WO2013141605A1 - System and method for aircraft type identification and docking guidance - Google Patents

System and method for aircraft type identification and docking guidance Download PDF

Info

Publication number
WO2013141605A1
WO2013141605A1 PCT/KR2013/002301 KR2013002301W WO2013141605A1 WO 2013141605 A1 WO2013141605 A1 WO 2013141605A1 KR 2013002301 W KR2013002301 W KR 2013002301W WO 2013141605 A1 WO2013141605 A1 WO 2013141605A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
vertical
distance
horizontal
model
Prior art date
Application number
PCT/KR2013/002301
Other languages
French (fr)
Korean (ko)
Inventor
이기창
Original Assignee
(주)안세기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)안세기술 filed Critical (주)안세기술
Publication of WO2013141605A1 publication Critical patent/WO2013141605A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/002Taxiing aids

Definitions

  • the present invention relates to a system and method for aircraft type identification and cycle induction, and more particularly, when the aircraft lands at the airport and travels and enters the boarding point where the boarding pier is installed, the visual cycle induction system ( VDGS) relates to a system and method for aircraft type identification and cycle guidance that can automatically determine the aircraft type using the laser beam, guide and guide to the correct cycle position.
  • VDGS visual cycle induction system
  • VDGS Visual Docking Guiding System
  • the aircraft guider guides the aircraft by manual signal every time the aircraft takes off and lands to guide the aircraft to the correct position.
  • VDGS electronic visual cycle guidance system
  • the fog is severely caught because the video image of the aircraft is extracted using the video camera and the reference image data is compared with the image pattern.
  • accurate image extraction is difficult due to environmental factors such as bad weather, hail, extreme weather, and backlighting, it is difficult to discriminate, and there are problems such as frequent determination errors.
  • the present invention has been made to solve the above problems, the object of the present invention is to launch a laser beam vertically and horizontally to scan the aircraft to measure the distance, length, height, etc. to the aircraft, and calculate the required algebraic calculation After calculating the desired information, and comparing the aircraft model database (DB) for each aircraft model to determine the type of aircraft, laser system that can increase the operation rate and reduce errors regardless of environmental factors such as bad weather
  • DB aircraft model database
  • the purpose of the present invention is to provide a system and method for aircraft type identification and periodic guidance.
  • the present invention provides a vertical / horizontal laser scanning and distance measuring device for measuring a distance as a signal reflected by being hit by an aircraft by firing a laser beam, and measuring the specifications of major parts of various types of aircraft. And a type data memory for storing, adding and updating information about the aircraft, and information measured by the vertical / horizontal laser scanning and distance measuring device and the type data memory.
  • the present invention provides a system for model discrimination and period induction of an aircraft including a data analysis determination algorithm processing device for comparing the information, reading the type or model of the aircraft, and controlling the vertical / horizontal laser scanning and the distance measuring device.
  • the system for model determination and periodic guidance of the aircraft is controlled by the data analysis determination algorithm processing apparatus, and visually outputs the results processed by the data analysis determination algorithm processing apparatus to the aircraft pilot as text and / or symbols.
  • Characterized in that it further comprises a character display device.
  • the system for model determination and the periodic guidance of the aircraft is controlled by the data analysis determination algorithm processing apparatus, the image camera for taking a real image of the aircraft entering the airport, and the data analysis determination algorithm processing apparatus It is controlled by, and further comprises an image display device provided in the pilot guide indicator to receive the video image generated by the video camera, the aircraft pilot and the like to visually see the entry state of the aircraft.
  • the display device is controlled by the data analysis determination algorithm processing apparatus, and the pilot guide indicator to visually display and provide the results of the processing in the data analysis determination algorithm processing apparatus to the aircraft pilot in text and symbols Characterized in that it further comprises a character display device.
  • the system for model identification and periodic guidance of the aircraft further includes a manual operation control panel that allows the operator to instruct the aircraft pilot through the display by manual button operation instead of an unmanned automatic operation in an emergency or when necessary. Characterized in that.
  • the system for model identification and periodic guidance of the aircraft is controlled by the data analysis determination algorithm processing apparatus, and interconnected with the comprehensive operating system in the airport, to receive the airport comprehensive information, the derived result and operation status Characterized in that it further comprises an external system communication connection interface that can be sent to the integrated operating system.
  • the vertical / horizontal laser scanning and distance measuring device comprises a laser generating source device for generating a laser beam to an aircraft, a laser signal receiving device for detecting a laser beam reflected and received by the aircraft, and the laser signal receiving device And controlling a laser generating source device, measuring a distance between the time when the laser beam is emitted from the laser generating source device and the time received by the laser signal receiving device to measure the distance of the aircraft, and when the received signal is weak. And a range finder circuit that amplifies it to an appropriate level.
  • the vertical / horizontal laser scanning and distance measuring device is provided in the laser generating source element and the vertical mirror provided to send a laser beam in a vertical direction to the aircraft, and the laser generating source element is provided in the laser beam
  • a horizontal mirror provided to send the aircraft to the aircraft in a horizontal direction
  • a vertical step motor provided on one side of the vertical mirror to adjust the mirror angle of the vertical mirror, and to adjust the mirror angle of the horizontal mirror.
  • a horizontal step motor provided on one side of the horizontal mirror, and a step motor control circuit for controlling the rotation of the vertical step motor and the horizontal step motor is characterized in that it further comprises.
  • the laser beam generated by the laser generation source device is characterized in that having a wavelength of 900nm.
  • the data analysis determination algorithm processing apparatus calculates three pieces of information of the wing width, the gas field, and the nose tip height of the aircraft with the distance from the aircraft measured by the vertical / horizontal laser scanning and the distance measuring device.
  • the type or model of the aircraft may be read by comparing the preset information in the data memory with the three pieces of calculated information.
  • the data analysis determination algorithm processing apparatus calculates the wing width by measuring the distance and the horizontal angle between the leftmost reflection point and the rightmost reflection point of the aircraft, and measures the distance and vertical angle of the tip of the nose which is the most recent reflection point of the aircraft,
  • the gas field of the aircraft is calculated by measuring the distance and the vertical angle of the vertical rear wing, which is the most reflective spot
  • the nose tip height is calculated by measuring the distance and the vertical angle of the nose tip, which is the latest reflection of the aircraft.
  • the data analysis determination algorithm processing apparatus calculates the wing width by measuring the distance and the horizontal angle of the leftmost or rightmost reflecting point of the aircraft and doubles the distance and the vertical angle of the tip of the nose which is the most recent reflecting point of the aircraft. It is characterized by calculating the gas field of the aircraft by measuring the distance and the vertical angle of the vertical rear wing, the most reflective point, and calculating the nose tip height by measuring the distance and the vertical angle of the nose tip, which is the recent reflection point of the aircraft.
  • the present invention is a vertical / horizontal laser scanning and distance measuring device for measuring the distance to each part of the aircraft as a laser beam, a model data memory in which information of various aircraft is stored, and the type or model of the aircraft to read
  • a system for model identification and periodic induction of an aircraft comprising a data analysis determination algorithm processing device, the first step of initializing a system for model identification and periodic induction of the aircraft, and thereafter, the aircraft via a runway
  • the third step is a laser beam emitted from the vertical / horizontal laser scanning and distance measuring device to measure the horizontal angle of the vertical rear wing which is the most reflective point of the aircraft and the horizontal angle of the nose tip of the aircraft which is the most recent reflection point.
  • the fifth step is to calculate the wing width with the value measured in the step 4-1 and calculates the wing width, and the gas field of the aircraft with the value measured in the step 4-2 And a fifth step of calculating a nose tip height of the aircraft using the fifth-step and the value measured in the fourth-third.
  • the present invention is measured by the laser beam method, it can be used regardless of environmental factors, there is little measurement error, there is an effect that the accurate operation can be performed without additional illumination.
  • FIG. 1 is a block diagram schematically showing a system for model discrimination and periodic induction of an aircraft according to an embodiment of the present invention.
  • FIG. 2 is a view showing details of a configuration of the vertical / horizontal laser scanning and distance measuring apparatus shown in FIG. 1;
  • FIG. 2 is a view showing details of a configuration of the vertical / horizontal laser scanning and distance measuring apparatus shown in FIG. 1;
  • FIG. 3 is a flow chart briefly showing a comprehensive software algorithm for performing aircraft sensing, model discrimination, and periodic induction in accordance with one embodiment of the present invention.
  • FIG. 5 shows various angle specifications in the case of maneuvering by using a system and method for model discrimination and periodic induction of an aircraft according to an embodiment of the present invention, and illustrates the principle of measuring and calculating the wing width of an aircraft. Showing drawings.
  • Figure 6 is a principle of measuring and calculating the height of the nose tip of the aircraft using the system and method for aircraft type identification and periodic induction according to an embodiment of the present invention, the aircraft from the nose tip of the aircraft to the vertical rear wing Drawing showing the principle of measuring and calculating chapters.
  • 7A, 7B, and 7C are flow charts showing the flowchart of FIG. 3 in more detail.
  • the aircraft type is automatically determined using a laser beam and the aircraft type discrimination is performed to guide and guide the vehicle to the correct cycle position. And a system and method for cycle induction.
  • the present invention can identify the type and type of aircraft navigating (entry) using the laser-based visual period guidance system, and also accurately identify the aircraft type information in real time within a relatively short time, the airport By providing it to the control system of the management department, it provides technical features to properly control the entrance position and height of the boarding pier appropriate for the aircraft type.
  • FIG. 1 is a block diagram schematically illustrating a system for model identification and periodic induction of an aircraft according to an embodiment of the present invention.
  • the data analysis determination algorithm processing apparatus 2 is provided with a vertical / horizontal laser scanning and distance measuring apparatus 1, a model data memory 3, and a pilot guide indicator.
  • the character display apparatus 4 and the image display apparatus 8, the manual control panel 5 installed in the mobile boarding bridge, the external system communication connection interface 6, and the image camera 7 may be connected to each other.
  • the power supply unit 9 supplies powers necessary for each of the above components to operate correctly and stably.
  • the vertical / horizontal laser scanning and distance measuring device 1 emits a laser beam and measures distance as a signal reflected from the aircraft, and measures the size of the main part of the aircraft.
  • the data analysis determination algorithm processing apparatus 2 can read out the type or model of the aircraft by calculating with the information measured by the vertical / horizontal laser scanning and distance measuring apparatus 1.
  • the data analysis determination algorithm processing apparatus 2 actually controls and adjusts the step motors 114 and 115 and the laser generator provided in the vertical / horizontal laser scanning and distance measuring apparatus 1 to be described later, and reflects the laser beam. It is a key part that includes algorithms that receive signals, store and analyze data, and make judgments for model identification.
  • the data analysis determination algorithm processing apparatus 2 outputs the determination result to the display apparatuses 4 and 8 of the pilot guidance indicator which will be described later, and manages data exchange with an external system.
  • the model data memory 3 is a memory device for storing the elements of the specifications and characteristics of various aircraft in advance and providing the comparison data necessary for the data analysis determination algorithm processing apparatus 2 to make a model recognition decision. You may delete, add, or update information about your aircraft.
  • the text display device 4 is a display device that can visually display and instruct the pilot of the result of the processing by the data analysis determination algorithm processing apparatus 2 as text and / or symbols.
  • the manual operation control panel 5 is an operation device that allows an operator to instruct an aircraft pilot through a display by manual button operation instead of an unmanned automatic operation in an emergency or when necessary.
  • the external system communication connection interface 6 interconnects a comprehensive operating system in an airport (not shown) and an aircraft type identification and periodic guidance system according to an embodiment of the present invention.
  • a communication interface device capable of transmitting a result and an operation state derived from a model discrimination and a periodic guidance system of an aircraft to an airport information device.
  • the image camera 7 may be configured as a commercial video image camera, and the image display apparatus may be controlled by the data analysis determination algorithm processing apparatus 2 and outputs an image image generated by capturing a real image of an entering aircraft. 8) It is a device that makes it easy for the pilots to visually monitor the entry status of the aircraft by transmitting to the aircraft.
  • the image display apparatus 8 is a video display apparatus such as a general LED, LCD or PDP for displaying a video image.
  • FIG. 2 is a view showing in detail the configuration of the vertical / horizontal laser scanning and distance measuring apparatus 1 shown in FIG.
  • the vertical / horizontal laser scanning and distance measuring device 1 uses two precision step motors 114 and 115 and two mirrors 117 and 118 provided in the vertical and horizontal directions to vertically generate the generated laser beam. By scanning horizontally and firing in front, you can detect the aircraft in front and measure the distance.
  • the vertical / horizontal laser scanning and distance measuring apparatus 1 includes a laser signal receiving element 112 as an input unit and a laser generating source element 111 as an output unit.
  • the laser generation source element 111 is a component of a front-end device, and preferably generates a Class 1 laser beam having a wavelength of 900 nm.
  • the laser signal receiving element 112 detects a laser beam reflected by the aircraft and received.
  • the laser range finder circuit 113 to which the laser generating source element 111 and the laser signal receiving element 112 are connected is a control device of the vertical / horizontal laser scanning and distance measuring device 1 and is not shown.
  • the laser generation source element 111 and the laser signal receiving element 112 are controlled by the CPU to process the input / output signal.
  • the laser range finder circuit 113 measures the difference between the time when the laser beam is emitted from the laser generating source element 111 and the time received by the laser signal receiving element, thereby measuring the distance of the aircraft and receiving the received signal. If it is weak, it amplifies it to an appropriate level, receives a control signal from the CPU and outputs the processed result to the CPU.
  • the laser generation source element 111 is configured such that the vertical step motor 114 is connected via the vertical mirror 117, the horizontal step motor 115 is connected via the horizontal mirror 118.
  • the vertical step motor 114 and the horizontal step motor 115 are precisely rotated vertically and horizontally under CPU control, and vertical mirrors 117 attached to the vertical step motor 114 and the horizontal step motor 115 respectively. ) And the horizontal mirror 118 transmits the laser beam vertically and horizontally to scan the aircraft in two dimensions.
  • the step motor control circuit 116 receives the control signal from the CPU and converts the signal to interface the vertical step motor 114 and the horizontal step motor 115 to the appropriate rotation.
  • the system for model discrimination and periodic guidance of an aircraft measures the distance of the aircraft as a signal reflected from the impact by hitting the aircraft by firing a laser beam, and the specification of the main parts of various forms of the aircraft. It is possible to read the type and model of the aircraft by calculating the. Also, by installing a video camera and a large video display device, the aircraft pilot adds to the text display device and supplements the actual entry state of the aircraft with the visual image. It is easy to observe.
  • the present invention uses only the laser generation source element 111 and the laser signal receiving element 112 to measure only the left or right reflection point of the aircraft, that is, not to measure the right or left reflection point, It is also possible to calculate the wing width value by doubling the measurement.
  • FIG. 3 is a flow chart briefly illustrating a comprehensive software algorithm for performing aircraft sensing, model discrimination and periodic induction in accordance with one embodiment of the present invention.
  • the present invention provides a laser scanning and ranging (Laser Scanning & Ranging) system for measuring a distance and a direction by measuring a received signal that is reflected by hitting the aircraft by firing a laser beam.
  • Laser Scanning & Ranging Laser Scanning & Ranging
  • the distance of the vertical rear wing Scanning allows you to compare aircraft type and model to setpoints to determine the aircraft type, automatically directing the display to guide and guide the aircraft's cycles, and using video cameras and display devices to help aircraft pilots Convenience can be enhanced by allowing the actual entry image to be viewed directly.
  • the aircraft model can be determined by three items, the wing width of the aircraft, the gas field and the height of the nose tip.
  • the length of the wing width is calculated by measuring the distance and the horizontal angle between the leftmost reflecting point and the rightmost reflecting point of the aircraft, and measuring the distance and the vertical angle of the most recent point (nose tip) of the aircraft to increase the height of the nose / end of the aircraft.
  • the aircraft's gas field can be calculated by measuring the distance and vertical angle of the most recent reflecting point (nose tip) of the aircraft and measuring the distance and vertical angle of the most reflective point (vertical rear wing).
  • a method for model identification and periodic guidance of an aircraft includes starting a program, performing various initializations, and performing self-diagnosis and testing of hardware and software systems before performing a task. It performs (S121).
  • an operation procedure such as a direction indication may be performed so that the aircraft is aligned on a vertical line (S122).
  • the aircraft pilot is provided with an instruction to stop to check the model of the aircraft (S123).
  • the distance and direction of the nearest reflection point and the farest reflection point are measured (S124), and then the measured values are determined according to the geometric formula according to the geometric formula.
  • L is calculated (S125), and then, N, the height of the nose tip (Nosal Height) of the aircraft, is calculated according to a geometric formula (S126).
  • the leftmost reflection point and the rightmost reflection point are measured (S127), and then, using the measured distance and angle of the two points, the wing span value of the aircraft is geometrically determined. Calculate W (S128).
  • L gas length
  • N nose tip height
  • W wing width
  • model discrimination When the model discrimination is completed, it enters the procedure to guide the aircraft to the stop line in front of the gate, and again finds the position of the nose tip of the aircraft and displays the distance and direction (S130).
  • a calculation is performed to subtract the distance information of the stop line determined for each model from the measured distance value of the nose tip of the current aircraft, and informs the aircraft pilot of the calculated distance value through a display (S131). It checks whether or not it becomes 0 and outputs an indication to STOP for DOCKING for the instantaneous period when it becomes 0 (S132).
  • FIG. 4 is a vertical rear wing horizontal angle for confirming the state that the aircraft is aligned in a vertical line with respect to the vertical / horizontal laser scanning and distance measuring device 1 according to an embodiment of the present invention when trying to determine the aircraft model and This figure shows the horizontal angle definition of the tip of the nose.
  • FIG. 4 is a procedure for confirming that the aircraft is aligned vertically with respect to the vertical / horizontal laser scanning and distance measuring device 1 for accurate and rapid determination when determining the aircraft model.
  • Figure 2 shows the definition of the horizontal angle ⁇ T of the vertical rear wing, which is the most reflective point of the laser signal, and the horizontal angle ⁇ N of the nose tip of the aircraft, which is the latest reflection point.
  • FIG. 5 shows various angle specifications in the case of maneuvering by using a system and method for model discrimination and periodic induction of an aircraft according to an embodiment of the present invention, and illustrates the principle of measuring and calculating the wing width of an aircraft. Figure showing.
  • the distance from the nose tip of the aircraft to the vertical rear wing is called a body length, and calculated by the algorithm to determine the model and model name of the aircraft through these three factors.
  • Figure 6 is a principle of measuring and calculating the height of the nose tip of the aircraft using the system and method for aircraft type identification and periodic induction according to an embodiment of the present invention, the aircraft from the nose tip of the aircraft to the vertical rear wing
  • VDGS Data measured in VDGS is the distance R T to the choewon reflection point perpendicular underwing position T, and the vertical angle ⁇ of the vertical underwing, recent reflection point of the distance R N of the aircraft to the nose N, the vertical angle ⁇ of the aircraft nose .
  • the length defined as a gas field is NT .
  • the distance R N to the tip of the aircraft and the angle ⁇ of the tip of the nose have already been measured in the previous process
  • the distance R T to the vertical rear wing is measured by finding the most laser reflection point of the aircraft, and the angle ⁇ in the vertical rear wing direction is measured. If we measure, we can calculate the length of NT corresponding to the aircraft's gas field length through the calculation given in the above equation.
  • the exact gas field actually reflects the angle that the line segment NT makes with the horizon and must additionally incorporate the length of a portion of the body behind the vertical rear wing of the aircraft, but here it does not reflect them, so the calculated value is the exact gas field of the aircraft body. There is a slight difference from the specification value.
  • FIG. 7A, 7B, and 7C are flow charts illustrating the flowchart of FIG. 3 in more detail. Specifically, a flow chart briefly summarizing the overall software algorithm for model discrimination, aircraft anchoring guidance, and delivery of the present invention. It is a chart.
  • an initialization step is an initialization process, and basic operations such as zeroing necessary items prior to executing software, and loading and storing necessary items or elements in the steps to be described below are performed.
  • S11 program for self-test and check diagnosis
  • the laser beam horizontal angle is in the direction of 0 °
  • the laser beam vertical angle is It may be set to measure in the range of about 2 ° ⁇ 8 ° (S12).
  • this process continues to operate in a loop. For example, when the aircraft appears on the entry path at a distance of about 60 to 100 m, the reflected wave number signal of the laser beam is vertical / horizontal laser scanning of the visual period guide system. And it reaches the receiver of the distance measuring device 1, recognizes that the aircraft is detected, the loop operation is stopped, and proceeds to the next step.
  • the central left and right scanning step accurately scans the center of the nose of the aircraft vertically and vertically, horizontally to the left and right (S13), and then the horizontal angle with respect to the most recent reflection point and the most far reflection point and Is detected (S14, S15).
  • the next step is to find the most recent reflection point accurately and precisely.
  • the vertical angle ⁇ and the distance R N are measured (S20).
  • the ground height setting value K of the laser beam transmitting apparatus which may be different for each location where the visual period induction system is installed, is loaded from the memory location stored at the initialization of the step S11, and the vertical angle ⁇ value measured in the step S19. And R N values are called (S21).
  • step 22 using the values calculated in the previous steps, A function calculation of the equation is performed to calculate a height H of the nose tip of the aircraft (S22).
  • the laser scanning mechanism is different depending on the installation situation under the direction of the control unit, but quickly rotates to the leftmost position, which is usually about -55 °, and starts precise scanning inward from there (S24). Find the point at which the first laser reflection is received and determine its horizontal angle , The distance D 1 is measured (S25).
  • step S26 the scanning mechanism is quickly rotated to the rightmost position where the horizontal scanning server motor (horizontal step motor 115) is usually + 55 ° to perform this step under the direction of the control unit. Move and start precise scanning from there to find the point where the first laser reflection is received and its horizontal angle And measure the distance D 2 (S27).
  • the model data is retrieved (S30).
  • the laser scanning mechanism is returned to the central scanning position in this step (S32).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention relates to a system and method for aircraft type identification and docking guidance, and, more specifically, relates to a system and method for aircraft type identification and docking guidance, for identifying aircraft type and leading and guiding the aircraft to a precise docking position automatically, by using a laser beam.

