WO2013145700A1 - Liquid injection method and liquid injection device - Google Patents

Liquid injection method and liquid injection device Download PDF

Info

Publication number
WO2013145700A1
WO2013145700A1 PCT/JP2013/002021 JP2013002021W WO2013145700A1 WO 2013145700 A1 WO2013145700 A1 WO 2013145700A1 JP 2013002021 W JP2013002021 W JP 2013002021W WO 2013145700 A1 WO2013145700 A1 WO 2013145700A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
liquid
injection
port
cell
Prior art date
Application number
PCT/JP2013/002021
Other languages
French (fr)
Japanese (ja)
Inventor
喜輝 福田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013145700A1 publication Critical patent/WO2013145700A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a liquid injection method and a liquid injection apparatus for injecting a predetermined liquid into a cell gap of an electro-optical or electrochemical cell.
  • dye-sensitized solar cells and liquid crystal panels are widely known as electro-optical cells that function by filling a cell gap with an electrolyte or a liquid crystal material.
  • a transparent substrate formed by depositing a porous semiconductor layer carrying a sensitizing dye and a counter substrate formed by depositing a counter electrode are interposed via a spacer. Can be pasted together. As a result, a cell gap is formed at a very narrow distance (for example, 60 ⁇ m) between the two substrates. This cell gap is filled with a liquid electrolyte or electrolyte.
  • the dye-sensitized solar cell having such a configuration, when visible light is irradiated from the back side of the transparent substrate, the dye supported on the porous semiconductor layer is excited and emits electrons. The emitted electrons are guided to the transparent electrode on the transparent substrate through the porous semiconductor layer and taken out to the outside. The sent-out electrons return to the counter electrode via an external circuit, and are received by the dye in the porous semiconductor layer again via ions in the electrolysis solution. In this way, light energy is immediately converted into electric power and output.
  • a transmissive liquid crystal panel two glass substrates on which a transparent electrode and an alignment film are laminated are bonded together via a spacer, and are very narrow (for example, several ⁇ m) between both glass substrates. ) Cell gaps are formed at distance intervals. This cell gap is filled with a liquid crystal material. By applying a voltage to the liquid crystal layer in the cell gap, the direction of the liquid crystal molecules is changed to control the amount of transmitted light.
  • a liquid injection method using a decompression chamber has been used to inject an electrolytic solution into the cell gap of a dye-sensitized solar cell.
  • the inside of the cell gap is depressurized by putting solar cells into the depressurization chamber and evacuating the depressurization chamber.
  • an electrolytic solution is injected from an injection port provided in the solar battery cell, and the electrolytic solution is filled in the cell gap.
  • the above-described liquid injection method using the decompression chamber is often used.
  • the cell gap is very narrow as described above, and when the evacuation in the cell gap is incomplete or the injection solution is completely exhausted. When it is not filled, bubbles remain in the cell gap, resulting in a product defect.
  • the conventional liquid injection method using the decompression chamber as described above takes a lot of time for degassing work and evacuation in the chamber. A lot of time is spent until the infusate is completely distributed. As a result, the total time required for the liquid injection process is very long and the productivity is low.
  • the present invention solves such problems of the prior art, and provides a liquid injection method and a liquid injection apparatus capable of efficiently injecting a predetermined liquid into a cell gap of an electro-optical or electrochemical cell in a short time. To do.
  • an electro-optical or electrochemical cell that functions by filling a cell gap with a predetermined liquid functions in an empty state in the cell gap from an injection port formed on one surface of the cell.
  • a liquid injection method for injecting the liquid into the first flow path, the step of connecting a first flow path to the injection port, and the second flow path connected to the first flow path A step of depressurizing the inside of the cell gap via the flow path, the first flow path, and the inlet; blocking the second flow path from the first flow path; and A step of connecting to the first flow path, a step of feeding an injection solution into the first flow path through the third flow path, and a flow of the third flow path to the first flow path.
  • the liquid injection device is an electro-optical or electrochemical cell that functions by filling a cell gap with a predetermined liquid, and enters the empty cell gap from an injection port formed on one surface of the cell.
  • a first directional control valve having a third port, a fourth port connected to the second port of the first directional control valve via a second flow path, and the first directional control valve.
  • a second directional control valve having fifth and sixth ports that are alternatively connectable to the port; a vacuum generating unit connected to the fifth port of the second directional control valve; An atmospheric port connected to the sixth port of the second direction switching valve; and And a control unit for controlling the infusion fluid supply source connected to the third port of the valve through the third channel, the first and second directional control valve.
  • the cell gap of the cell can be efficiently evacuated in a short time without using a decompression chamber. Further, when the second channel is reconnected to the first channel and released from the reduced pressure state to the atmosphere, the liquid is pushed into the cell gap of the cell by the pressure of the rush air flow generated in the second channel. Therefore, the liquid injection into the cell gap can be done efficiently and in a short time. Further, in order to push the liquid into the cell gap of the cell, a positive atmospheric pressure is not applied but a natural atmospheric pressure is used, so that it is not necessary to apply an excessive pressure to the cell.
  • a predetermined liquid can be efficiently injected into the cell gap of an electro-optical or electrochemical cell in a short time by the configuration and operation as described above. .
  • FIG. 1 and FIG. 2 show a configuration example of a dye-sensitized solar cell as an electro-optic cell to which the liquid injection method and the liquid injection device of the present invention can be applied.
  • This dye-sensitized solar cell 10 has, as a basic structure, opposed to a transparent substrate (for example, a glass substrate) 14 formed by depositing a porous semiconductor layer (for example, TiO 2 layer) 12 that carries a sensitizing dye.
  • a counter substrate for example, a titanium plate or a titanium foil
  • an electrode for example, a carbon electrode
  • the spacer 20 also serves as an adhesive seal for sealing. Clearance clogging cell gap CG between the substrates 14 and 18 is defined by the height of the spacer 20 (thickness), the gap size (distance interval) of usually 10 ⁇ 70 [mu] m chosen S CG.
  • the cell gap CG is filled with an electrolytic solution EL as described later.
  • an electrolytic solution EL as described later.
  • one unit of power generation layer is formed by the transparent electrode of the stripe pattern and the porous semiconductor layer 12 and the counter electrode 16 facing each other with the electrolytic solution layer interposed therebetween.
  • the All the power generation layers in the cell are electrically connected to each other.
  • one or a plurality of (two in the illustrated example) injection ports 22 are provided on the periphery of the cell, avoiding the area of the power generation layer. Is provided. As will be described later, the electrolyte EL is injected into the cell gap CG through these injection ports 22.
  • FIG. 3 shows a configuration of a liquid injection device according to an embodiment of the present invention.
  • This liquid injection device can be used for an electrolytic solution injection process for the solar battery cell 10 and includes, as functional blocks, a nozzle unit 30, an electrolytic solution supply unit 32, a vacuum / atmospheric pressure supply unit 34, a line switching unit 36, and a control. A portion 38 is provided.
  • the nozzle unit 30 includes a number (in this example, two) of nozzle tubes (or nozzle tubes) 40 corresponding to the injection ports 22 of the solar battery cells 10 and injection pads 42 attached to the tips of the nozzle tubes 40.
  • the nozzle cylinder 40 and the injection pad 42 constitute a first flow path 44.
  • the injection pad 42 is made of an elastically deformable material such as fluororubber so as to cover the injection port 22 of the solar battery cell 10 and make airtight contact therewith.
  • FIG. 4 has a skirt shape extending in a reverse taper shape while expanding the diameter from the tip of the nozzle tube 40, or a sealing material such as an O-ring 46 is attached as shown in FIG.
  • the other end (inlet) of the nozzle cylinder 40 is connected to a fixed port Pa of the first direction switching valve 48 which is one component of the line switching unit 36.
  • the first direction switching valve 48 is composed of, for example, a three-way valve.
  • the electrolytic solution supply unit 32 includes, for example, an electrolytic solution supply source 50 having an electrolytic solution container and a pump, a liquid retaining cylinder (or liquid retaining tube) 52, and an electrolytic solution supply tube 54.
  • One end (exit) of the liquid retaining cylinder 52 is connected to one selection port P c of the first direction switching valve 48.
  • the electrolyte supply pipe 54 connects the output port of the electrolyte supply source 50 and the other end (inlet) of the liquid retaining cylinder 52.
  • the vacuum / atmospheric pressure supply unit 34 includes a vacuum generation unit 55 made of, for example, a vacuum pump or an ejector, an atmospheric port 56, and a supply / exhaust pipe (or supply / exhaust pipe) 58.
  • a vacuum generation unit 55 made of, for example, a vacuum pump or an ejector, an atmospheric port 56, and a supply / exhaust pipe (or supply / exhaust pipe) 58.
  • One end of the sheet stack 58 is connected to the other selected ports P b of the first directional control valve 48, the supply and exhaust pipe 58 and the other end is a component of the line switching unit 36 of the second directional control valve 60 It is connected to fixed ports P d.
  • the one of the selected ports P e of the second directional control valve 60 is connected to the output port of the vacuum generator 55, air port 56 open to the atmosphere on the other selected ports P f are connected.
  • Second direction switching valve 60 is formed of a three-way valve, for example.
  • the control unit 38 controls the operation or state of the line switching unit 36, the electrolytic solution supply source 50, and the vacuum generation unit 55, and also controls the sequence of the entire apparatus.
  • a first directional control valve 48 is under the control of the control unit 38, two selection ports P b to a fixed port P a, so it selectively connecting either P c Yes.
  • the second directional control valve 60 is under the control of the control unit 38, the fixed port P d into two selected ports P e, which is to be selectively connecting either P f.
  • control unit 38 directly or indirectly controls the operation of an injection pad connection actuator (not shown) for detachably connecting the injection pad 42 of the nozzle unit 30 to the injection port 22 of the solar battery cell 10. It is supposed to be.
  • FIG. 5 shows a time chart of an electrolytic solution injection processing sequence by this liquid injection device.
  • 6 to 10 show the state of each part in the apparatus at each stage of the electrolyte injection process.
  • the control unit 38 operates the injection pad connecting actuator to make the nozzle
  • the injection pad 42 of the unit 30 is connected to the injection port 22 of the solar battery cell 10.
  • the cell gap CG of the solar battery cell 10 is filled with air.
  • the first directional control valve 48 is the electrolytic solution supply source to the fixed port P a connect the 50 side of the selected port P c
  • the second directional control valve 60 connects the selected port P f of the atmospheric port side to a fixed port P d.
  • the switching timings (t 1 , t 2 , t 3 ) of these units are only required to coincide with each other or close to each other, and the order may be reversed.
  • the output port of the vacuum generation unit 55 is connected to the inlet 22 of the solar battery cell 10 via the second direction switching valve 60, the air supply / exhaust cylinder 58, the first direction switching valve 48, the nozzle tube 40 and the injection pad 42. Then, evacuation in the cell gap CG is started. Since the cell gap volume of the CG is very small (normally less than the number of cm 3), the time T A required for evacuation is very short, it is sufficient usually be 1 minute.
  • the electrolytic solution EL from the electrolytic solution supply source 50 is sent to the liquid retaining cylinder 52 through the electrolytic solution supply pipe 54 and temporarily stays there.
  • the electrolyte EL for one delivery sent from one output port of the electrolyte supply source 50 is divided into half in the middle of the electrolyte supply pipe 54 and distributed to the liquid retaining cylinders 52. It has become so. However, it is of course possible to configure each half of the electrolyte EL to be separately sent to each liquid retaining cylinder 52 from the two output ports of the electrolyte supply source 50.
  • the one-time electrolyte EL that has remained in the liquid retaining cylinder 52 is sent to the nozzle cylinder 40 through the first direction switching valve 48.
  • the inside of the nozzle cylinder 40 and the cell gap CG of the solar battery cell 10 was in a reduced pressure state, so that the electrolyte EL was sucked from the liquid retaining cylinder 52 and moved to the nozzle cylinder 40 and drawn into the cell gap CG. It is.
  • the electrolyte drawing-in (inflow) speed gradually decreases.
  • a predetermined time e.g., several seconds
  • the second directional control valve 60 substantially simultaneously with the switching to the atmospheric air port 56 side, or preferably with short delay time T B of about 1 second, the supply and exhaust system side of the first directional control valve 48 Switch to.
  • the electrolyte EL that has not yet entered the cell gap CG of the solar battery cell 10 and has remained in the nozzle cylinder 40 increases the pressure of the rush air flow from the supply / exhaust cylinder 58. Receive from.
  • the electrolyte EL in the nozzle cylinder 40 is pushed into the cell gap CG of the solar battery cell 10 by the pressure of the rush air flow.
  • the flow rate of the rush air flow at this time mainly depends on the volume ratio of the air supply / exhaust cylinder 58 to the nozzle cylinder 40 and the pressure reduction pressure immediately before in the air supply / exhaust cylinder 58, and the lower the pressure reduction pressure immediately before, The higher the pressure and the larger the volume ratio, the longer the duration of the rush air flow.
  • the nozzle cylinder 40 preferably has a volume that is 0.8 to 1.5 times that of a single injection.
  • the supply / exhaust cylinder 58 desirably has a volume that is at least larger than that of the nozzle cylinder 40, and more preferably has a volume that is three or more times larger.
  • the decompression pressure immediately before the supply / exhaust cylinder 58 is preferably 200 Pa or less.
  • the electrolytic solution EL enters the cell gap CG of the solar battery cell 10 by the pressure of the rush air flow that is one step or much larger than the pressure (depressurized atmosphere) in the cell gap CG of the solar battery cell 10. Push in.
  • the electrolyte EL is efficiently injected into the cell gap CG of the solar battery cell 10, and the cell gap CG is electrolyzed without leaving bubbles in the cell gap CG as shown in FIG. 10 in a short time (for example, within several tens of seconds). Filled with liquid EL.
  • electrolyte solution EL is pushed in into the cell gap CG using atmospheric pressure, an excessive pressure is not applied to the solar battery cell 10 during injection, and the solar battery cell 10 is prevented from being damaged.
  • the control unit 38 When a predetermined time T C (for example, 30 seconds) has elapsed since the start of the push-in injection by the air rush flow as described above, the control unit 38 operates the injection pad connecting actuator in the reverse direction to The injection pad 42 is separated from the injection port 22 of the solar battery cell 10.
  • T C for example, 30 seconds
  • control part 38 turns off the vacuum generation part 55, after switching the 2nd direction switching valve 60 to the atmospheric
  • the vacuum generation unit 55 may be turned off before the second direction switching valve 60 is switched to the atmospheric port 56 side.
  • the electrolytic solution injection process in the liquid injection device is completed.
  • the electrolyte EL overflowing in the vicinity of the injection port 22 of the solar battery cell 10 is wiped cleanly by the wiper 72.
  • a glass sealing seal 78 made of glass, for example is placed on the inlet 22 of the solar battery cell 10 by a seal mounter 76 having a vacuum chuck 74.
  • An ultraviolet curable resin layer 80 is applied to the back surface (lower surface) of the sealing seal 78.
  • the ultraviolet ray irradiation unit 82 condenses and irradiates the transparent cap 78 with ultraviolet rays from above to cure the ultraviolet curable resin layer 80.
  • the inlet 22 of the photovoltaic cell 10 is sealed.
  • the inside of the cell gap CG of the solar battery cell 10 can be efficiently evacuated in a short time without using the decompression chamber. Furthermore, since the electrolyte EL is pushed into the cell gap CG of the solar battery cell 10 by the pressure of the rush air flow, the electrolyte can be injected into the cell gap CG efficiently and in a short time. Further, in order to push the electrolytic solution EL into the cell gap CG of the solar battery cell 10, a positive atmospheric pressure is not applied but a natural atmospheric pressure is used. There is no need to apply pressure. Thereby, damage of the photovoltaic cell 10 can be prevented. [Liquid injection in-line system in embodiment]
  • FIG. 14 shows the configuration of a liquid injection inline system that can be used in the liquid injection method of the above embodiment.
  • a four-chamfer type mother solar cell 88 is conveyed in one horizontal direction on a flat flow conveyance path 86 using a conveyance belt 84.
  • a liquid injection unit 90, a wiping unit 92, a sealing seal adherence unit 94, and a sealing seal curing unit 96 are arranged in a line along the flattening conveyance path 86.
  • the liquid injection unit 90 corresponds to the liquid injection device in the above embodiment. More specifically, the number (four) of liquid injection devices corresponding to chamfering are operated in parallel (simultaneously).
  • the injection pad connecting actuator 98 is shared by the four solar cells 10 included in the mother solar cell 88 through the common support frame or base 100.
  • the elevator 102 is connected / separated at the same time.
  • the wiping unit 92 includes an elevating unit 104 that moves the wiper 72 up and down, and a wiping drive mechanism 106 that includes, for example, a ball screw mechanism for driving the wiper 72 in one horizontal direction on the mother solar battery cell 88.
  • the sealing seal adherence unit 94 operates a number (eight units) of seal mounters 76 corresponding to chamfering in parallel (simultaneously).
  • the eight seal mounters 76 are supported by a common support frame or base 108, and a seal stack portion in which a large number of sealing seals 78 are stacked by the elevating unit 110 and the horizontal slide mechanism 112. 114 and each inlet 22 on the mother solar cell 88 are simultaneously moved.
  • the sealing seal curing unit 96 operates a number (eight units) of ultraviolet irradiation units 82 corresponding to chamfering in parallel (simultaneously) in the light shielding cover 120.
  • the electrolyte injection process, the inlet wiping process, the sealing seal deposition process and the sealing seal curing process in the liquid injection method of the above embodiment are all performed inline and in a pipeline system.
  • the time required for the entire liquid injection process for the solar battery cell can be greatly shortened, and the production efficiency can be remarkably improved.
  • the direction switching valves 48 and 60 may be configured by a plurality of on-off valves instead of the three-way valves.
  • the first flow path 44, the second flow path 62, and the third flow path 64 are not limited to the above-described cylinders or tubes, and can take any flow path shape.
  • a dye-sensitized solar cell is used as a workpiece.
  • the liquid injection apparatus and the liquid injection method of the present invention are not limited to dye-sensitized solar cells, and can be applied to any electro-optical cell having a similar cell gap.
  • a liquid crystal panel In contrast, the present invention can be applied to an application in which a liquid crystal material is injected.
  • the liquid injection apparatus and the liquid injection method of the present invention can be applied to an application for injecting an electrolytic solution into an electrochemical cell such as a battery. Any number of cell inlets may be provided on any surface (front surface, back surface, side surface, etc.) of the cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

[Problem] To efficiently inject a predetermined liquid in a short period of time into the cell gap of an electro-optic or electrochemical cell. [Solution] This liquid injection device has, as a functional block, a nozzle unit (30), an electrolyte supply unit (32), a vacuum/atmospheric pressure supply unit (34), a line switching unit (36), and a control unit (38). The nozzle tube (40) and injection pad (42) of the nozzle unit (30) configure a first duct (44). The air supply/discharge tube (58) of the vacuum/atmospheric pressure supply unit (34) configures a second duct (62). The liquid retention tube (52) of the electrolyte supply unit (32) configures a third duct (64).

Description

液注入方法及び液注入装置Liquid injection method and liquid injection device
 本発明は、電気光学的または電気化学的なセルのセルギャップに所定の液を注入する液注入方法および液注入装置に関する。 The present invention relates to a liquid injection method and a liquid injection apparatus for injecting a predetermined liquid into a cell gap of an electro-optical or electrochemical cell.
 典型的には、色素増感型太陽電池セルや液晶パネルが、セルギャップを電解液あるいは液晶材料で満たして機能する電気光学的なセルとして広く知られている。 Typically, dye-sensitized solar cells and liquid crystal panels are widely known as electro-optical cells that function by filling a cell gap with an electrolyte or a liquid crystal material.
 色素増感型太陽電池セルの製造においては、増感色素を坦持する多孔質半導体層を被着してなる透明基板と、対向電極を被着してなる対向基板とが、スペーサを介して貼り合わせられる。そうすると、両基板の間に非常に狭い(たとえば60μmの)距離間隔でセルギャップが形成される。このセルギャップは、液体の電解質つまり電解液で満たされる。 In the production of a dye-sensitized solar cell, a transparent substrate formed by depositing a porous semiconductor layer carrying a sensitizing dye and a counter substrate formed by depositing a counter electrode are interposed via a spacer. Can be pasted together. As a result, a cell gap is formed at a very narrow distance (for example, 60 μm) between the two substrates. This cell gap is filled with a liquid electrolyte or electrolyte.
 かかる構成の色素増感型太陽電池セルにおいて、透明基板の裏側から可視光が照射されると、多孔質半導体層に担持されている色素が励起され、電子を放出する。放出された電子は多孔質半導体層を介して透明基板上の透明電極に導かれ、外部に取り出される。送り出された電子は、外部回路を経由して対向電極に戻り、電界液中のイオンを介して再び多孔質半導体層内の色素に受け取られる。こうして、光エネルギーを即時に電力に変換して出力するようにしている。 In the dye-sensitized solar cell having such a configuration, when visible light is irradiated from the back side of the transparent substrate, the dye supported on the porous semiconductor layer is excited and emits electrons. The emitted electrons are guided to the transparent electrode on the transparent substrate through the porous semiconductor layer and taken out to the outside. The sent-out electrons return to the counter electrode via an external circuit, and are received by the dye in the porous semiconductor layer again via ions in the electrolysis solution. In this way, light energy is immediately converted into electric power and output.
 また、透過型液晶パネルの製造においては、透明電極および配向膜が積層形成されている2枚のガラス基板がスペーサを介して貼り合わせられ、両ガラス基板の間に非常に狭い(たとえば数μmの)距離間隔でセルギャップが形成される。このセルギャップは液晶材料で満たされる。セルギャップ内の液晶層に電圧を印加することにより、液晶分子の向きを変えて透過光の量を制御するようになっている。 Further, in the manufacture of a transmissive liquid crystal panel, two glass substrates on which a transparent electrode and an alignment film are laminated are bonded together via a spacer, and are very narrow (for example, several μm) between both glass substrates. ) Cell gaps are formed at distance intervals. This cell gap is filled with a liquid crystal material. By applying a voltage to the liquid crystal layer in the cell gap, the direction of the liquid crystal molecules is changed to control the amount of transmitted light.
 従来より、色素増感型太陽電池セルのセルギャップ内に電解液を注入するために、減圧チャンバを用いる液注入方法が用いられている。この液注入方法は、減圧チャンバの中に太陽電池セルを入れて減圧チャンバ内を真空引きすることにより、セルギャップ内を減圧する。次いで、減圧環境下において、太陽電池セルに設けられた注入口から電解液を注入して、セルギャップ内に電解液を充填する。液晶パネルのセルギャップ内に液晶材料を注入する工程でも、上記のような減圧チャンバを用いる液注入方法が多く用いられている。 Conventionally, a liquid injection method using a decompression chamber has been used to inject an electrolytic solution into the cell gap of a dye-sensitized solar cell. In this liquid injection method, the inside of the cell gap is depressurized by putting solar cells into the depressurization chamber and evacuating the depressurization chamber. Next, in a reduced pressure environment, an electrolytic solution is injected from an injection port provided in the solar battery cell, and the electrolytic solution is filled in the cell gap. In the step of injecting the liquid crystal material into the cell gap of the liquid crystal panel, the above-described liquid injection method using the decompression chamber is often used.
国際公開WO2009/122733International Publication WO2009 / 122733 特開2001-117107JP 2001-117107 A 特開2005-310716JP 2005-310716 A
 色素増感型太陽電池セルや液晶パネル等の電気光学的なセルにおいては、上記のようにセルギャップが非常に狭く、このセルギャップ内の真空排気が不完全であるとき、あるいは注入液が完全に充填されないときは、セルギャップ内に気泡が残り、製品不良になる。 In electro-optic cells such as dye-sensitized solar cells and liquid crystal panels, the cell gap is very narrow as described above, and when the evacuation in the cell gap is incomplete or the injection solution is completely exhausted. When it is not filled, bubbles remain in the cell gap, resulting in a product defect.
 この点に関して、上記のように減圧チャンバを用いる従来の液注入方法は、チャンバ内の脱気作業や真空引きに多くの時間を割いており、液注入の際にもセルギャップ内の隅々まで注入液が完全に行き渡るまで多くの時間を費やしている。その結果、液注入処理の全体所要時間が非常に長くて生産性が低いという課題を抱えていた。 In this regard, the conventional liquid injection method using the decompression chamber as described above takes a lot of time for degassing work and evacuation in the chamber. A lot of time is spent until the infusate is completely distributed. As a result, the total time required for the liquid injection process is very long and the productivity is low.
 本発明は、かかる従来技術の問題点を解決するものであり、電気光学的または電気化学的なセルのセルギャップに所定の液を短時間で効率よく注入できる液注入方法および液注入装置を提供する。 The present invention solves such problems of the prior art, and provides a liquid injection method and a liquid injection apparatus capable of efficiently injecting a predetermined liquid into a cell gap of an electro-optical or electrochemical cell in a short time. To do.
 本発明の液注入方法は、セルギャップに所定の液を満たして機能する電気光学的または電気化学的なセルに対して、前記セルの一面に形成された注入口から空状態の前記セルギャップ内に前記液を注入する液注入方法であって、前記注入口に第1の流路を接続する工程と、前記第1の流路に第2の流路を接続した状態で、前記第2の流路、前記第1の流路および前記注入口を介して前記セルギャップ内を減圧する工程と、前記第2の流路を前記第1の流路から遮断するとともに、第3の流路を前記第1の流路に接続する工程と、前記第3の流路を介して前記第1の流路に1回分の注入液を送り込む工程と、前記第3の流路を前記第1の流路から遮断するとともに、前記第2の流路を前記第1の流路に再び接続する工程と、前記第2の流路を減圧状態から大気に開放し、前記第1の流路内に留まっている注入液を大気圧によって前記セルギャップ内に押し込む工程と、前記注入口から前記第1の流路を分離する工程と、前記注入口を封止する工程とを有する。 In the liquid injection method of the present invention, an electro-optical or electrochemical cell that functions by filling a cell gap with a predetermined liquid functions in an empty state in the cell gap from an injection port formed on one surface of the cell. A liquid injection method for injecting the liquid into the first flow path, the step of connecting a first flow path to the injection port, and the second flow path connected to the first flow path A step of depressurizing the inside of the cell gap via the flow path, the first flow path, and the inlet; blocking the second flow path from the first flow path; and A step of connecting to the first flow path, a step of feeding an injection solution into the first flow path through the third flow path, and a flow of the third flow path to the first flow path. Disconnecting from the path, reconnecting the second flow path to the first flow path, and A step of releasing the pressure from the pressure state to the atmosphere and pushing the injection solution remaining in the first flow path into the cell gap by atmospheric pressure; and a step of separating the first flow path from the injection port; Sealing the inlet.
 本発明の液注入装置は、セルギャップに所定の液を満たして機能する電気光学的または電気化学的なセルに対して、前記セルの一面に形成された注入口から空状態の前記セルギャップ内に前記液を注入する液注入装置であって、前記注入口に第1の流路を介して接続される第1のポートと、前記第1のポートと択一的に接続可能な第2および第3のポートとを有する第1の方向切換弁と、前記第1の方向切換弁の前記第2のポートに第2の流路を介して接続される第4のポートと、前記第1のポートと択一的に接続可能な第5および第6のポートとを有する第2の方向切換弁と、前記第2の方向切換弁の前記第5のポートに接続される真空発生部と、前記第2の方向切換弁の前記第6のポートに接続される大気ポートと、前記第1の方向切換弁の前記第3のポートに第3の流路を介して接続される注入液供給源と、前記第1および第2の方向切換弁を制御する制御部とを有する。 The liquid injection device according to the present invention is an electro-optical or electrochemical cell that functions by filling a cell gap with a predetermined liquid, and enters the empty cell gap from an injection port formed on one surface of the cell. A liquid injection device for injecting the liquid into the first port connected to the injection port via a first flow path, and a second port that is alternatively connectable to the first port; A first directional control valve having a third port, a fourth port connected to the second port of the first directional control valve via a second flow path, and the first directional control valve. A second directional control valve having fifth and sixth ports that are alternatively connectable to the port; a vacuum generating unit connected to the fifth port of the second directional control valve; An atmospheric port connected to the sixth port of the second direction switching valve; and And a control unit for controlling the infusion fluid supply source connected to the third port of the valve through the third channel, the first and second directional control valve.
 本発明の液注入方法または液注入装置においては、減圧チャンバを使わずにセルのセルギャップ内を効率よく短時間で真空排気することができる。さらに、第2の流路を第1の流路に再び接続して減圧状態から大気に開放した時に第2の流路内に発生する突入エア流の圧力によってセルのセルギャップ内に液を押し込むので、セルギャップへの液注入も効率よく短時間で済ますことができる。また、セルのセルギャップ内に液を押し込むために、ポンプからの正圧を印加するのではなく、自然の大気圧を利用しているので、セルに過度の圧力を加えなくて済む。 In the liquid injection method or liquid injection apparatus of the present invention, the cell gap of the cell can be efficiently evacuated in a short time without using a decompression chamber. Further, when the second channel is reconnected to the first channel and released from the reduced pressure state to the atmosphere, the liquid is pushed into the cell gap of the cell by the pressure of the rush air flow generated in the second channel. Therefore, the liquid injection into the cell gap can be done efficiently and in a short time. Further, in order to push the liquid into the cell gap of the cell, a positive atmospheric pressure is not applied but a natural atmospheric pressure is used, so that it is not necessary to apply an excessive pressure to the cell.
 本発明の液注入方法または液注入装置によれば、上記のような構成および作用により、電気光学的または電気化学的なセルのセルギャップに所定の液を短時間で効率よく注入することができる。 According to the liquid injection method or the liquid injection apparatus of the present invention, a predetermined liquid can be efficiently injected into the cell gap of an electro-optical or electrochemical cell in a short time by the configuration and operation as described above. .
色素増感型太陽電池セルの一構成例を示す平面図である。It is a top view which shows one structural example of a dye-sensitized solar cell. 上記太陽電池セルの内部の構成を示す断面図であるIt is sectional drawing which shows the structure inside the said photovoltaic cell. 本発明の一実施形態における液注入装置の全体構成を示すブロック図である。It is a block diagram showing the whole liquid injection device composition in one embodiment of the present invention. 上記液注入装置における注入パッドの構成例を示す断面図である。It is sectional drawing which shows the structural example of the injection pad in the said liquid injection apparatus. 上記液注入装置による電解液注入処理シーケンスを示すタイムチャートである。It is a time chart which shows the electrolyte solution injection process sequence by the said liquid injection apparatus. 上記電解液注入処理の一段階における装置内の各部の状態を示す図である。It is a figure which shows the state of each part in an apparatus in the one stage of the said electrolyte solution injection process. 上記電解液注入処理の一段階における装置内の各部の状態を示す図である。It is a figure which shows the state of each part in an apparatus in the one stage of the said electrolyte solution injection process. 上記電解液注入処理の一段階における装置内の各部の状態を示す図である。It is a figure which shows the state of each part in an apparatus in the one stage of the said electrolyte solution injection process. 上記電解液注入処理の一段階における装置内の各部の状態を示す図である。It is a figure which shows the state of each part in an apparatus in the one stage of the said electrolyte solution injection process. 上記電解液注入処理の一段階における装置内の各部の状態を示す図である。It is a figure which shows the state of each part in an apparatus in the one stage of the said electrolyte solution injection process. 実施形態の液注入方法における注入口拭き取り工程の一段階を示す図である。It is a figure which shows one step of the inlet wiping process in the liquid injection method of embodiment. 上記注入口拭き取り工程の一段階を示す図である。It is a figure which shows one step of the said inlet wiping process. 上記液注入方法におけるシール被着工程の一段階を示す図である。It is a figure which shows one step of the seal | sticker deposition process in the said liquid injection method. 上記液注入方法におけるシール硬化工程の一段階を示す図である。It is a figure which shows one step of the seal hardening process in the said liquid injection method. 実施形態の液注入方法を実施するための液処理インラインシステムの構成を示す斜視図である。It is a perspective view which shows the structure of the liquid processing in-line system for enforcing the liquid injection method of embodiment.
 以下、添付図を参照して本発明の好適な実施の形態を説明する。
 
[実施形態における電気光学セルの構成]
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

[Configuration of Electro-Optical Cell in Embodiment]
 図1および図2に、本発明の液注入方法および液注入装置の適用可能な電気光学セルとして色素増感型太陽電池セルの一構成例を示す。この色素増感型太陽電池セル10は、基本構造として、増感色素を坦持する多孔質半導体層(たとえばTiO2層)12を被着してなる透明基板(たとえばガラス基板)14と、対向電極(たとえばカーボン電極)16を被着してなる対向基板(たとえばチタン板またはチタン箔)18とをスペーサ20を介して貼り合わせている。多孔質半導体層12と透明基板14との間にはたとえばITOからなる透明電極(図示せず)が形成されている。スペーサ20は、封止用の接着シールを兼ねている。両基板14,18間の隙間つまりセルギャップCGは、スペーサ20の高さ(厚み)によって規定され、通常10~70μmのギャップサイズ(距離間隔)SCGに選ばれる。 FIG. 1 and FIG. 2 show a configuration example of a dye-sensitized solar cell as an electro-optic cell to which the liquid injection method and the liquid injection device of the present invention can be applied. This dye-sensitized solar cell 10 has, as a basic structure, opposed to a transparent substrate (for example, a glass substrate) 14 formed by depositing a porous semiconductor layer (for example, TiO 2 layer) 12 that carries a sensitizing dye. A counter substrate (for example, a titanium plate or a titanium foil) 18 formed by adhering an electrode (for example, a carbon electrode) 16 is bonded via a spacer 20. A transparent electrode (not shown) made of, for example, ITO is formed between the porous semiconductor layer 12 and the transparent substrate 14. The spacer 20 also serves as an adhesive seal for sealing. Clearance clogging cell gap CG between the substrates 14 and 18 is defined by the height of the spacer 20 (thickness), the gap size (distance interval) of usually 10 ~ 70 [mu] m chosen S CG.
 このセルギャップCG内には、後述するように電解液ELが充填される。セルギャップCGが電解液ELで満たされていると、電解液層を挟んで対向するストライブ状パターンの透明電極および多孔質半導体層12と対向電極16とによって、1単位の発電層が形成される。セル内の全ての発電層は、互いに電気的に接続されている。 The cell gap CG is filled with an electrolytic solution EL as described later. When the cell gap CG is filled with the electrolytic solution EL, one unit of power generation layer is formed by the transparent electrode of the stripe pattern and the porous semiconductor layer 12 and the counter electrode 16 facing each other with the electrolytic solution layer interposed therebetween. The All the power generation layers in the cell are electrically connected to each other.
 この太陽電池セル10の一面(図示の例では、透明基板14側)には、発電層のエリアを避けてセル周縁部に、1個または複数個(図示の例は2個)の注入口22が設けられる。後述するように、これらの注入口22を通じてセルギャップCG内に電解液ELが注入される。
 
[実施形態における液注入装置の構成]
On one surface of the solar cell 10 (in the illustrated example, on the transparent substrate 14 side), one or a plurality of (two in the illustrated example) injection ports 22 are provided on the periphery of the cell, avoiding the area of the power generation layer. Is provided. As will be described later, the electrolyte EL is injected into the cell gap CG through these injection ports 22.

[Configuration of Liquid Injection Device in Embodiment]
 図3に、本発明の一実施形態における液注入装置の構成を示す。この液注入装置は、上記太陽電池セル10に対する電解液注入処理に使用可能であり、機能ブロックとして、ノズル部30、電解液供給部32、バキューム/大気圧供給部34、ライン切換部36および制御部38を有している。 FIG. 3 shows a configuration of a liquid injection device according to an embodiment of the present invention. This liquid injection device can be used for an electrolytic solution injection process for the solar battery cell 10 and includes, as functional blocks, a nozzle unit 30, an electrolytic solution supply unit 32, a vacuum / atmospheric pressure supply unit 34, a line switching unit 36, and a control. A portion 38 is provided.
 ノズル部30は、太陽電池セル10の注入口22に対応する数(この例では2つ)のノズル筒(またはノズル管)40と、各ノズル筒40の先端に取り付けられた注入パッド42とを有している。ノズル筒40および注入パッド42は、第1の流路44を構成している。注入パッド42は、太陽電池セル10の注入口22を覆ってその周囲に気密に接触できるように、たとえばフッ素ゴムのような弾性変形可能な材質からなり、たとえば図4の(a)に示すようにノズル筒40の先端から口径を拡げながら逆テーパ状に延びるスカート形体を有し、あるいは図4の(b)に示すようにシール材たとえばOリング46を取り付けている。ノズル筒40の他端(入口)は、ライン切換部36の一構成要素である第1方向切換弁48の固定ポートPaに接続されている。第1方向切換弁48は、たとえば3方向弁からなる。 The nozzle unit 30 includes a number (in this example, two) of nozzle tubes (or nozzle tubes) 40 corresponding to the injection ports 22 of the solar battery cells 10 and injection pads 42 attached to the tips of the nozzle tubes 40. Have. The nozzle cylinder 40 and the injection pad 42 constitute a first flow path 44. The injection pad 42 is made of an elastically deformable material such as fluororubber so as to cover the injection port 22 of the solar battery cell 10 and make airtight contact therewith. For example, as shown in FIG. 4 has a skirt shape extending in a reverse taper shape while expanding the diameter from the tip of the nozzle tube 40, or a sealing material such as an O-ring 46 is attached as shown in FIG. The other end (inlet) of the nozzle cylinder 40 is connected to a fixed port Pa of the first direction switching valve 48 which is one component of the line switching unit 36. The first direction switching valve 48 is composed of, for example, a three-way valve.
 電解液供給部32は、たとえば電解液容器およびポンプを有する電解液供給源50と、液留め筒(または液留め管)52と、電解液供給管54とを有している。液留め筒52の一端(出口)は、第1方向切換弁48の片方の選択ポートPcに接続されている。電解液供給管54は、電解液供給源50の出力ポートと液留め筒52の他端(入口)とを繋いでいる。 The electrolytic solution supply unit 32 includes, for example, an electrolytic solution supply source 50 having an electrolytic solution container and a pump, a liquid retaining cylinder (or liquid retaining tube) 52, and an electrolytic solution supply tube 54. One end (exit) of the liquid retaining cylinder 52 is connected to one selection port P c of the first direction switching valve 48. The electrolyte supply pipe 54 connects the output port of the electrolyte supply source 50 and the other end (inlet) of the liquid retaining cylinder 52.
 バキューム/大気圧供給部34は、たとえば真空ポンプまたはエジェクタからなる真空発生部55と、大気ポート56と、給排気筒(または給排気管)58とを有している。給排気筒58の一端は第1方向切換弁48のもう片方の選択ポートPbに接続され、給排気筒58の他端はライン切換部36の一構成要素である第2方向切換弁60の固定ポートPdに接続されている。第2方向切換弁60の片方の選択ポートPeには真空発生部55の出力ポートが接続され、もう片方の選択ポートPfには大気に開放された大気ポート56が接続されている。第2方向切換弁60は、たとえば3方向弁からなる。給排気筒58は第2の流路62を構成している。なお、液留め筒52は第3の流路64を構成している。 The vacuum / atmospheric pressure supply unit 34 includes a vacuum generation unit 55 made of, for example, a vacuum pump or an ejector, an atmospheric port 56, and a supply / exhaust pipe (or supply / exhaust pipe) 58. One end of the sheet stack 58 is connected to the other selected ports P b of the first directional control valve 48, the supply and exhaust pipe 58 and the other end is a component of the line switching unit 36 of the second directional control valve 60 It is connected to fixed ports P d. The one of the selected ports P e of the second directional control valve 60 is connected to the output port of the vacuum generator 55, air port 56 open to the atmosphere on the other selected ports P f are connected. Second direction switching valve 60 is formed of a three-way valve, for example. The air supply / exhaust cylinder 58 constitutes a second flow path 62. The liquid retaining cylinder 52 constitutes a third flow path 64.
 制御部38は、ライン切換部36、電解液供給源50および真空発生部55の動作または状態を制御するとともに、装置全体のシーケンスを制御する。ライン切換部36において、第1方向切換弁48は、制御部38の制御の下で、固定ポートPaに2つの選択ポートPb,Pcのどちらかを選択して接続できるようになっている。第2方向切換弁60は、制御部38の制御の下で、固定ポートPdに2つの選択ポートPe,Pfのどちらかを選択して接続できるようになっている。 The control unit 38 controls the operation or state of the line switching unit 36, the electrolytic solution supply source 50, and the vacuum generation unit 55, and also controls the sequence of the entire apparatus. In line switching unit 36, a first directional control valve 48 is under the control of the control unit 38, two selection ports P b to a fixed port P a, so it selectively connecting either P c Yes. The second directional control valve 60 is under the control of the control unit 38, the fixed port P d into two selected ports P e, which is to be selectively connecting either P f.
 さらに、制御部38は、ノズル部30の注入パッド42を太陽電池セル10の注入口22に着脱可能に接続するための注入パッド接続用アクチエータ(図示せず)の動作を直接または間接的に制御するようになっている。
 
[実施形態における液注入装置の作用及び液注入方法]
Further, the control unit 38 directly or indirectly controls the operation of an injection pad connection actuator (not shown) for detachably connecting the injection pad 42 of the nozzle unit 30 to the injection port 22 of the solar battery cell 10. It is supposed to be.

[Operation of Liquid Injection Device and Liquid Injection Method in Embodiment]
 次に、この液注入装置の作用を中心に、この実施形態における液注入方法を説明する。図5に、この液注入装置による電解液注入処理シーケンスのタイムチャートを示す。図6~図10に、電解液注入処理の各段階における装置内の各部の状態を示す。 Next, the liquid injection method in this embodiment will be described focusing on the operation of this liquid injection apparatus. FIG. 5 shows a time chart of an electrolytic solution injection processing sequence by this liquid injection device. 6 to 10 show the state of each part in the apparatus at each stage of the electrolyte injection process.
 先ず、図6に示すように、注入口22を上に向けてステージ70上に載置されている電池セル10に対して、制御部38は、上記注入パッド接続用アクチエータを作動させて、ノズル部30の注入パッド42を太陽電池セル10の注入口22に接続する。この時、太陽電池セル10のセルギャップCG内は空気で満たされている。液注入装置内においては、初期状態として(t=t0)、電解液供給源50および真空発生部55はそれぞれオフ状態にあり、第1方向切換弁48は固定ポートPaに電解液供給源50側の選択ポートPcを接続し、第2方向切換弁60は固定ポートPdに大気ポート側の選択ポートPfを接続している。 First, as shown in FIG. 6, with respect to the battery cell 10 placed on the stage 70 with the injection port 22 facing upward, the control unit 38 operates the injection pad connecting actuator to make the nozzle The injection pad 42 of the unit 30 is connected to the injection port 22 of the solar battery cell 10. At this time, the cell gap CG of the solar battery cell 10 is filled with air. Within the liquid infusion device, as an initial state (t = t 0), the electrolytic solution supply source 50 and the vacuum generating unit 55, there are respectively turned off, the first directional control valve 48 is the electrolytic solution supply source to the fixed port P a connect the 50 side of the selected port P c, the second directional control valve 60 connects the selected port P f of the atmospheric port side to a fixed port P d.
 次に、図7に示すように、制御部38は、真空発生部55をオンにし(t=t1)、第1方向切換弁48を制御して固定ポートPaに選択ポートPbを接続させ(t=t2)、第2方向切換弁60を制御して固定ポートPdに選択ポートPeを接続させる(t=t3)。これら各部の切換タイミング(t1,t2,t3)は時間的に一致または近接していればよく、順序が逆であってもよい。 Next, as shown in FIG. 7, the control unit 38 turns on the vacuum generator 55 (t = t 1), connects the selected port P b to fixed port P a controls the first directional control valve 48 is not (t = t 2), connects the selected port P e to fixed port P d by controlling the second directional control valve 60 (t = t 3). The switching timings (t 1 , t 2 , t 3 ) of these units are only required to coincide with each other or close to each other, and the order may be reversed.
 こうして、真空発生部55の出力ポートが第2方向切換弁60、給排気筒58、第1方向切換弁48、ノズル管40および注入パッド42を介して太陽電池セル10の注入口22に接続され、セルギャップCG内の真空引きが開始される。セルギャップCGの容積は非常に小さいので(通常数cm3以下)、この真空引きに要する時間TAは非常に短く、通常1分もあれば十分である。制御部38は、真空引きを行っている間に電解液供給源50をオンにして(t=t4~t5)、1回分の電解液ELを送出させる。電解液供給源50からの電解液ELは、電解液供給管54を介して液留め筒52に送られ、そこに一時的に留まる。 In this way, the output port of the vacuum generation unit 55 is connected to the inlet 22 of the solar battery cell 10 via the second direction switching valve 60, the air supply / exhaust cylinder 58, the first direction switching valve 48, the nozzle tube 40 and the injection pad 42. Then, evacuation in the cell gap CG is started. Since the cell gap volume of the CG is very small (normally less than the number of cm 3), the time T A required for evacuation is very short, it is sufficient usually be 1 minute. The controller 38 turns on the electrolytic solution supply source 50 during the evacuation (t = t 4 to t 5 ) and sends out one electrolytic solution EL. The electrolytic solution EL from the electrolytic solution supply source 50 is sent to the liquid retaining cylinder 52 through the electrolytic solution supply pipe 54 and temporarily stays there.
 なお、図示の構成例では、電解液供給源50の1つの出力ポートから送出された1回分の電解液ELが、電解液供給管54の途中で半分ずつ別れて各液留め筒52に分配されるようになっている。しかし、電解液供給源50の2つの出力ポートから各半分の電解液ELを別々に各液留め筒52に送るように構成することも勿論可能である。 In the configuration example shown in the figure, the electrolyte EL for one delivery sent from one output port of the electrolyte supply source 50 is divided into half in the middle of the electrolyte supply pipe 54 and distributed to the liquid retaining cylinders 52. It has become so. However, it is of course possible to configure each half of the electrolyte EL to be separately sent to each liquid retaining cylinder 52 from the two output ports of the electrolyte supply source 50.
 こうして真空引きの設定時間TAが経過すると、制御部38は、第2方向切換弁60において固定ポートPdに選択ポートPeを接続させたまま、第1方向切換弁48を制御して、固定ポートPaに選択ポートPcを接続させる(t=t6)。 When the evacuation setting time T A elapses in this manner, the control unit 38 controls the first direction switching valve 48 while the selection port Pe is connected to the fixed port P d in the second direction switching valve 60. a fixed port P a to connect the selected port P c (t = t 6) .
 そうすると、図8に示すように、それまで液留め筒52内に留まっていた1回分の電解液ELが第1方向切換弁48を通ってノズル筒40に送り込まれる。この直前までノズル筒40および太陽電池セル10のセルギャップCG内は減圧状態にあったので、液留め筒52から電解液ELが吸い込まれるようにしてノズル筒40に移り、セルギャップCG内に引き込まれる。しかし、セルギャップCGが非常に狭いために、電解液引き込み(流入)速度は次第に低下する。 Then, as shown in FIG. 8, the one-time electrolyte EL that has remained in the liquid retaining cylinder 52 is sent to the nozzle cylinder 40 through the first direction switching valve 48. Until just before this, the inside of the nozzle cylinder 40 and the cell gap CG of the solar battery cell 10 was in a reduced pressure state, so that the electrolyte EL was sucked from the liquid retaining cylinder 52 and moved to the nozzle cylinder 40 and drawn into the cell gap CG. It is. However, since the cell gap CG is very narrow, the electrolyte drawing-in (inflow) speed gradually decreases.
 制御部38は、ノズル筒40に電解液ELを送り込んでから、一定時間(たとえば数秒)の経過後に、第2方向切換弁60を制御して固定ポートPdに大気ポート56側の選択ポートPfを接続させる(t=t7)。これにより、大気ポート56から大気中のエアが第2方向切換弁60を介して給排気筒58の中に非常に大きな流速または流量で流入(突入)する。制御部38は、第2方向切換弁60を大気ポート56側に切り換えるのと略同時に、または好ましくは1秒程度の短い遅延時間TBを挟んで、第1方向切換弁48を給排気系側に切り換える。つまり、第1方向切換弁48において固定ポートPaに選択ポートPbが接続される(t=t8)。 Control unit 38, a is fed into the electrolytic solution EL to the nozzle tube 40, a predetermined time (e.g., several seconds) after the elapse of the selection ports P of the atmosphere port 56 side to the fixed port P d by controlling the second directional control valve 60 f is connected (t = t 7 ). As a result, atmospheric air flows from the atmospheric port 56 into the air supply / exhaust cylinder 58 via the second direction switching valve 60 at a very high flow velocity or flow rate (rushes). Control unit 38, the second directional control valve 60 substantially simultaneously with the switching to the atmospheric air port 56 side, or preferably with short delay time T B of about 1 second, the supply and exhaust system side of the first directional control valve 48 Switch to. In other words, select the port P b is connected to a fixed port P a in the first directional control valve 48 (t = t 8).
 そうすると、図9に示すように、太陽電池セル10のセルギャップCG内にまだ入りきれずにノズル筒40内に留まっていた電解液ELは、給排気筒58からの突入エア流の圧力を上から受ける。この突入エア流の圧力によって、ノズル筒40内の電解液ELが太陽電池セル10のセルギャップCG内に押し込められる。 Then, as shown in FIG. 9, the electrolyte EL that has not yet entered the cell gap CG of the solar battery cell 10 and has remained in the nozzle cylinder 40 increases the pressure of the rush air flow from the supply / exhaust cylinder 58. Receive from. The electrolyte EL in the nozzle cylinder 40 is pushed into the cell gap CG of the solar battery cell 10 by the pressure of the rush air flow.
 このときの突入エア流の流量は、主にノズル筒40に対する給排気筒58の容積比と給排気筒58内の直前の減圧圧力とに依存し、直前の減圧圧力が低いほど突入エア流の圧力が高くなり、容積比が大きいほど突入エア流の持続時間が長くなる。この点に関して、ノズル筒40は、1回分の注入液に対して、その0.8倍~1.5倍の容積を有するのが好ましい。そして、給排気筒58は、少なくともノズル筒40より大きな容積を有するのが望ましく、3倍以上大きな容積を有するのがより好ましい。また、給排気筒58内の直前の減圧圧力は200Pa以下が好ましい。 The flow rate of the rush air flow at this time mainly depends on the volume ratio of the air supply / exhaust cylinder 58 to the nozzle cylinder 40 and the pressure reduction pressure immediately before in the air supply / exhaust cylinder 58, and the lower the pressure reduction pressure immediately before, The higher the pressure and the larger the volume ratio, the longer the duration of the rush air flow. In this regard, the nozzle cylinder 40 preferably has a volume that is 0.8 to 1.5 times that of a single injection. The supply / exhaust cylinder 58 desirably has a volume that is at least larger than that of the nozzle cylinder 40, and more preferably has a volume that is three or more times larger. In addition, the decompression pressure immediately before the supply / exhaust cylinder 58 is preferably 200 Pa or less.
 このように、この実施形態では、太陽電池セル10のセルギャップCG内の圧力(減圧雰囲気)よりも一段ないし格段に大きな突入エア流の圧力によって太陽電池セル10のセルギャップCG内に電解液ELを押し込む。このことによって、太陽電池セル10のセルギャップCG内に電解液ELが効率よく注入され、短時間(たとえば数10秒以内)で図10に示すようにセルギャップCG内が気泡を残すことなく電解液ELで満たされる。また、大気圧を用いてセルギャップCG内に電解液ELを押し込むので、注液中に太陽電池セル10に過大な圧力がかからず、太陽電池セル10の破損が防止される。 As described above, in this embodiment, the electrolytic solution EL enters the cell gap CG of the solar battery cell 10 by the pressure of the rush air flow that is one step or much larger than the pressure (depressurized atmosphere) in the cell gap CG of the solar battery cell 10. Push in. As a result, the electrolyte EL is efficiently injected into the cell gap CG of the solar battery cell 10, and the cell gap CG is electrolyzed without leaving bubbles in the cell gap CG as shown in FIG. 10 in a short time (for example, within several tens of seconds). Filled with liquid EL. Moreover, since electrolyte solution EL is pushed in into the cell gap CG using atmospheric pressure, an excessive pressure is not applied to the solar battery cell 10 during injection, and the solar battery cell 10 is prevented from being damaged.
 上記のようなエア突入流による押し込み注入を開始してから所定時間TC(たとえば30秒)が経過すると、制御部38は、注入パッド接続用アクチエータを逆方向に動作させて、ノズル部30の注入パッド42を太陽電池セル10の注入口22から分離させる。 When a predetermined time T C (for example, 30 seconds) has elapsed since the start of the push-in injection by the air rush flow as described above, the control unit 38 operates the injection pad connecting actuator in the reverse direction to The injection pad 42 is separated from the injection port 22 of the solar battery cell 10.
 なお、制御部38は、上記のように第2方向切換弁60を大気ポート56側に切り換えた後に、真空発生部55をオフにする。別の実施例として、第2方向切換弁60を大気ポート56側に切り換える前に真空発生部55をオフさせてもよい。 In addition, the control part 38 turns off the vacuum generation part 55, after switching the 2nd direction switching valve 60 to the atmospheric | air_port 56 side as mentioned above. As another example, the vacuum generation unit 55 may be turned off before the second direction switching valve 60 is switched to the atmospheric port 56 side.
 上記のようにして、この液注入装置における電解液注入処理が完了する。この後、この実施形態の液注入方法においては、図11Aおよび図11Bに示すように、太陽電池セル10の注入口22付近に溢れた電解液ELをワイパ72によってきれいに拭き取る。次いで、図12に示すように、たとえばバキュームチャック74を備えたシールマウンタ76によって、たとえばガラス製の透明な封止用シール78を太陽電池セル10の注入口22に被せる。この封止用シール78の裏面(下面)には紫外線硬化樹脂層80が塗布されている。この後、図13に示すように、紫外線照射ユニット82により、透明キャップ78に上方から紫外線を集光照射し、紫外線硬化樹脂層80を硬化させる。これによって、太陽電池セル10の注入口22が封止される。 As described above, the electrolytic solution injection process in the liquid injection device is completed. Thereafter, in the liquid injection method of this embodiment, as shown in FIGS. 11A and 11B, the electrolyte EL overflowing in the vicinity of the injection port 22 of the solar battery cell 10 is wiped cleanly by the wiper 72. Next, as shown in FIG. 12, for example, a glass sealing seal 78 made of glass, for example, is placed on the inlet 22 of the solar battery cell 10 by a seal mounter 76 having a vacuum chuck 74. An ultraviolet curable resin layer 80 is applied to the back surface (lower surface) of the sealing seal 78. Thereafter, as shown in FIG. 13, the ultraviolet ray irradiation unit 82 condenses and irradiates the transparent cap 78 with ultraviolet rays from above to cure the ultraviolet curable resin layer 80. Thereby, the inlet 22 of the photovoltaic cell 10 is sealed.
 上記のように、この実施形態における液注入装置および液注入方法によれば、減圧チャンバを使わずに太陽電池セル10のセルギャップCG内を効率よく短時間で真空排気することができる。さらに、突入エア流の圧力によって太陽電池セル10のセルギャップCG内に電解液ELを押し込むので、セルギャップCGへの電解液注入も効率よく短時間で済ますことができる。また、太陽電池セル10のセルギャップCG内に電解液ELを押し込むために、ポンプからの正圧を印加するのではなく、自然の大気圧を利用しているので、太陽電池セル10に過度の圧力を加えなくて済む。これにより、太陽電池セル10の破損を防止することができる。
 
[実施形態における液注入インラインシステム]
As described above, according to the liquid injection device and the liquid injection method in this embodiment, the inside of the cell gap CG of the solar battery cell 10 can be efficiently evacuated in a short time without using the decompression chamber. Furthermore, since the electrolyte EL is pushed into the cell gap CG of the solar battery cell 10 by the pressure of the rush air flow, the electrolyte can be injected into the cell gap CG efficiently and in a short time. Further, in order to push the electrolytic solution EL into the cell gap CG of the solar battery cell 10, a positive atmospheric pressure is not applied but a natural atmospheric pressure is used. There is no need to apply pressure. Thereby, damage of the photovoltaic cell 10 can be prevented.

[Liquid injection in-line system in embodiment]
 図14に、上記実施形態の液注入方法に使用可能な液注入インラインシステムの構成を示す。このシステムでは、搬送ベルト84を用いる平流し搬送路86上でたとえば4面取りタイプのマザー太陽電池セル88を水平な一方向に搬送する。そして、平流し搬送路86に沿って一列に、液注入ユニット90、拭き取りユニット92、封止シール被着ユニット94および封止シール硬化ユニット96を配置している。 FIG. 14 shows the configuration of a liquid injection inline system that can be used in the liquid injection method of the above embodiment. In this system, for example, a four-chamfer type mother solar cell 88 is conveyed in one horizontal direction on a flat flow conveyance path 86 using a conveyance belt 84. A liquid injection unit 90, a wiping unit 92, a sealing seal adherence unit 94, and a sealing seal curing unit 96 are arranged in a line along the flattening conveyance path 86.
 液注入ユニット90は、上記実施形態における液注入装置に相当する。より詳細には、面取りに対応した台数(4台)の液注入装置を並列(同時)に稼働させるようにしている。このために、注入パッド接続用アクチエータ98は、マザー太陽電池セル88に含まれる4つの太陽電池セル10に対して、4台全部のノズル部30を共通の支持フレームまたはベース100を介して共通の昇降部102により同時に接続/分離させるようにしている。 The liquid injection unit 90 corresponds to the liquid injection device in the above embodiment. More specifically, the number (four) of liquid injection devices corresponding to chamfering are operated in parallel (simultaneously). For this purpose, the injection pad connecting actuator 98 is shared by the four solar cells 10 included in the mother solar cell 88 through the common support frame or base 100. The elevator 102 is connected / separated at the same time.
 拭き取りユニット92は、上記ワイパ72を昇降移動させる昇降部104と、マザー太陽電池セル88上でワイパ72を一水平方向に駆動するためのたとえばボールネジ機構からなる拭き取り駆動機構106とを備えている。 The wiping unit 92 includes an elevating unit 104 that moves the wiper 72 up and down, and a wiping drive mechanism 106 that includes, for example, a ball screw mechanism for driving the wiper 72 in one horizontal direction on the mother solar battery cell 88.
 封止シール被着ユニット94は、面取りに対応した数(8台)のシールマウンタ76を並列(同時)稼働させるようにしている。このために、それら8台のシールマウンタ76を共通の支持フレームまたはベース108で支持し、昇降部110および水平スライド機構112により各シールマウンタ76を多数の封止用シール78を重ねたシールスタック部114とマザー太陽電池セル88上の各注入口22との間で同時に移動させるようにしている。 The sealing seal adherence unit 94 operates a number (eight units) of seal mounters 76 corresponding to chamfering in parallel (simultaneously). For this purpose, the eight seal mounters 76 are supported by a common support frame or base 108, and a seal stack portion in which a large number of sealing seals 78 are stacked by the elevating unit 110 and the horizontal slide mechanism 112. 114 and each inlet 22 on the mother solar cell 88 are simultaneously moved.
 封止シール硬化ユニット96は、面取りに対応した数(8台)の紫外線照射ユニット82を遮光カバー120の中で並列(同時)に稼働させるようにしている。 The sealing seal curing unit 96 operates a number (eight units) of ultraviolet irradiation units 82 corresponding to chamfering in parallel (simultaneously) in the light shielding cover 120.
 この液注入インラインシステムにおいては、上記実施形態の液注入方法における電解液注入工程、注入口拭き取り工程、封止シール被着工程および封止シール硬化工程の全部をインラインかつパイプライン方式で実施するので、太陽電池セルに対する液注入処理の全工程に要する時間を大幅に短縮し、生産効率を著しく向上させることができる。
 
[他の実施形態又は変形例]
In this liquid injection inline system, the electrolyte injection process, the inlet wiping process, the sealing seal deposition process and the sealing seal curing process in the liquid injection method of the above embodiment are all performed inline and in a pipeline system. The time required for the entire liquid injection process for the solar battery cell can be greatly shortened, and the production efficiency can be remarkably improved.

[Other Embodiments or Modifications]
 以上、本発明の好適な実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、その技術的思想の範囲内で種種の変形または変更が可能である。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the technical idea.
 たとえば、上記実施形態の液注入装置において、方向切換弁48,60を3方向弁に代えて複数の開閉弁で構成することも可能である。第1の流路44、第2の流路62および第3の流路64は、上記のような筒または管に限定されず、任意の流路形体を採ることが可能である。 For example, in the liquid injection device of the above embodiment, the direction switching valves 48 and 60 may be configured by a plurality of on-off valves instead of the three-way valves. The first flow path 44, the second flow path 62, and the third flow path 64 are not limited to the above-described cylinders or tubes, and can take any flow path shape.
 上記実施形態は、色素増感型太陽電池セルをワークピースとした。しかし、本発明の液注入装置および液注入方法は、色素増感型太陽電池セルに無限定されず、同様のセルギャップを有する任意の電気光学的なセルにも適用可能であり、たとえば液晶パネルに対して液晶材料を注入するアプリケーションにも適用可能である。さらに、本発明の液注入装置および液注入方法は、電気化学的なセルたとえばバッテリに電解液を注入するアプリケーションにも適用可能である。セルの注入口はセルの任意の面(おもて面、裏面、側面等)に任意の数だけ設けられてよい。 In the above embodiment, a dye-sensitized solar cell is used as a workpiece. However, the liquid injection apparatus and the liquid injection method of the present invention are not limited to dye-sensitized solar cells, and can be applied to any electro-optical cell having a similar cell gap. For example, a liquid crystal panel In contrast, the present invention can be applied to an application in which a liquid crystal material is injected. Furthermore, the liquid injection apparatus and the liquid injection method of the present invention can be applied to an application for injecting an electrolytic solution into an electrochemical cell such as a battery. Any number of cell inlets may be provided on any surface (front surface, back surface, side surface, etc.) of the cell.
  10  色素増感型太陽電池セル
  22  注入口
  30  ノズル部
  32  電解液供給部
  34  バキューム/大気圧供給部
  36  ライン切換部
  38  制御部
  40  ノズル筒
  42  注入パッド
  44  第1の流路
  48  第1の方向切換弁
  50  電解液供給源
  52  液留め筒
  54  電解液供給管
  55  真空発生部
  58  給排気筒
  60  第2の方向切換弁
  62  第2の流路
  64  第3の流路
  72  ワイパ
  76  シールマウンタ
  82  紫外線照射ユニット
DESCRIPTION OF SYMBOLS 10 Dye-sensitized solar cell 22 Inlet 30 Nozzle part 32 Electrolyte supply part 34 Vacuum / atmospheric pressure supply part 36 Line switching part 38 Control part 40 Nozzle cylinder 42 Injection pad 44 1st flow path 48 1st direction Switching valve 50 Electrolyte supply source 52 Liquid retaining cylinder 54 Electrolyte supply pipe 55 Vacuum generating part 58 Air supply / exhaust cylinder 60 Second direction switching valve 62 Second flow path 64 Third flow path 72 Wiper 76 Seal mounter 82 Ultraviolet light Irradiation unit

Claims (11)

  1.  セルギャップに所定の液を満たして機能する電気光学的または電気化学的なセルに対して、前記セルの一面に形成された注入口から空状態の前記セルギャップ内に前記液を注入する液注入方法であって、
     前記注入口に第1の流路を接続する工程と、
     前記第1の流路に第2の流路を接続した状態で、前記第2の流路、前記第1の流路および前記注入口を介して前記セルギャップ内を減圧する工程と、
     前記第2の流路を前記第1の流路から遮断するとともに、第3の流路を前記第1の流路に接続する工程と、
     前記第3の流路を介して前記第1の流路に1回分の注入液を送り込む工程と、
     前記第3の流路を前記第1の流路から遮断するとともに、前記第2の流路を前記第1の流路に再び接続する工程と、
     前記第2の流路を減圧状態から大気に開放し、前記第1の流路内に留まっている注入液を大気圧によって前記セルギャップ内に押し込む工程と、
     前記注入口から前記第1の流路を分離する工程と、
     前記注入口を封止する工程と
     を有する液注入方法。
    Liquid injection for injecting the liquid into the empty cell gap from an injection port formed on one surface of the cell for an electro-optical or electrochemical cell that functions by filling the cell gap with a predetermined liquid A method,
    Connecting a first flow path to the inlet;
    Reducing the pressure in the cell gap via the second flow path, the first flow path, and the inlet, with the second flow path connected to the first flow path;
    Shutting off the second flow path from the first flow path and connecting a third flow path to the first flow path;
    A step of feeding an injection solution into the first channel through the third channel;
    Blocking the third flow path from the first flow path and reconnecting the second flow path to the first flow path;
    Opening the second flow path from the reduced pressure state to the atmosphere, and pushing the injection solution remaining in the first flow path into the cell gap by atmospheric pressure;
    Separating the first flow path from the inlet;
    A liquid injection method comprising: sealing the injection port.
  2.  前記セルは色素増感型太陽電池セルであり、前記セルギャップ内に注入される液は電解液である、請求項1に記載の液注入方法。 The liquid injection method according to claim 1, wherein the cell is a dye-sensitized solar cell, and the liquid injected into the cell gap is an electrolytic solution.
  3.  前記セルは液晶パネルであり、前記セルギャップ内に注入される液は液晶材料である、請求項1に記載の液注入方法。 The liquid injection method according to claim 1, wherein the cell is a liquid crystal panel, and the liquid injected into the cell gap is a liquid crystal material.
  4.  セルギャップに所定の液を満たして機能する電気光学的または電気化学的なセルに対して、前記セルの一面に形成された注入口から空状態の前記セルギャップ内に前記液を注入する液注入装置であって、
     前記注入口に第1の流路を介して接続される第1のポートと、前記第1のポートと択一的に接続可能な第2および第3のポートとを有する第1の方向切換弁と、
     前記第1の方向切換弁の前記第2のポートに第2の流路を介して接続される第4のポートと、前記第1のポートと択一的に接続可能な第5および第6のポートとを有する第2の方向切換弁と、
     前記第2の方向切換弁の前記第5のポートに接続される真空発生部と、
     前記第2の方向切換弁の前記第6のポートに接続される大気ポートと、
     前記第1の方向切換弁の前記第3のポートに第3の流路を介して接続される注入液供給源と、
     前記第1および第2の方向切換弁を制御する制御部と
     を有する液注入装置。
    Liquid injection for injecting the liquid into the empty cell gap from an injection port formed on one surface of the cell for an electro-optical or electrochemical cell that functions by filling the cell gap with a predetermined liquid A device,
    A first directional control valve having a first port connected to the inlet through a first flow path, and second and third ports that can be alternatively connected to the first port When,
    A fourth port connected to the second port of the first directional control valve via a second flow path, and fifth and sixth that are alternatively connectable to the first port. A second directional valve having a port;
    A vacuum generator connected to the fifth port of the second directional control valve;
    An atmospheric port connected to the sixth port of the second directional control valve;
    An infusate supply source connected to the third port of the first directional control valve via a third flow path;
    A liquid injection device comprising: a control unit that controls the first and second directional control valves.
  5.  前記制御部は、前記セルギャップ内を減圧するために、前記真空発生部により真空を発生させ、前記第1の流路に前記第2の流路が接続されるように前記第1の方向切換弁を制御するとともに、前記第2の流路に前記第5の流路が接続されるように前記第2の方向切換弁を制御する、請求項4に記載の液注入装置。 The control unit generates a vacuum by the vacuum generation unit to depressurize the cell gap, and switches the first direction so that the second channel is connected to the first channel. The liquid injection device according to claim 4, wherein the second direction switching valve is controlled so that the valve is controlled and the fifth flow path is connected to the second flow path.
  6.  前記制御部は、前記第1の流路に1回分の注入液を送り込むために、注入液供給源からの前記1回分の注入液を前記第3の流路に予め留めておき、前記セルギャップ内を減圧した後に前記第1の流路に前記第3の流路が接続されるように前記第1の方向切換弁を制御する、請求項4に記載の液注入装置。 The control unit holds the one-time injection liquid from an injection liquid supply source in the third flow path in advance in order to send the one-time injection liquid into the first flow path. The liquid injection device according to claim 4, wherein the first direction switching valve is controlled so that the third flow path is connected to the first flow path after the inside is depressurized.
  7.  前記制御部は、前記セルギャップ内に注入液を押し込むために、前記真空発生部により真空を発生させて前記第2の流路内の減圧状態を保持しておいて、前記第1の流路に1回分の注入液が送り込まれた後に前記第2の流路に前記第6の流路が接続されるように前記第2の方向切換弁を制御する、請求項4に記載の液注入装置。 In order to push the injection solution into the cell gap, the control unit generates a vacuum by the vacuum generation unit and maintains a reduced pressure state in the second channel, and the first channel 5. The liquid injection device according to claim 4, wherein the second direction switching valve is controlled so that the sixth flow path is connected to the second flow path after one injection liquid is fed into the second flow path. .
  8.  前記第3の流路は、前記注入液供給源より供給される1回分の注入液を一時的に貯液できる容積を有する、請求項4記載の液注入装置。 5. The liquid injection device according to claim 4, wherein the third flow path has a volume capable of temporarily storing a single injection supplied from the injection supply source.
  9.  前記第1の流路は、1回分の注入液に対して、その0.8倍~1.5倍の容積を有する、請求項4に記載の液注入装置。 The liquid injection device according to claim 4, wherein the first flow path has a volume that is 0.8 to 1.5 times that of the injection liquid for one time.
  10.  前記第2の流路は、前記第1の流路よりも大きな容積を有する、請求項4に記載の液注入装置。 The liquid injection device according to claim 4, wherein the second flow path has a larger volume than the first flow path.
  11.  前記第2の流路は、前記第1の流路に比して、その5倍以上の容積を有する、請求項10に記載の液注入装置。 The liquid injection device according to claim 10, wherein the second flow path has a volume five times or more that of the first flow path.
PCT/JP2013/002021 2012-03-26 2013-03-25 Liquid injection method and liquid injection device WO2013145700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-068959 2012-03-26
JP2012068959 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013145700A1 true WO2013145700A1 (en) 2013-10-03

Family

ID=49259002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002021 WO2013145700A1 (en) 2012-03-26 2013-03-25 Liquid injection method and liquid injection device

Country Status (2)

Country Link
TW (1) TW201349640A (en)
WO (1) WO2013145700A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022336A (en) * 2012-07-23 2014-02-03 Sharp Corp Liquid injection device and liquid injection method for nonaqueous secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604622B (en) 2016-07-14 2017-11-01 財團法人工業技術研究院 Dye-adsorbing method of electrode and apparatus thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683721U (en) * 1979-11-30 1981-07-06
JPH03102316A (en) * 1989-09-18 1991-04-26 Seiko Epson Corp Liquid crystal injecting method
JPH07325312A (en) * 1994-04-08 1995-12-12 Sony Corp Injection method and injection device for electro-optical material
JP2001307786A (en) * 2000-04-18 2001-11-02 Fuji Xerox Co Ltd Photoelectric transfer element, its production method and photoelectric transfer module
JP2007026883A (en) * 2005-07-15 2007-02-01 Nippon Paint Co Ltd Method of manufacturing vehicle-mounted glass with dye-sensitized solar cell
JP2012174592A (en) * 2011-02-23 2012-09-10 Spd Laboratory Inc Injection device and injection method and dye sensitized solar cell manufacturing method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683721U (en) * 1979-11-30 1981-07-06
JPH03102316A (en) * 1989-09-18 1991-04-26 Seiko Epson Corp Liquid crystal injecting method
JPH07325312A (en) * 1994-04-08 1995-12-12 Sony Corp Injection method and injection device for electro-optical material
JP2001307786A (en) * 2000-04-18 2001-11-02 Fuji Xerox Co Ltd Photoelectric transfer element, its production method and photoelectric transfer module
JP2007026883A (en) * 2005-07-15 2007-02-01 Nippon Paint Co Ltd Method of manufacturing vehicle-mounted glass with dye-sensitized solar cell
JP2012174592A (en) * 2011-02-23 2012-09-10 Spd Laboratory Inc Injection device and injection method and dye sensitized solar cell manufacturing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022336A (en) * 2012-07-23 2014-02-03 Sharp Corp Liquid injection device and liquid injection method for nonaqueous secondary battery

Also Published As

Publication number Publication date
TW201349640A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
US8388397B2 (en) Liquid crystal cell manufacturing device and method thereof
KR100713987B1 (en) Substrate close adhesion apparatus and method for sealing organic light emitting display device using the same
JP6271289B2 (en) Adhesive coating apparatus, display device member manufacturing apparatus, and display device member manufacturing method
TWI373672B (en) An attachment process of flexible substrate and a pattern of sealant thereof
JP6466845B2 (en) Method and apparatus for manufacturing plate-like laminate
US10797271B2 (en) Manufacturing method for OLED display panel
WO2013145700A1 (en) Liquid injection method and liquid injection device
JP3800211B2 (en) Liquid material discharge device and liquid material discharge method, electro-optical device and manufacturing method thereof, and electronic apparatus
JP5743599B2 (en) Liquid injection device, liquid injection method, and method for producing dye-sensitized solar cell using the same
KR100722803B1 (en) Apparatus for encapsulation of organic electroluminescent devices
KR102034763B1 (en) Lamination apparatus with air pressure and method for non-contact lamination using lamination apparatus
KR20210023275A (en) Apparatus for coating solution, method for coating solution and laminating method using the same
JP2006126862A (en) Apparatus for manufacturing laminated substrate, and substrate lamination method
US10355245B2 (en) OLED display with desiccant layer and packaging method for the same
TW200535494A (en) Apparatus and method for connecting two substrates
TWI359968B (en) Method for jointing two substrates
KR20150110379A (en) Apparatus and method for manufacturing a display device member
KR101372691B1 (en) Vacuum encapsulation system and vacuum encapsulation method of vacuum glasses or semiconductor devices therein
JP2012230255A (en) Sealing device and sealing method
KR101532328B1 (en) Cleaning apparatus of encapsulation film for FPD manufacturing
KR100499892B1 (en) Apparatus for cutting a liquid crystal display panel and method therefor
JP2005115206A (en) Method for manufacturing liquid crystal panel and gap adjusting apparatus
CN108695447A (en) A kind of packaging system and method for flat-panel monitor
CN100397150C (en) Liquid crystal drop process
JP2008218309A (en) Manufacturing method of organic el substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP