WO2013141307A1 - 受信装置および受信電力測定方法 - Google Patents

受信装置および受信電力測定方法 Download PDF

Info

Publication number
WO2013141307A1
WO2013141307A1 PCT/JP2013/058109 JP2013058109W WO2013141307A1 WO 2013141307 A1 WO2013141307 A1 WO 2013141307A1 JP 2013058109 W JP2013058109 W JP 2013058109W WO 2013141307 A1 WO2013141307 A1 WO 2013141307A1
Authority
WO
WIPO (PCT)
Prior art keywords
averaging
period
value obtained
reception power
unit
Prior art date
Application number
PCT/JP2013/058109
Other languages
English (en)
French (fr)
Inventor
石田 一博
Original Assignee
Necカシオモバイルコミュニケーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necカシオモバイルコミュニケーションズ株式会社 filed Critical Necカシオモバイルコミュニケーションズ株式会社
Publication of WO2013141307A1 publication Critical patent/WO2013141307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention is based on a Japanese patent application: Japanese Patent Application No. 2012-0665261 (filed on Mar. 22, 2012), and the entire contents of this application are incorporated herein by reference.
  • the present invention relates to a receiving apparatus and a received power measuring method, and more particularly to a receiving apparatus provided in a mobile terminal in an OFDM (Orthogonal Frequency Division Multiplexing) wireless communication system, and a received power measuring method by the receiving apparatus.
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • Patent Document 1 A method for measuring channel quality in an OFDM communication system is described in Patent Document 1 as an example.
  • the receiving device When calculating the signal reception power, the receiving device provided in the mobile terminal performs a voltage averaging process on the channel estimation value in the time direction, and further averages in the frequency direction, and then between adjacent reference signals (RS: Reference Signal) Then, conjugate multiplication is performed, and the received signal power is calculated using a value obtained by in-phase averaging the results.
  • RS Reference Signal
  • the accuracy of the signal received power can be improved by taking a long voltage average period in the time axis direction.
  • the voltage average time in the time axis direction is increased, there is a problem that the estimated power is reduced due to an error due to a rotation component.
  • An object of the present invention is to provide a receiving apparatus and a received power measuring method for solving such a problem.
  • the receiving apparatus is: In an OFDM (Orthogonal Frequency Division Multiplexing) wireless communication system, a first signal reception power is measured using a value obtained by averaging a channel estimation value estimated based on a known reference signal over a first period. A first reference signal received power (RSRP) measurement unit; A second RSRP measurement unit that measures a second received signal power using a value obtained by averaging the channel estimation value over a second period; An RSRP selection unit that compares the first signal reception power with the second signal reception power and selects a value not smaller as a measurement result of the signal reception power;
  • OFDM Orthogonal Frequency Division Multiplexing
  • the received power measuring method is: A signal reception power measurement method by a mobile terminal in an OFDM (Orthogonal Frequency Division Multiplexing) wireless communication system, Calculating a first signal reception power using a value obtained by averaging a channel estimation value estimated based on a known reference signal over a first period; Calculating a second signal reception power using a value obtained by averaging the channel estimation value over a second period; Comparing the first signal reception power and the second signal reception power and selecting the one having a smaller value as the measurement result of the signal reception power.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the receiving apparatus is: In an OFDM (Orthogonal Frequency Division Multiplexing) wireless communication system, a first signal reception power is measured using a value obtained by averaging a channel estimation value estimated based on a known reference signal over a first period. And a reference signal received power (RSRP) measuring unit for measuring the second signal received power using a value averaged over the second period; An RSRP selection unit that compares the first signal reception power with the second signal reception power and selects a value not smaller as a measurement result of the signal reception power;
  • OFDM Orthogonal Frequency Division Multiplexing
  • received power can be measured with high accuracy in a high-speed fading environment.
  • the power is measured as a low value due to phase rotation. In such an environment, the power is measured with higher accuracy when the averaging period of the voltage averaging process is shortened.
  • the result of measuring the power by dividing the period for calculating the voltage average in the entire measurement period into MH and the result of dividing the measurement into M L (M H > M L ).
  • the results of measuring the power are compared and the higher power is selected as the measurement result.
  • the power measurement accuracy in a high-speed fading environment can be improved.
  • the result of measuring the power with the voltage average calculation period shortened is compared with the result of measuring the power with the voltage average calculation period lengthened, and the higher power is selected. Sometimes it is possible to estimate the received signal power with high accuracy.
  • a receiving apparatus (10) is a value obtained by averaging channel estimation values estimated based on known reference signals in an OFDM (Orthogonal Frequency Division Multiplexing) wireless communication system over a first period.
  • the first reference signal received power (RSRP: Reference Signal Received Power) measuring unit (20H) that measures the first signal received power and the channel estimation value are averaged over a second period Using the value, the second RSRP measurement unit (20L) that measures the second signal reception power is compared with the first signal reception power and the second signal reception power, And an RSRP selection unit (30) that selects as a measurement result of the signal reception power.
  • the RSRP selection unit (30) may use either the first signal reception power or the second signal reception power as a measurement result. .
  • the first RSRP measurement unit (20H) performs the first based on a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over a first period.
  • the second RSRP measurement unit (20L) calculates a signal reception power of the signal, and a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over a second period. Based on the above, the second received signal power may be calculated.
