WO2013141321A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2013141321A1
WO2013141321A1 PCT/JP2013/058143 JP2013058143W WO2013141321A1 WO 2013141321 A1 WO2013141321 A1 WO 2013141321A1 JP 2013058143 W JP2013058143 W JP 2013058143W WO 2013141321 A1 WO2013141321 A1 WO 2013141321A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mrn
list
handover
denb
Prior art date
Application number
PCT/JP2013/058143
Other languages
English (en)
French (fr)
Inventor
真人 藤代
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/386,407 priority Critical patent/US9642050B2/en
Priority to JP2014506282A priority patent/JP6062420B2/ja
Priority to EP13765247.5A priority patent/EP2830344A4/en
Publication of WO2013141321A1 publication Critical patent/WO2013141321A1/ja
Priority to US15/469,314 priority patent/US10244515B2/en
Priority to US16/281,909 priority patent/US10791547B2/en
Priority to US17/001,107 priority patent/US11337193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • H04W36/008357Determination of target cell based on access point [AP] properties, e.g. AP service capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/249Reselection being triggered by specific parameters according to timing information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a communication control method in a mobile communication system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • the relay station performs relay transmission between the donor base station and the user terminal (for example, see Non-Patent Document 1).
  • an object of the present invention is to provide a communication control method capable of supporting a movable relay station.
  • the communication control method of the present invention maintains a donor base station list, connects to a donor base station existing in the donor base station list, and performs relay transmission between the donor base station and a user terminal
  • a step A for specifying an adjacent base station a step B for inquiring whether the adjacent base station specified in the step A is acceptable for the relay station, and an inquiry in the step B
  • C updating the donor base station list according to the result.
  • the communication control method of the present invention is a communication control method applied to a mobile communication system including a relay station that performs relay transmission between a donor base station and a user terminal, and the relay station to a target base station
  • a step A for transmitting a handover request for requesting acceptance of the relay station to the target base station and in the step A, information indicating a load status of the relay station together with the handover request It is characterized by transmitting.
  • the communication control method of the present invention holds a donor base station list, connects to a donor base station existing in the donor base station list, and performs relay transmission between the donor base station and a user terminal.
  • the communication control method of the present invention is a communication control method applied to a mobile communication system including a base station having a donor base station function and a relay station that performs relay transmission between the base station and a user terminal.
  • the base station has a step A in which the base station holds an adjacent base station list including an identifier of the adjacent base station, and the adjacent base station list functions as a donor base station for each of the adjacent base stations. It further includes information indicating whether or not it has.
  • the communication control method of the present invention is a communication control method applied to a mobile communication system in which the base station makes a handover decision of a user terminal connected to a base station, and is connected to a donor base station, and the donor base A relay station that performs relay transmission between the station and the user terminal, wherein the relay station performs handover determination.
  • the relay station performs handover determination of the relay station.
  • FIG. 1 is a configuration diagram of a mobile communication system.
  • FIG. 2 is a protocol stack diagram of the Un interface.
  • FIG. 3 is a protocol stack diagram of the X2 interface.
  • FIG. 4 is a protocol stack diagram of the S1 interface.
  • FIG. 5 is a configuration diagram of a radio frame.
  • FIG. 6 is a block diagram of the UE.
  • FIG. 7 is a block diagram of the eNB.
  • FIG. 8 is a block diagram of the MRN.
  • FIG. 9 is a sequence diagram of an operation pattern 1 according to the first embodiment.
  • FIG. 10 is a sequence diagram of an operation pattern 2 according to the first embodiment.
  • FIG. 11 is a sequence diagram of an operation pattern 3 according to the first embodiment.
  • FIG. 12 is a sequence diagram of an operation pattern 1 according to the second embodiment.
  • FIG. 9 is a sequence diagram of an operation pattern 1 according to the first embodiment.
  • FIG. 13 is a sequence diagram of an operation pattern 2 according to the second embodiment.
  • FIG. 14 is a configuration diagram of the DeNB list used in the operation pattern 4 according to the second embodiment.
  • FIG. 15 is a sequence diagram of an operation pattern 1 according to the third embodiment.
  • FIG. 16 is a sequence diagram of an operation pattern 2 according to the third embodiment.
  • FIG. 17 is a configuration diagram of a neighboring eNB list according to the fourth embodiment.
  • FIG. 18 is a sequence diagram of an operation pattern 1 according to the fourth embodiment.
  • FIG. 19 is a sequence diagram of an operation pattern 2 according to the fourth embodiment.
  • FIG. 20 is an operation sequence diagram according to the fifth embodiment.
  • the communication control method holds a donor base station list, connects to a donor base station existing in the donor base station list, and performs relay transmission between the donor base station and a user terminal.
  • a communication control method in a relay station to perform step A for specifying an adjacent base station, step B for inquiring whether the adjacent base station specified in step A is acceptable for the relay station, and step B And C for updating the donor base station list according to the inquiry result in (1).
  • the step B includes a step B1 of inquiring whether the neighboring base station identified in the step A has a donor base station function.
  • the step B includes a step B2 of notifying the adjacent base station identified in the step A of the load status of the relay station.
  • the communication control method further includes a step D of notifying the core network device of the donor base station list updated in the step C via the donor base station.
  • the communication control method is a communication control method applied to a mobile communication system including a relay station that performs relay transmission between a donor base station and a user terminal.
  • the relay station In the handover procedure of the relay station, the relay station has a step A for transmitting a handover request for requesting acceptance of the relay station to the target base station, and in the step A, information indicating a load status of the relay station is Sent with a handover request.
  • the relay station when the relay station determines whether to perform handover to the target base station, in step A, the relay station transmits information indicating the load status of the relay station together with the handover request.
  • the relay station is a donor base station list that is a list of donor base station candidate base stations or an adjacent base station list that is a list of adjacent base stations. And determining the target base station based on: the donor base station list or the neighboring base station list for each of the donor base station candidate base station or the neighboring base station, It includes at least one information of cell direction, capacity, and cell size.
  • the donor base station transmits information indicating the load status of the relay station together with the handover request.
  • a communication control method holds a donor base station list, connects to a donor base station existing in the donor base station list, and performs relay transmission between the donor base station and a user terminal.
  • a communication control method in a mobile communication system including a relay station for performing a relay station connection to a predetermined base station when handover of the relay station to a base station existing in the donor base station list is impossible Step A of acquiring a donor base station list held by the other relay station from the other relay station.
  • the relay station receives, from the predetermined base station, relay station information that is information on other relay stations connected to the predetermined base station prior to the step A. Step C is further included.
  • the communication control method includes a step D of transmitting a handover request from the relay station to a target base station, and a handover rejection response when the target base station rejects the handover request.
  • the predetermined base station is the target base station, and the target base station transmits the relay station information by including the relay station information in the handover rejection response.
  • the relay station receives the relay station information included in the handover rejection response.
  • the communication control method further includes a step D of inquiring the predetermined base station about another relay station connected to the predetermined base station.
  • a communication control method is applied to a mobile communication system including a base station having a donor base station function and a relay station that performs relay transmission between the base station and a user terminal.
  • the base station has a neighbor base station list including an identifier of the neighbor base station, wherein the neighbor base station list is the donor base station for each neighbor base station. It further includes information indicating whether or not it has a function.
  • the said base station when the said relay station connects to the said base station, the said base station requests
  • the target base station in the handover procedure of the relay station from the base station to the target base station, receives a handover request from the base station, and the target base station receives the donor If the target base station does not have a base station function, the target base station further includes a step E of transmitting, to the base station, information indicating that the target base station does not have the donor base station function together with a rejection response to the handover request.
  • the communication control method is a communication control method applied to a mobile communication system in which the base station performs handover determination of a user terminal connected to a base station, and is connected to a donor base station.
  • the relay station performs step A for performing handover determination of the relay station that performs relay transmission between the donor base station and the user terminal, and in step A, the relay station performs handover determination of the relay station.
  • the relay station when the communication control method determines that the handover to the target base station is performed in the step A, the relay station issues a handover request for requesting acceptance of the relay station. It further has a step B of transmitting.
  • the relay station transmits the handover request to the target base station using a network interface established between the relay station and the target base station. including.
  • the target base station requests information for handover of the relay station from the donor base station in response to reception of the handover request from the relay station.
  • step D in which the donor base station transmits information for handover of the relay station to the target base station in response to a request from the target base station.
  • handover of the relay station is performed using the network interface. Further comprising a step E of transmitting a handover permission response including information for the relay station to the relay station.
  • the relay station in Step B, includes one or more identifiers of the target base station in the handover request and transmits the handover request to the donor base station.
  • the relay station prior to step B, in the communication control method, responds to a handover request from the relay station to the donor base station and / or the target base station. It further includes the step of inquiring whether or not it is possible.
  • FIG. 1 is a configuration diagram of a mobile communication system according to this embodiment.
  • a mobile communication system includes a user terminal (UE) 100, a base station (eNB: evolved Node-B) 200, a movable relay station (MRN: Mobile Relay Node) 300, A mobility management device (MME: Mobility Management Entity) / gateway device (S-GW: Serving Gateway) 400 and an operation and maintenance device (OAM: Operation and Maintenance) 500.
  • UE user terminal
  • eNB evolved Node-B
  • MRN Mobile Relay Node
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • OAM Operation and Maintenance
  • the eNB 200 and the MRN 300 are network devices included in a radio access network (E-UTRAN: Evolved-UMTS Terrestrial Radio Access Network) 10.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • the MME / S-GW 400 and the OAM 500 are network devices included in a core network (EPC: Evolved Packet Core) 20.
  • EPC Evolved Packet Core
  • the UE 100 is a movable wireless communication device possessed by a user.
  • the UE 100 performs radio communication with a cell (referred to as a “serving cell”) that has established a connection in a connection state corresponding to a state during communication.
  • a serving cell a cell that has established a connection in a connection state corresponding to a state during communication.
  • the “cell” is used as a term indicating the minimum unit of the radio communication area, and is also used as a function of performing radio communication with the UE 100.
  • the eNB 200 may be referred to as a cell.
  • the handover procedure includes a handover preparation stage (Preparation), a handover execution stage (Execution), and a handover completion stage (Completion).
  • the handover source cell is called a “source cell”, and the handover destination cell is called a “target cell”.
  • the handover source eNB 200 is referred to as a “source eNB”, and the handover destination eNB 200 is referred to as a “target eNB”.
  • the eNB 200 is a fixed wireless communication device installed by a communication carrier, and is, for example, a macro base station (MeNB) or a pico base station (PeNB). Alternatively, the eNB 200 may be a home base station (HeNB) that can be installed indoors. The eNB 200 forms a cell. The eNB 200 performs radio communication with the UE 100.
  • MeNB macro base station
  • PeNB pico base station
  • HeNB home base station
  • the eNB 200 forms a cell.
  • the eNB 200 performs radio communication with the UE 100.
  • ENB 200 has the right to make a handover decision for UE 100 under its control. Specifically, the eNB 200 determines whether or not to perform a handover from the serving cell to another cell based on a measurement report (Measurement Report) from the UE 100. The eNB 200 maintains a list of neighboring eNBs (neighboring cells) (hereinafter referred to as “neighboring eNB list”) for handover control of the UE 100.
  • neighboring eNB list neighboring eNBs
  • the eNB 200 can establish a connection with the MRN 300 and operate as a donor of the MRN 300.
  • a donor base station For example, an eNB 200 that supports a release after 3GPP Release 10 has a DeNB function as an optional function, but an eNB 200 that supports an earlier release does not have a DeNB function.
  • eNB200 (HeNB) with low processing capability may not have a DeNB function.
  • the eNB 200 communicates with the EPC 20 (MME / S-GW 400) on the S1 interface, which is a logical communication path with the EPC 20.
  • the S1 interface is also established between the eNB 200 (DeNB 200-1) that operates as a donor of the MRN 300 and the MRN 300.
  • the MRN 300 can communicate with the EPC 20 on the S1 interface via the DeNB 200-1.
  • the MME is provided corresponding to a control plane that handles control information, and performs various types of mobility management and authentication processing for the UE 100.
  • the S-GW is provided corresponding to a user plane that handles user data, and performs transfer control of user data transmitted and received by the UE 100.
  • ENB200 communicates with the said adjacent eNB200 on the X2 interface which is a logical communication path between adjacent eNB200.
  • the X2 interface is also established between the eNB 200 (DeNB 200-1) that operates as a donor of the MRN 300 and the MRN 300.
  • the MRN 300 can communicate with the neighboring eNB 200-2 over the X2 interface via the DeNB 200-1.
  • the S1 interface and / or the X2 interface corresponds to a network interface.
  • the MRN 300 is a movable wireless communication device installed on a moving body such as a train or a bus.
  • the MRN 300 holds a list of eNBs 200 (cells) that can be used as DeNBs (hereinafter referred to as “DeNB list”).
  • DeNB list a list of eNBs 200 (cells) that can be used as DeNBs.
  • the MRN 300 acquires the DeNB list from the OAM 500 when it starts up.
  • the MRN 300 establishes a connection with the eNB 200 existing in the DeNB list (Connect), and performs radio communication with the eNB 200 (DeNB 200-1) that has established the connection. Then, the MRN 300 performs relay transmission between the UE 100 under its control and the DeNB 200-1.
  • the MRN 300 is basically the same as the UE 100 from the viewpoint of the DeNB 200-1, and is similar to the eNB 200 from the viewpoint of the UE 100. That is, the MRN 300 has both the properties of the UE 100 and the properties of the eNB 200.
  • connection with the new DeNB is established after the transition from the connection state to the idle state (Disconnect), or the connection with the new DeNB while maintaining the connection state.
  • Disconnect the connection state to the idle state
  • the connection with the new DeNB while maintaining the connection state.
  • the former case Connect / Disconnect
  • the latter case handover
  • the MRN 300 has a handover decision right for the UE 100 under its control. Specifically, the MRN 300 determines whether or not to perform handover from the serving cell to another cell based on a measurement report (Measurement Report) from the UE 100.
  • the eNB 200 maintains a neighboring eNB list for the handover control of the UE 100.
  • FIG. 2 is a protocol stack diagram of the Un interface.
  • layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs data encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to an upper layer using a physical channel. Data is transmitted through a physical channel between the physical layer of the MRN 300 and the physical layer of the DeNB 200-1.
  • the physical layer is connected to the MAC layer through a transport channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the MRN 300 and the MAC layer of the DeNB 200-1.
  • the MAC layer of the DeNB 200-1 includes a MAC scheduler that determines a transport format and resource blocks for uplink and downlink.
  • the transport format includes a transport block size, a modulation and coding scheme (MCS), and antenna mapping.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted via the logical channel between the RLC layer of the MRN 300 and the RLC layer of the DeNB 200-1.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Data is transmitted between the RRC layer of the MRN 300 and the RRC layer of the DeNB 200-1 via a radio bearer.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is an RRC connection between the RRC of the MRN 300 and the RRC of the DeNB 200-1, the MRN 300 is in the “connected state”, otherwise the MRN 300 is in the “idle state”.
  • the NAS (Non-Access Stratum) layer located above the RRC layer is provided in the MRN 300 and the MME 300, and performs session management, mobility management, and the like.
