬化が可能であり、かつ無機成分であるため耐磨耗性に優れた光硬化性コーティング用組成物について各種のものが提案され、実施されている。 In order to solve the above-described problems, various types of photo-curable coating compositions that can be cured in a short time and are excellent in abrasion resistance because of being an inorganic component have been proposed and implemented.
  例えば、特許文献1では、紫外線吸収剤が添加された光硬化性シリカ含有アクリル樹脂からなるコーティング用樹脂組成物と、この組成物をポリカーボネート成形品へ被覆した積層体が開示されている。この積層体は、耐テーバー磨耗試験前後のヘイズ変化が4.2%と耐磨耗性に優れるが、耐磨耗性を担保するシリカの平均粒径の最適化がなされておらず、また樹脂組成物中のシリカ含有量が50重量部と、高配合には至っていない。 For example, Patent Document 1 discloses a coating resin composition comprising a photocurable silica-containing acrylic resin to which an ultraviolet absorber is added, and a laminate in which this composition is coated on a polycarbonate molded product. This laminate has excellent wear resistance with 4.2% haze change before and after the Taber abrasion test, but the average particle size of silica that guarantees wear resistance has not been optimized, and the resin The silica content in the composition is 50 parts by weight, which is not high.
  また、特許文献2では、(メタ)アクリル基を有するラダー型ポリシルセスキオキサンとアクリル樹脂からなるコーティング用樹脂組成物と、この組成物をポリカーボネート成形品へ被服した積層体が開示されている。この積層体は、光硬化の際の硬化収縮が少なく、密着層を介することなくPCへの直接塗布が可能であるものの、その耐磨耗性は満足できるものではない。 Patent Document 2 discloses a coating resin composition comprising a ladder-type polysilsesquioxane having a (meth) acryl group and an acrylic resin, and a laminate in which this composition is coated on a polycarbonate molded article. . Although this laminated body has little curing shrinkage at the time of photocuring and can be directly applied to a PC without using an adhesion layer, its wear resistance is not satisfactory.
特開昭57-131214号公報JP 57-13214 A 特開平4-33936号公報Japanese Patent Laid-Open No. 4-33936
  本発明の目的は、真空チャンバー等のドライプロセスを使用しないウェットプロセス適応可能であり、かつ熱硬化と比較して短時間で硬化可能である光硬化を用いて、ポリカーボネート成形品などに対してガラスに近い透明性と耐磨耗性を有するハードコート層を形成することができる樹脂組成物を提供することにある。 An object of the present invention is to apply a wet process that does not use a dry process such as a vacuum chamber, and to use a photocuring that can be cured in a short period of time compared to a thermal curing, and a glass for a polycarbonate molded article or the like. An object of the present invention is to provide a resin composition capable of forming a hard coat layer having transparency and abrasion resistance close to those of the above.
  本発明者らは、上記課題を達成するために検討を重ねた結果、(メタ)アクリル基と水酸基とを有するラジカル重合性化合物に、特定の平均粒径を有するシリカ微粒子を高配合することで、透明性とガラスに近い耐磨耗性をポリカーボネート等の透明熱可塑性樹脂へ付与可能な樹脂組成物が得られることを見出した。さらに、その組成物を光硬化せしめてなるトップコート層を、ラジカル重合性(メタ)アクリレートを光硬化せしめてなる密着層を介してポリカーボネート等の透明熱可塑性樹脂成形品の表面に形成することで、ガラスに近い透明性と耐磨耗性を有する積層体が得られることを見出し、本発明を完成した。 As a result of repeated studies to achieve the above-mentioned problems, the inventors have highly blended silica fine particles having a specific average particle diameter with a radical polymerizable compound having a (meth) acryl group and a hydroxyl group. The present inventors have found that a resin composition capable of imparting transparency and abrasion resistance close to glass to a transparent thermoplastic resin such as polycarbonate can be obtained. Furthermore, by forming a top coat layer obtained by photocuring the composition on the surface of a transparent thermoplastic resin molded article such as polycarbonate via an adhesion layer obtained by photocuring radically polymerizable (meth) acrylate. The present inventors have found that a laminate having transparency close to glass and wear resistance can be obtained.
  すなわち、本発明は、下記一般式(1)
  
Figure JPOXMLDOC01-appb-I000002
 
(但し、Rは(メタ)アクリロイル基を有する有機官能基であり、Xは水素又は(メタ)アクリロイル基を有する有機官能基、nは0または1の整数である)で表されて、(メタ)アクリル基と水酸基とを有するラジカル重合性化合物(A)、光重合開始剤、及び平均粒径1~100nmのシリカ微粒子(B)を含み、前記ラジカル重合性化合物(A)とシリカ微粒子(B)の合計100重量部において、シリカ微粒子(B)を60~85重量部の範囲で含有することを特徴とするシリカ含有コーティング用樹脂組成物である。
That is, the present invention provides the following general formula (1)