  • the first RSRP measurement unit (20H) and the second RSRP measurement unit (20L) each include a measurement period division unit (21) that divides the measurement period of the reference signal, A time direction voltage averaging unit (22) that averages the channel estimation values over each of the divided periods, and a frequency direction averaging unit (23) that averages the values obtained by the averaging in the frequency direction.
  • a conjugate multiplier (24) that performs conjugate multiplication on the value obtained by averaging in the frequency direction, and a power calculator that calculates received signal power based on the value obtained by the conjugate multiplication (25).
  • the receiving apparatus will be described using LTE standardized in 3GPP as an example. Further, the estimated signal received power is referred to as RSRP (Reference Signal Received Power) following LTE. However, the application destination of this embodiment is not limited to LTE.
  • RSRP Reference Signal Received Power
  • FIG. 1 is a block diagram illustrating an example of a configuration of a receiving device provided in an LTE mobile terminal according to the present embodiment.
  • the receiving apparatus 10 includes an RF (Radio Frequency) unit 11, an FFT (Fast Fourier Transform) unit 12, a channel estimation unit 13, RSRP measurement units 20 ⁇ / b> H and 20 ⁇ / b> L, and an RSRP selection unit 30.
  • RF Radio Frequency
  • FFT Fast Fourier Transform
  • the signal received by the receiving antenna of the mobile terminal (UE) is A / D converted in the RF unit 11 and then converted into frequency component data by Fourier transform in the FFT unit 12.
  • the channel estimation unit 13 estimates a channel estimation matrix representing a channel state using a known reference signal (RS: Reference Signal) that is mapped in advance on a frequency resource.
  • RS Reference Signal
  • FIG. 2 is a block diagram showing an example of the configuration of the RSRP measurement unit 20 (RSRP measurement units 20H and 20L in FIG. 1).
  • the RSRP measurement unit 20 includes a measurement period division unit 21, a time direction voltage averaging unit 22, a frequency direction averaging unit 23, a conjugate multiplication unit 24, and a power calculation unit 25.
  • the division number M of the measurement period is different between the RSRP measurement units 20H and 20L.
  • M H, M L is a predetermined constant, satisfying the relation of M H> M L.
  • the start subframe number ST m and the end subframe number ED m are calculated based on the following equations (1) to (3), respectively.
  • the time direction voltage averaging unit 22 performs time axis direction voltage averaging processing of the channel estimation value based on the equation (4) for each measurement period m divided by the measurement period dividing unit 21.
  • Equation (4) a is a receiving antenna, b is a transmitting antenna, n is an index of a subframe in a measurement period, t is an index in the time direction of a reference signal (RS) in the subframe, and i is a reference signal (RS ),
  • the frequency direction index N RST (m) represents the number of symbols including the reference signal (RS) within the measurement period m.
  • the frequency direction averaging unit 23 performs frequency direction averaging processing on the result after the time direction in-phase averaging based on the following equation (5).
  • N RS represents the number of reference signals (RS) included in the band.
  • the conjugate multiplier 24 performs conjugate multiplication processing between adjacent reference signals (RS) based on the following equation (6).
  • the power calculator 25 calculates RSRP based on the following equation (7).
  • the RSRP selection unit 30 refers to the RSRP H and RSRP L measured by the RSRP measurement units 20H and 20L, and reports RSRP L as RSRP if RSRP H ⁇ RSRP L , otherwise Reports RSRP H as RSRP.
  • the receiving device 10 includes two RSRP measurement units 20H and 20L having different measurement period division numbers M.
  • the receiving apparatus may include only one RSRP measuring unit that measures the signal reception power for each of the two voltage average calculation periods instead of the RSRP measuring units 20H and 20L.
  • the first RSRP measurement unit is configured to calculate the first signal based on a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over the first period. Calculate received power, The second RSRP measurement unit is configured to generate the second signal based on a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over the second period. Received power may be calculated.
  • the first RSRP measurement unit and the second RSRP measurement unit are respectively A measurement period dividing unit for dividing the measurement period of the reference signal; A time direction voltage averaging unit that averages the channel estimation value over each of the divided periods; A frequency direction averaging unit that averages values obtained by the averaging in the frequency direction; A conjugate multiplier that performs conjugate multiplication on the value obtained by averaging in the frequency direction; A power calculator that calculates signal reception power based on the value obtained by the conjugate multiplication process.
  • the mobile terminal may include the receiving device.
  • the received power measurement method according to the second aspect is as described above.
  • the mobile terminal calculates the first signal reception power based on a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over the first period.
  • the second received signal power may be calculated based on a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over the second period.
  • the RSRP measurement unit calculates the first signal reception power based on a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over the first period. And calculating the second signal reception power based on a value obtained by performing frequency direction averaging and conjugate multiplication on a value obtained by averaging the channel estimation value over the second period. Also good.
  • the RSRP measurement unit A measurement period dividing unit for dividing the measurement period of the reference signal; A time direction voltage averaging unit that averages the channel estimation value over each of the divided periods; A frequency direction averaging unit that averages values obtained by the averaging in the frequency direction; A conjugate multiplier that performs conjugate multiplication on the value obtained by averaging in the frequency direction; A power calculator that calculates signal reception power based on the value obtained by the conjugate multiplication process; May be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 高速フェージング環境において、移動端末に設けられる受信装置が受信電力を高精度に測定できるようにすること。受信装置は、OFDM無線通信システムにおいて、既知のリファレンス信号に基づいて推定したチャネル推定値を、第1の期間に亘って平均化した値を用いて、第1の信号受信電力を測定する第1のリファレンス信号受信電力(RSRP)測定部と、前記チャネル推定値を第2の期間に亘って平均化した値を用いて、第2の信号受信電力を測定する第2のRSRP測定部と、第1の信号受信電力と第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択するRSRP選択部と、を備える。

