WO2013143111A1 - 液晶显示装置及其驱动方法 - Google Patents

液晶显示装置及其驱动方法 Download PDF

Info

Publication number
WO2013143111A1
WO2013143111A1 PCT/CN2012/073289 CN2012073289W WO2013143111A1 WO 2013143111 A1 WO2013143111 A1 WO 2013143111A1 CN 2012073289 W CN2012073289 W CN 2012073289W WO 2013143111 A1 WO2013143111 A1 WO 2013143111A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage source
pixel
common electrode
liquid crystal
Prior art date
Application number
PCT/CN2012/073289
Other languages
English (en)
French (fr)
Inventor
林家强
侯鸿龙
贺成明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/519,358 priority Critical patent/US20130249882A1/en
Publication of WO2013143111A1 publication Critical patent/WO2013143111A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display device and a driving method thereof.
  • the liquid crystal display device generally includes a first substrate, a second substrate, and a liquid crystal layer disposed between the first substrate and the second substrate.
  • the liquid crystal display device includes a plurality of pixel units, each of which includes a pixel electrode made of an indium tin oxide film and disposed on the first substrate and a common electrode disposed on the second substrate.
  • a prior art liquid crystal display device driving circuit includes a scan line 110 , a data line 120 , a first thin film transistor 130 , a liquid crystal capacitor 141 , and a storage capacitor 142 .
  • the liquid crystal capacitor 141 is composed of a pixel electrode 1411 disposed on the first substrate and a common electrode 1413 disposed on the second substrate.
  • the storage capacitor 142 is composed of the pixel electrode 1411 and the common electrode 1423 disposed on the first substrate.
  • the gate g of the first thin film transistor 130 is electrically connected to the scan line 110, the source s is electrically connected to the data line 120, and the drain d is electrically connected to the liquid crystal capacitor 141 and the pixel electrode 1411 of the storage capacitor 142.
  • the scan signal is applied to the gate g of the first thin film transistor 130 through the scan line 110 such that the first thin film transistor 130 is turned on, and the data signal is loaded through the data line 120 to the source s of the first thin film transistor 130.
  • the scan signal causes the first thin film transistor 130 to be in an on state
  • the data signal is loaded to the pixel electrode 1411 of the liquid crystal capacitor 141 through the drain d of the first thin film transistor 130.
  • the voltage applied between the liquid crystal capacitors 141 changes, the deflection direction of the liquid crystal molecules in the liquid crystal layer also changes, thereby controlling the light passing rate through the pixel unit, thereby controlling the display brightness of each pixel unit.
  • FIG. 2 is a waveform diagram of a scan signal and a voltage on a pixel electrode of the circuit shown in FIG. 1.
  • the first thin film transistor 130 is turned off due to the presence of the parasitic capacitance 150 (ie, scanning in the figure).
  • the parasitic capacitance 150 introduces the scan signal 210 to the pixel electrode 1411, thereby reducing the voltage 220 loaded on the pixel electrode 1411, which is referred to as the feedthrough voltage.
  • the feedthrough voltage introduced by the parasitic capacitance 150 is gradually reduced, so that the pixel electrode 1411 and the second electrode are disposed on the second substrate.
  • the voltage difference of the common electrode 1413 gradually increases, causing different feedthrough voltages to be generated at different positions, the feedthrough voltage near the edge of the display panel is large, and the feedthrough voltage of the middle portion of the liquid crystal display panel is small, thereby causing low Under the grayscale screen, the left and right sides of the LCD panel are brighter, and there is a defect of uneven brightness, which affects the display quality.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display device and a driving method thereof, which can correct a difference in feedthrough voltage caused by a difference in parasitic resistance and parasitic capacitance on the same scanning line in a liquid crystal display device, and further Improve the uniformity of brightness of the liquid crystal display device.
  • a technical solution adopted by the present invention is to provide a liquid crystal display device including a plurality of pixel units arranged in a matrix, the pixel unit including a first substrate disposed opposite to each other a second substrate and a liquid crystal layer sandwiched between the first substrate and the second substrate; wherein the first substrate is provided with a data line, a scan line intersecting the data line, and two adjacent a pixel electrode in a region surrounded by the scan line and the two adjacent data lines; and a first thin film transistor disposed at an intersection of the data line and the scan line, a gate of the first thin film transistor is connected to the scan line, a source
  • the liquid crystal display device further includes: a first voltage source for supplying a first voltage; a second voltage source for providing a second voltage; and a switch a unit, disposed at a junction of a gate of the first thin film transistor and the scan line, and a control end of the switch unit is electrically connected to the scan line, and the input end is electrically
  • the liquid crystal capacitor is formed by the pixel electrode, a common electrode disposed on the second substrate, and the liquid crystal layer, and a common electrode on the second substrate is electrically connected to the second voltage source.
  • the voltage value of the first voltage is 6.8 volts
  • the voltage value of the second voltage is 7.5 volts.
  • a liquid crystal display device including a plurality of pixel units arranged in a matrix, the pixel unit including a first substrate disposed opposite to each other, a second substrate and a liquid crystal layer sandwiched between the first substrate and the second substrate; wherein the first substrate is provided with a data line, a scan line intersecting the data line, and two adjacent places a pixel electrode in a region surrounded by the scan line and two adjacent data lines; and a first thin film transistor disposed at an intersection of the data line and the scan line, a gate of the first thin film transistor is connected to the scan line, The source is connected to the data line, and the drain is connected to the pixel electrode; wherein the liquid crystal display device further includes: a first voltage source for providing a first voltage; and a second voltage source for providing a second voltage; a switching unit disposed at a junction of a gate of the first thin film transistor and the scan line, and a control end of the switch unit is
  • the switching unit includes at least one thin film transistor, and the gate of the switching unit is electrically connected to the scan line, the source is electrically connected to the first voltage source, and the drain and the second voltage source and the pixel unit The common terminal of the common electrode of the storage capacitor is electrically connected.
  • the switching unit includes at least one transistor, the base of the switching unit is electrically connected to the scan line, the collector is electrically connected to the first voltage source, and the emitter and the second voltage source and the pixel unit are stored.
  • the common end of the common electrode of the capacitor is electrically connected.