  • FIG. 3 is a protocol stack diagram regarding the X2 interface established between the MRN 300 and the neighboring eNB 200-2. Here, the control plane will be described.
  • IP Internet Protocol
  • SCTP Stream Control Transmission Protocol
  • X2-AP X2 Application Protocol
  • the X2 message transmitted by the MRN 300 can be relayed by the DeNB 200-1 and transmitted to the neighboring eNB 200-2. Further, the X2 message transmitted by the neighboring eNB 200-2 can be relayed by the DeNB 200-1 and transmitted to the MRN 300.
  • L1 and L2 between the MRN 300 and the DeNB 200-1 are the same as the L1 and L2 of the Un interface.
  • FIG. 4 is a protocol stack diagram related to the S1 interface established between the MRN 300 and the MME 400. As shown in FIG. 4, the S1 interface differs from the X2 interface in that S1-AP is provided instead of X2-AP.
  • FIG. 5 is a configuration diagram of a radio frame used in the mobile communication system (LTE system) according to the present embodiment.
  • the LTE system employs OFDMA (Orthogonal Frequency Division Multiplexing Access) for the downlink, and SC-FDMA (Single Carrier Division Multiple Access) for the uplink.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is a data area mainly used as a physical downlink shared channel (PDSCH).
  • a different reference signal (RS) is transmitted for each cell.
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is a data region mainly used as a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the radio frame includes a plurality of MBSFN (MBMS Single Frequency Network) subframes.
  • the MRN 300 performs communication with the DeNB 200-1 using the MBSFN subframe.
  • FIG. 6 is a block diagram of the UE 100. As illustrated in FIG. 6, the UE 100 includes a radio transmission / reception unit 110, a storage unit 120, and a control unit 130.
  • the wireless transceiver 110 transmits and receives wireless signals.
  • the storage unit 120 stores various information used for control by the control unit 130.
  • the control unit 130 controls various functions of the UE 100.
  • the control unit 130 controls the operation of the UE 100 described above.
  • FIG. 7 is a block diagram of the eNB 200. As illustrated in FIG. 7, the eNB 200 includes a radio transmission / reception unit 210, a network communication unit 220, a storage unit 230, and a control unit 240.
  • the wireless transmission / reception unit 210 transmits / receives a wireless signal. Moreover, the radio
  • the network communication unit 220 communicates with the MME / S-GW 400 over the S1 interface.
  • the network communication unit 220 performs communication with the adjacent eNB 200 on the X2 interface.
  • the storage unit 230 stores various information used for control by the control unit 240.
  • the storage unit 230 stores (holds) the neighboring eNB list.
  • the control unit 240 controls various functions of the eNB 200.
  • the control unit 240 controls the operation of the eNB 200 described above and controls the operation of the eNB 200 described later.
  • FIG. 8 is a block diagram of the MRN 300. As illustrated in FIG. 8, the MRN 300 includes an eNB radio transmission / reception unit 310, an UE radio transmission / reception unit 320, a storage unit 330, and a control unit 340.
  • the MRN 300 includes an eNB radio transmission / reception unit 310, an UE radio transmission / reception unit 320, a storage unit 330, and a control unit 340.
  • the eNB radio transmission / reception unit 310 receives a radio signal from the eNB 200 and transmits the radio signal to the eNB 200.
  • the UE radio transceiver 320 receives a radio signal from the UE 100 and transmits a radio signal to the UE 100.
  • the UE radio transceiver unit 320 forms a cell.
  • the storage unit 330 stores various information used for control by the control unit 340. In addition, the storage unit 330 stores (holds) a neighboring eNB list for handover control of the UE 100 and a DeNB list for determining a DeNB to which the MRN 300 should establish a connection.
  • Control unit 340 controls various functions of MRN 300. For example, control unit 340 controls the operation of MRN 300 described above and controls the operation of MRN 300 described later.
  • the control unit 340 can determine any DeNB candidate existing in the DeNB list as a DeNB by measuring a radio signal (reference signal) received by the eNB radio transmission / reception unit 310.
  • the MRN 300 may have a positioning system (for example, a GPS receiver 350) for acquiring its own position information.
  • the MRN 300 can estimate its moving speed based on its own position information.
  • the MRN 300 that holds the DeNB list connects to the DeNB 200-1 existing in the DeNB list, and performs relay transmission between the DeNB 200-1 and the UE 100 identifies the adjacent eNB 200. Then, the specified neighboring eNB 200 is inquired as to whether the MRN 300 can be accepted, and the DeNB list is updated according to the inquiry result.
  • the MRN 300 specifies a neighboring eNB 200 that does not exist in the DeNB list.
  • the MRN 300 updates the DeNB list so as to add the specified neighboring eNB 200 when the inquiry result of the identified neighboring eNB 200 indicates that the MRN 300 is accepted.
  • the MRN 300 specifies the neighboring eNB 200 existing in the DeNB list.
  • the MRN 300 updates the DeNB list so that the specified neighboring eNB 200 is invalidated (excluded) when the inquiry result of the identified neighboring eNB 200 indicates that the MRN 300 is not accepted.
  • FIG. 9 is a sequence diagram of the operation pattern 1 according to the present embodiment.
  • step S101 the OAM 500 notifies the MRN 300 via the DeNB 200-1 of the neighboring eNB list (NL) for handover control of the UE 100. Not only the case of notifying the entire neighboring eNB list, but only the portion related to the change may be notified.
  • step S102 the MRN 300 updates the held neighboring eNB list (NL) with the neighboring eNB list received from the OAM 500.
  • step S103 the MRN 300 compares the neighboring eNB list updated in step S102 with the held DeNB list. Specifically, the MRN 300 searches for a neighboring eNB that exists in the neighboring eNB list and does not exist in the DeNB list.
  • the description will be made assuming that the eNB 200-2 is specified as a neighboring eNB that exists in the neighboring eNB list and does not exist in the DeNB list.
  • step S104 the MRN 300 inquires of the eNB 200-2 specified in step S103 whether or not it has the DeNB function on the X2 interface.
  • step S105 the eNB 200-2 confirms whether or not the eNB 200-2 has the DeNB function in response to the inquiry from the MRN 300.
  • step S106 the eNB 200-2 notifies the MRN 300 on the X2 interface whether or not the eNB 200-2 has the DeNB function.
  • step S107 the MRN 300 confirms whether the eNB 200-2 has a DeNB function.
  • step S108 the MRN 300 updates the DeNB list to add the eNB 200-2. Specifically, the MRN 300 adds the identifier (cell ID) of the eNB 200-2 to the DeNB list.
  • step S109 the MRN 300 notifies the OAM 500 of the DeNB list updated in step S108 via the DeNB 200-1. Not only the case where the entire updated DeNB list is notified, but only the part related to the update may be notified.
  • the operation may be performed periodically in a period in which the moving speed of the MRN 300 exceeds the threshold value.
  • the MRN 300 does not include the neighboring cell (neighboring eNB) detected by the measurement for the received reference signal in the DeNB list, or is the neighboring cell having the highest reference signal received power (RSRP) in the measurement for the received reference signal.
  • An operation for updating the DeNB list may be started by using the fact that (neighboring eNB) is not included in the DeNB list, and the neighboring cell (neighboring eNB) may be inquired.
  • FIG. 10 is a sequence diagram of an operation pattern 2 according to the present embodiment.
  • step S111 the OAM 500 notifies the MRN 300 via the DeNB 200-1 of the neighboring eNB list for handover control of the UE 100. Not only the case of notifying the entire neighboring eNB list, but only the portion related to the change may be notified.
  • step S112 the MRN 300 updates the held neighboring eNB list with the neighboring eNB list received from the OAM 500.
  • step S113 the MRN 300 compares the neighboring eNB list updated in step S112 with the held DeNB list. Specifically, the MRN 300 searches for a neighboring eNB that exists in the neighboring eNB list and does not exist in the DeNB list.
  • the description will be made assuming that the eNB 200-2 is specified as a neighboring eNB that exists in the neighboring eNB list and does not exist in the DeNB list.
  • the MRN 300 grasps its own load status.
  • the load status includes the number of UEs 100 accommodated by the MRN 300 (specifically, the number of UEs 100 connected to the MRN 300), the amount of traffic handled by the MRN 300, and the like.
  • ascertain a potential load condition for example, processing capacity, such as the maximum number of accommodation UEs and a maximum traffic amount, not only an actual load condition.
  • step S114 the MRN 300 notifies the eNB 200-2 identified in step S113 of the load status on the X2 interface and inquires whether the MRN 300 can be accepted. At that time, the MRN 300 may also notify that the subject that made the inquiry is “MRN”.
  • step S115 the eNB 200-2 determines whether or not the MRN 300 can be accepted in response to an inquiry from the MRN 300. Specifically, the eNB 200-2 compares the margin based on its own load status with the load status of the MRN 300, and determines whether there is no problem even if the connection with the MRN 300 is established.
  • step S116 the eNB 200-2 notifies the MRN 300 of whether or not the MRN 300 can be accepted on the X2 interface.
  • step S117 the MRN 300 confirms whether the result of the inquiry to the eNB 200-2 is “acceptance permitted” or “acceptance rejection”.
  • step S118 the MRN 300 updates the DeNB list to add the eNB 200-2. Specifically, the MRN 300 adds the identifier (cell ID) of the eNB 200-2 to the DeNB list.
  • Step S119 the MRN 300 notifies the OAM 500 of the DeNB list updated in Step S118 via the DeNB 200-1. Not only the case where the entire updated DeNB list is notified, but only the part related to the update may be notified.
  • FIG. 11 is a sequence diagram of the operation pattern 3 according to the present embodiment.
  • step S121 the MRN 300 searches for a neighboring eNB existing in the neighboring eNB list, for example, triggered by a significant change in its load status.
  • eNB 200-2 is specified as the neighboring eNB existing in the neighboring eNB list.
  • the MRN 300 grasps its own load status.
  • the load status includes the number of UEs 100 accommodated by the MRN 300 (specifically, the number of UEs 100 connected to the MRN 300), the amount of traffic handled by the MRN 300, and the like.
  • step S122 the MRN 300 notifies the eNB 200-2 identified in step S121 of the load status on the X2 interface and inquires whether the MRN 300 can be accepted. At that time, the MRN 300 may also notify that the subject that made the inquiry is “MRN”.
  • step S123 the eNB 200-2 determines whether or not the MRN 300 can be accepted in response to an inquiry from the MRN 300. Specifically, the eNB 200-2 compares the margin based on its own load status with the load status of the MRN 300, and determines whether there is no problem even if the connection with the MRN 300 is established.
  • step S124 the eNB 200-2 notifies the MRN 300 of whether or not the MRN 300 can be accepted on the X2 interface.
  • step S125 the MRN 300 confirms whether the result of the inquiry to the eNB 200-2 is “acceptance permitted” or “acceptance rejection”.
  • step S126 the MRN 300 updates the DeNB list to invalidate the eNB 200-2. Specifically, the MRN 300 deletes the identifier (cell ID) of the eNB 200-2 from the DeNB list or temporarily sets it to invalid.
  • step S127 the MRN 300 notifies the OAM 500 of the DeNB list updated in step S126 via the DeNB 200-1. Not only the case where the entire updated DeNB list is notified, but only the part related to the update may be notified.
  • the DeNB list is held, connected to the DeNB 200-1 existing in the DeNB list, and relay transmission is performed between the DeNB 200-1 and the UE 100.
  • the MRN 300 identifies the neighboring eNB 200, inquires whether the identified neighboring eNB 200 can accept the MRN 300, and updates the DeNB list according to the inquiry result. Thereby, even when the MRN 300 moves, the DeNB list can be adapted to the situation of the movement destination.
  • the MRN 300 specifies a neighboring eNB 200 that does not exist in the DeNB list.
  • the MRN 300 updates the DeNB list so as to add the specified neighboring eNB 200 when the inquiry result of the identified neighboring eNB 200 indicates that the MRN 300 is accepted.
  • the new DeNB candidate can be added to the DeNB list.
  • the MRN 300 specifies the neighboring eNB 200 existing in the DeNB list.
  • the MRN 300 updates the DeNB list so as to invalidate the specified neighboring eNB 200 when the inquiry result of the identified neighboring eNB 200 indicates that the MRN 300 is not accepted.
  • the eNB 200 that becomes unable to accept the MRN 300 can be prevented from being a DeNB candidate.
  • the inquiry includes information indicating that the inquiry source is “MRN”.
  • the neighboring eNB 200 can determine whether or not it is acceptable after recognizing that the inquiry source is “MRN”.
  • the MRN 300 specifies the neighboring eNB 200 that does not exist in the DeNB list based on the comparison result between the neighboring eNB list notified from the OAM 500 via the DeNB 200-1 and the DeNB list held by the MRN 300. Thereby, the neighboring eNB 200 that does not exist in the DeNB list can be appropriately identified.
  • the MRN 300 specifies the neighboring eNB 200 that does not exist in the DeNB list based on the radio signal received by the MRN 300 from the neighboring eNB 200. Thereby, the neighboring eNB 200 that does not exist in the DeNB list can be appropriately identified.
  • the MRN 300 inquires of the identified neighboring eNB 200 whether or not it has the DeNB function. Thereby, only the neighboring eNB 200 having the DeNB function can be added to the DeNB list.
  • the MRN 300 notifies the specified neighboring eNB 200 of the load status of the MRN 300. Thereby, the neighboring eNB 200 can determine whether or not the MRN 300 can be accepted based on its own load status and the load status of the MRN 300.
  • the MRN 300 notifies the OAM 500 of all or part of the updated DeNB list via the DeNB 200-1. Thereby, the OAM 500 can notify the other updated MRN 300 around the DeNB 200-1 of the updated DeNB list. Therefore, the other MRN 300 can use the optimized DeNB list. Alternatively, the OAM 500 may hold the DeNB list as a backup, and notify the MRN 300 of the DeNB list as necessary.
  • the MRN 300 that connects to the DeNB 200-1 and performs relay transmission between the DeNB 200-1 and the UE 100 The MRN 300 itself makes the handover decision. Then, the MRN 300 transmits a handover request to the target eNB 200 using the X2 interface established between the MRN 300 and the target eNB 200.
  • FIG. 12 is a sequence diagram of the operation pattern 1 according to the present embodiment. In the initial state of this sequence, it is assumed that the MRN 300 is connected to the DeNB 200-1 and is performing relay transmission.
  • step S200 the MRN 300 collates the measurement result for the received reference signal with the held DeNB list.
  • step S201 the MRN 300 performs handover determination according to the collation result in step S200. For example, when a DeNB candidate whose RSRP is higher than that of the currently connected DeNB 200-1 is present in the DeNB list, the MRN 300 determines the DeNB candidate as the target eNB.
  • the description will be made assuming that the eNB 200-2 is determined as the target eNB by such handover determination.
  • step S202 the MRN 300 inquires of the eNB 200-2 on the X2 interface whether or not the handover request from the MRN 300 can be handled. Note that step S202 may be performed before step S201.
  • step S203 in response to the inquiry from the MRN 300, the eNB 200-2 notifies the MRN 300 whether or not it can respond to the handover request from the MRN 300 on the X2 interface.
  • the description will be made assuming that the eNB 200-2 can respond to the handover request from the MRN 300.
  • step S204 the MRN 300 transmits a handover request for requesting its own acceptance to the eNB 200-2 on the X2 interface.
  • the handover request includes information indicating that the transmission source of the handover request is “MRN”.
  • MRN the transmission source of the handover request
  • the preparation stage in the handover procedure is started by transmitting the handover request.
  • the DeNB 200-1 is a “source eNB”.
  • step S205 the eNB 200-2 determines whether to permit or reject the handover request based on the handover request from the MRN 300.
  • the description will be made assuming that the eNB 200-2 determines that the handover request is permitted.
  • step S206 the eNB 200-2 requests information for handover of the MRN 300 from the DeNB 200-1 on the X2 interface.
  • the DeNB 200-1 transmits information for handover of the MRN 300 to the eNB 200-2 on the X2 interface together with the permission response (Ack) to the request from the eNB 200-2.
  • the information for MRN300 handover includes MRN300 X2 signaling context reference, S1 EPC signaling context reference, target cell ID, RRC context, AS configuration, E-RAB, and so on.
  • step S208 the eNB 200-2 notifies the MRN 300 of information necessary for establishing a connection with the eNB 200-2 together with an authorization response (Ack) to the handover request from the MRN 300 on the X2 interface.
  • Information necessary for performing communication with the eNB 200-2 is, for example, a new C-RNTI and a security algorithm identifier, and optionally a dedicated RACH preamble and SIB.
  • step S209 the MRN 300 disconnects from the DeNB 200-1 in response to the reception of the handover permission response from the eNB 200-2. Thereafter, the MRN 300 performs processing (random access processing, RRC connection establishment processing, etc.) for establishing a connection with the eNB 200-2 (step S212). On the other hand, the DeNB 200-1 performs processing (data forwarding) for transferring data not transmitted to the MRN 300 to the eNB 200-2 over the X2 interface (steps S210 and S211).
  • the eNB 200-2 becomes a new DeNB of the MRN 300.
  • FIG. 13 is a sequence diagram of an operation pattern 2 according to the present embodiment. Here, only differences from the operation pattern 1 according to the present embodiment will be described.
  • the MRN 300 transmits information indicating the load status of the MRN 300 together with the handover request (step S204-1).
  • the load status refers to the number of UEs 100 accommodated by the MRN 300 (specifically, the number of UEs 100 connected to the MRN 300), the amount of traffic handled by the MRN 300, and the like. Not only the actual load situation but also a potential load situation (for example, processing capacity such as the maximum number of accommodated UEs and maximum traffic amount) may be used.
  • the target eNB 200 After receiving the information indicating the load status of the MRN 300 together with the handover request, the target eNB 200 determines whether to permit the handover request based on the information indicating the load status of the MRN 300 (step S205-1).
  • the eNB 200-2 compares the margin based on its own load status with the load status of the MRN 300, and determines whether or not a problem occurs even if the connection with the MRN 300 is established.
  • the MRN 300 performs processing for adjusting the timing of transmitting a handover request before transmitting the handover request (step S204).
  • the MRN 300 adjusts the transmission timing of the handover request to be earlier than usual when the moving speed of the MRN 300 exceeds the threshold. In addition, when the moving speed of the MRN 300 becomes equal to or less than the threshold, the MRN 300 returns the handover request transmission timing to the normal timing.