Description

受信装置および受信電力測定方法
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2012-065261号(2012年3月22日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、受信装置および受信電力測定方法に関し、特に、OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおける移動端末に設けられる受信装置、および、受信装置による受信電力測定方法に関する。
 次世代の通信方式として、3GPP(3rd Generation Partnership Project)で標準化されているLTE(Long Term Evolution)が注目されている。LTE等の無線通信システムにおいては、移動端末(ユーザ装置、UE(User Equipment)ともいう。)から報告された信号受信電力等の受信品質情報に基づいて、基地局間のハンドオーバを行うかどうかが決定される。したがって、適切な基地局へのハンドオーバを実施するためには、移動端末に設けられた受信装置における電力推定精度を向上させることが重要になる。
 OFDM通信システムにおいて通信路品質を測定する方法は、一例として、特許文献1に記載されている。
国際公開第2006/107037号
 上記の特許文献の開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明者によってなされたものである。
 移動端末に設けられた受信装置は、信号受信電力を算出する際、チャネル推定値を時間方向について電圧平均処理し、さらに周波数方向に平均化した後、隣接するリファレンス信号(RS:Reference Signal)間で共役乗算を行い、その結果を同相平均した値を用いて信号受信電力を算出する。
 かかる受信電力算出方法によると、SNR(Signal-to-Noise Ratio)が低い環境においても、時間軸方向の電圧平均期間を長くとることで、信号受信電力の精度を向上させることができる。しかし、高速フェージング(fading)環境においては、時間軸方向の電圧平均時間を長くすると、回転成分による誤差のために推定電力が小さくなってしまうという問題がある。
 そこで、高速フェージング環境において、移動端末に設けられる受信装置が受信電力を高精度に測定できるようにすることが課題となる。本発明の目的は、かかる課題を解決する受信装置および受信電力測定方法を提供することにある。
 本発明の第1の視点に係る受信装置は、
 OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおいて、既知のリファレンス信号に基づいて推定したチャネル推定値を、第1の期間に亘って平均化した値を用いて、第1の信号受信電力を測定する第1のリファレンス信号受信電力(RSRP:Reference Signal Received Power)測定部と、
 前記チャネル推定値を第2の期間に亘って平均化した値を用いて、第2の信号受信電力を測定する第2のRSRP測定部と、
 前記第1の信号受信電力と前記第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択するRSRP選択部と、を備える。
 本発明の第2の視点に係る受信電力測定方法は、
 OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおける移動端末による信号受信電力測定方法であって、
 既知のリファレンス信号に基づいて推定したチャネル推定値を第1の期間に亘って平均化した値を用いて、第1の信号受信電力を算出する工程と、
 前記チャネル推定値を第2の期間に亘って平均化した値を用いて、第2の信号受信電力を算出する工程と、
 前記第1の信号受信電力と前記第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択する工程と、を含む。
 本発明の第3の視点に係る受信装置は、
 OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおいて、既知のリファレンス信号に基づいて推定したチャネル推定値を、第1の期間に亘って平均化した値を用いて、第1の信号受信電力を測定するとともに、第2の期間に亘って平均化した値を用いて、第2の信号受信電力を測定するリファレンス信号受信電力(RSRP:Reference Signal Received Power)測定部と、
 前記第1の信号受信電力と前記第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択するRSRP選択部と、を備える。
 本発明に係る受信装置および受信電力測定方法によると、高速フェージング環境において、受信電力を高精度に測定することができる。
