WO2013146023A1 - Laminate inspection method, laminate inspection device and laminate manufacturing apparatus - Google Patents

Laminate inspection method, laminate inspection device and laminate manufacturing apparatus Download PDF

Info

Publication number
WO2013146023A1
WO2013146023A1 PCT/JP2013/055038 JP2013055038W WO2013146023A1 WO 2013146023 A1 WO2013146023 A1 WO 2013146023A1 JP 2013055038 W JP2013055038 W JP 2013055038W WO 2013146023 A1 WO2013146023 A1 WO 2013146023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laminate
light intensity
reinforcing plate
shadow
Prior art date
Application number
PCT/JP2013/055038
Other languages
French (fr)
Japanese (ja)
Inventor
和昭 木内
小相澤 久
皆瀬 十三夫
俊英 高木
Original Assignee
東京特殊電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京特殊電線株式会社 filed Critical 東京特殊電線株式会社
Priority to JP2014507552A priority Critical patent/JP5840765B2/en
Publication of WO2013146023A1 publication Critical patent/WO2013146023A1/en
Priority to PH12014502042A priority patent/PH12014502042A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8905Directional selective optics, e.g. slits, spatial filters

Definitions

  • the present invention relates to a laminate inspection method, a laminate inspection apparatus, and a laminate manufacturing apparatus, and more specifically, a member that can transmit light or does not transmit light is laminated on a base material that is an insulator that can transmit light.
  • a laminate inspection method, a laminate inspection apparatus, and a laminate inspection apparatus capable of performing inspection using transmitted light of the laminate formed by one set of camera, illumination, and one image analysis apparatus are used. It is related with the laminated body manufacturing apparatus which can manufacture a laminated body, managing quality by this.
  • a window portion (hereinafter referred to as a window portion), which is an exposed portion of a base material that is an insulator of a flat cable with a camera, is exposed without being covered with a conductor, and the obtained image is analyzed to obtain a margin (window).
  • a tape electric wire shaping device that inspects an edge (hereinafter, a distance from an edge) that is an end parallel to the winding direction of a flat cable at a portion to the nearest conductor center (for example, Patent Document 1) is known. , 2).
  • the conventional tape electric wire shaping apparatus has a problem that the positional relationship of the reinforcing plate with respect to the window portion cannot be inspected. That is, when a reflected image is detected by illuminating a flat cable with a reinforcing plate from the camera side, the reinforcing plate attached to the back surface cannot be inspected.
  • the illumination light wraps around the edge even if the reinforcing plate can be inspected from the shadow of the reinforcing plate. Therefore, the edge does not appear properly and the margin cannot be properly inspected.
  • a member with a high transmittance and a difference that is not so different for example, a flat cable with a reinforcing plate in which a base material that is an insulator and a reinforcing plate are laminated
  • a shadow having a clear contrast between the base material and the reinforcing plate cannot be formed on the transmission image, and the position of the reinforcing plate relative to the window (hereinafter referred to as the reinforcing plate position) cannot be inspected.
  • an object of the present invention is to perform a surface structure inspection of a flat cable with a reinforcing plate, for example, an inspection of a margin and a reinforcing plate position, with a set of camera, illumination, and one image analysis device.
  • Laminate inspection method and laminate inspection apparatus capable of inspecting defects (hereinafter referred to as defects) and laminate inspection apparatus, and manufacturing laminates while controlling quality in-line by using the laminate inspection apparatus It is in providing the laminated body manufacturing apparatus which can do.
  • the present invention irradiates a first light intensity portion (1s) for irradiating light having a first light intensity and a light having a second light intensity that is weaker than the first light intensity.
  • the second surface of the laminate (C) is irradiated with light from the first surface side of the laminate (C) formed by laminating at least one of the member (c1) and the transmissive member (c5) capable of transmitting light.
  • the laminate (C Provides a test method of a laminate which is characterized in that the inspection of the structure.
  • the first light intensity is not transmitted to the second surface side when light is applied from the first surface side of the flat cable (C) with a reinforcing plate, for example.
  • the light intensity is such that the member (c1), the semi-transmissive member (c1), or the transmissive member (c5) can be shaded. Thereby, the position of the non-permeable member (c1) or the semi-transmissive member (c1) and the transmissive member (c5) can be inspected.
  • the second light intensity is set to be weaker than the first light intensity so that the phenomenon that the light wraps around the edge portion and the edge does not appear properly on the image can be suppressed.
  • the shadow of edge (cE) can be made appropriately to the 2nd surface side of the flat cable (C) with a reinforcement board, a margin can also be test
  • the object to inspect the internal structure or surface structure of the laminate (C) is irradiated with the first light intensity, and the edge is irradiated with the second light intensity that is weaker than the first light intensity. So that the position of can be measured accurately. Specifically, by irradiating the light of the first light intensity using the illumination means, a difference in transmittance or a difference in overlap between the non-transmissive member, the semi-transmissive member (c1), or the transmissive member (c5).
  • the shadow of the edge (cE) of the transmissive substrate (c2, c3) is clearly made by irradiating light having a second light intensity that is weaker than the first light intensity. I can do this.
  • the internal structure and surface structure of a laminated body (C) can be test
  • the transmissive base materials (c2, c3) are, for example, an insulating tape having light permeability, or an insulating tape and an adhesive layer. .
  • the impermeable member (c1) is a conductor (generally metal) or a strength member such as a dummy wire (generally metal) attached in parallel with the conductor as a tension member.
  • the semi-transmissive member (c1) is, for example, a waveguide (quartz, polyimide, etc.) used as a transmission path.
  • the transmissive member (c5) is a tape as a reinforcing plate, or a tape and an adhesive layer. Similarly, even in a laminated body such as a flexible circuit board, each portion can be properly inspected by properly using the first light intensity and the second light intensity for the portions having different light transmittance.
  • a margin of a flat cable with a reinforcing plate, a reinforcing plate position (surface structure), a conductor pitch (internal structure), and the like can be inspected by one set of camera and illumination and one image analysis device.
  • An inspection using a transmission image of a laminate other than a flat cable with a plate, such as a flexible circuit board, can be performed with one set of camera, illumination, and one image analysis device.
  • the present invention irradiates a first light intensity portion (1s) for irradiating light having a first light intensity and a light having a second light intensity that is weaker than the first light intensity.
  • the second surface side of the laminate (C) is irradiated with the first surface.
  • Illumination means for creating a shadow of the member (c1, c5) with light having a light intensity of 1 and a shadow of the edge (cE) of the transmissive substrate (c2, c3) with light having the second light intensity (1,1 ′) and the shadow of the member (c1, c5) in order to inspect the structure of the laminate (C).
  • a laminate inspection apparatus (101, 102) comprising an analysis means (3) for analyzing the shadow of the edge (cE).
  • the laminate inspection method according to the first aspect can be suitably implemented.
  • the present invention provides the laminate inspection apparatus (101) according to the second aspect, wherein the illumination means (1) includes a surface light source (1a) having a uniform light intensity and the surface light source (1a). ), And a dimming plate (1b) for producing a first light intensity portion (1s) of the first light intensity and a second light intensity portion (1r) of the second light intensity.
  • a laminate inspection apparatus (101) is provided.
  • the illumination means (1) is composed of the surface light source (1a) that is easy to obtain and easy to control and the dimming plate (1b) that is easy to manufacture. Therefore, it can be easily implemented at low cost.
  • the present invention relates to the laminate inspection apparatus (102) according to the second aspect, wherein the illuminating means (1 ') emits light with different light intensity depending on a partial region of the light emitting surface.
  • a laminate inspection apparatus (102) is provided.
  • light emission power can be reduced as compared with the case where light intensity is adjusted by dimming emitted light.
  • the present invention provides the laminate inspection apparatus according to any one of the second to fourth aspects, wherein the illuminating means (1, 1 ′) is a light-transmitting member of the member (c5).
  • the laminate inspection apparatus (101, 102) characterized in that the light intensity is changed according to a difference.
  • the laminate inspection apparatus (101, 102) according to the fifth aspect for example, even when a reinforcing plate (c5) having different translucency is mixed in a flat cable with a reinforcing plate, it can automatically cope with it.
  • the present invention transmits the light to the transmissive base material (c2, c3) that can transmit light, the non-transmissive member (c1) that does not transmit light, and the semi-transmissive member (c1) that does not easily transmit light and transmits light.
  • the winding means (25) which winds up the laminated body (C) which laminates
  • a laminate manufacturing apparatus comprising the laminate inspection apparatus (101, 102) according to any one of claims 2 to 5.
  • the quality of the laminate (C) can be managed inline. Further, since the quality inspection of the product can be performed at the time of raising and lowering the line speed, a non-defective product can be manufactured even when the line speed is not constant by optimizing the manufacturing conditions based on the inspection result.
  • the present invention provides at least one of a non-transmissive member (c1) that does not transmit light to a transmissive substrate (c2, c3) that can transmit light and a semi-transmissive member (c1) that does not easily transmit light.
  • the laminated body inspection apparatus (101, 102) according to any one of claims 2 to 5, and the lamination means (21, 22) based on an inspection result by the laminated body inspection apparatus (101, 102) Of the laminated position of the transmission member (c5) and the slit
  • a laminated body manufacturing apparatus characterized by comprising a stage control unit for controlling the slit position in (23) (24).
  • the laminated body manufacturing apparatus since the inspection result of the laminated body (C) is fed back to the laminating process, the laminated body (C) can be produced with stable quality. Moreover, since the control of the laminated position of the transmission member (c5) and the slit position of the slit means (23) are performed based on the inspection result, stable quality can be ensured. Further, if the pressure and temperature of the laminating means (21, 22) are controlled based on the inspection result, or the tension acting on the laminated body (C) is controlled by controlling the speed of the take-up means (26), Stable quality can be secured.
  • a set of cameras, illumination, and an image analysis device are used to form a plurality of conductors / circuits such as a flat cable with a reinforcing plate and a flexible circuit board.
  • An inspection using transmitted light to the laminate can be performed.
  • a laminate can be manufactured while quality is controlled by one set of camera, illumination, and one image analysis apparatus.
  • FIG. 1 is a configuration explanatory diagram illustrating a laminate inspection apparatus according to a first embodiment.
  • 1 is a top view of a lighting device according to Embodiment 1.
  • FIG. It is a top view which shows the flat cable with a reinforcement board which travels on the illuminating device which concerns on Example 1.
  • FIG. 3 is an exemplary view of an image photographed by the laminate inspection apparatus according to Example 1.
  • It is a flowchart which shows the detection process of the color of the window part in a laminated body inspection apparatus which concerns on Example 1, and a reinforcement board.
  • It is a flowchart which shows the detection process of the margin in a laminated body inspection apparatus which concerns on Example 1, and a reinforcement board position.
  • FIG. 10 is a configuration explanatory view showing a laminate inspection apparatus according to Example 2. It is a top view of the illuminating device which concerns on Example 2.
  • FIG. FIG. 10 is a configuration explanatory view showing a conductor laminating apparatus in a multilayer body manufacturing apparatus according to Example 3. It is a top view which shows a conductor lamination tape.
  • FIG. 10 is a configuration explanatory view showing a reinforcing plate laminating / slit device in a laminated body manufacturing apparatus according to Example 3. It is a top view which shows a reinforcement board laminated tape. It is a top view which shows the flat cable with the reinforcement board slit.
  • FIG. 10 is a top view of a lighting device according to a fifth embodiment. It is a top view which shows the flat cable with a reinforcement board which drive
  • FIG. It is explanatory drawing for demonstrating each position measured
  • FIG. 1 is a configuration explanatory diagram of a laminate inspection apparatus 101 according to the first embodiment.
  • the laminated body inspection apparatus 101 includes, for example, a lighting device 1 for applying light to the flat cable C with a reinforcing plate from the lower surface side of the flat cable C with a reinforcing plate traveling in the y direction at 10 m / min, and a reinforcing plate.
  • the camera 2 that captures the flat cable C with the reinforcing plate from the upper surface side of the flat cable C, the central control device 3 that obtains the margin and the reinforcing plate position based on the image captured by the camera 2, and the window of the flat cable C with the reinforcing plate
  • the upper sensor 4 for detecting the part c4, the lower sensor 5 for detecting the color of the reinforcing plate c5 of the flat cable C with the reinforcing plate, and the lighting control device 6 for controlling the lighting device 1 are provided.
  • the illuminating device 1 includes a surface light source 1a having a uniform light intensity and a light reducing plate 1b for dimming a partial region of light from the surface light source 1a.
  • the camera 2 is an area sensor that photographs the xy plane. For example, an area sensor with 300,000 pixels.
  • the upper sensor 4 and the lower sensor 5 are reflective photosensors.
  • the flat cable C with a reinforcing plate has a basic structure in which a plurality of parallel conductors (or dummy wires and waveguides) c1 are sandwiched between a lower laminating tape c2 and an upper laminating tape c3 that are insulators.
  • the upper laminate tape c3 is discontinuous, and a window portion c4 is provided at a predetermined location.
  • a reinforcing plate c5 for reinforcing the window c4 is attached to the lower laminate tape c2.
  • the width of the flat cable C with a reinforcing plate is 20 to 60 mm
  • the number of members c1 is 20 to 80
  • the length of the window portion c4 is 8 to 30 mm
  • the color of the reinforcing plate c5 is “white”.
  • the color of the reinforcing plate c5 is 10 to 30 mm
  • the thickness of the reinforcing plate c5 is 60 ⁇ m for the color “white”, and 250 ⁇ m for the color “blue”.