  • the switch unit comprises a composite triode composed of a plurality of thin film transistors and a triode, the control end of the switch unit is electrically connected to the scan line, the input end is electrically connected to the first voltage source, and the output end is opposite to the second The voltage source and the common terminal of the common electrode of the storage capacitor of the pixel unit are electrically connected.
  • the storage capacitor is formed by the pixel electrode and the common electrode of the storage capacitor, wherein the pixel electrode and the common electrode of the storage capacitor are both disposed on the first substrate.
  • the liquid crystal capacitor is formed by the pixel electrode, a common electrode disposed on the second substrate, and the liquid crystal layer, and a common electrode on the second substrate is electrically connected to the second voltage source.
  • the voltage value of the first voltage is 6.8 volts
  • the voltage value of the second voltage is 7.5 volts.
  • another technical solution adopted by the present invention is to provide a driving method of a liquid crystal display device, the liquid crystal display device comprising a plurality of pixel units arranged in a matrix, wherein the driving method comprises the following steps Providing a first voltage source for providing a first voltage; providing a second voltage source for providing a second voltage; providing a first switching unit for controlling said first voltage source and said second voltage source to said The common electrode of the storage capacitor of the pixel unit provides the first voltage or the second voltage; wherein, when the first switching unit receives the scan signal, the first voltage source is a common storage capacitor of the pixel unit The electrode provides the first voltage; when the first switching unit does not receive a scan signal, the second voltage source supplies the second voltage to a common electrode of a storage capacitor of the pixel unit to reduce the same scan a difference in feedthrough voltage between a plurality of said pixel units on a line; wherein said first voltage is less than said second voltage.
  • the method further includes: providing a second switch unit, configured to control a data line of the liquid crystal display device to provide a data voltage to the pixel unit; wherein, to the first switch unit and the second switch unit The same scan signal is provided to enable the first switch unit and the second switch unit to be turned on or off at the same time.
  • a common voltage is supplied to a common electrode of the liquid crystal capacitor in the plurality of pixel units on the same scanning line, and the common voltage has the same value as the first voltage.
  • the first switching unit is a thin film transistor or a triode
  • the second switching unit is a thin film transistor
  • the voltage value of the first voltage is 6.8 volts
  • the voltage value of the second voltage is 7.5 volts.
  • the invention has the beneficial effects that the first voltage source supplies the first voltage to the pixel unit when the switching unit receives the scan signal when the switch unit receives the scan signal, and the switch unit does not receive the scan signal when the switch unit does not receive the scan signal.
  • the two voltage sources supply the second voltage to the pixel unit, and the first voltage is smaller than the second voltage, which can correct the difference of the feedthrough voltage caused by the difference between the parasitic resistance and the parasitic capacitance on the same scanning line in the liquid crystal display device, Further, the uniformity of brightness of the liquid crystal display device is improved.
  • FIG. 1 is a circuit diagram of a driving circuit of a related art liquid crystal display device
  • FIG. 2 is a waveform diagram of a scan signal of the circuit of FIG. 1 and a voltage on a pixel electrode;
  • FIG. 3 is a schematic structural view of a liquid crystal display device of the present invention.
  • Figure 4 is a drive circuit diagram of a liquid crystal display device of the present invention.
  • Figure 5 is a circuit diagram of a specific embodiment of the driving circuit diagram shown in Figure 4.
  • FIG. 6 is a flow chart showing a driving method of a liquid crystal display device of the present invention.
  • Fig. 7 is a view showing a comparison of signal waveforms of two pixel units located at the edge and in the middle on the same scanning line in the liquid crystal display device of the present invention.
  • each pixel unit 30 includes a first substrate 301 , a second substrate 302 , and a clip disposed opposite to each other.
  • a liquid crystal layer (not shown) is held between the first substrate 301 and the second substrate 302.
  • the first substrate 301 is a TFT (Thin A film transistor, a thin film transistor substrate, and a second substrate 302 is a CF (Color Filter) substrate.
  • Fig. 4 is a view showing a drive circuit of the liquid crystal display device of the present invention.
  • the driving circuit of the liquid crystal display device includes: a scan line 410, a data line 420, a first thin film transistor 306, and a liquid crystal capacitor 441.
  • the scan line 410, the data line 420 and the first thin film transistor 306 are insulated and disposed on the first substrate 301.
  • the scan line 410 is connected to the gate driver 412 to transmit the scan signal provided by the gate driver 412
  • the data line 420 is connected to the source driver 422 to transmit the data signal supplied from the source driver 422.
  • the pixel electrode 303 is disposed on the first substrate 301 and is located in a region surrounded by two adjacent scan lines 410 and two adjacent data lines 420.
  • the liquid crystal capacitor 441 is composed of a pixel electrode 303 and a common electrode 304 and a liquid crystal layer provided on the second substrate 302.
  • the storage capacitor 442 is composed of a pixel electrode 303 and a common electrode 305 which is also disposed on the first substrate 301.
  • the first thin film transistor 306 is disposed at the intersection of the scan line 410 and the data line 420.
  • the gate g1 of the first thin film transistor 306 is electrically connected to the scan line 410, the source s1 is electrically connected to the data line 420, and the drain d1 is electrically connected to the pixel electrode 303.
  • the first voltage source 460 is for providing a first voltage.
  • the voltage value of the first voltage is 6.8 volts.
  • the second voltage source 470 is for providing a second voltage.
  • the voltage value of the second voltage is 7.5 volts. It should be understood that, in the present invention, the values of the first voltage and the second voltage are not limited to the specific examples described above, as long as the voltage value corresponding to the first voltage is less than the voltage value of the second voltage.
  • the common electrode 304 of the liquid crystal capacitor 441 and the common electrode 305 of the storage capacitor 442 are electrically connected to the second voltage source 470, respectively.
  • Both ends of the parasitic capacitance 450 are electrically connected to the gate g1 and the drain d1, respectively.
  • the switch unit 480 is disposed at a junction of the gate g1 of the first thin film transistor 306 and the scan line 410 for selectively connecting the first voltage source 460 or the second voltage source 470.
  • the control terminal c of the switch unit 480 is electrically connected to the scan line 410, the input terminal i is electrically connected to the first voltage source 460, and the output terminal o is respectively connected to the second voltage source 470, the common electrode 304 of the liquid crystal capacitor 441, and the storage capacitor 442.
  • the common electrode 305 is electrically connected.
  • FIG. 5 is a circuit diagram of a specific embodiment of a driving circuit of the liquid crystal display device of the present invention.
  • the thin film transistor 580 is used as the switching unit, the gate g2 is electrically connected to the scan line 410, the source s2 is electrically connected to the first voltage source 460, and the drain d2 is respectively connected to the second voltage source 470 and the liquid crystal capacitor.
  • the common electrode 304 of the 441 and the common electrode 305 of the storage capacitor 442 are electrically connected.
  • the thin film transistor 580 in the above embodiment may be replaced by a triode.
  • the base of the triode is electrically connected to the scan line 410
  • the collector is electrically connected to the first voltage source 460
  • the emitter and the second voltage source 470 are The common terminal of the common electrode 305 of the storage capacitor 442 of the pixel unit is electrically connected.
  • the thin film transistor 580 in the above embodiment may also be replaced by a composite triode composed of a plurality of thin film transistors or a plurality of triodes, or a composite triode in which a plurality of thin film transistors and triodes are combined to form other embodiments. No specific limitation.
  • the common electrode 304 on the second substrate 302 and the common electrode 305 on the first substrate 301 may not be directly connected, but the voltage is supplied through two different voltage sources, but strictly guaranteed.
  • the voltages of the two voltage sources are equal in magnitude.
  • the present invention also provides a driving method of a liquid crystal display device.
  • the driving method of the present invention includes the following steps:
  • Step 601 Providing a first voltage source.
  • the first voltage source is for providing a first voltage, and in the present embodiment, the voltage value of the first voltage is 6.8 volts.
  • Step 602 Providing a second voltage source.
  • the second voltage source is for providing a second voltage.
  • the voltage value of the second voltage is 7.5 volts, and the voltage value of the second voltage is greater than the voltage value of the first voltage.
  • Step 603 Providing a first switch unit.
  • the first switching unit is a thin film transistor or a triode for controlling the first voltage source and the second voltage source to supply the first voltage or the second voltage to the common electrode of the storage capacitor of the pixel unit.
  • Step 604 Determine whether the first switching unit receives the scan signal. If yes, go to step 605; if no, go to step 606.
  • Step 605 The first voltage source supplies a first voltage to a common electrode of the storage capacitor of the pixel unit.
  • Step 606 The second voltage source provides a second voltage to the common electrode of the storage capacitor of the pixel unit.
  • the first thin film transistor 306 and the switch unit 480 are turned on, and the data signal is loaded to the pixel electrode 303 through the data line 420 and the first thin film transistor 306.
  • the switching unit 480 since the switching unit 480 is turned on, the first voltage source 460 supplies a first voltage to the common electrode 305 of the storage capacitor 442 of the pixel unit through the switching unit 480 to form the pixel electrode 303 and the common electrode 304 disposed on the second substrate. The voltage difference between them causes the liquid crystal layer to deflect.
  • the liquid crystal display device adopts a line scan mode, and therefore, the common electrode 304 of the liquid crystal capacitor 441 in the plurality of pixel units on the same scan line 410 is scanned each time.
  • a common voltage is provided and the value of the common voltage is the same as the first voltage provided by the first voltage source 460.
  • the first thin film transistor 306 When the scan signal is not received, the first thin film transistor 306 is turned off, and at the same time, the switch unit 480 is turned off. At this time, the second voltage source 470 directly supplies the second voltage to the common electrode 305 of the storage capacitor 442 of the pixel unit because the first voltage is smaller than the second voltage, and thus the larger one is provided when the first thin film transistor 306 is turned off.
  • the two voltages increase the voltage of the pixel electrode 303, and the correction of the feedthrough voltage is achieved.
  • FIG. 7 is a comparison diagram of signal waveforms of two pixel units located at the edge and in the middle on the same scanning line in the liquid crystal display device of the present invention.
  • the curve 711 is a voltage signal of the pixel unit at the edge at the control end of the switch unit; the curve 721 is a voltage signal of the pixel unit at the middle of the control unit of the switch unit.
  • the curves 711 and 712 are at the high level. The thin film transistor is turned on.
  • Curves 712 and 722 represent voltage signals on the common electrode of the storage capacitor in the respective pixel unit, respectively.
  • Curves 713 and 723 represent the voltage signals on the pixel electrodes in the respective pixel units, i.e., the voltage signals on the pixel electrodes after the feedthrough voltage correction is performed in accordance with the present invention.
  • the curves 714 and 724 respectively represent voltage signals on the pixel electrodes in the corresponding pixel unit when the second voltage source and the switching unit are not provided, that is, the voltage signals on the pixel electrodes when the feedthrough voltage correction is not performed.
  • the feedthrough voltage when the parasitic capacitance 450 is small (for example, a pixel unit located at an edge), the feedthrough voltage is much corrected; conversely, when the parasitic capacitance 450 is large (for example, a pixel unit located in the middle) ), the feedthrough voltage is less corrected, thereby correcting the difference in feedthrough voltage caused by the difference in parasitic resistance and parasitic capacitance of different pixel units on the same scan line, and the difference in feedthrough voltage between different pixel units Significantly, it can effectively reduce the problem that the display is brighter on the left and right sides of the low gray level.
  • the present invention provides a first voltage to the pixel unit when the switching unit receives the scan signal, and provides the first voltage to the pixel unit when the switch unit does not receive the scan signal.
  • the second voltage wherein the first voltage is smaller than the second voltage, can correct the difference of the feedthrough voltage caused by the difference between the parasitic resistance and the parasitic capacitance on the same scanning line in the liquid crystal display device, thereby improving the brightness of the liquid crystal display device. Uniformity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种液晶显示装置,其包括:第一电压源(460),用于提供第一电压;第二电压源(470),用于提供第二电压;开关单元(480),设置于第一薄膜晶体管(306)的栅极(gl)与扫描线(410)的连接处,且开关单元(480)的控制端(c)与扫描线(410)电连接,输入端(i)与第一电压源(460)电连接,输出端(o)分别与第二电压源(470)及像素单元(30)的存储电容(442)的公共电极(305)电连接,当开关单元(480)接收到扫描信号时,第一电压源(460)向像素单元(30)的存储电容(442)的公共电极(305)提供第一电压,没有接收到扫描信号时,第二电压源(470)向像素单元(30)的存储电容(442)的公共电极(305)提供第二电压,且第一电压小于所述第二电压。还提供一种液晶显示装置的驱动方法。通过以上方式,能够对同一条扫描线(410)上的馈通电压的差异进行修正,提高液晶显示装置亮度的均匀性。

Description

液晶显示装置及其驱动方法
【技术领域】
本发明涉及显示技术领域,特别是涉及一种液晶显示装置及其驱动方法。
【背景技术】
液晶显示装置通常包括第一基板、第二基板及设置于第一基板、第二基板之间的液晶层。液晶显示装置包括多个像素单元,每个像素单元均包括由氧化铟锡薄膜制成的设置于第一基板上的像素电极及设置于第二基板上的公共电极。
如图1所示,以一个像素单元为例进行图示,一种现有技术的液晶显示装置驱动电路包括:扫描线110、数据线120、第一薄膜晶体管130、液晶电容141及存储电容142。其中,液晶电容141由设置于第一基板上的像素电极1411与设置于第二基板上的公共电极1413构成;存储电容142由像素电极1411与设置于第一基板上的公共电极1423构成。第一薄膜晶体管130的栅极g电连接到扫描线110,源极s电连接到数据线120,漏极d电连接到液晶电容141与存储电容142的像素电极1411。
工作时,扫描信号通过扫描线110加载到第一薄膜晶体管130的栅极g使得第一薄膜晶体管130导通,数据信号通过数据线120加载到第一薄膜晶体管130的源极s。当扫描信号使得第一薄膜晶体管130处于导通状态时,数据信号通过第一薄膜晶体管130的漏极d加载到液晶电容141的像素电极1411。当加在液晶电容141之间的电压发生变化时,液晶层中的液晶分子的偏转方向也发生改变,从而控制通过该像素单元的光通过率,进而控制每个像素单元的显示亮度。图2是图1所示电路的扫描信号和像素电极上的电压的波形图,请一并参阅图2所示,由于寄生电容150的存在,第一薄膜晶体管130关闭的瞬间(即图中扫描信号210处于下降沿时),寄生电容150将扫描信号210引入至像素电极1411,从而降低加载在像素电极1411上的电压220,所降低的电压被称为馈通电压。
由于同一条扫描线110上的寄生电容150的大小由显示面板的两侧向中心逐渐增大,导致寄生电容150所引入的馈通电压逐渐减少,使得像素电极1411与设置于第二基板上的公共电极1413的电压差逐渐增大,造成不同的位置产生不同的馈通电压,在靠近显示面板边缘处的馈通电压较大,液晶显示面板中间区域的馈通电压较小,进而导致在低灰阶画面下,液晶显示面板左右两侧画面较亮,存在亮度不均的缺陷,影响显示品质。
【发明内容】
本发明主要解决的技术问题是提供一种液晶显示装置及其驱动方法,能够对液晶显示装置中同一条扫描线上的寄生电阻和寄生电容的不同所造成的馈通电压的差异进行修正,进而提高液晶显示装置亮度的均匀性。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种液晶显示装置,所述液晶显示装置包括多个呈矩阵设置的像素单元,所述像素单元包括相对设置的第一基板、第二基板以及夹持在所述第一基板和第二基板之间的液晶层;其中,所述第一基板上设置有数据线、与所述数据线相交的扫描线、位于两相邻所述扫描线和两相邻数据线所围区域的像素电极以及设置在所述数据线和所述扫描线相交处的第一薄膜晶体管,所述第一薄膜晶体管的栅极连接所述扫描线,源极连接所述数据线,漏极连接所述像素电极;其中,所述液晶显示装置还包括:第一电压源,用于提供第一电压;第二电压源,用于提供第二电压;开关单元,设置于所述第一薄膜晶体管的栅极与所述扫描线的连接处,且所述开关单元的控制端与扫描线电连接,输入端与第一电压源电连接,输出端分别与所述第二电压源及所述像素单元的存储电容的公共电极电连接;其中,所述开关单元包括至少一个薄膜晶体管,且所述开关单元的栅极与扫描线电连接,源极与第一电压源电连接,漏极与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接;所述存储电容由所述像素电极与所述存储电容的公共电极形成,其中,所述像素电极与所述存储电容的公共电极均设置于所述第一基板上;当所述开关单元接收到扫描信号时,所述第一电压源向所述像素单元的存储电容的公共电极提供所述第一电压;当所述开关单元没有接收到扫描信号时,所述第二电压源向所述像素单元的存储电容的公共电极提供所述第二电压,以降低同一条所述扫描线上的多个所述像素单元之间馈通电压的差异;其中,所述第一电压小于所述第二电压。
其中,所述液晶电容由所述像素电极、设置于所述第二基板上的公共电极和所述液晶层形成,且所述第二基板上的公共电极与所述第二电压源电连接。
其中,所述第一电压的电压值为6.8伏,所述第二电压的电压值为7.5伏。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示装置,所述液晶显示装置包括多个呈矩阵设置的像素单元,所述像素单元包括相对设置的第一基板、第二基板以及夹持在所述第一基板和第二基板之间的液晶层;其中,所述第一基板上设置有数据线、与所述数据线相交的扫描线、位于两相邻所述扫描线和两相邻数据线所围区域的像素电极以及设置在所述数据线和所述扫描线相交处的第一薄膜晶体管,所述第一薄膜晶体管的栅极连接所述扫描线,源极连接所述数据线,漏极连接所述像素电极;其中,所述液晶显示装置还包括:第一电压源,用于提供第一电压;第二电压源,用于提供第二电压;开关单元,设置于所述第一薄膜晶体管的栅极与所述扫描线的连接处,且所述开关单元的控制端与扫描线电连接,输入端与第一电压源电连接,输出端分别与所述第二电压源及所述像素单元的存储电容的公共电极电连接;当所述开关单元接收到扫描信号时,所述第一电压源向所述像素单元的存储电容的公共电极提供所述第一电压;当所述开关单元没有接收到扫描信号时,所述第二电压源向所述像素单元的存储电容的公共电极提供所述第二电压,以降低同一条所述扫描线上的多个所述像素单元之间馈通电压的差异;其中,所述第一电压小于所述第二电压。
其中,所述开关单元包括至少一个薄膜晶体管,且所述开关单元的栅极与扫描线电连接,源极与第一电压源电连接,漏极与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接。
其中,所述开关单元包括至少一个三极管,所述开关单元的基极与扫描线电连接,集电极与第一电压源电连接,发射极与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接。
其中,所述开关单元包括多个薄膜晶体管和三极管所组合成的复合三极管,所述开关单元的控制端与扫描线电连接,输入端与第一电压源电连接,输出端与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接。
其中,所述存储电容由所述像素电极与所述存储电容的公共电极形成,其中,所述像素电极与所述存储电容的公共电极均设置于所述第一基板上。
其中,所述液晶电容由所述像素电极、设置于所述第二基板上的公共电极和所述液晶层形成,且所述第二基板上的公共电极与所述第二电压源电连接。
其中,所述第一电压的电压值为6.8伏,所述第二电压的电压值为7.5伏。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示装置的驱动方法,所述液晶显示装置包括多个呈矩阵排列的像素单元,其中,所述驱动方法包括如下步骤:提供第一电压源,用于提供第一电压;提供第二电压源,用于提供第二电压;提供第一开关单元,用于控制所述第一电压源和第二电压源向所述像素单元的存储电容的公共电极提供所述第一电压或第二电压;其中,当所述第一开关单元接收到扫描信号时,所述第一电压源为所述像素单元的存储电容的公共电极提供所述第一电压;当所述第一开关单元未接收到扫描信号时,所述第二电压源为所述像素单元的存储电容的公共电极提供所述第二电压,以降低同一扫描线上的多个所述像素单元之间馈通电压的差异;其中,所述第一电压小于所述第二电压。
其中,所述方法更包括:提供第二开关单元,用于控制所述液晶显示装置的数据线向所述像素单元提供数据电压;其中,向所述第一开关单元和所述第二开关单元提供同一扫描信号,使所述第一开关单元和所述第二开关单元同时导通或关闭。
其中,向同一条所述扫描线上的多个的像素单元中的液晶电容的公共电极提供公共电压,所述公共电压的取值与所述第一电压相同。
其中,所述第一开关单元为薄膜晶体管或三极管,所述第二开关单元为薄膜晶体管。
其中,所述第一电压的电压值为6.8伏,所述第二电压的电压值为7.5伏。
本发明的有益效果是:区别于现有技术的情况,本发明通过当开关单元接收到扫描信号时,第一电压源向像素单元提供第一电压,当开关单元没有接收到扫描信号时,第二电压源向像素单元提供第二电压,而第一电压小于第二电压,能够对液晶显示装置中同一条扫描线上的寄生电阻和寄生电容的不同所造成的馈通电压的差异进行修正,进而提高液晶显示装置亮度的均匀性。
【附图说明】
图1是现有技术液晶显示装置驱动电路的电路图;
图2是图1中的电路的扫描信号和像素电极上的电压的波形图;
图3是本发明液晶显示装置的结构示意图;
图4是本发明液晶显示装置的驱动电路图;
图5是图4所示驱动电路图的一种具体实施方式的电路图;
图6是本发明液晶显示装置的驱动方法的流程图;
图7是本发明液晶显示装置中同一扫描线上位于边缘和中间的两个像素单元的信号波形对比图。
【具体实施方式】
下面结合附图和具体的实施例进行详细说明。
根据本发明旨在提供一种液晶显示装置,其包括多个呈矩阵设置的像素单元,请参阅图3所示,每个像素单元30包括相对设置的第一基板301、第二基板302以及夹持在第一基板301和第二基板302之间的液晶层(图未示)。其中,第一基板301为TFT(Thin Film Transistor,薄膜晶体管)基板,第二基板302为CF(Color Filter,彩色滤光片)基板。
图4是本发明液晶显示装置的驱动电路图。请一并参阅图3和图4所示,以一个像素单元为例,在本实施例中,液晶显示装置的驱动电路包括:扫描线410、数据线420、第一薄膜晶体管306、液晶电容441、存储电容442、寄生电容450、第一电压源460、第二电压源470及开关单元480。
其中,扫描线410、数据线420和第一薄膜晶体管306绝缘相交设置在第一基板301上。扫描线410连接栅极驱动器412,以发送栅极驱动器412提供的扫描信号,数据线420连接源极驱动器422,以发送源极驱动器422提供的数据信号。
像素电极303设置在第一基板301上,位于两相邻扫描线410和两相邻数据线420所围区域。
液晶电容441由像素电极303与设置在第二基板302上的公共电极304和液晶层构成;存储电容442由像素电极303和同样设置于第一基板301上的公共电极305构成。
第一薄膜晶体管306设置在扫描线410和数据线420相交处。第一薄膜晶体管306的栅极g1与扫描线410电连接,源极s1与数据线420电连接,漏极d1与像素电极303电连接。
第一电压源460用于提供第一电压,在本实施例中,第一电压的电压值为6.8伏。
第二电压源470用于提供第二电压,在本实施例中,第二电压的电压值为7.5伏。应理解,本发明中,第一电压和第二电压的取值不限于前文的具体举例,只要符合第一电压的电压值小于第二电压的电压值的关系即可。
液晶电容441的公共电极304和存储电容442的公共电极305分别与第二电压源470电连接。
寄生电容450的两端分别与栅极g1和漏极d1电连接。
开关单元480设置在于第一薄膜晶体管306的栅极g1与扫描线410的连接处,用于选择连接第一电压源460或第二电压源470。其中,开关单元480的控制端c与扫描线410电连接,输入端i与第一电压源460电连接,输出端o分别与第二电压源470、液晶电容441的公共电极304及存储电容442的公共电极305电连接。
请参阅图5,图5是本发明液晶显示装置的驱动电路的一种具体实施方式的电路图。
在本实施方式中,采用薄膜晶体管580作为开关单元,其栅极g2与扫描线410电连接,源极s2与第一电压源460电连接,漏极d2分别与第二电压源470、液晶电容441的公共电极304及存储电容442的公共电极305电连接。
应理解,上述实施例中的薄膜晶体管580可以由三极管代替,此时,三极管的基极与扫描线410电连接,集电极与第一电压源460电连接,发射极与第二电压源470及像素单元的存储电容442的公共电极305的公共端电连接。
同样地,上述实施例中的薄膜晶体管580也可以由多个薄膜晶体管或多个三极管所组成的复合三极管、或多个薄膜晶体管和三极管所组合成的复合三极管代替以形成其它实施例,本发明不作具体限定。
值得注意的是,在本发明中,第二基板302上的公共电极304和第一基板301上的公共电极305也可以不直接相连,而是通过两个不同的电压源提供电压,但严格保证两个电压源的电压大小相等。
根据本发明的另一方面,本发明还提供一种液晶显示装置的驱动方法。请参阅图6所示,本发明的驱动方法包括以下步骤:
步骤601:提供第一电压源。
第一电压源用于提供第一电压,在本实施例中,第一电压的电压值为6.8伏。
步骤602:提供第二电压源。
第二电压源用于提供第二电压,在本实施例中,第二电压的电压值为7.5伏,第二电压的电压值大于第一电压的电压值。
步骤603:提供第一开关单元。
第一开关单元为薄膜晶体管或三极管,用于控制第一电压源和第二电压源向像素单元的存储电容的公共电极提供第一电压或第二电压。
步骤604:判断第一开关单元是否接收到扫描信号。如果是,执行步骤605;如果否,执行步骤606。
步骤605:第一电压源为像素单元的存储电容的公共电极提供第一电压。
步骤606:第二电压源为像素单元的存储电容的公共电极提供第二电压。
下文,将进一步详述本发明显示装置实现上述驱动方法的驱动电路以及驱动方法的具体工作过程。
本发明前述驱动电路及驱动方法的具体工作过程为:
请再次参阅图4,由于第一薄膜晶体管306的栅极和开关单元480的控制端c连接在扫描线410的相同节点处,因此二者接收同一扫描信号,同时导通或关闭。
具体而言,当扫描线410输入扫描信号时,第一薄膜晶体管306和开关单元480导通,数据信号通过数据线420和第一薄膜晶体管306加载到像素电极303。同时,由于开关单元480导通,第一电压源460通过开关单元480向像素单元的存储电容442的公共电极305提供第一电压,以形成像素电极303与设置在第二基板上的公共电极304之间的电压差,促使液晶层偏转。
值得注意的是,在本实施例中,液晶显示装置采用的是行扫描形式,因此,每次扫描时,向同一条扫描线410上的多个的像素单元中的液晶电容441的公共电极304提供公共电压,且该公共电压的取值与第一电压源460提供的第一电压相同。
当没有接收到扫描信号时,第一薄膜晶体管306关闭,同时,开关单元480关闭。此时,第二电压源470直接向像素单元的存储电容442的公共电极305提供第二电压,因为第一电压小于第二电压,因而在第一薄膜晶体管306关闭时所提供的较大的第二电压提高了像素电极303的电压,达成馈通电压的修正。
参阅图7,图7是本发明液晶显示装置中同一扫描线上位于边缘和中间的两个像素单元的信号波形对比图。
其中,曲线711为位于边缘的像素单元在开关单元控制端的电压信号;曲线721为位于中间的像素单元在开关单元控制端的电压信号,在本实施例中,曲线711、712位于高电平时第一薄膜晶体管导通。
曲线712和722分别代表在相应的像素单元中的存储电容的公共电极上的电压信号。
曲线713和723分别代表在相应的像素单元中的像素电极上的电压信号,即:根据本发明进行馈通电压修正后像素电极上的电压信号。
曲线714和724分别代表未设置第二电压源和开关单元时在相应的像素单元中的像素电极上的电压信号,即:未进行馈通电压修正时像素电极上的电压信号。
由图7可知,曲线711、712位于低电平而第一薄膜晶体管关闭时,本发明位于边缘和中间的两个像素单元之间的像素电极和公共电极的电压差的差异小于未设置第二电压源和开关单元时的差异。并且,请再次参阅图4,本发明中,在寄生电容450较小时(例如位于边缘的像素单元),馈通电压修正的多;反之,在寄生电容450较大时(例如位于中间的像素单元),馈通电压修正的少,由此可以修正同一扫描线上位置不同的像素单元的寄生电阻和寄生电容的不同所造成的馈通电压的差异,使不同像素单元之间馈通电压的差异显著下降,因而可有效降低显示屏在低灰阶左右两侧较亮的问题。
经实验可知,修正前,位于边缘的像素单元的像素电极的电压为-1.44108伏,位于中间的像素单元的像素电极的电压为-0.99628伏;修正后,位于边缘的像素单元的像素电极的电压为-1.01600伏,位于中间的像素单元的像素电极的电压为-0.99628伏,两者的电压差小于0.02伏,能够很好地达到效果。
区别于现有技术的情况,本发明通过当开关单元接收到扫描信号时,第一电压源向像素单元提供第一电压,当开关单元没有接收到扫描信号时,第二电压源向像素单元提供第二电压,而第一电压小于第二电压,能够对液晶显示装置中同一条扫描线上的寄生电阻和寄生电容的不同所造成的馈通电压的差异进行修正,进而提高液晶显示装置亮度的均匀性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种液晶显示装置,所述液晶显示装置包括多个呈矩阵设置的像素单元,所述像素单元包括相对设置的第一基板、第二基板以及夹持在所述第一基板和第二基板之间的液晶层;
    其中,所述第一基板上设置有数据线、与所述数据线相交的扫描线、位于两相邻所述扫描线和两相邻数据线所围区域的像素电极以及设置在所述数据线和所述扫描线相交处的第一薄膜晶体管,所述第一薄膜晶体管的栅极连接所述扫描线,源极连接所述数据线,漏极连接所述像素电极;
    其中,所述液晶显示装置还包括:
    第一电压源,用于提供第一电压;
    第二电压源,用于提供第二电压;
    开关单元,设置于所述第一薄膜晶体管的栅极与所述扫描线的连接处,且所述开关单元的控制端与扫描线电连接,输入端与第一电压源电连接,输出端分别与所述第二电压源及所述像素单元的存储电容的公共电极电连接;其中,所述开关单元包括至少一个薄膜晶体管,且所述开关单元的栅极与扫描线电连接,源极与第一电压源电连接,漏极与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接;所述存储电容由所述像素电极与所述存储电容的公共电极形成,其中,所述像素电极与所述存储电容的公共电极均设置于所述第一基板上;
    当所述开关单元接收到扫描信号时,所述第一电压源向所述像素单元的存储电容的公共电极提供所述第一电压;当所述开关单元没有接收到扫描信号时,所述第二电压源向所述像素单元的存储电容的公共电极提供所述第二电压,以降低同一条所述扫描线上的多个所述像素单元之间馈通电压的差异;
    其中,所述第一电压小于所述第二电压。
  2. 根据权利要求1所述的装置,其中,所述液晶电容由所述像素电极、设置于所述第二基板上的公共电极和所述液晶层形成,且所述第二基板上的公共电极与所述第二电压源电连接。
  3. 根据权利要求1所述的装置,其中,所述第一电压的电压值为6.8伏,所述第二电压的电压值为7.5伏。
  4. 一种液晶显示装置,所述液晶显示装置包括多个呈矩阵设置的像素单元,所述像素单元包括相对设置的第一基板、第二基板以及夹持在所述第一基板和第二基板之间的液晶层;
    其中,所述第一基板上设置有数据线、与所述数据线相交的扫描线、位于两相邻所述扫描线和两相邻数据线所围区域的像素电极以及设置在所述数据线和所述扫描线相交处的第一薄膜晶体管,所述第一薄膜晶体管的栅极连接所述扫描线,源极连接所述数据线,漏极连接所述像素电极;
    其中,所述液晶显示装置还包括:
    第一电压源,用于提供第一电压;
    第二电压源,用于提供第二电压;
    开关单元,设置于所述第一薄膜晶体管的栅极与所述扫描线的连接处,且所述开关单元的控制端与扫描线电连接,输入端与第一电压源电连接,输出端分别与所述第二电压源及所述像素单元的存储电容的公共电极电连接;
    当所述开关单元接收到扫描信号时,所述第一电压源向所述像素单元的存储电容的公共电极提供所述第一电压;当所述开关单元没有接收到扫描信号时,所述第二电压源向所述像素单元的存储电容的公共电极提供所述第二电压,以降低同一条所述扫描线上的多个所述像素单元之间馈通电压的差异;
    其中,所述第一电压小于所述第二电压。
  5. 根据权利要求4所述的装置,其中,所述开关单元包括至少一个薄膜晶体管,且所述开关单元的栅极与扫描线电连接,源极与第一电压源电连接,漏极与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接。
  6. 根据权利要求4所述的装置,其中,所述开关单元包括至少一个三极管,所述开关单元的基极与扫描线电连接,集电极与第一电压源电连接,发射极与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接。
  7. 根据权利要求4所述的装置,其中,所述开关单元包括多个薄膜晶体管和三极管所组合成的复合三极管,所述开关单元的控制端与扫描线电连接,输入端与第一电压源电连接,输出端与所述第二电压源及所述像素单元的存储电容的公共电极的公共端电连接。
  8. 根据权利要求4所述的装置,其中,所述存储电容由所述像素电极与所述存储电容的公共电极形成,其中,所述像素电极与所述存储电容的公共电极均设置于所述第一基板上。
  9. 根据权利要求4所述的装置,其中,所述液晶电容由所述像素电极、设置于所述第二基板上的公共电极和所述液晶层形成,且所述第二基板上的公共电极与所述第二电压源电连接。
  10. 根据权利要求4所述的装置,其中,所述第一电压的电压值为6.8伏,所述第二电压的电压值为7.5伏。
  11. 一种液晶显示装置的驱动方法,所述液晶显示装置包括多个呈矩阵排列的像素单元,其中,所述驱动方法包括如下步骤:
    提供第一电压源,用于提供第一电压;
    提供第二电压源,用于提供第二电压;
    提供第一开关单元,用于控制所述第一电压源和第二电压源向所述像素单元的存储电容的公共电极提供所述第一电压或第二电压;
    其中,当所述第一开关单元接收到扫描信号时,所述第一电压源为所述像素单元的存储电容的公共电极提供所述第一电压;
    当所述第一开关单元未接收到扫描信号时,所述第二电压源为所述像素单元的存储电容的公共电极提供所述第二电压,以降低同一扫描线上的多个所述像素单元之间馈通电压的差异;
    其中,所述第一电压小于所述第二电压。
  12. 根据权利要求11所述的方法,其中,所述方法更包括:
    提供第二开关单元,用于控制所述液晶显示装置的数据线向所述像素单元提供数据电压;
    其中,向所述第一开关单元和所述第二开关单元提供同一扫描信号,使所述第一开关单元和所述第二开关单元同时导通或关闭。
  13. 根据权利要求12所述的方法,其中,
    向同一条所述扫描线上的多个的像素单元中的液晶电容的公共电极提供公共电压,所述公共电压的取值与所述第一电压相同。
  14. 根据权利要求11所述的方法,其中,所述第一开关单元为薄膜晶体管或三极管,所述第二开关单元为薄膜晶体管。
  15. 根据权利要求11所述的方法,其中,所述第一电压的电压值为6.8伏,所述第二电压的电压值为7.5伏。
PCT/CN2012/073289 2012-03-26 2012-03-30 液晶显示装置及其驱动方法 WO2013143111A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/519,358 US20130249882A1 (en) 2012-03-26 2012-03-30 Liquid Crystal Display Device and Driving Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210082946.8 2012-03-26
CN201210082946.8A CN102608817B (zh) 2012-03-26 2012-03-26 液晶显示装置

Publications (1)

Publication Number Publication Date
WO2013143111A1 true WO2013143111A1 (zh) 2013-10-03

Family

ID=46526294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073289 WO2013143111A1 (zh) 2012-03-26 2012-03-30 液晶显示装置及其驱动方法

Country Status (2)

Country Link
CN (1) CN102608817B (zh)
WO (1) WO2013143111A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400563B (zh) * 2013-08-15 2015-04-15 深圳市华星光电技术有限公司 阵列基板及液晶显示装置
CN103760726A (zh) * 2013-12-31 2014-04-30 深圳市华星光电技术有限公司 液晶显示面板及其像素结构以及驱动方法
CN106338869B (zh) * 2016-11-04 2019-03-08 北京京东方专用显示科技有限公司 液晶显示屏
CN107591143A (zh) * 2017-10-18 2018-01-16 京东方科技集团股份有限公司 公共电压补偿单元、补偿方法、驱动电路及显示面板
CN108287420A (zh) 2018-02-08 2018-07-17 武汉华星光电技术有限公司 显示面板的共用电极及显示面板
CN109243391B (zh) * 2018-10-17 2020-07-10 深圳市华星光电技术有限公司 像素驱动电路及显示面板
CN113380211B (zh) * 2021-06-28 2022-10-28 厦门天马微电子有限公司 一种显示面板及其驱动方法、显示装置
CN115035868B (zh) * 2022-05-26 2023-05-30 Tcl华星光电技术有限公司 显示面板的控制方法及显示模组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029436A (ja) * 1998-07-10 2000-01-28 Casio Comput Co Ltd 液晶駆動装置
CN1804710A (zh) * 2005-06-15 2006-07-19 友达光电股份有限公司 电位下降减少方法以及液晶显示器
CN101191925A (zh) * 2006-11-29 2008-06-04 中华映管股份有限公司 液晶显示器及其显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492115C (zh) * 2007-07-12 2009-05-27 昆山龙腾光电有限公司 降低液晶面板闪烁度的调节装置和调节方法及液晶面板
CN101452162A (zh) * 2007-12-07 2009-06-10 上海广电Nec液晶显示器有限公司 液晶显示面板中的阵列基板及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029436A (ja) * 1998-07-10 2000-01-28 Casio Comput Co Ltd 液晶駆動装置
CN1804710A (zh) * 2005-06-15 2006-07-19 友达光电股份有限公司 电位下降减少方法以及液晶显示器
CN101191925A (zh) * 2006-11-29 2008-06-04 中华映管股份有限公司 液晶显示器及其显示面板

Also Published As

Publication number Publication date
CN102608817A (zh) 2012-07-25
CN102608817B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2013143111A1 (zh) 液晶显示装置及其驱动方法
US6690115B2 (en) Electro-luminescence panel
WO2014205862A1 (zh) 一种液晶显示面板及液晶显示装置
WO2013143195A1 (zh) 馈通电压补偿电路、液晶显示装置和馈通电压补偿方法
WO2013004050A1 (zh) 薄膜晶体管阵列基板及其制法
WO2013123663A1 (zh) 一种薄膜晶体管液晶显示器、基板及其制造方法
WO2019080374A1 (zh) 显示面板的驱动装置及方法
JPH10206822A (ja) 電圧印加駆動方式
WO2018103389A9 (zh) 显示驱动方法、显示驱动装置及显示装置
WO2012068749A1 (zh) 液晶显示面板及其制造方法
US20130249882A1 (en) Liquid Crystal Display Device and Driving Method
WO2015100801A1 (zh) 液晶面板及其制作方法
WO2017049667A1 (zh) 显示装置及其显示图像的方法
WO2014029166A1 (zh) 液晶光配向施加电压电路及液晶光配向面板
WO2016037347A1 (zh) 显示面板测试装置及方法
WO2018126604A1 (zh) 一种像素结构、液晶面板和液晶显示器
WO2017070899A1 (zh) Amoled驱动装置
WO2012167451A1 (zh) 薄膜晶体管矩阵结构及液晶显示面板
WO2017063228A1 (zh) Amoled驱动方法
JP5035888B2 (ja) 液晶表示装置及び液晶表示装置の駆動方法
WO2019006917A1 (zh) 一种曲面显示面板及显示装置
JP2000221474A (ja) 液晶表示装置の駆動方法
WO2018201539A1 (zh) 显示驱动方法、显示驱动装置
US20090109204A1 (en) Electro-optical device and electronic apparatus
JP4617861B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13519358

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872862

Country of ref document: EP

Kind code of ref document: A1