実施形態に係る受信装置の構成を一例として示すブロック図である。 実施形態に係る受信装置におけるRSRP測定部の構成を一例として示すブロック図である。
 はじめに、本発明の概要について説明する。なお、この概要に付記する図面参照符号は、専ら理解を助けるための例示であり、本発明を図示の態様に限定することを意図するものではない。
 高速フェージング環境では、電圧平均処理の平均化期間を長くすると、位相回転によって電力が低い値として測定されてしまう。このような環境においては、電圧平均処理の平均化期間を短くした方が精度良く高い電力として測定される。
 そこで、本発明では、一例として、全体の測定期間の中で電圧平均を算出する期間をM個に分割して電力を測定した結果と、M個(M>M)に分割して電力を測定した結果を比較して、電力が高い方を測定結果として選択する。これにより、高速フェージング環境における電力測定精度を向上させることができる。
 すなわち、本発明では、電圧平均算出期間を短くして電力を測定した結果と電圧平均算出期間を長くして電力を測定した結果を比較して、高い方の電力を選択することにより、高速フェージング時にも信号受信電力を高精度に推定することが可能となる。
 図1を参照すると、受信装置(10)は、OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおいて、既知のリファレンス信号に基づいて推定したチャネル推定値を、第1の期間に亘って平均化した値を用いて、第1の信号受信電力を測定する第1のリファレンス信号受信電力(RSRP:Reference Signal Received Power)測定部(20H)と、前記チャネル推定値を第2の期間に亘って平均化した値を用いて、第2の信号受信電力を測定する第2のRSRP測定部(20L)と、第1の信号受信電力と第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択するRSRP選択部(30)と、を備えていてもよい。なお、第1の信号受信電力と第2の信号受信電力が等しい場合には、RSRP選択部(30)は、第1の信号受信電力および第2の信号受信電力のいずれを測定結果としてもよい。
 また、第1のRSRP測定部(20H)は、前記チャネル推定値を第1の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、第1の信号受信電力を算出し、第2のRSRP測定部(20L)は、前記チャネル推定値を第2の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、第2の信号受信電力を算出するようにしてもよい。
 さらに、図2を参照すると、第1のRSRP測定部(20H)および第2のRSRP測定部(20L)は、それぞれ、前記リファレンス信号の測定期間を分割する測定期間分割部(21)と、前記分割後の期間のそれぞれに亘って前記チャネル推定値を平均化する時間方向電圧平均部(22)と、前記平均化によって得られた値を周波数方向に平均化する周波数方向平均化部(23)と、前記周波数方向の平均化によって得られた値に対して共役乗算処理を施す共役乗算部(24)と、前記共役乗算処理によって得られた値に基づいて信号受信電力を算出する電力計算部(25)と、を備えていてもよい。
 (実施形態)
 実施形態に係る受信装置について、3GPPにおいて標準化されているLTEを例として説明する。また、推定される信号受信電力を、LTEにならってRSRP(Reference Signal Received Power)と呼ぶ。ただし、本実施形態の適用先は、LTEに限定されるものではない。
 図1は、本実施形態に係る、LTEの移動端末に設けられた受信装置の構成を一例として示すブロック図である。図1を参照すると、受信装置10は、RF(Radio Frequency)部11、FFT(Fast Fourier Transform)部12、チャネル推定部13、RSRP測定部20H、20L、および、RSRP選択部30を備えている。
 移動端末(UE)の受信アンテナで受信した信号は、RF部11においてA/D変換された後、FFT部12においてフーリエ変換により周波数成分のデータに変換される。チャネル推定部13は、周波数リソース上に予めマッピングされていた既知のリファレンス信号(RS:Reference Signal)を用いて、チャネル状態を表すチャネル推定行列を推定する。
 図2は、RSRP測定部20(図1のRSRP測定部20H、20L)の構成を一例として示すブロック図である。図2を参照すると、RSRP測定部20は、測定期間分割部21、時間方向電圧平均部22、周波数方向平均化部23、共役乗算部24、および、電力計算部25を備えている。