  • FIG. 2 is a top view of the lighting device 1.
  • the light reducing plate 1b has a cross-shaped slit 1s.
  • the intensity of light passing through the slit 1s is the intensity of light emitted from the surface light source 1a, which is referred to as first light intensity.
  • the intensity of the light passing through the portion 1r of the light reducing plate 1b excluding the slit 1s portion is an intensity obtained by attenuating the light emitted from the surface light source 1a, and this is called the second light intensity.
  • FIG. 3 shows the moment when the window part c4 of the flat cable C with a reinforcing plate passes over the lighting device 1.
  • the light passing through the slit 1 s that is, the light having the first light intensity is x so that the shadow of the outermost conductor c ⁇ b> 1 of the flat cable C with the reinforcing plate can be made at the center position of the length in the y direction of the window c ⁇ b> 4.
  • the light passing through the portion 1r of the light reducing plate 1b excluding the slit 1s portion is formed on the outer side in the y direction of the window portion c4 so as to make a shadow of the edge cE of the flat cable C with the reinforcing plate.
  • the flat cable C with the reinforcing plate is transmitted through a region corresponding to the vicinity of the edge of the flat cable C with the reinforcing plate near the window portion c4.
  • FIG. 4 is a specific example of an image obtained by the camera 2.
  • the light passing through the slit 1s that is, the light having the first light intensity clearly forms the shadow of the conductor c1 and the shadow of the reinforcing plate c5.
  • the position of the conductor c1 and the position of the reinforcing plate c5 can be read accurately.
  • the shadow of the edge cE of the flat cable C with a reinforcing plate in the window part c4 is unclear. This is because the first light intensity is too strong to clearly make the shadow of the edge cE of the flat cable C with a reinforcing plate.
  • the light passing through the portion 1r of the light reducing plate 1b excluding the slit 1s portion that is, the light having the second light intensity
  • the position of the edge cE can be read accurately.
  • the shadow of the conductor c1 and the shadow of the reinforcing plate c5 are unclear. This is because the second light intensity is too weak to clearly create the shadow of the conductor c1 and the shadow of the reinforcing plate c5.
  • both the first light intensity and the second light intensity are necessary.
  • FIG. 5 is a flowchart showing the color detection processing of the window portion and the reinforcing plate executed in the central control device 3.
  • step R1 it is checked whether or not the window part c4 has come under the upper sensor 4. If it has come, the process proceeds to step R2.
  • step R2 the shooting timing by the camera 2 is set. This shooting timing is, for example, “(distance in the y direction between the upper sensor 4 and the camera 2) + (half the y direction length of the window portion c4)” / “the traveling speed of the flat cable C with the reinforcing plate” from the current time. It is a later time.
  • step R ⁇ b> 3 the lower sensor 5 detects the color of the reinforcing plate 5.
  • the color of the reinforcing plate 5 is, for example, two types of “white” or “blue”.
  • the illumination control device 6 is instructed with the illumination intensity corresponding to the color of the reinforcing plate 5. This is because the transmittance varies depending on the color of the reinforcing plate 5. For example, if the reinforcing plate 5 is “white”, the transmittance is higher than when it is “blue”, so a low illumination intensity is indicated. If it is “blue”, the transmittance is lower than when it is “white”, so a high illumination intensity is indicated. Instruct.
  • the illumination control device 6 controls the light intensity of the surface light source 1a according to the instruction. And in order to process the next window part c4, it returns to step R1.
  • FIG. 6 is a flowchart showing a margin and reinforcing plate position detection process executed by the central controller 3. This process is executed in parallel with the process of FIG. In step S1, it is checked whether or not it is time to shoot with the camera 2, and if so, the process proceeds to step S2. In step S2, the image is taken by the camera 2 and an image as shown in FIG. 4 is acquired.
  • step S3 the image is analyzed, and the measured values e11, e12, e13, e14, e21, e22, e23, e24, a1, a2, w shown in FIG. 7 are obtained.
  • the coordinates serving as the boundaries of the measurement values are differentiated with respect to the luminance values in a certain range of the image of FIG. 4, for example, a range of 10 to 100 pixels, and the coordinates adjacent to the coordinates where the differential values are generated are defined as the boundaries. Is obtained by analysis by the central controller 3.
  • y1 is a y-coordinate of a position that is closer to the coordinate origin O than the window part c4 and is predicted that the shadow of the edge cE will be clear.
  • y2 is a y-coordinate of a position that is farther from the coordinate origin O than the window c4 and is predicted to have a shadow of the edge cE.
  • y3 is the y coordinate of the position where the shadow of the conductor c1 is predicted to be clear in the window part c4.
  • x1 is the x coordinate of the position where the shadow of the upper laminate tape c3 and the shadow of the reinforcing plate c5 are predicted to be clear.
  • margins b1 and b2 are calculated.
  • b1 ( ⁇ e11 ⁇ e12 + e13 + e14) / 2
  • b2 ( ⁇ e21 ⁇ e22 + e23 + e24) / 2
  • the specified value of the margins b1 and b2 is, for example, 2.5 mm.
  • step S5 the margins b1, b2 and the measured values a1, a2, w are output to a storage device, a display device, and a printer. And in order to process the next window part c4, it returns to step S1.
  • the X and Y axes of the camera and the X and Y axes of the laminate (C) must be aligned in advance.
  • each coordinate is measured by taking an average value in a certain range (10 to 100 pixels) in the vicinity of y1 instead of measuring at one point y1 to obtain e11, for example. The accuracy can be greatly improved. It is preferable that the other positions are similarly measured and averaged by determining the range.
  • the upper sensor 4 alternately functions as a window sensor or a reinforcing plate sensor for each window c4, and the lower sensor 5 functions as a reinforcing plate sensor when the upper sensor 4 functions as a window sensor.
  • the upper sensor 4 functions as a reinforcing plate sensor, it functions as a window sensor.
  • the lower laminating tape c2 ′ is also provided with windows c4 at predetermined positions.
  • the detection of the margins b1, b2 and the reinforcing plate positions ⁇ a1, a2, w ⁇ of the running flat cables C, C ′ with reinforcing plates is performed by one set of cameras. And illumination and one image analysis device.
  • FIG. 9 is an explanatory diagram of a configuration of the laminate inspection apparatus 102 according to the second embodiment.
  • This laminate inspection apparatus 102 is characterized in that it uses an illuminating device 1 ′ that can have different light intensities depending on the portion of the light emitting surface.
  • the illuminating device 1 ′ has a number of LEDs 1c arranged in a two-dimensional matrix.
  • the central control device 3 ′ and the illumination control device 6 ′ use the LED 1c corresponding to the cross-shaped slit 1s in FIG. 2 as the first light intensity, and the LED 1c corresponding to the portion 1r other than the slit 1s as the second light. Strength.
  • light emission power can be reduced as compared with a case where light intensity is adjusted by dimming emitted light.
  • FIG. 11 is an explanatory diagram illustrating a conductor laminating apparatus 201 in the multilayer body manufacturing apparatus according to the third embodiment.
  • the lower insulating tape c2′w is supplied from the lower insulating tape supply device 11
  • the upper insulating tape c3w is supplied from the upper insulating tape supply device 12
  • the lower insulating tape c2′w A plurality of parallel conductors c1 are supplied from the conductor supply device between the upper insulating tapes c3w and heated by the first heating roll 13 and the second heating roll 14 which are lamination means for integrally laminating by pressing, heating press or the like.
  • the conductor laminated tape c′w is formed while being compressed, drawn out by the take-up means 16, and taken up by the conductor laminated tape winding device 15.
  • FIG. 12 is a top view of the conductor laminated tape c′w.
  • the lower insulating tape c2′w is provided with a window portion c4w at a predetermined location.
  • the upper insulating tape c3w is also provided with a window portion c4w at a predetermined location.
  • FIG. 13 is an explanatory diagram showing a reinforcing plate laminating / slit device 202 in the laminated body manufacturing apparatus according to the third embodiment.
  • the conductor laminated tape c′w is supplied from the conductor laminated tape supply device, and the window part c4w of the lower insulating tape c2′w is formed by the window sensor 20 using a reflective photosensor.
  • the window part c4w of the upper insulating tape c3w is detected, and the first reinforcing plate sticking machine 21 reinforces the window part c4w of the lower insulating tape c2'w based on the detection timing and the traveling speed of the conductor laminated tape c'w.
  • FIG. 14 is a top view of the reinforcing plate laminated tape C′w.
  • FIG. 15 is a top view of the ear edge E and the flat cable C ′ with a reinforcing plate. Ear edge E is discarded. A flat cable C ′ with a reinforcing plate is shown in FIG.
  • the laminate inspection apparatus 101 is provided for each flat cable C ′ with reinforcing plate, and inspects the margin and the position of the reinforcing plate of each flat cable C ′ with reinforcing plate.
  • the reinforcing plate laminating machine / slit machine control device 24 is based on the inspection result of one laminated body inspection device 101, and the timing of attaching the reinforcing plate c5w in the first reinforcing plate attaching machine 21 and the second reinforcing plate attaching machine.
  • the timing of attaching the reinforcing plate c5w at 22 and the position of the slit blade at the slitting machine 23 are controlled so that the margin of the flat cable C ′ with reinforcing plate and the position of the reinforcing plate do not deviate from a certain quality.
  • the slitting machine an apparatus for slitting with a laser such as a carbon dioxide laser is also possible. In this case, the laser irradiation position is controlled.
  • Each flat cable C ′ with a reinforcing plate is wound around the winder 25.
  • the reinforcing plate is managed while controlling the quality by one set of camera 2, illumination 1, and one image analyzing apparatus 3.
  • the attached flat cable C ′ can be manufactured.
  • the flat cables C and C ′ with reinforcing plates are cut at the center of the window portion c4 and divided into units that are actually used. And the part by which the window part c4 was cut
  • a flexible circuit board having circuit components mounted between the window part c4 and the window part c4 is also reinforced.
  • the present invention can be applied similarly to the flat cables C and C ′ with a plate. That is, the present invention can also be applied to inspection and manufacture of a laminate that requires management of margin and reinforcing plate position for the same reason as the flat cables C and C ′ with reinforcing plate.
  • FIG. 16 is a top view of the lighting apparatus 1 ′′ according to the fifth embodiment.
  • the light reducing plate 1b ′′ has a rectangular slit 1s ′′.
  • the intensity of the light passing through the slit 1s ′′ is the intensity of the light emitted from the surface light source 1a, which is the first light intensity.
  • the intensity is an intensity obtained by attenuating the light emitted from the surface light source 1a, and this becomes the second light intensity.
  • FIG. 17 shows the moment when the window c4 of the flat cable C with a reinforcing plate passes over the lighting device 1 ′′.
  • the y-direction size Dy of the slit 1s ′′ is Dy with respect to the y-direction length A of the reinforcing plate c5 so that the light passing through the slit 1s ′′, that is, the light of the first light intensity can make a shadow of the reinforcing plate c5. > A.
  • the size Dx in the x direction of the slit 1s ′′ is such that the light passing through the slit 1s ′′, that is, the light having the first light intensity, is at the center position of the length in the y direction of the window portion c4 and the outermost conductor c1 of the flat cable C with a reinforcing plate.
  • Dx ⁇ B with respect to the width B of the flat cable C with the reinforcing plate.
  • the y-direction length Ly of the light reducing plate 1b ′′ is 2 mm or more larger than the y-direction size Dy of the slit 1s ′′.
  • the x-direction length Lx of the dimming plate 1b ′′ is 3 mm or more larger than the x-direction size Dx of the slit 1s ′′.
  • A 8 mm to 40 mm
  • B 4 mm to 20 mm
  • Dy 10 mm to 90 mm
  • Dx 5 mm to 90 mm
  • Ly 12 mm to 150 mm
  • Lx 8 mm to 150 mm.
  • each measured value e11, e12, e13, e14, e21, e22, e23, e24, a1, a2, w is obtained.
  • FIG. 18 is the same as FIG. 7 except that the coordinate y1 for obtaining the measured values e11 and e21 in FIG. 7 is the coordinate y4 and the coordinate y2 for obtaining the measured values e12 and e22 is the coordinate y5.
  • the coordinates y4 and y5 are set so as to correspond to the portion 1r ′′ of the light reducing plate 1b ′′ surrounding the slit 1s ′′ portion, that is, the second light intensity portion.
  • measurement values e11, e21, e12, e22 can be obtained at coordinates y1, y2 in the vicinity of the window c4, as shown in FIG.
  • the edge cE position can be accurately determined.
  • the width B of the flat cable C with a reinforcing plate is, for example, 20 mm or less, processing for forming the slit 1s becomes difficult, and the light with the first light intensity is reduced by making the slit 1s narrower than the width B.
  • the first light intensity light will wrap around the window portion.
  • the tape edge cE in the vicinity of c4 cannot be accurately detected.
  • the illumination device 1 ′′ shown in FIG. 16 the measured values e11, e21, e12, e22 are obtained at coordinates y4, y5 slightly apart from the window c4 as shown in FIG.
  • the accuracy of determining the position of the edge cE in the vicinity of the portion c4 is slightly lowered.
  • the width B of the flat cable C with the reinforcing plate is 20 mm or less, the slit 1s ′′ can be easily formed, and the flat Even if the cable C meanders, there is an advantage that it can be stably detected without being influenced by the first light intensity.
  • FIG. 19A is a top view of the lighting device 1-1 according to the sixth embodiment.
  • FIG. 19B is a front view of the same.
  • This illuminating device 1-1 is obtained by attaching a dimming plate 1b-1 to a surface light source 1a.
  • the light-reducing plate 1b-1 is obtained by attaching light-impermeable members 1r-1 and 1r-1 to a light-transmissive base plate 1s-1.
  • FIG. 20 shows the moment when the window part c4 of the flat cable C with a reinforcing plate passes over the lighting device 1-1.
  • the measurement values e11, e12, e13, e14, e21, e22, e23, e24, a1, a2, w are obtained in the same manner as in the fifth embodiment.
  • the light intensity when obtaining the measurement values e13, e14, e23, e24, a1, a2, w is the first light intensity and is not affected by the light-impermeable members 1r-1, 1r-1.
  • the light intensity when obtaining the measurement values e11, e12, e21, e22 is the second light intensity, and is affected by the light-impermeable members 1r-1, 1r-1, and is more than the first light intensity. Is also attenuated light intensity.
  • the dimming plate 1b-1 shown in FIG. 19 is easy to manufacture because no slit is provided, and the width Wy of the light-impermeable members 1r-1, 1r-1 can be set to 0.5 mm or less, for example.
  • the laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus of the present invention can be used for inspection in a laminate production line such as a flexible flat cable with a reinforcing plate and a flexible circuit board.

Landscapes

  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

When light is applied to a flat cable with a reinforcing plate from the first surface side of the flat cable with the reinforcing plate, the light is applied to the flat cable with the reinforcing plate from the first surface side of the flat cable with the reinforcing plate with a second light intensity capable of appropriately forming the shadow of the edge of a window part of the flat cable with the reinforcing plate on the second surface side of the flat cable with the reinforcing plate in addition to a first light intensity capable of appropriately forming the shadow of a conductor and the shadow of the reinforcing plate thereon, a transmission image is captured from the second surface side, and a margin and the position of the reinforcing plate are inspected by analyzing the transmission image. The position of the conductor and the position of the reinforcing plate can be detected by the light with the first light intensity, and the edge of the window part can be detected by the light with the second light intensity. The positions of the conductor, the reinforcing plate, and the edge of the window part of the flat cable with the reinforcing plate can be inspected by one set of a camera and lighting and one image analysis unit.

Description

積層体の検査方法、積層体検査装置および積層体製造装置Laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus
 本発明は、積層体の検査方法、積層体検査装置および積層体製造装置に関し、さらに詳しくは、光を透過させうる絶縁体である基材上に光を透過させうるか又は透過させない部材を積層してなる積層体の透過光を用いた検査を1セットのカメラと照明および1つの画像解析装置により行うことが出来る積層体の検査方法および積層体検査装置、並びに、その積層体検査装置を利用することによって品質を管理しながら積層体を製造することが出来る積層体製造装置に関する。 The present invention relates to a laminate inspection method, a laminate inspection apparatus, and a laminate manufacturing apparatus, and more specifically, a member that can transmit light or does not transmit light is laminated on a base material that is an insulator that can transmit light. A laminate inspection method, a laminate inspection apparatus, and a laminate inspection apparatus capable of performing inspection using transmitted light of the laminate formed by one set of camera, illumination, and one image analysis apparatus are used. It is related with the laminated body manufacturing apparatus which can manufacture a laminated body, managing quality by this.
 従来、カメラでフラットケーブルの絶縁体である基材に例えば導体が被覆されず露出している部分である窓部(以下、窓部)を撮影し、得られた画像を解析してマージン(窓部のフラットケーブルの巻取り方向に対し平行な端部であるエッジ(以下、エッジ)から一番近い導体中心までの距離)を検査するテープ電線の整形装置が知られている(例えば特許文献1,2参照。)。 Conventionally, for example, a window portion (hereinafter referred to as a window portion), which is an exposed portion of a base material that is an insulator of a flat cable with a camera, is exposed without being covered with a conductor, and the obtained image is analyzed to obtain a margin (window). 2. Description of the Related Art A tape electric wire shaping device that inspects an edge (hereinafter, a distance from an edge) that is an end parallel to the winding direction of a flat cable at a portion to the nearest conductor center (for example, Patent Document 1) is known. , 2).
特開2000-348552号公報JP 2000-348552 A 特開2005-135923号公報JP 2005-135923 A
 補強板付きフラットケーブルでは、マージンだけでなく、窓部に対する補強板の貼付位置の適否を検査したいという要求がある。
 しかし、上記従来のテープ電線の整形装置では、窓部に対する補強板の位置関係を検査できない問題点があった。すなわち、カメラの側から照明を補強板付きフラットケーブルに当てて反射画像を検出した場合は、裏面に貼り付けてある補強板を検査できない。一方、カメラと反対の側から照明を補強板付きフラットケーブルに当てて透過画像を検出する場合は、補強板の影から補強板を検査できても、照明光がエッジに回り込んで透過画像上にエッジが適正に現れず、マージンを適正に検査できなくなる。また、照明光がエッジから回り込まない程度の弱い光強度の照明光の場合は、透過率が高く差異があまり無い部材、例えば絶縁体である基材と補強板を積層した補強板付きフラットケーブル、では、透過画像に前記基材と補強板の明らかな濃淡差のある影ができず、窓部に対する補強版の位置(以下、補強板位置)を検査できない。
 なお、補強板付きフラットケーブルの両側にそれぞれカメラと照明のセットを設けて補強板付きフラットケーブルの両面の反射画像を検出すれば、補強板付きフラットケーブルのマージン及び補強板位置の両方を検査できるが、2セットのカメラと照明および2つの画像解析装置が必要になり、構成が複雑になってしまう。
 そこで、本発明の目的は、1セットのカメラと照明および1つの画像解析装置により、補強板付きフラットケーブルの表面構造検査、例えばマージン及び補強板位置の検査、を行うことが出来ると共に、補強板付きフラットケーブル以外の例えばフレキシブル回路基板のような積層体の透過画像を用いた内部構造検査、例えば導体のピッチや幅・補強板位置等の寸法(以下、寸法)やキズ・へこみ・断線等の欠陥(以下、欠陥)の検査、を行うことが出来る積層体の検査方法および積層体検査装置、並びに、その積層体検査装置を利用することによってインラインで品質を管理しながら積層体を製造することが出来る積層体製造装置を提供することにある。
In a flat cable with a reinforcing plate, there is a demand to check not only the margin but also the suitability of the position where the reinforcing plate is attached to the window portion.
However, the conventional tape electric wire shaping apparatus has a problem that the positional relationship of the reinforcing plate with respect to the window portion cannot be inspected. That is, when a reflected image is detected by illuminating a flat cable with a reinforcing plate from the camera side, the reinforcing plate attached to the back surface cannot be inspected. On the other hand, when detecting the transmitted image by illuminating the flat cable with the reinforcing plate from the side opposite to the camera, the illumination light wraps around the edge even if the reinforcing plate can be inspected from the shadow of the reinforcing plate. Therefore, the edge does not appear properly and the margin cannot be properly inspected. In addition, in the case of illumination light with weak light intensity that does not illuminate from the edge, a member with a high transmittance and a difference that is not so different, for example, a flat cable with a reinforcing plate in which a base material that is an insulator and a reinforcing plate are laminated, In the transmission image, a shadow having a clear contrast between the base material and the reinforcing plate cannot be formed on the transmission image, and the position of the reinforcing plate relative to the window (hereinafter referred to as the reinforcing plate position) cannot be inspected.
In addition, if a camera and a lighting set are provided on both sides of the flat cable with the reinforcing plate and the reflection images on both sides of the flat cable with the reinforcing plate are detected, both the margin of the flat cable with the reinforcing plate and the position of the reinforcing plate can be inspected. However, two sets of cameras, illumination, and two image analysis devices are required, and the configuration becomes complicated.
Accordingly, an object of the present invention is to perform a surface structure inspection of a flat cable with a reinforcing plate, for example, an inspection of a margin and a reinforcing plate position, with a set of camera, illumination, and one image analysis device. Internal structure inspection using transmission images of laminates such as flexible circuit boards other than flat cables, such as conductor pitch, width, reinforcement plate position, etc. (hereinafter referred to as dimensions), scratches, dents, disconnections, etc. Laminate inspection method and laminate inspection apparatus capable of inspecting defects (hereinafter referred to as defects) and laminate inspection apparatus, and manufacturing laminates while controlling quality in-line by using the laminate inspection apparatus It is in providing the laminated body manufacturing apparatus which can do.
 第1の観点では、本発明は、第1の光強度の光を照射するための第1光強度部分(1s)および前記第1の光強度よりも弱い第2の光強度の光を照射するための第2光強度部分(1r)を有する照明手段を用いて、光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)および光を透過させうる透過部材(c5)の少なくとも一つを積層してなる積層体(C)の第1面側から光を照射して前記積層体(C)の第2面側へ前記第1の光強度の光により前記部材(c1,c5)の影を作ると共に前記第2の光強度の光により前記透過基材(c2,c3)のエッジ(cE)の影をつくり、前記部材(c1,c5)の影および前記エッジ(cE)の影に基づいて前記積層体(C)の構造の検査を行うことを特徴とする積層体の検査方法を提供する。
 上記第1の観点による積層体の検査方法では、第1の光強度を、例えば補強板付きフラットケーブル(C)の第1面側から光を当てたときに、第2面側へ、不透過部材(c1)あるいは半透過部材(c1)あるいは透過部材(c5)の影を作りうる光強度とする。これにより、不透過部材(c1)あるいは半透過部材(c1)および透過部材(c5)の位置を検査できる。ただし、第1の光強度では、光がエッジ部で回り込んで画像上にエッジが適正に現れず、マージンを適正に検査することは出来ない。そこで、第2の光強度は、光がエッジ部で回り込んで画像上にエッジが適正に現れなくなる現象を抑制できるように、第1の光強度よりも弱くする。これにより、補強板付きフラットケーブル(C)の第2面側へエッジ(cE)の影を適正に作ることが出来るので、マージンも適正に検査することが出来る。
 照明としては、積層体(C)の内部構造や表面構造を検査する対象を第1の光強度で照射し、エッジを第1の光強度より弱い第2の光強度で照射することで、エッジの位置を正確に測定できるようにする。
 具体的には,上記照明手段を用いて第1の光強度の光を照射することで、不透過部材あるいは半透過部材(c1)または透過部材(c5)の透過率の差異や重なり具合の差に伴う濃淡差のある影が生じ、同時に第1の光強度よりも弱い第2の光強度の光を照射することにより透過基材(c2,c3)のエッジ(cE)の影を明確に作るこができる。そして、これらの影を撮像した画像から積層体(C)の内部構造および表面構造の検査を行うことが出来る。
 なお、積層体(C)が例えば補強板付きフラットケーブルの場合、透過基材(c2,c3)は、例えば光の透過性のある絶縁体のテープ、または絶縁体のテープと接着剤層である。また、不透過部材(c1)は、導体(一般的に金属)、またはテンションメンバとして導体と並列に添えられるダミー線(一般的に金属)のような強度部材などである。また、半透過部材(c1)は、例えば伝送経路として用いる導波路(石英やポリイミドなど)である。また、透過部材(c5)は、補強板としてのテープ、またはテープと接着剤層である。
 同様に、例えばフレキシブル回路基板のような積層体においても、光透過性の異なる部分に対して第1の光強度と第2の光強度を使い分けることにより、それぞれの部分を適正に検査できる。
 すなわち、例えば補強板付きフラットケーブルのマージン及び補強板位置(表面構造)や導体のピッチ(内部構造)などの検査を1セットのカメラと照明および1つの画像解析装置により行うことが出来ると共に、補強板付きフラットケーブル以外の例えばフレキシブル回路基板のような積層体の透過画像による検査を1セットのカメラと照明および1つの画像解析装置により行うことが出来る。
In a first aspect, the present invention irradiates a first light intensity portion (1s) for irradiating light having a first light intensity and a light having a second light intensity that is weaker than the first light intensity. A non-transmissive member (c1) that does not transmit light to a transmissive base material (c2, c3) that can transmit light and a semi-transmissive material that is difficult to transmit light, using the illumination means having the second light intensity portion (1r) The second surface of the laminate (C) is irradiated with light from the first surface side of the laminate (C) formed by laminating at least one of the member (c1) and the transmissive member (c5) capable of transmitting light. A shadow of the member (c1, c5) is made to the side by the light of the first light intensity, and a shadow of the edge (cE) of the transmissive substrate (c2, c3) is made by the light of the second light intensity. Based on the shadows of the members (c1, c5) and the edges (cE), the laminate (C Provides a test method of a laminate which is characterized in that the inspection of the structure.
In the method for inspecting a laminate according to the first aspect, the first light intensity is not transmitted to the second surface side when light is applied from the first surface side of the flat cable (C) with a reinforcing plate, for example. The light intensity is such that the member (c1), the semi-transmissive member (c1), or the transmissive member (c5) can be shaded. Thereby, the position of the non-permeable member (c1) or the semi-transmissive member (c1) and the transmissive member (c5) can be inspected. However, at the first light intensity, the light wraps around at the edge portion, the edge does not appear properly on the image, and the margin cannot be inspected properly. Therefore, the second light intensity is set to be weaker than the first light intensity so that the phenomenon that the light wraps around the edge portion and the edge does not appear properly on the image can be suppressed. Thereby, since the shadow of edge (cE) can be made appropriately to the 2nd surface side of the flat cable (C) with a reinforcement board, a margin can also be test | inspected appropriately.
As illumination, the object to inspect the internal structure or surface structure of the laminate (C) is irradiated with the first light intensity, and the edge is irradiated with the second light intensity that is weaker than the first light intensity. So that the position of can be measured accurately.
Specifically, by irradiating the light of the first light intensity using the illumination means, a difference in transmittance or a difference in overlap between the non-transmissive member, the semi-transmissive member (c1), or the transmissive member (c5). A shadow with a difference in density is generated, and at the same time, the shadow of the edge (cE) of the transmissive substrate (c2, c3) is clearly made by irradiating light having a second light intensity that is weaker than the first light intensity. I can do this. And the internal structure and surface structure of a laminated body (C) can be test | inspected from the image which imaged these shadows.
In the case where the laminate (C) is, for example, a flat cable with a reinforcing plate, the transmissive base materials (c2, c3) are, for example, an insulating tape having light permeability, or an insulating tape and an adhesive layer. . The impermeable member (c1) is a conductor (generally metal) or a strength member such as a dummy wire (generally metal) attached in parallel with the conductor as a tension member. The semi-transmissive member (c1) is, for example, a waveguide (quartz, polyimide, etc.) used as a transmission path. The transmissive member (c5) is a tape as a reinforcing plate, or a tape and an adhesive layer.
Similarly, even in a laminated body such as a flexible circuit board, each portion can be properly inspected by properly using the first light intensity and the second light intensity for the portions having different light transmittance.
That is, for example, a margin of a flat cable with a reinforcing plate, a reinforcing plate position (surface structure), a conductor pitch (internal structure), and the like can be inspected by one set of camera and illumination and one image analysis device. An inspection using a transmission image of a laminate other than a flat cable with a plate, such as a flexible circuit board, can be performed with one set of camera, illumination, and one image analysis device.
 第2の観点では、本発明は、第1の光強度の光を照射するための第1光強度部分(1s)および前記第1の光強度よりも弱い第2の光強度の光を照射するための第2光強度部分(1r)を有し且つ光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)および光を透過させうる透過部材(c5)の少なくとも一つを積層してなる積層体(C)の第1面側から光を照射して前記積層体(C)の第2面側へ前記第1の光強度の光により前記部材(c1,c5)の影を作ると共に前記第2の光強度の光により前記透過基材(c2,c3)のエッジ(cE)の影をつくるための照明手段(1,1’)と、前記積層体(C)の構造の検査を行うために前記部材(c1,c5)の影および前記エッジ(cE)の影を解析する解析手段(3)とを具備することを特徴とする積層体検査装置(101,102)を提供する。
 上記第2の観点による積層体検査装置では、前記第1の観点による積層体の検査方法を好適に実施できる。
In a second aspect, the present invention irradiates a first light intensity portion (1s) for irradiating light having a first light intensity and a light having a second light intensity that is weaker than the first light intensity. A non-transmissive member (c1) that has a second light intensity portion (1r) for transmitting light and does not transmit light to the transparent base materials (c2, c3) that can transmit light, and a semi-transmissive member (c1) that is difficult to transmit light In addition, by irradiating light from the first surface side of the laminate (C) formed by laminating at least one of the transmissive members (c5) capable of transmitting light, the second surface side of the laminate (C) is irradiated with the first surface. Illumination means for creating a shadow of the member (c1, c5) with light having a light intensity of 1 and a shadow of the edge (cE) of the transmissive substrate (c2, c3) with light having the second light intensity (1,1 ′) and the shadow of the member (c1, c5) in order to inspect the structure of the laminate (C). And a laminate inspection apparatus (101, 102) comprising an analysis means (3) for analyzing the shadow of the edge (cE).
In the laminate inspection apparatus according to the second aspect, the laminate inspection method according to the first aspect can be suitably implemented.
 第3の観点では、本発明は、前記第2の観点による積層体検査装置(101)において、前記照明手段(1)は、光強度が均一な面光源(1a)と、前記面光源(1a)の光から前記第1の光強度の第1光強度部分(1s)を作ると共に前記第2の光強度の第2光強度部分(1r)を作る減光板(1b)とからなることを特徴とする積層体検査装置(101)を提供する。
 上記第3の観点による積層体検査装置(101)では、入手が容易で且つ制御も容易な面光源(1a)と製作が容易な減光板(1b)とで照明手段(1)を構成するため、低コストで且つ容易に実施可能となる。
In a third aspect, the present invention provides the laminate inspection apparatus (101) according to the second aspect, wherein the illumination means (1) includes a surface light source (1a) having a uniform light intensity and the surface light source (1a). ), And a dimming plate (1b) for producing a first light intensity portion (1s) of the first light intensity and a second light intensity portion (1r) of the second light intensity. A laminate inspection apparatus (101) is provided.
In the laminate inspection apparatus (101) according to the third aspect, the illumination means (1) is composed of the surface light source (1a) that is easy to obtain and easy to control and the dimming plate (1b) that is easy to manufacture. Therefore, it can be easily implemented at low cost.
 第4の観点では、本発明は、前記第2の観点による積層体検査装置(102)において、前記照明手段(1’)は、発光面の部分領域によって異なる光強度で発光しうる照明装置からなることを特徴とする積層体検査装置(102)を提供する。
 上記第4の観点による積層体検査装置(102)では、発光した光を減光して光強度を調整する場合に比べて、発光電力を節減することが出来る。
In a fourth aspect, the present invention relates to the laminate inspection apparatus (102) according to the second aspect, wherein the illuminating means (1 ') emits light with different light intensity depending on a partial region of the light emitting surface. A laminate inspection apparatus (102) is provided.
In the laminate inspection apparatus (102) according to the fourth aspect, light emission power can be reduced as compared with the case where light intensity is adjusted by dimming emitted light.
 第5の観点では、本発明は、前記第2から前記第4のいずれかの観点による積層体検査装置において、前記照明手段(1,1’)は、前記部材(c5)の透光性の違いに応じて光強度を変更することを特徴とする積層体検査装置(101,102)を提供する。
 上記第5の観点による積層体検査装置(101,102)では、例えば補強板付きフラットケーブルにおいて透光性の異なる補強板(c5)が混用されている場合にも自動的に対応できる。
In a fifth aspect, the present invention provides the laminate inspection apparatus according to any one of the second to fourth aspects, wherein the illuminating means (1, 1 ′) is a light-transmitting member of the member (c5). Provided is a laminate inspection apparatus (101, 102) characterized in that the light intensity is changed according to a difference.
In the laminate inspection apparatus (101, 102) according to the fifth aspect, for example, even when a reinforcing plate (c5) having different translucency is mixed in a flat cable with a reinforcing plate, it can automatically cope with it.
 第6の観点では、本発明は、光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)および光を透過させうる透過部材(c5)の少なくとも一つを積層してなる積層体(C)を巻取る巻取手段(25)と、前記積層体(C)の巻取経路の途中に設置された請求項2から請求項5のいずれかに記載の積層体検査装置(101,102)とを具備したことを特徴とする積層体製造装置を提供する。
 上記第6の観点による積層体製造装置では、積層体(C)の検査をインラインで自動的に行えるため、インラインで積層体(C)の品質を管理することが出来る。また、ライン速度の立ち上げ、立ち下げ時の製品の品質検査を行えるので、その検査結果に基づいて製造条件を適正化することで、ライン速度が一定でない状態でも良品を製造できる。
In a sixth aspect, the present invention transmits the light to the transmissive base material (c2, c3) that can transmit light, the non-transmissive member (c1) that does not transmit light, and the semi-transmissive member (c1) that does not easily transmit light and transmits light. The winding means (25) which winds up the laminated body (C) which laminates | stacks at least 1 of the permeable member (c5) which can be made, and installed in the middle of the winding path | route of the said laminated body (C). A laminate manufacturing apparatus comprising the laminate inspection apparatus (101, 102) according to any one of claims 2 to 5.
In the laminate manufacturing apparatus according to the sixth aspect, since the inspection of the laminate (C) can be automatically performed inline, the quality of the laminate (C) can be managed inline. Further, since the quality inspection of the product can be performed at the time of raising and lowering the line speed, a non-defective product can be manufactured even when the line speed is not constant by optimizing the manufacturing conditions based on the inspection result.
 第7の観点では、本発明は、光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)の少なくとも一方を積層した部材積層体(c’w)に光を透過しうる透過部材(c5)を積層する積層手段(21,22)と、前記透過部材(c5)を積層した透過部材積層体(C’w)をスリットして積層体(C)を得るスリット手段(23)と、前記積層体(C)を巻取る巻取手段(25)と、前記積層体(C)の巻取経路の途中に設置された請求項2から請求項5のいずれかに記載の積層体検査装置(101,102)と、前記積層体検査装置(101,102)による検査結果に基づいて前記積層手段(21,22)での前記透過部材(c5)の積層位置の制御と前記スリット手段(23)でのスリット位置の制御を行う制御手段(24)とを具備したことを特徴とする積層体製造装置を提供する。
 上記第7の観点による積層体製造装置では、積層体(C)の検査結果を積層工程にフィードバックするため、安定した品質で積層体(C)を製造することが出来る。
 また、検査結果に基づいて、透過部材(c5)の積層位置の制御と前記スリット手段(23)でのスリット位置の制御を行うので、安定した品質を確保できる。
 なお、検査結果に基づいて、積層手段(21,22)の圧力や温度を制御したり、引取手段(26)の速度を制御して積層体(C)に作用するテンションを制御すれば、さらに安定した品質を確保できる。
In a seventh aspect, the present invention provides at least one of a non-transmissive member (c1) that does not transmit light to a transmissive substrate (c2, c3) that can transmit light and a semi-transmissive member (c1) that does not easily transmit light. Laminating means (21, 22) for laminating a transmissive member (c5) capable of transmitting light on the laminated member laminate (c′w), and a transmissive member laminate (C′w) in which the transmissive member (c5) is laminated. Slitting means (23) to obtain a laminated body (C), winding means (25) for winding up the laminated body (C), and installation in the winding path of the laminated body (C) The laminated body inspection apparatus (101, 102) according to any one of claims 2 to 5, and the lamination means (21, 22) based on an inspection result by the laminated body inspection apparatus (101, 102) Of the laminated position of the transmission member (c5) and the slit To provide a laminated body manufacturing apparatus characterized by comprising a stage control unit for controlling the slit position in (23) (24).
In the laminated body manufacturing apparatus according to the seventh aspect, since the inspection result of the laminated body (C) is fed back to the laminating process, the laminated body (C) can be produced with stable quality.
Moreover, since the control of the laminated position of the transmission member (c5) and the slit position of the slit means (23) are performed based on the inspection result, stable quality can be ensured.
Further, if the pressure and temperature of the laminating means (21, 22) are controlled based on the inspection result, or the tension acting on the laminated body (C) is controlled by controlling the speed of the take-up means (26), Stable quality can be secured.
 本発明の積層体の検査方法および積層体検査装置によれば、1セットのカメラと照明および1つの画像解析装置により、補強板付きフラットケーブルやフレキシブル回路基板のような複数の導体・回路よりなる積層体に対する透過光を用いた検査を行うことが出来る。
 本発明の積層体製造装置によれば、1セットのカメラと照明および1つの画像解析装置により、品質を管理しながら積層体を製造することが出来る。
According to the laminate inspection method and laminate inspection apparatus of the present invention, a set of cameras, illumination, and an image analysis device are used to form a plurality of conductors / circuits such as a flat cable with a reinforcing plate and a flexible circuit board. An inspection using transmitted light to the laminate can be performed.
According to the laminate manufacturing apparatus of the present invention, a laminate can be manufactured while quality is controlled by one set of camera, illumination, and one image analysis apparatus.
実施例1に係る積層体検査装置を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram illustrating a laminate inspection apparatus according to a first embodiment. 実施例1に係る照明装置の上面図である。1 is a top view of a lighting device according to Embodiment 1. FIG. 実施例1に係る照明装置の上を走行する補強板付きフラットケーブルを示す上面図である。It is a top view which shows the flat cable with a reinforcement board which travels on the illuminating device which concerns on Example 1. FIG. 実施例1に係る積層体検査装置で撮影された画像の例示図である。FIG. 3 is an exemplary view of an image photographed by the laminate inspection apparatus according to Example 1. 実施例1に係る積層体検査装置における窓部および補強板の色の検出処理を示すフロー図である。It is a flowchart which shows the detection process of the color of the window part in a laminated body inspection apparatus which concerns on Example 1, and a reinforcement board. 実施例1に係る積層体検査装置におけるマージン及び補強板位置の検出処理を示すフロー図である。It is a flowchart which shows the detection process of the margin in a laminated body inspection apparatus which concerns on Example 1, and a reinforcement board position. 実施例1に係る積層体検査装置で計測される各位置を説明するための説明図である。It is explanatory drawing for demonstrating each position measured with the laminated body inspection apparatus which concerns on Example 1. FIG. 窓部と補強板の位置が交互に逆転する補強板付きフラットケーブルを実施例1に係る積層体検査装置で検査する状態を示す構成説明図である。It is composition explanatory drawing which shows the state which test | inspects the flat cable with a reinforcement board which the position of a window part and a reinforcement board alternately reverse with the laminated body inspection apparatus which concerns on Example 1. FIG. 実施例2に係る積層体検査装置を示す構成説明図である。FIG. 10 is a configuration explanatory view showing a laminate inspection apparatus according to Example 2. 実施例2に係る照明装置の上面図である。It is a top view of the illuminating device which concerns on Example 2. FIG. 実施例3に係る積層体製造装置における導体積層装置を示す構成説明図である。FIG. 10 is a configuration explanatory view showing a conductor laminating apparatus in a multilayer body manufacturing apparatus according to Example 3. 導体積層テープを示す上面図である。It is a top view which shows a conductor lamination tape. 実施例3に係る積層体製造装置における補強板積層・スリット装置を示す構成説明図である。FIG. 10 is a configuration explanatory view showing a reinforcing plate laminating / slit device in a laminated body manufacturing apparatus according to Example 3. 補強板積層テープを示す上面図である。It is a top view which shows a reinforcement board laminated tape. スリットされた補強板付きフラットケーブルを示す上面図である。It is a top view which shows the flat cable with the reinforcement board slit. 実施例5に係る照明装置の上面図である。FIG. 10 is a top view of a lighting device according to a fifth embodiment. 実施例5の照明装置の上を走行する補強板付きフラットケーブルを示す上面図である。It is a top view which shows the flat cable with a reinforcement board which drive | works on the illuminating device of Example 5. FIG. 実施例5に係る積層体検査装置で計測される各位置を説明するための説明図である。It is explanatory drawing for demonstrating each position measured with the laminated body inspection apparatus which concerns on Example 5. FIG. 実施例6に係る照明装置の上面図および正面図である。It is the upper side figure and front view of the illuminating device which concern on Example 6. FIG. 実施例6の照明装置の上を走行する補強板付きフラットケーブルを示す上面図である。It is a top view which shows the flat cable with a reinforcement board which drive | works on the illuminating device of Example 6. FIG. 実施例6に係る積層体検査装置で計測される各位置を説明するための説明図である。It is explanatory drawing for demonstrating each position measured with the laminated body inspection apparatus which concerns on Example 6. FIG.
 以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
-実施例1-
 図1は、実施例1に係る積層体検査装置101の構成説明図である。
 この積層体検査装置101は、例えば10m/minでy方向に走行している補強板付きフラットケーブルCの下面側から補強板付きフラットケーブルCに光を当てるための照明装置1と、補強板付きフラットケーブルCの上面側から補強板付きフラットケーブルCを撮影するカメラ2と、カメラ2で撮影した画像に基づいてマージン及び補強板位置を得る中央制御装置3と、補強板付きフラットケーブルCの窓部c4を検知する上側センサ4と、補強板付きフラットケーブルCの補強板c5の色を検知する下側センサ5と、照明装置1を制御する照明制御装置6とを具備している。
-Example 1-
FIG. 1 is a configuration explanatory diagram of a laminate inspection apparatus 101 according to the first embodiment.
The laminated body inspection apparatus 101 includes, for example, a lighting device 1 for applying light to the flat cable C with a reinforcing plate from the lower surface side of the flat cable C with a reinforcing plate traveling in the y direction at 10 m / min, and a reinforcing plate. The camera 2 that captures the flat cable C with the reinforcing plate from the upper surface side of the flat cable C, the central control device 3 that obtains the margin and the reinforcing plate position based on the image captured by the camera 2, and the window of the flat cable C with the reinforcing plate The upper sensor 4 for detecting the part c4, the lower sensor 5 for detecting the color of the reinforcing plate c5 of the flat cable C with the reinforcing plate, and the lighting control device 6 for controlling the lighting device 1 are provided.
 照明装置1は、光強度が均一な面光源1aと、面光源1aの光の一部領域を減光する減光板1bとからなる。 The illuminating device 1 includes a surface light source 1a having a uniform light intensity and a light reducing plate 1b for dimming a partial region of light from the surface light source 1a.
 カメラ2は、xy面を撮影するエリアセンサである。例えば30万画素のエリアセンサである。
 上側センサ4および下側センサ5は、反射型フォトセンサである。
The camera 2 is an area sensor that photographs the xy plane. For example, an area sensor with 300,000 pixels.
The upper sensor 4 and the lower sensor 5 are reflective photosensors.
 補強板付きフラットケーブルCは、平行な複数の導体(やダミー線や導波路)c1を絶縁体である下側ラミネートテープc2と上側ラミネートテープc3で挟んだ基本構造である。上側ラミネートテープc3は不連続であり、所定箇所に窓部c4が設けてある。また、窓部c4の部分を補強するための補強板c5が下側ラミネートテープc2に貼り付けてある。
 具体例を示すと、補強板付きフラットケーブルCの幅は20mmから60mm、部材c1の数は20本から80本、窓部c4の長さは8mmから30mm、補強板c5の色は「白」か「青」など色付き、補強板c5の長さは10mmから30mm、補強板c5の厚さは色「白」のものが60μm、色「青」のものが250μmなど設計により各種ある。
The flat cable C with a reinforcing plate has a basic structure in which a plurality of parallel conductors (or dummy wires and waveguides) c1 are sandwiched between a lower laminating tape c2 and an upper laminating tape c3 that are insulators. The upper laminate tape c3 is discontinuous, and a window portion c4 is provided at a predetermined location. Further, a reinforcing plate c5 for reinforcing the window c4 is attached to the lower laminate tape c2.
For example, the width of the flat cable C with a reinforcing plate is 20 to 60 mm, the number of members c1 is 20 to 80, the length of the window portion c4 is 8 to 30 mm, and the color of the reinforcing plate c5 is “white”. Or the color of the reinforcing plate c5 is 10 to 30 mm, the thickness of the reinforcing plate c5 is 60 μm for the color “white”, and 250 μm for the color “blue”.
 図2は、照明装置1の上面図である。
 減光板1bは、十字形のスリット1sを有している。このスリット1sを通る光の強度は面光源1aから出る光の強度であり、これを第1の光強度と呼ぶ。一方、スリット1s部分を除く減光板1bの部分1rを通る光の強度は面光源1aから出る光を減衰させた強度であり、これを第2の光強度と呼ぶ。
FIG. 2 is a top view of the lighting device 1.