Description

항공기의 기종판별 및 주기유도를 위한 시스템 및 방법System and method for aircraft type identification and cycle guidance
본 발명은 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법에 관한 것이며, 더욱 상세하게는, 공항에 항공기가 착륙하여 탑승교각이 설치된 해당 탑승구 장소로 주행하여 진입하는 경우에, 시각주기유도시스템(VDGS)에서 레이저 빔을 이용하여 자동적으로 항공기의 기종을 판별하고, 정확한 주기위치로 안내 및 유도할 수 있는 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법에 관한 것이다.The present invention relates to a system and method for aircraft type identification and cycle induction, and more particularly, when the aircraft lands at the airport and travels and enters the boarding point where the boarding pier is installed, the visual cycle induction system ( VDGS) relates to a system and method for aircraft type identification and cycle guidance that can automatically determine the aircraft type using the laser beam, guide and guide to the correct cycle position.
공항 비행장에서는 시각 주기 유도 시스템(VDGS: Visual Docking Guiding System)장치가 실용화되어 자동적으로 항공기를 주기(駐機)위치에 유도할 수 있다.At the airport airfield, the Visual Docking Guiding System (VDGS) device is put into practical use to automatically guide the aircraft to the main position.
그러나, 항공기가 주기위치에 위치하기 전까지는 항공기 유도원이 항공기를 정확한 위치에 유도하기 위하여 항공기의 이착륙 때마다 수동 신호에 의하여 항공기를 유도하고 있다.However, until the aircraft is located in the periodic position, the aircraft guider guides the aircraft by manual signal every time the aircraft takes off and lands to guide the aircraft to the correct position.
그러나, 이러한 수동적인 유도방법은 항공기 회사에서 항공기 유도용역 서비스를 제공하는 용역회사에 상당액의 인건비를 지불하여야 하기 때문에 비경제적일뿐 아니라, 이른 새벽이나 심야에 이착륙하는 경우 등에는 인력 확보에도 어려움이 많았다. However, this manual guidance method was not only economical because the aircraft company had to pay a considerable amount of labor costs to the service company providing the aircraft guidance service. .
이러한 불편을 해결하기 위하여, 영상 카메라와 이미지 처리장치를 사용한 항공기의 전자식 시각주기유도시스템(VDGS)이 개발되어, 무인 방식에 의해 자동적으로 항공기를 유도할 수 있게 되었다.In order to solve this inconvenience, an electronic visual cycle guidance system (VDGS) of an aircraft using an image camera and an image processing apparatus has been developed, and the aircraft can be automatically guided by an unmanned method.
그러나, 이와 같이 영상 카메라와 이미지 처리장치를 사용하는 종래의 영상이미지 처리방식은 영상 카메라를 사용하여 항공기의 영상 이미지를 추출하고, 기준 이미지 데이터와 이미지 패턴을 비교하기 때문에, 안개가 심하게 끼었거나, 극심한 우천, 우박 등의 악천후 및 역광 등과 같은 환경적 요인에 의하여 정확한 이미지 추출이 어려운 경우에는 판별이 잘 되지 않게 되는 문제점과, 판정오류가 자주 발생하게 되는 등의 취약점을 가지고 있는 문제점이 있다.However, in the conventional video image processing method using the video camera and the image processing apparatus, the fog is severely caught because the video image of the aircraft is extracted using the video camera and the reference image data is compared with the image pattern. When accurate image extraction is difficult due to environmental factors such as bad weather, hail, extreme weather, and backlighting, it is difficult to discriminate, and there are problems such as frequent determination errors.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 본 발명의 목적은 레이저 빔을 수직, 수평으로 발사해 항공기를 스캐닝하여 항공기까지의 거리와 길이, 높이 등을 측정하고, 필요한 대수계산을 행하여 원하는 정보를 산출한 후, 저장되어 있는 기종별 항공기 규격 데이터베이스(DB)와 비교하여 항공기의 기종을 판별함으로써, 악천후 등과 같은 환경적 요인에 관계없이 작동률을 높이고 오류를 감소시킬 수 있는 레이저 방식의 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법을 제공하고자 함에 있다.The present invention has been made to solve the above problems, the object of the present invention is to launch a laser beam vertically and horizontally to scan the aircraft to measure the distance, length, height, etc. to the aircraft, and calculate the required algebraic calculation After calculating the desired information, and comparing the aircraft model database (DB) for each aircraft model to determine the type of aircraft, laser system that can increase the operation rate and reduce errors regardless of environmental factors such as bad weather The purpose of the present invention is to provide a system and method for aircraft type identification and periodic guidance.
상기 목적을 달성하기 위해서 본 발명은, 레이저 빔을 발사하여 항공기에 부딪혀 반사되어 오는 신호로써 거리를 측정하고, 항공기의 각종 형태의 주요 부분의 규격을 측정하는 수직/수평 레이저 스캐닝 및 거리측정장치와, 각종 항공기의 정보가 저장되어 있으며, 항공기에 대한 정보를 삭제, 추가 및 갱신할 수 있는 기종 데이터 메모리와, 상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 측정된 정보와 상기 기종 데이터 메모리에 기설정된 정보를 비교하여 항공기의 종류나 모델을 판독하며, 상기 수직/수평 레이저 스캐닝 및 거리측정장치를 제어하는 데이터 분석판정 알고리즘 처리장치를 포함하는 항공기의 기종판별 및 주기유도를 위한 시스템을 제공한다.In order to achieve the above object, the present invention provides a vertical / horizontal laser scanning and distance measuring device for measuring a distance as a signal reflected by being hit by an aircraft by firing a laser beam, and measuring the specifications of major parts of various types of aircraft. And a type data memory for storing, adding and updating information about the aircraft, and information measured by the vertical / horizontal laser scanning and distance measuring device and the type data memory. The present invention provides a system for model discrimination and period induction of an aircraft including a data analysis determination algorithm processing device for comparing the information, reading the type or model of the aircraft, and controlling the vertical / horizontal laser scanning and the distance measuring device.
바람직하게, 상기 항공기의 기종판별 및 주기유도를 위한 시스템은 상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 상기 데이터 분석판정 알고리즘 처리장치에서 처리한 결과를 문자 및/또는 기호로써 항공기 조종사에게 시각적으로 제공하는 문자 디스플레이 장치를 더 포함하는 것을 특징으로 한다.Preferably, the system for model determination and periodic guidance of the aircraft is controlled by the data analysis determination algorithm processing apparatus, and visually outputs the results processed by the data analysis determination algorithm processing apparatus to the aircraft pilot as text and / or symbols. Characterized in that it further comprises a character display device.
바람직하게, 상기 항공기의 기종판별 및 주기유도를 위한 시스템은 상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 공항에 진입하는 항공기의 실물 이미지를 촬영하는 영상 카메라와, 상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 상기 영상 카메라에 의해 생성된 영상 이미지를 수신하여 항공기 조종사 등이 시각적으로 항공기의 진입 상태를 볼 수 있도록 조종사 안내표시기에 구비된 영상 디스플레이장치를 더 포함하는 것을 특징으로 한다.Preferably, the system for model determination and the periodic guidance of the aircraft is controlled by the data analysis determination algorithm processing apparatus, the image camera for taking a real image of the aircraft entering the airport, and the data analysis determination algorithm processing apparatus It is controlled by, and further comprises an image display device provided in the pilot guide indicator to receive the video image generated by the video camera, the aircraft pilot and the like to visually see the entry state of the aircraft.
바람직하게, 상기 디스플레이 장치는 상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 상기 데이터 분석판정 알고리즘 처리장치에서 처리한 결과를 문자와 기호로 항공기 조종사에게 시각적으로 표시하여 제공할 수 있도록 조종사 안내표시기에 구비된 문자 디스플레이 장치를 더 포함하는 것을 특징으로 한다.Preferably, the display device is controlled by the data analysis determination algorithm processing apparatus, and the pilot guide indicator to visually display and provide the results of the processing in the data analysis determination algorithm processing apparatus to the aircraft pilot in text and symbols Characterized in that it further comprises a character display device.
바람직하게, 상기 항공기의 기종판별 및 주기유도를 위한 시스템은 비상 시 또는 필요 시에 무인자동조작 대신 조작자가 수동으로 버튼조작에 의하여 디스플레이를 통해 항공기 조종사에게 지시할 수 있는 수동조작 제어패널을 더 포함하는 것을 특징으로 한다.Preferably, the system for model identification and periodic guidance of the aircraft further includes a manual operation control panel that allows the operator to instruct the aircraft pilot through the display by manual button operation instead of an unmanned automatic operation in an emergency or when necessary. Characterized in that.
바람직하게, 상기 항공기의 기종판별 및 주기유도를 위한 시스템은 상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 공항 내의 종합운영시스템과 상호 접속되어, 공항종합정보를 수신받거나, 도출된 결과 및 운영상태를 종합운영시스템으로 송출할 수 있는 외부시스템 통신접속 인터페이스를 더 포함하는 것을 특징으로 한다.Preferably, the system for model identification and periodic guidance of the aircraft is controlled by the data analysis determination algorithm processing apparatus, and interconnected with the comprehensive operating system in the airport, to receive the airport comprehensive information, the derived result and operation status Characterized in that it further comprises an external system communication connection interface that can be sent to the integrated operating system.
바람직하게, 상기 수직/수평 레이저 스캐닝 및 거리 측정장치는 항공기로 레이저 빔을 발생시키는 레이저발생 소스소자와, 항공기에 의해 반사되어 수신되는 레이저 빔을 감지하는 레이저신호 수신소자와, 상기 레이저신호 수신소자와 레이저발생 소스소자를 제어하며, 상기 레이저발생 소스소자에서 레이저 빔을 발사한 시각과 상기 레이저신호 수신소자에서 수신된 시각과의 차이를 측정하여 항공기의 거리를 측정하고, 수신신호가 약한 경우에 이를 적절한 레벨로 증폭하는 레인지 파인더 회로를 포함하는 것을 특징으로 한다.Preferably, the vertical / horizontal laser scanning and distance measuring device comprises a laser generating source device for generating a laser beam to an aircraft, a laser signal receiving device for detecting a laser beam reflected and received by the aircraft, and the laser signal receiving device And controlling a laser generating source device, measuring a distance between the time when the laser beam is emitted from the laser generating source device and the time received by the laser signal receiving device to measure the distance of the aircraft, and when the received signal is weak. And a range finder circuit that amplifies it to an appropriate level.
바람직하게, 상기 수직/수평 레이저 스캐닝 및 거리 측정장치는 상기 레이저발생 소스소자에 구비되어 레이저 빔을 항공기에 수직 방향으로 송출할 수 있도록 구비된 수직미러와, 상기 레이저발생 소스소자에 구비되어 레이저 빔을 항공기에 수평 방향으로 송출할 수 있도록 구비된 수평미러와, 상기 수직미러의 미러각을 조절하기 위해 상기 수직미러의 일측에 구비된 수직스텝모터와, 상기 수평미러의 미러각을 조절하기 위해 상기 수평미러의 일측에 구비된 수평스텝모터와, 상기 수직스텝모터와 수평스텝모터의 회전을 제어하는 스텝모터제어회로를 더 포함하는 것을 특징으로 한다.Preferably, the vertical / horizontal laser scanning and distance measuring device is provided in the laser generating source element and the vertical mirror provided to send a laser beam in a vertical direction to the aircraft, and the laser generating source element is provided in the laser beam A horizontal mirror provided to send the aircraft to the aircraft in a horizontal direction, a vertical step motor provided on one side of the vertical mirror to adjust the mirror angle of the vertical mirror, and to adjust the mirror angle of the horizontal mirror. A horizontal step motor provided on one side of the horizontal mirror, and a step motor control circuit for controlling the rotation of the vertical step motor and the horizontal step motor is characterized in that it further comprises.
바람직하게, 상기 레이저발생 소스소자에서 발생되는 레이저 빔은 900nm의 파장을 갖는 것을 특징으로 한다.Preferably, the laser beam generated by the laser generation source device is characterized in that having a wavelength of 900nm.
바람직하게, 상기 데이터 분석판정 알고리즘 처리장치는 상기 수직/수평 레이저 스캐닝 및 거리 측정장치가 측정한 항공기와의 거리를 가지고 항공기의 날개 폭, 기체장 및 코끝 높이의 3 가지 정보를 산출하여, 상기 기종 데이터 메모리에 기설정된 정보와 상기 산출된 3 가지 정보를 비교하여 항공기의 종류 또는 모델을 판독하는 것을 특징으로 한다.Preferably, the data analysis determination algorithm processing apparatus calculates three pieces of information of the wing width, the gas field, and the nose tip height of the aircraft with the distance from the aircraft measured by the vertical / horizontal laser scanning and the distance measuring device. The type or model of the aircraft may be read by comparing the preset information in the data memory with the three pieces of calculated information.
바람직하게, 상기 데이터 분석판정 알고리즘 처리장치는 항공기의 최좌측반사점과 최우측반사점의 거리와 수평각도를 측정하여 상기 날개 폭을 산출하고, 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하고, 최원반사점인 수직 뒷날개의 거리와 수직각도를 측정하여 항공기의 기체장을 산출하고, 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하여 코끝 높이를 산출하는 것을 특징으로 한다.Preferably, the data analysis determination algorithm processing apparatus calculates the wing width by measuring the distance and the horizontal angle between the leftmost reflection point and the rightmost reflection point of the aircraft, and measures the distance and vertical angle of the tip of the nose which is the most recent reflection point of the aircraft, The gas field of the aircraft is calculated by measuring the distance and the vertical angle of the vertical rear wing, which is the most reflective spot, and the nose tip height is calculated by measuring the distance and the vertical angle of the nose tip, which is the latest reflection of the aircraft.
바람직하게, 상기 데이터 분석판정 알고리즘 처리장치는 항공기의 최좌측반사점 또는 최우측반사점의 거리와 수평각도를 측정하여 두 배값으로써 상기 날개 폭을 산출하고, 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하고, 최원반사점인 수직 뒷날개의 거리와 수직각도를 측정하여 항공기의 기체장을 산출하고, 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하여 코끝 높이를 산출하는 것을 특징으로 한다.Preferably, the data analysis determination algorithm processing apparatus calculates the wing width by measuring the distance and the horizontal angle of the leftmost or rightmost reflecting point of the aircraft and doubles the distance and the vertical angle of the tip of the nose which is the most recent reflecting point of the aircraft. It is characterized by calculating the gas field of the aircraft by measuring the distance and the vertical angle of the vertical rear wing, the most reflective point, and calculating the nose tip height by measuring the distance and the vertical angle of the nose tip, which is the recent reflection point of the aircraft.
한편, 본 발명은 레이저 빔으로써 항공기의 각 부분에 대한 거리를 측정하는 수직/수평 레이저 스캐닝 및 거리측정장치와, 각종 항공기의 정보가 저장되어 있는 기종 데이터 메모리와, 항공기의 종류나 모델을 판독하는 데이터 분석판정 알고리즘 처리장치를 포함하는 항공기의 기종판별 및 주기유도를 위한 시스템에 있어서, 상기 항공기의 기종판별 및 주기유도를 위한 시스템을 초기화하는 제1단계와, 이 후, 항공기가 활주로를 경유하여 탑승구로부터 기설정된 거리에 도달하면 상기 수직/수평 레이저 스캐닝 및 거리측정장치로써 항공기의 진입을 감지하는 제2단계와, 이 후, 상기 수직/수평 레이저 스캐닝 및 거리측정장치로써 항공기를 수직선상에 정렬시키고 정지시키는 제3단계와, 이 후, 상기 수직/수평 레이저 스캐닝 및 거리측정장치로써 항공기의 거리 및 각도를 측정하는 제4단계와, 이 후, 상기 데이터 분석판정 알고리즘 처리장치로써 상기 측정된 항공기의 거리 및 각도를 이용하여 항공기의 정보를 산출하는 제5단계와, 이 후, 상기 데이터 분석판정 알고리즘 처리장치로써 상기 기종 데이터 메모리에 저장되어 있는 정보를 비교하여 항공기의 기종이나 모델을 판독하는 제6단계와, 이 후, 상기 판독된 항공기의 기종에 따라 주기위치를 산출하는 제7단계와, 이 후, 상기 산출된 주기위치에 항공기를 정지시키는 제8단계를 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 방법을 제공한다.On the other hand, the present invention is a vertical / horizontal laser scanning and distance measuring device for measuring the distance to each part of the aircraft as a laser beam, a model data memory in which information of various aircraft is stored, and the type or model of the aircraft to read A system for model identification and periodic induction of an aircraft comprising a data analysis determination algorithm processing device, the first step of initializing a system for model identification and periodic induction of the aircraft, and thereafter, the aircraft via a runway A second step of detecting entry of the aircraft by the vertical / horizontal laser scanning and distance measuring device when a predetermined distance from the boarding gate is reached; and then aligning the aircraft on a vertical line by the vertical / horizontal laser scanning and distance measuring device. A third step of activating and stopping, followed by the vertical / horizontal laser scanning and distance measuring device. A fourth step of measuring a distance and an angle of the plane; and then a fifth step of calculating information of the aircraft using the measured distance and angle of the aircraft by the data analysis determination algorithm processing device; A sixth step of reading a model or model of the aircraft by comparing the information stored in the model data memory with a data analysis determination algorithm processing device, and thereafter, calculating a cycle position according to the model of the read-out aircraft; And thereafter, an eighth step of stopping the aircraft at the calculated periodic position.
바람직하게, 상기 제3단계는 상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최원반사점인 수직 뒷날개의 수평각과, 최근반사점인 항공기 코끝의 수평각을 측정하는 제3-1단계와, 이 후, 상기 수직 뒷날개의 수평각과 항공기 코끝의 수평각으로써 항공기의 진행방향이 좌편향인지 우편향인지 또는 정확한 방향인지를 분석하는 제3-2단계와, 이 후, 상기 수직 뒷날개의 수평각과 항공기 코끝의 수평각 값이 일치하면, 항공기를 정지시키는 제3-3단계를 포함하는 것을 특징으로 한다.Preferably, the third step is a laser beam emitted from the vertical / horizontal laser scanning and distance measuring device to measure the horizontal angle of the vertical rear wing which is the most reflective point of the aircraft and the horizontal angle of the nose tip of the aircraft which is the most recent reflection point. And, thereafter, step 3-2 of analyzing the horizontal direction of the vertical rear wing and the horizontal angle of the nose tip of the aircraft whether the direction of flight of the left direction, postal or correct direction, and thereafter, the horizontal angle of the vertical rear wing and the nose tip of the aircraft If the horizontal angle value of the match, characterized in that it comprises a third step to stop the aircraft.
바람직하게, 상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최좌측반사점과 최우측반사점의 거리와 수평각도를 측정하는 제4-1단계와, 상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하고, 최원반사점인 수직 뒷날개의 거리와 수직각도를 측정하는 제4-2단계와, 상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하는 제4-3단계를 포함하는 것을 특징으로 한다.Preferably, the 4-1 step of measuring the distance and the horizontal angle of the left and right reflection point of the aircraft with the laser beam emitted from the vertical and horizontal laser scanning and distance measuring device, and the vertical and horizontal laser scanning and Step 4-2 of measuring the distance and vertical angle of the tip of the nose which is the most recent reflection of the aircraft by the laser beam emitted from the distance measuring device, and measuring the distance and the vertical angle of the vertical rear wing which is the most reflective, and the vertical / horizontal laser scanning And a fourth to third step of measuring a distance and a vertical angle of a tip of a nose, which is a recent reflection point of the aircraft, by the laser beam emitted from the distance measuring device.
바람직하게, 상기 제5단계는 상기 제4-1단계에서 측정된 값을 가지고 날개 폭을 산출하는 제5-1단계와, 상기 제4-2단계에서 측정된 값을 가지고 항공기의 기체장을 산출하는 제5-2단계와, 상기 제4-3단계에서 측정된 값을 가지고 항공기의 코끝 높이를 산출하는 제5-3단계를 포함하는 것을 특징으로 한다.Preferably, the fifth step is to calculate the wing width with the value measured in the step 4-1 and calculates the wing width, and the gas field of the aircraft with the value measured in the step 4-2 And a fifth step of calculating a nose tip height of the aircraft using the fifth-step and the value measured in the fourth-third.
본 발명에 의하면, 항공기의 물리적인 규격 중에서 상호 식별력이 있는 3 개 정도의 중요한 규격을 산출하여, 불과 5 ~ 15초 이내에 항공기의 기종을 식별해 낼 수 있으므로, 신속하고 실시간으로 항공기의 기종판별 및 주기유도시스템을 운영할 수 있는 효과가 있다.According to the present invention, three important standards with mutual identification among the physical specifications of the aircraft can be calculated, and the aircraft type can be identified within only 5 to 15 seconds. There is an effect to operate the cycle induction system.
또한, 본 발명은 레이저 빔 방식에 의하여 측정하기 때문에, 환경적 요인에 관계없이 사용 가능하고, 측정오차도 적으며, 별도의 조명이 없이도 정확한 동작이 수행될 수 있는 효과가 있다.In addition, since the present invention is measured by the laser beam method, it can be used regardless of environmental factors, there is little measurement error, there is an effect that the accurate operation can be performed without additional illumination.
도 1은 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템을 간략하게 도시한 전체 블록도.1 is a block diagram schematically showing a system for model discrimination and periodic induction of an aircraft according to an embodiment of the present invention.
도 2는 도 1에 도시된 수직/수평 레이저 스캐닝 및 거리측정장치의 구성을 상세하게 도시한 도면.FIG. 2 is a view showing details of a configuration of the vertical / horizontal laser scanning and distance measuring apparatus shown in FIG. 1; FIG.
도 3은 본 발명의 일실시예에 따른 항공기의 감지, 기종판별 및 주기유도를 행하기 위한 종합적인 소프트웨어 알고리즘을 간략하게 보여주는 플로우차트. FIG. 3 is a flow chart briefly showing a comprehensive software algorithm for performing aircraft sensing, model discrimination, and periodic induction in accordance with one embodiment of the present invention. FIG.
도 4는 항공기 기종을 판별하고자 할 때 항공기가 본 발명의 일실시예에 따른 수직/수평 레이저 스캐닝 및 거리측정장치에 대하여 수직선상에 일렬로 정렬된 상태를 확인하기 위한 수직 뒷날개 수평각과 코끝의 수평각정의를 보여주는 도면.4 is a horizontal angle of the vertical rear wing and the horizontal angle of the nose tip to determine the aircraft is aligned in a vertical line with respect to the vertical / horizontal laser scanning and distance measuring apparatus according to an embodiment of the present invention when trying to determine the aircraft model Drawing showing the definition.
도 5는 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법을 이용하여 기동판별을 하는 경우에 제반 각도명세를 보여주고, 항공기의 날개 폭을 측정하고 계산해내는 원리를 보여주는 도면.FIG. 5 shows various angle specifications in the case of maneuvering by using a system and method for model discrimination and periodic induction of an aircraft according to an embodiment of the present invention, and illustrates the principle of measuring and calculating the wing width of an aircraft. Showing drawings.
도 6은 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법을 이용하여 항공기의 코끝의 높이를 측정하고 계산하는 원리와, 항공기의 코끝으로부터 수직 뒷날개까지의 거리인 기체장을 측정하고 계산하는 원리를 보여주는 도면.Figure 6 is a principle of measuring and calculating the height of the nose tip of the aircraft using the system and method for aircraft type identification and periodic induction according to an embodiment of the present invention, the aircraft from the nose tip of the aircraft to the vertical rear wing Drawing showing the principle of measuring and calculating chapters.
도 7a, 도 7b, 도 7c는 도 3의 플로우차트를 더욱 상세하게 나타낸 플로우 차트.7A, 7B, and 7C are flow charts showing the flowchart of FIG. 3 in more detail.
이하, 본 발명의 바람직한 실시예는 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
특별한 정의가 없는 한 본 명세서의 모든 용어는 당업자가 이해하는 용어의 일반적인 의미와 동일하고, 만약 본 명세서에서 사용된 용어가 당해 용어의 일반적인 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다.Unless otherwise defined, all terms in the specification are the same as the general meaning of terms understood by those skilled in the art, and if the terms used herein conflict with the general meaning of the terms, the terms used in the present specification shall be followed.
다만, 이하에 기술될 발명은 본 발명의 실시예를 설명하기 위한 것일 뿐 본 발명의 권리범위를 한정하기 위한 것을 아니며, 명세서 전반에 걸쳐서 동일하게 사용된 참조번호들은 동일한 구성요소들을 나타낸다.However, the invention to be described below is not intended to limit the scope of the present invention, but to describe embodiments of the present invention, the same reference numerals throughout the specification represent the same components.
본 발명은 공항에 항공기가 착륙하여 탑승교각이 설치된 해당 탑승구 장소로 주행하여 진입하는 경우에, 레이저 빔을 이용하여 자동적으로 항공기의 기종을 판별하고 정확한 주기위치로 안내 및 유도하기 위한 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법에 관한 것이다.According to the present invention, when the aircraft lands at the airport and travels and enters the boarding gate place where the boarding piers are installed, the aircraft type is automatically determined using a laser beam and the aircraft type discrimination is performed to guide and guide the vehicle to the correct cycle position. And a system and method for cycle induction.
즉, 본 발명은 레이저 방식의 시각 주기 유도 시스템을 이용하여, 접현(입항)하는 항공기의 종류와 기종을 식별할 수 있으며, 또한, 비교적 짧은 시간 내에 실시간으로 항공기의 기종정보를 정확하게 식별하여, 공항 관리부서의 관제 시스템에 제공함으로써 해당 항공기 기종에 적합하게 탑승교각의 입구 위치와 높이 등을 적절하게 제어할 수 있는 기술적 특징을 제공한다.That is, the present invention can identify the type and type of aircraft navigating (entry) using the laser-based visual period guidance system, and also accurately identify the aircraft type information in real time within a relatively short time, the airport By providing it to the control system of the management department, it provides technical features to properly control the entrance position and height of the boarding pier appropriate for the aircraft type.
이러한 본 발명의 기술적 특징을 신속 및 정확하게 제공하기 위해서는, 접현하는 항공기의 기종을 기후, 또는 주야 등 환경적 조건에 관계없이 항상 신속하고 정확하게 판별하는 것이 가장 중요하다.In order to provide the technical features of the present invention quickly and accurately, it is most important to always promptly and accurately determine the type of aircraft to be operated regardless of the environmental conditions such as climate or day and night.
따라서, 항공기의 물리적인 규격 중에서 최소 개수의 기종별 식별력이 있는 핵심 항목의 정보를 레이저 스캐닝에 의하여 가급적 신속히 획득하여 정확하게 판별해 내는 기술이 필요하다.Therefore, there is a need for a technology for accurately identifying and obtaining information on key items with a minimum number of identification capabilities by aircraft scanning as quickly as possible from the physical specifications of the aircraft.
이하, 본 발명의 바람직한 실시예를 도면을 참조하여 상세하게 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템을 간략하게 도시한 전체 블록도이다.1 is a block diagram schematically illustrating a system for model identification and periodic induction of an aircraft according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 데이터 분석 판정 알고리즘 처리장치(2)는 수직/수평 레이저 스캐닝 및 거리측정장치(1), 기종 데이터메모리(3), 조종사 안내표시기에 구비된 문자 디스플레이장치(4)와 영상 디스플레이장치(8), 이동탑승교에 설치된 수동조작 제어패널(5), 외부시스템 통신접속 인터페이스(6) 및 영상카메라(7)가 각각 연결될 수 있다.1, the data analysis determination algorithm processing apparatus 2 according to an embodiment of the present invention is provided with a vertical / horizontal laser scanning and distance measuring apparatus 1, a model data memory 3, and a pilot guide indicator. The character display apparatus 4 and the image display apparatus 8, the manual control panel 5 installed in the mobile boarding bridge, the external system communication connection interface 6, and the image camera 7 may be connected to each other.