 RSRP測定部20Hと20Lの間では、測定期間の分割数Mが異なる。RSRP測定部20H、20Lにおける測定期間の分割数を、それぞれM、Mとする。ここで、M、Mは予め決められた定数であり、M>Mの関係を満たす。一例として、M=2、M=1等の値を用いることができる。
 測定期間分割部21は、測定サブフレームの総数をN、測定期間を分割した得られた期間をm=0,1,…,M-1としたとき、各期間mのサブフレーム数L、開始サブフレーム番号ST、および、終了サブフレーム番号EDを、それぞれ、以下の式(1)ないし(3)に基づいて算出する。
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
 一例として、N=4,M=2とした場合、式(1)ないし(3)より、各期間mのサブフレーム数L,開始サブフレーム番号ST,終了サブフレーム番号ED(m=0,1)は、それぞれ、次の値となる。
Figure JPOXMLDOC01-appb-I000010
 同様に、N=11,M=3とした場合には、式(1)ないし(3)より、各期間mのサブフレーム数L,開始サブフレーム番号ST,終了サブフレーム番号ED(m=0,1,2)は、それぞれ、次の値となる。
Figure JPOXMLDOC01-appb-I000011
 次に、時間方向電圧平均部22は、測定期間分割部21で分割した測定期間mごとに、式(4)に基づいて、チャネル推定値の時間軸方向電圧平均処理を行う。
Figure JPOXMLDOC01-appb-I000012
 式(4)において、aは受信アンテナ、bは送信アンテナ、nは測定期間内のサブフレームのインデックス、tはサブフレーム内のリファレンス信号(RS)の時間方向のインデックス、iはリファレンス信号(RS)の周波数方向のインデックス、NRST(m)は測定期間m内のリファレンス信号(RS)を含むシンボル数を表す。
 次に、周波数方向平均化部23は、時間方向同相平均後の結果に対して、以下の式(5)に基づいて、周波数方向平均化処理を行う。
Figure JPOXMLDOC01-appb-I000013
 式(5)において、NRSは帯域内に含まれるリファレンス信号(RS)の数を表す。
 次に、共役乗算部24は、以下の式(6)に基づいて、隣接するリファレンス信号(RS)間で共役乗算処理を行う。
Figure JPOXMLDOC01-appb-I000014
 次に、電力計算部25は、以下の式(7)に基づいてRSRPを計算する。
Figure JPOXMLDOC01-appb-I000015
 次に、RSRP選択部30は、RSRP測定部20H、20Lで測定されたRSRP、RSRPを参照し、RSRP<RSRPの場合にはRSRPをRSRPとして報告し、それ以外の場合にはRSRPをRSRPとして報告する。
 このとき、高速フェージング環境でRSRPが小さくなった場合には、回転成分の影響が小さいRSRPが選択され、RSRPの低下を防ぐことができる。したがって、本実施形態の受信装置によると、高速フェージング環境において、高精度に電力を測定することが可能となる。
 本実施形態では、受信装置10は、互いに測定期間の分割数Mが異なる2つのRSRP測定部20H、20Lを備えている。ただし、受信装置は、RSRP測定部20H、20Lの代わりに、2通りの電圧平均算出期間のそれぞれに対する信号受信電力を測定するRSRP測定部を1つだけ備えていてもよい。
 なお、本発明によると、以下に付記として記載する形態が提供される。
[付記1]
 上記第1の視点に係る受信装置のとおりである。
[付記2]
 前記第1のRSRP測定部は、前記チャネル推定値を前記第1の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第1の信号受信電力を算出し、
 前記第2のRSRP測定部は、前記チャネル推定値を前記第2の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第2の信号受信電力を算出してもよい。
[付記3]
 前記第1のRSRP測定部および前記第2のRSRP測定部は、それぞれ、
 前記リファレンス信号の測定期間を分割する測定期間分割部と、
 前記分割後の期間のそれぞれに亘って前記チャネル推定値を平均化する時間方向電圧平均部と、
 前記平均化によって得られた値を周波数方向に平均化する周波数方向平均化部と、
 前記周波数方向の平均化によって得られた値に対して共役乗算処理を施す共役乗算部と、
 前記共役乗算処理によって得られた値に基づいて信号受信電力を算出する電力計算部と、を備えていてもよい。
[付記4]
 前記測定期間分割部は、前記測定期間内のサブフレームの総数をN、前記測定期間の分割数をMとすると、分割後のM個の期間のうちの第m(m=0、1、…、M-1)の期間のサブフレーム数L、開始サブフレーム番号STおよび終了サブフレーム番号EDを、それぞれ、
Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017