The light reducing plate 1b has a cross-shaped slit 1s. The intensity of light passing through the slit 1s is the intensity of light emitted from the surface light source 1a, which is referred to as first light intensity. On the other hand, the intensity of the light passing through the portion 1r of the light reducing plate 1b excluding the slit 1s portion is an intensity obtained by attenuating the light emitted from the surface light source 1a, and this is called the second light intensity.
 図3は、照明装置1の上を補強板付きフラットケーブルCの窓部c4が通過している瞬間を示している。
 この時、スリット1sを通る光すなわち第1の光強度の光は、窓部c4のy方向長さの中央位置で補強板付きフラットケーブルCの最外側の導体c1の影を作りうるようにx方向の帯状領域で補強板付きフラットケーブルCを透過すると共に補強板c5の影を作りうるように窓部c4のx方向幅の中央付近の導体c1が無い位置でy方向に補強板c5のy方向長さより長い帯状領域で補強板付きフラットケーブルCを透過する。一方、スリット1s部分を除く減光板1bの部分1rを通る光すなわち第2の光強度の光は、補強板付きフラットケーブルCのエッジcEの影を作りうるように窓部c4のy方向外側で且つ窓部c4の近傍で且つ補強板付きフラットケーブルCのエッジ周辺に相当する領域で補強板付きフラットケーブルCを透過する。
FIG. 3 shows the moment when the window part c4 of the flat cable C with a reinforcing plate passes over the lighting device 1.
At this time, the light passing through the slit 1 s, that is, the light having the first light intensity is x so that the shadow of the outermost conductor c <b> 1 of the flat cable C with the reinforcing plate can be made at the center position of the length in the y direction of the window c <b> 4. Y of the reinforcing plate c5 in the y direction at a position where there is no conductor c1 near the center of the width in the x direction of the window portion c4 so that the flat cable C with the reinforcing plate can pass through the belt-shaped region in the direction and the shadow of the reinforcing plate c5 can be made. The flat cable C with a reinforcing plate is transmitted through a belt-like region longer than the direction length. On the other hand, the light passing through the portion 1r of the light reducing plate 1b excluding the slit 1s portion, that is, the light having the second light intensity, is formed on the outer side in the y direction of the window portion c4 so as to make a shadow of the edge cE of the flat cable C with the reinforcing plate. In addition, the flat cable C with the reinforcing plate is transmitted through a region corresponding to the vicinity of the edge of the flat cable C with the reinforcing plate near the window portion c4.
 図4は、カメラ2で得られた画像の具体例である。
 スリット1sを通る光すなわち第1の光強度の光は、導体c1の影および補強板c5の影を明確に作っている。このため、導体c1の位置および補強板c5の位置は正確に読み取れる。しかし、窓部c4における補強板付きフラットケーブルCのエッジcEの影は不明確である。これは、補強板付きフラットケーブルCのエッジcEの影を明確に作るのには、第1の光強度が強すぎるからである。
 一方、スリット1s部分を除く減光板1bの部分1rを通る光すなわち第2の光強度の光は、補強板付きフラットケーブルCのエッジcEの影を明確に作っている。このため、エッジcEの位置を正確に読み取れる。しかし、導体c1の影および補強板c5の影は不明確である。これは、導体c1の影および補強板c5の影を明確に作るのには、第2の光強度が弱すぎるからである。
 従って、導体c1の影および補強板c5の影を明確に作り且つ補強板付きフラットケーブルCのエッジcEの影を明確に作るためには、第1の光強度および第2の光強度の両方が必要である。
FIG. 4 is a specific example of an image obtained by the camera 2.
The light passing through the slit 1s, that is, the light having the first light intensity clearly forms the shadow of the conductor c1 and the shadow of the reinforcing plate c5. For this reason, the position of the conductor c1 and the position of the reinforcing plate c5 can be read accurately. However, the shadow of the edge cE of the flat cable C with a reinforcing plate in the window part c4 is unclear. This is because the first light intensity is too strong to clearly make the shadow of the edge cE of the flat cable C with a reinforcing plate.
On the other hand, the light passing through the portion 1r of the light reducing plate 1b excluding the slit 1s portion, that is, the light having the second light intensity, clearly forms a shadow of the edge cE of the flat cable C with the reinforcing plate. For this reason, the position of the edge cE can be read accurately. However, the shadow of the conductor c1 and the shadow of the reinforcing plate c5 are unclear. This is because the second light intensity is too weak to clearly create the shadow of the conductor c1 and the shadow of the reinforcing plate c5.
Therefore, in order to make the shadow of the conductor c1 and the shadow of the reinforcing plate c5 clearly and the shadow of the edge cE of the flat cable C with the reinforcing plate, both the first light intensity and the second light intensity are is necessary.
 図5は、中央制御装置3で実行される窓部および補強板の色の検出処理を示すフロー図である。
 ステップR1では、上側センサ4の下に窓部c4が来たか否かをチェックし、来たならステップR2へ進む。
 ステップR2では、カメラ2による撮影タイミングを設定する。この撮影タイミングは、例えば「(上側センサ4とカメラ2のy方向距離)+(窓部c4のy方向長さの半分)」/「補強板付きフラットケーブルCの走行速度」だけ現時刻から経過後の時刻である。
 ステップR3では、下側センサ5により補強板5の色を検知する。補強板5の色は、例えば「白」または「青」の2種類である。
 ステップR4では、補強板5の色に応じた照明強度を照明制御装置6に指示する。補強板5の色により透過度が異なるからである。例えば補強板5が「白」ならば「青」のときよりも透過度が高いので低い照明強度を指示し、「青」ならば「白」のときよりも透過度が低いので高い照明強度を指示する。照明制御装置6は、指示に応じて面光源1aの光強度を制御する。
 そして、次の窓部c4を処理するため、ステップR1に戻る。
FIG. 5 is a flowchart showing the color detection processing of the window portion and the reinforcing plate executed in the central control device 3.
In step R1, it is checked whether or not the window part c4 has come under the upper sensor 4. If it has come, the process proceeds to step R2.
In step R2, the shooting timing by the camera 2 is set. This shooting timing is, for example, “(distance in the y direction between the upper sensor 4 and the camera 2) + (half the y direction length of the window portion c4)” / “the traveling speed of the flat cable C with the reinforcing plate” from the current time. It is a later time.
In step R <b> 3, the lower sensor 5 detects the color of the reinforcing plate 5. The color of the reinforcing plate 5 is, for example, two types of “white” or “blue”.
In step R <b> 4, the illumination control device 6 is instructed with the illumination intensity corresponding to the color of the reinforcing plate 5. This is because the transmittance varies depending on the color of the reinforcing plate 5. For example, if the reinforcing plate 5 is “white”, the transmittance is higher than when it is “blue”, so a low illumination intensity is indicated. If it is “blue”, the transmittance is lower than when it is “white”, so a high illumination intensity is indicated. Instruct. The illumination control device 6 controls the light intensity of the surface light source 1a according to the instruction.
And in order to process the next window part c4, it returns to step R1.
 図6は、中央制御装置3で実行されるマージン及び補強板位置の検出処理を示すフロー図である。なお、この処理は、図5の処理と並行して実行される。
 ステップS1では、カメラ2による撮影タイミングになったか否かをチェックし、なったならステップS2へ進む。
 ステップS2では、カメラ2により撮影し、図4に示す如き画像を取得する。
FIG. 6 is a flowchart showing a margin and reinforcing plate position detection process executed by the central controller 3. This process is executed in parallel with the process of FIG.
In step S1, it is checked whether or not it is time to shoot with the camera 2, and if so, the process proceeds to step S2.
In step S2, the image is taken by the camera 2 and an image as shown in FIG. 4 is acquired.
 ステップS3では、画像を解析し、図7に示す各計測値e11,e12,e13,e14,e21,e22,e23,e24,a1,a2,wを得る。前記各計測値の境界となる座標は、図4の画像のある範囲、例えば10~100画素の範囲において、輝度値に関して微分処理し、微分値が発生する座標の連続的に隣接する座標を境界として中央制御装置3で解析することにより得られる。
 e11:座標原点Oに近い側のエッジcEの直線y=y1上におけるx座標である。y1は、窓部c4よりも座標原点Oに近い側であって且つエッジcEの影が明確になるであろうと予測される位置のy座標である。
 e12:座標原点Oに近い側のエッジcEの直線y=y1上におけるx座標である。y2は、窓部c4よりも座標原点Oから遠い側であって且つエッジcEの影が明確になるであろうと予測される位置のy座標である。
 e13:最も座標原点Oに近い導体c1の座標原点Oに近い側の端縁の直線y=y3上におけるx座標である。y3は、窓部c4において導体c1の影が明確になるであろうと予測される位置のy座標である。
 e14:最も座標原点Oに近い導体c1の座標原点Oから遠い側の端縁の直線y=y3上におけるx座標である。
 e21:座標原点Oから遠い側のエッジcEの直線y=y1上におけるx座標である。
 e22:座標原点Oから遠い側のエッジcEの直線y=y2上におけるx座標である。
 e23:最も座標原点Oから遠い導体c1の座標原点Oに近い側の端縁の直線y=y3上におけるx座標である。
 e24:最も座標原点Oから遠い導体c1の座標原点Oから遠い側の端縁の直線y=y3上におけるx座標である。
 a1:座標原点Oに近い側の補強板c5の端縁と座標原点Oに近い側の窓部c4の端縁の直線x=x1上における距離である。x1は、上側ラミネートテープc3の影および補強板c5の影が明確になるであろうと予測される位置のx座標である。
 a2:座標原点Oから遠い側の補強板c5の端縁と座標原点Oから遠い側の窓部c4の端縁の直線x=x1上における距離である。
 w:窓部c4の直線x=x1上における幅である。
In step S3, the image is analyzed, and the measured values e11, e12, e13, e14, e21, e22, e23, e24, a1, a2, w shown in FIG. 7 are obtained. The coordinates serving as the boundaries of the measurement values are differentiated with respect to the luminance values in a certain range of the image of FIG. 4, for example, a range of 10 to 100 pixels, and the coordinates adjacent to the coordinates where the differential values are generated are defined as the boundaries. Is obtained by analysis by the central controller 3.
e11: The x coordinate on the straight line y = y1 of the edge cE closer to the coordinate origin O. y1 is a y-coordinate of a position that is closer to the coordinate origin O than the window part c4 and is predicted that the shadow of the edge cE will be clear.
e12: The x coordinate on the straight line y = y1 of the edge cE closer to the coordinate origin O. y2 is a y-coordinate of a position that is farther from the coordinate origin O than the window c4 and is predicted to have a shadow of the edge cE.
e13: The x coordinate on the straight line y = y3 of the edge of the conductor c1 closest to the coordinate origin O on the side close to the coordinate origin O. y3 is the y coordinate of the position where the shadow of the conductor c1 is predicted to be clear in the window part c4.
e14: The x coordinate on the straight line y = y3 of the edge farthest from the coordinate origin O of the conductor c1 closest to the coordinate origin O.
e21: x coordinate on the straight line y = y1 of the edge cE far from the coordinate origin O.
e22: The x coordinate on the straight line y = y2 of the edge cE far from the coordinate origin O.
e23: The x coordinate on the straight line y = y3 of the edge of the conductor c1 farthest from the coordinate origin O on the side close to the coordinate origin O.
e24: x coordinate on the straight line y = y3 of the edge farthest from the coordinate origin O of the conductor c1 farthest from the coordinate origin O.
a1: A distance on the straight line x = x1 between the edge of the reinforcing plate c5 near the coordinate origin O and the edge of the window c4 near the coordinate origin O. x1 is the x coordinate of the position where the shadow of the upper laminate tape c3 and the shadow of the reinforcing plate c5 are predicted to be clear.
a2: Distance on the straight line x = x1 between the edge of the reinforcing plate c5 far from the coordinate origin O and the edge of the window c4 far from the coordinate origin O.
w: The width of the window part c4 on the straight line x = x1.
 ステップS4では、マージンb1,b2を計算する。
 b1=(-e11-e12+e13+e14)/2
 b2=(-e21-e22+e23+e24)/2
 マージンb1,b2の規定値は、例えば2.5mmである。
In step S4, margins b1 and b2 are calculated.
b1 = (− e11−e12 + e13 + e14) / 2
b2 = (− e21−e22 + e23 + e24) / 2
The specified value of the margins b1 and b2 is, for example, 2.5 mm.
 ステップS5では、マージンb1,b2及び計測値a1,a2,wを記憶装置や表示装置やプリンタに出力する。
 そして、次の窓部c4を処理するため、ステップS1に戻る。
 この場合、カメラのX,Y軸と積層体(C)のX,Y軸をあらかじめ合わせておく必要がる。また各座標は二次元カメラを使用する場合は、例えばe11を求めるためにy1の1点で測定するのではなくy1の近傍のある範囲(10から100画素)での平均値を取ることで測定精度を大幅に改善できる。他の位置も同様に範囲を決めて測定し平均化を図ることが好ましい。
In step S5, the margins b1, b2 and the measured values a1, a2, w are output to a storage device, a display device, and a printer.
And in order to process the next window part c4, it returns to step S1.
In this case, the X and Y axes of the camera and the X and Y axes of the laminate (C) must be aligned in advance. In addition, when using a two-dimensional camera, each coordinate is measured by taking an average value in a certain range (10 to 100 pixels) in the vicinity of y1 instead of measuring at one point y1 to obtain e11, for example. The accuracy can be greatly improved. It is preferable that the other positions are similarly measured and averaged by determining the range.
 図8に示すように、積層体検査装置101により、窓部c4と補強板c5の位置が交互に逆転する補強板付きフラットケーブルC’のマージンおよび補強版位置を検査することも可能である。
 この場合、上側センサ4は窓部c4毎に交互に窓部センサとして機能したり補強板センサとして機能し、下側センサ5は上側センサ4が窓部センサとして機能する時は補強板センサとして機能し、上側センサ4が補強板センサとして機能する時は窓部センサとして機能する。
 なお、上側ラミネートテープc3と同様に、下側ラミネートテープc2’にも所定箇所に窓部c4が設けてある。
As shown in FIG. 8, it is also possible to inspect the margin and the reinforcing plate position of the flat cable C ′ with reinforcing plate in which the positions of the window portion c4 and the reinforcing plate c5 are alternately reversed by the laminate inspection apparatus 101.
In this case, the upper sensor 4 alternately functions as a window sensor or a reinforcing plate sensor for each window c4, and the lower sensor 5 functions as a reinforcing plate sensor when the upper sensor 4 functions as a window sensor. When the upper sensor 4 functions as a reinforcing plate sensor, it functions as a window sensor.
Similar to the upper laminating tape c3, the lower laminating tape c2 ′ is also provided with windows c4 at predetermined positions.
 実施例1の積層体検査装置101によれば、走行している補強板付きフラットケーブルC,C’のマージンb1,b2及び補強板位置{a1,a2,w}の検出を、1セットのカメラと照明および1つの画像解析装置により行うことが出来る。 According to the laminate inspection apparatus 101 of the first embodiment, the detection of the margins b1, b2 and the reinforcing plate positions {a1, a2, w} of the running flat cables C, C ′ with reinforcing plates is performed by one set of cameras. And illumination and one image analysis device.
-実施例2-
 図9は、実施例2に係る積層体検査装置102の構成説明図である。
 この積層体検査装置102では、発光面の部分によって異なる光強度としうる照明装置1’を用いている点が特徴である。
-Example 2-
FIG. 9 is an explanatory diagram of a configuration of the laminate inspection apparatus 102 according to the second embodiment.
This laminate inspection apparatus 102 is characterized in that it uses an illuminating device 1 ′ that can have different light intensities depending on the portion of the light emitting surface.
 図10に示すように、照明装置1’は多数のLED1cを2次元マトリクス配列したものである。
 中央制御装置3’および照明制御装置6’は、図2の十字形のスリット1sの部分に相当するLED1cを第1の光強度とし、スリット1s以外の部分1rに相当するLED1cを第2の光強度とする。
As shown in FIG. 10, the illuminating device 1 ′ has a number of LEDs 1c arranged in a two-dimensional matrix.
The central control device 3 ′ and the illumination control device 6 ′ use the LED 1c corresponding to the cross-shaped slit 1s in FIG. 2 as the first light intensity, and the LED 1c corresponding to the portion 1r other than the slit 1s as the second light. Strength.
 実施例2の積層体検査装置102によれば、発光した光を減光して光強度を調整する場合に比べて、発光電力を節減することが出来る。 According to the laminate inspection apparatus 102 of Example 2, light emission power can be reduced as compared with a case where light intensity is adjusted by dimming emitted light.
-実施例3-
 図11は、実施例3に係る積層体製造装置における導体積層装置201を示す説明図である。
 この導体積層装置201では、下側絶縁テープ供給装置11から下側絶縁テープc2’wが供給され、上側絶縁テープ供給装置12から上側絶縁テープc3wが供給され、それら下側絶縁テープc2’wと上側絶縁テープc3wの間に導体供給装置から平行な複数の導体c1が供給され、加圧や加熱プレスなどにより一体的に積層する積層手段である第1加熱ロール13と第2加熱ロール14で加熱されつつ圧縮され、導体積層テープc’wが形成され、引取手段16により引き出され、導体積層テープ巻取装置15に巻き取られる。
-Example 3-
FIG. 11 is an explanatory diagram illustrating a conductor laminating apparatus 201 in the multilayer body manufacturing apparatus according to the third embodiment.
In this conductor laminating device 201, the lower insulating tape c2′w is supplied from the lower insulating tape supply device 11, the upper insulating tape c3w is supplied from the upper insulating tape supply device 12, and the lower insulating tape c2′w A plurality of parallel conductors c1 are supplied from the conductor supply device between the upper insulating tapes c3w and heated by the first heating roll 13 and the second heating roll 14 which are lamination means for integrally laminating by pressing, heating press or the like. The conductor laminated tape c′w is formed while being compressed, drawn out by the take-up means 16, and taken up by the conductor laminated tape winding device 15.
 図12は、導体積層テープc’wの上面図である。
 下側絶縁テープc2’wには、所定箇所に窓部c4wが設けてある。
 上側絶縁テープc3wにも、所定箇所に窓部c4wが設けてある。
FIG. 12 is a top view of the conductor laminated tape c′w.
The lower insulating tape c2′w is provided with a window portion c4w at a predetermined location.
The upper insulating tape c3w is also provided with a window portion c4w at a predetermined location.
 図13は、実施例3に係る積層体製造装置における補強板積層・スリット装置202を示す説明図である。
 この補強板積層・スリット装置202では、導体積層テープ供給装置から導体積層テープc’wが供給され、反射型フォトセンサを用いた窓部センサ20により下側絶縁テープc2’wの窓部c4wと上側絶縁テープc3wの窓部c4wが検出され、その検出タイミングと導体積層テープc’wの走行速度とに基づいて第1補強板貼り機21で下側絶縁テープc2’wの窓部c4wに補強板c5wが貼付けにより積層されると共に第2補強板貼り機22で上側絶縁テープc3wの窓部c4wに補強板c5wが貼付けにより積層され、補強板積層テープC’wが形成される。
 図14は、補強板積層テープC’wの上面図である。
FIG. 13 is an explanatory diagram showing a reinforcing plate laminating / slit device 202 in the laminated body manufacturing apparatus according to the third embodiment.
In the reinforcing plate laminating / slit device 202, the conductor laminated tape c′w is supplied from the conductor laminated tape supply device, and the window part c4w of the lower insulating tape c2′w is formed by the window sensor 20 using a reflective photosensor. The window part c4w of the upper insulating tape c3w is detected, and the first reinforcing plate sticking machine 21 reinforces the window part c4w of the lower insulating tape c2'w based on the detection timing and the traveling speed of the conductor laminated tape c'w. The plate c5w is laminated by pasting, and the reinforcing plate c5w is laminated by pasting on the window portion c4w of the upper insulating tape c3w by the second reinforcing plate pasting machine 22 to form the reinforcing plate laminated tape C′w.
FIG. 14 is a top view of the reinforcing plate laminated tape C′w.
 図13に戻り、補強板積層テープC’wは、スリット機23で耳縁部と1本ずつの補強板付きフラットケーブルC’とに切り分けられ、引取手段26により引き出され、積層体巻取装置25に巻き取られる。
 図15は、耳縁部Eと補強板付きフラットケーブルC’の上面図である。
 耳縁部Eは捨てられる。
 補強板付きフラットケーブルC’は、図8に示したものである。
Returning to FIG. 13, the reinforcing plate laminated tape C′w is cut by the slitting machine 23 into the ear edge portion and one flat cable C ′ with the reinforcing plate and pulled out by the take-up means 26, and the laminated body winding device 25 is wound up.
FIG. 15 is a top view of the ear edge E and the flat cable C ′ with a reinforcing plate.
Ear edge E is discarded.
A flat cable C ′ with a reinforcing plate is shown in FIG.
 積層体検査装置101は、1本ずつの補強板付きフラットケーブルC’毎に設けられており、各補強板付きフラットケーブルC’のマージン及び補強板位置を検査する。 The laminate inspection apparatus 101 is provided for each flat cable C ′ with reinforcing plate, and inspects the margin and the position of the reinforcing plate of each flat cable C ′ with reinforcing plate.
 補強板積層機・スリット機制御装置24は、1台の積層体検査装置101での検査結果に基づいて、第1補強板貼り機21での補強板c5wの貼付けタイミングおよび第2補強板貼り機22での補強板c5wの貼付けタイミングおよびスリット機23でのスリット刃位置を制御し、補強板付きフラットケーブルC’のマージン及び補強板位置が一定の品質から外れないように制御する。
 スリット機としては、炭酸ガスレーザなどのレーザによりスリットする装置も可能である。この場合は、レーザの照射位置を制御する。
The reinforcing plate laminating machine / slit machine control device 24 is based on the inspection result of one laminated body inspection device 101, and the timing of attaching the reinforcing plate c5w in the first reinforcing plate attaching machine 21 and the second reinforcing plate attaching machine. The timing of attaching the reinforcing plate c5w at 22 and the position of the slit blade at the slitting machine 23 are controlled so that the margin of the flat cable C ′ with reinforcing plate and the position of the reinforcing plate do not deviate from a certain quality.
As the slitting machine, an apparatus for slitting with a laser such as a carbon dioxide laser is also possible. In this case, the laser irradiation position is controlled.
 各補強板付きフラットケーブルC’は、巻き取り機25にそれぞれ巻き取られる。 Each flat cable C ′ with a reinforcing plate is wound around the winder 25.
 実施例3の積層体製造装置(=導体積層装置201+補強板積層・スリット装置202)によれば、1セットのカメラ2と照明1および1つの画像解析装置3により、品質を管理しながら補強板付きフラットケーブルC’を製造することが出来る。 According to the laminated body manufacturing apparatus (= conductor laminating apparatus 201 + reinforcing plate laminating / slit apparatus 202) of the third embodiment, the reinforcing plate is managed while controlling the quality by one set of camera 2, illumination 1, and one image analyzing apparatus 3. The attached flat cable C ′ can be manufactured.
 なお、この後、補強板付きフラットケーブルC,C’は、窓部c4の中央で切断され、実使用される単位に分割される。そして、窓部c4の切断された部分が機器のコネクタに差し込まれる。この時の差し込みを円滑に行えるように且つ導体c1がコネクタの接点に適正に重なるように、マージンおよび補強板位置の管理が必要となる。 After this, the flat cables C and C ′ with reinforcing plates are cut at the center of the window portion c4 and divided into units that are actually used. And the part by which the window part c4 was cut | disconnected is inserted in the connector of an apparatus. It is necessary to manage the margin and the position of the reinforcing plate so that the insertion at this time can be performed smoothly and the conductor c1 properly overlaps the contact of the connector.
-実施例4-
 窓部c4と窓部c4の間に導体c1しかない補強板付きフラットケーブルC,C’以外にも、例えば窓部c4と窓部c4の間に回路部品を搭載したフレキシブル回路基板にも、補強板付きフラットケーブルC,C’と同様に本発明を適用しうる。
 すなわち、補強板付きフラットケーブルC,C’と同様の理由によりマージンおよび補強板位置の管理が必要な積層体の検査および製造にも本発明を適用しうる。
-Example 4-
In addition to the flat cables C and C ′ with a reinforcing plate having only the conductor c1 between the window part c4 and the window part c4, for example, a flexible circuit board having circuit components mounted between the window part c4 and the window part c4 is also reinforced. The present invention can be applied similarly to the flat cables C and C ′ with a plate.
That is, the present invention can also be applied to inspection and manufacture of a laminate that requires management of margin and reinforcing plate position for the same reason as the flat cables C and C ′ with reinforcing plate.
-実施例5-
 図16は、実施例5に係る照明装置1”の上面図である。
 減光板1b”は、四角形のスリット1s”を有している。このスリット1s”を通る光の強度は面光源1aから出る光の強度であり、これが第1の光強度となる。一方、スリット1s”部分を囲む減光板1b”の部分1r”を通る光の強度は面光源1aから出る光を減衰させた強度であり、これが第2の光強度となる。
-Example 5
FIG. 16 is a top view of the lighting apparatus 1 ″ according to the fifth embodiment.
The light reducing plate 1b ″ has a rectangular slit 1s ″. The intensity of the light passing through the slit 1s ″ is the intensity of the light emitted from the surface light source 1a, which is the first light intensity. On the other hand, the intensity of the light passing through the portion 1r ″ of the light reducing plate 1b ″ surrounding the slit 1s ″ portion. The intensity is an intensity obtained by attenuating the light emitted from the surface light source 1a, and this becomes the second light intensity.
 図17は、照明装置1”の上を補強板付きフラットケーブルCの窓部c4が通過している瞬間を示している。
 スリット1s”のy方向サイズDyは、スリット1s”を通る光すなわち第1の光強度の光が補強板c5の影を作りうるように、補強板c5のy方向長さAに対して、Dy>Aになっている。
 スリット1s”のx方向サイズDxは、スリット1s”を通る光すなわち第1の光強度の光が窓部c4のy方向長さの中央位置で補強板付きフラットケーブルCの最外側の導体c1の影を作りうるように、補強板付きフラットケーブルCの幅Bに対して、Dx≧Bになっている。
 減光板1b”のy方向長さLyは、スリット1s”のy方向サイズDyより2mm以上大きい。
 減光板1b”のx方向長さLxは、スリット1s”のx方向サイズDxより3mm以上大きい。
FIG. 17 shows the moment when the window c4 of the flat cable C with a reinforcing plate passes over the lighting device 1 ″.
The y-direction size Dy of the slit 1s ″ is Dy with respect to the y-direction length A of the reinforcing plate c5 so that the light passing through the slit 1s ″, that is, the light of the first light intensity can make a shadow of the reinforcing plate c5. > A.
The size Dx in the x direction of the slit 1s ″ is such that the light passing through the slit 1s ″, that is, the light having the first light intensity, is at the center position of the length in the y direction of the window portion c4 and the outermost conductor c1 of the flat cable C with a reinforcing plate. In order to make a shadow, Dx ≧ B with respect to the width B of the flat cable C with the reinforcing plate.
The y-direction length Ly of the light reducing plate 1b ″ is 2 mm or more larger than the y-direction size Dy of the slit 1s ″.
The x-direction length Lx of the dimming plate 1b ″ is 3 mm or more larger than the x-direction size Dx of the slit 1s ″.
 数値例を示すと、A=8mm~40mm,B=4mm~20mm,Dy=10mm~90mm,Dx=5mm~90mm,Ly=12mm~150mm,Lx=8mm~150mmである。 As numerical examples, A = 8 mm to 40 mm, B = 4 mm to 20 mm, Dy = 10 mm to 90 mm, Dx = 5 mm to 90 mm, Ly = 12 mm to 150 mm, Lx = 8 mm to 150 mm.
 図18に示すように、各計測値e11,e12,e13,e14,e21,e22,e23,e24,a1,a2,wを得る。
 図18は、図7において計測値e11,e21を得るための座標y1を座標y4とし、計測値e12,e22を得るための座標y2を座標y5としている以外は、図7と同様である。
 座標y4,y5は、スリット1s”部分を囲む減光板1b”の部分1r”すなわち第2の光強度の部分に対応するように設定する。
As shown in FIG. 18, each measured value e11, e12, e13, e14, e21, e22, e23, e24, a1, a2, w is obtained.
FIG. 18 is the same as FIG. 7 except that the coordinate y1 for obtaining the measured values e11 and e21 in FIG. 7 is the coordinate y4 and the coordinate y2 for obtaining the measured values e12 and e22 is the coordinate y5.
The coordinates y4 and y5 are set so as to correspond to the portion 1r ″ of the light reducing plate 1b ″ surrounding the slit 1s ″ portion, that is, the second light intensity portion.
 図2に示す照明装置1を用いると、図7に示すように、窓部c4の近傍の座標y1,y2で計測値e11,e21,e12,e22を得られるので、窓部c4の近傍でのエッジcE位置を正確に割り出せる利点がある。しかし、補強板付きフラットケーブルCの幅Bが例えば20mm以下になると、スリット1sを形成するための加工が難しくなり、またスリット1sを幅Bより狭くすることで第1の光強度の光が光量不足となり明確な影が現れにくい、また明確な影となる十分な光量を得るためにできるだけ広いスリット幅にすると補強板付きフラットケーブルCが蛇行した場合、第1の光強度の光が回り込み窓部c4の近傍でのテープエッジcEが正確に検出できない欠点がある。
 これに対して、図16に示す照明装置1”を用いると、図18に示すように、窓部c4からやや離れた座標y4,y5で計測値e11,e21,e12,e22を得るので、窓部c4の近傍でのエッジcE位置を割り出す正確さが少し下がる欠点がある。しかし、補強板付きフラットケーブルCの幅Bが例えば20mm以下になっても、スリット1s”を容易に形成でき、フラットケーブルCが蛇行しても第1光強度の回り込みの影響が無く安定して検出できる利点がある。
When the illumination device 1 shown in FIG. 2 is used, measurement values e11, e21, e12, e22 can be obtained at coordinates y1, y2 in the vicinity of the window c4, as shown in FIG. There is an advantage that the edge cE position can be accurately determined. However, when the width B of the flat cable C with a reinforcing plate is, for example, 20 mm or less, processing for forming the slit 1s becomes difficult, and the light with the first light intensity is reduced by making the slit 1s narrower than the width B. If the flat cable C with the reinforcing plate meanders when the slit width is made as wide as possible in order to obtain a sufficient amount of light to produce a clear shadow, the first light intensity light will wrap around the window portion. There is a drawback that the tape edge cE in the vicinity of c4 cannot be accurately detected.
On the other hand, when the illumination device 1 ″ shown in FIG. 16 is used, the measured values e11, e21, e12, e22 are obtained at coordinates y4, y5 slightly apart from the window c4 as shown in FIG. There is a drawback that the accuracy of determining the position of the edge cE in the vicinity of the portion c4 is slightly lowered. However, even if the width B of the flat cable C with the reinforcing plate is 20 mm or less, the slit 1s ″ can be easily formed, and the flat Even if the cable C meanders, there is an advantage that it can be stably detected without being influenced by the first light intensity.
-実施例6-
 図19の(a)は、実施例6に係る照明装置1-1の上面図である。図19の(b)は、同正面図である。
 この照明装置1-1は、面光源1aに減光板1b-1を取り付けたものである。
 減光板1b-1は、光透過性ベース板1s-1に光不透過性部材1r-1,1r-1を取り付けたものである。
-Example 6-
FIG. 19A is a top view of the lighting device 1-1 according to the sixth embodiment. FIG. 19B is a front view of the same.
This illuminating device 1-1 is obtained by attaching a dimming plate 1b-1 to a surface light source 1a.
The light-reducing plate 1b-1 is obtained by attaching light-impermeable members 1r-1 and 1r-1 to a light-transmissive base plate 1s-1.
 図20は、照明装置1-1の上を補強板付きフラットケーブルCの窓部c4が通過している瞬間を示している。 FIG. 20 shows the moment when the window part c4 of the flat cable C with a reinforcing plate passes over the lighting device 1-1.
 図21に示すように、実施例5と同様に各計測値e11,e12,e13,e14,e21,e22,e23,e24,a1,a2,wを得る。
 計測値e13,e14,e23,e24,a1,a2,wを得るときの光強度は、第1の光強度であり、光不透過性部材1r-1,1r-1の影響を受けない。
 一方、計測値e11,e12,e21,e22を得るときの光強度は、第2の光強度であり、光不透過性部材1r-1,1r-1の影響を受け、第1の光強度よりも減衰した光強度となる。
As shown in FIG. 21, the measurement values e11, e12, e13, e14, e21, e22, e23, e24, a1, a2, w are obtained in the same manner as in the fifth embodiment.
The light intensity when obtaining the measurement values e13, e14, e23, e24, a1, a2, w is the first light intensity and is not affected by the light-impermeable members 1r-1, 1r-1.
On the other hand, the light intensity when obtaining the measurement values e11, e12, e21, e22 is the second light intensity, and is affected by the light-impermeable members 1r-1, 1r-1, and is more than the first light intensity. Is also attenuated light intensity.
 図19に示す減光板1b-1は、スリットを設けないため製作しやすく、光不透過性部材1r-1,1r-1の幅Wyを例えば0.5mm以下にすることも可能になる。 The dimming plate 1b-1 shown in FIG. 19 is easy to manufacture because no slit is provided, and the width Wy of the light-impermeable members 1r-1, 1r-1 can be set to 0.5 mm or less, for example.
 本発明の積層体の検査方法、積層体検査装置および積層体製造装置は、補強板付きフレキシブルフラットケーブルやフレキシブル回路基板のような積層体の製造ラインにおける検査に利用することが出来る。 The laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus of the present invention can be used for inspection in a laminate production line such as a flexible flat cable with a reinforcing plate and a flexible circuit board.
 1,1’,1”  照明装置
 1a       面光源
 1b,1b”   減光板
 1c       LED
 1s,1s”   スリット
 2        カメラ
 3        中央制御装置
 4        上側センサ
 5        下側センサ
 6,6’     照明制御装置
 101,102  補強板付きフラットケーブルのマージン及び補強板位置検出装置
 201      導体積層装置
 202      補強板積層・スリット装置
 C,C’     補強板付きフラットケーブル
 c1       導体(やダミー線や導波路)
 c2,c2’   下側ラミネートテープ
 c3       上側ラミネートテープ
 c4       窓部
 c5       補強板
1, 1 ', 1 "Illumination device 1a Surface light source 1b, 1b" Dimming plate 1c LED
1 s, 1 s ″ slit 2 camera 3 central control device 4 upper sensor 5 lower sensor 6, 6 ′ illumination control device 101, 102 margin of flat cable with reinforcing plate and reinforcing plate position detecting device 201 conductor laminating device 202 reinforcing plate laminating / Slit device C, C 'Flat cable with reinforcing plate c1 Conductor (and dummy wire or waveguide)
c2, c2 'lower laminate tape c3 upper laminate tape c4 window c5 reinforcing plate

Claims (7)

  1.  第1の光強度の光を照射するための第1光強度部分(1s)および前記第1の光強度よりも弱い第2の光強度の光を照射するための第2光強度部分(1r)を有する照明手段を用いて、光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)および光を透過させうる透過部材(c5)の少なくとも一つを積層してなる積層体(C)の第1面側から光を照射して前記積層体(C)の第2面側へ前記第1の光強度の光により前記部材(c1,c5)の影を作ると共に前記第2の光強度の光により前記透過基材(c2,c3)のエッジ(cE)の影をつくり、前記部材(c1,c5)の影および前記エッジ(cE)の影に基づいて前記積層体(C)の構造の検査を行うことを特徴とする積層体の検査方法。 A first light intensity portion (1s) for irradiating light with a first light intensity and a second light intensity portion (1r) for irradiating light with a second light intensity weaker than the first light intensity The light transmitting means can be used to transmit the light to the transmissive base material (c2, c3) that does not transmit light, the semi-transmissive member (c1) that does not transmit light, and the light that can transmit light. Light having the first light intensity is irradiated to the second surface side of the laminate (C) by irradiating light from the first surface side of the laminate (C) formed by laminating at least one of the transmission members (c5). To make a shadow of the members (c1, c5), and make a shadow of the edge (cE) of the transparent base material (c2, c3) by the light of the second light intensity, thereby shadowing the members (c1, c5) And inspecting the structure of the laminate (C) based on the shadow of the edge (cE). Inspection method of a laminate characterized.
  2.  第1の光強度の光を照射するための第1光強度部分(1s)および前記第1の光強度よりも弱い第2の光強度の光を照射するための第2光強度部分(1r)を有し且つ光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)および光を透過させうる透過部材(c5)の少なくとも一つを積層してなる積層体(C)の第1面側から光を照射して前記積層体(C)の第2面側へ前記第1の光強度の光により前記部材(c1,c5)の影を作ると共に前記第2の光強度の光により前記透過基材(c2,c3)のエッジ(cE)の影をつくるための照明手段(1,1’)と、前記積層体(C)の構造の検査を行うために前記部材(c1,c5)の影および前記エッジ(cE)の影を解析する解析手段(3)とを具備することを特徴とする積層体検査装置(101,102)。 A first light intensity portion (1s) for irradiating light with a first light intensity and a second light intensity portion (1r) for irradiating light with a second light intensity weaker than the first light intensity A non-transmissive member (c1) that does not transmit light to a transmissive substrate (c2, c3) that can transmit light, a semi-transmissive member (c1) that does not easily transmit light, and a transmissive member that can transmit light (c5) ) By irradiating light from the first surface side of the multilayer body (C) formed by laminating at least one of the members (C) and the second surface side of the multilayer body (C) by the light having the first light intensity. illuminating means (1, 1 ′) for making a shadow of c1, c5) and making a shadow of an edge (cE) of the transmissive substrate (c2, c3) by the light of the second light intensity; shadow body shadow and the edge of the member in order to perform a structural inspection of (C) (c1, c5) (cE) The laminate inspection apparatus (101, 102), characterized by comprising analysis means (3) for analyzing the above.
  3.  請求項2に記載の積層体検査装置(101)において、前記照明手段(1)は、光強度が均一な面光源(1a)と、前記面光源(1a)の光から前記第1の光強度の第1光強度部分(1s)を作ると共に前記第2の光強度の第2光強度部分(1r)を作る減光板(1b)とからなることを特徴とする積層体検査装置(101)。 3. The laminate inspection apparatus (101) according to claim 2, wherein the illuminating means (1) includes a surface light source (1 a) having a uniform light intensity, and the first light intensity from light from the surface light source (1 a). And a dimming plate (1b) for making the second light intensity portion (1r) of the second light intensity and the first light intensity portion (1s).
  4.  請求項2に記載の積層体検査装置(102)において、前記照明手段(1’)は、発光面の部分領域によって異なる光強度で発光しうる照明装置からなることを特徴とする積層体検査装置(102)。 The laminate inspection apparatus (102) according to claim 2, wherein the illumination means (1 ') comprises an illumination device capable of emitting light with different light intensity depending on a partial region of the light emitting surface. (102).
  5.  請求項2から請求項4のいずれかに記載の積層体検査装置において、前記照明手段(1,1’)は、前記部材(c5)の透光性の違いに応じて光強度を変更しうる機能を有することを特徴とする積層体検査装置(101,102)。 5. The laminated body inspection apparatus according to claim 2, wherein the illumination unit (1, 1 ′) can change the light intensity according to a difference in translucency of the member (c 5). A laminate inspection apparatus (101, 102) characterized by having a function.
  6.  光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)および光を透過させうる透過部材(c5)の少なくとも一つを積層してなる積層体(C)を巻取る巻取手段(25)と、前記積層体(C)の巻取経路の途中に設置された請求項2から請求項5のいずれかに記載の積層体検査装置(101,102)とを具備したことを特徴とする積層体製造装置。 At least one of the non-transmissive member (c1) that does not transmit light to the transparent base materials (c2, c3) that can transmit light, the semi-transmissive member (c1) that does not easily transmit light, and the transparent member (c5) that can transmit light The winding means (25) which winds up the laminated body (C) which laminates two, and the installation in any one of Claims 2-5 installed in the middle of the winding path | route of the said laminated body (C). A laminate manufacturing apparatus comprising the laminate inspection apparatus (101, 102).
  7.  光を透過させうる透過基材(c2,c3)に光を透過させない不透過部材(c1)および光を透過させづらい半透過部材(c1)の少なくとも一方を積層した部材積層体(c’w)に光を透過しうる透過部材(c5)を積層する積層手段(21,22)と、前記積層手段(21,22)で積層した透過部材積層体(C’w)をスリットして積層体(C)を得るスリット手段(23)と、前記積層体(C)を巻取る巻取手段(25)と、前記積層体(C)の巻取経路の途中に設置された請求項2から請求項5のいずれかに記載の積層体検査装置(101,102)と、前記積層体検査装置(101,102)による検査結果に基づいて前記積層手段(21,22)での前記透過部材(c5)の積層位置の制御と前記スリット手段(23)でのスリット位置の制御を行う制御手段(24)とを具備したことを特徴とする積層体製造装置。 A member laminate (c′w) in which at least one of a non-transmissive member (c1) that does not transmit light and a semi-transmissive member (c1) that does not easily transmit light are stacked on the transmissive base material (c2, c3) that can transmit light. And laminating means (21, 22) for laminating a transmissive member (c5) capable of transmitting light, and a transmissive member laminated body (C'w) laminated by the laminating means (21, 22) by slitting the laminated body ( The slit means (23) for obtaining C), the winding means (25) for winding up the laminate (C), and the winding means (25) installed in the winding path of the laminate (C). 5 and the transmission member (c5) in the stacking means (21, 22) based on the inspection result by the stack inspection apparatus (101, 102). Control of the stacking position and the slit means (23) Laminate manufacturing apparatus characterized by comprising a control means (24) for controlling the slit positions.
PCT/JP2013/055038 2012-03-30 2013-02-27 Laminate inspection method, laminate inspection device and laminate manufacturing apparatus WO2013146023A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014507552A JP5840765B2 (en) 2012-03-30 2013-02-27 Laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus
PH12014502042A PH12014502042A1 (en) 2012-03-30 2014-09-15 Laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079868 2012-03-30
JP2012079868 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146023A1 true WO2013146023A1 (en) 2013-10-03

Family

ID=49074489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055038 WO2013146023A1 (en) 2012-03-30 2013-02-27 Laminate inspection method, laminate inspection device and laminate manufacturing apparatus

Country Status (4)

Country Link
JP (1) JP5840765B2 (en)
CN (2) CN203177806U (en)
PH (1) PH12014502042A1 (en)
WO (1) WO2013146023A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840765B2 (en) * 2012-03-30 2016-01-06 東京特殊電線株式会社 Laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus
CN104215182A (en) * 2014-09-09 2014-12-17 深圳市斯尔顿科技有限公司 Lithium battery winding layer border offset detecting method
CN104197841A (en) * 2014-09-09 2014-12-10 深圳市斯尔顿科技有限公司 Method for detecting boundaries of lithium battery winding layer
WO2018105489A1 (en) * 2016-12-06 2018-06-14 日本電気硝子株式会社 Belt-like glass film quality inspection method and glass roll
CN108362703A (en) * 2017-12-14 2018-08-03 北京木业邦科技有限公司 A kind of veneer detection method and detection device based on artificial intelligence
CN108180826B (en) * 2017-12-20 2023-12-22 深圳湾新科技有限公司 Detection equipment and detection method for boundary of lithium battery winding layer
DE102018108696B4 (en) 2018-04-12 2024-05-02 Ims Messsysteme Gmbh Arrangement and method for contactless determination of a dimension of a moving material web
CN113194668A (en) * 2021-03-17 2021-07-30 烟台运茂电子技术服务有限公司 PCB core lamination error fool-proofing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288313A (en) * 1985-06-14 1986-12-18 日立電線株式会社 Peeling detector for flat cable
JPH0668716A (en) * 1992-08-19 1994-03-11 Sumitomo Electric Ind Ltd Flat cable
JPH08122022A (en) * 1994-10-24 1996-05-17 Furukawa Electric Co Ltd:The Size measuring apparatus of flat cable
JP2000348552A (en) * 1999-06-07 2000-12-15 Hitachi Cable Ltd Method and device for trimming type wire
JP2001141662A (en) * 1999-11-18 2001-05-25 Central Glass Co Ltd Method and apparatus for detecting flaw of transparent plate-shaped object
JP2002075089A (en) * 2000-08-30 2002-03-15 Sony Chem Corp Inspection device for flexible flat cable
JP2009158369A (en) * 2007-12-27 2009-07-16 Fujikura Ltd Method of manufacturing flat cable, and its device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098445A (en) * 2009-11-04 2011-05-19 Tomoegawa Paper Co Ltd Optical laminate and method for manufacturing the same, and polarizing plate and display device using the same
US8427652B2 (en) * 2010-01-07 2013-04-23 Harris Corporation Systems and methods for measuring geometric changes of embedded passive materials during a lamination process
TWI454753B (en) * 2010-04-19 2014-10-01 Tomoegawa Co Ltd Optical laminate, polarizing plate, display device, and method for making an optical laminate
JP5840765B2 (en) * 2012-03-30 2016-01-06 東京特殊電線株式会社 Laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288313A (en) * 1985-06-14 1986-12-18 日立電線株式会社 Peeling detector for flat cable
JPH0668716A (en) * 1992-08-19 1994-03-11 Sumitomo Electric Ind Ltd Flat cable
JPH08122022A (en) * 1994-10-24 1996-05-17 Furukawa Electric Co Ltd:The Size measuring apparatus of flat cable
JP2000348552A (en) * 1999-06-07 2000-12-15 Hitachi Cable Ltd Method and device for trimming type wire
JP2001141662A (en) * 1999-11-18 2001-05-25 Central Glass Co Ltd Method and apparatus for detecting flaw of transparent plate-shaped object
JP2002075089A (en) * 2000-08-30 2002-03-15 Sony Chem Corp Inspection device for flexible flat cable
JP2009158369A (en) * 2007-12-27 2009-07-16 Fujikura Ltd Method of manufacturing flat cable, and its device

Also Published As

Publication number Publication date
JPWO2013146023A1 (en) 2015-12-10
JP5840765B2 (en) 2016-01-06
PH12014502042A1 (en) 2014-11-24
CN103363896B (en) 2016-03-16
CN103363896A (en) 2013-10-23
CN203177806U (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5840765B2 (en) Laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus
US8310668B2 (en) Producing method of wired circuit board
CN213340470U (en) Battery winding system
JP5015824B2 (en) Adhesive film position detector and adhesive film sticking device
CN105321866B (en) To the method for the display element fitting optically functional film of flexible film structure
JP4405445B2 (en) Appearance inspection method and appearance inspection apparatus for film carrier tape for mounting electronic components
US8467062B2 (en) Inspection device and producing method of wired circuit board
TW201024717A (en) Wiring pattern inspection device
KR20200078438A (en) Optical member inspection method, optical product manufacturing method, and optical member inspection apparatus
US8316532B2 (en) Method of producing a wired circuit board
JP2009180601A (en) Method and device for inspecting pattern
JP5947704B2 (en) Laminate inspection method, laminate inspection apparatus, and laminate manufacturing apparatus
JP5022507B1 (en) Product panel continuous manufacturing method, detection system, and detection method
US20130226330A1 (en) Optical techniques for monitoring continuous manufacturing of proton exchange membrane fuel cell components
JP5885477B2 (en) Multilayer substrate inspection apparatus and inspection method
JP2020041835A (en) Metal strip surface inspection method and metal strip surface inspection device
CN108538742A (en) Virtual terminal unit
JP6557713B2 (en) Optical member inspection method, optical product manufacturing method, and optical member inspection apparatus
JP2006053030A (en) Edge detection method for translucent film, edge detection system and manufacturing method and manufacturing equipment of laminated ceramic electronic part
CN219937121U (en) Battery winding device
WO2023120266A1 (en) Inspection device and inspection method
KR20100046813A (en) Integrated optical inspection apparatus
TWI249637B (en) Light source module structure and method for uniform illumination of same
JP5571972B2 (en) Inspection device and inspection method for printed circuit board
JP2023074352A (en) Inspection device of optical fiber tape core and manufacturing device of optical fiber tape core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507552

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201405877

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13768364

Country of ref document: EP

Kind code of ref document: A1