WO2013143485A1 - 一种基于分形处理的超高频标签天线 - Google Patents

一种基于分形处理的超高频标签天线 Download PDF

Info

Publication number
WO2013143485A1
WO2013143485A1 PCT/CN2013/073409 CN2013073409W WO2013143485A1 WO 2013143485 A1 WO2013143485 A1 WO 2013143485A1 CN 2013073409 W CN2013073409 W CN 2013073409W WO 2013143485 A1 WO2013143485 A1 WO 2013143485A1
Authority
WO
WIPO (PCT)
Prior art keywords
fractal
tag antenna
square
radiating element
region
Prior art date
Application number
PCT/CN2013/073409
Other languages
English (en)
French (fr)
Inventor
刘智佳
杜国宏
Original Assignee
Liu Zhijia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Zhijia filed Critical Liu Zhijia
Priority to US14/389,084 priority Critical patent/US9705178B2/en
Publication of WO2013143485A1 publication Critical patent/WO2013143485A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • Ultra-high frequency tag antenna based on fractal processing
  • the present invention relates to a tag antenna, and more particularly to a UHF tag antenna based on fractal processing. Background technique
  • RFID radio frequency identification
  • the microstrip antenna has a low profile, light weight, low cost, and can be conformed with various carriers, suitable for mass production of printed circuit board technology, easy to realize circular polarization, bipolar
  • the present invention explores the design of modern tag antennas and solves the problems and contradictions in the design of conventional tag antennas.
  • Applying fractal geometry to tag antenna engineering allows for the design of fractal antennas with better size and band specifications.
  • the present invention provides a UHF tag antenna based on fractal processing, having a substrate, a radiation plate, and a bottom plate, the radiation plate having a first radiating element unit and a second radiating element unit, a first radiating element unit and The second radiating element units are coupled by a chip, and the first radiating element unit and the second radiating element unit have a fractal structure.
  • the fractal structure is formed by fractal, copying, and superimposing a square fractal region.
  • the first radiating element unit is symmetrically distributed with the second radiating element unit.
  • the fractal structure has a radiation element pattern.
  • a square radiating element is a square radiating element formed by halving in a selected region.
  • the fractal process of the square fractal region is to halve the square region 9 and etch four of the equally divided portions to form a square fractal region having square radiating elements.
  • the square radiating element is subjected to a secondary fractal process such that the square radiating element has a hollow structure.
  • the square fractal region is reproduced, and the square fractal region overlaps with the region having the same region pattern on the side adjacent to the adjacent square fractal region, thereby superimposing to form the superimposed region.
  • the superposed regions formed by superimposing are sequentially reproduced in the lateral direction, and the regions of the adjacent two superimposed regions having the same radiating element pattern are superimposed to form the first and second radiating element units having the fractal structure.
  • the fractal pattern is a regular radiation element pattern of a triangle, a rectangle, a diamond or a circle, or an irregular radiation element pattern.
  • the tag antenna further has a short-circuit structure, which is a short-circuited surface on both sides of the substrate or a conductive via on the substrate.
  • the fractal-based UHF tag antenna of the present invention utilizes the spatial filling of the fractal theory to form a radiant panel of a microstrip fractal binary array antenna, thereby reducing the resonant frequency of the tag antenna and reducing the size of the tag antenna.
  • 1 is a fractal-based UHF tag antenna of the present invention
  • FIG. 2 is a schematic structural view of a radiation plate of the present invention
  • FIG. 3 is a schematic view showing a process of forming a radiating oscillator unit of the fractal structure of the present invention. detailed description
  • the fractal-based UHF tag antenna 1 of the present invention has a substrate 2 and a radiant panel 3 attached to the upper surface of the substrate and a substrate bottom plate 4 respectively on the lower surface, and the substrate 2 has a short-circuit surface 5 on both sides thereof.
  • the radiant panel 3 of the fractal-based UHF tag antenna 1 of the present invention has two amplitude transducer units 31, 32 with a chip 33 between the amplitude transducer units 31, 32, and the amplitude oscillator units 31, 32 undergo symmetric fractal processing.
  • the spatial filling of the fractal theory is utilized to reduce the resonant frequency of the tag antenna and reduce the size of the tag antenna.
  • the radiant panel 3 of the fractal-based UHF tag antenna 1 of the present invention uses the spatial filling property and self-similarity of the fractal theory to calculate a single rectangular vibrator by fractal dimension, and repeats the square fractal unit repeatedly by cycle.
  • a radiating element unit 31 having an array of radiating elements 311 is formed, and the same fractal repeating process is applied to the other radiating element unit 32 of the radiating plate 3 symmetrical to the radiating element unit 31, thereby simultaneously forming a microstrip fractal 2
  • the radiant panel 3 of the element array antenna Resonance occurs between the radiating elements 311 of the fractal-based UHF tag antenna 1 and between the two amplitude vibrator units 31, 32, thereby reducing the resonant frequency of the tag antenna and also reducing the size of the tag antenna.
  • the area of the fractal unit and the number of fractals are planned, a square area of 4.3 mm * 4.3 mm is selected, the area 9 is equally divided, and four equally divided portions are etched to form a square fractal area 34 having a radiation element 311.
  • the contiguous radiating elements 311 in the square fractal region 34 are in communication with each other, and the etched area of the four aliquots is changed during the etching process to determine the area of the path connecting the adjacent radiating elements 311.
  • the impedance of the tag antenna 10 and the antenna gain can also be changed by changing the area of the path between the adjacent radiating elements 311.
  • the square fractal region 34 is copied, and the copied square fractal region 34 is overlapped with the same region on the side adjacent to the copied square fractal region 34', 34", thereby superimposed to form as shown in FIG. a pattern in the superimposed region 35.
  • the pattern of the superposed region 35 formed by superposition is sequentially reproduced in the lateral direction, and the regions of the adjacent two superimposed regions 35, 35' having the same pattern of the radiating elements 311 are superimposed.
  • the two end radiating elements 312, 313 are connected through the connecting feed line 316 and coupled to the chip 33 while the radiation
  • the elements 312, 313 and the space connecting the feeder 316 to the outside of the first radiating element unit 31 are filled with radiating elements 314, 315, thereby forming a first radiating element unit 31 having a fractal structure.
  • the radiating elements 314, 315 filled here do not belong to the radiating elements formed by the overlapping of the fractal antennas, but at the periphery of the connecting feed line 316, the blank of the first radiating element unit 31, and the radiation on the first radiating element unit 31 is filled.
  • the chip 22 and the first radiating element unit 31 are coupled by a connecting feed line 316, mainly for improving the impedance matching degree of the tag antenna 1, and optimizing the performance of the tag antenna.
  • the second radiating element unit 32 disposed symmetrical with the first radiating element unit 31 is obtained in the same manner.
  • the final tag antenna gain effect needs to be considered. If the number of fractals is too large, the limited radiation area of the antenna itself will be reduced, resulting in a greatly reduced antenna gain.
  • the area of the smallest fractal and the number of superpositions can be adjusted according to the specific design and size constraints, and the selection is suitable for the antenna itself.
  • the fractal unit of the structure and the number of repetitions In the above example, during the fractal processing, the area of the fractal is selected to be 4.3 mm * 4.3 mm on a radiant panel having an area of 65 mm * 7.1 mm, and 9 aliquots are selected in the square fractal region for fractal processing.
  • the fractal in order to increase the effect of the fractal, in the present embodiment, can be further divided on the basis of the fractal of the square fractal region 34, and the radiation element 311 is divided, and the fractal thereof is obtained.
  • the principle is similar to the principle of fractal of the square fractal region 34, except that for the fractal processing of the radiation element 311, the central region of the fractal structure is etched, thereby forming the structure of the radiation element 311 as shown in FIGS. 2 and 3. .
  • Subsequent copying and superimposing processes for the square fractal region 34 of the radiating element 311 having a hollow region are the same as those in the previous embodiment, and will not be described herein.
  • the tag antenna 10 of the radiating element 311 having a hollow structure in the present embodiment can further reduce the antenna resonance frequency and reduce the antenna size.
  • the above embodiment is merely a square fractal unit as an example for explaining the structure of the radiant panel 3 of the UHF tag antenna 1 based on the fractal processing, and is not intended to limit the structure of the radiating element unit 31, 32 of the present invention.
  • the fractal pattern of the radiating elements 311 in the radiating element units 31, 32 may also be regular patterns such as squares, triangles, rectangles, diamonds, circles, or other irregular patterns.
  • the fractal-based UHF tag antenna 1 of the present invention has a short-circuit structure for connecting the radiation plate 3 and the substrate substrate 4, which may be formed by conductive vias on the substrate 2, or may be on the substrate. 2
  • the short sides 5 are formed on both sides.
  • Table 1 is the result of testing based on two tag antennas with the same radiating element, respectively, in two cases
  • the fractal-free processing represents a conventional tag antenna
  • the fractal processing represents the UHF tag antenna 1 based on the fractal processing of the present invention.
  • the fractal-based UHF tag antenna 1 of the present invention can be seen.
  • the resonant frequency is significantly lower than that of the metal tag antenna without fractal processing.
  • C is the speed of light
  • the relative dielectric constant, the resonant frequency, and A is the wavelength.
  • the resonant frequency is inversely proportional to the wavelength, and these two parameters are related to the size of the radiating element of the tag antenna.
  • the size of the tag antenna needs to satisfy 1/4 wavelength or 1/2 wavelength.
  • the relationship between the A wavelength and the frequency decreases as the frequency decreases, so the size of the tag antenna designed will also increase.
  • the resonant frequency of the tag antenna without fractal processing in Table 1 is 1250 MHz
  • the resonant frequency of the UHF tag antenna 1 based on the fractal processing of the present invention is 910 MHz, and the above data can be introduced into the formula (1).
  • the fractal antenna-free tag antenna has a significantly increased size of the tag antenna at the same resonant frequency, as shown at 910 MHz, and the fractal-based UHF tag antenna 1 of the present invention achieves the same resonant frequency. It has the advantage of being significantly smaller than the size of an ordinary tag antenna, and its area can be 70% of that of a common tag antenna.
  • the fractal device-based UHF tag antenna 1 of the present invention has a relative bandwidth of 18.5%, and the normal tag antenna has a relative bandwidth of 10.8%.
  • the relative bandwidth represents the ratio of the signal bandwidth to the center frequency.
  • the larger the relative bandwidth the larger the frequency range that can be compatible with the tag antenna. Therefore, the fractal-based UHF tag antenna of the present invention is 1 has a wider frequency range than a normal tag antenna of the same size.
  • the gain G of the fractal-based UHF tag antenna 1 of the present invention is -14.3 dB, which is significantly higher than the G-12.3 dB gain of the conventional tag antenna without fractal processing, and the data in the list is still the same.
  • the gain of the size radiating element, and the gain G of the fractal-based UHF tag antenna 1 of the present invention is more pronounced than the gain G of the conventional tag antenna.
  • the reading distance r of the tag antenna is generally determined according to the formula (2):
  • Equation (2) Equation (2) where rmax is the maximum reading distance, EIRP is the equivalent isotropic radiation power, Gtag is the tag antenna gain, is the electromagnetic wave wavelength in vacuum, ⁇ is the loss factor, and Pmin is the sensitivity of the tag chip. This shows that when the tag gain is higher The farther the reading distance is when it is large.
  • the gain of the fractal-based UHF tag antenna 1 of the present invention is 2 dB higher than that of the Fractal-free ordinary tag antenna.
  • the reading distance is improved. 6%.
  • the above result is due to the difference in the resonant frequency between the two, such as the ordinary tag antenna without fractal processing by other means (such as the groove to increase the antenna length length) to reduce the resonant frequency to 910MHz, or directly let no Fractal processing of the common tag antenna in response to the resonant frequency to 910MHz, its gain will drop by 4 to 5dB.
  • the UHF tag antenna 1 based on the fractal processing of the present invention increases the reading distance of the conventional tag antenna by about 70% compared with the non-fractal processing of the same resonance frequency. Therefore, it can be seen that the UHF tag antenna based on the fractal processing of the fractal processing of the present invention 1 ensures that the antenna resonance frequency is reduced and the size of the antenna is greatly reduced, and the reading distance of the tag antenna is largely ensured.
  • the present invention solves the problem of miniaturization of some tag antennas by using the fractal-based UHF tag antenna 1 based on fractal processing.
  • the size of the tag antenna can be further miniaturized without affecting the readability of the tag antenna, thereby achieving more integration and concealment of the tag antenna and the use environment. Therefore, the tag antenna can be displayed on the portable electronic product, the portable device or other similar items to be identified in the form of labels, nameplates or other decorations, thereby realizing the identification function of the tag antenna without affecting the aesthetics of the attached assets.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本发明涉及一种基于分形处理的超高频标签天线,具有基板(2)、辐射板(3)以及底板(4),所述辐射板(3)具有第一辐射振子单元(31)和第二辐射振子单元(32),所述第一辐射振子单元(31)和所述第二辐射振子单元(32)之间由芯片(33)相耦接,所述第一辐射振子单元(31)和所述第二辐射振子单元(32)具有分形结构。本发明将分形理论运用到超高频标签天线设计中,利用分形理论的空间填充性构成一个微带分形二元阵列天线的辐射板,从而降低标签天线的谐振频率,减小天线尺寸。

Description

一种基于分形处理的超高频标签天线 技术领域
本发明涉及一种标签天线, 尤其是涉及一种基于分形处理的超高频标签天线。 背景技术
随着 RFHXRadio Frequency Identification)——射频识别技术的发展和普及, RFID作为 快速、 实时、 准确采集与处理信息的高新技术和消息标椎化的基础, 已经被世界公认为本 世纪十大重要技术之一, 随着超高频 UHF频段中国标准的逐渐明朗化以及物流、 智能交 通、 数字景区等应用的需求, , 人们对各种不同领域金属以及非金属资财的追踪管理需求 已日渐清晰化, 比如超薄, 超小, 超轻的标签设计。 这对标签天线的设计提出了更高且更 复杂的要求。
虽然, 随着标签天线技术的不断发展出现了微带天线, 具有低剖面、重量轻、成本低, 可与各种载体共形, 适合印刷电路板技术批量生产、 易于实现圆极化、 双极化、 双频段工 作等优点, 然而传统的标签天线在几何形状上基本上都是基于欧几里德几何的设计, 其能 达到的最小尺寸仍然有限。
因此, 一种新型的小型化标签天线成为行业内产品发展的方向。 发明内容
本发明为克服上述现有标签天线的缺陷, 探索现代标签天线的设计, 解决传统的标签 天线设计中出现的问题和矛盾。将分形几何应用到标签天线工程中, 可设计出尺寸和频带 指标更好的分形天线。
为实现上述发明目的, 本发明提供一种基于分形处理的超高频标签天线, 具有基板、 辐射板以及底板, 辐射板具有第一辐射振子单元和第二辐射振子单元, 第一辐射振子单元 和第二辐射振子单元之间由芯片相耦接,第一辐射振子单元和第二辐射振子单元具有分形 结构。
根据上述构思, 该分形结构为正方形分形区域经过分形、 复制、 叠加而形成。
根据上述构思, 第一辐射振子单元与第二辐射振子单元对称分布。
根据上述构思, 分形结构具有辐射元图案。 根据上述构思, 正方形的辐射元是在选择区域经过 9等分形成的正方形辐射元。 根据上述构思, 该正方形分形区域的分形过程为对正方形区域 9等分后, 蚀刻其中的 4个等分的部分, 形成具有正方形辐射元的正方形分形区域。
根据上述构思,正方形辐射元经过二次分形处理,使所述正方形辐射元具有空心结构。 根据上述构思, 将正方形分形区域进行复制, 正方形分形区域与相邻的正方形分形区 域相邻的一侧的具有相同区域图案的区域重叠, 从而叠加形成叠加区域。
根据上述构思, 依次在横向上复制叠加形成的叠加区域, 并使相邻两个叠加区域具有 相同辐射元图案的区域相叠加, 形成具有分形结构的第一、 第二辐射振子单元。
根据上述构思, 分形图形为三角形、 矩形、 菱形或者圆形的规则的辐射元图案, 或者 是不规则的辐射元图案。
根据上述构思, 该标签天线还具有短路结构, 短路结构是位于基板的两侧面的短路面 或者是基板上的导电过孔。
基于上述改进,本发明的基于分形处理的超高频标签天线利用分形理论的空间填充性 构成一个微带分形二元阵列天线的辐射板, 从而降低标签天线的谐振频率, 减小标签天线 尺寸。 附图说明
图 1为本发明的基于分形处理的超高频标签天线;
图 2为本发明的辐射板的结构示意图;
图 3为本发明的分形结构的辐射振子单元形成过程示意图。 具体实施方式
以下结合附图, 对本发明的具体实施过程作详细介绍。
参见图 1和图 2, 本发明的基于分形处理的超高频标签天线 1有基板 2以及分别附着 于基板上表面的辐射板 3和下表面的基板底板 4, 基板 2两侧具有短路面 5。 本发明的基 于分形处理的超高频标签天线 1的辐射板 3具有两个振幅振子单元 31、 32,振幅振子单元 31、 32之间具有芯片 33, 振幅振子单元 31、 32经过对称的分形处理, 利用分形理论的空 间填充性, 从而降低标签天线的谐振频率, 减小标签天线尺寸。
本发明的基于分形处理的超高频标签天线 1的辐射板 3运用分形理论的空间填充性以 及自相似性, 将单个长方形振子通过分数维计算, 将正方形分形单元经过周期重复叠加, 从而形成具有辐射元 311阵列的辐射振子单元 31, 在辐射板 3的与该辐射振子单元 31相 对称设置的另一个辐射振子单元 32采用同样的分形重复叠加处理, 从而同时构成一个微 带分形二元阵列天线的辐射板 3。 该基于分形处理的超高频标签天线 1的辐射元 311之间 以及两个振幅振子单元 31、 32之间产生谐振, 从而使标签天线的谐振频率降低, 也使标 签天线尺寸减小。
以下结合图 3, 详细介绍本发明的分形结构形成过程, 此处以面积为 65mm*7.1mm, 谐振频率为 1250MHz的无分形处理的普通标签天线为例介绍如何形成相同面积的辐射板 的过程。
首先规划分形单元的面积以及分形次数, 选择 4.3mm*4.3mm的正方形区域, 将该区 域 9等分, 蚀刻其中的 4个等分的部分, 形成具有辐射元 311的正方形分形区域 34。正方 形分形区域 34内的相接辐射元 311之间相连通, 其通过蚀刻过程中改变该 4个等分部分 的蚀刻面积的大小, 从而决定相邻辐射元 311之间相连通的通路的面积, 同时也可以通过 改变相邻辐射元 311之间相连通的通路的面积而改变标签天线 10的阻抗和天线增益。
接下来, 复制该正方形分形区域 34, 并且使被复制的正方形分形区域 34与该复制的 正方形分形区域 34'、 34"相邻的一侧的相同的区域相重叠, 从而叠加形成如图 3所示的叠 加区域 35中的图形。依次在横向上复制该经过叠加形成的叠加区域 35的图形, 并且使相 邻两个叠加区域 35、 35'具有相同辐射元 311 图案的区域相叠加, 以此类推, 至最后一个 叠加区域后, 在第一辐射振子单元 31的最后形成的部分, 将两个末端的辐射元 312、 313 通过连接馈线 316连接, 并与芯片 33相耦接, 同时在该辐射元 312、 313及连接馈线 316 的相对第一辐射振子单元 31的外侧的空间填充辐射元 314、 315, 从而形成具有分形结构 的第一辐射振子单元 31。
此处填充的辐射元 314、 315并不属于分形天线重复叠加形成的辐射元, 而是在连接 馈线 316***、第一辐射振子单元 31的空白处, 填充与第一辐射振子单元 31上的辐射元 311 相同结构的辐射元 314、 315, 其作用在于有效拓展标签天线的空间填充性。 芯片 22 与第一辐射振子单元 31之间采用连接馈线 316进行耦接, 主要是为了提高标签天线 1的 阻抗匹配度, 得到标签天线性能的最优化。 与第一辐射振子单元 31相对称设置的第二辐 射振子单元 32通过相同方式获得。
在确定分形单元的面积及分形处理时, 需要考虑最终的标签天线增益效果, 如果分形 次数太多, 反而将导致天线本身有限的辐射面积减小, 从而导致天线增益大大降低。 其中 最小分形的面积和叠加的次数可依据具体的设计和尺寸限制进行调整,选取适合天线本身 结构的分形单元和重复次数。 以上示例在分形处理过程中, 在面积为 65mm*7.1mm的辐 射板上选择分形的面积为 4.3mm*4.3mm, 在该正方形分形区域内选择 9等分进行分形处 理。
在本发明的另一实施例中, 为了增加分形的效果, 本实施方式中更可以在该正方形分 形区域 34进行分形后的基础上进行二次分形, 对其中的辐射元 311进行分形, 其分形的 原理与正方形分形区域 34分形的原理相似, 所不同的是, 对于辐射元 311的分形处理, 蚀刻的是分形结构的中心区域, 从而形成如图 2和图 3所示的辐射元 311的结构。后续的 对于具有空心区域的辐射元 311的正方形分形区域 34的复制与叠加过程与上一实施方式 中的过程相同, 在此不再赘述。相比上一实施方式中的具有无空心结构的辐射元 311的标 签天线 10来讲,本实施方式中具有空心结构的辐射元 311的标签天线 10可进一步降低天 线谐振频率, 缩小天线尺寸。
以上实施方式仅是以正方形分形单元为例来对基于分形处理的超高频标签天线 1 的 辐射板 3的结构进行说明, 并非用于限制本发明的辐射振子单元 31、 32的结构, 本发明 的辐射振子单元 31、 32中的辐射元 311 的分形图形也可以是正方形、 三角形、 矩形、 菱 形、 圆形等规则图形或其他不规则图形。
本发明的基于分形处理的超高频标签天线 1具有短路结构,该短路结构用于连接辐射 板 3和基板底板 4, 其可通过在基板 2上以导电过孔的方式形成, 也可以在基板 2两侧边 形成短路面 5。 以上解释仅为说明本发明的基于分形处理的超高频标签天线 1的短路结构 的形成位置和形成方式,而本发明的基于分形处理的超高频标签天线 1的短路面 5并非实 现本发明所必须的结构。然而具有短路结构的基于分形处理的超高频标签天线 1的尺寸可 相对不具有短路结构的基于分形处理的超高频标签天线 1的尺寸可大幅缩减。
以下结合表 1实验数据对本发明的基于分形处理的超高频标签天线 1的有益效果进行 说明。
表 1 :
Figure imgf000005_0001
表 1是分别基于具有相同辐射单元的两个标签天线进行测试的结果,其中两种情况中 的无分形处理表示普通的标签天线,而有分形处理则表示本发明基于分形处理的超高频标 签天线 1, 根据表 1数据可以看出, 本发明的基于分形处理的超高频标签天线 1的谐振频 率明显低于无分形处理的金属标签天线,
本领域所公知的辐射频率与波长具有如公式 (2) 所示的关系: λ = ~ , 公式 (1 )
f ^7
其中 C为光速, 为相对介电常数, 为谐振频率, A为波长。 由公式(1 )可以看出, 谐振频率 与波长 成反比, 而这两个参数与标签天线辐射单 元尺寸均相关, 据标签天线设计原理, 标签天线尺寸需满足 1/4波长或者 1/2波长的关系, 当/频率降低时 A波长也跟随变大, 因此设计的标签天线尺寸也会增加。 表 1中无分形处 理的标签天线的谐振频率 为 1250MHz, 而本发明有分形处理的基于分形处理的超高频 标签天线 1的谐振频率 为 910 MHz, 将上述数据引入公式 (1 ) 即可看出, 无分形处理 的标签天线在同一谐振频率, 如图示的 910 MHz时, 其标签天线的尺寸将明显增加, 而 本发明的基于分形处理的超高频标签天线 1为实现相同谐振频率时,具有明显小于普通标 签天线尺寸的优势, 其面积可为普通标签天线的 70%。
同时由表 1数据可以看出, 有分形处理的本发明的基于分形处理的超高频标签天线 1 的相对带宽为 18.5%, 而普通的标签天线的相对带宽则为 10.8%, 对于本领域技术人员来 讲, 相对带宽代表信号带宽与中心频率的比, 相同条件下, 相对带宽愈大, 则表示能够与 标签天线兼容的频率范围越大, 因此本发明的基于分形处理的超高频标签天线 1与相同尺 寸的普通标签天线相比, 具有更宽的频率范围。
最后, 本发明的基于分形处理的超高频标签天线 1的增益 G为 -14.3dB, 相较于无分 形处理的普通标签天线的增益 G-12.3dB 明显增加, 该列表中的数据尚为相同尺寸辐射单 元的增益, 而较相同谐振频率 ^时, 本发明的基于分形处理的超高频标签天线 1的增益 G 相较普通标签天线的增益 G则会更加明显。而标签天线的读取距离 r的确定一般是依据公 式 (2) :
Figure imgf000006_0001
, 公式 (2) 其中 rmax为最大读取距离, EIRP为等效全向辐射功率, Gtag为标签天线增益, 为 真空中电磁波波长, η为损耗因子, Pmin为标签芯片的灵敏度。 由此可见, 当标签增益越 大时读取距离越远。
如上述表 1中所示,本发明的基于分形处理的超高频标签天线 1较无分形处理普通标 签天线的增益提高了 2dB, 根据公式(2)的可以得知, 其读取距离提高了 6%。如前所示, 上述结果是因两者谐振频率上的差距, 如将无分形处理的普通标签天线用其他方式(如刻 槽增加天线电长度方式)降低谐振频率至 910MHz时, 或直接让无分形处理的普通标签天 线响应谐振频率至 910MHz时, 其增益会下降 4至 5dB。本发明的基于分形处理的超高频 标签天线 1较相同谐振频率的无分形处理普通标签天线的读取距离则会提高 70%左右。由 此可见,本发明采用分形处理的基于分形处理的超高频标签天线 1很好的保证了降低天线 谐振频率减小尺寸的同时, 很大程度的保证了标签天线的读取距离。
基于以上论述的改进,本发明使用分形处理的基于分形处理的超高频标签天线 1解决 目前一些标签天线的小型化的难题。将分形化理论运用到的 UHF频段抗金属标签天线中, 使标签天线的尺寸进一步小型化, 而不影响标签天线的可读性, 由此实现使标签天线与使 用环境更一体化和隐蔽性, 从而使标签天线能够以标签、铭牌或其他装饰物的形式出现在 便携式电子产品、便携式设备或其他类似需要识别的物品上, 既实现了标签天线的识别作 用, 又不影响随附资财的美观。
以上所述, 仅为本发明较佳具体实施例的详细说明与图式, 本发明的特征并不局限于 此, 本发明的所有范围应以下述的范围为准, 凡符合于本发明权利要求保护范围的精神与 其类似变化的实施例, 皆应包含于本发明的范畴中, 任何熟悉该项技艺者在本发明的领域 内, 可轻易思及的变化或调整皆可涵盖在以下本发明的权利要求保护范围。

Claims

权利要求
1、一种基于分形处理的超高频标签天线,具有基板(2)、辐射板(3 )以及底板(4), 其特征在于: 所述辐射板(3 )具有第一辐射振子单元(31 )和第二辐射振子单元(32) , 所述第一辐射振子单元 (31 ) 和所述第二辐射振子单元 (32) 之间由芯片 (33 ) 相耦接, 所述第一辐射振子单元 (31 ) 和所述第二辐射振子单元 (32) 具有分形结构。
2、 如权利要求 1所述的标签天线, 其特征在于: 所述的分形结构为正方形分形区域 (34) 经过分形、 复制和叠加而形成。
3、 如权利要求 1所述的标签天线, 其特征在于: 所述第一辐射振子单元 (31 ) 与所 述第二辐射振子单元 (32) 对称分布。
4、 如权利要求 2所述的标签天线, 其特征在于: 所述的分形结构具有辐射元 (311、
321 ) 图案。
5、 如权利要求 4所述的标签天线, 其特征在于: 所述的辐射元 (311、 321 ) 图案是 在选择区域经过 9等分形成的正方形辐射元 (311、 321 ) 。
6、 如权利要求 5所述的标签天线, 其特征在于: 所述的正方形分形区域 (34) 的分 形过程为对正方形区域 9等分后, 蚀刻其中的 4个等分的部分, 形成具有正方形辐射元
(311、 321 ) 的正方形分形区域 (34) 。
7、 如权利要求 5所述的标签天线, 其特征在于: 所述的正方形辐射元 (311、 321 ) 经过二次分形处理, 使所述正方形辐射元 (311、 321 ) 具有空心结构。
8、 如权利要求 6或 7所述的标签天线, 其特征在于: 将所述的正方形分形区域(34) 进行复制, 所述的正方形分形区域 (34) 与相邻的正方形分形区域 (34'、 34")相邻的一 侧的具有相同区域图案的区域重叠, 从而叠加形成叠加区域 (35 ) 。
9、 如权利要求 8所述的标签天线, 其特征在于: 依次在横向上复制叠加形成的所述 叠加区域(35 ), 并使相邻两个叠加区域具有相同辐射元(311、 321 )图案的区域相叠加, 形成具有分形结构的所述的第一、 第二辐射振子单元 (31、 32) 。
10、 如权利要求 4所述的标签天线, 其特征在于: 所述的辐射元(311、 321 ) 图案为 三角形、 矩形、 菱形或者圆形的规则的辐射元图案或者是不规则的辐射元图案。
11、如前述权利要求 1至 7任一项所述的标签天线, 其特征在于: 该标签天线还具有 短路结构, 所述的短路结构是位于所述基板(2) 的两侧面的短路面(5 )或者是所述基板 (2) 上的导电过孔。
PCT/CN2013/073409 2012-03-30 2013-03-29 一种基于分形处理的超高频标签天线 WO2013143485A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/389,084 US9705178B2 (en) 2012-03-30 2013-03-29 Ultra high frequency tag aerial based on fractal processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210090310.8A CN103367886B (zh) 2012-03-30 2012-03-30 一种基于分形处理的超高频标签天线
CN201210090310.8 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013143485A1 true WO2013143485A1 (zh) 2013-10-03

Family

ID=49258240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073409 WO2013143485A1 (zh) 2012-03-30 2013-03-29 一种基于分形处理的超高频标签天线

Country Status (3)

Country Link
US (1) US9705178B2 (zh)
CN (1) CN103367886B (zh)
WO (1) WO2013143485A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715511B (zh) * 2013-12-31 2015-07-15 成都信息工程学院 一种微带标签天线
US10658738B2 (en) * 2015-08-10 2020-05-19 James Geoffrey Maloney Fragmented aperture antennas
CN112993585B (zh) * 2021-02-26 2022-11-11 中国人民解放军空军工程大学 宽带多功能多比特可激励超构表面***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2651948Y (zh) * 2003-05-28 2004-10-27 京信通信***(广州)有限公司 一种宽频带天线单元
CN101110494A (zh) * 2006-07-17 2008-01-23 大同股份有限公司 射频识别标签的平板天线
CN201966324U (zh) * 2011-03-11 2011-09-07 广西工学院 一种射频识别双频标签天线
CN202513279U (zh) * 2012-03-30 2012-10-31 刘智佳 一种基于分形处理的超高频标签天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359640A1 (en) * 2002-04-30 2003-11-05 Roke Manor Research Limited A fractal antenna and method of design
US7342499B2 (en) * 2006-01-26 2008-03-11 Printronix, Inc. Multi-band RFID encoder
TW200803041A (en) * 2006-06-29 2008-01-01 Tatung Co Ltd Planar antenna for the radio frequency identification tag
CN101399396B (zh) * 2008-10-21 2012-10-10 厦门大学 用于射频识别***的光子带隙陶瓷谢尔宾斯基分形天线
CN101533951A (zh) * 2009-04-09 2009-09-16 厦门大学 用于射频识别***的光子带隙陶瓷科赫分形偶极子天线
TWI531977B (zh) * 2010-08-16 2016-05-01 凸版印刷股份有限公司 無接觸ic標籤及具備ic標籤之標牌

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2651948Y (zh) * 2003-05-28 2004-10-27 京信通信***(广州)有限公司 一种宽频带天线单元
CN101110494A (zh) * 2006-07-17 2008-01-23 大同股份有限公司 射频识别标签的平板天线
CN201966324U (zh) * 2011-03-11 2011-09-07 广西工学院 一种射频识别双频标签天线
CN202513279U (zh) * 2012-03-30 2012-10-31 刘智佳 一种基于分形处理的超高频标签天线

Also Published As

Publication number Publication date
US9705178B2 (en) 2017-07-11
CN103367886A (zh) 2013-10-23
CN103367886B (zh) 2017-06-13
US20160372816A1 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP4173904B2 (ja) 平坦な台から成る3次元アンテナアレイを有するセキュリティタグとその製作方法
US9230207B2 (en) RFID tag aerial with ultra-thin dual-frequency micro strip patch aerial array
JP2007104211A (ja) アンテナ、無線装置、アンテナの設計方法、及びアンテナの動作周波数測定方法
JP5778155B2 (ja) Rfidトランスポンダシステム用アンテナ
WO2017032107A1 (zh) 一种宽带双圆极化rfid天线
CN110783711B (zh) 一种接地板加载开口环谐振器缝隙的多频微带缝隙天线
WO2016127595A1 (zh) 无线射频识别rfid标签天线
JP2001217380A (ja) 半導体装置およびその製造方法
TWI422099B (zh) 全平面天線及其電磁能隙結構
WO2013143485A1 (zh) 一种基于分形处理的超高频标签天线
CN106961002B (zh) 适用于射频识别标签的平面双臂轴向模螺旋天线
US8632009B2 (en) Near field magnetic coupling antenna and RFID reader having the same
CN103985958B (zh) 基于ebg结构的小型抗金属uhf标签天线
US20080284666A1 (en) Antenna Configuration for RFID Tags
US7456798B2 (en) Stacked loop antenna
WO2013075659A1 (zh) 微带贴片式rfid标签天线
JP5276463B2 (ja) アンテナ装置及びそれを備えたrfidタグ
CN202259676U (zh) 一种隐型射频天线
CN202513279U (zh) 一种基于分形处理的超高频标签天线
WO2013075657A1 (zh) 微带贴片式rfid标签天线
JP7131227B2 (ja) Rfタグラベル
JP7176313B2 (ja) Rfタグラベル
CN109638417B (zh) 一种应用于rfid的小型化低剖面定向阅读器天线及终端
JP2011103060A (ja) Rfidタグの製造方法
CN108320011A (zh) 无芯片rfid电子标签尺寸小型化的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14389084

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13768857

Country of ref document: EP

Kind code of ref document: A1