Figure JPOXMLDOC01-appb-I000018
としてもよい。
[付記5]
 移動端末は、前記受信装置を備えていてもよい。
[付記6]
 上記第2の視点に係る受信電力測定方法のとおりである。
[付記7]
 前記受信電力測定方法において、
 前記移動端末は、前記チャネル推定値を前記第1の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第1の信号受信電力を算出し、
 前記チャネル推定値を前記第2の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第2の信号受信電力を算出してもよい。
[付記8]
 上記第3の視点に係る受信装置のとおりである。
[付記9]
 前記RSRP測定部は、前記チャネル推定値を前記第1の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第1の信号受信電力を算出し、前記チャネル推定値を前記第2の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第2の信号受信電力を算出してもよい。
[付記10]
 前記RSRP測定部は、
 前記リファレンス信号の測定期間を分割する測定期間分割部と、
 前記分割後の期間のそれぞれに亘って前記チャネル推定値を平均化する時間方向電圧平均部と、
 前記平均化によって得られた値を周波数方向に平均化する周波数方向平均化部と、
 前記周波数方向の平均化によって得られた値に対して共役乗算処理を施す共役乗算部と、
 前記共役乗算処理によって得られた値に基づいて信号受信電力を算出する電力計算部と、
 を備えていてもよい。
[付記11]
 前記測定期間分割部は、前記測定期間内のサブフレームの総数をN、前記測定期間の分割数をMとすると、分割後のM個の期間のうちの第m(m=0、1、…、M-1)の期間のサブフレーム数L、開始サブフレーム番号STおよび終了サブフレーム番号EDを、それぞれ、
Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020

Figure JPOXMLDOC01-appb-I000021
としてもよい。
 なお、上記の特許文献の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10  受信装置
11  RF(Radio Frequency)部
12  FFT(Fast Fourier Transform)部
13  チャネル推定部
20、20H、20L  RSRP(Reference Signal Received Power)測定部
21  測定期間分割部
22  時間方向電圧平均部
23  周波数方向平均化部
24  共役乗算部
25  電力計算部
30  RSRP(Reference Signal Received Power)選択部

Claims (11)

