WO2013145812A1 - Led lighting device - Google Patents

Led lighting device Download PDF

Info

Publication number
WO2013145812A1
WO2013145812A1 PCT/JP2013/050588 JP2013050588W WO2013145812A1 WO 2013145812 A1 WO2013145812 A1 WO 2013145812A1 JP 2013050588 W JP2013050588 W JP 2013050588W WO 2013145812 A1 WO2013145812 A1 WO 2013145812A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
leds
casing
air supply
gas
Prior art date
Application number
PCT/JP2013/050588
Other languages
French (fr)
Japanese (ja)
Inventor
茂信 高橋
Original Assignee
シーシーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーエス株式会社 filed Critical シーシーエス株式会社
Publication of WO2013145812A1 publication Critical patent/WO2013145812A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/648Heat extraction or cooling elements the elements comprising fluids, e.g. heat-pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8812Diffuse illumination, e.g. "sky"
    • G01N2021/8816Diffuse illumination, e.g. "sky" by using multiple sources, e.g. LEDs

Definitions

  • the present invention relates to an LED illumination device having a plurality of LEDs, and more particularly to an LED illumination device suitably used for inspection such as the presence or absence of scratches in a predetermined irradiation region of a work (product) and mark reading.
  • LED lighting device in order to increase the light output, it is considered to increase the number of LEDs or the current passed through the LEDs.
  • the output may be reduced, or the life of an electronic component such as an LED may be reduced.
  • a water cooling unit including a water cooling jacket, a radiator, a circulation pump, and a fan is brought into close contact with the radiation fins to cool (water cooling) the radiation fins. Things are also considered.
  • Non-Patent Document 1 a forced cooling device (micro blower) having a nozzle is conceivable, and it is also conceivable to directly blow a plurality of LEDs using the micro blower.
  • a micro blower for each LED leads to an increase in the size of the LED lighting device, and cooling a plurality of LEDs with one micro blower results in variations in the cooling performance of each LED.
  • the micro blower due to the structure of the micro blower, it has a piezoelectric element and a diaphragm to which the piezoelectric element is attached. Therefore, it is difficult to arrange the nozzle of each micro blower in accordance with the position of the LED, and the LED mounting board is close to the LED. If provided, the wiring on the board is restricted, and if it is provided near the LED from the side of the LED, the light distribution angle of light emitted from the LED is restricted. is there.
  • the present invention has been made to solve the above problems all at once, and is intended to improve the cooling performance of the LED without being subjected to various restrictions such as wiring restrictions and light distribution restrictions in the LED lighting device. This is the main desired issue.
  • the LED lighting device includes an LED, a casing that forms an LED housing space for housing the LED, and an air supply path that supplies gas to the LED housing space formed in the casing.
  • the air path has a nozzle part that opens toward the LED, the nozzle part is located outside the light distribution angle of the LED, and the flow velocity of the gas exiting the nozzle part is in the air supply path. It is comprised so that it may become faster than the flow velocity of the gas of the upstream of the said nozzle part.
  • the light distribution angle of the LED has an angle inclined from the optical axis by a predetermined angle with respect to the optical axis of the LED, and a luminous flux (radiant flux) or light intensity (radiation) effective for illumination such as inspection use. Strength).
  • the outside of the light distribution angle of the LED is outside the angle having a luminous flux (radiant flux) or light intensity (radiant intensity) effective for illumination such as inspection use.
  • an air supply path is formed in the casing, and a nozzle portion that opens toward the LED is provided in the air supply path. Since it is configured to be faster than the gas flow rate upstream of the unit, the cooling effect per unit area can be improved while the air volume is small, and the cooling performance of the LED can be improved. it can. Further, if a circulation guide surface for circulating gas is formed on the inner surface constituting the LED housing space, the gas can be circulated inside the LED housing space, so that not only the gas flowing from the nozzle portion but also the LED housing. The gas circulating in the space hits the LED, and the frequency of applying the gas to the LED can be increased to further improve the cooling effect of the LED.
  • the thermal resistance in LED can be reduced, the fall of the light output can be prevented, and the LED lighting apparatus of high light output can be implement
  • the air supply path having the nozzle portion is provided in the casing, the wiring on the LED mounting substrate in the LED lighting device is not restricted.
  • the nozzle part is provided outside the light distribution angle of the LED, the light distribution angle of the light emitted from the LED is not restricted, and the nozzle part is made as close as possible to the LED. In addition to being able to accurately apply high-speed gas, it is possible to prevent a decrease in the amount of light due to the light emitted from the LED being blocked by the nozzle portion.
  • the LED lighting device includes a plurality of LEDs arranged in a line in a predetermined direction, a casing forming an LED housing space for housing the plurality of LEDs, and the plurality of LEDs provided in the casing.
  • a blowing mechanism that supplies gas from a direction perpendicular to the arrangement direction to the plurality of LEDs, and the blowing mechanism opens toward the LEDs and has an opening along the arrangement direction of the plurality of LEDs. It has a slit-like nozzle portion that extends, or a plurality of nozzle portions that open toward the LED and are arranged along the arrangement direction of the plurality of LEDs, and the nozzle portion has a light distribution angle of the plurality of LEDs. It is characterized by being located outside.
  • LEDs in the case of a plurality of LEDs arranged in a plurality of rows, they may be arranged in a matrix so that the LEDs constituting the rows adjacent to each other face each other, or constitute rows adjacent to each other.
  • the LEDs may be arranged in a staggered manner so that the LEDs are staggered.
  • the plurality of LEDs can be uniformly and directly cooled.
  • the cooling efficiency of the plurality of LEDs can be improved, the thermal resistance of each LED can be reduced, and the light output can be prevented from being lowered, thereby realizing a high light output LED lighting device. can do.
  • several LED can be cooled uniformly, degradation of several LED can be equalize
  • the air blowing mechanism is provided in the casing, the wiring on the LED mounting substrate in the LED lighting device is not restricted. Furthermore, since the flow rate of the gas flowing toward the LED can be increased by the nozzle portion, the LED can be cooled more effectively. In addition, since the nozzle portion is positioned outside the light distribution angle of the plurality of LEDs, the light distribution angle of the light emitted from the LEDs is not restricted, and the nozzle portion is made as possible to the LEDs. By approaching, high-speed gas can be accurately applied, and a reduction in the amount of light due to the light emitted from the LED being blocked by the nozzle portion can be prevented.
  • a casing that forms an LED housing space for housing the plurality of LEDs is provided, and gas is supplied to the LED housing space in the casing.
  • An exhaust path for exhausting gas from the LED housing space is formed by the air supply path and the exhaust means, and the LED housing accommodates the LED from the nozzle portion by setting the LED housing space to a negative pressure by the exhaust means. It is desirable for gas to flow into the space.
  • the air supply path and the exhaust path in the casing are integrally formed in the casing by processing the casing, and the air supply is separate from the casing.
  • a member that forms a path for example, an air supply pipe such as a hose
  • a member that forms an exhaust path for example, an exhaust pipe such as a hose
  • an air supply path and an exhaust path are attached to the casing.
  • the nozzle portion may be provided on the air supply pipe side, or by providing the nozzle portion on the casing side and attaching the air supply pipe to the casing. You may make it an air supply piping and a nozzle part communicate.
  • the exhaust means may be provided on the exhaust path, or may be provided in contact with or close to the outer opening of the exhaust path.
  • the LED lighting device includes an LED mounting substrate on which the plurality of LEDs are mounted, and the casing includes a bottom plate on which the LED mounting substrate is mounted and a pair of left and right provided along the arrangement direction on the bottom plate.
  • an exhaust passage for discharging the gas to the outside of the casing is provided, and an inner opening of the supply passage is the nozzle portion.
  • the nozzle portion is provided on one of the left and right side plate portions and extends along the arrangement direction of the plurality of LEDs, and the upper surface of the LED mounting substrate, It is desirable to be formed by. If this is the case, it is not necessary to form a nozzle portion separately from the LED mounting substrate on one of the left and right side plate portions, and it is only necessary to provide the ridge portion, so that the casing can be easily processed.
  • the opening area of the inner opening which is the LED side opening in the nozzle portion is It is desirable that the opening area of the outer opening is smaller than the opening area of the outer opening in the flow path communicating with the outer opening of the nozzle portion.
  • the exhaust path is provided in the bottom plate portion, and a heat radiating portion is provided on the lower surface of the bottom plate portion. If it is this, the gas discharged
  • a heat dissipating unit fan for introducing an external gas into the heat dissipating unit is provided on the lower surface of the heat dissipating unit, and the heat dissipating unit fan supplies the external gas into the air supply path. It is desirable to also serve as a fan. In this case, by driving the heat radiating unit fan, external gas can be introduced from the air supply path, and external gas can also be introduced into the heat radiating unit. Thereby, the heat dissipation efficiency of the LED lighting device can be further improved.
  • the cooling performance of the LED can be improved without being subjected to various restrictions such as wiring restrictions and light distribution restrictions in the LED lighting device.
  • the perspective view of the LED lighting apparatus in one Embodiment of this invention Sectional drawing perpendicular
  • the top view which shows the relationship between the LED mounting board
  • transformation embodiment Sectional drawing perpendicular
  • transformation embodiment The schematic diagram which shows the modification of a nozzle part.
  • transformation embodiment The schematic diagram of the LED lighting apparatus in deformation
  • the LED lighting device 100 is equipped with one or a plurality of LEDs formed by mounting a plurality of LEDs 32 in a row on a casing 2 and a long wiring board 31.
  • a substrate 3 and an optical member 4 supported by a pair of left and right side plates 22 of the casing 2 are provided.
  • the arrangement direction P in which the LEDs 32 are arranged is also referred to as the longitudinal direction
  • the direction perpendicular to the longitudinal direction and perpendicular to the side plate 22 of the casing 2 is defined as the left-right direction
  • the direction orthogonal to 21 will be referred to as the vertical direction for convenience.
  • the casing 2 has a rectangular parallelepiped shape made of a long metal, and includes a bottom plate 21, a pair of left and right side plates 22, and an end plate 23.
  • the bottom plate 21 has the LED mounting substrate 3 mounted on the upper surface thereof, and a heat sink 5 composed of a plurality of heat radiating fins F as a heat radiating portion provided on the lower surface thereof.
  • a recess 21M for positioning and mounting the LED mounting substrate 3 is formed on the upper surface of the bottom plate 21, a recess 21M for positioning and mounting the LED mounting substrate 3 is formed. By fitting the LED mounting substrate 3 into the recess 21M, the LED mounting substrate 3 is positioned on the bottom plate 21 and positioned relative to a nozzle portion 73 described later. By placing the LED mounting substrate 3 in the recess 21M, the upper surface of the LED mounting substrate 3 and the upper surface of the side plate 22 are flush with each other.
  • Both ends of the heat sink 5 in the longitudinal direction are open. Further, one or a plurality of heat sink fans 6 are provided on the lower surface of the heat sink 5. In FIG. 1, three heat sink fans 6 are provided, and the two heat sink fans 6 on both sides supply air, which is an external gas, from the outside of the heat sink 5 to the inside of the heat sink 5. The single heat sink fan 6 at the center discharges air from the inside of the heat sink 5 to the outside of the heat sink 5.
  • a first mounting groove 22a for fixing the rod lens 41 as the optical member 4 is formed on the inner surfaces (opposing surfaces) of the pair of left and right side plates 22.
  • the rod lens 41 is slid and fixed in the mounting groove 22a from the longitudinal direction.
  • the light emitted from the plurality of LEDs 32 is collected by the rod lens 41.
  • a second mounting groove 22b for fixing the diffusion plate 42, which is the optical member 4 is formed at the upper portion of the mounting groove 22a, in this embodiment, the upper end portion. Yes.
  • a diffusion plate 42 is slid and fixed in the mounting groove 22b from the longitudinal direction.
  • the light collected by the rod lens 41 is diffused by the diffusion plate 42.
  • the pair of left and right side plates 22 configured as described above are fixed to the bottom plate 21 by screws or the like.
  • a substantially rectangular end plate 23 is attached to both longitudinal end surfaces of the pair of left and right side plates 22.
  • the LED mounting substrate 3 is mechanically mounted on a surface of a long printed wiring board 31 with a plurality of LEDs 32 aligned substantially in a straight line with the optical axis aligned in a certain direction. It is a thing.
  • the LED 32 is a so-called power LED that can continuously pass a current of 200 mA or more.
  • the LED 32 is a surface-mounted type in which an LED element is disposed at the center of a thin rectangular plate-like package. Is.
  • the LEDs 32 are arranged such that the LED elements are arranged in a substantially straight line at a predetermined interval.
  • the LED lighting device 100 of the present embodiment includes a blower mechanism 7 that blows air directly to the plurality of LEDs 32 and cools them directly.
  • the air blowing mechanism 7 has an air supply path S ⁇ b> 1 for supplying air, which is an external gas, to the inside of the casing 2 on one side plate 22 (hereinafter, 22 ⁇ / b> A) side of the casing 2,
  • an air supply fan 72 provided in the exhaust path S2.
  • the exhaust path S2 is formed between the bottom plate 21 and the other side plate 22B.
  • One exhaust path S2 may be provided, or a plurality of exhaust paths S2 may be provided.
  • the air supply path S1 is formed between the bottom plate 21 and one side plate 22A. Specifically, the outer opening S1a of the air supply path S1 opens in the side surface of the one side plate 22A, and the dustproof filter 71 is attached to the outer opening S1a.
  • the inner opening S1b of the air supply path S1 opens toward the plurality of LEDs 32 and has a slit-like nozzle portion 73 extending along the arrangement direction P of the plurality of LEDs 32. It is said that.
  • the nozzle portion 73 is provided with an opening extending across the plurality of LEDs 32 along the arrangement direction P of the plurality of LEDs 32 provided in the casing 2, and is orthogonal to the arrangement direction P of the plurality of LEDs 32. Open in the direction Q. Specifically, as shown in FIG. 4, the nozzle portion 73 is provided on the one side plate 22 ⁇ / b> A and extends along the arrangement direction P of the plurality of LEDs 32, and the LED mounting substrate 3 (printing). The upper surface 3a of the wiring board 31) is formed.
  • this nozzle part 73 is comprised so that the distance of the lower surface 221a of the protrusion part 221 and the upper surface 3a of the LED mounting board 3 may reduce gradually as it goes inside opening.
  • the LED housing space 2H (see FIG. 2) inside the casing 2 is made negative pressure by the air supply fan 72, which is an exhaust means provided in the exhaust path S2, and the outside of the air supply path S1.
  • the external air introduced from the opening S1a is configured to be supplied toward the LED 32 by increasing the flow rate by the nozzle 73.
  • the LED housing space 2H is a space surrounded by the bottom plate 21, the pair of left and right side plates 22, the end plate 23, and the rod lens 41 of the casing 2.
  • the opening area A (see FIG.
  • the opening area B (see FIG. 4) of the inner opening which is the LED side opening of the nozzle portion 73 is the opening area B (see FIG. 4) of the outer opening of the nozzle portion 73 and / or the outer opening portion of the air supply path S1.
  • the opening area C is configured to be smaller than the opening area C (see FIG. 2) of S1a, that is, the opening area A ⁇ the opening area B and / or the opening area C.
  • the flow velocity of the gas exiting from the nozzle portion 73 is configured to be higher than the flow velocity of the gas upstream of the nozzle portion 73 in the air supply path S1, and high-speed wind is supplied to the LED 32 with a small amount of air.
  • the cooling performance per unit volume of air can be improved.
  • the nozzle portion 73 configured in this way is located on the LED mounting substrate 3 and is located outside the light distribution angle X of the plurality of LEDs 32.
  • the said nozzle part 73 (specifically ridge part 221) is comprised so that the light inject
  • the light distribution angle X of the present embodiment is an angle having a light beam (radiant flux) or light intensity (radiant intensity) necessary for illumination such as inspection use, and an angle at which the rod lens 41 which is the optical member 4 faces at least from the LED 32. (An angle formed by two tangents in contact with the side peripheral surface of the rod lens 41 from the light emission center of the LED 32).
  • the nozzle portion 73 is located outside the tangent line that contacts the side peripheral surface of the rod lens 41 from the light emission center of the LED 32 and is provided at a position that does not block the light from the LED 32 to the rod lens 41.
  • a reflecting member such as a reflector
  • air is supplied from the direction Q orthogonal to the arrangement direction P of the plurality of LEDs 32 toward the plurality of LEDs 32. It can be directly and uniformly cooled. Thereby, even if it uses several LED32, while improving the cooling efficiency of these several LED32, the thermal resistance in each LED32 can be reduced, the fall of the light output is prevented, and the LED lighting apparatus 100 of high light output is made. Can be realized.
  • the present invention is not limited to the above embodiment.
  • the nozzle part 73 in addition to what is constituted by the ridge part 221 and the LED mounting substrate 3 provided on the one side plate 22A, the ridge part 221 provided on the one side plate 22A and the ridge part provided on the bottom plate 21. 211 may be used.
  • the protrusion 211 provided on the bottom plate 21 has a schematic L formed so as to cover a part of the upper surface 3a of the LED mounting substrate 3 (the upper surface on the side plate 22A side). It can be considered to have a letter shape. Thereby, the nozzle part 73 can be brought as close to the LED 32 as possible.
  • the LED mounting substrate 3 is mounted. It is desirable that the inner opening of the air supply path S ⁇ b> 1 formed between the upper surface of the bottom plate 21 and the lower surface of the side plate 22 be substantially the same height as the LED 32, by lowering by one step by forming a recess 21 ⁇ / b> M in the portion to be formed. .
  • the concave portion 21M is formed in the portion where the LED mounting substrate 3 is mounted, so that the upper surface of the LED mounting substrate 3 and the upper surface of the side plate 22 are flush with each other.
  • the inner opening S1b of the gap forming the air supply path S1 is a nozzle part that applies gas toward the LED 32 from the direction orthogonal to the arrangement direction P along the arrangement direction P of the LEDs 32. .
  • the gas supplied from the air supply path S1 can be efficiently applied to the LED 32 by a simple configuration in which a gap is formed between the bottom plate 21 and the side plate 22A.
  • the air supply path S1 may be formed in the side plate 22A as shown in FIG. 7 in addition to the air supply path S1 formed between the side plate 22 and the bottom plate 21 as in the above embodiment.
  • the air supply path S ⁇ b> 1 may be configured by forming slit-like nozzle holes or the like in the side plate 22.
  • the exhaust path S2 may be formed between the other side plate 22B and the bottom plate 21 or in the bottom plate 21 in addition to being formed in the other side plate 22B.
  • FIG. 8 shows an example in which the exhaust path S2 is formed in the bottom plate 21.
  • the exhaust path S2 has an inner opening S1b formed in a portion where the LED mounting substrate 3 is not mounted on the upper surface of the bottom plate 21, and an outer opening between the radiating fins F on the lower surface of the bottom plate 21. It is configured by forming a part. If comprised in this way, the exhaust path S2 and the inside of the casing 2 can be made into a negative pressure with the heat sink fan 6 provided in the lower surface of the heat sink 5, and external air can be introduce
  • the air supply fan 72 is provided in the exhaust path S2 .
  • it may be provided in the air supply path S1, or both the exhaust path S2 and the air supply path S1. May be provided.
  • the heat sink 5 is provided on the bottom surface of the bottom plate 21, but a water cooling mechanism 8 may be provided as shown in FIG.
  • the water cooling mechanism 8 includes a plurality of linear flow path portions 81 extending in the longitudinal direction of the bottom plate 21, and cools the bottom plate 21 and the LEDs 32 by flowing a coolant through the flow path portions 81.
  • the LED 32 since the LED 32 is directly air-cooled and water-cooled, the LED 32 can be further cooled.
  • gas is blown to the plurality of LEDs 32 by the single slit-like nozzle portion 73.
  • a plurality of air supply paths S1 are provided.
  • Each of the plurality of nozzle portions 73 may be configured to blow gas to the plurality of LEDs 32.
  • the said embodiment demonstrated the LED illuminating device which has the elongate LED mounting board
  • a plurality of LEDs 32 may be arranged in the circumferential direction.
  • the arrangement direction P of the plurality of LEDs 32 is a circumferential direction
  • the blower mechanism 7 is configured to supply gas toward the LEDs from the inside or outside of the radial direction Q orthogonal to the arrangement direction P.
  • FIG. 12 has shown about the case where gas is applied to several LED32 from the outer side of radial direction Q.
  • a circulation guide surface GM for circulating gas is formed on the inner surface (specifically, the inner surfaces of the pair of left and right side plates 22 of the casing 2) constituting the LED housing space 2H, the nozzle Not only the gas flowing in from the portion 73 but also the gas circulating in the LED housing space 2H hits the LED 32, and the frequency of applying the gas to the LED 32 can be increased to further improve the cooling effect of the LED 32.
  • the temperature distribution in the LED housing space 2H can be made uniform.
  • the circulation guide surface GM causes gas to circulate in the upper space of the LED 32 in the LED housing space 2H, and is formed over the entire inner surface of the pair of left and right side plates 22 in, for example, the longitudinal direction. As shown in FIG.
  • the shape of the circulation guide surface GM may be an inclined surface having a linear cross-sectional shape or a concave surface having a curved cross-sectional shape.
  • the circulation guide surface GM may be formed integrally with the pair of left and right side plates 22, or may be formed by attaching another member to the pair of left and right side plates 22.
  • the nozzle part 73 employ
  • the heat sink 5 that is a heat radiating portion is formed integrally with the bottom plate 21, the pair of left and right side plates 22 of the casing 2 are made of resin, and the nozzle portion 73 is made more than the heat sink 5. It may be possible to form with a member having a low thermal conductivity. In particular, it is desirable that the members forming the air supply path S1 and the nozzle portion 73 are made of resin.
  • the cooling performance of the LED can be improved without being subjected to various restrictions such as wiring restrictions and light distribution restrictions in the LED lighting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The present invention improves LED cooling performance in an LED lighting device without being affected by various restrictions such as wiring restrictions and light distribution restriction. The present invention is provides with a casing (2) for forming an LED storage space for storing an LED (32), and an gas-supply path (S1) for supplying gas to the LED storage space formed in the housing (2). The gas-supply path (S1) includes a nozzle (73) that opens toward the LED (32). The nozzle (73) is positioned further outward than the angle of light distribution (X) of the LED (32), and the rate of flow of gas exiting the nozzle (73) is higher than the rate of flow of gas upstream of the nozzle (73) in the air-supply path (S1).

Description

LED照明装置LED lighting device
 本発明は、複数のLEDを有するLED照明装置に関するものであり、特にワーク(製品)の所定照射領域における傷の有無やマーク読み取り等の検査用として好適に用いられるものに関するものである。 The present invention relates to an LED illumination device having a plurality of LEDs, and more particularly to an LED illumination device suitably used for inspection such as the presence or absence of scratches in a predetermined irradiation region of a work (product) and mark reading.
 この種のLED照明装置においては、光出力を増加させるために、LEDの数又は当該LEDに流す電流を増大することが考えられているが、これによりLEDの発熱量が増大してLEDの光出力の低下又はLED等の電子部品の寿命低下を招くことがある。 In this type of LED lighting device, in order to increase the light output, it is considered to increase the number of LEDs or the current passed through the LEDs. The output may be reduced, or the life of an electronic component such as an LED may be reduced.
 このため従来においては、LEDを収容するケーシングに放熱フィンを設け、前記LEDにより生じた熱を放熱フィンを介して空気への自然対流により放熱することが一般的に行われている。 For this reason, conventionally, it has been generally performed to dissipate heat generated by the LED by natural convection to air through a heat dissipating fin by providing a heat dissipating fin in a casing that accommodates the LED.
 また、従来の高光出力のLED照明装置の場合には、前記放熱フィンによる放熱を行うだけでは不十分であり、放熱フィンを送風ファンにより強制的に冷却(強制空冷)する方法が一般的に行われている。 In addition, in the case of a conventional high light output LED lighting device, it is not sufficient to perform heat radiation by the heat radiation fin, and a method of forcibly cooling the heat radiation fin by a blower fan (forced air cooling) is generally performed. It has been broken.
 さらに、LEDの冷却性能を向上させるために、特許文献1に示すように、水冷ジャケット、ラジエータ、循環ポンプ及びファンを備えた水冷ユニットを、放熱フィンに密着させて放熱フィンを冷却(水冷)するものも考えられている。 Furthermore, in order to improve the cooling performance of the LED, as shown in Patent Document 1, a water cooling unit including a water cooling jacket, a radiator, a circulation pump, and a fan is brought into close contact with the radiation fins to cool (water cooling) the radiation fins. Things are also considered.
 しかしながら、上記の強制空冷システム又は水冷システムでは、放熱フィンのみを冷却することになるため、LEDの冷却効率には限界がある。つまり、LEDと、当該LEDを搭載するLED搭載基板と、放熱フィンとの間に発生する温度差を軽減する程度には限界がある。なお、これらの温度差は、熱抵抗(℃/W)で計算され、発熱体の発熱量(W)が増加すると温度差(℃)が増加することが知られている。 However, in the above-mentioned forced air cooling system or water cooling system, only the radiation fins are cooled, so that the cooling efficiency of the LED is limited. That is, there is a limit in reducing the temperature difference generated between the LED, the LED mounting substrate on which the LED is mounted, and the heat radiation fin. These temperature differences are calculated by thermal resistance (° C./W), and it is known that the temperature difference (° C.) increases as the heating value (W) of the heating element increases.
 また、例えばCPU等の電子機器の冷却に用いられる小型ファンを用いて、複数のLEDに直接風を当てることも考えられる。ところが、LED1つ1つにファンを設けるとLED照明装置の大型化に繋がり、1つのファンで複数のLEDを冷却すると各LEDの冷却性能にばらつきが出てしまう。さらに、このような小型ファンでは、出力が非常に小さくLEDを十分に冷却することが難しい。 Also, it is conceivable to directly blow a plurality of LEDs using a small fan used for cooling an electronic device such as a CPU. However, providing a fan for each LED leads to an increase in the size of the LED lighting device, and cooling a plurality of LEDs with one fan results in variations in the cooling performance of each LED. Furthermore, with such a small fan, the output is very small and it is difficult to sufficiently cool the LED.
 さらに、非特許文献1に示すように、ノズルを有する強制冷却デバイス(マイクロブロア)が考えられており、当該マイクロブロアを用いて、複数のLEDに直接風を当てることも考えられる。ところが、LED1つ1つにマイクロブロアを設けるとLED照明装置の大型化に繋がり、1つのマイクロブロアで複数のLEDを冷却すると各LEDの冷却性能にばらつきが出てしまう。また、マイクロブロアの構造上、圧電素子及び当該圧電素子が取り付けられたダイヤフラムを有することから、各マイクロブロアのノズルをLEDの位置に合わせて配置することが難しく、LED搭載基板においてLEDの近傍に設けた場合には当該基板上の配線が制約を受けてしまい、LEDの側方からLEDの近傍に設けた場合にはLEDから射出される光の配光角度が制約を受けてしまうという問題がある。 Furthermore, as shown in Non-Patent Document 1, a forced cooling device (micro blower) having a nozzle is conceivable, and it is also conceivable to directly blow a plurality of LEDs using the micro blower. However, providing a micro blower for each LED leads to an increase in the size of the LED lighting device, and cooling a plurality of LEDs with one micro blower results in variations in the cooling performance of each LED. In addition, due to the structure of the micro blower, it has a piezoelectric element and a diaphragm to which the piezoelectric element is attached. Therefore, it is difficult to arrange the nozzle of each micro blower in accordance with the position of the LED, and the LED mounting board is close to the LED. If provided, the wiring on the board is restricted, and if it is provided near the LED from the side of the LED, the light distribution angle of light emitted from the LED is restricted. is there.
特開2010-272440号公報JP 2010-272440 A
 そこで本発明は、上記問題点を一挙に解決するためになされたものであり、LED照明装置における配線制約及び配光制約等の各種制約を受けずに、LEDの冷却性能を向上させることをその主たる所期課題とするものである。 Therefore, the present invention has been made to solve the above problems all at once, and is intended to improve the cooling performance of the LED without being subjected to various restrictions such as wiring restrictions and light distribution restrictions in the LED lighting device. This is the main desired issue.
 すなわち本発明に係るLED照明装置は、LEDと、前記LEDを収容するLED収容空間を形成するケーシングと、前記ケーシングに形成した前記LED収容空間に気体を供給する給気経路とを備え、前記給気経路が、前記LEDに向いて開口するノズル部を有し、前記ノズル部が、前記LEDの配光角よりも外側に位置し、前記ノズル部から出る気体の流速が、前記給気経路における前記ノズル部の上流側の気体の流速よりも高速となるように構成されていることを特徴とする。また、LEDの配光角とは、LEDの光軸を中心として当該光軸から所定角度傾いた角度を有するものであり、検査用途などの照明に有効な光束(放射束)又は光強度(放射強度)を有する角度を有する。LEDの配光角よりも外側とは、検査用途などの照明に有効な光束(放射束)又は光強度(放射強度)を有する角度の外側である。 That is, the LED lighting device according to the present invention includes an LED, a casing that forms an LED housing space for housing the LED, and an air supply path that supplies gas to the LED housing space formed in the casing. The air path has a nozzle part that opens toward the LED, the nozzle part is located outside the light distribution angle of the LED, and the flow velocity of the gas exiting the nozzle part is in the air supply path. It is comprised so that it may become faster than the flow velocity of the gas of the upstream of the said nozzle part. The light distribution angle of the LED has an angle inclined from the optical axis by a predetermined angle with respect to the optical axis of the LED, and a luminous flux (radiant flux) or light intensity (radiation) effective for illumination such as inspection use. Strength). The outside of the light distribution angle of the LED is outside the angle having a luminous flux (radiant flux) or light intensity (radiant intensity) effective for illumination such as inspection use.
 このようなものであれば、ケーシングに給気経路を形成して、当該給気経路にLEDに向いて開口するノズル部を設けており、ノズル部から出る気体の流速が、給気経路におけるノズル部の上流側の気体の流速よりも高速となるように構成されているので、少ない風量でありながらも、単位面積当たりの冷却効果を向上させることができ、LEDの冷却性能を向上させることができる。また、LED収容空間を構成する内面に気体を循環させるための循環案内面を形成すれば、LED収容空間内部で気体を循環させることができるので、ノズル部から流入する気体だけでなく、LED収容空間内で循環する気体がLEDに当たり、LEDに気体を当てる頻度を増大させて更にLEDの冷却効果を向上させることができる。これにより、LEDの冷却効率を向上させるとともに、LEDにおける熱抵抗を減少させることができ、その光出力の低下を防いで高光出力のLED照明装置を実現することができる。ここで、ノズル部を有する給気経路がケーシングに設けられているので、LED照明装置におけるLED搭載基板上等の配線が制約を受けることもない。また、ノズル部が、LEDの配光角の外側に設けられているので、LEDから射出される光の配光角度が制約を受けることが無く、ノズル部をLEDに可及的に近づけることにより、高速の気体を的確に当てることができるとともに、ノズル部によりLEDから射出される光が遮られることによる光量低下を防止することができる。 If this is the case, an air supply path is formed in the casing, and a nozzle portion that opens toward the LED is provided in the air supply path. Since it is configured to be faster than the gas flow rate upstream of the unit, the cooling effect per unit area can be improved while the air volume is small, and the cooling performance of the LED can be improved. it can. Further, if a circulation guide surface for circulating gas is formed on the inner surface constituting the LED housing space, the gas can be circulated inside the LED housing space, so that not only the gas flowing from the nozzle portion but also the LED housing. The gas circulating in the space hits the LED, and the frequency of applying the gas to the LED can be increased to further improve the cooling effect of the LED. Thereby, while improving the cooling efficiency of LED, the thermal resistance in LED can be reduced, the fall of the light output can be prevented, and the LED lighting apparatus of high light output can be implement | achieved. Here, since the air supply path having the nozzle portion is provided in the casing, the wiring on the LED mounting substrate in the LED lighting device is not restricted. Moreover, since the nozzle part is provided outside the light distribution angle of the LED, the light distribution angle of the light emitted from the LED is not restricted, and the nozzle part is made as close as possible to the LED. In addition to being able to accurately apply high-speed gas, it is possible to prevent a decrease in the amount of light due to the light emitted from the LED being blocked by the nozzle portion.
 また本発明に係るLED照明装置は、所定方向に列状に配列された複数のLEDと、前記複数のLEDを収容するLED収容空間を形成するケーシングと、前記ケーシングに設けられて前記複数のLEDの配列方向と直交する方向から前記複数のLEDに向かって気体を供給する送風機構とを備え、前記送風機構が、前記LEDを向いて開口するとともに前記複数のLEDの配列方向に沿って開口が延びるスリット状のノズル部、又は前記LEDを向いて開口するとともに前記複数のLEDの配列方向に沿って配置された複数のノズル部を有し、前記ノズル部が、前記複数のLEDの配光角よりも外側に位置していることを特徴とする。なお、複数列に配置される複数のLEDの場合には、互いに隣接する列を構成するLEDが対向するようにマトリックス状に配置されるものであっても良いし、互いに隣接する列を構成するLEDが互い違いとなるように千鳥状に配置されるものであっても良い。 The LED lighting device according to the present invention includes a plurality of LEDs arranged in a line in a predetermined direction, a casing forming an LED housing space for housing the plurality of LEDs, and the plurality of LEDs provided in the casing. A blowing mechanism that supplies gas from a direction perpendicular to the arrangement direction to the plurality of LEDs, and the blowing mechanism opens toward the LEDs and has an opening along the arrangement direction of the plurality of LEDs. It has a slit-like nozzle portion that extends, or a plurality of nozzle portions that open toward the LED and are arranged along the arrangement direction of the plurality of LEDs, and the nozzle portion has a light distribution angle of the plurality of LEDs. It is characterized by being located outside. In addition, in the case of a plurality of LEDs arranged in a plurality of rows, they may be arranged in a matrix so that the LEDs constituting the rows adjacent to each other face each other, or constitute rows adjacent to each other. The LEDs may be arranged in a staggered manner so that the LEDs are staggered.
 このようなものであれば、複数のLEDの配列方向に直交する方向から当該複数のLEDに向かって気体を供給することから、複数のLEDを万遍なく均一に直接冷却することができる。これにより、複数のLEDを用いてもそれら複数のLEDの冷却効率を向上させるとともに、各LEDにおける熱抵抗を減少させることができ、その光出力の低下を防いで高光出力のLED照明装置を実現することができる。また、複数のLEDを均一に冷却することができるので、複数のLEDの劣化を均一化することができ、複数のLEDにおける配光ムラを防止することができる。さらに、送風機構がケーシングに設けられているので、LED照明装置におけるLED搭載基板上等の配線が制約を受けることもない。さらに、ノズル部によりLEDに向かって流れる気体の流速を上げることができるので、LEDをより効果的に冷却することができる。その上、ノズル部が複数のLEDの配光角よりも外側に位置しているので、LEDから射出される光の配光角度が制約を受けることが無く、ノズル部をLEDに可及的に近づけることにより、高速の気体を的確に当てることができるとともに、ノズル部によりLEDから射出される光が遮られることによる光量低下を防止することができる。 In such a case, since the gas is supplied from the direction orthogonal to the arrangement direction of the plurality of LEDs toward the plurality of LEDs, the plurality of LEDs can be uniformly and directly cooled. As a result, even if a plurality of LEDs are used, the cooling efficiency of the plurality of LEDs can be improved, the thermal resistance of each LED can be reduced, and the light output can be prevented from being lowered, thereby realizing a high light output LED lighting device. can do. Moreover, since several LED can be cooled uniformly, degradation of several LED can be equalize | homogenized and the light distribution nonuniformity in several LED can be prevented. Further, since the air blowing mechanism is provided in the casing, the wiring on the LED mounting substrate in the LED lighting device is not restricted. Furthermore, since the flow rate of the gas flowing toward the LED can be increased by the nozzle portion, the LED can be cooled more effectively. In addition, since the nozzle portion is positioned outside the light distribution angle of the plurality of LEDs, the light distribution angle of the light emitted from the LEDs is not restricted, and the nozzle portion is made as possible to the LEDs. By approaching, high-speed gas can be accurately applied, and a reduction in the amount of light due to the light emitted from the LED being blocked by the nozzle portion can be prevented.
 LED照明装置の具体的な実施の態様としては、前記複数のLEDを収容するLED収容空間を形成するケーシングを備え、前記ケーシングに、前記LED収容空間に気体を供給するものであり前記ノズル部を有する給気経路、及び排気手段によって前記LED収容空間から気体を排出する排気経路が形成されており、前記排気手段により、前記LED収容空間を負圧にすることによって、前記ノズル部から前記LED収容空間に気体が流入されることが望ましい。ここで、ケーシングに給気経路及び排気経路を形成することには、ケーシングに加工を加えて給気経路及び排気経路をケーシングに一体形成することの他、ケーシングとは別体である、給気経路を形成する部材(例えばホース等の給気配管)及び排気経路を形成する部材(例えばホース等の排気配管)を、ケーシングに形成した取付部位に取り付けることによって、ケーシングに給気経路及び排気経路を形成することも含む。またこの場合、給気経路にノズル部を設ける構成としては、ノズル部を給気配管側に設けても良いし、或いは、ノズル部をケーシング側に設けて、給気配管をケーシングに取り付けることにより給気配管とノズル部が連通するようにしても良い。また、排気手段は、排気経路上に設けても良いし、排気経路の外側開口に接触又は近接して設けても良い。 As a specific embodiment of the LED lighting device, a casing that forms an LED housing space for housing the plurality of LEDs is provided, and gas is supplied to the LED housing space in the casing. An exhaust path for exhausting gas from the LED housing space is formed by the air supply path and the exhaust means, and the LED housing accommodates the LED from the nozzle portion by setting the LED housing space to a negative pressure by the exhaust means. It is desirable for gas to flow into the space. Here, in order to form the air supply path and the exhaust path in the casing, the air supply path and the exhaust path are integrally formed in the casing by processing the casing, and the air supply is separate from the casing. A member that forms a path (for example, an air supply pipe such as a hose) and a member that forms an exhaust path (for example, an exhaust pipe such as a hose) are attached to an attachment site formed in the casing, whereby an air supply path and an exhaust path are attached to the casing. Forming. Further, in this case, as a configuration in which the nozzle portion is provided in the air supply path, the nozzle portion may be provided on the air supply pipe side, or by providing the nozzle portion on the casing side and attaching the air supply pipe to the casing. You may make it an air supply piping and a nozzle part communicate. The exhaust means may be provided on the exhaust path, or may be provided in contact with or close to the outer opening of the exhaust path.
 LED照明装置が、前記複数のLEDが搭載されたLED搭載基板を備えており、前記ケーシングが、前記LED搭載基板が搭載される底板及び当該底板において前記配列方向に沿って設けられた左右一対の側板を有するものであり、前記送風機構が、前記ケーシングにおける一方の側板側に外部の気体を前記ケーシングの内部に供給するための給気経路と、前記ケーシングにおける他方の側板側に前記ケーシングの内部の気体をケーシングの外部に排出するための排気経路とを有しており、前記給気経路の内側開口部が、前記ノズル部とされていることが望ましい。これならば、ケーシングの内部に給気経路及び排気経路を設けることにより、ケーシング内部の空間にLEDから射出された光を遮る部材を設ける必要が無い。また、ケーシングとノズル部とを一体形成することにより、部品点数を削減することができるとともに、組み立て作業を容易にすることができる。 The LED lighting device includes an LED mounting substrate on which the plurality of LEDs are mounted, and the casing includes a bottom plate on which the LED mounting substrate is mounted and a pair of left and right provided along the arrangement direction on the bottom plate. An air supply path for supplying an external gas to the inside of the casing on one side plate side of the casing; and an interior of the casing on the other side plate side of the casing. It is preferable that an exhaust passage for discharging the gas to the outside of the casing is provided, and an inner opening of the supply passage is the nozzle portion. In this case, by providing the air supply path and the exhaust path inside the casing, there is no need to provide a member that blocks light emitted from the LEDs in the space inside the casing. Moreover, by integrally forming the casing and the nozzle portion, the number of parts can be reduced and the assembling work can be facilitated.
 ノズル部の構成を簡単化するためには、前記ノズル部が、前記左右側板部の一方に設けられて前記複数のLEDの配列方向に沿って延びる突条部と、前記LED搭載基板の上面とにより形成されていることが望ましい。これならば、左右側板部の一方にLED搭載基板とは別にノズル部を形成する必要が無く、突条部を設けるだけで良いので、ケーシングの加工を容易にすることができる。 In order to simplify the configuration of the nozzle portion, the nozzle portion is provided on one of the left and right side plate portions and extends along the arrangement direction of the plurality of LEDs, and the upper surface of the LED mounting substrate, It is desirable to be formed by. If this is the case, it is not necessary to form a nozzle portion separately from the LED mounting substrate on one of the left and right side plate portions, and it is only necessary to provide the ridge portion, so that the casing can be easily processed.
 少量の空気で高速の風をLEDに当てることができ、空気の単位体積当たりの冷却性能を向上させるためには、前記ノズル部におけるLED側開口である内側開口の開口面積が、前記ノズル部における外側開口の開口面積、又は前記ノズル部の外側開口に連通する流路における外側開口の開口面積よりも小さいことが望ましい。 In order to improve the cooling performance per unit volume of air by applying a high-speed wind to the LED with a small amount of air, the opening area of the inner opening which is the LED side opening in the nozzle portion is It is desirable that the opening area of the outer opening is smaller than the opening area of the outer opening in the flow path communicating with the outer opening of the nozzle portion.
 給気経路の外部の気体を導入するための給気用ファンをケーシングの外部に設けることも考えられるが、そうするとLED照明装置が大型化してしまう。このため、前記給気経路又は前記排気経路に外部の気体を当該給気経路に導入するための給気用ファンが設けられていることが望ましい。 It is conceivable to provide an air supply fan for introducing a gas outside the air supply path outside the casing, but this would increase the size of the LED illumination device. For this reason, it is desirable that an air supply fan for introducing an external gas into the air supply path or the exhaust path is provided.
 前記排気経路が前記底板部に設けられるとともに、前記底板部の下面に放熱部が設けられていることが望ましい。これならば排気経路から排出される気体が放熱部を通過することになり、放熱部からの放熱を促進することができる。 Desirably, the exhaust path is provided in the bottom plate portion, and a heat radiating portion is provided on the lower surface of the bottom plate portion. If it is this, the gas discharged | emitted from an exhaust route will pass a thermal radiation part, and the thermal radiation from a thermal radiation part can be accelerated | stimulated.
 前記放熱部の下面に当該放熱部内に外部の気体を導入するための放熱部用ファンが設けられており、当該放熱部用ファンが、外部の気体を当該給気経路に導入するための給気用ファンを兼ねていることが望ましい。これならば、放熱部用ファンを駆動することで、給気経路から外部の気体を導入することができるとともに、放熱部にも外部の気体を導入することができる。これにより、LED照明装置の放熱効率をより一層向上させることができる。 A heat dissipating unit fan for introducing an external gas into the heat dissipating unit is provided on the lower surface of the heat dissipating unit, and the heat dissipating unit fan supplies the external gas into the air supply path. It is desirable to also serve as a fan. In this case, by driving the heat radiating unit fan, external gas can be introduced from the air supply path, and external gas can also be introduced into the heat radiating unit. Thereby, the heat dissipation efficiency of the LED lighting device can be further improved.
 このように構成した本発明によれば、LED照明装置における配線制約及び配光制約等の各種制約を受けずに、LEDの冷却性能を向上させることができる。 According to the present invention configured as described above, the cooling performance of the LED can be improved without being subjected to various restrictions such as wiring restrictions and light distribution restrictions in the LED lighting device.
本発明の一実施形態におけるLED照明装置の斜視図。The perspective view of the LED lighting apparatus in one Embodiment of this invention. 同実施形態におけるLED照明装置の長手方向に垂直な断面図。Sectional drawing perpendicular | vertical to the longitudinal direction of the LED lighting apparatus in the embodiment. 同実施形態におけるLED搭載基板及びスロットノズル部の関係を示す平面図。The top view which shows the relationship between the LED mounting board | substrate and slot nozzle part in the embodiment. 同実施形態のノズル部を示す部分拡大断面図。The partial expanded sectional view which shows the nozzle part of the embodiment. 変形実施形態におけるLED照明装置の長手方向に垂直な断面図。Sectional drawing perpendicular | vertical to the longitudinal direction of the LED lighting apparatus in deformation | transformation embodiment. 変形実施形態におけるLED照明装置の長手方向に垂直な断面図。Sectional drawing perpendicular | vertical to the longitudinal direction of the LED lighting apparatus in deformation | transformation embodiment. 変形実施形態におけるLED照明装置の長手方向に垂直な断面図。Sectional drawing perpendicular | vertical to the longitudinal direction of the LED lighting apparatus in deformation | transformation embodiment. 変形実施形態におけるLED照明装置の長手方向に垂直な断面図。Sectional drawing perpendicular | vertical to the longitudinal direction of the LED lighting apparatus in deformation | transformation embodiment. 変形実施形態におけるLED照明装置の長手方向に垂直な断面図。Sectional drawing perpendicular | vertical to the longitudinal direction of the LED lighting apparatus in deformation | transformation embodiment. ノズル部の変形例を示す模式図。The schematic diagram which shows the modification of a nozzle part. ノズル部の変形例を示す模式図。The schematic diagram which shows the modification of a nozzle part. 変形実施形態におけるLED照明装置の模式図。The schematic diagram of the LED lighting apparatus in deformation | transformation embodiment. 変形実施形態におけるLED照明装置の長手方向に垂直な断面図。Sectional drawing perpendicular | vertical to the longitudinal direction of the LED lighting apparatus in deformation | transformation embodiment.
100・・・LED照明装置
3・・・LED搭載基板
3a・・・LED搭載基板の上面
32・・・LED
X・・・LEDの配光角
P・・・配列方向
Q・・・配列方向と直交する方向
2・・・ケーシング
21・・・底板
22(22A)・・・一方の側板
221・・・突条部
22(22B)・・・他方の側板
5・・・ヒートシンク(放熱部)
6・・・ヒートシンク用ファン(放熱部用ファン)
7・・・送風機構
S1・・・給気経路
S1a・・・給気経路の外側開口部
S1b・・・給気経路の内側開口部
S2・・・排気経路
71・・・防塵フィルタ
72・・・給気用ファン
73・・・ノズル部
8・・・水冷機構
DESCRIPTION OF SYMBOLS 100 ... LED lighting apparatus 3 ... LED mounting board 3a ... Upper surface 32 of LED mounting board ... LED
X ... LED light distribution angle P ... arrangement direction Q ... direction orthogonal to arrangement direction 2 ... casing 21 ... bottom plate 22 (22A) ... one side plate 221 ... projection Strip 22 (22B) ... the other side plate 5 ... heat sink (heat dissipation part)
6 ... Heatsink fan (heat sink fan)
7 ... Blower mechanism S1 ... Air supply path S1a ... Outside opening S1b of the air supply path ... Inside opening S2 of the air supply path ... Exhaust path 71 ... Dustproof filter 72 ...・ Air supply fan 73 ... Nozzle 8 ... Water cooling mechanism
 以下に本発明に係るLED照明装置の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of an LED lighting device according to the present invention will be described with reference to the drawings.
 本実施形態に係るLED照明装置100は、図1及び図2に示すように、ケーシング2と、長尺状の配線基板31に複数のLED32を1列に搭載してなる1又は複数のLED搭載基板3と、ケーシング2の左右一対の側板22に支持された光学部材4とを備えている。なお、以下の説明で、LED32の並ぶ配列方向Pを長手方向ともいい、その長手方向に直交しかつケーシング2の側板22と直交する方向を左右方向、前記長手方向に直交しかつケーシング2の底板21と直交する方向を縦方向と便宜上言うこととする。 As shown in FIGS. 1 and 2, the LED lighting device 100 according to the present embodiment is equipped with one or a plurality of LEDs formed by mounting a plurality of LEDs 32 in a row on a casing 2 and a long wiring board 31. A substrate 3 and an optical member 4 supported by a pair of left and right side plates 22 of the casing 2 are provided. In the following description, the arrangement direction P in which the LEDs 32 are arranged is also referred to as the longitudinal direction, the direction perpendicular to the longitudinal direction and perpendicular to the side plate 22 of the casing 2 is defined as the left-right direction, the direction perpendicular to the longitudinal direction and the bottom plate of the casing 2. The direction orthogonal to 21 will be referred to as the vertical direction for convenience.