  • the MRN 300 determines the DeNB candidate as the target eNB when there is a DeNB candidate having a higher RSRP than the currently connected DeNB 200-1. In such a case, the MRN 300 corrects (offsets) the RSRP of the currently connected DeNB 200-1 low or corrects the RSRP of the DeNB candidate high (offset) if the moving speed of the MRN 300 exceeds the threshold. By doing so, a handover trigger is likely to occur, and the timing of the handover request can be advanced.
  • the MRN 300 determines the DeNB candidate as the target eNB when the RSRP of the DeNB candidate exceeds a threshold value.
  • the MRN 300 can easily correct (offset) the RSRP of the DeNB candidate or lower the threshold value, so that a handover trigger is likely to occur, and the handover request timing can be advanced.
  • the MRN 300 may transmit a handover request without inquiring whether or not the handover request from the MRN 300 can be handled (step S202).
  • FIG. 14 is a configuration diagram of the DeNB list used in the operation pattern 4.
  • the DeNB list used in the operation pattern 4 includes information on a position, a cell direction, a capacity, and a cell size for each DeNB candidate (its identifier).
  • the MRN 300 determines the target eNB based on such a DeNB list. Specifically, it is determined whether the DeNB candidate is appropriate as the target eNB under the following conditions (all or a part).
  • the MRN 300 determines that the DeNB candidate is appropriate.
  • the MRN 300 determines that the DeNB candidate is appropriate.
  • the MRN 300 determines that the DeNB candidate is appropriate.
  • the MRN 300 determines that the DeNB candidate is appropriate.
  • the list of DeNB candidates may be updated.
  • the operation in this case will be described in the third embodiment.
  • the MRN 300 may make a handover determination using the neighboring eNB list.
  • the UE 100 is connected to the DeNB 200-1 and between the DeNB 200-1 and the UE 100.
  • the MRN 300 that performs relay transmission performs the handover determination of the MRN 300 by the MRN 300 itself.
  • MRN300 can perform the optimal handover judgment according to its own situation, the situation of DeNB candidates, and the like.
  • radio resources for the measurement report can be saved.
  • the MRN 300 inquires of the target eNB 200 whether or not the handover request from the MRN 300 can be handled. Thereby, the MRN 300 can transmit the handover request to the target eNB 200 after confirming that it can respond to its own handover request.
  • the MRN 300 transmits a handover request to the target eNB 200 using the X2 interface established between the MRN 300 and the target eNB 200.
  • a handover request can be transmitted from the MRN 300 to the target eNB 200 without making a handover decision by the DeNB 200-1, so that the load on the DeNB 200-1 can be reduced and a quick handover can be performed.
  • the handover request includes information indicating that the transmission source of the handover request is “MRN”. Thereby, the target eNB 200 can determine whether or not to permit the handover request after recognizing that the transmission source of the handover request is “MRN”.
  • the target eNB 200 In response to receiving the handover request from the MRN 300, the target eNB 200 requests information for the handover of the MRN 300 from the DeNB 200-1.
  • the DeNB 200-1 transmits information for handover of the MRN 300 to the target eNB 200 in response to a request from the target eNB 200.
  • the target eNB 200 can acquire information for the MRN 300 handover from the DeNB 200-1.
  • the target eNB 200 receives information for handover of the MRN 300 from the DeNB 200-1, and then transmits a handover permission response (Handover Request Ack) including information for handover of the MRN 300 to the MRN 300 using the X2 interface.
  • a handover permission response can be transmitted from the target eNB 200 to the MRN 300 without making a handover determination by the DeNB 200-1, so that the load on the DeNB 200-1 can be reduced and a quick handover can be performed.
  • the MRN 300 when transmitting a handover request to the target eNB 200 in the handover procedure of the MRN 300 to the target eNB 200, transmits information indicating the load status of the MRN 300 together with the handover request.
  • the target eNB 200 after receiving the information indicating the load status of the MRN 300 together with the handover request, determines whether to permit the handover request based on the information indicating the load status of the MRN 300. Thereby, the target eNB 200 can determine whether or not to permit the handover request based on its own load status and the load status of the MRN 300.
  • the MRN 300 transmits a handover request at a timing according to its moving speed. Thereby, for example, the frequency of handover failures when the MRN 300 moves at high speed can be reduced.
  • the MRN 300 determines the target eNB 200 based on the DeNB list that is a list of DeNB candidates.
  • the DeNB list includes at least one piece of information on position, cell direction, capacity, and cell size for each DeNB candidate. Accordingly, the MRN 300 can determine whether or not to set the DeNB candidate as the target eNB in consideration of at least one of the position, cell direction, capacity, and cell size of the DeNB candidate.
  • the MRN 300 when the MRN 300 cannot be handed over to a DeNB candidate existing in the DeNB list, the MRN 300 uses the other MRN to store the DeNB list held by another MRN connected to the predetermined eNB (predetermined base station). Get from.
  • predetermined eNB means “current DeNB” or “DeNB list” when there is no appropriate DeNB candidate in the DeNB list as the target eNB as described in the operation pattern 4 of the second embodiment.
  • the following operation pattern 1 assumes the former case, and the following operation pattern 2 assumes the latter case.
  • FIG. 15 is a sequence diagram of an operation pattern 1 according to the present embodiment.
  • eNB 200-2 and eNB 200-3 which are DeNB candidates existing in the DeNB list, are “predetermined eNBs” when there is no DeNB candidate suitable as the target eNB in the DeNB list.
  • Other MRN1 (MRN300-1) and MRN2 (MRN300-2) are connected to eNB200-2.
  • step S301 the MRN 300 determines that all DeNB candidates existing in the DeNB list are inappropriate as the target eNB.
  • step S302 the MRN 300 queries the eNB 200-2 and the eNB 200-3, which are DeNB candidates existing in the DeNB list, about the currently connected MRN (or RN) on the X2 interface.
  • step S303 the eNB 200-2 and the eNB 200-3 notify the MRN 300 of the connected MRN on the X2 interface.
  • eNB 200-2 notifies MRN 300 of the identifier of MRN 300-1 and the identifier of MRN 300-2.
  • the eNB 200-3 notifies the MRN 300 that there is no connected MRN.
  • step S304 based on the notification from the eNB 200-2, the MRN 300 accesses each of the MRN 300-1 and the MRN 300-2 on the X2 interface and requests a DeNB list.
  • each of the MRN 300-1 and the MRN 300-2 notifies (reports) the DeNB list held by itself to the MRN 300 via the X2 interface.
  • step S306 the MRN 300 collates the DeNB list held by itself with the DeNB list received from each of the MRN 300-1 and the MRN 300-2.
  • step S307 it is determined whether or not there is a difference between the DeNB list held by itself and the DeNB list received from each of MRN 300-1 and MRN 300-2. Specifically, the MRN 300 confirms whether there is a DeNB candidate that does not exist in the DeNB list held by itself in the DeNB list received from each of the MRN 300-1 and the MRN 300-2.
  • step S308 the MRN 300 updates its own DeNB list to add the DeNB candidate. Specifically, the identifier of the DeNB candidate is added to its own DeNB list. As a result, it becomes possible to start handover with the DeNB candidate as the target eNB.
  • FIG. 16 is a sequence diagram of an operation pattern 2 according to the present embodiment.
  • the eNB 200-2 is set as the “predetermined eNB” when a handover request from the MRN 300 is rejected by the eNB 200-2 will be described.
  • step S311 the MRN 300 transmits a handover request to the eNB 200-2 over the X2 interface.
  • step S312 the eNB 200-2 determines whether to permit or reject the MRN 300 handover request.
  • the description will be made assuming that it is determined that the handover request of MRN 300 is rejected.
  • step S313 the eNB 200-2 notifies the MRN 300 of the MRN (or RN) that is connected to the eNB 200-2 on the X2 interface together with the handover rejection response (Nack). Thereafter, the same operation as the operation after step S304 of the operation pattern 1 is performed.
  • the MRN 300 receives information about other MRNs connected to the eNB 200-2 from the eNB 200-2. Thereby, the MRN 300 can grasp other MRNs connected to the eNB 200-2.
  • the MRN 300 inquires of the eNB 200-2 about other MRNs connected to the eNB 200-2 prior to receiving information about the other MRNs connected to the eNB 200-2 from the eNB 200-2. Thereby, the eNB 200-2 can notify the MRN 300 of the MRN connected to the eNB 200-2 in response to the request from the MRN 300.
  • the eNB 200-2 notifies the MRN 300 of information on the currently connected MRN together with a handover rejection response (Nack) to the MRN 300. Thereby, the MRN 300 can grasp other MRNs connected to the eNB 200-2.
  • Nack handover rejection response
  • the MRN 300 is handed over by the MRN 300, but in this embodiment, the MRN 300 is handed over by the DeNB 200-1. That is, in this embodiment, the MRN 300 is handed over by applying a normal handover procedure in LTE.
  • the DeNB 200-1 determines whether to perform a handover of the MRN 300 to an eNB (cell) existing in the neighboring eNB list based on the measurement report from the MRN 300.
  • the neighboring eNB list is configured and managed as follows.
  • FIG. 17 is a configuration diagram of the neighboring eNB list according to the present embodiment.
  • the neighboring eNB list further includes information indicating whether or not the neighboring eNB has a DeNB function for each neighboring eNB (cell ID (TCI) thereof). For example, for a neighboring eNB that does not have a DeNB function, a flag indicating that the DeNB function is not provided is set. Other items are the same as those in the adjacent eNB list (referred to as “adjacent relationship table (NRT)”) in the specification.
  • NRT adjacent relationship table
  • the neighboring eNB list may be updated by an ANR (Automatic Neighbor Relation) function.
  • the eNB 200 acquires information related to the neighboring eNB list from the OAM 500, and manages the neighboring eNB list.
  • the MRN 300 connects to the DeNB 200-1
  • the OAM 500 is requested for information for updating the neighboring eNB list.
  • the DeNB 200-1 updates the neighboring eNB list according to information from the OAM 500.
  • FIG. 18 is a sequence diagram of operation pattern 1 according to the present embodiment.
  • step S401 the MRN 300 transmits a measurement report to the DeNB 200-1.
  • step S402 the DeNB 200-1 identifies the neighboring eNB having the DeNB function based on the neighboring eNB list (NL or NRT).
  • the DeNB 200-1 determines the target eNB from the neighboring eNBs identified in step S402 based on the measurement report from the MRN 300. For example, the DeNB 200-1 determines the neighboring eNB identified in step S402 and having a high RSRP indicated by the measurement report as the target eNB.
  • the description will be made assuming that the eNB 200-2 is determined as the target eNB.
  • step S404 the DeNB 200-1 transmits a handover request to the target eNB 200-2 over the X2 interface.
  • step S405 the target eNB 200-2 determines whether to permit or reject the handover request from the DeNB 200-1. Thereafter, a normal handover procedure is performed.
  • FIG. 19 is a sequence diagram of an operation pattern 2 according to the present embodiment. Here, differences from the operation pattern 1 according to the present embodiment will be described.
  • step S401-1 the MRN 300 notifies the DeNB 200-1 of its own load status when transmitting a measurement report to the DeNB 200-1.
  • the timing for notifying the load status may be different from the timing of the measurement report. If the DeNB 200-1 knows the load status of the MRN 300, the notification of the load status of the MRN 300 to the DeNB 200-1 can be omitted.
  • the load status refers to the number of UEs 100 accommodated by the MRN 300 (specifically, the number of UEs 100 connected to the MRN 300), the amount of traffic handled by the MRN 300, and the like. Not only the actual load situation but also a potential load situation (for example, processing capacity such as the maximum number of accommodated UEs and maximum traffic amount) may be used.
  • Steps S402 and S403 are the same as in operation pattern 1.
  • step S404-1 the DeNB 200-1 notifies the DeNB 200-1 of the load status of the MRN when transmitting a handover request to the target eNB 200-2 over the X2 interface.
  • step S405-1 the target eNB 200-2 determines whether to permit or reject the handover request from the DeNB 200-1, considering the load status of the MRN. Specifically, the eNB 200-2 compares the margin based on its own load status with the load status of the MRN 300, and determines whether there is no problem even if the connection with the MRN 300 is established. Thereafter, a normal handover procedure is performed.
  • the neighboring eNB list further includes information indicating whether or not the neighboring eNB has the DeNB function for each neighboring eNB. Accordingly, the eNB 200 (DeNB 200-1) can determine the target eNB 200 from the neighboring eNBs having the DeNB function based on the neighboring eNB list.
  • the DeNB 200-1 requests the OAM 500 for information for updating the neighboring eNB list when the MRN 300 is connected to the DeNB 200-1. Then, the DeNB 200-1 updates the neighboring eNB list according to information from the OAM 500. Thereby, before the handover of MRN300 occurs, the neighboring eNB list can be updated.
  • the target eNB 200 When the target eNB 200 receives the handover request from the DeNB 200-1, and the target eNB 200 does not have the DeNB function, the target eNB 200 provides information indicating that the target eNB 200 does not have the DeNB function together with a rejection response to the handover request. To -1. Then, the DeNB 200-1 updates the neighboring eNB list in response to receiving from the target eNB 200 information indicating that the DeNB function is not provided. Thereby, a neighbor eNB list
  • the DeNB 200-1 transmits information indicating the load status of the MRN 300 to the target eNB 200 together with the handover request.
  • the target eNB 200 after receiving the information indicating the load status of the MRN 300 together with the handover request, determines whether to permit the handover request based on the information indicating the load status of the MRN 300. Thereby, the target eNB 200 can determine whether or not to permit the handover request based on its own load status and the load status of the MRN 300.
  • the handover procedure according to the second embodiment described above that is, the handover of the MRN 300 is basically performed by the MRN 300, and the DeNB 200-1 also performs the handover determination as in the fourth embodiment described above. Do.
  • FIG. 20 is an operation sequence diagram according to the present embodiment. In the initial state of this sequence, it is assumed that the MRN 300 is connected to the DeNB 200-1 and is performing relay transmission.
  • step S501 the MRN 300 collates the measurement result for the received reference signal with the held DeNB list.
  • step S502 the MRN 300 makes a handover determination according to the collation result in step S501. For example, when a DeNB candidate whose RSRP is higher than that of the currently connected DeNB 200-1 is present in the DeNB list, the MRN 300 determines the DeNB candidate as the target eNB.
  • the description will be made assuming that the eNB 200-2 is determined as the target eNB by such handover determination.
  • the number of target eNBs determined in step S502 is not limited to one and may be plural.
  • step S503 the MRN 300 inquires of the DeNB 200-1 whether or not it can respond to the handover request from the MRN 300. Note that step S503 may be performed before step S502.
  • step S504 in response to the inquiry from the MRN 300, the DeNB 200-1 notifies the MRN 300 whether or not it can respond to the handover request from the MRN 300.
  • the description will be made assuming that the DeNB 200-1 can respond to the handover request from the MRN 300.
  • the MRN 300 transmits a handover request for requesting a handover to the eNB 200-2 to the DeNB 200-1 on the X2 interface.
  • the handover request includes the identifier of eNB 200-2.
  • the identifiers of the plurality of target eNBs are included.
  • the handover request may include information indicating that the transmission source of the handover request is “MRN”.
  • the DeNB 200-1 determines whether or not handover is possible for each target eNB 200 based on the handover request (identifier included therein) from the MRN 300. For example, as described in the fourth embodiment, the determination can be made based on the presence or absence of the DeNB function.
  • the description will be made assuming that the DeNB 200-1 determines that the handover to the target eNB 200 is possible.
  • step S507 the DeNB 200-1 transmits a handover request to the target eNB 200-2 over the X2 interface.
  • step S508 the target eNB 200-2 determines whether to permit or reject the handover request from the DeNB 200-1. Thereafter, a normal handover procedure is performed.
  • the load state of the MRN 300 can be taken into consideration as in the operation pattern 2 according to the fourth embodiment.
  • the handover procedure according to the present embodiment and the handover procedure according to the second embodiment may be properly used.
  • the handover procedure according to the present embodiment may be applied.
  • the handover procedure according to the second embodiment is applied, and if the elapsed time exceeds the threshold, the present embodiment is applied.
  • a handover procedure may be applied.
  • the UE 100 is connected to the DeNB 200-1 and between the DeNB 200-1 and the UE 100.
  • the MRN 300 that performs relay transmission performs the handover determination of the MRN 300 by the MRN 300 itself. Thereby, the MRN 300 can make an optimum handover determination according to its own situation, that is, in consideration of the circumstances peculiar to the MRN 300.
  • the MRN 300 transmits one or more identifiers of the target eNB 200 in the handover request and then transmits the handover request to the DeNB 200-1.
  • the DeNB 200-1 determines whether handover is possible for each target eNB 200 based on the handover request from the MRN 300. Thereby, it is possible for the DeNB 200-1 to determine whether or not the target eNB 200 determined by the MRN 300 is appropriate. Therefore, the target eNB 200 can be determined more appropriately.
  • the MRN 300 inquires of the DeNB 200-1 whether or not it can respond to the handover request from the MRN 300. As a result, it is possible to transmit a handover request from the MRN 300 to the DeNB 200-1 after confirming that the handover request from the MRN 300 can be handled.
  • first to fifth embodiments are not limited to being implemented separately and may be implemented in combination with each other.
  • the DeNB list acquisition method described in the third embodiment may be applied to the fifth embodiment.
  • the MRN 300 that is a movable relay station has been described as an example, but the present invention may be applied to a relay station that is not movable.
  • the DeNB list (DL) and the neighboring eNB It may be necessary to update the list (NL or NRT) or perform relay station handover.
  • the communication control method according to the present invention is useful in the mobile communication field because it can support a movable relay station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ドナー基地局リストを保持しており、前記ドナー基地局リストに存在するドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局における通信制御方法は、隣接基地局を特定するステップAと、前記ステップAで特定した前記隣接基地局に対して、前記リレー局の受け入れ可否に関して問い合せるステップBと、前記ステップBでの問い合せ結果に応じて、前記ドナー基地局リストを更新するステップCと、を有する。

Description

通信制御方法
 本発明は、移動通信システムにおける通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リレー局の仕様が策定されている。
 リレー局は、ドナー基地局とユーザ端末との間でリレー伝送を行う(例えば、非特許文献1参照)。
3GPP技術仕様 「TS 36.300 V11.0.0」 2011年12月
 しかしながら、現状の仕様では、リレー局は地理的に固定されていることが前提である。このため、移動可能なリレー局をサポートすることができない問題がある。
 そこで、本発明は、移動可能なリレー局をサポートすることができる通信制御方法を提供することを目的とする。
 本発明の通信制御方法は、ドナー基地局リストを保持しており、前記ドナー基地局リストに存在するドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局における通信制御方法であって、隣接基地局を特定するステップAと、前記ステップAで特定した前記隣接基地局に対して、前記リレー局の受け入れ可否に関して問い合せるステップBと、前記ステップBでの問い合せ結果に応じて、前記ドナー基地局リストを更新するステップCと、を有することを特徴とする。
 また、本発明の通信制御方法は、ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局を含む移動通信システムに適用される通信制御方法であって、ターゲット基地局への前記リレー局のハンドオーバ手順において、前記リレー局の受け入れを要求するためのハンドオーバ要求を前記ターゲット基地局に送信するステップAを有し、前記ステップAにおいて、前記リレー局の負荷状況を示す情報を前記ハンドオーバ要求と共に送信することを特徴とする。
 また、本発明の通信制御方法は、ドナー基地局リストを保持しており、前記ドナー基地局リストに存在するドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局を含む移動通信システムにおける通信制御方法であって、前記ドナー基地局リストに存在する基地局への前記リレー局のハンドオーバが不能である場合において、前記リレー局が、所定基地局に接続する他のリレー局が保持するドナー基地局リストを前記他のリレー局から取得するステップAを有することを特徴とする。
 また、本発明の通信制御方法は、ドナー基地局機能を有する基地局と、前記基地局とユーザ端末との間でリレー伝送を行うリレー局とを含む移動通信システムに適用される通信制御方法であって、隣接基地局の識別子を含む隣接基地局リストを前記基地局が保持するステップAを有し、前記隣接基地局リストは、前記隣接基地局それぞれについて、当該隣接基地局がドナー基地局機能を有するか否かを示す情報をさらに含むことを特徴とする。
 また、本発明の通信制御方法は、基地局に接続するユーザ端末のハンドオーバ判断を前記基地局が行う移動通信システムに適用される通信制御方法であって、ドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局のハンドオーバ判断を行うステップAを有し、前記ステップAにおいて、前記リレー局のハンドオーバ判断を前記リレー局が行うことを特徴とする。
図1は、移動通信システムの構成図である。 図2は、Unインターフェイスのプロトコルスタック図である。 図3は、X2インターフェイスのプロトコルスタック図である。 図4は、S1インターフェイスのプロトコルスタック図である。 図5は、無線フレームの構成図である。 図6は、UEのブロック図である。 図7は、eNBのブロック図である。 図8は、MRNのブロック図である。 図9は、第1実施形態に係る動作パターン1のシーケンス図である。 図10は、第1実施形態に係る動作パターン2のシーケンス図である。 図11は、第1実施形態に係る動作パターン3のシーケンス図である。 図12は、第2実施形態に係る動作パターン1のシーケンス図である。 図13は、第2実施形態に係る動作パターン2のシーケンス図である。 図14は、第2実施形態に係る動作パターン4で使用されるDeNBリストの構成図である。 図15は、第3実施形態に係る動作パターン1のシーケンス図である。 図16は、第3実施形態に係る動作パターン2のシーケンス図である。 図17は、第4実施形態に係る隣接eNBリストの構成図である。 図18は、第4実施形態に係る動作パターン1のシーケンス図である。 図19は、第4実施形態に係る動作パターン2のシーケンス図である。 図20は、第5実施形態に係る動作シーケンス図である。
 [実施形態の概要]
 第1実施形態に係る通信制御方法は、ドナー基地局リストを保持しており、前記ドナー基地局リストに存在するドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局における通信制御方法であって、隣接基地局を特定するステップAと、前記ステップAで特定した前記隣接基地局に対して、前記リレー局の受け入れ可否に関して問い合せるステップBと、前記ステップBでの問い合せ結果に応じて、前記ドナー基地局リストを更新するステップCと、を有する。
 第1実施形態において、前記ステップBは、前記ステップAで特定した前記隣接基地局に対して、ドナー基地局機能を有しているか否かを問い合せるステップB1を含む。
 第1実施形態において、前記ステップBは、前記ステップAで特定した前記隣接基地局に対して、前記リレー局の負荷状況を通知するステップB2を含む。
 第1実施形態において、前記通信制御方法は、前記ステップCで更新された前記ドナー基地局リストを、前記ドナー基地局を介してコアネットワーク装置に通知するステップDをさらに有する。
 第2及び4実施形態に係る通信制御方法は、ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局を含む移動通信システムに適用される通信制御方法であって、ターゲット基地局への前記リレー局のハンドオーバ手順において、前記リレー局の受け入れを要求するためのハンドオーバ要求を前記ターゲット基地局に送信するステップAを有し、前記ステップAにおいて、前記リレー局の負荷状況を示す情報を前記ハンドオーバ要求と共に送信する。
 第2実施形態において、前記ターゲット基地局へのハンドオーバ判断を前記リレー局で行う場合、前記ステップAにおいて、前記リレー局が、前記リレー局の負荷状況を示す情報を前記ハンドオーバ要求と共に送信する。
 第2実施形態において、前記通信制御方法は、前記ステップAに先立ち、前記リレー局が、ドナー基地局候補の基地局のリストであるドナー基地局リスト又は隣接基地局のリストである隣接基地局リストに基づいて、前記ターゲット基地局を決定するステップCをさらに有し、前記ドナー基地局リスト又は前記隣接基地局リストは、前記ドナー基地局候補の基地局又は前記隣接基地局のそれぞれについて、位置、セル方向、キャパシティ、及びセルサイズの少なくとも1つの情報を含む。
 第4実施形態において、前記ターゲット基地局へのハンドオーバ判断を前記ドナー基地局で行う場合、前記ステップAにおいて、前記ドナー基地局が、前記リレー局の負荷状況を示す情報を前記ハンドオーバ要求と共に送信する。
 第3実施形態に係る通信制御方法は、ドナー基地局リストを保持しており、前記ドナー基地局リストに存在するドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局を含む移動通信システムにおける通信制御方法であって、前記ドナー基地局リストに存在する基地局への前記リレー局のハンドオーバが不能である場合において、前記リレー局が、所定基地局に接続する他のリレー局が保持するドナー基地局リストを前記他のリレー局から取得するステップAを有する。
 第3実施形態において、前記通信制御方法は、前記リレー局が、前記ステップAに先立ち、前記所定基地局に接続する他のリレー局についての情報であるリレー局情報を前記所定基地局から受信するステップCをさらに有する。
 第3実施形態において、前記通信制御方法は、前記リレー局からターゲット基地局にハンドオーバ要求を送信するステップDと、前記ターゲット基地局が、前記ハンドオーバ要求を拒否する場合に、ハンドオーバ拒否応答を前記リレー局に送信するステップEと、をさらに有し、前記所定基地局は、前記ターゲット基地局であり、前記ステップEにおいて、前記ターゲット基地局は、前記リレー局情報を前記ハンドオーバ拒否応答に含めて送信し、前記ステップCにおいて、前記リレー局は、前記ハンドオーバ拒否応答に含まれる前記リレー局情報を受信する。
 第3実施形態において、前記通信制御方法は、前記ステップCに先立ち、前記所定基地局に接続する他のリレー局について前記所定基地局に問い合せるステップDをさらに有する。
 第4実施形態に係る通信制御方法は、ドナー基地局機能を有する基地局と、前記基地局とユーザ端末との間でリレー伝送を行うリレー局とを含む移動通信システムに適用される通信制御方法であって、隣接基地局の識別子を含む隣接基地局リストを前記基地局が保持するステップAを有し、前記隣接基地局リストは、前記隣接基地局それぞれについて、当該隣接基地局がドナー基地局機能を有するか否かを示す情報をさらに含む。
 第4実施形態において、前記リレー局が前記基地局に接続した際に、前記基地局が、前記隣接基地局リストを更新するための情報をコアネットワーク装置に要求するステップBと、前記基地局が、前記コアネットワーク装置からの情報に応じて、前記隣接基地局リストを更新するステップCとをさらに有する。
 第4実施形態において、前記基地局からターゲット基地局への前記リレー局のハンドオーバ手順において、前記ターゲット基地局が、前記基地局からのハンドオーバ要求を受信するステップDと、前記ターゲット基地局が前記ドナー基地局機能を有しない場合、前記ターゲット基地局は、前記ハンドオーバ要求に対する拒否応答と共に、自身が前記ドナー基地局機能を有しない旨の情報を前記基地局に送信するステップEとをさらに有する。
 第2及び第5実施形態に係る通信制御方法は、基地局に接続するユーザ端末のハンドオーバ判断を前記基地局が行う移動通信システムに適用される通信制御方法であって、ドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局のハンドオーバ判断を行うステップAを有し、前記ステップAにおいて、前記リレー局のハンドオーバ判断を前記リレー局が行う。
 第2及び第5実施形態において、前記通信制御方法は、前記ステップAによりターゲット基地局へのハンドオーバを行うと判断した場合に、前記リレー局の受け入れを要求するためのハンドオーバ要求を前記リレー局が送信するステップBをさらに有する。
 第2実施形態において、前記ステップBにおいて、前記リレー局は、前記リレー局と前記ターゲット基地局との間に確立されるネットワークインターフェイスを用いて、前記ハンドオーバ要求を前記ターゲット基地局に送信するステップB1を含む。
 第2実施形態において、前記通信制御方法は、前記ターゲット基地局が、前記リレー局からの前記ハンドオーバ要求の受信に応じて、前記リレー局のハンドオーバのための情報を前記ドナー基地局に対して要求するステップCと、前記ドナー基地局が、前記ターゲット基地局からの要求に応じて、前記リレー局のハンドオーバのための情報を前記ターゲット基地局に送信するステップDと、をさらに有する。
 第2実施形態において、前記通信制御方法は、前記ターゲット基地局が、前記リレー局のハンドオーバのための情報を前記ドナー基地局から受信した後、前記ネットワークインターフェイスを用いて、前記リレー局のハンドオーバのための情報を含むハンドオーバ許可応答を前記リレー局に送信するステップEをさらに有する。
 第5実施形態において、前記ステップBにおいて、前記リレー局は、前記ハンドオーバ要求に前記ターゲット基地局の識別子を1つ又は複数含めた上で、前記ハンドオーバ要求を前記ドナー基地局に送信する。
 第2及び第5実施形態において、前記通信制御方法は、前記ステップBに先立ち、前記リレー局が、前記ドナー基地局及び/又は前記ターゲット基地局に対して、前記リレー局からのハンドオーバ要求に対応可能であるか否かを問い合わせるステップをさらに有する。
 (1)第1実施形態
 本実施形態においては、リリース10以降の3GPP規格(すなわち、LTE Advanced)に基づいて構成される移動通信システムを例に説明する。
 (1.1)移動通信システムの概要
 図1は、本実施形態に係る移動通信システムの構成図である。図1に示すように、移動通信システムは、ユーザ端末(UE:User Equipment)100と、基地局(eNB:evolved Node-B)200と、移動可能なリレー局(MRN:Mobile Relay Node)300と、モビリティ管理装置(MME:Mobility Management Entity)/ゲートウェイ装置(S-GW:Serving Gateway)400と、運用保守装置(OAM:Operation and Maintenance)500と、を有する。
 eNB200及びMRN300は、無線アクセスネットワーク(E-UTRAN:Evolved-UMTS Terrestrial Radio Access Network)10に含まれるネットワーク装置である。MME/S-GW400及びOAM500は、コアネットワーク(EPC:Evolved Packet Core)20に含まれるネットワーク装置である。
 UE100は、ユーザが所持する移動可能な無線通信装置である。UE100は、通信中の状態に相当する接続状態において、接続を確立したセル(「サービングセル」と称される)との無線通信を行う。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能としても使用される。よって、eNB200は、セルと称されることもある。
 UE100がユーザの移動に伴って移動する場合、UE100のサービングセルの変更が必要になる。UE100が接続状態においてサービングセルを変更する動作は、「ハンドオーバ」と称される。ハンドオーバに係る一連の手順は、「ハンドオーバ手順」と称される。ハンドオーバ手順は、ハンドオーバ準備段階(Preparation)と、ハンドオーバ実行段階(Execution)と、ハンドオーバ完了段階(Completion)と、を含む。
 ハンドオーバ手順において、ハンドオーバ元のセルは「ソースセル」、ハンドオーバ先のセルは「ターゲットセル」と称される。また、あるeNB200(セル)から他のeNB200(セル)へのハンドオーバ手順においては、ハンドオーバ元のeNB200は「ソースeNB」、ハンドオーバ先のeNB200は「ターゲットeNB」と称される。
 eNB200は、通信事業者によって設置される固定型の無線通信装置であり、例えば、マクロ基地局(MeNB)又はピコ基地局(PeNB)などである。或いは、eNB200は、屋内に設置可能なホーム基地局(HeNB)であってもよい。eNB200は、セルを形成する。eNB200は、UE100との無線通信を行う。
 eNB200は、自身の配下のUE100について、ハンドオーバの決定権を有する。詳細には、eNB200は、UE100からの測定報告(Measurement Report)に基づいて、サービングセルから他のセルへのハンドオーバを行うか否かを判断する。eNB200は、UE100のハンドオーバ制御のために、隣接eNB(隣接セル)のリスト(以下、「隣接eNBリスト」と称する)を保持する。
 eNB200は、ドナー基地局(DeNB)機能を有していれば、MRN300との接続を確立して、MRN300のドナーとして動作することができる。例えば、3GPPリリース10以降のリリースをサポートするeNB200はオプション機能としてDeNB機能を有しているが、それ以前のリリースをサポートするeNB200はDeNB機能を有していない。或いは、処理能力の低いeNB200(HeNB)は、DeNB機能を有していないことがある。
 eNB200は、EPC20との間の論理的な通信路であるS1インターフェイス上でEPC20(MME/S-GW400)との通信を行う。また、S1インターフェイスは、MRN300のドナーとして動作するeNB200(DeNB200-1)とMRN300との間にも確立される。MRN300は、DeNB200-1を介してS1インターフェイス上でEPC20との通信を行うことができる。
 MMEは、制御情報を取り扱う制御プレーンに対応して設けられており、UE100に対する各種モビリティ管理や認証処理などを行う。S-GWは、ユーザデータを取り扱うユーザプレーンに対応して設けられており、UE100が送受信するユーザデータの転送制御などを行う。
 eNB200は、隣接するeNB200との間の論理的な通信路であるX2インターフェイス上で、当該隣接するeNB200との通信を行う。また、X2インターフェイスは、MRN300のドナーとして動作するeNB200(DeNB200-1)とMRN300との間にも確立される。MRN300は、DeNB200-1を介してX2インターフェイス上で隣接eNB200-2との通信を行うことができる。
 本実施形態では、S1インターフェイス及び/又はX2インターフェイスは、ネットワークインターフェイスに相当する。
 MRN300は、電車やバスなどの移動体に設置される移動可能な無線通信装置である。MRN300は、DeNBとして使用可能なeNB200(セル)のリスト(以下、「DeNBリスト」と称する)を保持する。MRN300は、自身の起動時にDeNBリストをOAM500から取得する。
 MRN300は、DeNBリストに存在するeNB200との接続を確立(Connect)し、接続を確立したeNB200(DeNB200-1)との無線通信を行う。そして、MRN300は、自身の配下のUE100とDeNB200-1との間でリレー伝送を行う。
 MRN300は、基本的には、DeNB200-1の視点ではUE100と同様であり、UE100の視点ではeNB200と同様である。すなわち、MRN300は、UE100の性質とeNB200の性質とを併せ持つ。
 MRN300が移動体の移動に伴って移動する場合、接続状態からアイドル状態に遷移(Disconnect)した後に新たなDeNBとの接続を確立(Connect)する、或いは、接続状態を維持したまま新たなDeNBとの接続を確立(すなわち、ハンドオーバ)する必要がある。本実施形態では、前者のケース(Connect/Disconnect)を想定しており、後者のケース(ハンドオーバ)については第2実施形態以降で説明する。
 MRN300は、自身の配下のUE100について、ハンドオーバの決定権を有する。詳細には、MRN300は、UE100からの測定報告(Measurement Report)に基づいて、サービングセルから他のセルへのハンドオーバを行うか否かを判断する。eNB200は、UE100のハンドオーバ制御のために、隣接eNBリストを保持する。
 次に、MRN300に関連するプロトコルスタックについて説明する。図2は、Unインターフェイスのプロトコルスタック図である。
 図2に示すように、Unインターフェイスのプロトコルスタックにおいて、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、データ符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、物理チャネルを用いて上位レイヤに伝送サービスを提供する。MRN300の物理レイヤとDeNB200-1の物理レイヤとの間では、物理チャネルを介してデータが伝送される。物理レイヤは、トランスポートチャネルを介してMACレイヤと連結される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。MRN300のMACレイヤとDeNB200-1のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。DeNB200-1のMACレイヤは、上下リンクのトランスポートフォーマット及びリソースブロックを決定するMACスケジューラを含む。トランスポートフォーマットは、トランスポートブロックサイズ、変調・符号化方式(MCS)、及びアンテナマッピングを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。MRN300のRLCレイヤとDeNB200-1のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。MRN300のRRCレイヤとDeNB200-1のRRCレイヤとの間では、無線ベアラを介してデータが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。MRN300のRRCとDeNB200-1のRRCとの間にRRC接続がある場合、MRN300は「接続状態」であり、そうでない場合、MRN300は「アイドル状態」である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、MRN300及びMME300に設けられ、セッション管理及びモビリティ管理などを行う。
 図3は、MRN300と隣接eNB200-2との間に確立されるX2インターフェイスに関するプロトコルスタック図である。ここでは、制御プレーンについて説明する。
 図3に示すように、レイヤ1(L1)及びレイヤ2(L2)上にIP(Internet Protocol)及びSCTP(Stream Control Transmission Protocol)が設けられ、SCTP上にX2-AP(X2 Application Protocol)が設けられる。X2-APは、ハンドオーバなどに伴うメッセージの送受信を行う。
 MRN300が送信するX2メッセージはDeNB200-1で中継されて、隣接eNB200-2に伝送することができる。また、隣接eNB200-2が送信するX2メッセージはDeNB200-1で中継されて、MRN300に伝送することができる。
 MRN300とDeNB200-1との間のL1及びL2は、UnインターフェイスのL1及びL2と同様である。
 図4は、MRN300とMME400との間に確立されるS1インターフェイスに関するプロトコルスタック図である。図4に示すように、S1インターフェイスについては、X2-APではなくS1-APが設けられる点でX2インターフェイスとは異なる。
 図5は、本実施形態に係る移動通信システム(LTEシステム)で使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)を採用する。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用されるデータ領域である。下りリンクにおいては、セル毎に異なる参照信号(RS)が送信される。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用されるデータ領域である。
 無線フレームは、複数のMBSFN(MBMS Single Frequency Network)サブフレームを含む。MRN300は、MBSFNサブフレームを用いてDeNB200-1との通信を行う。
 (1.2)ブロック構成
 以下において、UE100、eNB200、及びMRN300それぞれのブロック構成を説明する。
 図6は、UE100のブロック図である。図6に示すように、UE100は、無線送受信部110と、記憶部120と、制御部130と、を含む。
 無線送受信部110は、無線信号を送受信する。
 記憶部120は、制御部130による制御に使用される各種情報を記憶する。
 制御部130は、UE100の各種の機能を制御する。例えば、制御部130は、上述したUE100の動作を制御する。
 図7は、eNB200のブロック図である。図7に示すように、eNB200は、無線送受信部210と、ネットワーク通信部220と、記憶部230と、制御部240と、を含む。
 無線送受信部210は、無線信号を送受信する。また、無線送受信部210は、セルを形成する。
 ネットワーク通信部220は、S1インターフェイス上でMME/S-GW400との通信を行う。ネットワーク通信部220は、X2インターフェイス上で隣接eNB200との通信を行う。