  1.  OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおいて、既知のリファレンス信号に基づいて推定したチャネル推定値を、第1の期間に亘って平均化した値を用いて、第1の信号受信電力を測定する第1のリファレンス信号受信電力(RSRP:Reference Signal Received Power)測定部と、
     前記チャネル推定値を第2の期間に亘って平均化した値を用いて、第2の信号受信電力を測定する第2のRSRP測定部と、
     前記第1の信号受信電力と前記第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択するRSRP選択部と、
     を備える、受信装置。
  2.  前記第1のRSRP測定部は、前記チャネル推定値を前記第1の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第1の信号受信電力を算出し、
     前記第2のRSRP測定部は、前記チャネル推定値を前記第2の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第2の信号受信電力を算出する、
     請求項1に記載の受信装置。
  3.  前記第1のRSRP測定部および前記第2のRSRP測定部は、それぞれ、
     前記リファレンス信号の測定期間を分割する測定期間分割部と、
     前記分割後の期間のそれぞれに亘って前記チャネル推定値を平均化する時間方向電圧平均部と、
     前記平均化によって得られた値を周波数方向に平均化する周波数方向平均化部と、
     前記周波数方向の平均化によって得られた値に対して共役乗算処理を施す共役乗算部と、
     前記共役乗算処理によって得られた値に基づいて信号受信電力を算出する電力計算部と、
     を備える、
     請求項2に記載の受信装置。
  4.  前記測定期間分割部は、前記測定期間内のサブフレームの総数をN、前記測定期間の分割数をMとすると、分割後のM個の期間のうちの第m(m=0、1、…、M-1)の期間のサブフレーム数L、開始サブフレーム番号STおよび終了サブフレーム番号EDを、それぞれ、

    Figure JPOXMLDOC01-appb-I000001

    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003

    とする、
     請求項3に記載の受信装置。
  5.  請求項1ないし4のいずれか1項に記載の受信装置を備える、移動端末。
  6.  OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおける移動端末による信号受信電力測定方法であって、
     前記移動端末が、既知のリファレンス信号に基づいて推定したチャネル推定値を第1の期間に亘って平均化した値を用いて、第1の信号受信電力を算出する工程と、
     前記チャネル推定値を第2の期間に亘って平均化した値を用いて、第2の信号受信電力を算出する工程と、
     前記第1の信号受信電力と前記第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択する工程と、
     を含む、受信電力測定方法。
  7.  前記移動端末は、前記チャネル推定値を前記第1の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第1の信号受信電力を算出し、
     前記チャネル推定値を前記第2の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第2の信号受信電力を算出する、
     請求項6に記載の受信電力測定方法。
  8.  OFDM(Orthogonal Frequency Division Multiplexing)無線通信システムにおいて、既知のリファレンス信号に基づいて推定したチャネル推定値を、第1の期間に亘って平均化した値を用いて、第1の信号受信電力を測定するとともに、第2の期間に亘って平均化した値を用いて、第2の信号受信電力を測定するリファレンス信号受信電力(RSRP:Reference Signal Received Power)測定部と、
     前記第1の信号受信電力と前記第2の信号受信電力とを比較して、値の小さくない方を信号受信電力の測定結果として選択するRSRP選択部と、
     を備える、受信装置。
  9.  前記RSRP測定部は、前記チャネル推定値を前記第1の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第1の信号受信電力を算出し、前記チャネル推定値を前記第2の期間に亘って平均化した値に対して、周波数方向平均化および共役乗算を施した値に基づいて、前記第2の信号受信電力を算出する、
     請求項8に記載の受信装置。
  10.  前記RSRP測定部は、
     前記リファレンス信号の測定期間を分割する測定期間分割部と、
     前記分割後の期間のそれぞれに亘って前記チャネル推定値を平均化する時間方向電圧平均部と、
     前記平均化によって得られた値を周波数方向に平均化する周波数方向平均化部と、
     前記周波数方向の平均化によって得られた値に対して共役乗算処理を施す共役乗算部と、
     前記共役乗算処理によって得られた値に基づいて信号受信電力を算出する電力計算部と、
     を備える、
     請求項9に記載の受信装置。
  11.  前記測定期間分割部は、前記測定期間内のサブフレームの総数をN、前記測定期間の分割数をMとすると、分割後のM個の期間のうちの第m(m=0、1、…、M-1)の期間のサブフレーム数L、開始サブフレーム番号STおよび終了サブフレーム番号EDを、それぞれ、

    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    Figure JPOXMLDOC01-appb-I000006

    とする、
     請求項10に記載の受信装置。
PCT/JP2013/058109 2012-03-22 2013-03-21 受信装置および受信電力測定方法 WO2013141307A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012065261 2012-03-22
JP2012-065261 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013141307A1 true WO2013141307A1 (ja) 2013-09-26

Family

ID=49222763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058109 WO2013141307A1 (ja) 2012-03-22 2013-03-21 受信装置および受信電力測定方法

Country Status (1)

Country Link
WO (1) WO2013141307A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131393A1 (en) * 2014-03-07 2015-09-11 Telefonaktiebolaget L M Ericsson (Publ) Method and device for calculating reference signal received power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057520A1 (ja) * 2007-11-02 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
WO2009057481A1 (ja) * 2007-10-30 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
US20100279638A1 (en) * 2009-04-30 2010-11-04 Telefonaktiebolaget L M Ericsson (Publ) Adaptive Idle Mode Measurement Methods and Apparatus
EP2341647A1 (en) * 2009-12-30 2011-07-06 ST-Ericsson SA Method for computing the receive power of a non serving cell, and receiver for doing the same
WO2012133691A1 (ja) * 2011-03-30 2012-10-04 Necカシオモバイルコミュニケーションズ株式会社 受信装置および受信方法、ならびにコンピュータプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057481A1 (ja) * 2007-10-30 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
WO2009057520A1 (ja) * 2007-11-02 2009-05-07 Ntt Docomo, Inc. ユーザ装置及び信号電力測定方法
US20100279638A1 (en) * 2009-04-30 2010-11-04 Telefonaktiebolaget L M Ericsson (Publ) Adaptive Idle Mode Measurement Methods and Apparatus
EP2341647A1 (en) * 2009-12-30 2011-07-06 ST-Ericsson SA Method for computing the receive power of a non serving cell, and receiver for doing the same
WO2012133691A1 (ja) * 2011-03-30 2012-10-04 Necカシオモバイルコミュニケーションズ株式会社 受信装置および受信方法、ならびにコンピュータプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015131393A1 (en) * 2014-03-07 2015-09-11 Telefonaktiebolaget L M Ericsson (Publ) Method and device for calculating reference signal received power

Similar Documents

Publication Publication Date Title
CN106972915B (zh) 一种信号传输方法和窄带无线终端
CN107113771B (zh) 利用异构参考信号的otdoa(观察到达时间差)定位增强
US8447327B2 (en) Method and apparatus for a buffering scheme for OTDOA based location positioning
US20140070996A1 (en) Method and apparatus for facilitating direction finding
EP3552443B1 (en) Methods and apparatus for reporting rstd values
US20110039574A1 (en) Apparatus and method for positioning a wireless user equipment
CN103873124B (zh) 一种移动终端及其信道状态信息测量参考信号的测量方法
EP2549812A1 (en) RF Fingerprinting for Location Estimate
CN110073605B (zh) 无线通信方法和装置
EP2897406A1 (en) Interference measurement method, base station and user equipment
RU2014150510A (ru) Способы и устройства для определения оценки мощности сигнала посредством масштабирования
CN103856306A (zh) 处理干扰的方法及装置
US20160218890A1 (en) Techniques for channel estimation in millimeter-wave communication systems
CN108541061B (zh) 用于lte定位的增强参考信号时间差的方法和设备
CN102783062A (zh) 接收机和信号接收功率估计方法
CN101808357B (zh) 一种信干噪比估计方法及装置
CN103929772B (zh) 参考信号接收功率测量方法及装置、重选的方法、用户端
WO2015159616A1 (ja) 推定装置及びプログラム
WO2016165508A1 (zh) 一种信号处理方法、上行资源分配方法及其装置
CN102918787A (zh) 估计信号噪声功率比的接收机和方法
KR20160057423A (ko) 신호 측정 방법, 사용자 장비, 및 기지국
CN113037590B (zh) 一种用于通信***中的时延估计方法和装置
WO2014006961A1 (ja) フェージングドップラ周波数推定装置およびフェージングドップラ周波数推定方法
JP5366954B2 (ja) 移動局及び移動通信方法
WO2013141307A1 (ja) 受信装置および受信電力測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP