WO2013144406A1 - Solar energy linear pickup and collector - Google Patents

Solar energy linear pickup and collector Download PDF

Info

Publication number
WO2013144406A1
WO2013144406A1 PCT/ES2013/070195 ES2013070195W WO2013144406A1 WO 2013144406 A1 WO2013144406 A1 WO 2013144406A1 ES 2013070195 W ES2013070195 W ES 2013070195W WO 2013144406 A1 WO2013144406 A1 WO 2013144406A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
collector
heat transfer
transfer fluid
duct
Prior art date
Application number
PCT/ES2013/070195
Other languages
Spanish (es)
French (fr)
Inventor
José Alfonso NEBRERA GARCÍA
Miguel LASHERAS PRIETO
Original Assignee
Acs Servicios, Comunicaciones Y Energía S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acs Servicios, Comunicaciones Y Energía S.L. filed Critical Acs Servicios, Comunicaciones Y Energía S.L.
Publication of WO2013144406A1 publication Critical patent/WO2013144406A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/12Details of absorbing elements characterised by the absorbing material made of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • F24S2080/05Flow guiding means; Inserts inside conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • linear solar energy collector and collector refers to a linear collector and a collector comprising said linear collector, formed by a tube or conduit through which a heat transfer fluid that absorbs solar radiation circulates, the linear collector being of the type intended to capture the concentrated solar rays by a system of reflective surfaces of the parabolic cylindrical collector type or of the Fresnel type.
  • linear collector refers to a linear collector of the type that uses thermal oil or molten salts as heat transfer fluid intended to freeze in the collector tube or conduit in the absence of solar radiation, and thaw when such radiation re-exists.
  • the scope of the present invention is part of the technical sector of solar energy, and in particular it is applicable in parabolic cylindrical thermo-solar plants that use thermal oil or molten salts as heat transfer fluid, when such fluid is allowed to freeze in absence of solar radiation
  • linear solar energy collectors which comprise heat transfer oils or molten salts.
  • Said linear sensors can be used in single reflection or double reflection collectors.
  • a reflective surface directs the solar rays on one side of the linear collector
  • the latter have a first reflective surface that directs a portion of the solar rays directly on the collector while another portion of the solar rays is directed towards a second reflective surface located at the rear and on the sides of the sensor, thus achieving that the rays strike the entire surface of the sensor and not only on one of its sides.
  • the linear collector usually consists of a hollow cylindrical steel tube through which the heat transfer fluid circulates whose mission is to absorb heat from the radiation to transport it to heat exchangers where the heat transfer fluid loses heat generating water vapor that drives a turbine and is in turn a generator that produces energy.
  • Said sensors can also be encapsulated in a vacuum glass tube or with little reactive gases and with reduced convention effect, such as argon.
  • Linear collectors use molten salts that increase their temperature to 560 ° C or oils that increase their temperature to 400 ° C.
  • the use of molten salts is convenient since allowing a greater increase in temperature allows an increase in the performance in the steam cycle.
  • both types of fluids but especially molten salts, present the problem that they freeze at temperatures above ambient; in the case of salts, at an approximate temperature of 270 ° C, when there is no longer solar radiation. This freezing causes that the next day to start the plant it is necessary to defrost or melt the salts as quickly as possible to maximize the hours of solar radiation. That is, in practice, the salts are frozen at night and heated in the morning to melt or melt said salts.
  • the fluid takes time to melt or melt for up to two hours. which is a lot of time considering that the annual average daily hours of usable radiation is around 10 hours.
  • the present invention therefore describes a linear solar energy collector that makes it possible to work with a daily freeze-melt cycle, since it allows the working fluids to melt or melt in a shorter time through a uniform and faster distribution of the radiation. Said decrease in the time to melt or melt the fluids is achieved on the one hand due to:
  • the solar collectors formed by at least one parabolic element and a linear duct or collector, have a turning mechanism to aim at the sun and capture the radiation, so that the collector follows the path described by the sun at the adapted speed to that of the movement of the sun, so that the collector always points to the sun.
  • a linear solar energy collector has as its object a linear solar energy collector for the collection of solar radiation in solar thermal plants in which the heat transfer fluid freezes in the absence of radiation, that is, at dusk and at night the heat transfer fluid remains frozen.
  • Said heat transfer fluid is preferably a molten salt.
  • the present invention relates to a solar collector, formed by a linear collector or tube and at least one parabolic element in charge of capturing the solar radiation and diverting it to concentrate it on the collector or tube.
  • Said collector has a device or mechanism that allows the assembly formed by the linear collector and the parabolic element to be rotated, so that the parabolic element is located between the sun and the collector, thus preventing radiation from reaching the collector or tube. Therefore, the object of the present invention is, according to claim one, a linear solar energy sensor comprising a longitudinal structure inside the conduit forming the linear sensor, whose function is to facilitate the transmission of heat from the surface from the sensor to the heat transfer fluid contained inside. Through this longitudinal structure, it is possible to melt or melt the frozen heat transfer fluid in a shorter time, thus increasing the performance of the solar plant.
  • the linear collector is composed of a hollow duct or tube and a longitudinal structure inside the duct that facilitates the transmission of heat captured by the duct surface into the duct through the structure, achieving a heat distribution in the inside the duct and therefore in the faster and more effective heat transfer fluid by making better use of the thermal conductivity of the preferably metallic material of the inner structure.
  • the conduit or tube containing the heat transfer fluid may, in turn, be concentrically included in a vacuum glass conduit or tube or with a gas, preferably argon, inside, that is, between the conduit containing the heat transfer fluid and the glass tube.
  • the collector object of the present invention facilitates the defrosting or melting of the fluid without the stresses at any point of the material exceeding the admissible.
  • the linear sensor can have different constructions, all of them based on the arrangement of a hollow duct and a longitudinal structure located inside the duct.
  • Said longitudinal structure is preferably formed by a core comprising a section with a central core and at least one radial projection, preferably four, which divides the interior of the conduit into separate spaces through which the heat transfer fluid circulates.
  • Said soul can have its hollow central core, so that inside it will also circulate the heat transfer fluid, and the plates that make up the radial projections in section can have holes to communicate the spaces between projections.
  • Said longitudinal structure and conduit can form a single piece of the same material manufactured by extrusion, or on the contrary it can be composed of two pieces, the conduit and the longitudinal structure joined together, being able in this case to be made of the same material or different materials
  • the Manufacturing materials preferably will be high thermal conductivity steel or aluminum alloys, which can also be combined with each other, the collector being able to have a steel conduit and a longitudinal structure of extruded aluminum alloy.
  • the section of the duct may vary depending on the optical arrangements of the reflection system, which can be said sensor of circular or non-circular section, in which case it could be ovoidal, elliptical or polygonal.
  • the duct and the longitudinal structure make up a single piece, the longitudinal structure or core being determined by different independent ducts through which the heat transfer fluid circulates.
  • the collector formed by a linear collector or tube and at least one element with a curved surface, preferably parabolic, is completed by providing it with a device that modifies the operation of the pointing or directing mechanisms of the collectors towards the sun, by allowing the conuint to rotate in order to arrange the parabolic element between the sun and the collector or tube, producing a controlled fan effect that prevents the temperature gradients in the tube from exceeding the acceptable limits for the material from which try, that is, the turning mechanism allows you to aim or not at the sun depending on the temperature needs while the fluid is thawing.
  • the collector allows the tube or collector to be within reach of the sun's rays depending on the required heating of both the tube and the heat transfer fluid, thus allowing to regulate the temperature of the assembly formed by both.
  • the collector can have two curved surface elements, preferably parabolic, in order to achieve a double reflection on the collector.
  • Figure number 1a shows a section of the sensor of the section shown in the figure 1 b.
  • Figure 1b shows a sectional view of a preferred embodiment of the sensor object of the present invention.
  • Figures 2 to 5 show preferred embodiments of collector sections formed by a duct and different longitudinal structures.
  • Figure 6 shows a sensor in which the duct and the longitudinal structure form a single piece.
  • Figures 7 and 8 show two alternatives of linear sensors in which the duct does not have a circular section.
  • Figure 9 shows a diagram of a solar collector formed by the elements with curved or parabolic surfaces and the turning mechanism.
  • Figure 1 shows a cross section of a sensor 10, formed by a conduit or tube 1 1 and an internal longitudinal structure 12, formed in turn by a core with a core 13 and four radial projections 14 that determine four spaces 15 arranged between the core 13, the projections 14 and the duct 11.
  • the heat transfer fluid which can be oil or salt, preferably molten salt.
  • the outer surface of the duct 11 captures the solar radiation and transmits the heat to the molten salt which, after being cooled in a heat exchange, generates steam for the movement of turbines and thus generates electrical energy.
  • the molten salt works at a temperature of up to 560 ° C, but in the absence of heat it freezes at 170 ° C.
  • the salt is frozen and it is desired to defrost or melt with the same elements used to capture solar radiation, said melting or defrosting is slow, forcing the plant to stand still until the salt is melted instead of generating electricity.
  • the internal longitudinal structure of the collector object of the present invention has the task of defrosting the molten salt as quickly as possible once it has been frozen. without any additional energy input and with the same means used to capture radiation.
  • the present sensor is designed for use in solar plants in which the heat transfer fluid, be it oil or molten salt, freezes in the absence of radiation.
  • Figure 1 b shows a longitudinal section AA of the sensor of Figure 1 a, and in it the duct 11, the core 13 of the internal structure and holes 16 arranged in the plates 17 forming the projections 14 are shown to allow the circulation of the heat transfer fluid between the different spaces 15.
  • These plates 17 and projections 14 allow the heat captured by the surface of the conduit 1 1 to be easily transmitted inside the frozen fluid, preferably salt, accelerating its defrosting.
  • the internal structure 12 and the conduit 1 1 are independent elements manufactured in the same material or in different materials.
  • Figure 2 shows an alternative construction of a sensor 20 according to the present invention, which presents a longitudinal structure 22 of extruded aluminum with a cross-shaped core inside a steel duct 21 with circular section, determining four spaces between the projections of the longitudinal structure that may or may not be connected to each other through which the heat transfer fluid circulates.
  • Figure 3 shows another alternative construction of a sensor 30 according to the present invention, which has a longitudinal structure 32 of extruded aluminum with a cross-shaped core and hollow central core 33, inside a steel conduit 31 with circular section, determining four spaces between the projections of the longitudinal structure that may or may not be connected to each other and the central recess 33, through which the heat transfer fluid circulates.
  • Figure 4 shows yet another alternative construction of a sensor 40 according to the present invention, which presents a longitudinal structure 42 of steel with a cross-shaped core inside a conduit 41 also made of steel and with circular section, determining four spaces between the projections of the longitudinal structure that may or may not be joined together for the circulation of the heat transfer fluid.
  • Figure 5 shows another alternative construction of a sensor 50 according to the present invention, which has a longitudinal structure 52 of alloyed aluminum type A with a core with four radial projections and a hollow central core 53, inside a conduit 51 of a type B aluminum alloy, determining four spaces between the projections of the longitudinal structure 52 that may or may not be connected to each other and the central recess 53, through which the heat transfer fluid circulates.
  • Figure 6 shows a sensor 60 object of the present invention in which the circular duct and the longitudinal structure form a single piece 61 by means of an alloy of extruded steel comprising several inner ducts 63 through which the heat transfer fluid circulates.
  • Figures 7 and 8 show sensors 70, 80 in which the section of the duct is not circular and are formed by ducts and internal structures that make up a single piece 71, 81 with ducts 73, 83 inside for the circulation of the heat transfer fluid .
  • Figure 9 shows a collector that presents a turning mechanism to allow the collector to point or not to the sun depending on the limitations of power contribution to the linear tubes or collectors during the melting process of the heat transfer fluid, avoiding gradients of excessive temperature in the linear sensor.
  • a first curved element 90 preferably parabolic, provided with a rotation mechanism 91 that allows rotation B of the assembly when turning A along a rotation axis 92.
  • the fan movement A of the pointing or turning mechanism 91 It produces several successive sequences of focus-blur, alignment-misalignment, between the sun and the collector, thus varying the thermal power reached by the pickup tube so that the thermal gradients are kept within acceptable limits.
  • Said manifold thus comprises a linear sensor or tube 10, 20, 30, 40, 50, 60, 70, 80, a first parabolic element 90 with a device 91 for rotating the linear sensor 10, 20, 30, 40, 50, 60, 70, 80 and a second parabolic element 93.
  • Said first parabolic element 90 may or may not point to the sun to limit the power input to the pickup tubes 10, 20, 30, 40, 50, 60, 70, 80, during the melting process of the heat transfer fluid, avoiding excessive temperature gradients in the linear collector.
  • Said second parabolic element 93 is included for double reflection collectors.

Abstract

Solar energy linear pickup and collector, formed by a tube or duct, through the interior of which a heat-carrying fluid which absorbs the solar radiation flows, with the linear pickup being of the type intended to capture the solar rays concentrated by a system of reflective surfaces of the cylindrical-parabolic collector type or of the Fresnel type. In particular, the invention relates to a linear pickup of the type which uses oil or molten salts as the heat-carrying fluid, which salts are intended to freeze in the pickup tube or duct in the absence of solar radiation and to defrost when said radiation is present again. The invention likewise relates to a solar collector formed by the pickup and a parabolic element which, in association with a movement device or mechanism of the collector, reduces the radiation arriving at the tube by means of a fan movement in order to limit the power which reaches the tube and consequently to maintain the thermal gradients of the materials of the pickup within acceptable limits.

Description

CAPTADOR LINEAL DE ENERGIA SOLAR Y COLECTOR  LINEAR SOLAR ENGINE AND COLLECTOR
DESCRIPCIÓN  DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención, captador lineal de energía solar y colector se refiere a un captador lineal y a un colector que comprende dicho captador lineal, formado por un tubo o conducto por cuyo interior circula un fluido caloportador que absorbe la radiación solar, siendo el captador lineal del tipo destinado a captar los rayos solares concentrados por un sistema de superficies reflectantes del tipo colector cilindrico parabólico o del tipo Fresnel. En particular se refiere a un captador lineal del tipo que emplea aceite térmico o sales fundidas como fluido caloportador destinadas a congelarse en el tubo o conducto captador en ausencia de radiación solar, y descongelarse cuando vuelve a existir dicha radiación. The invention, linear solar energy collector and collector refers to a linear collector and a collector comprising said linear collector, formed by a tube or conduit through which a heat transfer fluid that absorbs solar radiation circulates, the linear collector being of the type intended to capture the concentrated solar rays by a system of reflective surfaces of the parabolic cylindrical collector type or of the Fresnel type. In particular, it refers to a linear collector of the type that uses thermal oil or molten salts as heat transfer fluid intended to freeze in the collector tube or conduit in the absence of solar radiation, and thaw when such radiation re-exists.
El campo de aplicación de la presente invención se enmarca dentro del sector técnico de la energía solar, y en particular es de aplicación en plantas termo-solares cilindrico parabólicas que utilizan aceite térmico o sales fundidas como fluido caloportador, cuando tal fluido se deje congelar en ausencia de radiación solar.  The scope of the present invention is part of the technical sector of solar energy, and in particular it is applicable in parabolic cylindrical thermo-solar plants that use thermal oil or molten salts as heat transfer fluid, when such fluid is allowed to freeze in absence of solar radiation
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Como referencia al estado de la técnica, debe señalarse que en el estado de la técnica son conocidos los captadores lineales de energía solar que comprenden como fluido caloportador aceites o sales fundidas. As a reference to the state of the art, it should be noted that in the state of the art linear solar energy collectors are known which comprise heat transfer oils or molten salts.
Dichos captadores lineales pueden ser empleados en colectores de simple reflexión o de doble reflexión. En los primeros, una superficie reflectante dirige los rayos solares sobre un lado del captador lineal, mientras que los segundos presentan una primera superficie reflectante que dirige una parte de los rayos solares directamente sobre el captador mientras que otra parte de los rayos solares es dirigida hacia una segunda superficie reflectante situada en la parte posterior y en los lados del captador, consiguiendo así que los rayos incidan sobre toda la superficie del captador y no solo sobre uno de los lados del mismo.  Said linear sensors can be used in single reflection or double reflection collectors. In the former, a reflective surface directs the solar rays on one side of the linear collector, while the latter have a first reflective surface that directs a portion of the solar rays directly on the collector while another portion of the solar rays is directed towards a second reflective surface located at the rear and on the sides of the sensor, thus achieving that the rays strike the entire surface of the sensor and not only on one of its sides.
Asimismo, el captador lineal suele consistir en un tubo cilindrico hueco de acero por cuyo interior circula el fluido caloportador cuya misión es absorber el calor de la radiación para transportarlo hasta intercambiadores de calor donde el fluido caloportador pierde el calor generando vapor de agua que mueve una turbina y esta a su vez un generador que produce la energía. Dichos captadores pueden estar también encapsulados en un tubo de vidrio al vacío o con gases poco reactivos y con efecto de convención reducida, como por ejemplo argón. Likewise, the linear collector usually consists of a hollow cylindrical steel tube through which the heat transfer fluid circulates whose mission is to absorb heat from the radiation to transport it to heat exchangers where the heat transfer fluid loses heat generating water vapor that drives a turbine and is in turn a generator that produces energy. Said sensors can also be encapsulated in a vacuum glass tube or with little reactive gases and with reduced convention effect, such as argon.
Los captadores lineales utilizan sales fundidas que incrementan su temperatura hasta 560°C o aceites que incrementan su temperatura hasta 400°C. Es conveniente el uso de sales fundidas ya que al permitir un incremento mayor de la temperatura permiten un aumento del rendimiento en el ciclo de vapor.  Linear collectors use molten salts that increase their temperature to 560 ° C or oils that increase their temperature to 400 ° C. The use of molten salts is convenient since allowing a greater increase in temperature allows an increase in the performance in the steam cycle.
Sin embargo, ambos tipos de fluidos, pero en especial las sales fundidas, presentan el problema de que se congelan a temperaturas por encima de la ambiente; en el caso de las sales, a una temperatura aproximada de 270°C, cuando ya no existe radiación solar. Esta congelación provoca que al día siguiente para poner en marcha la planta sea preciso descongelar o derretir las sales lo más rápidamente posible para aprovechar al máximo las horas de radiación solar. Es decir, en la práctica, las sales se congelan por la noche y se calientan por la mañana para fundir o derretir dichas sales.  However, both types of fluids, but especially molten salts, present the problem that they freeze at temperatures above ambient; in the case of salts, at an approximate temperature of 270 ° C, when there is no longer solar radiation. This freezing causes that the next day to start the plant it is necessary to defrost or melt the salts as quickly as possible to maximize the hours of solar radiation. That is, in practice, the salts are frozen at night and heated in the morning to melt or melt said salts.
En el estado de la técnica se utilizan para impedir la congelación de los fluidos sistemas que requieren elevados recursos económicos y energéticos consistentes principalmente en vaciar los captadores lineales por la noche y volver a llenarlos por la mañana, o sistemas de recirculación que mantienen calientes los fluidos.  In the state of the art, systems that require high economic and energy resources consisting mainly of emptying the linear collectors at night and refilling them in the morning, or recirculation systems that keep the fluids warm, are used to prevent freezing of the fluids. .
Por otro lado, si los fluidos se congelan, el calentamiento mediante radiación a la mañana siguiente tiene la desventaja de que, en circunstancias normales, la combinación del mucho calor aportado por el dispositivo de concentración solar por unidad de tiempo, la insuficiente transmisividad térmica de los fluidos, y el elevado calor de fusión de los mismos, en especial en el caso de las sales fundidas, origina fuertes gradientes térmicos en los tubos que a su vez originan tensiones excesivas que deforman el tubo hasta romperlo, Una solución parcial consiste en limitar la aportación de potencia térmica que, sin embargo, tiene el inconveniente de retrasar mucho la fusión, en especial en el caso de las sales, reduciendo así el rendimiento de la planta al emplear parte del tiempo de radiación disponible en descongelar lentamente los fluidos en lugar de en operar normalmente la instalación. Para ello, aunque se intente conseguir una distribución de la radiación lo más uniforme posible sobre la superficie del tubo, el fluido tarda en fundirse o derretirse hasta dos horas lo cual supone mucho tiempo teniendo en cuenta que la media anual de horas diarias de radiación utilizable es en torno a 10 horas. On the other hand, if the fluids freeze, heating by radiation the next morning has the disadvantage that, under normal circumstances, the combination of the high heat provided by the solar concentration device per unit of time, the insufficient thermal transmissivity of the fluids, and the high heat of fusion of the same, especially in the case of molten salts, causes strong thermal gradients in the tubes that in turn cause excessive stresses that deform the tube until it breaks, a partial solution consists in limiting the contribution of thermal power that, however, has the disadvantage of delaying the melting much, especially in the case of salts, thus reducing the yield of the plant by using part of the available radiation time to slowly thaw the fluids instead of operating the facility normally. For this, even if an attempt is made to achieve as uniform a distribution of radiation as possible on the surface of the tube, the fluid takes time to melt or melt for up to two hours. which is a lot of time considering that the annual average daily hours of usable radiation is around 10 hours.
La presente invención describe por tanto un captador lineal de energía solar que hace posible trabajar con un ciclo diario de congelación-fusión, ya que consigue que los fluidos de trabajo se fundan o derritan en un menor tiempo mediante una distribución uniforme y más rápida de la radiación. Dicha disminución del tiempo para derretir o fundir los fluidos se consigue por un lado debido a:  The present invention therefore describes a linear solar energy collector that makes it possible to work with a daily freeze-melt cycle, since it allows the working fluids to melt or melt in a shorter time through a uniform and faster distribution of the radiation. Said decrease in the time to melt or melt the fluids is achieved on the one hand due to:
a) la dosificación de la potencia de la irradiación solar que se hace llegar a los tubos a través de una modificación de los mecanismos de enfoque que produce, mientras dura la fusión, un "efecto abanico", a) the dosage of the power of the solar irradiation that is made to reach the tubes through a modification of the focusing mechanisms that produces, during the fusion, a "fan effect",
b) la reducción de los gradientes térmicos entre las partes del captador sometidas a la radiación concentrada máxima y las que reciben menos o ninguna radiación, y por otro lado, b) the reduction of thermal gradients between the parts of the collector subjected to the maximum concentrated radiation and those receiving less or no radiation, and on the other hand,
c) la reducción de las distancias entre cualquier parte de la masa de fluido congelado y el material metálico que proporciona el calor para la fusión. c) the reduction of the distances between any part of the mass of frozen fluid and the metallic material that provides the heat for the fusion.
Asimismo, los colectores solares, formados por al menos un elemento parabólico y un conducto o captador lineal, disponen de un mecanismo de giro para apuntar al sol y captar las radiaciones, de manera que colector sigue la trayectoria descrita por el sol a la velocidad adaptada a la del movimiento del sol, de manera que el colector siempre apunta al sol.  Likewise, the solar collectors, formed by at least one parabolic element and a linear duct or collector, have a turning mechanism to aim at the sun and capture the radiation, so that the collector follows the path described by the sun at the adapted speed to that of the movement of the sun, so that the collector always points to the sun.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
La presente invención, captador lineal de energía solar, tiene como objeto un captador lineal de energía solar para la recolección de radiación solar en plantas termosolares en las que el fluido caloportador se congela en ausencia de radiación, es decir, al atardecer y durante la noche el fluido caloportador permanece congelado. Dicho fluido caloportador es preferiblemente una sal fundida. The present invention, a linear solar energy collector, has as its object a linear solar energy collector for the collection of solar radiation in solar thermal plants in which the heat transfer fluid freezes in the absence of radiation, that is, at dusk and at night the heat transfer fluid remains frozen. Said heat transfer fluid is preferably a molten salt.
Asimismo, la presente invención se refiere a un colector solar, formado por un captador lineal o tubo y al menos un elemento parabólico encargado de captura la radiación solar y desviarla para concentrarla sobre el captador o tubo. Dicho colector presenta un dispositivo o mecanismo que permite girar el conjunto formado por el captador lineal y el elemento parabólico, de manera que el elemento parabólico se sitúe entre el sol y el captador, evitando así que la radiación llegue al captador o tubo. Por lo tanto, el objeto de la presente invención es, según la reivindicación uno, un captador lineal de energía solar que comprende una estructura longitudinal en el interior del conducto que forma el captador lineal, cuya función es facilitar la transmisión del calor desde la superficie del captador hacia el fluido caloportador contenido en su interior. Mediante esta estructura longitudinal, se consigue fundir o derretir el fluido caloportador congelado en un menor tiempo, aumentando así el rendimiento de la planta solar. Likewise, the present invention relates to a solar collector, formed by a linear collector or tube and at least one parabolic element in charge of capturing the solar radiation and diverting it to concentrate it on the collector or tube. Said collector has a device or mechanism that allows the assembly formed by the linear collector and the parabolic element to be rotated, so that the parabolic element is located between the sun and the collector, thus preventing radiation from reaching the collector or tube. Therefore, the object of the present invention is, according to claim one, a linear solar energy sensor comprising a longitudinal structure inside the conduit forming the linear sensor, whose function is to facilitate the transmission of heat from the surface from the sensor to the heat transfer fluid contained inside. Through this longitudinal structure, it is possible to melt or melt the frozen heat transfer fluid in a shorter time, thus increasing the performance of the solar plant.
El captador lineal está compuesto por un conducto hueco o tubo y una estructura longitudinal en el interior del conducto que facilita la transmisión del calor captado por la superficie del conducto hacia el interior del mismo a través de la estructura, consiguiendo una distribución del calor en el interior del conducto y por tanto en el fluido caloportador más rápida y efectiva al aprovechar mejor la conductividad térmica del material, preferiblemente metálico, de la estructura interior.  The linear collector is composed of a hollow duct or tube and a longitudinal structure inside the duct that facilitates the transmission of heat captured by the duct surface into the duct through the structure, achieving a heat distribution in the inside the duct and therefore in the faster and more effective heat transfer fluid by making better use of the thermal conductivity of the preferably metallic material of the inner structure.
El conducto o tubo que contiene el fluido caloportador, puede estar a su vez incluido, de manera concéntrica, en un conducto o tubo de vidrio al vacío o con un gas, preferiblemente argón, en su interior, es decir, entre el conducto que contiene el fluido caloportador y el tubo de vidrio. The conduit or tube containing the heat transfer fluid may, in turn, be concentrically included in a vacuum glass conduit or tube or with a gas, preferably argon, inside, that is, between the conduit containing the heat transfer fluid and the glass tube.
Como se ha mencionado, cuando el fluido caloportador se congele en ausencia de radiación solar o por cualquier otra circunstancia, el captador objeto de la presente invención facilita la descongelación o fusión del fluido sin que las tensiones en ningún punto del material superen las admisibles.  As mentioned, when the heat transfer fluid freezes in the absence of solar radiation or for any other circumstance, the collector object of the present invention facilitates the defrosting or melting of the fluid without the stresses at any point of the material exceeding the admissible.
El captador lineal puede presentar diferentes construcciones todas ellas basadas en la disposición de un conducto hueco y una estructura longitudinal situada en el interior del conducto. Dicha estructura longitudinal está preferiblemente formada por un alma que comprende una sección con un núcleo central y al menos un saliente_radial, preferiblemente cuatro, que divide el interior del conducto en espacios separados por los que circula el fluido caloportador. Dicha alma puede presentar su núcleo central hueco, de manera que por su interior también circulará el fluido caloportador, y las planchas que conforman en sección los salientes radiales pueden presentar orificios para comunicar los espacios entre salientes.  The linear sensor can have different constructions, all of them based on the arrangement of a hollow duct and a longitudinal structure located inside the duct. Said longitudinal structure is preferably formed by a core comprising a section with a central core and at least one radial projection, preferably four, which divides the interior of the conduit into separate spaces through which the heat transfer fluid circulates. Said soul can have its hollow central core, so that inside it will also circulate the heat transfer fluid, and the plates that make up the radial projections in section can have holes to communicate the spaces between projections.
Dicha estructura longitudinal y conducto pueden formar una única pieza de un mismo material fabricada mediante extrusionado.o por el contrario puede estar compuesta por dos piezas, el conducto y la estructura longitudinal unidas entre sí, pudiendo estar en este caso fabricadas de un mismo material o materiales diferentes. Por ejemplo, los materiales de fabricación preferiblemente serán acero de alta conductividad térmica o aleaciones de aluminio, que asimismo pueden combinarse entre sí, pudiendo el captador presentar un conducto de acero y una estructura longitudinal de aleación de aluminio extrusionado. Said longitudinal structure and conduit can form a single piece of the same material manufactured by extrusion, or on the contrary it can be composed of two pieces, the conduit and the longitudinal structure joined together, being able in this case to be made of the same material or different materials For example, the Manufacturing materials preferably will be high thermal conductivity steel or aluminum alloys, which can also be combined with each other, the collector being able to have a steel conduit and a longitudinal structure of extruded aluminum alloy.
Asimismo, la sección del conducto puede variar en función de las disposiciones ópticas del sistema de reflexión, pudiendo ser dicho captador de sección circular o no circular, en cuyo caso podría ser ovoidal, elíptica o poligonal. En este último caso, el conducto y la estructura longitudinal conforman una sola pieza, estando determinada la estructura longitudinal o alma por diferentes conductos independientes por los que circula el fluido caloportador.  Likewise, the section of the duct may vary depending on the optical arrangements of the reflection system, which can be said sensor of circular or non-circular section, in which case it could be ovoidal, elliptical or polygonal. In the latter case, the duct and the longitudinal structure make up a single piece, the longitudinal structure or core being determined by different independent ducts through which the heat transfer fluid circulates.
Como se ha mencionado, el colector, formado por un captador lineal o tubo y al menos un elemento con superficie curva, preferiblemente parabólico, se completa al dotarlo de un dispositivo que modifica el funcionamiento de los mecanismos de apunte o direccionamiento de los colectores hacia el sol, al permitir que el conuinto gire con el fin de disponer el elemento parabólico entre el sol y el captador o tubo, produciendo un efecto abanico controlado que evita que los gradientes de temperatura en el tubo superen los límites aceptables para el material de que se trate, es decir, el mecanismo de giro permite apuntar o no al sol en función de las necesidades de temperatura mientras se descongela el fluido. El colector permite que el tubo o captador se encuentre al alcance de los rayos solares en función del calentamiento requerido tanto del tubo como del fluido caloportador, permitiendo por tanto regular la temperatura del conjunto formado por ambos. Mediante este dispositivo se limita la aportación de potencia a los tubos o captadores lineales durante el proceso de fusión del fluido caloportador, evitando gradientes de temperatura excesivos en el captador lineal. El colector puede presentar dos elementos de superficie curva, preferiblemente parabólicos, con el fin de conseguir una doble reflexión sobre el captador.  As mentioned, the collector, formed by a linear collector or tube and at least one element with a curved surface, preferably parabolic, is completed by providing it with a device that modifies the operation of the pointing or directing mechanisms of the collectors towards the sun, by allowing the conuint to rotate in order to arrange the parabolic element between the sun and the collector or tube, producing a controlled fan effect that prevents the temperature gradients in the tube from exceeding the acceptable limits for the material from which try, that is, the turning mechanism allows you to aim or not at the sun depending on the temperature needs while the fluid is thawing. The collector allows the tube or collector to be within reach of the sun's rays depending on the required heating of both the tube and the heat transfer fluid, thus allowing to regulate the temperature of the assembly formed by both. By means of this device, the contribution of power to the tubes or linear sensors during the melting process of the heat transfer fluid is limited, avoiding excessive temperature gradients in the linear sensor. The collector can have two curved surface elements, preferably parabolic, in order to achieve a double reflection on the collector.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar la presente descripción del captador lineal de energía objeto de la presente invención, y para ayudar a una mejor comprensión de las características que la distinguen, se acompaña la presente memoria descriptiva de unas figuras con carácter ilustrativo y no limitativo. To complement the present description of the linear energy sensor object of the present invention, and to help a better understanding of the characteristics that distinguish it, the present descriptive report of figures with an illustrative and non-limiting nature is attached.
La figura número 1a muestra una sección del captador de la sección mostrada en la figura 1 b. Figure number 1a shows a section of the sensor of the section shown in the figure 1 b.
La figura 1 b muestra una vista en sección de una forma preferida de realización del captador objeto de la presente invención.  Figure 1b shows a sectional view of a preferred embodiment of the sensor object of the present invention.
Las figuras 2 a 5 muestran formas preferidas de realización de secciones de captadores formados por un conducto y diferentes estructuras longitudinales.  Figures 2 to 5 show preferred embodiments of collector sections formed by a duct and different longitudinal structures.
La figura 6 muestra un captador en el que el conducto y la estructura longitudinal forman una única pieza. Figure 6 shows a sensor in which the duct and the longitudinal structure form a single piece.
Las figuras 7 y 8 muestran dos alternativas de captadores lineales en los que el conducto no presenta una sección circular.  Figures 7 and 8 show two alternatives of linear sensors in which the duct does not have a circular section.
La figura 9 muestra un esquema de un colector solar formado por los elementos con superficies curvas o parabólicos y el mecanismo de giro.  Figure 9 shows a diagram of a solar collector formed by the elements with curved or parabolic surfaces and the turning mechanism.
REALIZACIONES PREFERENTES DE LA INVENCIÓN PREFERRED EMBODIMENTS OF THE INVENTION
A la vista de las mencionadas figuras, a continuación se describirán diferentes realizaciones preferidas de la invención. In view of the aforementioned figures, different preferred embodiments of the invention will be described below.
La figura 1 a muestra una sección transversal de un captador 10, formado por un conducto o tubo 1 1 y una estructura longitudinal interna 12, formada a su vez por un alma con un núcleo 13 y cuatro salientes radiales 14 que determinan cuatro espacios 15 dispuestos entre el núcleo 13, los salientes 14 y el conducto 11. En el interior de dichos espacios 15 circula el fluido caloportador, que puede ser aceite o sal, preferiblemente sal fundida. La superficie exterior del conducto 11 capta la radiación solar y transmite el calor a la sal fundida que tras ser enfriada en un intercambiado de calor genera vapor para el movimiento de unas turbinas y generar así energía eléctrica.  Figure 1 shows a cross section of a sensor 10, formed by a conduit or tube 1 1 and an internal longitudinal structure 12, formed in turn by a core with a core 13 and four radial projections 14 that determine four spaces 15 arranged between the core 13, the projections 14 and the duct 11. Inside said spaces 15 circulates the heat transfer fluid, which can be oil or salt, preferably molten salt. The outer surface of the duct 11 captures the solar radiation and transmits the heat to the molten salt which, after being cooled in a heat exchange, generates steam for the movement of turbines and thus generates electrical energy.
La sal fundida trabaja a una temperatura de hasta 560°C, pero en ausencia de calor la misma se congela a 170°C. Para evitar la congelación de la sal fundida cuando no existe radiación, en el estado de la técnica existen diferentes sistemas que requieren un aporte de energía que encarece el proceso. Si la sal se congela y se desea descongelar o fundir con los mismos elementos empleados para la captación de radiación solar, dicha fusión o descongelación es lenta, obligando a mantener la planta parada hasta que la sal es fundida en lugar de generando electricidad. La estructura longitudinal interior del captador objeto de la presente invención tiene como misión descongelar lo más rápidamente posible la sal fundida una vez esta se ha congelado sin ningún aporte de energía adicional y con los mismos medios empleados para la captación de radiación. De hecho, el presente captador está ideado para su utilización en plantas solares en las que el fluido caloportador, sea aceite o sal fundida, se congele en ausencia de radiación. The molten salt works at a temperature of up to 560 ° C, but in the absence of heat it freezes at 170 ° C. To prevent the freezing of molten salt when there is no radiation, in the state of the art there are different systems that require an energy supply that makes the process more expensive. If the salt is frozen and it is desired to defrost or melt with the same elements used to capture solar radiation, said melting or defrosting is slow, forcing the plant to stand still until the salt is melted instead of generating electricity. The internal longitudinal structure of the collector object of the present invention has the task of defrosting the molten salt as quickly as possible once it has been frozen. without any additional energy input and with the same means used to capture radiation. In fact, the present sensor is designed for use in solar plants in which the heat transfer fluid, be it oil or molten salt, freezes in the absence of radiation.
La figura 1 b muestra una sección longitudinal AA del captador de la figura 1 a, y en la misma se observa el conducto 11 , el núcleo 13 de la estructura interna y unos orificios 16 dispuestos en las planchas 17 que conforman los salientes 14 para permitir la circulación del fluido caloportador entre los diferentes espacios 15. Estas planchas 17 y salientes 14 permiten que el calor captado por la superficie del conducto 1 1 se transmita fácilmente en el interior del fluido congelado, preferiblemente sal, acelerando su descongelación.  Figure 1 b shows a longitudinal section AA of the sensor of Figure 1 a, and in it the duct 11, the core 13 of the internal structure and holes 16 arranged in the plates 17 forming the projections 14 are shown to allow the circulation of the heat transfer fluid between the different spaces 15. These plates 17 and projections 14 allow the heat captured by the surface of the conduit 1 1 to be easily transmitted inside the frozen fluid, preferably salt, accelerating its defrosting.
En este ejemplo, la estructura interna 12 y el conducto 1 1 son elementos independientes fabricados en el mismo material o en materiales diferentes.  In this example, the internal structure 12 and the conduit 1 1 are independent elements manufactured in the same material or in different materials.
La figura 2 muestra una construcción alternativa de un captador 20 según la presente invención, que presenta una estructura longitudinal 22 de aluminio extrusionado con un alma con sección en forma de cruz en el interior de un conducto 21 de acero con sección circular, determinando cuatro espacios entre los salientes de la estructura longitudinal que pueden o no estar unidos entre sí por los que circula el fluido caloportador. Figure 2 shows an alternative construction of a sensor 20 according to the present invention, which presents a longitudinal structure 22 of extruded aluminum with a cross-shaped core inside a steel duct 21 with circular section, determining four spaces between the projections of the longitudinal structure that may or may not be connected to each other through which the heat transfer fluid circulates.
La figura 3 muestra otra construcción alternativa de un captador 30 según la presente invención, que presenta una estructura longitudinal 32 de aluminio extrusionado con un alma con sección en forma de cruz y núcleo central hueco 33, en el interior de un conducto 31 de acero con sección circular, determinando cuatro espacios entre los salientes de la estructura longitudinal que pueden o no estar unidos entre sí y el hueco central 33, por los que circula el fluido caloportador.  Figure 3 shows another alternative construction of a sensor 30 according to the present invention, which has a longitudinal structure 32 of extruded aluminum with a cross-shaped core and hollow central core 33, inside a steel conduit 31 with circular section, determining four spaces between the projections of the longitudinal structure that may or may not be connected to each other and the central recess 33, through which the heat transfer fluid circulates.
La figura 4 muestra aún otra construcción alternativa de un captador 40 según la presente invención, que presenta una estructura longitudinal 42 de acero con un alma con sección en forma de cruz en el interior de un conducto 41 también de acero y con sección circular, determinando cuatro espacios entre los salientes de la estructura longitudinal que pueden o no estar unidos entre sí para la circulación del fluido caloportador.  Figure 4 shows yet another alternative construction of a sensor 40 according to the present invention, which presents a longitudinal structure 42 of steel with a cross-shaped core inside a conduit 41 also made of steel and with circular section, determining four spaces between the projections of the longitudinal structure that may or may not be joined together for the circulation of the heat transfer fluid.
La figura 5 muestra otra construcción alternativa de un captador 50 según la presente invención, que presenta una estructura longitudinal 52 de aluminio aleado tipo A con un alma con cuatro salientes radiales y un núcleo central hueco 53, en el interior de un conducto 51 de una aleación de aluminio tipo B, determinando cuatro espacios entre los salientes de la estructura longitudinal 52 que pueden o no estar unidos entre sí y el hueco central 53, por los que circula el fluido caloportador. Figure 5 shows another alternative construction of a sensor 50 according to the present invention, which has a longitudinal structure 52 of alloyed aluminum type A with a core with four radial projections and a hollow central core 53, inside a conduit 51 of a type B aluminum alloy, determining four spaces between the projections of the longitudinal structure 52 that may or may not be connected to each other and the central recess 53, through which the heat transfer fluid circulates.
La figura 6 muestra un captador 60 objeto de la presente invención en el que el conducto circular y la estructura longitudinal forman una única pieza 61 mediante una aleación de acero extrusionado que comprende varios conductos 63 interiores por los que circula el fluido caloportador. Figure 6 shows a sensor 60 object of the present invention in which the circular duct and the longitudinal structure form a single piece 61 by means of an alloy of extruded steel comprising several inner ducts 63 through which the heat transfer fluid circulates.
Las figuras 7 y 8 muestran captadores 70, 80 en los que la sección del conducto no es circular y están formados por conductos y estructuras internas que conforman una única pieza 71 , 81 con conductos 73, 83 en su interior para la circulación del fluido caloportador.  Figures 7 and 8 show sensors 70, 80 in which the section of the duct is not circular and are formed by ducts and internal structures that make up a single piece 71, 81 with ducts 73, 83 inside for the circulation of the heat transfer fluid .
La figura 9, muestra un colector que presenta un mecanismo de giro para permitir que el colector apunte o no al sol en función de las limitaciones de aportación de potencia a los tubos o captadores lineales durante el proceso de fusión del fluido caloportador, evitando gradientes de temperatura excesivos en el captador lineal. En la misma se observa un primer elemento curvo 90, preferiblemente parabólico, dotado de un mecanismo de giro 91 que permite la rotación B del conjunto al girar A según un eje de giro 92. El movimiento de abanico A del mecanismo de apuntamiento o giro 91 produce varias secuencias sucesivas de enfoque-desenfoque, alineamiento- desalineamiento, entre el sol y el colector, variando así la potencia térmica que alcanza el tubo captador de forma que los gradientes térmicos se mantengan dentro de límites aceptables. Dicho colector comprende por tanto un captador lineal o tubo 10, 20, 30, 40, 50, 60, 70, 80, un primer elemento parabólico 90 con un dispositivo 91 para girar el captador lineal 10, 20, 30, 40, 50, 60, 70, 80 y un segundo elemento parabólico 93. Dicho primer elemento parabólico 90 puede apuntar o no al sol para limitar la aportación de potencia a los tubos captadores 10, 20, 30, 40, 50, 60, 70, 80, durante el proceso de fusión del fluido caloportador, evitando gradientes de temperatura excesivos en el captador lineal. Dicho segundo elemento parabólico 93 se incluye para colectores de doble reflexión.  Figure 9 shows a collector that presents a turning mechanism to allow the collector to point or not to the sun depending on the limitations of power contribution to the linear tubes or collectors during the melting process of the heat transfer fluid, avoiding gradients of excessive temperature in the linear sensor. In it there is a first curved element 90, preferably parabolic, provided with a rotation mechanism 91 that allows rotation B of the assembly when turning A along a rotation axis 92. The fan movement A of the pointing or turning mechanism 91 It produces several successive sequences of focus-blur, alignment-misalignment, between the sun and the collector, thus varying the thermal power reached by the pickup tube so that the thermal gradients are kept within acceptable limits. Said manifold thus comprises a linear sensor or tube 10, 20, 30, 40, 50, 60, 70, 80, a first parabolic element 90 with a device 91 for rotating the linear sensor 10, 20, 30, 40, 50, 60, 70, 80 and a second parabolic element 93. Said first parabolic element 90 may or may not point to the sun to limit the power input to the pickup tubes 10, 20, 30, 40, 50, 60, 70, 80, during the melting process of the heat transfer fluid, avoiding excessive temperature gradients in the linear collector. Said second parabolic element 93 is included for double reflection collectors.

Claims

R E I V I N D I C A C I O N E S
1. Captador lineal de energía solar, con un conducto o tubo para la recolección de radiación solar por su superficie y por cuyo interior circula un fluido caloportador, y dispuesto en plantas solares en las que el fluido caloportador se congela en el interior del conducto en ausencia de radiación solar, caracterizado porque comprende una estructura longitudinal en el interior del conducto para facilitar la transmisión del calor desde la superficie del captador hacia el fluido caloportador. 1. Linear solar energy collector, with a conduit or tube for collecting solar radiation on its surface and inside which a heat transfer fluid circulates, and arranged in solar plants in which the heat transfer fluid freezes inside the conduit in absence of solar radiation, characterized in that it comprises a longitudinal structure inside the duct to facilitate the transmission of heat from the surface of the collector to the heat transfer fluid.
2. Captador, según reivindicación 1 , caracterizado porque la estructura longitudinal es un alma que comprende una sección con un núcleo central y al menos un saliente radial que divide el interior del conducto en espacios separados por los que circula el fluido caloportador.  2. Sensor, according to claim 1, characterized in that the longitudinal structure is a core comprising a section with a central core and at least one radial projection that divides the interior of the duct into separate spaces through which the heat transfer fluid circulates.
3. Captador, según reivindicación 2, caracterizado porque la estructura longitudinal comprende al menos cuatro salientes radiales.  3. Sensor, according to claim 2, characterized in that the longitudinal structure comprises at least four radial projections.
4. Captador, según reivindicación 2, caracterizado porque el alma presenta un núcleo central hueco por el que también circula el fluido caloportador.  4. Sensor, according to claim 2, characterized in that the soul has a hollow central core through which the heat transfer fluid also circulates.
5. Captador, según reivindicación 2 o 3, caracterizado por los salientes radiales presentan orificios que conectan los espacios entre salientes.  5. Sensor, according to claim 2 or 3, characterized by radial projections have holes connecting the spaces between projections.
6. Captador, según reivindicación 1 , caracterizado porque el conducto y la estructura longitudinal consisten en una única pieza.  6. Sensor, according to claim 1, characterized in that the duct and the longitudinal structure consist of a single piece.
7. Captador, según reivindicación 1 , caracterizado porque el conducto tiene sección circular.  7. Sensor, according to claim 1, characterized in that the duct has a circular section.
8. Captador, según reivindicación 1 , caracterizado porque el conducto tiene sección no circular.  8. Sensor, according to claim 1, characterized in that the duct has a non-circular section.
9. Captador, según reivindicación 8, caracterizado porque la sección es ovoidal, elíptica o poligonal.  9. Sensor, according to claim 8, characterized in that the section is ovoidal, elliptical or polygonal.
10. Captador, según reivindicación 6, caracterizado porque la estructura longitudinal comprende conductos de sección circular por los que circular el fluido caloportador.  10. Sensor, according to claim 6, characterized in that the longitudinal structure comprises ducts of circular section through which the heat transfer fluid circulates.
11. Captador, según reivindicación 1 , caracterizado porque el conducto es de acero.  11. Sensor, according to claim 1, characterized in that the conduit is made of steel.
12. Captador, según reivindicación 1 , caracterizado porque el conducto es de una aleación de aluminio. 12. Sensor, according to claim 1, characterized in that the conduit is made of an aluminum alloy.
13. Captador, según reivindicación 11 , caracterizado porque la estructura longitudinal es de acero. 13. Sensor, according to claim 11, characterized in that the longitudinal structure is made of steel.
14. Captador, según reivindicación 11 o 12, caracterizado porque la estructura longitudinal es de una aleación de aluminio.  14. Sensor, according to claim 11 or 12, characterized in that the longitudinal structure is of an aluminum alloy.
15. Captador, según reivindicación 1 , caracterizado porque el fluido caloportador es una sal fundida.  15. Sensor, according to claim 1, characterized in that the heat transfer fluid is a molten salt.
16. Colector solar, que comprende un captador lineal de energía solar de acuerdo con las reivindicaciones 1 a 15 y al menos un primer elemento con superficie curva caracterizado porque comprende un dispositivo para girar conjuntamente el captador lineal y el al menos un primer elemento con superficie curva, de manera que el primer elemento con superficie curva puede apuntar o no al sol para limitar la aportación de potencia a los tubos captadores durante el proceso de fusión del fluido caloportador, evitando gradientes de temperatura excesivos en el captador lineal.  16. Solar collector, comprising a linear solar energy collector according to claims 1 to 15 and at least one first element with a curved surface characterized in that it comprises a device for jointly rotating the linear sensor and the at least one first element with surface curve, so that the first element with curved surface may or may not point to the sun to limit the contribution of power to the pickup tubes during the melting process of the heat transfer fluid, avoiding excessive temperature gradients in the linear collector.
17. Colector, según reivindicación 16, caracterizado porque comprende un segundo elemento con superficie curva.  17. Manifold according to claim 16, characterized in that it comprises a second element with a curved surface.
18. Colector, según reivindicaciones 16 a 17, caracterizado porque la superficie curva es parabólica.  18. Manifold according to claims 16 to 17, characterized in that the curved surface is parabolic.
PCT/ES2013/070195 2012-03-30 2013-03-25 Solar energy linear pickup and collector WO2013144406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201230496 2012-03-30
ES201230496A ES2427848B1 (en) 2012-03-30 2012-03-30 LINEAR SOLAR ENGINE AND COLLECTOR

Publications (1)

Publication Number Publication Date
WO2013144406A1 true WO2013144406A1 (en) 2013-10-03

Family

ID=49258290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070195 WO2013144406A1 (en) 2012-03-30 2013-03-25 Solar energy linear pickup and collector

Country Status (2)

Country Link
ES (1) ES2427848B1 (en)
WO (1) WO2013144406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839456A (en) * 2017-04-01 2017-06-13 内蒙古工业大学 Compound many curved surface groove type solar concentrating collectors with automatic defrosting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1455155A2 (en) * 2003-03-04 2004-09-08 Imtech Deutschland GmbH & Co. KG PCM-Element
US20050126560A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar collector and method
US20090293866A1 (en) * 2008-06-02 2009-12-03 Solfocus, Inc. Solar Thermal Collector Insert
US20100276121A1 (en) * 2006-01-26 2010-11-04 Dan Sagie Thermal Energy Storage Apparatus
WO2011055401A2 (en) * 2009-11-03 2011-05-12 Advanced Research Consulting S.R.L. Tubular heat exchanger, in particular receiving tube of a concentrating solar plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1455155A2 (en) * 2003-03-04 2004-09-08 Imtech Deutschland GmbH & Co. KG PCM-Element
US20050126560A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar collector and method
US20100276121A1 (en) * 2006-01-26 2010-11-04 Dan Sagie Thermal Energy Storage Apparatus
US20090293866A1 (en) * 2008-06-02 2009-12-03 Solfocus, Inc. Solar Thermal Collector Insert
WO2011055401A2 (en) * 2009-11-03 2011-05-12 Advanced Research Consulting S.R.L. Tubular heat exchanger, in particular receiving tube of a concentrating solar plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839456A (en) * 2017-04-01 2017-06-13 内蒙古工业大学 Compound many curved surface groove type solar concentrating collectors with automatic defrosting system

Also Published As

Publication number Publication date
ES2427848A1 (en) 2013-11-04
ES2427848B1 (en) 2014-09-30

Similar Documents

Publication Publication Date Title
ES2344311T3 (en) PARABOLIC SOLAR COLLECTOR SYSTEMS WITH ROTATING FOLLOW MEANS.
ES2646761T3 (en) Solar heat boiler and solar heat electric power generation plant
US4164123A (en) Solar thermal electric power plant
ES2251320B1 (en) PARABOLIC CONCAVO COLLECTOR.
ES2605386T3 (en) Heat exchanger for thermal storage system
EP2396607B1 (en) Solar collector, and electrical power-generating plant including such solar collectors
US20080047544A1 (en) Modular thermal radiation heating system
ES2717936T3 (en) Solar energy collection system
ES2401755T3 (en) Fixed focus parabolic trough collector
WO2013144406A1 (en) Solar energy linear pickup and collector
ES2365286B1 (en) ECONOMIZER IN SOLAR PLANT TOWER AND METHOD OF OPERATION OF SUCH PLANT.
ES2539511A1 (en) Hybrid system of thermosolar parametric cylinder and photovoltaic receiver (Machine-translation by Google Translate, not legally binding)
CN107667263B (en) Solar energy collection system and method thereof
CN203190668U (en) Heat accumulation device
ES2525196A1 (en) Thermally-insulated tubular-tower solar receiver comprising a system for harnessing energy losses
ES2381698B1 (en) SOLAR COLLECTOR WITH MULTITUBULAR RECEIVER, THERMOSOLAR PLANTS CONTAINING SUCH COLLECTOR AND METHOD OF OPERATION OF SUCH PLANTS.
WO2009147651A2 (en) A solar energy generator
ES2966702T3 (en) Heat receiver for urban concentrated solar energy
ES2746299T3 (en) Solar heat collector device
ES2382707B1 (en) TOWER RECEIVER CONFIGURATION FOR HIGH POWER.
WO2013164496A1 (en) Thermosolar receiver
ES2570593B2 (en) Multi-mode solar concentrator
WO2012001183A1 (en) Coil solar receiver for a stirling disk and method for manufacturing same
ES2648737B1 (en) Receiver for solar power tower
ES2434665B2 (en) Concentrating solar thermal power plant with two fluids in the receiver and in storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767245

Country of ref document: EP

Kind code of ref document: A1