여기서, 전원부(9)는 상기 각각의 구성요소가 정확하고 안정된 동작을 하도록 필요한 전원들을 공급하고 있다.Here, the power supply unit 9 supplies powers necessary for each of the above components to operate correctly and stably.
상기 수직/수평 레이저 스캐닝 및 거리측정장치(1)는 레이저 빔을 발사하여 항공기에 부딪혀 반사되어 오는 신호로써 거리를 측정하고, 항공기의 주요 부분의 규격을 측정한다.The vertical / horizontal laser scanning and distance measuring device 1 emits a laser beam and measures distance as a signal reflected from the aircraft, and measures the size of the main part of the aircraft.
상기 데이터 분석판정 알고리즘 처리장치(2)는 상기 수직/수평 레이저 스캐닝 및 거리측정장치(1)에서 측정된 정보를 가지고 계산함으로써 항공기의 종류나 모델을 판독할 수 있다.The data analysis determination algorithm processing apparatus 2 can read out the type or model of the aircraft by calculating with the information measured by the vertical / horizontal laser scanning and distance measuring apparatus 1.
상기 데이터 분석판정 알고리즘 처리장치(2)는 후술할 상기 수직/수평 레이저 스캐닝 및 거리 측정장치(1)에 구비된 스텝모터(114, 115)와 레이저 발생장치를 실제로 제어하고 조정하며, 레이저 빔 반사신호를 수신하여 데이터를 저장하고 분석하며, 기종식별을 위한 판정을 하는 알고리즘을 포함하는 핵심부분이다.The data analysis determination algorithm processing apparatus 2 actually controls and adjusts the step motors 114 and 115 and the laser generator provided in the vertical / horizontal laser scanning and distance measuring apparatus 1 to be described later, and reflects the laser beam. It is a key part that includes algorithms that receive signals, store and analyze data, and make judgments for model identification.
또한, 상기 데이터 분석판정 알고리즘 처리장치(2)는 판정결과를 후술할 조종사 안내표시기의 디스플레이 장치(4, 8)에 출력하고 외부 시스템과의 데이터 교환을 관리한다. In addition, the data analysis determination algorithm processing apparatus 2 outputs the determination result to the display apparatuses 4 and 8 of the pilot guidance indicator which will be described later, and manages data exchange with an external system.
상기 기종 데이터 메모리(3)는 각종 항공기의 규격과 특징들에 대한 요소들을 사전에 저장하여 상기 데이터 분석판정 알고리즘 처리장치(2)가 기종인식 판정을 하는데 필요한 비교자료를 제공하는 기억장치로서, 필요에 따라 항공기에 대한 정보를 삭제, 추가 및 갱신할 수 있다.The model data memory 3 is a memory device for storing the elements of the specifications and characteristics of various aircraft in advance and providing the comparison data necessary for the data analysis determination algorithm processing apparatus 2 to make a model recognition decision. You may delete, add, or update information about your aircraft.
상기 문자 디스플레이 장치(4)는 상기 데이터 분석판정 알고리즘 처리장치(2)에서 처리한 결과를 문자 및/또는 기호로써 항공기 조종사에게 시각적으로 표시하여 지시할 수 있는 표시장치이다. The text display device 4 is a display device that can visually display and instruct the pilot of the result of the processing by the data analysis determination algorithm processing apparatus 2 as text and / or symbols.
상기 수동조작 제어패널(5)은 비상 시 또는 필요 시에 무인자동조작 대신 조작자가 수동으로 버튼조작에 의하여 디스플레이를 통해 항공기 조종사에게 지시할 수 있는 조작장치이다.The manual operation control panel 5 is an operation device that allows an operator to instruct an aircraft pilot through a display by manual button operation instead of an unmanned automatic operation in an emergency or when necessary.
상기 외부시스템 통신접속 인터페이스(6)는 미도시된 공항 내의 종합운영시스템과 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도시스템을 상호 접속하게 하며, 공항종합정보를 입수하거나 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도시스템에서 도출된 결과 및 운영상태를 공항 정보장치로 송출할 수 있는 통신 인터페이스 장치이다. The external system communication connection interface 6 interconnects a comprehensive operating system in an airport (not shown) and an aircraft type identification and periodic guidance system according to an embodiment of the present invention. According to an embodiment, a communication interface device capable of transmitting a result and an operation state derived from a model discrimination and a periodic guidance system of an aircraft to an airport information device.
상기 영상 카메라(7)는 상업용 비디오 영상 카메라로 구성될 수 있으며, 진입하는 항공기의 실물 이미지를 촬영하여 생성된 영상 이미지를 상기 데이터 분석판정 알고리즘 처리장치(2)의 제어를 거쳐 상기 영상 디스플레이장치(8)로 송신하여 항공기 조종사 등이 시각적으로 항공기의 진입 상태를 간편하게 감시할 수 있게 하는 장치이다.The image camera 7 may be configured as a commercial video image camera, and the image display apparatus may be controlled by the data analysis determination algorithm processing apparatus 2 and outputs an image image generated by capturing a real image of an entering aircraft. 8) It is a device that makes it easy for the pilots to visually monitor the entry status of the aircraft by transmitting to the aircraft.
상기 영상 디스플레이장치(8)는 비디오 영상을 표시하는 일반적인 LED, LCD 또는 PDP 등의 비디오 디스플레이 장치이다. The image display apparatus 8 is a video display apparatus such as a general LED, LCD or PDP for displaying a video image.
도 2는 도 1에 도시된 수직/수평 레이저 스캐닝 및 거리측정장치(1)의 구성을 상세하게 도시한 도면이다.2 is a view showing in detail the configuration of the vertical / horizontal laser scanning and distance measuring apparatus 1 shown in FIG.
상기 수직/수평 레이저 스캐닝 및 거리 측정장치(1)는 수직 및 수평 방향으로 구비된 두 개의 정밀한 스텝모터(114, 115)와 두 개의 미러(117, 118)를 사용하여 상기 생성된 레이저 빔을 수직/수평으로 스캔하여 정면으로 발사할 수 있게 함으로써 전면에 존재하는 항공기를 감지하고 거리를 측정할 수 있다.The vertical / horizontal laser scanning and distance measuring device 1 uses two precision step motors 114 and 115 and two mirrors 117 and 118 provided in the vertical and horizontal directions to vertically generate the generated laser beam. By scanning horizontally and firing in front, you can detect the aircraft in front and measure the distance.
구체적으로, 상기 수직/수평 레이저 스캐닝 및 거리 측정장치(1)에서는 입력부로서 레이저신호 수신소자(112)와, 출력부로서 레이저발생 소스소자(111)를 포함하고 있다.Specifically, the vertical / horizontal laser scanning and distance measuring apparatus 1 includes a laser signal receiving element 112 as an input unit and a laser generating source element 111 as an output unit.
상기 레이저발생 소스소자(111)는 프론트엔드(front-end) 장치의 구성요소이며, 900nm의 파장을 가진 클라스 1 레이저 빔(Class 1 razer beam)을 생성하는 것이 바람직하다.The laser generation source element 111 is a component of a front-end device, and preferably generates a Class 1 laser beam having a wavelength of 900 nm.
상기 레이저신호 수신소자(112)는 항공기에 의해 반사되어 수신되는 레이저 빔을 감지한다. The laser signal receiving element 112 detects a laser beam reflected by the aircraft and received.
상기 레이저발생 소스소자(111) 및 레이저신호 수신소자(112)가 연결된 레이저 레인지 파인더 회로(Laser Range Finder Circuit; 113)는 수직/수평 레이저 스캐닝 및 거리 측정장치(1)의 제어장치로서, 미도시된 CPU의 지시를 받아 상기 레이저발생 소스소자(111) 및 레이저신호 수신소자(112)를 제어하고 입출력 신호를 처리한다.The laser range finder circuit 113 to which the laser generating source element 111 and the laser signal receiving element 112 are connected is a control device of the vertical / horizontal laser scanning and distance measuring device 1 and is not shown. The laser generation source element 111 and the laser signal receiving element 112 are controlled by the CPU to process the input / output signal.
또한, 상기 레이저 레인지 파인더 회로(113)는 상기 레이저발생 소스소자(111)에서 레이저 빔을 발사한 시각과 레이저신호 수신소자에서 수신된 시각과의 차이를 측정하여, 항공기의 거리를 측정하고 수신신호가 약한 경우에 이를 적절한 레벨로 증폭하며, 상기 CPU로부터 제어신호를 받아들이고 처리된 결과를 CPU로 출력한다.In addition, the laser range finder circuit 113 measures the difference between the time when the laser beam is emitted from the laser generating source element 111 and the time received by the laser signal receiving element, thereby measuring the distance of the aircraft and receiving the received signal. If it is weak, it amplifies it to an appropriate level, receives a control signal from the CPU and outputs the processed result to the CPU.
한편, 상기 레이저발생 소스소자(111)는 수직미러(117)를 매개로 수직스텝모터(114)가 연결되며, 수평미러(118)를 매개로 수평스텝모터(115)가 연결되도록 구성되어 있다.On the other hand, the laser generation source element 111 is configured such that the vertical step motor 114 is connected via the vertical mirror 117, the horizontal step motor 115 is connected via the horizontal mirror 118.
상기 수직스텝모터(114) 및 수평스텝모터(115)는 CPU 제어를 받아 수직 및 수평으로 정밀하게 회전하며, 상기 수직스텝모터(114) 및 수평스텝모터(115)에 각각 부착된 수직미러(117) 및 수평미러(118)에 의해 레이저 빔을 수직 및 수평으로 송출하여 항공기을 2 차원으로 스캐닝을 하게 된다.The vertical step motor 114 and the horizontal step motor 115 are precisely rotated vertically and horizontally under CPU control, and vertical mirrors 117 attached to the vertical step motor 114 and the horizontal step motor 115 respectively. ) And the horizontal mirror 118 transmits the laser beam vertically and horizontally to scan the aircraft in two dimensions.
한편, 스텝모터 제어회로(116)는 CPU의 제어신호를 받아 상기 수직스텝모터(114) 및 수평스텝모터(115)가 적절한 회전을 하도록 신호를 변환하고 인터페이스를 한다. On the other hand, the step motor control circuit 116 receives the control signal from the CPU and converts the signal to interface the vertical step motor 114 and the horizontal step motor 115 to the appropriate rotation.
따라서, 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템은 레이저 빔을 발사하여 항공기에 부딪혀 반사되어 오는 신호로써 항공기의 거리를 측정하고, 항공기의 각종 형태의 주요 부분의 규격을 계산함으로써 항공기의 종류나 모델을 판독할 수 있으며, 또한, 영상 카메라와 대형 영상 디스플레이 장치를 설치하여 항공기 조종사가 문자 디스플레이 장치에 추가하고 보완적으로 항공기의 실제 진입상태를 영상 이미지로 육안으로도 손쉽게 관측할 수 있다. Accordingly, the system for model discrimination and periodic guidance of an aircraft according to an embodiment of the present invention measures the distance of the aircraft as a signal reflected from the impact by hitting the aircraft by firing a laser beam, and the specification of the main parts of various forms of the aircraft. It is possible to read the type and model of the aircraft by calculating the. Also, by installing a video camera and a large video display device, the aircraft pilot adds to the text display device and supplements the actual entry state of the aircraft with the visual image. It is easy to observe.
한편, 경우에 따라서, 본 발명은, 상기 레이저발생 소스소자(111)와 레이저 신호 수신소자(112)를 이용하여 항공기의 좌측 또는 우측 반사점만을 측정하고, 즉, 우측 또는 좌측 반사점을 측정하지 아니하고, 측정값에 2 배값을 수행하여 날개 폭 값을 계산해낼 수도 있다.In some cases, the present invention uses only the laser generation source element 111 and the laser signal receiving element 112 to measure only the left or right reflection point of the aircraft, that is, not to measure the right or left reflection point, It is also possible to calculate the wing width value by doubling the measurement.
도 3은 본 발명의 일실시예에 따른 항공기의 감지, 기종판별 및 주기유도를 행하기 위한 종합적인 소프트웨어 알고리즘을 간략하게 보여주는 플로우차트이다.FIG. 3 is a flow chart briefly illustrating a comprehensive software algorithm for performing aircraft sensing, model discrimination and periodic induction in accordance with one embodiment of the present invention.
본 발명은 레이저 빔을 발사하여 항공기에 부딪혀 반사되어 오는 수신신호를 측정하여 거리와 방향을 측정하는 레이저 스캐닝 및 레인징(Laser Scanning & Ranging) 시스템을 제공한다.The present invention provides a laser scanning and ranging (Laser Scanning & Ranging) system for measuring a distance and a direction by measuring a received signal that is reflected by hitting the aircraft by firing a laser beam.
바람직하게, 항공기 전체를 스캐닝하지 않고, 항공기의 특정한 일부 부분, 예를 들어 항공기 코끝까지의 거리와 수직각도, 맨 왼쪽 및 맨 오른쪽의 날개 끝의 점에 대한 거리와 수평각도, 수직 뒷날개의 거리만을 스캐닝하여 항공기의 기종과 모델을 설정치와 비교해 항공기의 기종을 판별하고, 항공기의 주기를 위한 진입 안내 및 유도를 자동적으로 표시판에 지시할 수 있게 할 뿐 아니라, 영상 카메라와 디스플레이 장치를 사용해 항공기 조종사가 실제의 진입 이미지를 직접 시청할 수 있게 하여 편의성을 증진시킬 수 있다.Preferably, without scanning the entire aircraft, only a certain portion of the aircraft, for example the distance and vertical angle to the tip of the aircraft nose, the distance and the horizontal angle to the points of the wing tips on the left and right sides, the distance of the vertical rear wing Scanning allows you to compare aircraft type and model to setpoints to determine the aircraft type, automatically directing the display to guide and guide the aircraft's cycles, and using video cameras and display devices to help aircraft pilots Convenience can be enhanced by allowing the actual entry image to be viewed directly.
바람직하게, 항공기의 날개 폭, 기체장 및 코끝의 높이의 3가지 항목으로 항공기의 기종을 판별할 수 있는 것이다.Preferably, the aircraft model can be determined by three items, the wing width of the aircraft, the gas field and the height of the nose tip.
구체적으로, 항공기의 최좌측반사점과 최우측반사점의 거리와 수평각도를 측정하여 날개 폭의 길이를 계산해내고, 항공기의 최근점(코끝)의 거리와 수직각도를 측정하여 항공기 코/끝의 높이를 계산해내며, 항공기의 최근반사점(코끝)의 거리와 수직각도를 측정하고 최원반사점(수직 뒷날개)의 거리와 수직각도를 측정하여 항공기 기체장을 계산할 수 있다. Specifically, the length of the wing width is calculated by measuring the distance and the horizontal angle between the leftmost reflecting point and the rightmost reflecting point of the aircraft, and measuring the distance and the vertical angle of the most recent point (nose tip) of the aircraft to increase the height of the nose / end of the aircraft. The aircraft's gas field can be calculated by measuring the distance and vertical angle of the most recent reflecting point (nose tip) of the aircraft and measuring the distance and vertical angle of the most reflective point (vertical rear wing).
이를 수행하기 위해, 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 방법은, 프로그램을 시작하여 각종 초기화를 행하고, 업무를 수행하기 전에 하드웨어와 소프트웨어 시스템에 대하여 자기진단과 시험을 행한다(S121). In order to accomplish this, a method for model identification and periodic guidance of an aircraft according to an embodiment of the present invention includes starting a program, performing various initializations, and performing self-diagnosis and testing of hardware and software systems before performing a task. It performs (S121).
이 후, 활주로를 경유하여 착륙한 항공기가 배정된 탑승구로 진입할 때에, 상기 항공기가 탑승구로부터 기설정된 근접한 거리, 예를 들어 약 100여 미터의 거리에 도달하면, 항공기의 진입을 감지하고, 시각주기유도시스템에 대하여 항공기가 수직선상에 정렬이 되도록 방향 지시 등의 작업 절차를 행할 수 있다(S122).Thereafter, when the aircraft landing through the runway enters the assigned gate, when the aircraft reaches a predetermined close distance from the gate, for example, about 100 meters, it detects the entry of the aircraft and time For the periodic guidance system, an operation procedure such as a direction indication may be performed so that the aircraft is aligned on a vertical line (S122).
이 후, 적합한 거리에서 방향 정렬이 완료되면, 항공기의 기종 확인을 위해 정지하라는 지시를 항공기 조종사에게 제공한다(S123). Thereafter, when the direction alignment is completed at a suitable distance, the aircraft pilot is provided with an instruction to stop to check the model of the aircraft (S123).
이 후, 항공기가 정지하면, 최근반사점(Nearest Reflection Point)과 최원반사점(Farthest Reflection Point)에 대한 거리와 방향을 측정하고(S124), 이 후, 측정된 값에 의해 기하학적 공식에 따라 기체장 값인 L을 계산하고(S125), 이 후, 항공기 코끝의 높이(Nosal Height) 값인 N을 기하학적 공식에 따라 계산하고(S126)한다.Afterwards, when the aircraft stops, the distance and direction of the nearest reflection point and the farest reflection point are measured (S124), and then the measured values are determined according to the geometric formula according to the geometric formula. L is calculated (S125), and then, N, the height of the nose tip (Nosal Height) of the aircraft, is calculated according to a geometric formula (S126).
이 후, 최좌반사점(Leftmost Reflection Point)과 최우반사점(Rightmost Reflection Point)을 측정하고(S127), 이 후, 측정된 두 점의 거리와 각도를 사용하여 기하학적으로 항공기의 날개 폭(Wing Span) 값인 W를 계산한다(S128).After that, the leftmost reflection point and the rightmost reflection point are measured (S127), and then, using the measured distance and angle of the two points, the wing span value of the aircraft is geometrically determined. Calculate W (S128).
물론, 이러한 측정 및 계산 순서는 상기 순서에 구속됨이 아님은 자명하다.Of course, this order of measurement and calculation is obviously not constrained.
이 후, 상기 단계에서 계산한 값들인 L(기체장), N(코끝 높이), W(날개 폭)의 3 가지 요소를 기종 데이터 메모리(3)에 들어 있는 기종별 데이터와 비교, 검색하여 3 요소가 모두 합치하는 기종을 찾아내고 결정한다(S129).Thereafter, the three components, L (gas length), N (nose tip height), and W (wing width), which are the values calculated in the above steps, are compared with the model-specific data contained in the model data memory 3 and searched. Find and determine the model that all the elements (S129).
이렇게 기종판별이 완료되면, 항공기를 탑승구 앞의 정지선까지 유도하는 절차에 들어가는데, 다시 항공기의 코끝의 위치를 찾아내고 거리와 방향을 표시한다(S130).When the model discrimination is completed, it enters the procedure to guide the aircraft to the stop line in front of the gate, and again finds the position of the nose tip of the aircraft and displays the distance and direction (S130).
이 후, 측정된 현재 항공기의 코끝의 거리 값에서 각 기종별로 정해져 있는 정지선의 거리정보를 차감하는 계산이 수행되며, 산출된 거리값을 디스플레이를 통해 항공기 조종사에게 알려주고(S131), 상기 거리값이 0이 되는지를 조사해서 0이 되는 순간 주기를 위해 정지(STOP for DOCKING)하라는 표시를 디스플레이에 출력한다(S132).Subsequently, a calculation is performed to subtract the distance information of the stop line determined for each model from the measured distance value of the nose tip of the current aircraft, and informs the aircraft pilot of the calculated distance value through a display (S131). It checks whether or not it becomes 0 and outputs an indication to STOP for DOCKING for the instantaneous period when it becomes 0 (S132).
이로써 기종확인 및 주기유도 절차가 종료되게 된다.This completes the model identification and cycle guidance process.
도 4는 항공기 기종을 판별하고자 할 때 항공기가 본 발명의 일실시예에 따른 수직/수평 레이저 스캐닝 및 거리측정장치(1)에 대하여 수직선상에 일렬로 정렬된 상태를 확인하기 위한 수직 뒷날개 수평각과 코끝의 수평각정의를 보여주는 도면이다.4 is a vertical rear wing horizontal angle for confirming the state that the aircraft is aligned in a vertical line with respect to the vertical / horizontal laser scanning and distance measuring device 1 according to an embodiment of the present invention when trying to determine the aircraft model and This figure shows the horizontal angle definition of the tip of the nose.
구체적으로, 도 4는 항공기 기종을 판별하고자 할 때, 정확하고 신속한 판별을 위하여 항공기가 상기 수직/수평 레이저 스캐닝 및 거리 측정장치(1)에 대하여 수직으로 일직선 상에 정렬된 상태인 것을 확인하는 절차로서, 레이저 신호의 최원반사점인 수직 뒷날개의 수평각 αT와, 최근반사점인 항공기 코끝의 수평각 αN에 대한 정의를 보여주는 도면이다.Specifically, FIG. 4 is a procedure for confirming that the aircraft is aligned vertically with respect to the vertical / horizontal laser scanning and distance measuring device 1 for accurate and rapid determination when determining the aircraft model. Figure 2 shows the definition of the horizontal angle α T of the vertical rear wing, which is the most reflective point of the laser signal, and the horizontal angle α N of the nose tip of the aircraft, which is the latest reflection point.
도 5는 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법을 이용하여 기동판별을 하는 경우에 제반 각도명세를 보여주고, 항공기의 날개 폭을 측정하고 계산해내는 원리를 보여주는 도면이다.FIG. 5 shows various angle specifications in the case of maneuvering by using a system and method for model discrimination and periodic induction of an aircraft according to an embodiment of the present invention, and illustrates the principle of measuring and calculating the wing width of an aircraft. Figure showing.
도 5를 참조하여 이를 상세히 설명하면,Referring to this in detail with reference to Figure 5,
[규칙 제91조에 의한 정정 20.06.2013] 
W
Figure WO-DOC-FIGURE-85a
w1+w2=D1sinα1+D2sinα2=
Figure WO-DOC-FIGURE-85b
[Revisions under Rule 91 20.06.2013]
W
Figure WO-DOC-FIGURE-85a
w 1 + w 2 = D 1 sinα 1 + D 2 sinα 2 =
Figure WO-DOC-FIGURE-85b
그런데, 만약 D1=D2=D, w1=w2=w, α12=α라고 하면,By the way, if D 1 = D 2 = D, w 1 = w 2 = w, α 1 = α 2 = α,
[규칙 제91조에 의한 정정 20.06.2013] 
Figure WO-DOC-FIGURE-87a
이므로
Figure WO-DOC-FIGURE-87b
-R 이 되고,
[Revisions under Rule 91 20.06.2013]
Figure WO-DOC-FIGURE-87a
Because of
Figure WO-DOC-FIGURE-87b
-R,
[규칙 제91조에 의한 정정 20.06.2013] 
날개 폭 W = 2Dsinα=2
Figure WO-DOC-FIGURE-88a
= 2D
Figure WO-DOC-FIGURE-88b
가 되어,
[Revisions under Rule 91 20.06.2013]
Wingspan W = 2Dsinα = 2
Figure WO-DOC-FIGURE-88a
= 2D
Figure WO-DOC-FIGURE-88b
Become,
D 값과 값을 획득하면 sin 또는 cos의 삼각함수를 이용해 날개 폭 W을 계산해 낼 수 있다. Once you get the D value and the value, you can calculate the wing width W using the trigonometric function of sin or cos.
항공기의 기종이나 모델은 수십 개 내지 수백 개이므로, 한 개의 규격으로는 정확한 구별이 될 수 없다. 따라서, 다음 비교 항목으로서 항공기의 거리를 측정하고 항공기의 코끝의 높이를 계산해낸다. Since there are dozens or hundreds of aircraft models or models, one standard cannot be accurately distinguished. Therefore, as a next comparison item, the distance of the aircraft is measured and the height of the nose tip of the aircraft is calculated.
구체적으로, 항공기의 코끝으로부터 수직 뒷날개까지의 거리를 기체장(Body Length)이라고 명명하고 이를 계산하여 이 3 가지 요소를 통하여 항공기의 기종과 모델명을 판별하는 알고리즘으로 결정한다. Specifically, the distance from the nose tip of the aircraft to the vertical rear wing is called a body length, and calculated by the algorithm to determine the model and model name of the aircraft through these three factors.
도 6은 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법을 이용하여 항공기의 코끝의 높이를 측정하고 계산하는 원리와, 항공기의 코끝으로부터 수직 뒷날개까지의 거리인 기체장을 측정하고 계산하는 원리를 보여주는 도면이다.Figure 6 is a principle of measuring and calculating the height of the nose tip of the aircraft using the system and method for aircraft type identification and periodic induction according to an embodiment of the present invention, the aircraft from the nose tip of the aircraft to the vertical rear wing A diagram showing the principle of measuring and calculating fields.
도 6을 참조하여 이를 상세히 설명하면, 레이저 발사점의 높이를 K, 코끝까지의 높이를 H라고 하면, Referring to Figure 6 in detail, if the height of the laser firing point K, the height to the tip of the nose is H,
[규칙 제91조에 의한 정정 20.06.2013] 
Figure WO-DOC-FIGURE-94a
가 되므로
Figure WO-DOC-FIGURE-94b
의 식으로부터 코끝의 거리 RN 과 각도 θ 를 측정하면 코끝의 높이 H를 계산할 수 있다.
[Revisions under Rule 91 20.06.2013]
Figure WO-DOC-FIGURE-94a
Becomes
Figure WO-DOC-FIGURE-94b
The height H of the tip of the nose can be calculated by measuring the distance R N and the angle θ of the tip of the nose.
[규칙 제91조에 의한 정정 20.06.2013] 
또한, 항공기 코끝까지의 정확한 직선거리를 RNOSE 라고 하면
Figure WO-DOC-FIGURE-95
로 계산된다.
[Revisions under Rule 91 20.06.2013]
In addition, if the exact straight line distance to the tip of the aircraft is called R NOSE
Figure WO-DOC-FIGURE-95
Is calculated.
한편, 이하 동일한 도 6을 참조하여 기체장을 측정, 계산하는 원리를 설명한다.Meanwhile, the principle of measuring and calculating a gas field will be described below with reference to FIG. 6.
VDGS에서 측정한 데이터는 수직 뒷날개 위치인 최원반사점 T까지의 거리 RT와, 수직 뒷날개에 대한 수직각도 β와, 최근반사점인 항공기 코끝 N까지의 거리 RN과, 항공기 코끝에 대한 수직각도 θ이다.Data measured in VDGS is the distance R T to the choewon reflection point perpendicular underwing position T, and the vertical angle β of the vertical underwing, recent reflection point of the distance R N of the aircraft to the nose N, the vertical angle θ of the aircraft nose .
본 발명에서 기체장이라고 정의, 명명한 길이는 NT 이다. 이 길이를 구하기 위하여 점 N으로부터 선분 MT 위에 수직선을 긋고 만나는 점을 X라고 하면 In the present invention, the length defined as a gas field is NT . To find this length, draw a vertical line on line segment MT from point N
. NT 2 = XN 2+XT 2=RN 2sin2(θ-β) + [RT RNcos(θ-β)]2 . NT 2 = XN 2 + XT 2 = R N 2 sin 2 (θ-β) + [R T R N cos (θ-β)] 2
= RN 2sin2(θ-β)+ [RT 2 2 RNRTcos(θ-β) + RN 2cos2(θ-β)]= R N 2 sin 2 (θ-β) + [R T 2 2 R N R T cos (θ-β) + R N 2 cos 2 (θ-β)]
= RN 2sin2(θ-β)+ RN 2cos2(θ-β) + RT 2 2 RNRTcos(θ-β)= R N 2 sin 2 (θ-β) + R N 2 cos 2 (θ-β) + R T 2 2 R N R T cos (θ-β)
= RN 2+RT 2 2 RNRTcos(θ-β)= R N 2 + R T 2 2 R N R T cos (θ-β)
[규칙 제91조에 의한 정정 20.06.2013] 
Figure WO-DOC-FIGURE-103
[Revisions under Rule 91 20.06.2013]
Figure WO-DOC-FIGURE-103
의 식으로 기체장이 계산된다.The gas field is calculated by
즉, 그림에서 항공기 코끝까지의 거리 RN과 코끝 방향의 각도 θ를 이미 앞 과정에서 측정하였으므로, 수직 뒷날개까지의 거리 RT를 항공기의 최원 레이저 반사점을 찾아서 측정하고, 또 수직 뒷날개 방향의 각도 β를 측정한다면 위 식에서 주어진 연산을 거쳐서 항공기의 기체장 길이에 준하는 NT의 길이를 계산해 낼 수 있다. In other words, since the distance R N to the tip of the aircraft and the angle θ of the tip of the nose have already been measured in the previous process, the distance R T to the vertical rear wing is measured by finding the most laser reflection point of the aircraft, and the angle β in the vertical rear wing direction is measured. If we measure, we can calculate the length of NT corresponding to the aircraft's gas field length through the calculation given in the above equation.
그러나, 정확한 기체장은 사실상 선분 NT가 수평선과 이루는 각도를 반영하고, 항공기의 수직 뒷날개 후방의 몸체 일부 길이를 추가로 산입해야 하지만, 여기서는 이들을 반영하지 않은 값이어서 계산된 값은 항공기 몸체의 정확한 기체장 규격 값과는 약간의 차이가 있다.However, the exact gas field actually reflects the angle that the line segment NT makes with the horizon and must additionally incorporate the length of a portion of the body behind the vertical rear wing of the aircraft, but here it does not reflect them, so the calculated value is the exact gas field of the aircraft body. There is a slight difference from the specification value.
기종확인을 위하여는 어떤 절대적인 값이어야 할 필요는 없고, 상대적인 값들을 비교만 하면 되므로 이 계산치를 사용하거나, 또는 계산의 편이와 소프트웨어의 간략화를 위하여 상대적인 값인 RT-RN 값을 기체장에 비례하는 근사값으로 가정하고 이를 계산하여 각 항공기 기종마다의 동일한 부분 길이값을 측정해 데이터 베이스에 입력해 넣고, 이 값을 비교하여 상대적으로 기종판별의 기준으로 삼을 수도 있다. It is not necessary to be an absolute value for model identification, but only a comparison of relative values, so use this calculation, or use the relative value R T -R N relative to the gas field for ease of calculation and software simplification. Assuming this is an approximation, we can calculate this, measure the same partial length for each aircraft type, enter it into the database, compare these values, and use them as a basis for relative classification.
[규칙 제91조에 의한 정정 20.06.2013] 
따라서, 본 발명의 알고리즘에서는 기체장 L은 L= RT-RN 식으로 근사적으로 판정하거나
Figure WO-DOC-FIGURE-108
식으로 계산하여 기종판별을 수행한다.
[Revisions under Rule 91 20.06.2013]
Therefore, in the algorithm of the present invention, the gas field L is approximately determined by the formula L = R T -R N or
Figure WO-DOC-FIGURE-108
Calculate by the formula to determine the model.
도 7a, 도 7b, 도 7c는 도 3의 플로우차트를 더욱 상세하게 나타낸 플로우 차트이며, 구체적으로, 본 발명의 기종판별 및 항공기 정박안내, 인도를 위한 전체적인 소프트웨어 알고리즘을 간략하게 요약하여 도시한 플로우차트이다. 7A, 7B, and 7C are flow charts illustrating the flowchart of FIG. 3 in more detail. Specifically, a flow chart briefly summarizing the overall software algorithm for model discrimination, aircraft anchoring guidance, and delivery of the present invention. It is a chart.
도 7은 크게 보면 초기화, 항공기 진입감지, 항공기 기종인식, 왼쪽 날개 끝 위치 검출, 오른쪽 날개 끝 위치 검출, 날개 폭 계산, 항공기 길이 계산, 기종판별, 중심부 스캐닝에 의한 궤도 좌우 인도, 항공기 진행거리 계산 표시, 항공기 정지 표시 등의 순서로 되어 있다. 상기 각 단계를 하나씩 간략하게 설명하면 다음과 같다. 7 is largely initialized, aircraft entry detection, aircraft model recognition, left wing tip position detection, right wing tip position detection, wing width calculation, aircraft length calculation, type determination, orbit left and right delivery by center scanning, aircraft travel distance calculation The order is display, aircraft stop sign, and so on. Each step is briefly described as follows.
도 7a를 참조하면, 초기화 단계는 초기화(initialization)과정으로, 소프트웨어를 실행하기에 앞서서 필요한 항목을 영점화하고, 후술할 단계 상에서 필요한 항목이나 요소들을 불러와 저장하는 등의 기본적인 동작을 하며, 맨 처음 장치의 작동을 시작할 때에 자기시험 및 점검진단을 위한 프로그램을 수행하는 단계이다(S11). Referring to FIG. 7A, an initialization step is an initialization process, and basic operations such as zeroing necessary items prior to executing software, and loading and storing necessary items or elements in the steps to be described below are performed. At the beginning of the operation of the device for the first time it is a step of performing a program for self-test and check diagnosis (S11).
이 후, 탑승구 진입로 상에 항공기가 등장하는지 여부를 확인하는 항공기 감지 단계에 수행되며, 본 발명에서는, 현지 설치 상황에 따라 차이가 있겠으나, 레이저 빔 수평각은 0° 방향으로, 레이져 빔 수직각은 2°~ 8°정도의 범위에서 측정하도록 설정될 수 있다(S12).After that, it is carried out in the aircraft detection step to check whether the aircraft appeared on the entrance gate, in the present invention, there will be a difference according to the local installation situation, the laser beam horizontal angle is in the direction of 0 °, the laser beam vertical angle is It may be set to measure in the range of about 2 ° ~ 8 ° (S12).
구체적으로, 이러한 처리과정은 루프로 계속 동작하게 되는데, 예를 들어 항공기가 60 내지 100m 정도의 거리에서 진입 경로 상에 등장하게 되면, 레이저 빔의 반사파 수신호가 시각주기유도시스템의 수직/수평 레이저 스캐닝 및 거리측정장치(1)의 수신부에 도달하게 되고, 항공기가 감지되었음을 인지하며 루프 동작은 중지되며, 다음 단계로 진행한다.Specifically, this process continues to operate in a loop. For example, when the aircraft appears on the entry path at a distance of about 60 to 100 m, the reflected wave number signal of the laser beam is vertical / horizontal laser scanning of the visual period guide system. And it reaches the receiver of the distance measuring device 1, recognizes that the aircraft is detected, the loop operation is stopped, and proceeds to the next step.
[규칙 제91조에 의한 정정 20.06.2013] 
중심부 좌우 스캐닝 단계는 항공기의 코끝인 중심부를 수직방향으로 상하, 수평방향으로 좌우로 정밀하게 스캐닝하며(S13), 이 후, 최근반사점과 최원반사점에 대한 수평각
Figure WO-DOC-FIGURE-114a
Figure WO-DOC-FIGURE-114b
를 검출해 낸다(S14, S15).
[Revisions under Rule 91 20.06.2013]
The central left and right scanning step accurately scans the center of the nose of the aircraft vertically and vertically, horizontally to the left and right (S13), and then the horizontal angle with respect to the most recent reflection point and the most far reflection point
Figure WO-DOC-FIGURE-114a
and
Figure WO-DOC-FIGURE-114b
Is detected (S14, S15).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 상기
Figure WO-DOC-FIGURE-115a
Figure WO-DOC-FIGURE-115b
값을 사용하여 항공기의 진행방향이 좌편향인지 우편향인지 또는 정확한 방향인지를 분석하고, 이를 디스플레이에 표시하여 항공기 조종사에게 정보를 전달한다(S16).
[Revisions under Rule 91 20.06.2013]
After this, above
Figure WO-DOC-FIGURE-115a
and
Figure WO-DOC-FIGURE-115b
Using the value, the direction of flight of the aircraft is headed, postal, or correct direction is analyzed and displayed on the display to transmit information to the aircraft pilot (S16).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 일정한 허용오차 범위 내에서
Figure WO-DOC-FIGURE-116
인지를 판단하여 항공기가 일직선상으로 정면을 보고 바로 서 있는지 판단하고(S17), 이 후, 항공기가 바로 서 있으면 "STOP for VERIFICATION"(기종확인을 위한 정지)를 디스플레이 장치에 표시하고 항공기 조종사에게 일단정지를 지시한다(S18).
[Revisions under Rule 91 20.06.2013]
After this, within a certain tolerance
Figure WO-DOC-FIGURE-116
Determine whether the aircraft is standing in front of the straight line (S17), after that, if the aircraft is standing directly, display "STOP for VERIFICATION" on the display device to the aircraft pilot One stop is instructed (S18).
[규칙 제91조에 의한 정정 20.06.2013] 
다음 단계는 다시 정확, 정밀하게 최근반사점을 찾아서 수평각
Figure WO-DOC-FIGURE-117
, 수직각 θ, 거리 RN 을 측정한다(S20).
[Revisions under Rule 91 20.06.2013]
The next step is to find the most recent reflection point accurately and precisely.
Figure WO-DOC-FIGURE-117
, The vertical angle θ and the distance R N are measured (S20).
다음 단계에서는 시각주기유도시스템이 설치된 장소마다 상이할 수도 있는 레이저 빔 송출장치의 지상 높이 설정값 K를 상기 S11 단계의 초기화 시에 저장된 메모리 위치에서 불러오고, 상기 S19 단계에서 측정한 수직각 θ 값과 RN 값을 호출해 온다(S21).In the next step, the ground height setting value K of the laser beam transmitting apparatus, which may be different for each location where the visual period induction system is installed, is loaded from the memory location stored at the initialization of the step S11, and the vertical angle θ value measured in the step S19. And R N values are called (S21).
도 7b를 참조하여 다음 단계들을 설명하자면 다음과 같다.The following steps will be described with reference to FIG. 7B.
[규칙 제91조에 의한 정정 20.06.2013] 
단계 22에서는 전 단계들에서 계산된 값들을 이용하여,
Figure WO-DOC-FIGURE-120
식의 함수연산을 행하여 항공기 코끝의 높이(Nosal Height) 값 H를 계산한다(S22).
[Revisions under Rule 91 20.06.2013]
In step 22, using the values calculated in the previous steps,
Figure WO-DOC-FIGURE-120
A function calculation of the equation is performed to calculate a height H of the nose tip of the aircraft (S22).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 상기 S20 단계에서 측정한 RT 값과 상기 S19 단계에서 측정한 RN 값을 불러와서, 이 값들을 사용해
Figure WO-DOC-FIGURE-121
식 또는 L=RT-RN 의 간이공식을 써서 기체장의 값을 계산해 낸다(S23).
[Revisions under Rule 91 20.06.2013]
Thereafter, the R T values measured in the step S20 and the R N values measured in the step S19 are retrieved, and these values are used.
Figure WO-DOC-FIGURE-121
The value of the gas field is calculated using the equation or the simplified formula of L = R T -R N (S23).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 레이저 스캐닝 메커니즘은 제어부의 지시를 받아 현지 설치 상황에 따라 차이가 있지만, 보통 -55°정도인 최좌측 위치로 재빨리 회전하고, 거기서부터 안쪽으로 정밀 스캐닝을 시작하여(S24), 이 후, 최초의 레이저 반사신호가 수신되는 점을 찾아내고 그 수평각
Figure WO-DOC-FIGURE-122
, 거리 D1 을 측정한다(S25).
[Revisions under Rule 91 20.06.2013]
Subsequently, the laser scanning mechanism is different depending on the installation situation under the direction of the control unit, but quickly rotates to the leftmost position, which is usually about -55 °, and starts precise scanning inward from there (S24). Find the point at which the first laser reflection is received and determine its horizontal angle
Figure WO-DOC-FIGURE-122
, The distance D 1 is measured (S25).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 이 측정값들을 이용하여, 우측날개의 길이인 w1
Figure WO-DOC-FIGURE-123
식에 따라 연산을 해낸다(S26).
[Revisions under Rule 91 20.06.2013]
Then, using these measurements, w 1 , the length of the right wing,
Figure WO-DOC-FIGURE-123
The operation is performed according to the expression (S26).
이 후, 상기 S26 단계의 계산이 이루어지는 동안, 스캐닝 메커니즘은 제어부의 지시를 받아 본 단계를 수행하기 위하여 수평 스캐닝 서버모터가(수평스텝모터 115) 보통 +55°정도인 최우측 위치로 재빨리 회전, 이동하고 거기서부터 안쪽으로 정밀 스캐닝을 시작하여, 최초의 레이저 반사신호가 수신되는 점을 찾아내고 그 수평각
Figure PCTKR2013002301-appb-I000023
와 거리 D2를 측정한다(S27).
Subsequently, while the calculation of step S26 is performed, the scanning mechanism is quickly rotated to the rightmost position where the horizontal scanning server motor (horizontal step motor 115) is usually + 55 ° to perform this step under the direction of the control unit. Move and start precise scanning from there to find the point where the first laser reflection is received and its horizontal angle
Figure PCTKR2013002301-appb-I000023
And measure the distance D 2 (S27).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 이 측정값들을 이용하여 좌측날개의 길이인 w2
Figure WO-DOC-FIGURE-125
식에 따라 연산을 해낸다(S28).
[Revisions under Rule 91 20.06.2013]
Then, using these measurements, w 2 , the length of the left wing,
Figure WO-DOC-FIGURE-125
The operation is performed according to the expression (S28).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 상기 S26 단계와 S28 단계에서 계산된 값을 이용하여 날개 폭 W를
Figure WO-DOC-FIGURE-126
Figure WO-DOC-FIGURE-126b
식을 사용해 계산한다(S29).
[Revisions under Rule 91 20.06.2013]
Thereafter, the blade width W is calculated using the values calculated in steps S26 and S28.
Figure WO-DOC-FIGURE-126
Figure WO-DOC-FIGURE-126b
It calculates using a formula (S29).
이 후, 지금까지 제어와 연산을 해낸 최종 결과값들인 H, L, W라는 항공기의 3 가지 핵심 규격요소들을 사용하여, 본 단계에서 기종 데이터 메모리(3)의 정보로 검색하여 이들에 합치하는 항공기 기종 데이터를 색출해낸다(S30).After that, using the three key standard elements of the aircraft H, L, and W, which are the final results of the control and calculation, the aircraft that search and match the information in the model data memory 3 in this step The model data is retrieved (S30).
이 후, 상기 결과를 디스플레이에 표시하며, 이 정보를 항공기 조종사와 공항시설관리 시스템에게 외부통신 접속 인터페이스를 경유하여 제공한다(S31).Thereafter, the result is displayed on the display, and this information is provided to the aircraft pilot and the airport facility management system through an external communication connection interface (S31).
이와 같은 기종판별 과정이 종료되면, 본 단계에서 레이저 스캐닝 메커니즘은 다시 중심부 스캐닝 위치로 돌아오게 된다(S32).When the model discrimination process is finished, the laser scanning mechanism is returned to the central scanning position in this step (S32).
이 후 단계는 도 7c를 참조하여 설명한다.The subsequent steps will be described with reference to FIG. 7C.
[규칙 제91조에 의한 정정 20.06.2013] 
본 단계에서는 항공기의 최근반사점을 다시 찾아내어
Figure WO-DOC-FIGURE-131
값과 RN 값을 계산한다(S33).
[Revisions under Rule 91 20.06.2013]
In this step, we find out the recent reflections of the aircraft
Figure WO-DOC-FIGURE-131
The value and the R N value are calculated (S33).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후 단계인 S34, S35, S36에서는
Figure WO-DOC-FIGURE-132
값이 양(+), 음(-) 또는 영(0)의 값인지를 판정하여 그 결과에 따라 S37, S38, S39에서 각각 좌회전(LEFT), 우회전(RIGHT) 또는 직진(STRAIGHT FORWARD)의 표시를 항공기 조종사에게 제공한다.
[Revisions under Rule 91 20.06.2013]
In later steps S34, S35, S36
Figure WO-DOC-FIGURE-132
Determine if the value is positive, negative, or zero and display LEFT, RIGHT or STRAIGHT FORWARD respectively in S37, S38, and S39 according to the result. To the aircraft pilot.
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 항공기 기종별로 데이터베이스에 저장, 설정되어 있는 주기거리 RDOCK 값을 불러와 RNOSE 값에서 빼는 연산을 행하는데 앞에서 언급한 것처럼 RNOSE 값은
Figure WO-DOC-FIGURE-133
의 식으로 계산되므로 실제로
Figure WO-DOC-FIGURE-133b
의 연산을 행하고(S40), 이를 미터(meter) 또는 피트(feet) 단위로 환산하여 디스플레이에 표시한다(S41).
[Revisions under Rule 91 20.06.2013]
After that, stored in the database for each aircraft type, set up periodic street value of R DOCK R NOSE As mentioned earlier, in line with the load calculation R NOSE subtracted from the value of the value that is
Figure WO-DOC-FIGURE-133
Is calculated by
Figure WO-DOC-FIGURE-133b
The calculation is performed (S40), and this is converted into meters or feet and displayed on the display (S41).
[규칙 제91조에 의한 정정 20.06.2013] 
이 후, 다시 최근반사점을 탐색하여
Figure WO-DOC-FIGURE-131
값과 RN 값을 측정하고(S42),
Figure WO-DOC-FIGURE-134
의 계산을 행한 다음(S43), RNOSE 값과 RDOCK 값을 비교하여 RNOSE> RDOCK 이면 40 단계로 돌아가는 루프 동작을 시키고(S44), RNOSE≤RDOCK이 되는 순간, 즉 항공기가 정확한 주기위치에 도달되는 시점에서 항공기 조종사에게 주기를 위한 정지(STOP for DOCKING) 명령을 디스플레이를 통해 출력하게 되는 것이다(S45).
[Revisions under Rule 91 20.06.2013]
After that, search for the most recent reflection
Figure WO-DOC-FIGURE-131
Measure the value and R N (S42),
Figure WO-DOC-FIGURE-134
Of performing the following calculation (S43), by comparing R and a value NOSE R DOCK value NOSE R> R and DOCK is the loop operation returns to Step 40 (S44), that is R NOSE ≤R DOCK moment, that the aircraft has the correct At the time when the cycle position is reached, a command for stopping (STOP for DOCKING) to the aircraft pilot is output through the display (S45).
지금까지 전술된 플로우차트는 본 발명의 일실시예에 따른 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법의 제반 기능을 처리하기 위한 하나의 예를 도시한 것일 뿐이고, 각 처리의 순서를 바꾸거나 형태를 달리하여 동일한 기능을 수행하도록 변화시킬 수 있다.So far, the above-described flowcharts merely illustrate one example for processing all functions of the system and method for aircraft type identification and periodic guidance of an aircraft according to an embodiment of the present invention. The form can be changed to perform the same function.
이상, 상기 설명에 의해 당업자라면 본 발명의 기술적 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이며, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허청구범위 및 그와 균등한 범위에 의하여 정해져야 한다.As described above, it will be understood by those skilled in the art that various changes and modifications can be made without departing from the technical spirit of the present invention, and the technical scope of the present invention is not limited to the contents described in the embodiments, but the claims It shall be determined by the scope and the range equivalent thereto.

Claims (16)

  1. 레이저 빔을 발사하여 항공기에 부딪혀 반사되어 오는 신호로써 거리를 측정하고, 항공기의 각종 형태의 주요 부분의 규격을 측정하는 수직/수평 레이저 스캐닝 및 거리측정장치;A vertical / horizontal laser scanning and distance measuring device for measuring a distance by a signal emitted by a laser beam and being reflected by an aircraft, and measuring a standard of a main part of various types of aircraft;
    각종 항공기의 정보가 저장되어 있으며, 항공기에 대한 정보를 삭제, 추가 및 갱신할 수 있는 기종 데이터 메모리; 및A model data memory which stores information of various aircraft and which can delete, add, and update information about the aircraft; And
    상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 측정된 정보와 상기 기종 데이터 메모리에 기설정된 정보를 비교하여 항공기의 종류나 모델을 판독하며, 상기 수직/수평 레이저 스캐닝 및 거리측정장치를 제어하는 데이터 분석판정 알고리즘 처리장치;를 포함하는 항공기의 기종판별 및 주기유도를 위한 시스템.Data analysis to read the type or model of the aircraft by comparing the information measured by the vertical / horizontal laser scanning and distance measuring device and the information set in the model data memory, and to control the vertical / horizontal laser scanning and distance measuring device Determination algorithm processing apparatus; including a system for aircraft type identification and period induction.
  2. 제1항에 있어서,The method of claim 1,
    상기 항공기의 기종판별 및 주기유도를 위한 시스템은,The system for model identification and cycle induction of the aircraft,
    상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 상기 데이터 분석판정 알고리즘 처리장치에서 처리한 결과를 문자 및/또는 기호로써 항공기 조종사에게 시각적으로 제공하는 문자 디스플레이 장치를 더 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.And a text display device which is controlled by the data analysis determination algorithm processing apparatus and visually provides the aircraft pilot with the results processed by the data analysis determination algorithm processing apparatus as text and / or symbols. System for model identification and cycle guidance.
  3. 제1항에 있어서,The method of claim 1,
    상기 항공기의 기종판별 및 주기유도를 위한 시스템은,The system for model identification and cycle induction of the aircraft,
    상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 공항에 진입하는 항공기의 실물 이미지를 촬영하는 영상 카메라와, An image camera controlled by the data analysis determination algorithm processing apparatus and photographing a real image of an aircraft entering an airport;
    상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 상기 영상 카메라에 의해 생성된 영상 이미지를 수신하여 항공기 조종사 등이 시각적으로 항공기의 진입 상태를 볼 수 있도록 조종사 안내표시기에 구비된 영상 디스플레이장치를 더 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.The apparatus may further include an image display device that is controlled by the data analysis determination algorithm processing device and provided with a pilot guide indicator to receive a video image generated by the video camera so that an aircraft pilot or the like can visually see the entrance of the aircraft. System for aircraft type identification and cycle induction, characterized in that.
  4. 제1항에 있어서,The method of claim 1,
    상기 디스플레이 장치는,The display device,
    상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 상기 데이터 분석판정 알고리즘 처리장치에서 처리한 결과를 문자와 기호로 항공기 조종사에게 시각적으로 표시하여 제공할 수 있도록 조종사 안내표시기에 구비된 문자 디스플레이 장치를 더 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.And a character display device which is controlled by the data analysis determination algorithm processing device and equipped with a pilot guide indicator to visually display and provide the results of the processing by the data analysis determination algorithm processing device to the aircraft pilot in text and symbols. System for model identification and cycle induction of the aircraft comprising a.
  5. 제1항에 있어서,The method of claim 1,
    상기 항공기의 기종판별 및 주기유도를 위한 시스템은,The system for model identification and cycle induction of the aircraft,
    비상 시 또는 필요 시에 무인자동조작 대신 조작자가 수동으로 버튼조작에 의하여 디스플레이를 통해 항공기 조종사에게 지시할 수 있는 수동조작 제어패널을 더 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.A system for model discrimination and induction of aircraft, further comprising a manual operation control panel in which an operator can instruct the aircraft pilot through a display by a button operation manually instead of an automatic operation in an emergency or when necessary. .
  6. 제1항에 있어서,The method of claim 1,
    상기 항공기의 기종판별 및 주기유도를 위한 시스템은,The system for model identification and cycle induction of the aircraft,
    상기 데이터 분석판정 알고리즘 처리장치에 의해 제어되며, 공항 내의 종합운영시스템과 상호 접속되어, 공항종합정보를 수신받거나, 도출된 결과 및 운영상태를 종합운영시스템으로 송출할 수 있는 외부시스템 통신접속 인터페이스를 더 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.An external system communication connection interface controlled by the data analysis determination algorithm processing apparatus and interconnected with the comprehensive operating system in the airport to receive the comprehensive airport information or send the derived result and operation status to the integrated operating system. System for model identification and cycle induction of the aircraft further comprising.
  7. 제1항에 있어서,The method of claim 1,
    상기 수직/수평 레이저 스캐닝 및 거리 측정장치는,The vertical / horizontal laser scanning and distance measuring device,
    항공기로 레이저 빔을 발생시키는 레이저발생 소스소자;A laser generation source device for generating a laser beam by an aircraft;
    항공기에 의해 반사되어 수신되는 레이저 빔을 감지하는 레이저신호 수신소자;A laser signal receiving element for detecting a laser beam reflected and received by an aircraft;
    상기 레이저신호 수신소자와 레이저발생 소스소자를 제어하며, 상기 레이저발생 소스소자에서 레이저 빔을 발사한 시각과 상기 레이저신호 수신소자에서 수신된 시각과의 차이를 측정하여 항공기의 거리를 측정하고, 수신신호가 약한 경우에 이를 적절한 레벨로 증폭하는 레이저 레인지 파인더 회로;를 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.The distance between the aircraft is measured by controlling the laser signal receiving device and the laser generating source device, by measuring a difference between the time when the laser beam is emitted from the laser generating source device and the time received by the laser signal receiving device. And a laser range finder circuit for amplifying the signal to an appropriate level when the signal is weak.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 수직/수평 레이저 스캐닝 및 거리 측정장치는,The vertical / horizontal laser scanning and distance measuring device,
    상기 레이저발생 소스소자에 구비되어 레이저 빔을 항공기에 수직 방향으로 송출할 수 있도록 구비된 수직미러;A vertical mirror provided in the laser generating source device to transmit a laser beam in a vertical direction to the aircraft;
    상기 레이저발생 소스소자에 구비되어 레이저 빔을 항공기에 수평 방향으로 송출할 수 있도록 구비된 수평미러;A horizontal mirror provided in the laser generating source device to transmit a laser beam to the aircraft in a horizontal direction;
    상기 수직미러의 미러각을 조절하기 위해 상기 수직미러의 일측에 구비된 수직스텝모터;A vertical step motor provided at one side of the vertical mirror to adjust the mirror angle of the vertical mirror;
    상기 수평미러의 미러각을 조절하기 위해 상기 수평미러의 일측에 구비된 수평스텝모터; 및A horizontal step motor provided at one side of the horizontal mirror to adjust the mirror angle of the horizontal mirror; And
    상기 수직스텝모터와 수평스텝모터의 회전을 제어하는 스텝모터제어회로;를 더 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.And a step motor control circuit for controlling rotation of the vertical step motor and the horizontal step motor.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 레이저발생 소스소자에서 발생되는 레이저 빔은 900nm의 파장을 갖는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.And a laser beam generated by the laser generation source device has a wavelength of 900 nm.
  10. 제1항에 있어서,The method of claim 1,
    상기 데이터 분석판정 알고리즘 처리장치는 상기 수직/수평 레이저 스캐닝 및 거리 측정장치가 측정한 항공기와의 거리를 가지고 항공기의 날개 폭, 기체장 및 코끝 높이의 3 가지 정보를 산출하여, 상기 기종 데이터 메모리에 기설정된 정보와 상기 산출된 3 가지 정보를 비교하여 항공기의 종류 또는 모델을 판독하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.The data analysis determination algorithm processing apparatus calculates three pieces of information of the wing width, the gas field, and the nose tip height of the aircraft with the distance from the aircraft measured by the vertical / horizontal laser scanning and the distance measuring device, and stores the information in the model data memory. And a type or a model of the aircraft by comparing preset information with the three pieces of calculated information.
  11. 제10항에 있어서,The method of claim 10,
    상기 데이터 분석판정 알고리즘 처리장치는,The data analysis determination algorithm processing apparatus,
    항공기의 최좌측반사점과 최우측반사점의 거리와 수평각도를 측정하여 상기 날개 폭을 산출하고,The wing width is calculated by measuring the distance and the horizontal angle between the leftmost reflection point and the rightmost reflection point of the aircraft,
    항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하고, 최원반사점인 수직 뒷날개의 거리와 수직각도를 측정하여 항공기의 기체장을 산출하고,Measure the distance and vertical angle of the tip of the nose, the most recent reflection of the aircraft, and calculate the aircraft's gas field by measuring the distance and the vertical angle of the vertical rear wing, the most reflective.
    항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하여 코끝 높이를 산출하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템. A system for model discrimination and periodic induction of an aircraft, characterized in that the nose tip height is calculated by measuring the distance and the vertical angle of the nose tip, which is a recent reflection point of the aircraft.
  12. 제10항에 있어서,The method of claim 10,
    상기 데이터 분석판정 알고리즘 처리장치는,The data analysis determination algorithm processing apparatus,
    항공기의 최좌측반사점 또는 최우측반사점의 거리와 수평각도를 측정하여 두 배값으로써 상기 날개 폭을 산출하고,The wing width is calculated by doubling the distance and the horizontal angle of the leftmost or rightmost reflecting point of the aircraft,
    항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하고, 최원반사점인 수직 뒷날개의 거리와 수직각도를 측정하여 항공기의 기체장을 산출하고,Measure the distance and vertical angle of the tip of the nose, the most recent reflection of the aircraft, and calculate the aircraft's gas field by measuring the distance and the vertical angle of the vertical rear wing, the most reflective.
    항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하여 코끝 높이를 산출하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 시스템.A system for model discrimination and periodic induction of an aircraft, characterized in that the nose tip height is calculated by measuring the distance and the vertical angle of the nose tip, which is a recent reflection point of the aircraft.
  13. 레이저 빔으로써 항공기의 각 부분에 대한 거리를 측정하는 수직/수평 레이저 스캐닝 및 거리측정장치와, 각종 항공기의 정보가 저장되어 있는 기종 데이터 메모리와, 항공기의 종류나 모델을 판독하는 데이터 분석판정 알고리즘 처리장치를 포함하는 항공기의 기종판별 및 주기유도를 위한 시스템에 있어서,Vertical / horizontal laser scanning and distance measuring device that measures the distance to each part of the aircraft as a laser beam, model data memory that stores information of various aircraft, and data analysis judgment algorithm that reads the type and model of the aircraft In the system for aircraft type identification and periodic guidance of the aircraft comprising a device,
    상기 항공기의 기종판별 및 주기유도를 위한 시스템을 초기화하는 제1단계;A first step of initializing a system for model identification and periodic guidance of the aircraft;
    이 후, 항공기가 활주로를 경유하여 탑승구로부터 기설정된 거리에 도달하면 상기 수직/수평 레이저 스캐닝 및 거리측정장치로써 항공기의 진입을 감지하는 제2단계; Thereafter, when the aircraft reaches a predetermined distance from the gate through the runway, a second step of detecting the entry of the aircraft by the vertical / horizontal laser scanning and distance measuring device;
    이 후, 상기 수직/수평 레이저 스캐닝 및 거리측정장치로써 항공기를 수직선상에 정렬시키고 정지시키는 제3단계;A third step of aligning and stopping the aircraft on a vertical line with the vertical / horizontal laser scanning and distance measuring device;
    이 후, 상기 수직/수평 레이저 스캐닝 및 거리측정장치로써 항공기의 거리 및 각도를 측정하는 제4단계;Thereafter, a fourth step of measuring the distance and angle of the aircraft by the vertical / horizontal laser scanning and distance measuring device;
    이 후, 상기 데이터 분석판정 알고리즘 처리장치로써 상기 측정된 항공기의 거리 및 각도를 이용하여 항공기의 정보를 산출하는 제5단계;Thereafter, a fifth step of calculating information of the aircraft using the measured distance and angle of the aircraft by the data analysis determination algorithm processing apparatus;
    이 후, 상기 데이터 분석판정 알고리즘 처리장치로써 상기 기종 데이터 메모리에 저장되어 있는 정보를 비교하여 항공기의 기종이나 모델을 판독하는 제6단계;Thereafter, a sixth step of comparing the information stored in the model data memory with the data analysis determination algorithm processing device to read the model or model of the aircraft;
    이 후, 상기 판독된 항공기의 기종에 따라 주기위치를 산출하는 제7단계; 및Thereafter, a seventh step of calculating the cycle position in accordance with the model of the aircraft read; And
    이 후, 상기 산출된 주기위치에 항공기를 정지시키는 제8단계;를 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 방법. Thereafter, an eighth step of stopping the aircraft at the calculated periodic position; a method for model discrimination and period induction of the aircraft comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 제3단계는,The third step,
    상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최원반사점인 수직 뒷날개의 수평각과, 최근반사점인 항공기 코끝의 수평각을 측정하는 제3-1단계;Step 3-1 measuring the horizontal angle of the vertical rear wing which is the most reflective point of the aircraft and the horizontal angle of the nose tip of the aircraft which is the latest reflection point by the laser beam emitted from the vertical / horizontal laser scanning and distance measuring device;
    이 후, 상기 수직 뒷날개의 수평각과 항공기 코끝의 수평각으로써 항공기의 진행방향이 좌편향인지 우편향인지 또는 정확한 방향인지를 분석하는 제3-2단계; 및Thereafter, step 3-2 of analyzing a horizontal direction of the vertical rear wing and a horizontal angle of the nose of the aircraft to determine whether the direction of travel of the aircraft is leftward, postal or accurate; And
    이 후, 상기 수직 뒷날개의 수평각과 항공기 코끝의 수평각 값이 일치하면, 항공기를 정지시키는 제3-3단계;를 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 방법.Thereafter, if the horizontal angle of the vertical rear wing and the horizontal angle value of the nose tip of the aircraft coincides with each other, step 3-3 of stopping the aircraft.
  15. 제13항에 있어서,The method of claim 13,
    상기 제4단계는,The fourth step,
    상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최좌측반사점과 최우측반사점의 거리와 수평각도를 측정하는 제4-1단계;Step 4-1 measuring the distance and horizontal angle between the leftmost reflecting point and the rightmost reflecting point of the aircraft using the laser beam emitted from the vertical / horizontal laser scanning and distance measuring device;
    상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하고, 최원반사점인 수직 뒷날개의 거리와 수직각도를 측정하는 제4-2단계; 및A step 4-2 of measuring a distance and a vertical angle of a nose tip, which is a recent reflection point of an aircraft, and a distance and a vertical angle of a vertical rear wing, which is the most reflective point, using a laser beam emitted from the vertical / horizontal laser scanning and distance measuring device; And
    상기 수직/수평 레이저 스캐닝 및 거리측정장치에서 방출된 레이저 빔으로써 항공기의 최근반사점인 코끝의 거리와 수직각도를 측정하는 제4-3단계;를 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 방법.The fourth and third steps of measuring the distance and the vertical angle of the nose tip, which is the most recent reflection point of the aircraft as the laser beam emitted from the vertical / horizontal laser scanning and distance measuring device; Way for.
  16. 제15항에 있어서,The method of claim 15,
    상기 제5단계는,The fifth step,
    상기 제4-1단계에서 측정된 값을 가지고 날개 폭을 산출하는 제5-1단계;A fifth step of calculating a wing width using the value measured in the fourth step;
    상기 제4-2단계에서 측정된 값을 가지고 항공기의 기체장을 산출하는 제5-2단계; 및A fifth step of calculating a gas field of the aircraft using the value measured in the fourth step; And
    상기 제4-3단계에서 측정된 값을 가지고 항공기의 코끝 높이를 산출하는 제5-3단계;를 포함하는 것을 특징으로 하는 항공기의 기종판별 및 주기유도를 위한 방법.And a fifth step of calculating a nose height of the aircraft using the values measured in the fourth step. 3-3.
PCT/KR2013/002301 2012-03-21 2013-03-20 System and method for aircraft type identification and docking guidance WO2013141605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0028586 2012-03-21
KR20120028586 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013141605A1 true WO2013141605A1 (en) 2013-09-26

Family

ID=49222983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002301 WO2013141605A1 (en) 2012-03-21 2013-03-20 System and method for aircraft type identification and docking guidance

Country Status (1)

Country Link
WO (1) WO2013141605A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016015547A1 (en) * 2014-08-01 2016-02-04 深圳中集天达空港设备有限公司 Machine vision-based method and system for aircraft docking guidance and aircraft type identification
WO2016015546A1 (en) * 2014-08-01 2016-02-04 深圳中集天达空港设备有限公司 System and method for aircraft docking guidance and aircraft type identification
EP3222529A1 (en) * 2016-03-21 2017-09-27 ADB Safegate Sweden AB Optimizing range of aircraft docking system
EP3196128A4 (en) * 2014-08-01 2017-12-20 Shenzhen Cimc-tianda Airport Support Ltd. System and method for aircraft docking guidance and aircraft type identification
CN112461201A (en) * 2020-11-18 2021-03-09 中航通飞华南飞机工业有限公司 Airplane horizontal measurement method and system
CN113706930A (en) * 2021-09-01 2021-11-26 浙江华是科技股份有限公司 Bridge area piloting method, device and system and computer storage medium
CN116068452A (en) * 2023-03-08 2023-05-05 石家庄科林电气股份有限公司 Power supply type judging method based on power supply characteristics, double-source electric energy metering method and double-source metering electric energy meter
KR102668998B1 (en) * 2023-07-31 2024-05-27 인천국제공항공사 Assistant apparatus for ground handling of aircraft and operating method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207896A (en) * 1996-02-09 1997-08-12 Nec Corp Apron guiding system
KR100350402B1 (en) * 1994-10-14 2003-01-06 세이프게이트 인터내셔날 에이비 Aircraft identification and docking guidance systems
JP2007121307A (en) * 2001-01-12 2007-05-17 Safegate Internatl Ab Aircraft docking system and method for automatic checking of apron and detection of fog or snow
KR100982900B1 (en) * 2002-03-15 2010-09-20 록히드 마틴 코포레이션 System and method for target signature calculation and recognition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350402B1 (en) * 1994-10-14 2003-01-06 세이프게이트 인터내셔날 에이비 Aircraft identification and docking guidance systems
JPH09207896A (en) * 1996-02-09 1997-08-12 Nec Corp Apron guiding system
JP2007121307A (en) * 2001-01-12 2007-05-17 Safegate Internatl Ab Aircraft docking system and method for automatic checking of apron and detection of fog or snow
KR100982900B1 (en) * 2002-03-15 2010-09-20 록히드 마틴 코포레이션 System and method for target signature calculation and recognition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290219B2 (en) 2014-08-01 2019-05-14 Shenzhen Cimc-Tianda Airport Support Ltd. Machine vision-based method and system for aircraft docking guidance and aircraft type identification
WO2016015546A1 (en) * 2014-08-01 2016-02-04 深圳中集天达空港设备有限公司 System and method for aircraft docking guidance and aircraft type identification
US20170263139A1 (en) * 2014-08-01 2017-09-14 Shenzhen Cimc-Tianda Airport Support Ltd. Machine vision-based method and system for aircraft docking guidance and aircraft type identification
US20170262732A1 (en) * 2014-08-01 2017-09-14 Shenzhen Cimc-Tianda Airport Support Ltd. System and method for aircraft docking guidance and aircraft type identification
WO2016015547A1 (en) * 2014-08-01 2016-02-04 深圳中集天达空港设备有限公司 Machine vision-based method and system for aircraft docking guidance and aircraft type identification
US10562644B2 (en) 2014-08-01 2020-02-18 Shenzhen Cimc-Tianda Airport Support Ltd. System and method for aircraft docking guidance and aircraft type identification
EP3196128A4 (en) * 2014-08-01 2017-12-20 Shenzhen Cimc-tianda Airport Support Ltd. System and method for aircraft docking guidance and aircraft type identification
US10255520B2 (en) 2014-08-01 2019-04-09 Shenzhen Cimc-Tianda Airport Support Ltd. System and method for aircraft docking guidance and aircraft type identification
EP3222529A1 (en) * 2016-03-21 2017-09-27 ADB Safegate Sweden AB Optimizing range of aircraft docking system
US10384805B2 (en) 2016-03-21 2019-08-20 Adb Safegate Sweden Ab Optimizing range of aircraft docking system
EP3564133A1 (en) * 2016-03-21 2019-11-06 ADB Safegate Sweden AB Optimizing range of aircraft docking system
WO2017162432A1 (en) * 2016-03-21 2017-09-28 Adb Safegate Sweden Ab Optimizing range of aircraft docking system
CN112461201A (en) * 2020-11-18 2021-03-09 中航通飞华南飞机工业有限公司 Airplane horizontal measurement method and system
CN113706930A (en) * 2021-09-01 2021-11-26 浙江华是科技股份有限公司 Bridge area piloting method, device and system and computer storage medium
CN116068452A (en) * 2023-03-08 2023-05-05 石家庄科林电气股份有限公司 Power supply type judging method based on power supply characteristics, double-source electric energy metering method and double-source metering electric energy meter
CN116068452B (en) * 2023-03-08 2023-06-06 石家庄科林电气股份有限公司 Power supply type judging method based on power supply characteristics, double-source electric energy metering method and double-source metering electric energy meter
KR102668998B1 (en) * 2023-07-31 2024-05-27 인천국제공항공사 Assistant apparatus for ground handling of aircraft and operating method thereof

Similar Documents

Publication Publication Date Title
WO2013141605A1 (en) System and method for aircraft type identification and docking guidance
EP2437028B1 (en) Monitoring a plurality of measuring points using telescope with light projection distance measurement and camera
EP3677872B1 (en) Surveying instrument
US10605232B2 (en) Method and device for determining a position of defects or damage on rotor blades of a wind turbine in an installed state
KR101160896B1 (en) Discriminating system of the aircraft type using laser scanner and conforming system of aircraft self position
KR102014425B1 (en) Tunnel wall damage inspection system using drone and inspection method
KR20080103820A (en) Hybrid tunnel scanning instrument
EP2788715B1 (en) Robotic leveling
KR101314566B1 (en) System and method for discrimination of an aircraft model and docking guide of an aircraft
EP2437030B1 (en) Measuring method and measuring instrument
WO2020075954A1 (en) Positioning system and method using combination of results of multimodal sensor-based location recognition
CH709876B1 (en) Geodesy tool.
WO2017073924A1 (en) System and method for determining location of underwater working apparatus using welding line of underwater structure
US11595558B2 (en) Apparatus and method for measuring cracks in wall surface
WO2021096328A2 (en) Laser tracking device having function for sensing initial position of target, and tracking method
WO2017119545A1 (en) Method for safely guiding aircraft to airport stand using scanner equipped with 2d laser sensor and motor
JP2001264059A (en) Method of measuring displacement quantity of measured object
WO2020222493A1 (en) Putting assistance terminal for providing putting guide on basis of green information, and control method therefor
US20200263826A1 (en) Method and device for mapping an inlet
WO2015005534A1 (en) Hybrid visual interval inducing device
KR102455005B1 (en) Apparatus and metohd for generating target coordinates of airborne electro-optical infrared system
KR102488177B1 (en) Surveying Equipment
CN208223418U (en) A kind of intelligent vision measuring system for aero-engine installation
KR20220145448A (en) Aircraft docking guidance system using 3D laser scanner and control method for the same
WO2022196844A1 (en) System for managing underground facility comprising gpr-ar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763453

Country of ref document: EP

Kind code of ref document: A1