 記憶部230は、制御部240による制御に使用される各種情報を記憶する。また、記憶部230は、隣接eNBリストを記憶(保持)する。
 制御部240は、eNB200の各種の機能を制御する。例えば、制御部240は、上述したeNB200の動作を制御すると共に、後述するeNB200の動作を制御する。
 図8は、MRN300のブロック図である。図8に示すように、MRN300は、対eNB無線送受信部310と、対UE無線送受信部320と、記憶部330と、制御部340と、を含む。
 対eNB無線送受信部310は、eNB200からの無線信号を受信し、eNB200に対して無線信号を送信する。
 対UE無線送受信部320は、UE100からの無線信号を受信し、UE100に対して無線信号を送信する。対UE無線送受信部320は、セルを形成する。
 記憶部330は、制御部340による制御に使用される各種情報を記憶する。また、記憶部330は、UE100のハンドオーバ制御のための隣接eNBリストと、MRN300が接続を確立すべきDeNBを決定するためのDeNBリストと、を記憶(保持)する。
 制御部340は、MRN300の各種の機能を制御する。例えば、制御部340は、上述したMRN300の動作を制御すると共に、後述するMRN300の動作を制御する。制御部340は、対eNB無線送受信部310が受信する無線信号(参照信号)に対する測定により、DeNBリストに存在する何れかのDeNB候補をDeNBとして決定することができる。
 また、MRN300は、自身の位置情報を取得するための測位システム(例えばGPS受信機350)を有していてもよい。MRN300は、自身の位置情報に基づいて、自身の移動速度を推定することができる。
 (1.3)第1実施形態に係る動作
 以下において、本実施形態に係る移動通信システムの動作を説明する。
 以下の動作パターン1から3では、DeNBリストを保持しており、DeNBリストに存在するDeNB200-1に接続し、DeNB200-1とUE100との間でリレー伝送を行うMRN300は、隣接eNB200を特定し、特定した隣接eNB200に対してMRN300の受け入れ可否に関して問い合せ、問い合せ結果に応じてDeNBリストを更新する。
 詳細には、以下の動作パターン1及び2では、MRN300は、DeNBリストに存在しない隣接eNB200を特定する。MRN300は、特定した隣接eNB200に対する問い合せ結果が、MRN300の受け入れ許可を示す場合に、当該特定した隣接eNB200を追加するようDeNBリストを更新する。
 これに対し、以下の動作パターン3では、MRN300は、DeNBリストに存在する隣接eNB200を特定する。MRN300は、特定した隣接eNB200に対する問い合せ結果が、MRN300の受け入れ拒否を示す場合に、特定した隣接eNB200を無効にする(除外する)ようDeNBリストを更新する。
 (1.3.1)動作パターン1
 図9は、本実施形態に係る動作パターン1のシーケンス図である。
 図9に示すように、ステップS101において、OAM500は、UE100のハンドオーバ制御のための隣接eNBリスト(NL)を、DeNB200-1を介してMRN300に通知する。隣接eNBリストの全体を通知する場合に限らず、変更に係る部分のみを通知してもよい。
 ステップS102において、MRN300は、OAM500から受信した隣接eNBリストによって、保持している隣接eNBリスト(NL)を更新する。
 ステップS103において、MRN300は、ステップS102で更新した隣接eNBリストと、保持しているDeNBリストと、を比較する。詳細には、MRN300は、隣接eNBリストに存在し、かつ、DeNBリストに存在しない隣接eNBを検索する。
 ここでは、隣接eNBリストに存在し、かつ、DeNBリストに存在しない隣接eNBとして、eNB200-2が特定されたと仮定して説明を進める。
 ステップS104において、MRN300は、ステップS103で特定されたeNB200-2に対して、DeNB機能を有しているか否かをX2インターフェイス上で問い合わせる。
 ステップS105において、eNB200-2は、MRN300からの問い合せに応じて、自身がDeNB機能を有しているか否かを確認する。
 ステップS106において、eNB200-2は、自身がDeNB機能を有しているか否かをX2インターフェイス上でMRN300に通知する。
 ステップS107において、MRN300は、eNB200-2がDeNB機能を有しているか否かを確認する。
 eNB200-2がDeNB機能を有している場合(ステップS107;Yes)、ステップS108において、MRN300は、eNB200-2を追加するようDeNBリストを更新する。詳細には、MRN300は、eNB200-2の識別子(セルID)をDeNBリストに追加する。
 ステップS109において、MRN300は、ステップS108で更新したDeNBリストを、DeNB200-1を介してOAM500に通知する。更新したDeNBリストの全体を通知する場合に限らず、更新に係る部分のみを通知してもよい。
 なお、本シーケンスでは、隣接eNBリストが更新されたことをトリガとして、DeNBリストを更新するための動作を開始するケースを説明した。しかしながら、このような方法に代えて、以下のような方法を採用してもよい。
 MRN300が停止している状況下では、DeNBリストを更新する必要性は低い。このため、MRN300において測定報告(Measurement Report)のトリガが発生したことをトリガとして、DeNBリストを更新するための動作を開始してもよい。或いは、MRN300の移動速度が閾値を超えている期間において、当該動作を定期的に行ってもよい。
 また、MRN300は、受信する参照信号に対する測定によって検出した隣接セル(隣接eNB)がDeNBリストに含まれていない、又は、受信する参照信号に対する測定で最も参照信号受信電力(RSRP)が高い隣接セル(隣接eNB)がDeNBリストに含まれていないことをトリガとして、DeNBリストを更新するための動作を開始し、当該隣接セル(隣接eNB)に対して問い合せを行ってもよい。
 (1.3.2)動作パターン2
 図10は、本実施形態に係る動作パターン2のシーケンス図である。
 図10に示すように、ステップS111において、OAM500は、UE100のハンドオーバ制御のための隣接eNBリストを、DeNB200-1を介してMRN300に通知する。隣接eNBリストの全体を通知する場合に限らず、変更に係る部分のみを通知してもよい。
 ステップS112において、MRN300は、OAM500から受信した隣接eNBリストによって、保持している隣接eNBリストを更新する。
 ステップS113において、MRN300は、ステップS112で更新した隣接eNBリストと、保持しているDeNBリストと、を比較する。詳細には、MRN300は、隣接eNBリストに存在し、かつ、DeNBリストに存在しない隣接eNBを検索する。
 ここでは、隣接eNBリストに存在し、かつ、DeNBリストに存在しない隣接eNBとして、eNB200-2が特定されたと仮定して説明を進める。
 MRN300は、自身の負荷状況を把握する。負荷状況とは、MRN300が収容するUE100の数(詳細には、MRN300に接続中のUE100の数)、MRN300が取り扱うトラフィック量などである。なお、実際の負荷状況に限らず、潜在的な負荷状況(例えば、最大収容UE数や最大トラフィック量などの処理能力)を把握してもよい。
 ステップS114において、MRN300は、ステップS113で特定されたeNB200-2に対して、X2インターフェイス上で、負荷状況を通知すると共に、MRN300の受け入れ可否を問い合わせる。その際、MRN300は、当該問い合せを行った主体が「MRN」であることを併せて通知してもよい。
 ステップS115において、eNB200-2は、MRN300からの問い合せに応じて、MRN300の受け入れ可否を判断する。詳細には、eNB200-2は、自身の負荷状況に基づく余裕度と、MRN300の負荷状況と、を比較して、MRN300との接続を確立しても問題が生じないか否かを判断する。
 ステップS116において、eNB200-2は、MRN300の受け入れ可否をX2インターフェイス上でMRN300に通知する。
 ステップS117において、MRN300は、eNB200-2に対する問い合せの結果が「受け入れ許可」であるか「受け入れ拒否」であるかを確認する。
 「受け入れ許可」である場合(ステップS117;Yes)、ステップS118において、MRN300は、eNB200-2を追加するようDeNBリストを更新する。詳細には、MRN300は、eNB200-2の識別子(セルID)をDeNBリストに追加する。
 ステップS119において、MRN300は、ステップS118で更新したDeNBリストを、DeNB200-1を介してOAM500に通知する。更新したDeNBリストの全体を通知する場合に限らず、更新に係る部分のみを通知してもよい。
 なお、本シーケンスでは、隣接eNBリストが更新されたことをトリガとして、DeNBリストを更新するための動作を開始するケースを説明したが、動作パターン1で説明した他の方法を採用してもよい。
 (1.3.3)動作パターン3
 図11は、本実施形態に係る動作パターン3のシーケンス図である。
 図11に示すように、ステップS121において、MRN300は、例えば自身の負荷状況が大きく変化したことをトリガとして、隣接eNBリストに存在する隣接eNBを検索する。ここでは、隣接eNBリストに存在する隣接eNBとして、eNB200-2が特定されたと仮定して説明を進める。
 MRN300は、自身の負荷状況を把握する。ここでの負荷状況とは、MRN300が収容するUE100の数(詳細には、MRN300に接続中のUE100の数)、MRN300が取り扱うトラフィック量などである。
 ステップS122において、MRN300は、ステップS121で特定されたeNB200-2に対して、X2インターフェイス上で、負荷状況を通知すると共に、MRN300の受け入れ可否を問い合わせる。その際、MRN300は、当該問い合せを行った主体が「MRN」であることを併せて通知してもよい。
 ステップS123において、eNB200-2は、MRN300からの問い合せに応じて、MRN300の受け入れ可否を判断する。詳細には、eNB200-2は、自身の負荷状況に基づく余裕度と、MRN300の負荷状況と、を比較して、MRN300との接続を確立しても問題が生じないか否かを判断する。
 ステップS124において、eNB200-2は、MRN300の受け入れ可否をX2インターフェイス上でMRN300に通知する。
 ステップS125において、MRN300は、eNB200-2に対する問い合せの結果が「受け入れ許可」であるか「受け入れ拒否」であるかを確認する。
 「受け入れ拒否」である場合(ステップS125;Yes)、ステップS126において、MRN300は、eNB200-2を無効にするようDeNBリストを更新する。詳細には、MRN300は、eNB200-2の識別子(セルID)をDeNBリストから削除する、又は、一時的に無効に設定する。
 ステップS127において、MRN300は、ステップS126で更新したDeNBリストを、DeNB200-1を介してOAM500に通知する。更新したDeNBリストの全体を通知する場合に限らず、更新に係る部分のみを通知してもよい。
 なお、本シーケンスでは、隣接eNBリストが更新されたことをトリガとして、DeNBリストを更新するための動作を開始するケースを説明したが、動作パターン1で説明した他の方法を採用してもよい。
 (1.4)第1実施形態のまとめ
 以上説明したように、DeNBリストを保持しており、DeNBリストに存在するDeNB200-1に接続し、DeNB200-1とUE100との間でリレー伝送を行うMRN300は、隣接eNB200を特定し、特定した隣接eNB200に対してMRN300の受け入れ可否に関して問い合せ、問い合せ結果に応じてDeNBリストを更新する。これにより、MRN300が移動する場合であっても、DeNBリストを移動先の状況に適応させることができる。
 動作パターン1及び2では、MRN300は、DeNBリストに存在しない隣接eNB200を特定する。MRN300は、特定した隣接eNB200に対する問い合せ結果が、MRN300の受け入れ許可を示す場合に、当該特定した隣接eNB200を追加するようDeNBリストを更新する。これにより、MRN300が移動した結果、MRN300の周辺に、MRN300を受け入れ可能なDeNB候補が現れた場合に、当該新たなDeNB候補をDeNBリストに追加できる。
 動作パターン3では、MRN300は、DeNBリストに存在する隣接eNB200を特定する。MRN300は、特定した隣接eNB200に対する問い合せ結果が、MRN300の受け入れ拒否を示す場合に、特定した隣接eNB200を無効にするようDeNBリストを更新する。これにより、DeNBリストに存在するDeNB候補の何れかがMRN300を受け入れ不能になった場合に、MRN300を受け入れ不能になったeNB200をDeNB候補としないようにすることができる。
 また、問い合せは、問い合せ元が「MRN」であることを示す情報を含む。これにより、隣接eNB200は、問い合せ元が「MRN」であることを認識した上で、受け入れ可否を判断できる。
 MRN300は、DeNB200-1を介してOAM500から通知される隣接eNBリストと、MRN300が保持するDeNBリストと、の比較結果に基づいて、DeNBリストに存在しない隣接eNB200を特定する。これにより、DeNBリストに存在しない隣接eNB200を適切に特定できる。
 或いは、MRN300は、隣接eNB200からMRN300が受信した無線信号に基づいて、DeNBリストに存在しない隣接eNB200を特定する。これにより、DeNBリストに存在しない隣接eNB200を適切に特定できる。
 動作パターン1では、MRN300は、特定した隣接eNB200に対して、DeNB機能を有しているか否かを問い合せる。これにより、DeNB機能を有する隣接eNB200のみをDeNBリストに追加できる。
 動作パターン2及び3では、MRN300は、特定した隣接eNB200に対して、MRN300の負荷状況を通知する。これにより、当該隣接eNB200は、自身の負荷状況と、MRN300の負荷状況と、に基づいて、MRN300を受け入れ可能であるか否かを判断できる。
 MRN300は、更新したDeNBリストの全部又は更新部分を、DeNB200-1を介してOAM500に通知する。これにより、OAM500は、当該DeNB200-1周辺の他のMRN300に対して、当該更新後のDeNBリストを通知できる。よって、当該他のMRN300は、最適化されたDeNBリストを利用できる。或いは、バックアップとしてOAM500がDeNBリストを保持し、必要に応じて当該DeNBリストをMRN300に通知してもよい。
 (2)第2実施形態
 以下、第2実施形態について、上述した第1実施形態との相違点を説明する。
 本実施形態では、MRN300が、上述したDeNBリストを用いてハンドオーバを行う際の動作を主として説明する。
 (2.1)第2実施形態に係る動作
 以下において、本実施形態に係る移動通信システムの動作を説明する。
 以下の動作パターン1から4では、eNB200に接続するUE100のハンドオーバ判断をeNB200が行う移動通信システムにおいて、DeNB200-1に接続し、DeNB200-1とUE100との間でリレー伝送を行うMRN300は、MRN300のハンドオーバ判断をMRN300自身で行う。そして、MRN300は、MRN300とターゲットeNB200との間に確立されるX2インターフェイスを用いて、ハンドオーバ要求をターゲットeNB200に送信する。
 (2.1.1)動作パターン1
 図12は、本実施形態に係る動作パターン1のシーケンス図である。本シーケンスの初期状態では、MRN300は、DeNB200-1に接続してリレー伝送を実行中であるとする。
 図12に示すように、ステップS200において、MRN300は、受信する参照信号に対する測定の結果と、保持しているDeNBリストと、を照合する。
 ステップS201において、MRN300は、ステップS200での照合結果に応じて、ハンドオーバ判断を行う。例えば、MRN300は、現在接続中のDeNB200-1よりもRSRPが高いDeNB候補がDeNBリストに存在する場合、当該DeNB候補をターゲットeNBとして決定する。
 ここでは、そのようなハンドオーバ判断により、eNB200-2がターゲットeNBとして決定されたと仮定して説明を進める。
 ステップS202において、MRN300は、eNB200-2に対して、MRN300からのハンドオーバ要求に対応可能であるか否かをX2インターフェイス上で問い合せる。なお、ステップS202をステップS201よりも前に行ってもよい。
 ステップS203において、eNB200-2は、MRN300からの問い合せに応じて、MRN300に対して、自身がMRN300からのハンドオーバ要求に対応可能であるか否かをX2インターフェイス上で通知する。
 ここでは、eNB200-2がMRN300からのハンドオーバ要求に対応可能であると仮定して説明を進める。
 ステップS204において、MRN300は、eNB200-2に対して、自身の受け入れを要求するためのハンドオーバ要求をX2インターフェイス上で送信する。ハンドオーバ要求は、当該ハンドオーバ要求の送信元が「MRN」であることを示す情報を含む。一般的に、ハンドオーバ要求の送信により、ハンドオーバ手順における準備段階(Preparation)が開始される。ハンドオーバ手順が完了するまでは、DeNB200-1は「ソースeNB」である。
 ステップS205において、eNB200-2は、MRN300からのハンドオーバ要求に基づいて、当該ハンドオーバ要求を許可するか拒否するかを判断する。ここでは、eNB200-2が当該ハンドオーバ要求を許可すると判断したと仮定して説明を進める。
 ステップS206において、eNB200-2は、MRN300のハンドオーバのための情報をX2インターフェイス上でDeNB200-1に対して要求する。
 ステップS207において、DeNB200-1は、eNB200-2からの要求に対する許可応答(Ack)と共に、MRN300のハンドオーバのための情報をX2インターフェイス上でeNB200-2に送信する。MRN300のハンドオーバのための情報とは、MRN300のX2 signaling context reference、S1 EPC signaling context reference、target cell ID、RRC context、AS configuration、E-RAB contextなどである。
 ステップS208において、eNB200-2は、MRN300からのハンドオーバ要求に対する許可応答(Ack)と共に、eNB200-2との接続を確立するために必要な情報をX2インターフェイス上でMRN300に通知する。eNB200-2との通信を行うために必要な情報とは、例えば、新しいC-RNTI及びセキュリティアルゴリズム識別子、オプションとしてdedicated RACHプリアンブル及びSIB等である。
 ステップS209において、MRN300は、eNB200-2からのハンドオーバ許可応答の受信に応じて、DeNB200-1との接続を切断(Disconnect)する。その後、MRN300は、eNB200-2との接続を確立する処理(ランダムアクセス処理、RRC接続確立処理など)を行う(ステップS212)。一方、DeNB200-1は、MRN300に未送信のデータをeNB200-2に対してX2インターフェイス上で転送する処理(データフォワーディング)を行う(ステップS210、S211)。
 このようにしてハンドオーバ手順が完了すると、eNB200-2はMRN300の新たなDeNBになる。
 (2.1.2)動作パターン2
 図13は、本実施形態に係る動作パターン2のシーケンス図である。ここでは、本実施形態に係る動作パターン1との相違点のみ説明する。
 図13に示すように、動作パターン2において、MRN300は、ハンドオーバ要求をターゲットeNB200-2に送信する際に、MRN300の負荷状況を示す情報を当該ハンドオーバ要求と共に送信する(ステップS204-1)。
 負荷状況とは、MRN300が収容するUE100の数(詳細には、MRN300に接続中のUE100の数)、MRN300が取り扱うトラフィック量などである。なお、実際の負荷状況に限らず、潜在的な負荷状況(例えば、最大収容UE数や最大トラフィック量などの処理能力)でもよい。
 ターゲットeNB200は、MRN300の負荷状況を示す情報をハンドオーバ要求と共に受信した後、MRN300の負荷状況を示す情報に基づいて、ハンドオーバ要求を許可するか否かを判断する(ステップS205-1)。
 詳細には、eNB200-2は、自身の負荷状況に基づく余裕度と、MRN300の負荷状況と、を比較して、MRN300との接続を確立しても問題が生じないか否かを判断する。
 (2.1.3)動作パターン3
 本実施形態に係る動作パターン3では、MRN300は、ハンドオーバ要求を送信(ステップS204)する前において、ハンドオーバ要求を送信するタイミングを調整するための処理を行う。
 詳細には、MRN300は、自身の移動速度が閾値を超えてれば、ハンドオーバ要求の送信タイミングが通常よりも早くなるよう調整する。また、MRN300は、自身の移動速度が閾値以下になれば、ハンドオーバ要求の送信タイミングが通常のタイミングになるよう戻す。
 例えば、ハンドオーバ判断(ステップS201)において、MRN300が、現在接続中のDeNB200-1よりもRSRPが高いDeNB候補がDeNBリストに存在する場合、当該DeNB候補をターゲットeNBとして決定するケースを想定する。このようなケースでは、MRN300は、自身の移動速度が閾値を超えてれば、現在接続中のDeNB200-1のRSRPを低く補正(オフセット)する、又は、DeNB候補のRSRPを高く補正(オフセット)することで、ハンドオーバのトリガが発生し易くなり、ハンドオーバ要求のタイミングを早めることができる。
 或いは、ハンドオーバ判断(ステップS201)において、MRN300が、DeNB候補のRSRPが閾値を超えた場合に、当該DeNB候補をターゲットeNBとして決定するケースを想定する。このようなケースでは、MRN300は、DeNB候補のRSRPを高く補正(オフセット)する、又は、当該閾値を下げることで、ハンドオーバのトリガが発生し易くなり、ハンドオーバ要求のタイミングを早めることができる。
 また、MRN300は、自身の移動速度が閾値を超えてれば、MRN300からのハンドオーバ要求の対応可否の問い合せ(ステップS202)を行わずに、ハンドオーバ要求を送信するとしてもよい。
 (2.1.4)動作パターン4
 本実施形態に係る動作パターン4では、MRN300は、付加情報が付されたDeNBリストを使用してハンドオーバ判断(ステップS201)を行う。
 図14は、動作パターン4で使用されるDeNBリストの構成図である。図14に示すように、動作パターン4で使用されるDeNBリストは、DeNB候補(の識別子)それぞれについて、位置、セル方向、キャパシティ、及びセルサイズのそれぞれの情報を含む。
 MRN300は、このようなDeNBリストに基づいて、ターゲットeNBを決定する。詳細には、以下の条件(全てまたは一部)で、DeNB候補がターゲットeNBとして適切であるか否かを判断する。
 第1に、DeNB候補の位置とMRN300の進行方向とが合致していれば、MRN300は、当該DeNB候補が適切であると判断する。
 第2に、DeNB候補のセル方向(セル形成位置)とMRN300の進行方向とが合致していれば、MRN300は、当該DeNB候補が適切であると判断する。
 第3に、DeNB候補のキャパシティ及びMRN300負荷状況(接続数/トラフィック)について、当該負荷状況がDeNB候補のキャパシティ範囲内であれば、MRN300は、当該DeNB候補が適切であると判断する。
 第4に、DeNB候補のサービスエリアの大きさ及びMRN300の移動速度について、DeNB候補のエリアの通過時間が一定基準以上ならば、MRN300は、当該DeNB候補が適切であると判断する。
 なお、応用として、DeNB候補が無かった場合に、DeNB候補のリストの更新を行ってもよい。この場合の動作については、第3実施形態で説明する。
 また、本動作パターンでは、位置、セル方向、キャパシティ、及びセルサイズのそれぞれの情報をDeNBリストに含めるケースを説明したが、当該情報を隣接eNBリストに含めてもよい。この場合、隣接eNBリストは、各eNB(の識別子)それぞれについて、位置、セル方向、キャパシティ、及びセルサイズのそれぞれの情報を含む。そして、MRN300は、隣接eNBリストを用いてハンドオーバ判断を行ってもよい。
 (2.2)第2実施形態のまとめ
 以上説明したように、eNB200に接続するUE100のハンドオーバ判断をeNB200が行う移動通信システムにおいて、DeNB200-1に接続し、DeNB200-1とUE100との間でリレー伝送を行うMRN300は、MRN300のハンドオーバ判断をMRN300自身で行う。これにより、MRN300は、自身の状況やDeNB候補の状況などに応じて、最適なハンドオーバ判断を行うことができる。また、MRN300からDeNB200-1への測定報告を行うことなく、ハンドオーバ判断を実施できるため、測定報告のための無線リソースを節約できる。
 MRN300は、ターゲットeNB200に対して、MRN300からのハンドオーバ要求に対応可能であるか否かを問い合わせる。これにより、MRN300は、自身のハンドオーバ要求に対応可能であることを確認した上で、ハンドオーバ要求をターゲットeNB200に送信できる。
 MRN300は、MRN300とターゲットeNB200との間に確立されるX2インターフェイスを用いて、ハンドオーバ要求をターゲットeNB200に送信する。これにより、DeNB200-1によるハンドオーバ判断を行うことなく、ハンドオーバ要求をMRN300からターゲットeNB200に送信できるため、DeNB200-1の負荷を軽減すると共に、速やかなハンドオーバを行うことができる。
 ハンドオーバ要求は、当該ハンドオーバ要求の送信元が「MRN」であることを示す情報を含む。これにより、ターゲットeNB200は、ハンドオーバ要求の送信元が「MRN」であることを認識した上で、当該ハンドオーバ要求を許可するか否かを判断できる。
 ターゲットeNB200は、MRN300からのハンドオーバ要求の受信に応じて、MRN300のハンドオーバのための情報をDeNB200-1に対して要求する。DeNB200-1は、ターゲットeNB200からの要求に応じて、MRN300のハンドオーバのための情報をターゲットeNB200に送信する。これにより、MRN300主導でMRN300のハンドオーバを行う場合であっても、ターゲットeNB200は、MRN300のハンドオーバのための情報をDeNB200-1から取得できる。
 ターゲットeNB200は、MRN300のハンドオーバのための情報をDeNB200-1から受信した後、X2インターフェイスを用いて、MRN300のハンドオーバのための情報を含むハンドオーバ許可応答(Handover Request Ack)をMRN300に送信する。これにより、DeNB200-1によるハンドオーバ判断を行うことなく、ハンドオーバ許可応答をターゲットeNB200からMRN300に送信できるため、DeNB200-1の負荷を軽減すると共に、速やかなハンドオーバを行うことができる。
 動作パターン2では、MRN300は、ターゲットeNB200へのMRN300のハンドオーバ手順において、ハンドオーバ要求をターゲットeNB200に送信する際に、MRN300の負荷状況を示す情報を当該ハンドオーバ要求と共に送信する。ターゲットeNB200は、MRN300の負荷状況を示す情報をハンドオーバ要求と共に受信した後、MRN300の負荷状況を示す情報に基づいて、ハンドオーバ要求を許可するか否かを判断する。これにより、ターゲットeNB200は、自身の負荷状況と、MRN300の負荷状況と、に基づいて、ハンドオーバ要求を許可するか否かを判断できる。
 動作パターン3では、MRN300は、自身の移動速度に応じたタイミングでハンドオーバ要求を送信する。これにより、例えばMRN300が高速移動する場合のハンドオーバ失敗頻度を低減することができる。
 動作パターン4では、MRN300は、DeNB候補のリストであるDeNBリストに基づいて、ターゲットeNB200を決定する。DeNBリストは、DeNB候補それぞれについて、位置、セル方向、キャパシティ、及びセルサイズの少なくとも1つの情報を含む。これにより、MRN300は、DeNB候補の位置、セル方向、キャパシティ、及びセルサイズの少なくとも1つを考慮して、当該DeNB候補をターゲットeNBとするか否かを決定できる。
 (3)第3実施形態
 以下、第3実施形態について、上述した各実施形態との相違点を説明する。本実施形態は、第2実施形態の応用例に相当する。
 (3.1)第3実施形態に係る動作
 以下において、本実施形態に係る移動通信システムの動作を説明する。
 本実施形態では、DeNBリストに存在するDeNB候補へのMRN300のハンドオーバが不能である場合において、MRN300は、所定eNB(所定基地局)に接続する他のMRNが保持するDeNBリストを当該他のMRNから取得する。
 ここで、「所定eNB」とは、第2実施形態の動作パターン4で説明したように、ターゲットeNBとして適切なDeNB候補がDeNBリストに存在しない場合には、「現在のDeNB」又は「DeNBリストに存在するDeNB候補」を意味する。或いは、「所定eNB」とは、MRN300からのハンドオーバ要求がターゲットeNBによって拒否された場合には、「ターゲットeNB」を意味する。以下の動作パターン1は前者の場合を想定し、以下の動作パターン2は後者の場合を想定している。
 (3.1.1)動作パターン1
 図15は、本実施形態に係る動作パターン1のシーケンス図である。ここでは、ターゲットeNBとして適切なDeNB候補がDeNBリストに存在しない場合に、DeNBリストに存在するDeNB候補であるeNB200-2及びeNB200-3を「所定eNB」とするケースを説明する。eNB200-2には、他のMRN1(MRN300-1)及びMRN2(MRN300-2)が接続している。
 ステップS301において、MRN300は、DeNBリストに存在する全てのDeNB候補がターゲットeNBとして不適切であると判断する。
 ステップS302において、MRN300は、DeNBリストに存在するDeNB候補であるeNB200-2及びeNB200-3に対して、接続中のMRN(又はRN)についてX2インターフェイス上で問い合せる。
 ステップS303において、eNB200-2及びeNB200-3は、MRN300に対して、接続中のMRNについてX2インターフェイス上で通知する。ここでは、eNB200-2は、MRN300-1の識別子及びMRN300-2の識別子をMRN300に通知する。eNB200-3は、接続中のMRNが存在しない旨をMRN300に通知する。
 ステップS304において、MRN300は、eNB200-2からの通知に基づいて、X2インターフェイス上でMRN300-1及びMRN300-2のそれぞれにアクセスし、DeNBリストを要求する。
 ステップS305において、MRN300-1及びMRN300-2のそれぞれは、自身が保持するDeNBリストをX2インターフェイス上でMRN300に通知(報告)する。
 ステップS306において、MRN300は、自身が保持するDeNBリストと、MRN300-1及びMRN300-2のそれぞれから受信したDeNBリストと、を照合する。
 ステップS307において、自身が保持するDeNBリストと、MRN300-1及びMRN300-2のそれぞれから受信したDeNBリストと、に差異があるか否かを判断する。詳細には、MRN300は、MRN300-1及びMRN300-2のそれぞれから受信したDeNBリストにおいて、自身が保持するDeNBリストに存在しないDeNB候補が存在するか否かを確認する。
 そのようなDeNB候補が存在する場合(ステップS307;Yes)、ステップS308において、MRN300は、当該DeNB候補を追加するよう自身のDeNBリストを更新する。詳細には、当該DeNB候補の識別子を自身のDeNBリストに追加する。その結果、当該DeNB候補をターゲットeNBとするハンドオーバを開始可能な状態になる。
 (3.1.2)動作パターン2
 図16は、本実施形態に係る動作パターン2のシーケンス図である。ここでは、MRN300からのハンドオーバ要求がeNB200-2によって拒否された場合に、eNB200-2を「所定eNB」とするケースを説明する。
 ステップS311において、MRN300は、ハンドオーバ要求をX2インターフェイス上でeNB200-2に送信する。
 ステップS312において、eNB200-2は、MRN300のハンドオーバ要求を許可するか拒否するかを判断する。ここでは、MRN300のハンドオーバ要求を拒否すると判断したと仮定して説明を進める。
 ステップS313において、eNB200-2は、ハンドオーバ拒否応答(Nack)と共に、自身に接続中のMRN(又はRN)についてX2インターフェイス上でMRN300に通知する。これ以降は、動作パターン1のステップS304以降の動作と同様の動作が行われる。
 (3.2)第3実施形態のまとめ
 以上説明したように、DeNBリストに存在するDeNB候補をターゲットeNB200とするMRN300のハンドオーバが不能である場合において、MRN300は、当該DeNBリストに存在するeNB200-2に接続する他のMRNが保持するDeNBリストを当該他のMRNから取得する。そして、MRN300は、取得したDeNBリストの中から新たなターゲットeNBを決定する。これにより、DeNBリストに存在するDeNB候補をターゲットeNBとするMRN300のハンドオーバが不能である場合でも、他のMRNが保持するDeNBリストを利用して、新たなターゲットeNBへのハンドオーバを試みることができる。
 本実施形態では、MRN300は、eNB200-2に接続する他のMRNについての情報をeNB200-2から受信する。これにより、MRN300は、eNB200-2に接続する他のMRNを把握することができる。
 本実施形態では、MRN300は、eNB200-2に接続する他のMRNについての情報をeNB200-2から受信するのに先立ち、eNB200-2に接続する他のMRNについてeNB200-2に問い合せる。これにより、eNB200-2は、MRN300からの求めに応じて、自身に接続するMRNをMRN300に通知できる。
 本実施形態では、eNB200-2は、MRN300に対するハンドオーバ拒否応答(Nack)と共に、接続中のMRNの情報をMRN300に通知する。これにより、MRN300は、eNB200-2に接続する他のMRNを把握することができる。
 (4)第4実施形態
 以下、第4実施形態について、上述した各実施形態との相違点を説明する。
 上述した第2実施形態及び第3実施形態では、MRN300のハンドオーバをMRN300主導で行っていたが、本実施形態では、MRN300のハンドオーバをDeNB200-1主導で行う。すなわち、本実施形態では、LTEにおける通常のハンドオーバ手順を応用してMRN300のハンドオーバを行う。
 (4.1)第4実施形態に係る動作
 以下において、本実施形態に係る移動通信システムの動作を説明する。
 本実施形態では、DeNB200-1は、MRN300からの測定報告に基づいて、隣接eNBリストに存在するeNB(セル)へのMRN300のハンドオーバを行うか否かを判断する。ここで、隣接eNBリストに存在するeNBであっても、DeNB機能を有していないeNBであれば、ターゲットeNBとすることは無意味である。よって、本実施形態では、以下のように隣接eNBリストを構成及び管理する。
 (4.1.1)隣接eNBリストの管理
 図17は、本実施形態に係る隣接eNBリストの構成図である。
 図17に示すように、隣接eNBリストは、隣接eNB(のセルID(TCI))それぞれについて、当該隣接eNBがDeNB機能を有するか否かを示す情報をさらに含む。例えば、DeNB機能を有しない隣接eNBについては、DeNB機能を有しないことを示すフラグを設定する。その他の項目については、仕様上の隣接eNBリスト(「隣接関係テーブル(NRT)」と称される)と同様である。仕様上、隣接eNBリストは、ANR(Automatic Neighbour Relation)機能により更新されることもある。
 eNB200(DeNB200-1)は、隣接eNBリストに関する情報をOAM500から取得し、隣接eNBリストを管理する。本実施形態では、MRN300がDeNB200-1に接続した際に、隣接eNBリストを更新するための情報をOAM500に要求する。そして、DeNB200-1は、OAM500からの情報に応じて、隣接eNBリストを更新する。
 (4.1.2)ハンドオーバ手順
 (4.1.2.1)動作パターン1
 図18は、本実施形態に係る動作パターン1のシーケンス図である。
 図18に示すように、ステップS401において、MRN300は、測定報告をDeNB200-1に送信する。
 ステップS402において、DeNB200-1は、隣接eNBリスト(NL或いはNRT)に基づいて、DeNB機能を有する隣接eNBを特定する。
 ステップS403において、DeNB200-1は、MRN300からの測定報告に基づいて、ステップS402で特定した隣接eNBの中からターゲットeNBを決定する。例えば、DeNB200-1は、ステップS402で特定した隣接eNBであって、測定報告により示されるRSRPが高い隣接eNBをターゲットeNBとして決定する。ここでは、eNB200-2がターゲットeNBとして決定されたと仮定して説明を進める。
 ステップS404において、DeNB200-1は、ハンドオーバ要求をX2インターフェイス上でターゲットeNB200-2に送信する。
 ステップS405において、ターゲットeNB200-2は、DeNB200-1からのハンドオーバ要求を許可するか拒否するかを判断する。これ以降は通常のハンドオーバ手順が実施される。
 (4.1.2.2)動作パターン2
 図19は、本実施形態に係る動作パターン2のシーケンス図である。ここでは、本実施形態に係る動作パターン1との相違点を説明する。
 図19に示すように、ステップS401-1において、MRN300は、測定報告をDeNB200-1に送信する際に、自身の負荷状況をDeNB200-1に通知する。ただし、負荷状況を通知するタイミングは、測定報告のタイミングと異ならせてもよい。なお、DeNB200-1がMRN300の負荷状況を把握している場合には、DeNB200-1へのMRN300の負荷状況の通知は省略可能である。
 負荷状況とは、MRN300が収容するUE100の数(詳細には、MRN300に接続中のUE100の数)、MRN300が取り扱うトラフィック量などである。なお、実際の負荷状況に限らず、潜在的な負荷状況(例えば、最大収容UE数や最大トラフィック量などの処理能力)でもよい。
 ステップS402及びS403は動作パターン1と同様である。
 ステップS404-1において、DeNB200-1は、ハンドオーバ要求をX2インターフェイス上でターゲットeNB200-2に送信する際に、MRNの負荷状況をDeNB200-1に通知する。
 ステップS405-1において、ターゲットeNB200-2は、MRNの負荷状況を考慮して、DeNB200-1からのハンドオーバ要求を許可するか拒否するかを判断する。詳細には、eNB200-2は、自身の負荷状況に基づく余裕度と、MRN300の負荷状況と、を比較して、MRN300との接続を確立しても問題が生じないか否かを判断する。これ以降は通常のハンドオーバ手順が実施される。
 (4.2)第4実施形態のまとめ
 以上説明したように、隣接eNBリストは、隣接eNBそれぞれについて、当該隣接eNBがDeNB機能を有するか否かを示す情報をさらに含む。これにより、eNB200(DeNB200-1)は、隣接eNBリストに基づいて、DeNB機能を有する隣接eNBの中からターゲットeNB200を決定することができる。
 DeNB200-1は、MRN300がDeNB200-1に接続した際に、隣接eNBリストを更新するための情報をOAM500に要求する。そして、DeNB200-1は、OAM500からの情報に応じて、隣接eNBリストを更新する。これにより、MRN300のハンドオーバが発生する前に、隣接eNBリストを最新の状態にすることができる。
 ターゲットeNB200は、DeNB200-1からのハンドオーバ要求を受信した場合で、ターゲットeNB200がDeNB機能を有しない場合、ターゲットeNB200は、ハンドオーバ要求に対する拒否応答と共に、自身がDeNB機能を有しない旨の情報をDeNB200-1に送信する。そして、DeNB200-1は、DeNB機能を有しない旨の情報をターゲットeNB200から受信したことに応じて、隣接eNBリストを更新する。これにより、ハンドオーバ手順を利用して隣接eNBリストを修正できる。
 動作パターン2では、DeNB200-1は、MRN300の負荷状況を示す情報をハンドオーバ要求と共にターゲットeNB200に送信する。ターゲットeNB200は、MRN300の負荷状況を示す情報をハンドオーバ要求と共に受信した後、MRN300の負荷状況を示す情報に基づいて、ハンドオーバ要求を許可するか否かを判断する。これにより、ターゲットeNB200は、自身の負荷状況と、MRN300の負荷状況と、に基づいて、ハンドオーバ要求を許可するか否かを判断できる。
 (5)第5実施形態
 以下、第5実施形態について、上述した各実施形態との相違点を説明する。
 本実施形態では、上述した第2実施形態に係るハンドオーバ手順、すなわち、MRN300のハンドオーバをMRN300主導で行うことを基本としつつ、上述した第4実施形態のように、DeNB200-1においてもハンドオーバ判断を行う。
 (5.1)第5実施形態に係る動作
 図20は、本実施形態に係る動作シーケンス図である。本シーケンスの初期状態では、MRN300は、DeNB200-1に接続してリレー伝送を実行中であるとする。
 図20に示すように、ステップS501において、MRN300は、受信する参照信号に対する測定の結果と、保持しているDeNBリストと、を照合する。
 ステップS502において、MRN300は、ステップS501での照合結果に応じて、ハンドオーバ判断を行う。例えば、MRN300は、現在接続中のDeNB200-1よりもRSRPが高いDeNB候補がDeNBリストに存在する場合、当該DeNB候補をターゲットeNBとして決定する。
 ここでは、そのようなハンドオーバ判断により、eNB200-2がターゲットeNBとして決定されたと仮定して説明を進める。ただし、ステップS502で決定されるターゲットeNBは、1つに限らず、複数であってもよい。
 ステップS503において、MRN300は、DeNB200-1に対して、MRN300からのハンドオーバ要求に対応可能であるか否かを問い合せる。なお、ステップS503をステップS502よりも前に行ってもよい。
 ステップS504において、DeNB200-1は、MRN300からの問い合せに応じて、MRN300に対して、自身がMRN300からのハンドオーバ要求に対応可能であるか否かを通知する。
 ここでは、DeNB200-1がMRN300からのハンドオーバ要求に対応可能であると仮定して説明を進める。
 ステップS505において、MRN300は、DeNB200-1に対して、eNB200-2へのハンドオーバを要求するためのハンドオーバ要求をX2インターフェイス上で送信する。ハンドオーバ要求は、eNB200-2の識別子を含む。ターゲットeNBが複数である場合、複数のターゲットeNBの識別子を含む。また、ハンドオーバ要求は、当該ハンドオーバ要求の送信元が「MRN」であることを示す情報を含んでもよい。
 ステップS506において、DeNB200-1は、MRN300からのハンドオーバ要求(に含まれる識別子)に基づいて、ターゲットeNB200毎にハンドオーバ可否を判断する。例えば、第4実施形態で説明したように、DeNB機能の有無に基づいて判断することができる。
 ここでは、DeNB200-1がターゲットeNB200へのハンドオーバが可能であると判断したと仮定して説明を進める。
 ステップS507において、DeNB200-1は、ハンドオーバ要求をX2インターフェイス上でターゲットeNB200-2に送信する。
 ステップS508において、ターゲットeNB200-2は、DeNB200-1からのハンドオーバ要求を許可するか拒否するかを判断する。これ以降は通常のハンドオーバ手順が実施される。
 なお、本実施形態においても、第4実施形態に係る動作パターン2と同様に、MRN300の負荷状況を考慮することができる。
 また、本実施形態に係るハンドオーバ手順と、第2実施形態に係るハンドオーバ手順と、を使い分けてもよい。例えば、DeNB200-1がMRN300からのハンドオーバ要求に対応しており、ターゲットeNB200-2がMRN300からのハンドオーバ要求に対応していない場合に、本実施形態に係るハンドオーバ手順を適用するとしてもよい。或いは、MRN300が保持するDeNBリストが更新されてからの経過時間が閾値以内であれば第2実施形態に係るハンドオーバ手順を適用し、当該経過時間が当該閾値を超えていれば本実施形態に係るハンドオーバ手順を適用してもよい。
 (5.2)第5実施形態のまとめ
 以上説明したように、eNB200に接続するUE100のハンドオーバ判断をeNB200が行う移動通信システムにおいて、DeNB200-1に接続し、DeNB200-1とUE100との間でリレー伝送を行うMRN300は、MRN300のハンドオーバ判断をMRN300自身で行う。これにより、MRN300は、自身の状況に応じて、すなわち、MRN300特有の事情を考慮して、最適なハンドオーバ判断を行うことができる。
 MRN300は、ハンドオーバ要求にターゲットeNB200の識別子を1つ又は複数含めた上で、ハンドオーバ要求をDeNB200-1に送信する。DeNB200-1は、MRN300からのハンドオーバ要求に基づいて、ターゲットeNB200毎にハンドオーバ可否を判断する。これにより、MRN300が決定したターゲットeNB200が適切であるか否かをDeNB200-1で判断することができる。したがって、ターゲットeNB200をより適切に決定することができる。
 本実施形態では、MRN300は、DeNB200-1に対して、MRN300からのハンドオーバ要求に対応可能であるか否かを問い合わせる。これにより、MRN300からのハンドオーバ要求に対応可能であることを確認した上で、ハンドオーバ要求をMRN300からDeNB200-1に送信できる。
 (6)その他の実施形態
 この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した第1実施形態から第5実施形態は、別個独立に実施する場合に限らず、相互に組み合わせて実施してもよい。例えば、第5実施形態に対して、第3実施形態で説明したDeNBリスト取得方法を適用してもよい。
 上述した各実施形態では、移動可能なリレー局であるMRN300を例に説明したが、移動不能なリレー局に対して本発明を適用してもよい。例えば、リレー局の周辺に新たなeNBが設置される場合や、既存のeNBが動作を停止する場合には、リレー局周辺の状況が変化することになるため、DeNBリスト(DL)及び隣接eNBリスト(NL或いはNRT)を更新したり、リレー局のハンドオーバを行ったりする必要が生じ得る。
 なお、米国仮出願第61/615045号(2012年3月23日出願)、米国仮出願第61/615059号(2012年3月23日出願)、米国仮出願第61/615067号(2012年3月23日出願)、米国仮出願第61/615073号(2012年3月23日出願)、及び、米国仮出願第61/615087号(2012年3月23日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る通信制御方法は、移動可能なリレー局をサポートすることができるため、移動通信分野において有用である。

Claims (22)

  1.  ドナー基地局リストを保持しており、前記ドナー基地局リストに存在するドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局における通信制御方法であって、
     隣接基地局を特定するステップAと、
     前記ステップAで特定した前記隣接基地局に対して、前記リレー局の受け入れ可否に関して問い合せるステップBと、
     前記ステップBでの問い合せ結果に応じて、前記ドナー基地局リストを更新するステップCと、
    を有することを特徴とする通信制御方法。
  2.  前記ステップBは、前記ステップAで特定した前記隣接基地局に対して、ドナー基地局機能を有しているか否かを問い合せるステップB1を含むことを特徴とする請求項1に記載の通信制御方法。
  3.  前記ステップBは、前記ステップAで特定した前記隣接基地局に対して、前記リレー局の負荷状況を通知するステップB2を含むことを特徴とする請求項1に記載の通信制御方法。
  4.  前記ステップCで更新された前記ドナー基地局リストを、前記ドナー基地局を介してコアネットワーク装置に通知するステップDをさらに有することを特徴とする請求項1に記載の通信制御方法。
  5.  ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局を含む移動通信システムに適用される通信制御方法であって、
     ターゲット基地局への前記リレー局のハンドオーバ手順において、前記リレー局の受け入れを要求するためのハンドオーバ要求を前記ターゲット基地局に送信するステップAを有し、
     前記ステップAにおいて、前記リレー局の負荷状況を示す情報を前記ハンドオーバ要求と共に送信することを特徴とする通信制御方法。
  6.  前記ターゲット基地局へのハンドオーバ判断を前記リレー局で行う場合、前記ステップAにおいて、前記リレー局が、前記リレー局の負荷状況を示す情報を前記ハンドオーバ要求と共に送信することを特徴とする請求項5に記載の通信制御方法。
  7.  前記ステップAに先立ち、前記リレー局が、ドナー基地局候補の基地局のリストであるドナー基地局リスト又は隣接基地局のリストである隣接基地局リストに基づいて、前記ターゲット基地局を決定するステップCをさらに有し、
     前記ドナー基地局リスト又は前記隣接基地局リストは、前記ドナー基地局候補の基地局又は前記隣接基地局のそれぞれについて、位置、セル方向、キャパシティ、及びセルサイズの少なくとも1つの情報を含むことを特徴とする請求項6に記載の通信制御方法。
  8.  前記ターゲット基地局へのハンドオーバ判断を前記ドナー基地局で行う場合、前記ステップAにおいて、前記ドナー基地局が、前記リレー局の負荷状況を示す情報を前記ハンドオーバ要求と共に送信することを特徴とする請求項5に記載の通信制御方法。
  9.  ドナー基地局リストを保持しており、前記ドナー基地局リストに存在するドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局を含む移動通信システムにおける通信制御方法であって、
     前記ドナー基地局リストに存在する基地局への前記リレー局のハンドオーバが不能である場合において、前記リレー局が、所定基地局に接続する他のリレー局が保持するドナー基地局リストを前記他のリレー局から取得するステップAを有することを特徴とする通信制御方法。
  10.  前記リレー局が、前記ステップAに先立ち、前記所定基地局に接続する他のリレー局についての情報であるリレー局情報を前記所定基地局から受信するステップCをさらに有することを特徴とする請求項9に記載の通信制御方法。
  11.  前記リレー局からターゲット基地局にハンドオーバ要求を送信するステップDと、
     前記ターゲット基地局が、前記ハンドオーバ要求を拒否する場合に、ハンドオーバ拒否応答を前記リレー局に送信するステップEと、をさらに有し、
     前記所定基地局は、前記ターゲット基地局であり、
     前記ステップEにおいて、前記ターゲット基地局は、前記リレー局情報を前記ハンドオーバ拒否応答に含めて送信し、
     前記ステップCにおいて、前記リレー局は、前記ハンドオーバ拒否応答に含まれる前記リレー局情報を受信することを特徴とする請求項10に記載の通信制御方法。
  12.  前記ステップCに先立ち、前記所定基地局に接続する他のリレー局について前記所定基地局に問い合せるステップDをさらに有することを特徴とする請求項10に記載の通信制御方法。
  13.  ドナー基地局機能を有する基地局と、前記基地局とユーザ端末との間でリレー伝送を行うリレー局とを含む移動通信システムに適用される通信制御方法であって、
     隣接基地局の識別子を含む隣接基地局リストを前記基地局が保持するステップAを有し、
     前記隣接基地局リストは、前記隣接基地局それぞれについて、当該隣接基地局がドナー基地局機能を有するか否かを示す情報をさらに含むことを特徴とする通信制御方法。
  14.  前記リレー局が前記基地局に接続した際に、前記基地局が、前記隣接基地局リストを更新するための情報をコアネットワーク装置に要求するステップBと、
     前記基地局が、前記コアネットワーク装置からの情報に応じて、前記隣接基地局リストを更新するステップCとをさらに有することを特徴とする請求項13に記載の通信制御方法。
  15.  前記基地局からターゲット基地局への前記リレー局のハンドオーバ手順において、前記ターゲット基地局が、前記基地局からのハンドオーバ要求を受信するステップDと、
     前記ターゲット基地局が前記ドナー基地局機能を有しない場合、前記ターゲット基地局が、前記ハンドオーバ要求に対する拒否応答と共に、自身が前記ドナー基地局機能を有しない旨の情報を前記基地局に送信するステップEとをさらに有することを特徴とする請求項13に記載の通信制御方法。
  16.  基地局に接続するユーザ端末のハンドオーバ判断を前記基地局が行う移動通信システムに適用される通信制御方法であって、
     ドナー基地局に接続し、前記ドナー基地局とユーザ端末との間でリレー伝送を行うリレー局のハンドオーバ判断を行うステップAを有し、
     前記ステップAにおいて、前記リレー局のハンドオーバ判断を前記リレー局が行うことを特徴とする通信制御方法。
  17.  前記ステップAによりターゲット基地局へのハンドオーバを行うと判断した場合に、前記リレー局の受け入れを要求するためのハンドオーバ要求を前記リレー局が送信するステップBをさらに有することを特徴とする請求項16に記載の通信制御方法。
  18.  前記ステップBにおいて、前記リレー局は、前記リレー局と前記ターゲット基地局との間に確立されるネットワークインターフェイスを用いて、前記ハンドオーバ要求を前記ターゲット基地局に送信するステップB1を含むことを特徴とする請求項17に記載の通信制御方法。
  19.  前記ターゲット基地局が、前記リレー局からの前記ハンドオーバ要求の受信に応じて、前記リレー局のハンドオーバのための情報を前記ドナー基地局に対して要求するステップCと、
     前記ドナー基地局が、前記ターゲット基地局からの要求に応じて、前記リレー局のハンドオーバのための情報を前記ターゲット基地局に送信するステップDと、
    をさらに有することを特徴とする請求項18に記載の通信制御方法。
  20.  前記ターゲット基地局が、前記リレー局のハンドオーバのための情報を前記ドナー基地局から受信した後、前記ネットワークインターフェイスを用いて、前記リレー局のハンドオーバのための情報を含むハンドオーバ許可応答を前記リレー局に送信するステップEをさらに有することを特徴とする請求項19に記載の通信制御方法。
  21.  前記ステップBにおいて、前記リレー局は、前記ハンドオーバ要求に前記ターゲット基地局の識別子を1つ又は複数含めた上で、前記ハンドオーバ要求を前記ドナー基地局に送信することを特徴とする請求項17に記載の通信制御方法。
  22.  前記ステップBに先立ち、前記リレー局が、前記ドナー基地局及び/又は前記ターゲット基地局に対して、前記リレー局からのハンドオーバ要求に対応可能であるか否かを問い合わせるステップをさらに有することを特徴とする請求項17に記載の通信制御方法。
PCT/JP2013/058143 2012-03-23 2013-03-21 通信制御方法 WO2013141321A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/386,407 US9642050B2 (en) 2012-03-23 2013-03-21 Communication control method
JP2014506282A JP6062420B2 (ja) 2012-03-23 2013-03-21 制御方法、リレー局、基地局及びプロセッサ
EP13765247.5A EP2830344A4 (en) 2012-03-23 2013-03-21 COMMUNICATION CONTROL METHOD
US15/469,314 US10244515B2 (en) 2012-03-23 2017-03-24 Communication control method
US16/281,909 US10791547B2 (en) 2012-03-23 2019-02-21 Communication control method
US17/001,107 US11337193B2 (en) 2012-03-23 2020-08-24 Communication control method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US201261615045P 2012-03-23 2012-03-23
US201261615087P 2012-03-23 2012-03-23
US201261615073P 2012-03-23 2012-03-23
US201261615067P 2012-03-23 2012-03-23
US201261615059P 2012-03-23 2012-03-23
US61/615,067 2012-03-23
US61/615,059 2012-03-23
US61/615,045 2012-03-23
US61/615,073 2012-03-23
US61/615,087 2012-03-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/386,407 A-371-Of-International US9642050B2 (en) 2012-03-23 2013-03-21 Communication control method
US15/469,314 Continuation US10244515B2 (en) 2012-03-23 2017-03-24 Communication control method

Publications (1)

Publication Number Publication Date
WO2013141321A1 true WO2013141321A1 (ja) 2013-09-26

Family

ID=49222775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058143 WO2013141321A1 (ja) 2012-03-23 2013-03-21 通信制御方法

Country Status (4)

Country Link
US (4) US9642050B2 (ja)
EP (2) EP3226600A1 (ja)
JP (5) JP6062420B2 (ja)
WO (1) WO2013141321A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017507A1 (ja) * 2018-07-18 2020-01-23 Kddi株式会社 中継伝送路を含んだ無線通信システムにおいてハンドオーバ処理を実行する中継装置、その制御方法、及びプログラム
WO2020066605A1 (ja) * 2018-09-26 2020-04-02 京セラ株式会社 中継装置
US11368210B2 (en) 2019-03-29 2022-06-21 Honda Motor Co., Ltd. Relay device, program, communication system, and communication method
US11503517B2 (en) 2019-03-29 2022-11-15 Honda Motor Co., Ltd. Relay apparatus, program, communication system, and method

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226600A1 (en) 2012-03-23 2017-10-04 Kyocera Corporation Congestion aware x2 handover of relay node
US9876557B2 (en) * 2012-06-28 2018-01-23 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
GB2503942A (en) * 2012-07-13 2014-01-15 Nec Corp Mobile relay node handover in a wireless communication system
US9544782B2 (en) * 2012-11-02 2017-01-10 Qualcomm Incorporated Systems, apparatus, and methods for range extension of wireless communication
KR20140078511A (ko) * 2012-12-17 2014-06-25 에릭슨 엘지 주식회사 타겟 기지국 셀 식별 시스템 및 방법
JP5750523B1 (ja) * 2014-02-17 2015-07-22 ソフトバンクモバイル株式会社 制御装置、中継装置、通信システム、プログラム及び制御方法
EP3114882B1 (en) * 2014-03-06 2018-10-10 LG Electronics Inc. Method and apparatus for performing handover in wireless communication system
EP3487225B1 (en) * 2016-08-12 2022-10-12 Huawei Technologies Co., Ltd. Nb-iot cell reselection method and network devices
US10609611B2 (en) * 2017-05-04 2020-03-31 Ofinno, LLP Beam-based measurement configuration
JP6875652B2 (ja) * 2017-05-17 2021-05-26 富士通株式会社 無線基地局装置、端末装置、無線通信システム、及び無線通信方法
JP6498239B2 (ja) * 2017-06-30 2019-04-10 ソフトバンク株式会社 基地局、移動通信システム及びハンドオーバ制御方法
JP6557294B2 (ja) * 2017-07-10 2019-08-07 ソフトバンク株式会社 移動通信システム及びデータ処理装置
US10708854B2 (en) 2017-10-12 2020-07-07 Airspan Networks Inc. Apparatus and method for providing network configurability in a wireless network
US11102785B2 (en) 2017-10-12 2021-08-24 Airspan Ip Holdco Llc Apparatus and method selecting a base station in a network
US10616824B2 (en) * 2017-11-03 2020-04-07 Airspan Networks Inc. Apparatus and method for providing network configurability in a wireless network
JP2021078354A (ja) 2018-03-08 2021-05-27 有限会社アルティザイム・インターナショナル フラビンアデニンジヌクレオチドグルコース脱水素酵素とシトクロム分子との融合タンパク質
RU2755210C1 (ru) * 2018-05-22 2021-09-14 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ доступа и точка передачи
US20230336239A1 (en) 2020-08-31 2023-10-19 Wollochet Solutions Llc Location dependent relay node configuration
US20240040540A1 (en) * 2020-12-15 2024-02-01 Sharp Kabushiki Kaisha Neighboring cell mobility information for vehicle-mounted relays
US20230050960A1 (en) * 2021-08-16 2023-02-16 Qualcomm Incorporated Target cell selection of autonomous mobile repeaters
WO2024029520A1 (ja) * 2022-08-04 2024-02-08 京セラ株式会社 通信制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166595A (ja) * 2010-02-12 2011-08-25 Mitsubishi Electric Corp 無線中継基地局、通信システムおよび無線中継方法
JP2012005091A (ja) * 2010-06-21 2012-01-05 Ntt Docomo Inc 移動通信方法及び無線基地局
JP2012080367A (ja) * 2010-10-01 2012-04-19 Ntt Docomo Inc 移動通信方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI289999B (en) * 2001-06-08 2007-11-11 Benq Corp Transmission method for relay signal of wireless communication system
KR20080003733A (ko) * 2006-07-03 2008-01-08 한국전자통신연구원 기지국과 이동국을 중계하는 장치 및 방법, 그리고 제어정보 수신 방법
EP2041910A4 (en) * 2006-07-06 2013-05-22 Apple Inc WIRELESS ACCESS POINT SECURITY FOR MULTIHOP NETWORKS
JP2008034906A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Ind Co Ltd 無線基地局ハンドオーバ方法、及びデータ通信システム、並びに無線基地局、中継装置
EP2207277A4 (en) 2007-10-16 2015-08-12 Fujitsu Ltd RELAY STATION DEVICE, TERMINAL STATION DEVICE, WIRELESS COMMUNICATION SYSTEM, AND CHARGE DISTRIBUTION METHOD
FI20085193A0 (fi) * 2008-02-29 2008-02-29 Nokia Siemens Networks Oy Toistinsolmun yhteydenhallinta
JP4902605B2 (ja) * 2008-07-11 2012-03-21 株式会社日立製作所 無線基地局、ハンドオフ制御方法、およびプログラム
JP4796103B2 (ja) * 2008-08-28 2011-10-19 京セラ株式会社 通信システム
CN101729277B (zh) * 2008-10-27 2015-07-08 华为技术有限公司 设备池的管理方法、节点设备和通信***
ES2407631T3 (es) * 2008-11-04 2013-06-13 Nokia Siemens Networks Oy Gestión de sobrecargas y traspasos en una red de comunicaciones
KR101632739B1 (ko) * 2009-06-18 2016-06-22 한국전자통신연구원 통신 시스템의 데이터 전송 방법 및 이를 수행하는 릴레이 장치
CN101938798A (zh) * 2009-07-03 2011-01-05 中兴通讯股份有限公司 一种无线中继***中终端的移动性管理方法及***
US8611333B2 (en) * 2009-08-12 2013-12-17 Qualcomm Incorporated Systems and methods of mobile relay mobility in asynchronous networks
JP2013502783A (ja) * 2009-08-19 2013-01-24 エヌイーシー ヨーロッパ リミテッド 移動セルラ通信ネットワークにおける移動端末のハンドオーバ決定を支援する方法
JP5399830B2 (ja) * 2009-09-09 2014-01-29 京セラ株式会社 無線通信システム、無線基地局、無線中継局及びハンドオーバ制御方法
JP5564273B2 (ja) 2010-01-26 2014-07-30 京セラ株式会社 無線中継局及び制御方法
US8694012B2 (en) * 2010-02-01 2014-04-08 Intel Mobile Communications GmbH Method and apparatuses for two or more neighboring wireless network devices accessing a plurality of radio resources
KR101878000B1 (ko) * 2010-04-02 2018-07-12 인터디지탈 패튼 홀딩스, 인크 릴레이 노드를 통한 통신을 지원하기 위한 방법 및 장치
CN102238667B (zh) * 2010-05-07 2015-09-16 北京三星通信技术研究有限公司 一种建立基站间连接的方法
CN102291789B (zh) * 2010-06-21 2015-08-12 中兴通讯股份有限公司 获取相邻小区信息方法、用户设备的小区切换方法及网络
GB201010410D0 (en) * 2010-06-22 2010-08-04 Nokia Siemens Networks Oy Relaying communications
CN102348255B (zh) 2010-07-30 2016-07-06 中兴通讯股份有限公司 一种中继节点接入网络的方法和***
US20130163762A1 (en) * 2010-09-13 2013-06-27 Nec Corporation Relay node device authentication mechanism
WO2012091418A2 (ko) * 2010-12-27 2012-07-05 한국전자통신연구원 단말간 직접 통신 및 단말 릴레잉 방법
EP2659709A1 (en) * 2010-12-28 2013-11-06 Nokia Siemens Networks Oy Relay node configuration in preparation for handover
WO2012096611A2 (en) * 2011-01-14 2012-07-19 Telefonaktiebolaget L M Ericsson (Publ) Method and device for distinguish between relay types
CN102098723B (zh) 2011-02-12 2014-01-29 大唐移动通信设备有限公司 为移动中继节点配置施主基站或施主小区的方法和设备
US20130316712A1 (en) * 2011-03-13 2013-11-28 Lg Electronics Inc. Method and apparatus for performing handover in wireless communication system
IN2014CN03338A (ja) 2011-11-04 2015-07-03 Mitsubishi Electric Corp
EP3226600A1 (en) * 2012-03-23 2017-10-04 Kyocera Corporation Congestion aware x2 handover of relay node

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166595A (ja) * 2010-02-12 2011-08-25 Mitsubishi Electric Corp 無線中継基地局、通信システムおよび無線中継方法
JP2012005091A (ja) * 2010-06-21 2012-01-05 Ntt Docomo Inc 移動通信方法及び無線基地局
JP2012080367A (ja) * 2010-10-01 2012-04-19 Ntt Docomo Inc 移動通信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"TS 36.300 V11. 0. 0", 3GPP TECHNOLOGY SPECIFICATIONS, December 2011 (2011-12-01)
CATT: "Key issues based on Alt1 relay", 3GPP TSG RAN WG3#75 R3-120104, 31 January 2012 (2012-01-31), XP050566597 *
LG ELECTRONICS INC.: "Unavailable DeNB cells at phase II", 3GPP TSG-RAN WG2 #72 R2-106494, 9 November 2010 (2010-11-09), XP050605538 *
See also references of EP2830344A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017507A1 (ja) * 2018-07-18 2020-01-23 Kddi株式会社 中継伝送路を含んだ無線通信システムにおいてハンドオーバ処理を実行する中継装置、その制御方法、及びプログラム
WO2020066605A1 (ja) * 2018-09-26 2020-04-02 京セラ株式会社 中継装置
JPWO2020066605A1 (ja) * 2018-09-26 2021-08-30 京セラ株式会社 中継装置
US11368210B2 (en) 2019-03-29 2022-06-21 Honda Motor Co., Ltd. Relay device, program, communication system, and communication method
US11503517B2 (en) 2019-03-29 2022-11-15 Honda Motor Co., Ltd. Relay apparatus, program, communication system, and method

Also Published As

Publication number Publication date
JPWO2013141321A1 (ja) 2015-08-03
EP3226600A1 (en) 2017-10-04
US20190191431A1 (en) 2019-06-20
US9642050B2 (en) 2017-05-02
US20150043422A1 (en) 2015-02-12
US20200389890A1 (en) 2020-12-10
US20170201978A1 (en) 2017-07-13
US10791547B2 (en) 2020-09-29
JP6960010B2 (ja) 2021-11-05
JP6405025B2 (ja) 2018-10-17
JP2020114019A (ja) 2020-07-27
JP6239572B2 (ja) 2017-11-29
US10244515B2 (en) 2019-03-26
EP2830344A1 (en) 2015-01-28
US11337193B2 (en) 2022-05-17
JP2018042275A (ja) 2018-03-15
JP2016076960A (ja) 2016-05-12
EP2830344A4 (en) 2016-03-23
JP2019009810A (ja) 2019-01-17
JP6062420B2 (ja) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6960010B2 (ja) 通信制御方法
JP5851586B2 (ja) 通信制御方法、移動管理装置、及びホーム基地局
CN109156005B (zh) 基站和用户终端
US9386442B2 (en) Method and apparatus for performing membership verification or access control in wireless communication system
US20180227819A1 (en) Method and apparatus for performing partial handover for continuous data transmission in wireless communication system
US9131424B2 (en) Method and apparatus for releasing user equipment context in wireless communication system
WO2015115176A1 (ja) 移動局、再接続要求方法、基地局及び再接続要求処理方法
KR20120004525A (ko) 분할 셀 중계 네트워크를 위한 장치 이동성
KR20120013944A (ko) 이동 중계국을 지원하는 광대역 무선통신 시스템의 그룹 핸드오버 방법 및 장치
WO2017135343A1 (ja) 通信方法、無線端末、プロセッサ及び基地局
WO2013137460A1 (ja) 通信制御方法、ユーザ端末、基地局、及びホーム基地局
US9479921B2 (en) Method and apparatus for performing closed subscriber group grouping in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506282

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14386407

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013765247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013765247

Country of ref document: EP