Figure JPOXMLDOC01-appb-I000002

Where R is an organic functional group having a (meth) acryloyl group, X is an organic functional group having hydrogen or a (meth) acryloyl group, and n is an integer of 0 or 1. ) A radically polymerizable compound (A) having an acrylic group and a hydroxyl group, a photopolymerization initiator, and silica fine particles (B) having an average particle diameter of 1 to 100 nm, the radical polymerizable compound (A) and the silica fine particles (B The silica-containing coating resin composition is characterized in that the silica fine particles (B) are contained in the range of 60 to 85 parts by weight in a total of 100 parts by weight.
  また、本発明は、上記シリカ含有コーティング用樹脂組成物を光硬化せしめてなるトップコート層(I)と、ラジカル重合性(メタ)アクリレート及び光重合開始剤を含む光硬化性樹脂組成物を光硬化せしめてなる密着層(II)との二層からなるハードコート層を熱可塑性樹脂成形品の少なくとも一方の面に設けた積層体であって、シリカ含有コーティング用樹脂組成物及び光硬化性樹脂組成物をそれぞれ塗布し、光硬化させてハードコート層を形成したことを特徴とする積層体である。 The present invention also provides a photocurable resin composition comprising a topcoat layer (I) obtained by photocuring the above silica-containing coating resin composition, a radically polymerizable (meth) acrylate, and a photopolymerization initiator. A laminate in which a hard coat layer comprising two layers of an adhesive layer (II) to be cured is provided on at least one surface of a thermoplastic resin molded product, comprising a silica-containing coating resin composition and a photocurable resin Each of the compositions is coated and photocured to form a hard coat layer.
  本発明における(メタ)アクリル基と水酸基を有するラジカル重合性化合物(A)は、上記一般式(1)で表される。一般式(1)でRは(メタ)アクリロイル基を有する有機官能基であり、Xは水素又は(メタ)アクリロイル基を有する有機官能基である。nは0又は1の整数である。透明性の良好な積層体を得るためには、水酸基を含む不飽和化合物であることが重要である。これは、水酸基がシリカ微粒子の表面に存在するシラノール基に作用してシリカ微粒子の凝集を抑え、樹脂中におけるシリカ微粒子の分散性を高めるからと考えられる。一方、水酸基を有さないラジカル重合性化合物では、シリカ微粒子を多量に配合すると、凝集により樹脂中に均一に分散されず透明性が悪化してしまう場合がある。 The radically polymerizable compound (A) having a (meth) acryl group and a hydroxyl group in the present invention is represented by the general formula (1). In the general formula (1), R is an organic functional group having a (meth) acryloyl group, and X is an organic functional group having hydrogen or a (meth) acryloyl group. n is an integer of 0 or 1. In order to obtain a laminate with good transparency, it is important that the unsaturated compound contains a hydroxyl group. This is presumably because the hydroxyl group acts on the silanol groups present on the surface of the silica fine particles to suppress the aggregation of the silica fine particles and enhance the dispersibility of the silica fine particles in the resin. On the other hand, in a radically polymerizable compound having no hydroxyl group, when a large amount of silica fine particles are blended, the dispersion may not be uniformly dispersed in the resin due to agglomeration, and transparency may be deteriorated.
  一般式(1)の具体的な化合物としては、ペンタエリスリトールトリアクリレート、グリセリンジメタクリレート、グリセロールアクリレートメタクリレート等を例示することが出来る。これらの化合物は分子中に水酸基を有するため、例えばコロイダルシリカに代表されるシリカ微粒子の表面に存在する水酸基と相互作用することが可能であり、樹脂組成物中のコロイダルシリカを制御することが樹脂中への均一な多量の配合を可能にする。また、これらラジカル重合性化合物は単独で使用してもよく、二種類以上を混合して使用してもよい。 具体 Specific examples of the general formula (1) include pentaerythritol triacrylate, glycerin dimethacrylate, glycerol acrylate methacrylate, and the like. Since these compounds have a hydroxyl group in the molecule, for example, they can interact with the hydroxyl groups present on the surface of silica fine particles typified by colloidal silica, and it is possible to control the colloidal silica in the resin composition. Enables a large amount of uniform mixing in. These radically polymerizable compounds may be used alone or in combination of two or more.
  本発明におけるシリカ微粒子(B)は、ケイ素酸化物であれば特に限定されるものではないが、樹脂への分散性の観点から有機溶媒に分散されたコロイド状シリカ(コロイダルシリカ)であることが好ましい。さらに、上記シリカ微粒子(B)は、(メタ)アクリル基を有するシランカップリング剤にて表面処理されていることがより好ましい。シリカ微粒子の表面処理方法は特に限定されるものではなく、予め(メタ)アクリル基を有するシランカップリング剤で表面処理されている市販品を用いてもよく、表面処理が未処理のシリカ微粒子を用いる場合は、公知の手法によりシランカップリング剤による表面処理を行って用いてもよい。 The silica fine particle (B) in the present invention is not particularly limited as long as it is a silicon oxide, but it may be colloidal silica (colloidal silica) dispersed in an organic solvent from the viewpoint of dispersibility in the resin. preferable. Furthermore, the silica fine particles (B) are more preferably surface-treated with a silane coupling agent having a (meth) acryl group. The surface treatment method of the silica fine particles is not particularly limited, and a commercially available product that has been surface-treated with a silane coupling agent having a (meth) acryl group in advance may be used. When used, the surface treatment with a silane coupling agent may be performed by a known method.
  シリカ微粒子(B)は、前記ラジカル重合性化合物(A)とシリカ微粒子(B)の合計100重量部において60~85重量部の範囲で配合され、好ましくは75~85重量部の範囲で配合されているのがよい。シリカ微粒子(B)の配合量が60重量部未満であると耐磨耗性が十分に発現できず、反対に85重量部を超えると、透明性が低下するおそれがある。 The silica fine particles (B) are blended in the range of 60 to 85 parts by weight, preferably in the range of 75 to 85 parts by weight, in a total of 100 parts by weight of the radical polymerizable compound (A) and the silica fine particles (B). It is good to have. If the blending amount of the silica fine particles (B) is less than 60 parts by weight, the abrasion resistance cannot be sufficiently exhibited. On the other hand, if it exceeds 85 parts by weight, the transparency may be lowered.
  シリカ微粒子(B)の平均粒径は、シリカ含有コーティング用樹脂組成物(C)の透明性を担保するため、1~100nmであることが好ましい。さらに、平均粒径が1~100nmの範囲内であれば粒径の異なるシリカ微粒子を複数種組み合わせて用いることができる。なお、シリカ微粒子の平均粒径は動的光散乱法によって測定した数平均粒子径を表す。 The average particle diameter of the silica fine particles (B) is preferably 1 to 100 nm in order to ensure the transparency of the silica-containing coating resin composition (C). Furthermore, if the average particle size is in the range of 1 to 100 nm, a plurality of silica fine particles having different particle sizes can be used in combination. The average particle diameter of the silica fine particles represents the number average particle diameter measured by a dynamic light scattering method.
  また、本発明における積層体を得るにあたって、シリカ含有コーティング用樹脂組成物(C)、及び光硬化性樹脂組成物(D)は、塗布と光硬化を組成物毎に行うような2コート2ベーク塗装は勿論のこと、プロセスコストの点においてより優位である2コート1ベーク塗装(2つの組成物を塗布した後にまとめて光硬化)も適応可能である。2コート1ベーク塗装は、プロセスコストの点に加え、トップコート層(I)と密着層(II)の界面で樹脂の混和が起こることから、層間密着性の向上も期待できる。しかしながら、2コート1ベーク塗装において、平均粒径15nm以下のようなより細かなシリカ微粒子のみを含有するシリカ含有コーティング用樹脂組成物(C)を用いると、トップコート層(I)と密着層(II)の樹脂の混和により、シリカ微粒子の密着層(II)側への流出が起こるため、耐磨耗性が低下する。このシリカ微粒子の流出は、光硬化性樹脂組成物(D)に用いられるラジカル重合性(メタ)アクリレートと平均粒径15nm以下のシリカ微粒子とが相溶し易いことによって起こる。この流出を防ぐ為、2コート1ベーク塗装を用いる場合は、光硬化性樹脂組成物(D)に用いられるラジカル重合性(メタ)アクリレートと相溶し難い平均粒径16~100nmのシリカ微粒子を用いることがより好ましく、より好ましくは平均粒径30~100nmのシリカ微粒子を用いるのがよい。但し、平均粒径1~100nmの範囲で粒径の異なるシリカ微粒子を複数種組み合わせて用いる場合、平均粒径16~100nmのシリカ微粒子がシリカ含有コーティング用樹脂組成物(C)中のシリカ微粒子(B)100重量部に対して50重量部以上含まれていれば、15nm以下のシリカ微粒子が一部混在していても構わない。 Moreover, in obtaining the laminated body in this invention, the silica-containing coating resin composition (C) and the photocurable resin composition (D) are applied in two coats and two baked so that coating and photocuring are performed for each composition. In addition to coating, two-coat one-bake coating (photocuring together after applying two compositions), which is more advantageous in terms of process cost, can also be applied. In the 2-coat 1-bake coating, in addition to the process cost, resin mixing occurs at the interface between the topcoat layer (I) and the adhesion layer (II), so that improvement in interlayer adhesion can be expected. However, when the silica-containing coating resin composition (C) containing only finer silica particles having an average particle size of 15 nm or less is used in 2-coat 1-bake coating, the topcoat layer (I) and the adhesion layer ( As the resin of II) is mixed, the silica fine particles flow out to the adhesion layer (II) side, and wear resistance is reduced. The outflow of the silica fine particles occurs because the radical polymerizable (meth) acrylate used in the photocurable resin composition (D) and the silica fine particles having an average particle size of 15 nm or less are easily compatible. In order to prevent this outflow, in the case of using 2-coat 1-bake coating, silica fine particles having an average particle diameter of 16 to 100 nm, which is difficult to be compatible with the radical polymerizable (meth) acrylate used in the photocurable resin composition (D), are used. More preferably, silica fine particles having an average particle diameter of 30 to 100 nm are preferably used. However, when a plurality of silica fine particles having an average particle diameter in the range of 1 to 100 nm are used in combination, the silica fine particles having an average particle diameter of 16 to 100 nm are contained in the silica-containing coating resin composition (C) ( B) If 50 parts by weight or more is contained with respect to 100 parts by weight, a part of silica fine particles of 15 nm or less may be mixed.
  シリカ含有コーティング用樹脂組成物(C)に含有される光重合開始剤は、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等を例示することができる。これら光重合開始剤は単独でも、二種類以上を混合して使用してもよい。また、光硬化反応を促進するため等の目的で、光重合開始剤と組み合わせて効果を発揮する光開始助剤や鋭感剤を併用することもできる。 As the photopolymerization initiator contained in the silica-containing coating resin composition (C), compounds such as acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based compounds can be suitably used. Specifically, trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do. These photopolymerization initiators may be used alone or in combination of two or more. Further, for the purpose of accelerating the photocuring reaction, a photoinitiator assistant or a sharpening agent that exhibits an effect in combination with a photopolymerization initiator can be used in combination.
  シリカ含有コーティング用樹脂組成物(C)の光重合開始剤の添加量は、(メタ)アクリル基と水酸基を有するラジカル重合性化合物(A)とシリカ微粒子(B)の合計100重量に対して、0.1~10重量部の範囲とすることがよく、好ましくは0.5~10重量部の範囲であるのがよい。この添加量が0.1重量部に満たないと硬化が不十分となり、得られる積層体の強度、剛性が低くなり、一方、10重量部を超えると積層体の着色等の問題が生じるおそれがある。 The addition amount of the photopolymerization initiator of the silica-containing coating resin composition (C) is based on a total of 100 weights of the radical polymerizable compound (A) having a (meth) acrylic group and a hydroxyl group and the silica fine particles (B). The range is 0.1 to 10 parts by weight, and preferably 0.5 to 10 parts by weight. If this addition amount is less than 0.1 parts by weight, curing will be insufficient, and the strength and rigidity of the resulting laminate will be low, while if it exceeds 10 parts by weight, problems such as coloring of the laminate may occur. is there.
  また、本発明のシリカ含有コーティング用樹脂組成物(C)は、下記一般式(3)で表される籠型シルセスキオキサン樹脂をさらに含有してもよい。
      [RSiO3/2      (3)
(式中、Rは(メタ)アクリロイル基又は下記式(4)を示し、nは8、10、12又は14を示す)
  
Figure JPOXMLDOC01-appb-I000003
 
(式中、R1は水素原子又はメチル基を示し、mは1~3の整数を示す)
The silica-containing coating resin composition (C) of the present invention may further contain a cage silsesquioxane resin represented by the following general formula (3).
[RSiO 3/2 ] n (3)
(In the formula, R represents a (meth) acryloyl group or the following formula (4), and n represents 8, 10, 12 or 14).

Figure JPOXMLDOC01-appb-I000003

(Wherein R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3)
  前記籠型シルセスキオキサン樹脂は、下記一般式(5)
      RSiX        (5)
(式中、Rは(メタ)アクリロイル基又は下記一般式(4)を示し、Xはアルコキシ基、又はアセトキシ基から選ばれる加水分解基を示す)
  
Figure JPOXMLDOC01-appb-I000004
 
(式中、R1は水素原子又はメチル基を示し、mは1~3の整数を示す)で表わされるケイ素化合物を有機極性溶媒及び塩基性触媒存在下で加水分解反応させると共に一部縮合させ、得られた加水分解生成物を更に非極性溶媒及び塩基性触媒存在下で再縮合させることにより得ることができる。
The cage silsesquioxane resin has the following general formula (5)
RSix 3 (5)
(In the formula, R represents a (meth) acryloyl group or the following general formula (4), and X represents a hydrolysis group selected from an alkoxy group or an acetoxy group)

Figure JPOXMLDOC01-appb-I000004

(Wherein R 1 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 3) is hydrolyzed and partially condensed in the presence of an organic polar solvent and a basic catalyst. The obtained hydrolysis product can be obtained by recondensing in the presence of a nonpolar solvent and a basic catalyst.
  このような籠型シルセスキオキサン樹脂は、樹脂中のケイ素原子全てに(メタ)アクリロイル基を有する有機官能基からなる反応性官能基を有し、且つ、分子量分布及び分子構造の制御された籠型シルセスキオキサン樹脂であることが好ましい。また、このような籠型シルセスキオキサン樹脂の分子構造は、完全に閉じた多面体でなくてもよく、例えば、一部が開裂したような構造であってもよい。また、このような籠型シルセスキオキサン樹脂の平均分子量も特に限定されず、このような籠型シルセスキオキサン樹脂がオリゴマーであってもよい。この籠型シルセスキオキサンを、本発明のシリカ含有コーティング用樹脂組成物(C)に添加することにより、耐テーバー磨耗性に加え、表面硬度の評価方法の一つである鉛筆硬度を向上させる効果が得られる。このような籠型シルセスキオキサン樹脂は、(メタ)アクリル基と水酸基とを有するラジカル重合性化合物(C)の100重量部に対して1~100重量部の範囲で含有させることができる。含有量が1重量部より少ないと鉛筆硬度向上の効果が得られず、含有量が100重量部を超えるとこれ以上の効果の向上が見られないうえ、(メタ)アクリル基と水酸基とを有するラジカル重合性化合物(C)の有する水酸基の効果を低減させるので好ましくない。 Such a cage silsesquioxane resin has a reactive functional group composed of an organic functional group having a (meth) acryloyl group on all silicon atoms in the resin, and has a controlled molecular weight distribution and molecular structure. A cage silsesquioxane resin is preferred. Further, the molecular structure of such a cage silsesquioxane resin may not be a completely closed polyhedron, and may be a structure in which a part is cleaved, for example. Moreover, the average molecular weight of such cage-type silsesquioxane resin is not particularly limited, and such cage-type silsesquioxane resin may be an oligomer. By adding this cage silsesquioxane to the silica-containing coating resin composition (C) of the present invention, in addition to the Taber abrasion resistance, the pencil hardness, which is one of the methods for evaluating the surface hardness, is improved. An effect is obtained. Such a cage silsesquioxane resin can be contained in an amount of 1 to 100 parts by weight with respect to 100 parts by weight of the radical polymerizable compound (C) having a (meth) acryl group and a hydroxyl group. If the content is less than 1 part by weight, the effect of improving the pencil hardness cannot be obtained, and if the content exceeds 100 parts by weight, no further improvement of the effect can be seen, and it has a (meth) acryl group and a hydroxyl group. Since the effect of the hydroxyl group which a radically polymerizable compound (C) has is reduced, it is not preferable.
  シリカ含有コーティング用樹脂組成物(C)には、本発明の目的から外れない範囲で各種添加剤を添加することができる。各種添加剤として、溶剤、有機/無機フィラー、酸化防止剤、光安定剤、紫外線吸収剤、レベリング剤、帯電防止剤、着色剤、架橋剤、分散助剤、樹脂成分等を例示することができる。 Various additives can be added to the silica-containing coating resin composition (C) without departing from the object of the present invention. Examples of various additives include solvents, organic / inorganic fillers, antioxidants, light stabilizers, ultraviolet absorbers, leveling agents, antistatic agents, colorants, crosslinking agents, dispersion aids, resin components, and the like. .
  このうち溶剤は、シリカ含有コーティング用樹脂組成物(C)を塗布する際の粘度を調整する目的で使用できる。具体例としては、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトン等のケトン類等が挙げられる。 Among these, the solvent can be used for the purpose of adjusting the viscosity when the silica-containing coating resin composition (C) is applied. Specific examples include alcohols such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol and n-butyl alcohol, and ketones such as methyl ethyl ketone and methyl isobutyl ketone.
  前記光硬化性樹脂組成物(D)に用いられるラジカル重合性(メタ)アクリレートは、多官能アクリレートが好ましく、中でも二官能アクリレート、アクリレートオリゴマーが好ましい。二官能以上の多官能アクリレートは光硬化時の体積収縮が大きいため、密着性が低下する恐れがある。二官能アクリレートの具体例としては、1,9-ノナンジオールジアクリレート、テトラエチレングリコールジメタクリレート、ジシクロペンタニルジメチロールジ(メタ)アクリレート等がある。このラジカル重合性(メタ)アクリレートは単独でも、二種類以上を混合して使用しても、これらのオリゴマー体を用いてもよい。中でもジシクロペンタニルジメチロールジ(メタ)アクリレートは、ポリカーボネート樹脂の表面を適度に侵食するため、密着性が向上する。これに加え、光硬化物の線膨張係数が70ppm/Kと、一般的なポリカーボネート樹脂の線膨張係数(60~80ppm/K)と近い値を示すため、耐熱性が向上することから好適である。一方、ポリカーボネートへの侵食性が高いテトラエチレングリコールジメタクリレートなどのアクリレートを用いる場合は、透明性の低下を防ぐ目的で、他のアクリレートまたはアクリレートオリゴマーと混合して用いることが好ましい。 ラ ジ カ ル The radically polymerizable (meth) acrylate used in the photocurable resin composition (D) is preferably a polyfunctional acrylate, and more preferably a bifunctional acrylate or an acrylate oligomer. Since the bifunctional or higher polyfunctional acrylate has a large volume shrinkage at the time of photocuring, the adhesion may be lowered. Specific examples of the bifunctional acrylate include 1,9-nonanediol diacrylate, tetraethylene glycol dimethacrylate, dicyclopentanyl dimethylol di (meth) acrylate and the like. These radically polymerizable (meth) acrylates may be used singly or as a mixture of two or more kinds, or these oligomers may be used. Among them, dicyclopentanyl dimethylol di (meth) acrylate moderately erodes the surface of the polycarbonate resin, so that adhesion is improved. In addition, since the linear expansion coefficient of the photocured product is 70 ppm / K, which is close to the linear expansion coefficient (60 to 80 ppm / K) of a general polycarbonate resin, it is preferable because the heat resistance is improved. . On the other hand, when an acrylate such as tetraethylene glycol dimethacrylate having high erodibility to polycarbonate is used, it is preferably mixed with other acrylates or acrylate oligomers for the purpose of preventing a decrease in transparency.
  光硬化性樹脂組成物(D)に含有される光重合開始剤は、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサンソン系、アシルホスフィンオキサイド系等の化合物を好適に使用することができる。具体的には、トリクロロアセトフェノン、ジエトキシアセトフェノン、1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン、ベンゾインメチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、チオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、メチルフェニルグリオキシレート、カンファーキノン、ベンジル、アンスラキノン、ミヒラーケトン等を例示することができる。これら光重合開始剤は単独でも、二種類以上を混合して使用してもよい。また、光硬化反応を促進するためなどの目的で、光重合開始剤と組み合わせて効果を発揮する光開始助剤や増感剤を併用することもできる。 As the photopolymerization initiator contained in the fluorescent curable resin composition (D), compounds such as acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and acylphosphine oxide-based compounds can be preferably used. Specifically, trichloroacetophenone, diethoxyacetophenone, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2 -Morpholinopropan-1-one, benzoin methyl ether, benzyldimethyl ketal, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, camphorquinone, benzyl, anthraquinone, Michler's ketone, etc. can do. These photopolymerization initiators may be used alone or in combination of two or more. In addition, for the purpose of accelerating the photocuring reaction, a photoinitiator assistant or a sensitizer that exhibits an effect in combination with a photopolymerization initiator can be used in combination.
  光硬化性樹脂組成物(D)には、本発明の目的から外れない範囲で各種添加剤を添加することができる。各種添加剤として、溶剤、有機/無機フィラー、酸化防止剤、光安定剤、紫外線吸収剤、熱線吸収剤、レベリング剤、着色剤等を例示することができる。 Various additives can be added to the fluorescent curable resin composition (D) without departing from the object of the present invention. Examples of various additives include solvents, organic / inorganic fillers, antioxidants, light stabilizers, ultraviolet absorbers, heat ray absorbers, leveling agents, colorants, and the like.
  このうち溶剤は、光硬化性樹脂組成物(D)を塗布する際の粘度を調整する目的で使用できる。具体例としては、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、メチルエチルケトン、メチルイソブチルケトン等のケトン類等を用いることができる。 Among these, the solvent can be used for the purpose of adjusting the viscosity when the photocurable resin composition (D) is applied. Specific examples include using alcohols such as ethyl alcohol, n-propyl alcohol, isopropyl alcohol and n-butyl alcohol, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and the like. it can.
  シリカ含有コーティング用樹脂組成物(C)及び光硬化性樹脂組成物(D)を透明熱可塑性樹脂成形品上へ塗布する方法としては、特に限定されないが、キャスト(流延)法、スピンコート法、スプレーコート法、ディップコート法、フローコート法等が挙げられる。また、シリカ含有コーティング用樹脂組成物(C)及び光硬化性樹脂組成物(D)に溶剤が含まれた場合の乾燥のための加熱条件は、特に限定されないが、それぞれ40~140℃で3分間~1時間であることが好ましい。また、シリカ含有コーティング用樹脂組成物(C)は、光硬化性樹脂組成物(D)をポリカーボネート等の熱可塑性樹脂成形品上に塗布した後、光硬化を施した後に塗布(2コート2ベーク塗装)しても、光硬化を施さずに塗布(2コート1ベーク塗装)しても構わないが、トップコート層(I)と密着層(II)の層間密着性向上の為、後者の方法が好ましい。 The method for applying the silica-containing coating resin composition (C) and the photocurable resin composition (D) onto the transparent thermoplastic resin molded product is not particularly limited, but includes a cast method and a spin coat method. , Spray coating method, dip coating method, flow coating method and the like. In addition, the heating conditions for drying when the solvent is contained in the silica-containing coating resin composition (C) and the photocurable resin composition (D) are not particularly limited. It is preferable that the time is from minute to one hour. In addition, the silica-containing coating resin composition (C) is applied after the photocurable resin composition (D) is applied onto a thermoplastic resin molded article such as polycarbonate and then photocured (2 coats 2 bake). Coating) or coating without photocuring (2 coats and 1 bake coating), but the latter method is used to improve the interlayer adhesion between the topcoat layer (I) and the adhesion layer (II). Is preferred.
  シリカ含有コーティング用樹脂組成物(C)及び光硬化性樹脂組成物(D)を光硬化せしめる方法として、波長10~400nmの紫外線や波長400~700nmの可視光線を照射することで、トップコート層(I)及び密着層(II)よりなるハードコート層を形成することができる。用いる光の波長は特に制限されるものではないが、特に波長200~400nmの近紫外線が好適に用いられる。紫外線発生源として用いられるランプとしては、低圧水銀ランプ(出力:0.4~4W/cm)、高圧水銀ランプ(40~160W/cm)、超高圧水銀ランプ(173~435W/cm)、メタルハライドランプ(80~160W/cm)、パルスキセノンランプ(80~120W/cm)、無電極放電ランプ(80~120W/cm)等を例示することができる。これらの紫外線ランプは、各々その分光分布に特徴があるため、使用する光重合開始剤の種類に応じて選定される。 As a method of photocuring the silica-containing coating resin composition (C) and the photocurable resin composition (D), the topcoat layer is irradiated by irradiating ultraviolet rays having a wavelength of 10 to 400 nm or visible rays having a wavelength of 400 to 700 nm. A hard coat layer comprising (I) and the adhesion layer (II) can be formed. The wavelength of light to be used is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is particularly preferably used. As a lamp used as an ultraviolet ray generation source, a low-pressure mercury lamp (output: 0.4 to 4 W / cm), a high-pressure mercury lamp (40 to 160 W / cm), an ultra-high pressure mercury lamp (173 to 435 W / cm), a metal halide lamp (80 to 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like. Each of these ultraviolet lamps is characterized by its spectral distribution, and is therefore selected according to the type of photopolymerization initiator used.
  本発明に用いる透明熱可塑性樹脂成形品はポリカーボネートからなるものが好ましい。この成形品の形状は特に限定されず、平板でもよいし、曲面形状でもよい。また、本発明の目的から外れない範囲で各種添加剤を含有していてもよい。具体例としては、着色剤、有機/無機フィラー、酸化防止剤、光安定剤、紫外線吸収剤、熱線吸収剤等が挙げられる。なお、透明熱可塑性樹脂成形品として、ポリカーボネート以外にも、例えばポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)からなるものなどを用いるようにしてもよい。 透明 The transparent thermoplastic resin molded product used in the present invention is preferably made of polycarbonate. The shape of the molded product is not particularly limited, and may be a flat plate or a curved surface. Moreover, you may contain various additives in the range which does not deviate from the objective of this invention. Specific examples include colorants, organic / inorganic fillers, antioxidants, light stabilizers, ultraviolet absorbers, heat ray absorbers, and the like. In addition to polycarbonate, for example, a product made of polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), cycloolefin polymer (COP), or cycloolefin copolymer (COC) may be used as the transparent thermoplastic resin molded product. May be.
  本発明の透明熱可塑性樹脂成形品の厚みは、1000~5000μmであることが好ましい。これは、1000μmより薄いと強度的に不利であり、5000μmを超えると透明性が低下することがあるためで、強度あるいは透明性が問われない場合はこの範囲外であってもかまわない。 厚 み The thickness of the transparent thermoplastic resin molded article of the present invention is preferably 1000 to 5000 μm. This is because it is disadvantageous in terms of strength if it is thinner than 1000 μm, and transparency may be lowered if it exceeds 5000 μm. If strength or transparency is not questioned, it may be outside this range.
  本発明の積層体は、前記シリカ含有コーティング用樹脂組成物(C)を光硬化せしめてなるトップコート層(I)と、透明熱可塑性樹脂であるポリカーボネート等の透明熱可塑性樹脂成形品との間に、ラジカル重合性(メタ)アクリレートと光重合開始剤からなる光硬化性樹脂組成物(D)を光硬化せしめてなる密着層(II)を有し、また、その厚みはトップコート層(I)の厚みが5~100μm、密着層(II)の厚みが1~100μmであることが好ましい。トップコート層(I)の厚みがこの範囲より小さいと目的の耐磨耗性が発現せず、この範囲より大きいと硬化収縮によって成形体が変形する恐れがある。また、密着層(II)の厚みがこの範囲より小さいと密着層としての密着力が担保できず、この範囲より大きいと耐摩耗性の低下を招くことがある。 The laminate of the present invention is formed between the topcoat layer (I) obtained by photocuring the silica-containing coating resin composition (C) and a transparent thermoplastic resin molded product such as polycarbonate which is a transparent thermoplastic resin. The adhesive layer (II) obtained by photocuring a photocurable resin composition (D) comprising a radically polymerizable (meth) acrylate and a photopolymerization initiator, and having a thickness of the topcoat layer (I). ) Is preferably 5 to 100 μm, and the thickness of the adhesion layer (II) is preferably 1 to 100 μm. If the thickness of the topcoat layer (I) is smaller than this range, the intended wear resistance will not be exhibited, and if it is larger than this range, the molded product may be deformed by curing shrinkage. Further, if the thickness of the adhesion layer (II) is smaller than this range, the adhesion force as the adhesion layer cannot be ensured, and if it is larger than this range, wear resistance may be lowered.
  本発明のシリカ含有コーティング用樹脂組成物は、(メタ)アクリル基と水酸基を有するラジカル重合性化合物に、平均粒径1~100nmのシリカ微粒子を高配合することで、ポリカーボネート等の透明熱可塑性樹脂の透明性を損なうことなく耐磨耗性を付与することが可能である。また、このシリカ含有コーティング樹脂組成物を光硬化せしめてなるトップコート層を、ラジカル重合性(メタ)アクリレートを光硬化せしめてなる密着層を介してポリカーボネート等透明熱可塑性樹脂成形品の表面に塗布し、光硬化せしめることで、ガラスに近い透明性と耐磨耗性を有する積層体を提供することができる。 The silica-containing coating resin composition of the present invention comprises a transparent thermoplastic resin such as polycarbonate by highly blending silica fine particles having an average particle diameter of 1 to 100 nm with a radical polymerizable compound having a (meth) acryl group and a hydroxyl group. It is possible to impart abrasion resistance without impairing the transparency of the film. Also, a top coat layer obtained by photocuring the silica-containing coating resin composition is applied to the surface of a transparent thermoplastic resin molded product such as polycarbonate via an adhesion layer obtained by photocuring radically polymerizable (meth) acrylate. And by making it photocure, the laminated body which has transparency and abrasion resistance close | similar to glass can be provided.
図1は、実施例1で得られた積層体の断面図である。1 is a cross-sectional view of the laminate obtained in Example 1. FIG.
  以下、実施例を示しながら、本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。尚、各例における耐テーバー磨耗性、初期全光線透過率、及び鉛筆硬度の評価は、以下に示した方法で実施した。また、メタクリル基を有する籠型シルセスキオキサン樹脂は、下記合成例1によって製造した。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples. In addition, evaluation of the Taber abrasion resistance, initial total light transmittance, and pencil hardness in each example was implemented by the method shown below. A cage silsesquioxane resin having a methacryl group was produced according to Synthesis Example 1 below.
(テーバー磨耗試験)
  磨耗輪(テーバー社製CS-10F)を用いて、60±2rpm、500g荷重、1000回転の条件で実施した。そして、試験前後のヘイズ(Haze)変化(ΔH)により評価した。なお、ヘイズ測定はJIS K 7105に準じたヘイズメーターにて測定した。
(Taber abrasion test)
Using a wear wheel (Taber CS-10F), the test was carried out under the conditions of 60 ± 2 rpm, 500 g load, and 1000 rpm. And it evaluated by the haze change ((DELTA) H) before and behind a test. The haze measurement was performed with a haze meter according to JIS K 7105.
(初期全光線透過率)
  JIS  K  7361に準じた全光線透過率をヘイズメーターにて測定した。
(Initial total light transmittance)
The total light transmittance according to JIS K 7361 was measured with a haze meter.
(鉛筆硬度試験)
 JIS K5600-5-4 引っかき硬度(鉛筆法)に準拠して行った。
(Pencil hardness test)
This was performed in accordance with JIS K5600-5-4 scratch hardness (pencil method).
(合成例1)
  撹拌機、滴下ロート、温度計を備えた反応容器に、溶媒として2-プロパノール(IPA)40mlと塩基性触媒として5%テトラメチルアンモニウムヒドロキシド水溶液(TMAH水溶液)を装入した。滴下ロートにIPA 15mlと3-メタクリロキシプロピルトリメトキシシラン(東レ・ダウコーニング・シリコーン株式会社製SZ-6030)12.69gを入れ、反応容器を撹拌しながら、室温で3-メタクリロキシプロピルトリメトキシシランのIPA溶液を30分かけて滴下した。3-メタクリロキシプロピルトリメトキシシラン滴下終了後、加熱することなく2時間撹拌した。2時間撹拌後溶媒を減圧下で溶媒を除去し、トルエン50mlで溶解した。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで加水分解生成物(シルセスキオキサン)を8.6g得た。このシルセスキオキサンは種々の有機溶剤に可溶な無色の粘性液体であった。
(Synthesis Example 1)
A reaction vessel equipped with a stirrer, a dropping funnel and a thermometer was charged with 40 ml of 2-propanol (IPA) as a solvent and 5% tetramethylammonium hydroxide aqueous solution (TMAH aqueous solution) as a basic catalyst. Into the dropping funnel, 15 ml of IPA and 12.69 g of 3-methacryloxypropyltrimethoxysilane (SZ-6030 manufactured by Toray Dow Corning Silicone Co., Ltd.) were added, and 3-methacryloxypropyltrimethoxy was stirred at room temperature while stirring the reaction vessel. The IPA solution of silane was added dropwise over 30 minutes. After completion of dropwise addition of 3-methacryloxypropyltrimethoxysilane, the mixture was stirred for 2 hours without heating. After stirring for 2 hours, the solvent was removed under reduced pressure and dissolved in 50 ml of toluene. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. 8.6 g of hydrolysis product (silsesquioxane) was obtained by filtering off anhydrous magnesium sulfate and concentrating. This silsesquioxane was a colorless viscous liquid soluble in various organic solvents.
  次に、撹拌機、ディンスターク、冷却管を備えた反応容器に上記で得られたシルセスキオキサン20.65gとトルエン82mlと10%TMAH水溶液3.0gを入れ、徐々に加熱し水を留去した。更に130℃まで加熱しトルエンを還流温度で再縮合反応を行った。このときの反応溶液の温度は108℃であった。トルエン還流後2時間撹拌した後、反応を終了とした。反応溶液を飽和食塩水で中性になるまで水洗した後、無水硫酸マグネシウムで脱水した。無水硫酸マグネシウムをろ別し、濃縮することで目的物である籠型シルセスキオキサン(混合物)を18.77g得た。得られた籠型シルセスキオキサンは種々の有機溶剤に可溶な無色の粘性液体であった。 Next, 20.65 g of the silsesquioxane obtained above, 82 ml of toluene, and 3.0 g of 10% TMAH aqueous solution were placed in a reaction vessel equipped with a stirrer, a Dinsterk, and a cooling tube, and the water was gradually heated to maintain the water. Left. Further, the mixture was heated to 130 ° C., and toluene was recondensed at the reflux temperature. The temperature of the reaction solution at this time was 108 ° C. After stirring for 2 hours after refluxing toluene, the reaction was terminated. The reaction solution was washed with saturated brine until neutral, and then dehydrated with anhydrous magnesium sulfate. Anhydrous magnesium sulfate was filtered off and concentrated to obtain 18.77 g of a target siliceous silsesquioxane (mixture). The obtained cage-type silsesquioxane was a colorless viscous liquid soluble in various organic solvents.
  再縮合反応後の反応物の液体クロマトグラフィー分離後の質量分析を行ったところ下記構造式(i)、(ii)及び(iii)の分子構造にアンモニウムイオンが付いた分子イオンが確認され、構成比率はT8:T10:T12及びその他が約2:4:1:3であり、籠型構造を主たる成分とするシリコーン樹脂であることが確認できる。なお、T8、T10、T12は、式(i)、(ii)及び(iii)の順に対応する(Rは式(4)(但し、R1=メチル基、m=3である)に示したとおりである)。
  
Figure JPOXMLDOC01-appb-I000005
 
Mass spectrometry after separation by liquid chromatography of the reaction product after the recondensation reaction confirmed that molecular ions with ammonium ions were confirmed in the molecular structures of the following structural formulas (i), (ii) and (iii). The ratios of T8: T10: T12 and others are about 2: 4: 1: 3, and it can be confirmed that this is a silicone resin mainly composed of a saddle type structure. T8, T10, and T12 correspond to the order of formulas (i), (ii), and (iii) (R is represented by formula (4) (where R 1 = methyl group, m = 3). Yes).

Figure JPOXMLDOC01-appb-I000005
〔実施例1〕
  反応容器に、ペンタエリスリトールトリアクリレート20重量部、上記合成例1で得られたメタクリル基を有する籠型シルセスキオキサン樹脂5重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)(日産化学社製MEK-AC-4101)75重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.7重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
[Example 1]
In a reaction vessel, 20 parts by weight of pentaerythritol triacrylate, 5 parts by weight of a cage-type silsesquioxane resin having a methacryl group obtained in Synthesis Example 1 above, a colloidal surface modified with a silane coupling agent having a methacryl group 75 parts by weight of silica fine particles (average particle diameter 40 nm) (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 0.7 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator After stirring and stirring, the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  次に、テトラエチレングリコールジメタクリレート25重量部、及びジシクロペンタニルジメチロールジアクリレート75重量部に、光重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of tetraethylene glycol dimethacrylate and 75 parts by weight of dicyclopentanyl dimethylol diacrylate were used as a photopolymerization initiator, 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) 2.5. A part by weight was added and mixed to obtain a photocurable resin composition.
  前記光硬化性樹脂組成物を、厚み3mm、100×100mm角のポリカーボネート平板(カーボグラスポリッシュクリア:旭硝子株式会社製)の表面に膜厚50μmになるようにスピンコーターを用いて塗布した。次いで、前記シリカ含有コーティング用樹脂組成物を膜厚15μmになるようにスピンコーターを用いて塗布した後、高圧水銀ランプを用いて紫外線を8400mJ/cm照射し、図1に示すようなトップコート層(I)、密着層(II)及びポリカーボネート基板よりなる積層体を得た。 The photocurable resin composition was applied to the surface of a polycarbonate flat plate (Carbo Glass Polish Clear: manufactured by Asahi Glass Co., Ltd.) having a thickness of 3 mm and a square of 100 × 100 mm using a spin coater. Next, the silica-containing coating resin composition was applied using a spin coater so as to have a film thickness of 15 μm, and then irradiated with ultraviolet light at 8400 mJ / cm 2 using a high-pressure mercury lamp to form a top coat as shown in FIG. A laminate comprising the layer (I), the adhesion layer (II) and the polycarbonate substrate was obtained.
〔実施例2〕
  反応容器に、ペンタエリスリトールトリアクリレート15重量部、グリセリンジメタクリレート10重量部、上記合成例1で得られたメタクリル基を有する籠型シルセスキオキサン10重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)(日産化学社製MEK-AC-4101)65重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.9重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
[Example 2]
In a reaction vessel, 15 parts by weight of pentaerythritol triacrylate, 10 parts by weight of glycerin dimethacrylate, 10 parts by weight of a cage silsesquioxane obtained in Synthesis Example 1 above, and a silane coupling agent having a methacrylic group 65 parts by weight of surface-modified colloidal silica fine particles (average particle diameter 40 nm) (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator After 0.9 part by weight was added and stirred, the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  次に、1,9-ノナンジオールジアクリレート25重量部、及びテトラエチレングリコールジメタクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of 1,9-nonanediol diacrylate and 75 parts by weight of tetraethylene glycol dimethacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator Parts were added and mixed to obtain a photocurable resin composition.
  次いで、実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, after applying each of the silica-containing coating resin composition and the photocurable resin composition in the same manner as in Example 1, photocuring was performed to obtain a laminate.
〔実施例3〕
  反応容器に、ペンタエリスリトールトリアクリレート10重量部、グリセリンジメタクリレート12重量部、上記合成例1で得られたメタクリル基を有する籠型シルセスキオキサン樹脂3重量部、平均粒子径が15nmのメタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(日産化学社製MEK-AC-2101)30重量部、平均粒子径が40nmのメタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(日産化学社製MEK-AC-4101)45重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.7重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
Example 3
In a reaction vessel, 10 parts by weight of pentaerythritol triacrylate, 12 parts by weight of glycerin dimethacrylate, 3 parts by weight of a cage silsesquioxane resin having a methacryl group obtained in Synthesis Example 1 above, and a methacryl group having an average particle diameter of 15 nm Colloidal silica fine particles (MEK-AC-2101 manufactured by Nissan Chemical Co., Ltd.) whose surface is modified with a silane coupling agent having a silane coupling agent and whose surface is modified with a silane coupling agent having a methacryl group having an average particle diameter of 40 nm 45 parts by weight of fine silica particles (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 0.7 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan Co., Ltd .: Irgacure 184) as a photopolymerization initiator were added and stirred. Remove the volatile solvent under reduced pressure To obtain a coating resin composition.
  次に、テトラエチレングリコールジメタクリレート25重量部、及びジシクロペンタニルジメチロールジアクリレート75重量部に、光重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of tetraethylene glycol dimethacrylate and 75 parts by weight of dicyclopentanyl dimethylol diacrylate are mixed with 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator, and mixed. A curable resin composition was obtained.
  次いで、実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, after applying each of the silica-containing coating resin composition and the photocurable resin composition in the same manner as in Example 1, photocuring was performed to obtain a laminate.
〔実施例4〕
  反応容器に、ペンタエリスリトールトリアクリレート5重量部、グリセリンジメタクリレート10重量部、平均粒子径が15nmのメタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子25.5重量部(日産化学社製MEK-AC-2101)、平均粒子径が40nmのメタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(日産化学社製MEK-AC-4101)8.5重量部、平均粒子径が100nmのメタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(日産化学社製MEK-AC-5101)51重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.5重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
Example 4
55.5 parts by weight of pentaerythritol triacrylate, 10 parts by weight of glycerin dimethacrylate, 25.5 parts by weight of colloidal silica fine particles surface-modified with a silane coupling agent having a methacryl group having an average particle diameter of 15 nm (Nissan Chemical) MEK-AC-2101), colloidal silica fine particles surface-modified with a silane coupling agent having a methacryl group having an average particle size of 40 nm (MEK-AC-4101, Nissan Chemical Co., Ltd.), 8.5 parts by weight, average 51 parts by weight of colloidal silica fine particles (MEK-AC-5101 manufactured by Nissan Chemical Co., Ltd.) surface-modified with a silane coupling agent having a methacryl group having a particle diameter of 100 nm, and 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan KK made: Irgacure1 4) Place the 0.5 parts by weight, after stirring, the volatiles removed solvent component under reduced pressure to obtain a silica-containing resin composition for coating.
  次に、1,9-ノナンジオールジアクリレート50重量部、及びテトラエチレングリコールジメタクリレート50重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 50 parts by weight of 1,9-nonanediol diacrylate and 50 parts by weight of tetraethylene glycol dimethacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator Parts were added and mixed to obtain a photocurable resin composition.
  次いで、実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, after applying each of the silica-containing coating resin composition and the photocurable resin composition in the same manner as in Example 1, photocuring was performed to obtain a laminate.
〔実施例5〕
  反応容器に、ペンタエリスリトールトリアクリレート5重量部、グリセリンジメタクリレート20重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)(日産化学社製MEK-AC-4101)75重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.7重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
Example 5
In a reaction vessel, 5 parts by weight of pentaerythritol triacrylate, 20 parts by weight of glycerin dimethacrylate, colloidal silica fine particles (average particle size 40 nm) surface-modified with a silane coupling agent having a methacryl group (MEK-AC manufactured by Nissan Chemical Co., Ltd.) -4101) and 75 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator, and after stirring, the volatile solvent was removed under reduced pressure. A silica-containing coating resin composition was obtained.
  次に、テトラエチレングリコールジメタクリレート25重量部、ジシクロペンタニルジメチロールジアクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部、及びビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASFジャパン株式会社製:Irgacure819)0.3重量部、紫外線吸収剤として2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物(BASFジャパン株式会社製:Tinuvin 405)1重量部、光安定剤としてビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物(BASFジャパン株式会社製:Tinuvin 292)1重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of tetraethylene glycol dimethacrylate, 75 parts by weight of dicyclopentanyldimethylol diacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator And 0.3 part by weight of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF Japan Ltd .: Irgacure 819), 2- (2,4-dihydroxyphenyl) -4, 1 part by weight of a reaction product of 6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester (manufactured by BASF Japan Ltd .: Tinuvin 405), light stable Bis (1,2,2,6 as an agent 1 part by weight of a mixture of 6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (BASF Japan Ltd .: Tinuvin 292) was mixed and mixed. A curable resin composition was obtained.
  次いで、実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, after applying each of the silica-containing coating resin composition and the photocurable resin composition in the same manner as in Example 1, photocuring was performed to obtain a laminate.
〔実施例6〕
 反応容器に、ペンタエリスリトールトリアクリレート25重量部メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)75重量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.7重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
Example 6
In a reaction vessel, 25 parts by weight of pentaerythritol triacrylate, 75 parts by weight of colloidal silica fine particles (average particle size 40 nm) surface-modified with a silane coupling agent having a methacryl group, 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan Co., Ltd. product: Irgacure 184) 0.7 part by weight was added and stirred, and then the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
 次に、テトラエチレングリコールジメタクリレート25重量部、ジシクロペンタニルジメチロールジアクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of tetraethylene glycol dimethacrylate, 75 parts by weight of dicyclopentanyldimethylol diacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator And mixed to obtain a photocurable resin composition.
 次いで実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, in the same manner as in Example 1, the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
〔実施例7〕
 反応容器に、グリセリンジメタクリレート25重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)75重量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.7重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
Example 7
In a reaction vessel, 25 parts by weight of glycerin dimethacrylate, 75 parts by weight of colloidal silica fine particles (average particle size 40 nm) surface-modified with a silane coupling agent having a methacryl group, 1-hydroxycyclohexyl phenyl ketone (photopolymerization initiator) BASF Japan Co., Ltd. product: Irgacure 184) 0.7 part by weight was added and stirred, and then the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
 次に、テトラエチレングリコールジメタクリレート35重量部、1,9-ノナンジオールジアクリレート65重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASFジャパン株式会社製:Irgacure819)3重量部、紫外線吸収剤として2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物(BASFジャパン株式会社製:Tinuvin 405)5重量部、光安定剤としてビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物(BASFジャパン株式会社製:Tinuvin 292)1重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 35 parts by weight of tetraethylene glycol dimethacrylate and 65 parts by weight of 1,9-nonanediol diacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan, Inc .: Irgacure 184) as a photopolymerization initiator , And 3 parts by weight of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (BASF Japan KK: Irgacure 819), 2- (2,4-dihydroxyphenyl) -4,6- As a light stabilizer, 5 parts by weight of a reaction product of bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester (manufactured by BASF Japan Ltd .: Tinuvin 405) Screw (1, 2, 2, 6, 6-pen 1 part by weight of a mixture of methyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (manufactured by BASF Japan Ltd .: Tinuvin 292) is mixed and photocured. A resin composition was obtained.
 次いで実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, in the same manner as in Example 1, the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
〔実施例8〕
 反応容器に、グリセリンジメタクリレート20重量部、上記合成例1で得られたメタクリル基を有する籠型シルセスキオキサン樹脂5重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)75重量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.7重量部、紫外線吸収剤として2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物(BASFジャパン株式会社製:Tinuvin 405)5重量部、光安定剤としてデカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル、1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物(BASFジャパン株式会社製:Tinuvin 123)1重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
Example 8
Colloidal silica surface-modified with 20 parts by weight of glycerin dimethacrylate, 5 parts by weight of a caged silsesquioxane resin having a methacrylic group obtained in Synthesis Example 1, and a silane coupling agent having a methacrylic group. 75 parts by weight of fine particles (average particle size 40 nm), 0.7 part by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator, 2- (2,4-dihydroxyphenyl) as an ultraviolet absorber ) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine and (2-ethylhexyl) -glycidic acid ester reaction product (BASF Japan KK: Tinuvin 405) 5 weight Bis (2,2,6,6-tetramethyl decanedioate as a light stabilizer 1- (Octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl hydroperoxide and octane reaction product (BASF Japan KK: Tinuvin 123) 1 part by weight was added and stirred, then under reduced pressure The volatile solvent content was removed with a silica-containing coating resin composition.
 次に、ジシクロペンタニルジメチロールジアクリレート70重量部、1,9-ノナンジオールジアクリレート30重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASFジャパン株式会社製:Irgacure819)3重量部、紫外線吸収剤としてベンゼンプロパン酸、3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ、C7-9側鎖及び直鎖アルキルエステル(BASFジャパン株式会社製:Tinuvin 384-2)5重量部、光安定剤としてビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物(BASFジャパン株式会社製:Tinuvin 292)1重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 70 parts by weight of dicyclopentanyldimethylol diacrylate, 30 parts by weight of 1,9-nonanediol diacrylate, 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator (manufactured by BASF Japan Ltd .: Irgacure 184) 5 parts by weight and 3 parts by weight of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF Japan Ltd .: Irgacure 819), benzenepropanoic acid as a UV absorber, 3- (2H-benzotriazole- 2-yl) -5- (1,1-dimethylethyl) -4-hydroxy, C7-9 side chain and linear alkyl ester (manufactured by BASF Japan Ltd .: Tinuvin 384-2), 5 parts by weight, as light stabilizer Bis (1,2,2,6,6-pentameth (Lu-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (BASF Japan Co., Ltd .: Tinuvin® 292) 1 part by weight, mixed and photocured A resin composition was obtained.
 次いで実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, in the same manner as in Example 1, the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
〔比較例1〕
  反応容器に、ジシクロペンタニルジメチロールジアクリレート20重量部、上記合成例1で得られたメタクリル基を有する籠型シルセスキオキサン樹脂5重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)(日産化学社製MEK-AC-4101)75重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.7重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
[Comparative Example 1]
Surface modification with 20 parts by weight of dicyclopentanyldimethylol diacrylate, 5 parts by weight of a silsesquioxane resin having a methacrylic group obtained in Synthesis Example 1 above, and a silane coupling agent having a methacrylic group. 75 parts by weight of colloidal silica fine particles (average particle diameter: 40 nm) (MEK-AC-4101 manufactured by Nissan Chemical Co., Ltd.) and 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator After adding 7 parts by weight and stirring, the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  次に、1,9-ノナンジオールジアクリレート25重量部、テトラエチレングリコールジメタクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of 1,9-nonanediol diacrylate, 75 parts by weight of tetraethylene glycol dimethacrylate, and 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan, Inc .: Irgacure 184) as a photopolymerization initiator. And mixed to obtain a photocurable resin composition.
  次いで、実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, after applying each of the silica-containing coating resin composition and the photocurable resin composition in the same manner as in Example 1, photocuring was performed to obtain a laminate.
〔比較例2〕
  反応容器に、ジシクロペンタニルジメチロールジアクリレート30重量部、上記合成例1で得られたメタクリル基を有する籠型シルセスキオキサン樹脂5重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子15nm)(日産化学社製MEK-AC-2101)65重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)0.9重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
[Comparative Example 2]
Surface modification with 30 parts by weight of dicyclopentanyldimethylol diacrylate, 5 parts by weight of a silsesquioxane resin having a methacrylic group obtained in Synthesis Example 1 above, and a silane coupling agent having a methacrylic group. 65 parts by weight of colloidal silica fine particles (average particle 15 nm) (MEK-AC-2101 manufactured by Nissan Chemical Co., Ltd.) and 1-hydroxycyclohexyl phenyl ketone (BASF Japan KK: Irgacure 184) 0.9 as a photopolymerization initiator After adding a part by weight and stirring, the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  次に、1,9-ノナンジオールジアクリレート25重量部、及びテトラエチレングリコールジメタクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of 1,9-nonanediol diacrylate and 75 parts by weight of tetraethylene glycol dimethacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator Parts were added and mixed to obtain a photocurable resin composition.
  次いで実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Then, after applying the silica-containing coating resin composition and the photocurable resin composition in the same manner as in Example 1, photocuring was performed to obtain a laminate.
〔比較例3〕
  反応容器に、ペンタエリスリトールトリアクリレート35重量部、グリセリンジメタクリレート20重量部、上記合成例1で得られたメタクリル基を有する籠型リシルセスキオキサン12.5重量部、メタクリル基を有するシランカップリング剤で表面修飾されたコロイド状シリカ微粒子(平均粒子径40nm)(日産化学社製MEK-AC-4101)32.5重量部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)1.6重量部を入れ、攪拌した後、減圧下で揮発溶媒分を除去し、シリカ含有コーティング用樹脂組成物を得た。
[Comparative Example 3]
In a reaction vessel, 35 parts by weight of pentaerythritol triacrylate, 20 parts by weight of glycerin dimethacrylate, 12.5 parts by weight of lysyl sesquioxane having a methacryl group obtained in Synthesis Example 1 above, and a silane coupling having a methacryl group 32.5 parts by weight of colloidal silica fine particles (average particle diameter 40 nm) (Nissan Chemical Co., Ltd. MEK-AC-4101) and 1-hydroxycyclohexyl phenyl ketone (BASF Japan K.K.) as a photopolymerization initiator Manufactured: Irgacure 184) 1.6 parts by weight was added and stirred, and then the volatile solvent was removed under reduced pressure to obtain a silica-containing coating resin composition.
  次に、テトラエチレングリコールジメタクリレート25重量部、及びジシクロペンタニルジメチロールジアクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of tetraethylene glycol dimethacrylate and 75 parts by weight of dicyclopentanyldimethylol diacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator Parts were added and mixed to obtain a photocurable resin composition.
  次いで、実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, after applying each of the silica-containing coating resin composition and the photocurable resin composition in the same manner as in Example 1, photocuring was performed to obtain a laminate.
〔比較例4〕
  ペンタエリスリトールトリアクリレート100重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、攪拌した後、コーティング用樹脂組成物を得た。
[Comparative Example 4]
To 100 parts by weight of pentaerythritol triacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator was added and stirred to obtain a coating resin composition.
  次に、テトラエチレングリコールジメタクリレート25重量部、及びジシクロペンタニルジメチロールジアクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 25 parts by weight of tetraethylene glycol dimethacrylate and 75 parts by weight of dicyclopentanyldimethylol diacrylate, 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator Parts were added and mixed to obtain a photocurable resin composition.
  次いで、前記光硬化性樹脂組成物を、厚み3mmのポリカーボネート平板(カーボグラスポリッシュ:旭硝子株式会社製)の表面に膜厚50μmになるようにスピンコーターを用いて塗布し、高圧水銀ランプを用いて紫外線を2800mJ/cm2照射し、密着層を形成した。次いで、前記密着層上に、前記コーティング用樹脂組成物を膜厚15μmになるようにスピンコーターを用いて塗布した後、高圧水銀ランプを用いて紫外線を8400mJ/cm2照射し、積層体を得た。 Next, the photocurable resin composition is applied to the surface of a 3 mm thick polycarbonate flat plate (Carbo Glass Polish: manufactured by Asahi Glass Co., Ltd.) using a spin coater so as to have a film thickness of 50 μm, and using a high pressure mercury lamp. Ultraviolet rays were irradiated at 2800 mJ / cm 2 to form an adhesion layer. Next, the coating resin composition was applied onto the adhesion layer using a spin coater so as to have a film thickness of 15 μm, and then irradiated with ultraviolet rays at 8400 mJ / cm 2 using a high-pressure mercury lamp to obtain a laminate. It was.
〔比較例5〕
 グリセリンジメタクリレート75重量部、メタクリル基を有する籠型リシルセスキオキサン25重量部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、コーティング用樹脂組成物を得た。
[Comparative Example 5]
Add 75 parts by weight of glycerin dimethacrylate, 25 parts by weight of lysyl sesquioxane having a methacrylic group, and 2.5 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator. Thus, a coating resin composition was obtained.
 次に、1,9-ノナンジオールジアクリレート65重量部25重量部、ジシクロペンタニルジメチロールジアクリレート75重量部に、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製:Irgacure184)2.5重量部を入れ、混合し、光硬化性樹脂組成物を得た。 Next, 65 parts by weight of 1,9-nonanediol diacrylate, 25 parts by weight of dicyclopentanyldimethylol diacrylate, 75 parts by weight of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF Japan Ltd .: Irgacure 184) as a photopolymerization initiator. ) 2.5 parts by weight were added and mixed to obtain a photocurable resin composition.
 次いで実施例1と同様にシリカ含有コーティング用樹脂組成物および光硬化性樹脂組成物をそれぞれ塗布した後、光硬化を施し、積層体を得た。 Next, in the same manner as in Example 1, the silica-containing coating resin composition and the photocurable resin composition were applied, respectively, and then photocured to obtain a laminate.
  上記実施例1~8及び比較例1~5で得られた積層体について、初期全光線透過率及びテーバー磨耗試験前の初期ヘイズと、テーバー磨耗試験後の耐テーバー磨耗性を試験前後のヘイズ変化(ΔH)で評価した。得られた結果を表1に示す。 For the laminates obtained in Examples 1 to 8 and Comparative Examples 1 to 5, the initial total light transmittance, the initial haze before the Taber abrasion test, and the Taber abrasion resistance after the Taber abrasion test were changed. Evaluation was performed by (ΔH). The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
1:トップコート層
2:密着層
3:ポリカーボネート基板
1: Top coat layer 2: Adhesion layer 3: Polycarbonate substrate

Claims (7)

  1.   下記一般式(1)
    Figure JPOXMLDOC01-appb-I000001
     
    (但し、Rは(メタ)アクリロイル基を有する有機官能基であり、Xは水素又は(メタ)アクリロイル基を有する有機官能基、nは0または1の整数である)で表されて、(メタ)アクリル基と水酸基とを有するラジカル重合性化合物(A)、光重合開始剤、及び平均粒径1~100nmのシリカ微粒子(B)を含み、前記ラジカル重合性化合物(A)とシリカ微粒子(B)の合計100重量部において、シリカ微粒子(B)を60~85重量部の範囲で含有することを特徴とするシリカ含有コーティング用樹脂組成物。
    The following general formula (1)
    Figure JPOXMLDOC01-appb-I000001

    Where R is an organic functional group having a (meth) acryloyl group, X is an organic functional group having hydrogen or a (meth) acryloyl group, and n is an integer of 0 or 1. ) A radically polymerizable compound (A) having an acrylic group and a hydroxyl group, a photopolymerization initiator, and silica fine particles (B) having an average particle diameter of 1 to 100 nm, the radical polymerizable compound (A) and the silica fine particles (B ) In a total amount of 100 parts by weight of silica fine particles (B) in the range of 60 to 85 parts by weight.
  2.   シリカ微粒子(B)がケイ素酸化物かつコロイダルシリカであり、さらに(メタ)アクリル基を有するシランカップリング剤にて表面処理されていることを特徴とする請求項1に記載のシリカ含有コーティング用樹脂組成物。 The silica-containing coating resin according to claim 1, wherein the silica fine particles (B) are silicon oxide and colloidal silica, and are further surface-treated with a silane coupling agent having a (meth) acryl group. Composition.
  3.   シリカ微粒子(B)が平均粒径16~100nmのシリカ微粒子を全シリカ微粒子100重量部に対して50重量部以上含有することを特徴とする請求項1又は2に記載のシリカ含有コーティング用樹脂組成物。 The silica-containing coating resin composition according to claim 1 or 2, wherein the silica fine particles (B) contain 50 parts by weight or more of silica fine particles having an average particle diameter of 16 to 100 nm with respect to 100 parts by weight of all silica fine particles. object.
  4.   請求項1に記載のシリカ含有コーティング用樹脂組成物を光硬化せしめてなるトップコート層(I)と、ラジカル重合性(メタ)アクリレート及び光重合開始剤を含む光硬化性樹脂組成物を光硬化せしめてなる密着層(II)との二層からなるハードコート層を熱可塑性樹脂成形品の少なくとも一方の面に設けた積層体であって、シリカ含有コーティング用樹脂組成物及び光硬化性樹脂組成物をそれぞれ塗布し、光硬化させてハードコート層を形成したことを特徴とする積層体。 A photocurable resin composition comprising a topcoat layer (I) obtained by photocuring the silica-containing coating resin composition according to claim 1, a radical polymerizable (meth) acrylate, and a photopolymerization initiator is photocured. A laminate in which a hard coat layer consisting of two layers with a caulking adhesive layer (II) is provided on at least one surface of a thermoplastic resin molded product, comprising a silica-containing coating resin composition and a photocurable resin composition A laminate having a hard coat layer formed by coating and photocuring each product.
  5.   透明熱可塑性樹脂成形品がポリカーボネートからなることを特徴とする請求項4に記載の積層体。 The laminate according to claim 4, wherein the transparent thermoplastic resin molded article is made of polycarbonate.
  6.   前記光硬化性樹脂組成物に含まれるラジカル重合性(メタ)アクリレートが多官能(メタ)アクリレートであることを特徴とする請求項4又は5に記載の積層体。 The laminate according to claim 4 or 5, wherein the radically polymerizable (meth) acrylate contained in the photocurable resin composition is a polyfunctional (meth) acrylate.
  7.   トップコート層(I)の厚みが5~100μm、密着層(II)の厚みが1~100μm、積層体の総厚みが1000~5000μmの範囲であることを特徴とする請求項4乃至6のいずれかに記載の積層体。 7. The thickness of the top coat layer (I) is 5 to 100 μm, the thickness of the adhesion layer (II) is 1 to 100 μm, and the total thickness of the laminate is 1000 to 5000 μm. The laminated body of crab.
PCT/JP2013/057842 2012-03-30 2013-03-19 Silica-containing coating resin composition and laminate body WO2013146477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-081293 2012-03-30
JP2012081293 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146477A1 true WO2013146477A1 (en) 2013-10-03

Family

ID=49259734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057842 WO2013146477A1 (en) 2012-03-30 2013-03-19 Silica-containing coating resin composition and laminate body

Country Status (3)

Country Link
JP (1) JPWO2013146477A1 (en)
TW (1) TW201400563A (en)
WO (1) WO2013146477A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103015A (en) * 2014-11-14 2016-06-02 新日鉄住金化学株式会社 Photosensitive resin composition for forming insulation film and/or protective film of touch panel, and cured film and touch panel using the same
JP2016101639A (en) * 2014-11-28 2016-06-02 住友ベークライト株式会社 Window member
JP2018058944A (en) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Ultraviolet-curable silicone resin composition and article using the same
JP2020526652A (en) * 2017-09-15 2020-08-31 エルジー・ケム・リミテッド Hard coat film
US10954409B2 (en) 2017-09-15 2021-03-23 Lg Chem, Ltd. Hard coating film
CN114015100A (en) * 2021-11-09 2022-02-08 江西淼通材料有限公司 HDPE-FH high-density polyethylene composite reinforced structure carat pipe and production method thereof
JP7054753B1 (en) 2021-06-28 2022-04-14 アイカ工業株式会社 Hardcourt resin composition
CN116144243A (en) * 2022-12-13 2023-05-23 国网安徽省电力有限公司超高压分公司 Photo-curing heat-resistant epoxy resin coating for current transformer and preparation method and application thereof
US11866608B2 (en) 2018-11-21 2024-01-09 Daicel Corporation Weather-resistant hard coat composition for metal, cured product, and coated metal substrate
US11898057B2 (en) 2018-11-21 2024-02-13 Daicel Corporation Weather-resistant hard coat composition for glass-substitute substrate, cured product, and laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302943A (en) * 2000-04-20 2001-10-31 Jsr Corp Reactive particle, curable composition containing the same, and cured item obtained therefrom
JP2005205341A (en) * 2004-01-23 2005-08-04 Toyo Ink Mfg Co Ltd Coated material for vehicle and method of manufacturing the same, coating apparatus for coated material for vehicle and curing apparatus for coated material for vehicle
JP2007283293A (en) * 2006-03-24 2007-11-01 Fujifilm Corp Method for manufacturing laminated body, laminated body, polarizing plate and image displaying device
JP2009229598A (en) * 2008-03-19 2009-10-08 Dainippon Printing Co Ltd Anti-reflection stack
WO2012026245A1 (en) * 2010-08-25 2012-03-01 コニカミノルタオプト株式会社 Hard-coat film, polarizing plate, and liquid-crystal display device
WO2012105297A1 (en) * 2011-01-31 2012-08-09 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Process for producing functional colloidal silica solution, ultraviolet-curable resin composition for hard coats using same, and cured product thereof
JP2012173627A (en) * 2011-02-23 2012-09-10 Konica Minolta Advanced Layers Inc Hard coat film, polarizing plate, and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302943A (en) * 2000-04-20 2001-10-31 Jsr Corp Reactive particle, curable composition containing the same, and cured item obtained therefrom
JP2005205341A (en) * 2004-01-23 2005-08-04 Toyo Ink Mfg Co Ltd Coated material for vehicle and method of manufacturing the same, coating apparatus for coated material for vehicle and curing apparatus for coated material for vehicle
JP2007283293A (en) * 2006-03-24 2007-11-01 Fujifilm Corp Method for manufacturing laminated body, laminated body, polarizing plate and image displaying device
JP2009229598A (en) * 2008-03-19 2009-10-08 Dainippon Printing Co Ltd Anti-reflection stack
WO2012026245A1 (en) * 2010-08-25 2012-03-01 コニカミノルタオプト株式会社 Hard-coat film, polarizing plate, and liquid-crystal display device
WO2012105297A1 (en) * 2011-01-31 2012-08-09 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Process for producing functional colloidal silica solution, ultraviolet-curable resin composition for hard coats using same, and cured product thereof
JP2012173627A (en) * 2011-02-23 2012-09-10 Konica Minolta Advanced Layers Inc Hard coat film, polarizing plate, and display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103015A (en) * 2014-11-14 2016-06-02 新日鉄住金化学株式会社 Photosensitive resin composition for forming insulation film and/or protective film of touch panel, and cured film and touch panel using the same
JP2016101639A (en) * 2014-11-28 2016-06-02 住友ベークライト株式会社 Window member
JP2018058944A (en) * 2016-10-03 2018-04-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Ultraviolet-curable silicone resin composition and article using the same
JP2020526652A (en) * 2017-09-15 2020-08-31 エルジー・ケム・リミテッド Hard coat film
US10954409B2 (en) 2017-09-15 2021-03-23 Lg Chem, Ltd. Hard coating film
US11866608B2 (en) 2018-11-21 2024-01-09 Daicel Corporation Weather-resistant hard coat composition for metal, cured product, and coated metal substrate
US11898057B2 (en) 2018-11-21 2024-02-13 Daicel Corporation Weather-resistant hard coat composition for glass-substitute substrate, cured product, and laminate
JP7054753B1 (en) 2021-06-28 2022-04-14 アイカ工業株式会社 Hardcourt resin composition
JP2023007298A (en) * 2021-06-28 2023-01-18 アイカ工業株式会社 Hard coat resin composition
CN114015100A (en) * 2021-11-09 2022-02-08 江西淼通材料有限公司 HDPE-FH high-density polyethylene composite reinforced structure carat pipe and production method thereof
CN114015100B (en) * 2021-11-09 2022-12-02 江西淼通材料有限公司 HDPE-FH high density polyethylene composite reinforced structure carat pipe and production method thereof
CN116144243A (en) * 2022-12-13 2023-05-23 国网安徽省电力有限公司超高压分公司 Photo-curing heat-resistant epoxy resin coating for current transformer and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2013146477A1 (en) 2015-12-10
TW201400563A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2013146477A1 (en) Silica-containing coating resin composition and laminate body
JP5000303B2 (en) Silica-containing silicone resin composition and molded article thereof
JP6090048B2 (en) Transparent laminate and method for producing the same
JP5655992B2 (en) Transparent laminate and method for producing the same
CN110072514B (en) Photocurable resin composition for nail or artificial nail
JP4558643B2 (en) Silicone resin composition and molded body thereof
JPH06100797A (en) Radiation-curble hard coating composition
JP4951337B2 (en) Active energy ray-curable coating composition and protective film forming method
WO2009028741A1 (en) Photocurable resin composition
JPH01315403A (en) Composition containing uv curable unsaturated monomer and/or oligomer, photopolymerization initiator, organosilane compound and colloidal silica, coating agent composed of said
JP5722210B2 (en) Ultraviolet shielding laminated coating, substrate with laminated coating, and method for producing the same
KR20050118276A (en) Acryloxy-functional silicone composition curable by high-energy radiation
JP2007016191A (en) Coating composition, method for forming protective film, and laminated material
WO2010073445A1 (en) Active energy ray-curable composition, active energy ray-curable coating material, and molded product
CN100478363C (en) Curable composition containing surface-modified particles
JP2014148114A (en) Method for manufacturing resin laminate
JP4480408B2 (en) Coating composition for silver plating and method for producing the same
JPWO2008126902A1 (en) Composition, protective film forming method, laminate and production method thereof
JP4759780B2 (en) Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
KR20130091593A (en) Hybrid resin comprising acryl monomer and silica microparticle having good transparency and, uv curing composition using the same
JP5245190B2 (en) Liquid curable composition and cured film
JP5104788B2 (en) Laminated body
JP6703828B2 (en) Photocurable antiglare resin composition
JP2011088942A (en) Active energy ray-curable composition and cured product of the same
JP4942356B2 (en) Active energy ray-curable composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769475

Country of ref document: EP

Kind code of ref document: A1