 以下に各部を詳述する。 Each part will be described in detail below.
 ケーシング2は、図1及び図2に示すように、長尺金属製の直方体形状をなすもので、底板21、左右一対の側板22及びエンドプレート23を備えている。 As shown in FIGS. 1 and 2, the casing 2 has a rectangular parallelepiped shape made of a long metal, and includes a bottom plate 21, a pair of left and right side plates 22, and an end plate 23.
 底板21は、その上面に前記LED搭載基板3が載置されるとともに、その下面には、放熱部として複数の放熱フィンFからなるヒートシンク5が設けられている。底板21の上面には、LED搭載基板3が位置決めして載置するための凹部21Mが形成されている。この凹部21MにLED搭載基板3が嵌ることによって、底板21にLED搭載基板3が位置決めされるとともに、後述するノズル部73に対して位置決めされる。なお、凹部21M内にLED搭載基板3を載置することで、LED搭載基板3の上面と側板22の上面とが面一となる。 The bottom plate 21 has the LED mounting substrate 3 mounted on the upper surface thereof, and a heat sink 5 composed of a plurality of heat radiating fins F as a heat radiating portion provided on the lower surface thereof. On the upper surface of the bottom plate 21, a recess 21M for positioning and mounting the LED mounting substrate 3 is formed. By fitting the LED mounting substrate 3 into the recess 21M, the LED mounting substrate 3 is positioned on the bottom plate 21 and positioned relative to a nozzle portion 73 described later. By placing the LED mounting substrate 3 in the recess 21M, the upper surface of the LED mounting substrate 3 and the upper surface of the side plate 22 are flush with each other.
 ヒートシンク5の長手方向両端部は開口している。また、このヒートシンク5の下面には、1又は複数のヒートシンク用ファン6が設けられている。図1においては、3つのヒートシンク用ファン6が設けられており、両側にある2つのヒートシンク用ファン6は、ヒートシンク5の外部からヒートシンク5の内部に外部の気体である空気を供給するものであり、中央にある1つのヒートシンク用ファン6は、ヒートシンク5の内部からヒートシンク5の外部に空気を排出するものである。 Both ends of the heat sink 5 in the longitudinal direction are open. Further, one or a plurality of heat sink fans 6 are provided on the lower surface of the heat sink 5. In FIG. 1, three heat sink fans 6 are provided, and the two heat sink fans 6 on both sides supply air, which is an external gas, from the outside of the heat sink 5 to the inside of the heat sink 5. The single heat sink fan 6 at the center discharges air from the inside of the heat sink 5 to the outside of the heat sink 5.
 左右一対の側板22の内面(対向面)には、光学部材4であるロッドレンズ41を固定するための第1の取付溝22aが形成されている。この取付溝22aには、ロッドレンズ41が長手方向からスライドされて固定される。なお、このロッドレンズ41により複数のLED32から射出された光が集光される。また、左右一対の側板22の内面において、前記取付溝22aの上部、本実施形態では上端部には、光学部材4である拡散板42を固定するための第2の取付溝22bが形成されている。この取付溝22bには、拡散板42が長手方向からスライドされて固定される。なお、この拡散板42によりロッドレンズ41により集光された光が拡散される。このように構成された左右一対の側板22は、底板21にねじ止め等により固定される。なお、左右一対の側板22の長手方向両端面には、概略矩形状のエンドプレート23が取り付けられる。 A first mounting groove 22a for fixing the rod lens 41 as the optical member 4 is formed on the inner surfaces (opposing surfaces) of the pair of left and right side plates 22. The rod lens 41 is slid and fixed in the mounting groove 22a from the longitudinal direction. The light emitted from the plurality of LEDs 32 is collected by the rod lens 41. Further, on the inner surfaces of the pair of left and right side plates 22, a second mounting groove 22b for fixing the diffusion plate 42, which is the optical member 4, is formed at the upper portion of the mounting groove 22a, in this embodiment, the upper end portion. Yes. A diffusion plate 42 is slid and fixed in the mounting groove 22b from the longitudinal direction. The light collected by the rod lens 41 is diffused by the diffusion plate 42. The pair of left and right side plates 22 configured as described above are fixed to the bottom plate 21 by screws or the like. A substantially rectangular end plate 23 is attached to both longitudinal end surfaces of the pair of left and right side plates 22.
 LED搭載基板3は、図2及び図3に示すように、長尺状のプリント配線基板31の表面に、複数のLED32を、光軸を一定方向に揃えて略直線状に1列に機械実装したものである。LED32は、連続して200mA以上の電流を流すことが可能ないわゆるパワーLEDと称されるもので、この実施形態では薄い矩形板状をなすパッケージの中央にLED素子を配設した表面実装型のものである。かかるLED32は、例えば、前記LED素子が所定の間隔で略直線1列に並ぶように配置される。 As shown in FIGS. 2 and 3, the LED mounting substrate 3 is mechanically mounted on a surface of a long printed wiring board 31 with a plurality of LEDs 32 aligned substantially in a straight line with the optical axis aligned in a certain direction. It is a thing. The LED 32 is a so-called power LED that can continuously pass a current of 200 mA or more. In this embodiment, the LED 32 is a surface-mounted type in which an LED element is disposed at the center of a thin rectangular plate-like package. Is. For example, the LEDs 32 are arranged such that the LED elements are arranged in a substantially straight line at a predetermined interval.
 しかして本実施形態のLED照明装置100は、図1~図3に示すように、複数のLED32に送風して直接冷却する送風機構7を備えている。 However, as shown in FIGS. 1 to 3, the LED lighting device 100 of the present embodiment includes a blower mechanism 7 that blows air directly to the plurality of LEDs 32 and cools them directly.
 この送風機構7は、特に図2に示すように、ケーシング2における一方の側板22(以下、22A)側に外部の気体である空気をケーシング2の内部に供給するための給気経路S1と、ケーシング2における他方の側板22(以下22B)側に前記ケーシング2の内部の気体である空気をケーシング2の外部に排出するための排気経路S2と、前記給気経路S1に設けられた防塵フィルタ71と、排気経路S2に設けられた給気用ファンと72とを有する。排気経路S2は、底板21及び他方の側板22Bの間に形成されている。なお、排気経路S2は、1つ設けたものであっても良いし、複数設けたものであっても良い。 As shown in FIG. 2, the air blowing mechanism 7 has an air supply path S <b> 1 for supplying air, which is an external gas, to the inside of the casing 2 on one side plate 22 (hereinafter, 22 </ b> A) side of the casing 2, An exhaust path S2 for discharging air, which is a gas inside the casing 2, to the outside of the casing 2 on the other side plate 22 (hereinafter 22B) side of the casing 2, and a dustproof filter 71 provided in the air supply path S1. And an air supply fan 72 provided in the exhaust path S2. The exhaust path S2 is formed between the bottom plate 21 and the other side plate 22B. One exhaust path S2 may be provided, or a plurality of exhaust paths S2 may be provided.
 給気経路S1は、底板21及び一方の側板22Aの間に形成されている。具体的に給気経路S1の外側開口部S1aは、一方の側板22Aの側面に開口しており、当該外側開口部S1aに防塵フィルタ71が取り付けられている。 The air supply path S1 is formed between the bottom plate 21 and one side plate 22A. Specifically, the outer opening S1a of the air supply path S1 opens in the side surface of the one side plate 22A, and the dustproof filter 71 is attached to the outer opening S1a.
 また、給気経路S1の内側開口部S1bは、特に図3に示すように、前記複数のLED32を向いて開口するとともに複数のLED32の配列方向Pに沿って開口が延びるスリット状のノズル部73とされている。 Further, as shown in FIG. 3 in particular, the inner opening S1b of the air supply path S1 opens toward the plurality of LEDs 32 and has a slit-like nozzle portion 73 extending along the arrangement direction P of the plurality of LEDs 32. It is said that.
 このノズル部73は、ケーシング2内に設けられた複数のLED32の配列方向Pに沿ってそれら複数のLED32の全体に亘って開口が延び設けられており、複数のLED32の配列方向Pと直交する方向Qを向いて開口する。具体的にノズル部73は、図4に示すように、一方の側板22Aに設けられて複数のLED32の配列方向Pに沿って延びる突条部221の下面221aと、前記LED搭載基板3(プリント配線基板31)の上面3aとにより形成されている。 The nozzle portion 73 is provided with an opening extending across the plurality of LEDs 32 along the arrangement direction P of the plurality of LEDs 32 provided in the casing 2, and is orthogonal to the arrangement direction P of the plurality of LEDs 32. Open in the direction Q. Specifically, as shown in FIG. 4, the nozzle portion 73 is provided on the one side plate 22 </ b> A and extends along the arrangement direction P of the plurality of LEDs 32, and the LED mounting substrate 3 (printing). The upper surface 3a of the wiring board 31) is formed.
 そしてこのノズル部73は、内側開口に行くに従って、突条部221の下面221aとLED搭載基板3の上面3aとの距離が徐々に縮小するように構成されている。これにより、排気経路S2に設けられた排気手段である給気用ファンと72により、ケーシング2内部のLED収容空間2H(図2参照)が負圧にされることによって、給気経路S1の外側開口部S1aから導入された外部の空気が、ノズル部73により流速を上げてLED32に向かって供給されるように構成している。なお、LED収容空間2Hは、ケーシング2の底板21、左右一対の側板22及びエンドプレート23とロッドレンズ41により囲まれる空間である。ここでノズル部73のLED側開口である内側開口の開口面積A(図4参照)は、ノズル部73の外側開口の開口面積B(図4参照)及び/又は給気経路S1の外側開口部S1aの開口面積C(図2参照)よりにも小さくなるように、つまり、開口面積A<開口面積B及び/又は開口面積Cの関係となるように構成されている。このようにノズル部73から出る気体の流速が、給気経路S1におけるノズル部73の上流側の気体の流速よりも高速となるように構成されており、少量の空気で高速の風をLED32に当てることができ、空気の単位体積当たりの冷却性能を向上させることができる。 And this nozzle part 73 is comprised so that the distance of the lower surface 221a of the protrusion part 221 and the upper surface 3a of the LED mounting board 3 may reduce gradually as it goes inside opening. As a result, the LED housing space 2H (see FIG. 2) inside the casing 2 is made negative pressure by the air supply fan 72, which is an exhaust means provided in the exhaust path S2, and the outside of the air supply path S1. The external air introduced from the opening S1a is configured to be supplied toward the LED 32 by increasing the flow rate by the nozzle 73. The LED housing space 2H is a space surrounded by the bottom plate 21, the pair of left and right side plates 22, the end plate 23, and the rod lens 41 of the casing 2. Here, the opening area A (see FIG. 4) of the inner opening which is the LED side opening of the nozzle portion 73 is the opening area B (see FIG. 4) of the outer opening of the nozzle portion 73 and / or the outer opening portion of the air supply path S1. The opening area C is configured to be smaller than the opening area C (see FIG. 2) of S1a, that is, the opening area A <the opening area B and / or the opening area C. Thus, the flow velocity of the gas exiting from the nozzle portion 73 is configured to be higher than the flow velocity of the gas upstream of the nozzle portion 73 in the air supply path S1, and high-speed wind is supplied to the LED 32 with a small amount of air. The cooling performance per unit volume of air can be improved.
 また、このように構成したノズル部73は、LED搭載基板3の上に位置するとともに、複数のLED32の配光角Xよりも外側に位置している。これにより、LED32に流速の速い空気を当てることができるとともに、当該ノズル部73(具体的には突条部221)が、LED32から射出される光を遮らないように構成している。本実施形態の配光角Xは、検査用途などの照明に必要な光束(放射束)又は光強度(放射強度)を有する角度であり、少なくともLED32から光学部材4であるロッドレンズ41を臨む角度(LED32の発光中心からロッドレンズ41の側周面に接する2つの接線の成す角度)を含む。つまり、ノズル部73は、LED32の発光中心からロッドレンズ41の側周面に接する接線よりも外側に位置して、LED32からロッドレンズ41への光を遮らない位置に設けられている。なお、その他、ケーシング2の側板22内側にリフレクタ等の反射部材が設けられた場合には、LED32から当該反射部材への光を遮らない位置にノズル部73を設けることが考えられる。 Further, the nozzle portion 73 configured in this way is located on the LED mounting substrate 3 and is located outside the light distribution angle X of the plurality of LEDs 32. Thereby, while being able to apply air with a high flow velocity to LED32, the said nozzle part 73 (specifically ridge part 221) is comprised so that the light inject | emitted from LED32 may not be interrupted. The light distribution angle X of the present embodiment is an angle having a light beam (radiant flux) or light intensity (radiant intensity) necessary for illumination such as inspection use, and an angle at which the rod lens 41 which is the optical member 4 faces at least from the LED 32. (An angle formed by two tangents in contact with the side peripheral surface of the rod lens 41 from the light emission center of the LED 32). That is, the nozzle portion 73 is located outside the tangent line that contacts the side peripheral surface of the rod lens 41 from the light emission center of the LED 32 and is provided at a position that does not block the light from the LED 32 to the rod lens 41. In addition, when a reflecting member such as a reflector is provided inside the side plate 22 of the casing 2, it is conceivable to provide the nozzle portion 73 at a position where the light from the LED 32 to the reflecting member is not blocked.
 このように構成した本実施形態に係るLED照明装置100によれば、複数のLED32の配列方向Pに直交する方向Qから当該複数のLED32に向かって空気を供給することから、複数のLED32を万遍なく均一に直接冷却することができる。これにより、複数のLED32を用いてもそれら複数のLED32の冷却効率を向上させるとともに、各LED32における熱抵抗を減少させることができ、その光出力の低下を防いで高光出力のLED照明装置100を実現することができる。 According to the LED illumination device 100 according to the present embodiment configured as described above, air is supplied from the direction Q orthogonal to the arrangement direction P of the plurality of LEDs 32 toward the plurality of LEDs 32. It can be directly and uniformly cooled. Thereby, even if it uses several LED32, while improving the cooling efficiency of these several LED32, the thermal resistance in each LED32 can be reduced, the fall of the light output is prevented, and the LED lighting apparatus 100 of high light output is made. Can be realized.
 なお、本発明は前記実施形態に限られるものではない。 The present invention is not limited to the above embodiment.
 例えば、ノズル部73としては、一方の側板22Aに設けた突条部221及びLED搭載基板3により構成するものの他、一方の側板22Aに設けた突条部221及び底板21に設けた突条部211により構成するものであっても良い。このとき、底板21に設ける突条部211の構成としては、図5に示すように、LED搭載基板3の上面3aの一部(一方の側板22A側上面)を覆うように形成された概略L字状をなすものとすることが考えられる。これによりノズル部73をLED32に可及的に近づけることができる。 For example, as the nozzle part 73, in addition to what is constituted by the ridge part 221 and the LED mounting substrate 3 provided on the one side plate 22A, the ridge part 221 provided on the one side plate 22A and the ridge part provided on the bottom plate 21. 211 may be used. At this time, as shown in FIG. 5, the protrusion 211 provided on the bottom plate 21 has a schematic L formed so as to cover a part of the upper surface 3a of the LED mounting substrate 3 (the upper surface on the side plate 22A side). It can be considered to have a letter shape. Thereby, the nozzle part 73 can be brought as close to the LED 32 as possible.
 また、図6に示すように、底板21の上面及び一方の側板22Aの下面との間に隙間を形成して、当該隙間により給気経路S1を構成する場合には、LED搭載基板3が搭載される部分に凹部21Mを形成することにより一段下げて、底板21の上面及び側板22の下面との間に形成される給気経路S1の内側開口がLED32と略同一の高さとすることが望ましい。つまり、LED搭載基板3が搭載される部分に凹部21Mを形成することで、LED搭載基板3の上面と側板22の上面とが面一となるように構成している。なお、この場合には、給気経路S1を形成する隙間の内側開口部S1bが、LED32の配列方向Pに沿うとともに当該配列方向Pから直交する方向からLED32に向かって気体を当てるノズル部となる。これならば、底板21及び側板22Aの間に隙間を形成するという簡単な構成により、給気経路S1から供給される気体を効率的にLED32に当てることができる。 In addition, as shown in FIG. 6, when a gap is formed between the upper surface of the bottom plate 21 and the lower surface of the one side plate 22 </ b> A, and the air supply path S <b> 1 is configured by the gap, the LED mounting substrate 3 is mounted. It is desirable that the inner opening of the air supply path S <b> 1 formed between the upper surface of the bottom plate 21 and the lower surface of the side plate 22 be substantially the same height as the LED 32, by lowering by one step by forming a recess 21 </ b> M in the portion to be formed. . In other words, the concave portion 21M is formed in the portion where the LED mounting substrate 3 is mounted, so that the upper surface of the LED mounting substrate 3 and the upper surface of the side plate 22 are flush with each other. In this case, the inner opening S1b of the gap forming the air supply path S1 is a nozzle part that applies gas toward the LED 32 from the direction orthogonal to the arrangement direction P along the arrangement direction P of the LEDs 32. . In this case, the gas supplied from the air supply path S1 can be efficiently applied to the LED 32 by a simple configuration in which a gap is formed between the bottom plate 21 and the side plate 22A.
 また、前記実施形態のように給気経路S1を側板22及び底板21の間に形成するものの他、図7に示すように、給気経路S1を側板22A内に形成するようにしても良い。この場合、例えば側板22にスリット状のノズル孔等を形成することにより給気経路S1を構成しても良い。 Further, as shown in FIG. 7, the air supply path S1 may be formed in the side plate 22A as shown in FIG. 7 in addition to the air supply path S1 formed between the side plate 22 and the bottom plate 21 as in the above embodiment. In this case, for example, the air supply path S <b> 1 may be configured by forming slit-like nozzle holes or the like in the side plate 22.
 また、排気経路S2は、他方の側板22Bに形成する他、他方の側板22B及び底板21の間又は底板21に形成しても良い。図8に排気経路S2を底板21に形成した例を示す。具体的にこの排気経路S2は、底板21の上面において、LED搭載基板3が搭載されていない部分に内側開口部S1bが形成されるとともに、底板21の下面において、放熱フィンFの間に外側開口部が形成されることにより構成される。このように構成すれば、ヒートシンク5の下面に設けられたヒートシンク用ファン6により排気経路S2及びケーシング2内部を負圧にすることができ、給気経路S1から外部の空気を導入することができる。 Further, the exhaust path S2 may be formed between the other side plate 22B and the bottom plate 21 or in the bottom plate 21 in addition to being formed in the other side plate 22B. FIG. 8 shows an example in which the exhaust path S2 is formed in the bottom plate 21. Specifically, the exhaust path S2 has an inner opening S1b formed in a portion where the LED mounting substrate 3 is not mounted on the upper surface of the bottom plate 21, and an outer opening between the radiating fins F on the lower surface of the bottom plate 21. It is configured by forming a part. If comprised in this way, the exhaust path S2 and the inside of the casing 2 can be made into a negative pressure with the heat sink fan 6 provided in the lower surface of the heat sink 5, and external air can be introduce | transduced from the air supply path S1. .
 さらに、前記実施形態では、給気用ファン72を排気経路S2に設けた形態について説明したが、給気経路S1に設けたものであっても良いし、排気経路S2及び給気経路S1の両方に設けたものであっても良い。排気経路S2及び給気経路S1の両方に給気用ファンを設けることで、LEDに供給される空気の風速を上げることができ、LEDの冷却性能を向上させることができる。 Furthermore, in the above-described embodiment, the form in which the air supply fan 72 is provided in the exhaust path S2 has been described. However, it may be provided in the air supply path S1, or both the exhaust path S2 and the air supply path S1. May be provided. By providing an air supply fan in both the exhaust path S2 and the air supply path S1, the wind speed of the air supplied to the LED can be increased, and the cooling performance of the LED can be improved.
 その上、前記実施形態では底板21の下面にヒートシンク5を設けたものであったが、図9に示すように水冷機構8を設けるように構成しても良い。この水冷機構8は、底板21の長手方向に延びる直線状の複数の流路部81を備え、当該流路部81に冷媒を流すことによって底板21及びLED32を冷却するものである。これならば、LED32を直接空冷するとともに水冷しているので、LED32をより一層冷却することができる。 In addition, in the above embodiment, the heat sink 5 is provided on the bottom surface of the bottom plate 21, but a water cooling mechanism 8 may be provided as shown in FIG. The water cooling mechanism 8 includes a plurality of linear flow path portions 81 extending in the longitudinal direction of the bottom plate 21, and cools the bottom plate 21 and the LEDs 32 by flowing a coolant through the flow path portions 81. In this case, since the LED 32 is directly air-cooled and water-cooled, the LED 32 can be further cooled.
 加えて、前記実施形態では、1つのスリット状のノズル部73により、複数のLED32に対して気体を送風するものであったが、図10に示すように、複数の給気経路S1を設けて、複数のノズル部73それぞれが複数のLED32に対して気体を送風するように構成しても良い。また、図11に示すように、複数のノズル部73を、複数のLED32の配列方向に沿って配置して、各LED毎に1対1に対応させて設けても良い。 In addition, in the above-described embodiment, gas is blown to the plurality of LEDs 32 by the single slit-like nozzle portion 73. However, as shown in FIG. 10, a plurality of air supply paths S1 are provided. Each of the plurality of nozzle portions 73 may be configured to blow gas to the plurality of LEDs 32. Moreover, as shown in FIG. 11, you may arrange | position the several nozzle part 73 along the arrangement direction of several LED32, and it is provided corresponding to 1 to 1 for every LED.
 また、前記実施形態では、複数のLEDが直線状に配置された長尺状のLED搭載基板を有するLED照明装置について説明したが、図12に示すように、円環状をなす配線基板31上に複数のLED32を周方向に配置するものであっても良い。この場合、複数のLED32の配列方向Pは円周方向であり、送風機構7は、その配列方向Pに直交する径方向Qの内側又は外側からLEDに向かって気体を供給するように構成する。なお、図12は径方向Qの外側から複数のLED32に気体を当てる場合について示している。 Moreover, although the said embodiment demonstrated the LED illuminating device which has the elongate LED mounting board | substrate with which several LED was arrange | positioned at linear form, as shown in FIG. 12, on the wiring board 31 which makes | forms an annular | circular shape. A plurality of LEDs 32 may be arranged in the circumferential direction. In this case, the arrangement direction P of the plurality of LEDs 32 is a circumferential direction, and the blower mechanism 7 is configured to supply gas toward the LEDs from the inside or outside of the radial direction Q orthogonal to the arrangement direction P. In addition, FIG. 12 has shown about the case where gas is applied to several LED32 from the outer side of radial direction Q. FIG.
 また、図13に示すように、LED収容空間2Hを構成する内面(具体的にはケーシング2の左右一対の側板22の内面)に気体を循環させるための循環案内面GMを形成すれば、ノズル部73から流入する気体だけでなく、LED収容空間2H内で循環する気体がLED32に当たり、LED32に気体を当てる頻度を増大させて更にLED32の冷却効果を向上させることができる。また、LED収容空間2H内の温度分布を均一化することもできる。この循環案内面GMは、LED収容空間2HにおいてLED32の上部空間に気体の循環を起こさせるものであり、左右一対の側板22の内面において例えば長手方向の略全体に亘って形成されている。循環案内面GMの形状としては、図13に示すように、断面形状が直線状をなす傾斜面であっても良いし、断面形状が湾曲した凹面であっても良い。なお、循環案内面GMは、左右一対の側板22に一体に形成されたものであっても良いし、別部材を左右一対の側板22に取り付けることによって形成されたものであっても良い。 Further, as shown in FIG. 13, if a circulation guide surface GM for circulating gas is formed on the inner surface (specifically, the inner surfaces of the pair of left and right side plates 22 of the casing 2) constituting the LED housing space 2H, the nozzle Not only the gas flowing in from the portion 73 but also the gas circulating in the LED housing space 2H hits the LED 32, and the frequency of applying the gas to the LED 32 can be increased to further improve the cooling effect of the LED 32. In addition, the temperature distribution in the LED housing space 2H can be made uniform. The circulation guide surface GM causes gas to circulate in the upper space of the LED 32 in the LED housing space 2H, and is formed over the entire inner surface of the pair of left and right side plates 22 in, for example, the longitudinal direction. As shown in FIG. 13, the shape of the circulation guide surface GM may be an inclined surface having a linear cross-sectional shape or a concave surface having a curved cross-sectional shape. The circulation guide surface GM may be formed integrally with the pair of left and right side plates 22, or may be formed by attaching another member to the pair of left and right side plates 22.
 また、前記実施形態では、放熱部としてヒートシンクを用いた場合を説明したが、その他、ペルチェ素子を用いたものであっても良い。 In the above embodiment, the case where the heat sink is used as the heat radiating portion has been described. However, a Peltier element may be used.
 また、前記実施形態では、ケーシング2が長尺金属製の直方体形状をなすものであったが、ノズル部73は、放熱部であるヒートシンク5よりも熱伝導率が小さい部材、例えば、樹脂を採用するのが好ましい。これならば、ヒートシンク5からの熱がノズル部73に伝わってノズル部73を通ってLED収容空間に給気する気体の温度が上昇し、LED32の放熱効果が小さくなることを防ぐことができる。 Moreover, in the said embodiment, although the casing 2 made | formed the rectangular parallelepiped shape made from a long metal, the nozzle part 73 employ | adopts a member whose heat conductivity is smaller than the heat sink 5 which is a thermal radiation part, for example, resin. It is preferable to do this. If this is the case, it is possible to prevent the heat from the heat sink 5 from being transmitted to the nozzle portion 73 and increasing the temperature of the gas supplied to the LED accommodation space through the nozzle portion 73 and reducing the heat dissipation effect of the LED 32.
 前記実施形態で考えると、放熱部であるヒートシンク5が底板21に一体に形成されていることから、ケーシング2の左右一対の側板22を樹脂製のものにして、ノズル部73をヒートシンク5よりも熱伝導率が小さい部材により形成することが考えられる。特に、給気経路S1及びノズル部73を形成する部材を樹脂製のものにすることが望ましい。 Considering the embodiment, since the heat sink 5 that is a heat radiating portion is formed integrally with the bottom plate 21, the pair of left and right side plates 22 of the casing 2 are made of resin, and the nozzle portion 73 is made more than the heat sink 5. It may be possible to form with a member having a low thermal conductivity. In particular, it is desirable that the members forming the air supply path S1 and the nozzle portion 73 are made of resin.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 本発明によれば、LED照明装置における配線制約及び配光制約等の各種制約を受けずに、LEDの冷却性能を向上させることができる。 According to the present invention, the cooling performance of the LED can be improved without being subjected to various restrictions such as wiring restrictions and light distribution restrictions in the LED lighting device.

Claims (10)

  1.  LEDと、
     前記LEDを収容するLED収容空間を形成するケーシングと、
     前記ケーシングに形成した前記LED収容空間に気体を供給する給気経路とを備え、
     前記給気経路が、前記LEDに向いて開口するノズル部を有し、
     前記ノズル部が、前記LEDの配光角よりも外側に位置し、
     前記ノズル部から出る気体の流速が、前記給気経路における前記ノズル部の上流側の気体の流速よりも高速となるように構成されているLED照明装置。
    LED,
    A casing forming an LED housing space for housing the LED;
    An air supply path for supplying gas to the LED housing space formed in the casing,
    The air supply path has a nozzle portion that opens toward the LED;
    The nozzle part is located outside the light distribution angle of the LED,
    The LED lighting device configured such that the flow velocity of the gas exiting the nozzle portion is higher than the flow velocity of the gas upstream of the nozzle portion in the air supply path.
  2.  所定方向に列状に配列された複数のLEDと、
     前記複数のLEDを収容するLED収容空間を形成するケーシングと、
     前記ケーシングに設けられて前記複数のLEDの配列方向と直交する方向から前記複数のLEDに向かって気体を供給する送風機構とを備え、
     前記送風機構が、前記LEDを向いて開口するとともに前記複数のLEDの配列方向に沿って開口が延びるスリット状のノズル部、又は前記LEDを向いて開口するとともに前記複数のLEDの配列方向に沿って配置された複数のノズル部を有し、
     前記ノズル部が、前記複数のLEDの配光角よりも外側に位置しているLED照明装置。
    A plurality of LEDs arranged in a row in a predetermined direction;
    A casing forming an LED housing space for housing the plurality of LEDs;
    A blower mechanism that is provided in the casing and supplies gas toward the plurality of LEDs from a direction orthogonal to the arrangement direction of the plurality of LEDs;
    The air blowing mechanism opens toward the LEDs and the slit-like nozzle portion that extends along the arrangement direction of the plurality of LEDs, or opens toward the LEDs and along the arrangement direction of the plurality of LEDs. Having a plurality of nozzle portions arranged
    The LED illuminating device in which the nozzle part is located outside a light distribution angle of the plurality of LEDs.
  3.  前記ケーシングに、前記LED収容空間に気体を供給するものであり前記ノズル部を有する給気経路、及び排気手段によって前記LED収容空間から気体を排出する排気経路が形成されており、
     前記排気手段により、前記LED収容空間を負圧にすることによって、前記ノズル部から前記LED収容空間に気体が流入される請求項2記載のLED照明装置。
    In the casing, a gas is supplied to the LED housing space, an air supply path having the nozzle portion, and an exhaust path for discharging the gas from the LED housing space by an exhaust unit are formed,
    The LED lighting device according to claim 2, wherein gas is caused to flow into the LED housing space from the nozzle portion by setting the LED housing space to a negative pressure by the exhaust unit.
  4.  前記複数のLEDが搭載されたLED搭載基板を備えており、
     前記ケーシングが、前記LED搭載基板が搭載される底板及び当該底板において前記配列方向に沿って設けられた左右一対の側板を有するものであり、
     前記送風機構が、前記ケーシングにおける一方の側板側に外部の気体を前記ケーシングの内部に供給するための給気経路と、前記ケーシングにおける他方の側板側に前記ケーシングの内部の気体をケーシングの外部に排出するための排気経路とを有しており、
     前記給気経路の内側開口部が、前記ノズル部とされている請求項2記載のLED照明装置。
    An LED mounting board on which the plurality of LEDs are mounted;
    The casing has a bottom plate on which the LED mounting substrate is mounted and a pair of left and right side plates provided along the arrangement direction in the bottom plate,
    An air supply path for supplying an external gas to the inside of the casing on one side plate side of the casing, and an air inside the casing on the other side plate side of the casing to the outside of the casing. An exhaust path for discharging,
    The LED illumination device according to claim 2, wherein an inner opening portion of the air supply path is the nozzle portion.
  5.  前記ノズル部が、前記一方の側板に設けられて前記複数のLEDの配列方向に沿って延びる突条部と、前記LED搭載基板の上面とにより形成されている請求項4記載のLED照明装置。 The LED illumination device according to claim 4, wherein the nozzle portion is formed by a ridge portion provided on the one side plate and extending along an arrangement direction of the plurality of LEDs, and an upper surface of the LED mounting substrate.
  6.  前記ノズル部におけるLED側開口である内側開口の開口面積が、前記ノズル部における外側開口の開口面積、又は前記ノズル部の外側開口に連通する流路における外側開口の開口面積よりも小さい請求項1記載のLED照明装置。 The opening area of the inner opening which is the LED side opening in the nozzle part is smaller than the opening area of the outer opening in the nozzle part or the opening area of the outer opening in the flow path communicating with the outer opening of the nozzle part. LED lighting apparatus of description.
  7.  前記給気経路又は前記排気経路に外部の気体を当該給気経路に導入するための給気用ファンが設けられている請求項4記載のLED照明装置。 The LED lighting device according to claim 4, wherein an air supply fan for introducing an external gas into the air supply path is provided in the air supply path or the exhaust path.
  8.  前記排気経路が前記底板の下面に開口しており、前記底板の下面に放熱部が設けられている請求項4記載のLED照明装置。 The LED lighting device according to claim 4, wherein the exhaust path is open to a lower surface of the bottom plate, and a heat radiating portion is provided on the lower surface of the bottom plate.
  9.  前記ノズル部は、前記放熱部よりも熱伝導率が小さい部材で構成されている請求項8記載のLED照明装置。 The LED illumination device according to claim 8, wherein the nozzle portion is formed of a member having a lower thermal conductivity than the heat dissipation portion.
  10.  前記放熱部の下面に当該放熱部内に外部の気体を導入するための放熱部用ファンが設けられており、当該放熱部用ファンが、外部の気体を当該給気経路に導入するための給気用ファンを兼ねている請求項8記載のLED照明装置。 A heat dissipating unit fan for introducing an external gas into the heat dissipating unit is provided on the lower surface of the heat dissipating unit, and the heat dissipating unit fan supplies the external gas into the air supply path. The LED lighting device according to claim 8, which also serves as a fan for a vehicle.
PCT/JP2013/050588 2012-03-28 2013-01-15 Led lighting device WO2013145812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012074050A JP2013206693A (en) 2012-03-28 2012-03-28 Led lighting device
JP2012-074050 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013145812A1 true WO2013145812A1 (en) 2013-10-03

Family

ID=49259098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050588 WO2013145812A1 (en) 2012-03-28 2013-01-15 Led lighting device

Country Status (3)

Country Link
JP (1) JP2013206693A (en)
TW (1) TW201346178A (en)
WO (1) WO2013145812A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362409B2 (en) 2019-10-17 2023-10-17 キヤノン株式会社 Lighting equipment and camera systems
CN114166862B (en) * 2022-02-14 2022-04-19 常州海图电子科技有限公司 High-speed head and tail rope intelligent detection system based on machine vision

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056653A (en) * 2003-08-01 2005-03-03 Fuji Photo Film Co Ltd Light source device
JP2007250276A (en) * 2006-03-14 2007-09-27 Sony Corp Lighting system and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056653A (en) * 2003-08-01 2005-03-03 Fuji Photo Film Co Ltd Light source device
JP2007250276A (en) * 2006-03-14 2007-09-27 Sony Corp Lighting system and liquid crystal display device

Also Published As

Publication number Publication date
TW201346178A (en) 2013-11-16
JP2013206693A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
US9662906B2 (en) Illumination apparatus with heat radiation member
US8596836B2 (en) Moving head fixture and cooling module
TWI627072B (en) Light irradiation device
KR101669337B1 (en) Ultraviolet irradiation head and ultraviolet irradiator
JP5555084B2 (en) Light source device
JP2008112719A (en) Backlight module
JP2017172876A (en) Cooling device and projection display device
KR20200079207A (en) Light illuminating apparatus
KR20140001180U (en) Heat sink for light modules
JP6006379B2 (en) Light irradiation device
US20080019125A1 (en) Backlight module
JP2018092755A (en) Radiation device
WO2013145812A1 (en) Led lighting device
KR200485060Y1 (en) Lamp ventilation system
WO2016042974A1 (en) Light illumination device
JP2008043047A (en) Cooling structure for power converter
KR20090029967A (en) Air-cooled led lighting apparatus
JP5862473B2 (en) Liquid crystal display
JP2014078413A (en) Led irradiation device and led irradiation system
JP6042619B2 (en) Heat sink and lighting device including the same
TW201708771A (en) Light emitting device
KR20200084114A (en) Apparatus for radiating heat of led lamp
JP7313555B2 (en) Light irradiation device
KR101446122B1 (en) Improved hit sink and led lighting device using the same
KR20090132185A (en) Cooling apparatus for uv light lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769825

Country of ref document: EP

Kind code of ref document: A1