WO2013141265A1 - フォトレジスト組成物、レジストパターン形成方法及び重合体 - Google Patents

フォトレジスト組成物、レジストパターン形成方法及び重合体 Download PDF

Info

Publication number
WO2013141265A1
WO2013141265A1 PCT/JP2013/057913 JP2013057913W WO2013141265A1 WO 2013141265 A1 WO2013141265 A1 WO 2013141265A1 JP 2013057913 W JP2013057913 W JP 2013057913W WO 2013141265 A1 WO2013141265 A1 WO 2013141265A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
hydrocarbon group
photoresist composition
Prior art date
Application number
PCT/JP2013/057913
Other languages
English (en)
French (fr)
Inventor
拡 宮田
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2014506257A priority Critical patent/JP6064990B2/ja
Priority to KR1020147026028A priority patent/KR20140148383A/ko
Publication of WO2013141265A1 publication Critical patent/WO2013141265A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • the present invention relates to a photoresist composition, a resist pattern forming method, and a polymer.
  • a resist film is formed on a substrate with a photoresist composition containing a polymer having an acid-dissociable group, and the resist film is excimered through a mask pattern.
  • a fine resist pattern is formed by exposing short-wavelength radiation such as a laser and removing an exposed portion with an alkali developer.
  • the immersion exposure method has an advantage that the depth of focus is hardly lowered even when the numerical aperture (NA) of the lens is increased, and high resolution can be obtained.
  • NA numerical aperture
  • the photoresist composition used in the immersion exposure method it is possible to prevent degradation of the coating film performance and contamination of the lens by suppressing the elution of the acid generator from the resist film to the immersion medium. It is required to prevent the watermark from remaining by improving the receding contact angle and to enable high-speed scanning exposure.
  • Japanese Patent Application Laid-Open No. 2005-352384 proposes a technique for forming an upper layer film (protective film) on a resist film, but requires a separate film formation step, which is complicated. . Therefore, methods for increasing the hydrophobicity of the resist film surface have been studied.
  • International Publication No. 2007/116664 proposes a photoresist composition containing a fluorine-containing polymer having high hydrophobicity.
  • Japanese Patent Application Laid-Open No. 2010-032994 proposes a fluorine atom-containing polymer that is hydrophobic during immersion exposure but decreases in hydrophobicity during alkali development.
  • the solubility of the fluorine atom-containing polymer in the developer is not satisfactory, and the LWR performance (Line) is a value representing the variation in the line width of the resist pattern. Width (Roughness) and the pattern shape obtained are not fully satisfactory.
  • the present invention has been made based on the circumstances as described above, and its purpose is to improve the receding contact angle of the resist film surface at the time of exposure in the immersion exposure process and at the time of alkali development. Is to provide a photoresist composition that can greatly reduce the receding contact angle, thereby suppressing the occurrence of development defects, forming a resist pattern having a small LWR and a good pattern shape.
  • [A] a polymer having an acid dissociable group hereinafter, also referred to as “[A] polymer”
  • [B] an acid generator and [C] a polymer having a structural unit (I) represented by the following formula (1) and containing a fluorine atom
  • [C] polymer Is a photoresist composition containing (In Formula (1), R 1 and R 2 are each independently a hydrogen atom, a methyl group or a trifluoromethyl group.
  • E 1 and E 2 are each independently an oxygen atom, * 1 ⁇ CO—O— or * 1 —CO—NH—, * 1 represents a site bonded to a carbon atom of an adjacent polymer chain, A represents an acid-dissociable group or an alkali-dissociable group in the linking chain G is a single bond or a (n + 1) -valent linking group, n is an integer of 1 to 3. When n is 2 or more, a plurality of A, E 2 and R 2 may be the same or different.
  • the photoresist composition can form a resist pattern having a small LWR and a good pattern shape.
  • the reason why the photoresist composition exhibits the above-described effect by having the above-described configuration is not necessarily clear, but, for example, the [C] polymer has the specific structure, so that the structural unit (I) has a linked structure.
  • the chain is acid or alkali cleaved to lower the molecular weight, and the solubility in the developer is improved. As a result, it is considered that development defects can be suppressed while improving the receding contact angle on the resist film surface, and a resist pattern having a small LWR and a good shape can be formed.
  • the fluorine atom content of the polymer is preferably higher than the fluorine atom content of the [A] polymer.
  • the [C] polymer can be unevenly distributed on the surface of the resist film more effectively, and the resist film surface can exhibit a higher receding contact angle.
  • the content of the polymer is preferably 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the [A] polymer.
  • the photoresist composition of the present invention Since the photoresist composition of the present invention has the above-mentioned properties, it is suitably used for immersion exposure.
  • the photoresist composition improves the receding contact angle of the resist film surface during exposure, and greatly reduces the receding contact angle during alkali development, thereby reducing development defects in the formed resist film. Occurrence can be suppressed, and a resist pattern having a small LWR and a good pattern shape can be formed.
  • the structural unit (I) is preferably represented by the following formula (1-1).
  • R 1 , R 2 , G and n are as defined in the above formula (1).
  • a 1 is a divalent acid dissociable group.
  • n is 2 or more, A plurality of A 1 and R 2 may be the same or different.
  • the linking chain is effectively cleaved by the acid generated from the [B] acid generator upon exposure, and the molecular weight of the [C] polymer is reduced. Can do. Thereby, the solubility with respect to the alkali developing solution of the [C] polymer in an exposure part can be improved more, and generation
  • G in the above formula (1-1) preferably has an acid dissociable group in the linking chain.
  • G also to have an acid-dissociable group, [C] the molecular weight of the polymer is lowered more, further improve the solubility in an alkali developing solution [C] polymer in the exposed area, exposed It is possible to further suppress development defects such as bridge defects in the portion.
  • a 1 is preferably represented by the following formula (2-1), (2-2) or (2-3).
  • R 3 and R 5 each independently represents an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or 6 to 6 carbon atoms.
  • R 4 is an alkanediyl group having 1 to 4 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or 2 having 6 to 22 carbon atoms.
  • a valent aromatic hydrocarbon group, provided that any two of R 3 to R 5 may be bonded to each other to form a ring structure together with the carbon atom to which they are bonded.
  • R 6 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a carbon number 6 to 22 monovalent aromatic hydrocarbon groups.
  • R 7 is a single bond, an alkanediyl group having 1 to 4 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • any two of R 6 to R 8 may be bonded to each other to form a ring structure together with the carbon atom to which R 6 and R 8 are bonded.
  • R 9 represents an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a monovalent aromatic hydrocarbon having 6 to 22 carbon atoms. It is a group.
  • R 10 is a single bond, an alkanediyl group having 1 to 4 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • R 11 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • any two of R 9 to R 11 may be bonded to each other to form a ring structure together with the carbon atom to which R 10 and R 11 are bonded.
  • ** represents a bonding site with the ester group in the formula (1-1).
  • some or all of the hydrogen atoms of R 3 to R 11 may be substituted.
  • Any two of R 3 to R 5 in the above formula (2-1) are preferably bonded to each other to form a ring structure together with the carbon atoms to which they are bonded.
  • a 1 as an acid-dissociable group having such a ring structure, the acid dissociation property of A 1 can be further increased, development defects can be further suppressed, and a resist pattern with a smaller LWR can be formed.
  • the structural unit (I) is preferably represented by the following formula (1-2).
  • R 1 , R 2 , E 1 , E 2 and n are as defined in the above formula (1).
  • R A is a group having an alkali-dissociable group in the linking chain.
  • Two R 12 s are each independently a single bond, a divalent chain hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms.
  • R 14 is a group in which at least one group selected from the group consisting of —SO— and —SO 2 — and a hydrocarbon group having 1 to 20 carbon atoms are combined, and R 14 is 2 having 1 to 20 carbon atoms.
  • one X 0 is a hydrocarbon group of valence are each independently a single bond or a part or all of the hydrogen atoms are substituted with fluorine atoms carbon If 1 is a divalent chain hydrocarbon group of 20 .n is 2 or more, plural R 12, X 0, R A , R 14, E 2 and R 2 may be each be the same or different .)
  • the connecting chain is effectively cleaved by an alkali developer, and the molecular weight of the [C] polymer can be reduced.
  • the solubility with respect to the alkali developing solution of a [C] polymer can be improved more, generation
  • R A in the above formula (1-2) is preferably a group represented by the following formula (1-3).
  • R 15 represents a divalent hydrocarbon group which may have a fluorine atom.
  • Two Y 0 s are each independently —O—, * 2 —O. —CO—, * 2 —CO—O—, * 2 —SO 2 —O—, where * 2 represents a site bonded to X 0 .
  • RA alkali dissociation property of RA is further increased, the solubility of [C] polymer in an alkaline developer can be further improved, and the occurrence of development defects can be further suppressed.
  • a resist pattern having a smaller LWR and a good pattern shape can be formed.
  • the polymer preferably further has a structural unit other than the structural unit (I) and containing an acid-dissociable group.
  • the solubility of the [C] polymer in the exposed area in the alkaline developer is further improved, and the occurrence of development defects in the exposed area is further suppressed. Can do.
  • the polymer preferably further has a structural unit other than the structural unit (I) and containing an alkali-dissociable group.
  • the [C] polymer further has such a structural unit, the affinity of the [C] polymer for an alkaline developer can be improved, and development defects can be further suppressed.
  • the resist pattern forming method of the present invention comprises: A step of forming a resist film on a substrate using the photoresist composition; A step of exposing the resist film; and a step of developing the exposed resist film.
  • the photoresist composition of the present invention since the photoresist composition of the present invention is used, it is possible to form a resist pattern with less development defects and excellent pattern shape and LWR.
  • the exposure in the exposure step is performed through an immersion exposure liquid disposed on the resist film.
  • liquid immersion exposure can be satisfactorily performed with a high receding contact angle.
  • the polymer of the present invention is a polymer having a structural unit (I) represented by the following formula (1) and containing a fluorine atom.
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or a trifluoromethyl group.
  • E 1 and E 2 are each independently an oxygen atom, * 1 ⁇ CO—O— or * 1 —CO—NH—, * 1 represents a site bonded to a carbon atom of an adjacent polymer chain,
  • A represents an acid-dissociable group or an alkali-dissociable group in the linking chain
  • G is a single bond or a (n + 1) -valent linking group, n is an integer of 1 to 3.
  • n is 2 or more, a plurality of A, E 2 and R 2 may be the same or different.
  • the polymer has a fluorine atom and the structural unit (I) represented by the above formula (1), it can be suitably used as a component of the photoresist composition of the present invention.
  • the “linking chain” refers to a chain composed of a plurality of atoms that connect G and E 2 .
  • the “acid-dissociable group” refers to a group that substitutes a hydrogen atom of a polar group such as a carboxy group or a hydroxy group, and dissociates in the presence of an acid.
  • the alkali dissociable group is a group that replaces a hydrogen atom in a polar functional group such as a hydroxy group or a carboxy group, and is in the presence of an alkali (for example, 2.38% by mass of tetramethylammonium hydroxide at 23 ° C. A group that dissociates in an aqueous solution.
  • the photoresist composition, resist pattern forming method and polymer of the present invention in the immersion exposure process, the receding contact angle of the resist film surface during exposure can be improved, and receding contact during alkali development. As a result, it is possible to greatly reduce the corners, thereby suppressing development defects and forming a resist pattern having a small LWR and a good pattern shape. Therefore, the photoresist composition, the resist pattern forming method, and the polymer can be suitably used in a lithography process that requires further miniaturization.
  • the photoresist composition of the present invention contains [A] polymer, [B] acid generator and [C] polymer. Moreover, the said photoresist composition can contain a [D] acid diffusion control body and a [E] solvent as a suitable component. Furthermore, the said photoresist composition may contain another arbitrary component, unless the effect of this invention is impaired. Hereinafter, each component will be described in detail.
  • the polymer is a polymer having an acid dissociable group. Moreover, [A] polymer turns into a base polymer in the said photoresist composition.
  • the “base polymer” refers to a polymer that is a main component of a polymer that constitutes a resist film formed from a photoresist composition, and preferably 50% of the total polymer that constitutes the resist film. A polymer occupying at least mass%.
  • the specific structure of the polymer is not particularly limited as long as it is a polymer having a structural unit containing an acid-dissociable group (hereinafter also referred to as “structural unit (II)”).
  • the polymer also has a structural unit (III) containing at least one structure selected from the group consisting of a lactone structure, a cyclic carbonate structure and a sultone structure, in the structural unit other than the structural unit (II). It is preferable. Furthermore, the [A] polymer may have other structural units other than the structural unit (II) and the structural unit (III). In addition, the [A] polymer may have 2 or more types of each structural unit. Hereinafter, each structural unit will be described in detail.
  • the structural unit (II) is a structural unit containing an acid dissociable group.
  • the acid-dissociable group in the structural unit (II) is dissociated by the action of the acid generated from the [B] acid generator in the exposed portion, whereby the alkali development of the [A] polymer is performed. Since the solubility in the liquid changes, a resist pattern can be formed.
  • the “acid-dissociable group” in the structural unit (II) refers to a group that replaces a hydrogen atom of a polar group such as a carboxy group or a hydroxy group, and dissociates in the presence of an acid.
  • the structural unit (II) is not particularly limited as long as it contains an acid dissociable group, and examples thereof include a structural unit represented by the following formula (3).
  • R 16 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 17 to R 19 are each independently an alkyl group having 1 to 6 carbon atoms or an alicyclic hydrocarbon group having 4 to 20 carbon atoms. However, R 17 and R 18 may be bonded to each other to form a divalent alicyclic hydrocarbon group together with the carbon atom to which they are bonded.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 17 to R 19 include a methyl group, an ethyl group, and a propyl group.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R 17 to R 19 include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, an adamantyl group, and the like.
  • Examples of the divalent alicyclic hydrocarbon group that R 17 and R 18 may be bonded to each other include a cyclopentanediyl group, a norbornanediyl group, an adamantanediyl group, and the like.
  • Examples of the structural unit (II) include structural units represented by the following formulas (3-1) to (3-12).
  • R 16 has the same meaning as the above formula (3).
  • the content ratio of the structural unit (II) in the polymer is preferably 20 mol% to 80 mol%, more preferably 30 mol% to 70 mol%, based on all structural units constituting the [A] polymer. preferable.
  • the said photoresist composition can improve a sensitivity etc. more.
  • the polymer preferably further has a structural unit (III) containing at least one structure selected from the group consisting of a lactone structure, a cyclic carbonate structure and a sultone structure. [A] When the polymer further has the structural unit (III), adhesion of the resist film to the substrate can be improved.
  • Examples of the structural unit (III) include structural units represented by the following formulas (4-1) to (4-14).
  • R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the content ratio of the structural unit (III) in the polymer is preferably 10 mol% or more and 65 mol% or less, and 15 mol% or more and 60 mol% or less with respect to all the structural units constituting the [A] polymer. Is more preferable.
  • the polymer may further have other structural units such as a structural unit containing a fluorine atom, a structural unit containing a polar group, and the like.
  • a polar group a carboxy group, a hydroxy group and the like are preferable.
  • content of the [A] polymer in the said photoresist composition it is 70 mass% or more normally with respect to the total solid (component except a solvent) in the said photoresist composition, and is 80 mass% or more. Is preferred.
  • the polymer can be synthesized according to a conventional method such as radical polymerization using a monomer or the like that gives a structural unit containing an acid-dissociable group.
  • Examples of the synthesis method include a method in which a solution containing a monomer and a radical initiator is dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction; a solution containing the monomer and a radical initiator A solution containing each of the monomers separately added to a reaction solvent or a solution containing a monomer to cause a polymerization reaction; a plurality of types of solutions containing each monomer; and a solution containing a radical initiator And a method of dropping them into a reaction solvent or a monomer-containing solution to cause a polymerization reaction.
  • the reaction temperature in the polymerization is appropriately determined depending on the type of radical initiator, but is usually 30 ° C. to 180 ° C., preferably 40 ° C. to 160 ° C., and more preferably 50 ° C. to 140 ° C.
  • the dropping time varies depending on the reaction temperature, the type of radical initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, and more preferably 1 hour to 5 hours.
  • the total reaction time including the dropping time is usually 30 minutes to 8 hours, preferably 45 minutes to 7 hours, and more preferably 1 hour to 6 hours.
  • radical initiator examples include 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-cyclopropylpropionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2-azobisisobutyrate and the like. These radical initiators can be used in combination of two or more.
  • the solvent used for the polymerization is not limited as long as it is a solvent other than a solvent that inhibits polymerization of each monomer and can dissolve the monomer.
  • the solvent include alcohol solvents, ketone solvents, amide solvents, ester solvents, lactone solvents, nitrile solvents, and the like. Two or more of these solvents can be used in combination.
  • the polymer obtained by the polymerization reaction can be recovered by a reprecipitation method.
  • the reprecipitation solvent an alcohol solvent or the like can be used.
  • a molecular weight modifier can be used to adjust the molecular weight.
  • the molecular weight modifier include halogenated hydrocarbons such as chloroform and carbon tetrabromide; mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, thioglycolic acid; dimethyl Xanthogens such as xanthogen sulfide and diisopropylxanthogen disulfide; terpinolene, ⁇ -methylstyrene dimer and the like.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 1,000 to 20,000, more preferably 2,000 to 15,000.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the ratio (Mw / Mn) of Mw to polystyrene-reduced number average molecular weight (Mn) by GPC of the [A] polymer is usually from 1 to 5, preferably from 1 to 3, and more preferably from 1 to 2.
  • Mw and Mn of the polymer in this specification were measured by GPC under the following conditions.
  • the photoresist composition contains a [B] acid generator.
  • the acid generator generates an acid by exposure, dissociates the acid dissociable group of the [A] polymer by the acid, and generates a carboxy group or the like. As a result, the polarity of the [A] polymer increases and the [A] polymer in the exposed area becomes soluble in the alkaline developer.
  • the form of inclusion of the [B] acid generator in the photoresist composition the form of a compound as described later (hereinafter also referred to as “[B] acid generator” as appropriate) is incorporated as part of the polymer. Either of these forms may be used.
  • Examples of the acid generator include onium salt compounds, sulfonimide compounds, halogen-containing compounds, diazoketone compounds, and the like. Of these, onium salt compounds and sulfonimide compounds are preferred.
  • onium salt compounds examples include sulfonium salts (including tetrahydrothiophenium salts), iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like. Of these, sulfonium salts and iodonium salts are preferred.
  • sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept- 2-yl-1,1,2,2-tetrafluoroethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-cyclohexylphenyldiphenylsulfonium perfluoro- n-octanesulfonate, 4-cyclohexylphenyldiphenylsulfonium 2-bicyclo [2.
  • tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona.
  • iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl- 1,1,2,2-tetrafluoroethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t -Butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,
  • sulfonimide compound examples include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy) bicyclo [ 2.2.1] Hept-5-ene-2,3-dicarboximide, N- (perfluoro-n-octanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3- Dicarboximide, N- (2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene -2,3-dicarboximide and the like.
  • sulfonium salts having a polycyclic alicyclic hydrocarbon structure such as an adamantyl group are more preferable, and triphenylsulfonium 4- (adamantylcarbonyloxy) -1,1,2-trimethyl is preferred.
  • triphenylsulfonium Adamantyloxycarbonyl-1,1-difluoromethanesulfonate is particularly preferred, and triphenylsulfonium 4- (adamantylcarbonyloxy) -1,1,2-trifluorobutanesulfonate is most preferred.
  • the content of the acid generator when it is a [B] acid generator is usually from 0 to 100 parts by mass of the [A] polymer from the viewpoint of ensuring the sensitivity and developability as a resist. 1 to 20 parts by mass, preferably 0.5 to 15 parts by mass.
  • the content of the acid generator is less than 0.1 parts by mass, the sensitivity and developability of the photoresist composition tend to decrease.
  • the content of the [B] acid generator exceeds 20 parts by mass, the transparency to radiation tends to decrease.
  • the polymer is a polymer having the structural unit (I) represented by the above formula (1) and containing a fluorine atom.
  • the polymer functions as a surface hydrophobizing polymer in the photoresist composition.
  • the “surface hydrophobized polymer” refers to a subcomponent polymer having a tendency to be unevenly distributed in the surface layer of a resist film to be formed by being contained in a photoresist composition.
  • the photoresist composition contains the [A] polymer and the [C] polymer, the [C] polymer is unevenly distributed when the resist film is formed, and the resist film surface is hydrophobized at the time of exposure. Accordingly, it is possible to perform high-speed scanning or the like in immersion exposure.
  • the fluorine atom content of the [C] polymer is preferably higher than that of the [A] polymer.
  • the fluorine atom content rate of a [C] polymer is 5 mass% or more, It is more preferable that it is 7 mass% or more, It is further more preferable that it is 10 mass% or more.
  • the fluorine atom content of the [A] polymer is preferably less than 5% by mass, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the fluorine atom content (% by mass) can be calculated from the polymer structure determined by 13 C-NMR measurement.
  • the polymer is a structural unit other than the structural unit (I), for example, other than the structural unit (II) and / or the structural unit (I) containing the acid dissociable group represented by the formula (2). It is preferable to further have a structural unit (IV) containing an alkali dissociable group.
  • the [C] polymer is a group consisting of a structural unit containing a fluorine atom other than the structural unit (I) and the structural unit (IV), a lactone structure, a cyclic carbonate structure, and a sultone structure, unless the effects of the present invention are impaired.
  • the [C] polymer may have other structural units, such as a structural unit containing the at least 1 sort (s) of structure selected more, and a structural unit containing a polar group.
  • the [C] polymer may have 2 or more types of each structural unit.
  • each structural unit will be described in detail.
  • the structural unit (I) is a structural unit represented by the above formula (1).
  • the photoresist composition can form a resist pattern having a small LWR and a good pattern shape.
  • the [C] polymer has the specific structure, so that the linking chain of the structural unit (I) is included. The acid or alkali is cleaved to lower the molecular weight, and the solubility in the developer is improved. As a result, it is considered that development defects can be suppressed while improving the receding contact angle on the resist film surface, and a resist pattern having a small LWR and a good shape can be formed.
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group or a trifluoromethyl group.
  • E 1 and E 2 are each independently an oxygen atom, * 1 —CO—O— or * 1 —CO—NH—.
  • * 1 indicates a site bonded to a carbon atom of an adjacent polymer chain.
  • A is a divalent group having an acid dissociable group or an alkali dissociable group in the linking chain.
  • G is a single bond or a (n + 1) -valent linking group.
  • n is an integer of 1 to 3. when n is 2 or more, plural A, E 2 and R 2 may be the same as or different from each other.
  • E 1 and E 2 an oxygen atom or * 1 —CO—O— is preferable, and * 1 —CO—O— is more preferable.
  • Examples of the acid dissociable group possessed by the divalent group represented by A include the same groups as A 1 in the formula (1-1) described later.
  • Examples of the divalent group having an alkali dissociable group represented by A include a group similar to R A in the formula (1-2) described later.
  • Examples of A include a group composed only of an acid-dissociable group or an alkali-dissociable group, and a group in which an acid-dissociable group or alkali-dissociable group is bonded to another linking group.
  • Examples of other linking groups include those exemplified as G below.
  • Examples of the (n + 1) -valent linking group represented by G include a linear or branched hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, and a carbon number of 6 To 30 aromatic hydrocarbon groups or the group consisting of —CO—, —COO—, —OCO—, —O—, —NR—, —CS—, —S—, —SO—, and —SO 2 —. And a group obtained by combining at least one selected group with a hydrocarbon group having 1 to 30 carbon atoms.
  • linear or branched hydrocarbon group having 1 to 30 carbon atoms examples include hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, decane, icosane and triacontane (n + 1). And a group excluding individual hydrogen atoms.
  • Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include monocyclic saturated hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, methylcyclohexane, and ethylcyclohexane; Monocyclic unsaturated hydrocarbons such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclopentadiene, cyclohexadiene, cyclooctadiene, cyclodecadiene; Bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, tricyclo [5.2.1.0 2,6 ] decane, tricyclo [3.3.1.1 3,7 ] decane, Tetracycl
  • aromatic hydrocarbon group having 6 to 30 carbon atoms examples include (n + 1) aromatic hydrocarbons such as benzene, naphthalene, phenanthrene, anthracene, tetracene, pentacene, pyrene, picene, toluene, xylene, ethylbenzene, mesitylene, cumene, and the like. ) Groups from which a single hydrogen atom is removed.
  • the linking group represented by G may have an acid dissociable group or an alkali dissociable group.
  • N is preferably 1 or 2, and more preferably 1.
  • the structural unit (I) is preferably represented by the above formula (1-1).
  • the structural unit (I) is the specific structural unit, the linking chain is effectively cleaved by the acid generated from the [B] acid generator upon exposure, and the molecular weight of the [C] polymer is reduced. Can do.
  • the solubility with respect to the alkali developing solution of the [C] polymer in an exposure part can be improved more, and generation
  • R 1 , R 2 , G and n have the same meanings as in formula (1) above.
  • a 1 is a divalent acid dissociable group.
  • n is 2 or more, the plurality of A 1 and R 2 may be the same or different.
  • a 1 is preferably represented by the above formula (2-1), (2-2) or (2-3).
  • a 1 is the specific acid dissociable group, the acid dissociation property of A 1 is further increased, development defects can be further suppressed, and a resist pattern having a smaller LWR can be formed.
  • R 3 and R 5 are each independently an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or 6 to 6 carbon atoms. 22 is a monovalent aromatic hydrocarbon group.
  • R 4 is an alkanediyl group having 1 to 4 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • any two of R 3 to R 5 may be bonded to each other to form a ring structure together with the carbon atoms to which they are bonded.
  • R 6 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms or carbon.
  • R 7 is a single bond, an alkanediyl group having 1 to 4 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • any two of R 6 to R 8 may be bonded to each other to form a ring structure together with the carbon atom to which R 6 and R 8 are bonded.
  • R 9 is an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a monovalent aromatic carbon group having 6 to 22 carbon atoms. It is a hydrogen group.
  • R 10 is a single bond, an alkanediyl group having 1 to 4 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • R 11 is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • any two of R 9 to R 11 may be bonded to each other to form a ring structure together with the carbon atom to which R 10 and R 11 are bonded.
  • ** represents a bonding site with the ester group in the formula (1-1).
  • some or all of the hydrogen atoms of R 3 to R 11 may be substituted.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R 3 , R 5 , R 6 , R 8 , R 9 and R 11 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, Examples thereof include n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group and the like.
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R 3 , R 5 , R 6 , R 8 , R 9 and R 11 include, for example, Monocyclic aliphatic saturated hydrocarbon groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclodecyl group, cyclododecyl group; A monocyclic aliphatic unsaturated hydrocarbon group such as a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclodecenyl group, a cyclododecenyl group, a cyclopentadienyl group, a cyclohexadienyl group, a cyclodecadienyl group; Bicyclo [2.2.1] heptenyl group
  • a polycyclic aliphatic saturated hydrocarbon group such as a dodecanyl group or an adamantanyl group
  • a polycyclic aliphatic unsaturated hydrocarbon group such as 0 2,7 ] dodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 22 carbon atoms represented by R 3 , R 5 , R 6 , R 8 , R 9 and R 11 include benzyl group, naphthyl group, phenanthryl group, anthryl. Group, tetracenyl group, pentacenyl group, tolyl group, xylyl group, ethylbenzyl group, mesityl group, cumyl group and the like.
  • Examples of the alkanediyl group having 1 to 4 carbon atoms represented by R 4 , R 7 and R 10 include, for example, the carbon number represented by the above R 3 , R 5 , R 6 , R 8 , R 9 and R 11. And groups obtained by removing one hydrogen atom from 1 to 4 alkyl groups.
  • Examples of the divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R 4 , R 7 and R 10 include, for example, the above R 3 , R 5 , R 6 , R 8 , R 9 and R 11. And a group obtained by removing one hydrogen atom from a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by:
  • Examples of the divalent aromatic hydrocarbon group having 6 to 22 carbon atoms represented by R 4 , R 7 and R 10 include, for example, R 3 , R 5 , R 6 , R 8 , R 9 and R 11 . And a group obtained by removing one hydrogen atom from a monovalent aromatic hydrocarbon group having 6 to 22 carbon atoms.
  • Examples of the ring structure that any two of R 3 to R 5 may be bonded to each other and formed together with the carbon atom to which they are bonded include, for example, an alicyclic hydrocarbon structure having 4 to 20 carbon atoms, and the like. Can be mentioned. Specifically, a polycyclic alicyclic hydrocarbon structure having a bridged skeleton such as an adamantane skeleton or a norbornane skeleton; a monocyclic alicyclic hydrocarbon having a cycloalkane skeleton such as cyclopentane, cyclohexane or cyclooctane Examples include the structure. In addition, these structures may be substituted with, for example, one or more linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms.
  • any two of R 6 to R 8 may be bonded to each other to form a ring structure that may be formed together with the carbon atom to which R 6 and R 8 are bonded; and any two of R 9 to R 11 may be bonded to each other.
  • the ring structure that may be formed together with the carbon atom to which R 10 and R 11 are bonded for example, any two of the above R 3 to R 5 are bonded to each other, and the carbon atom to which each is bonded Examples thereof include ring structures similar to those exemplified as the ring structure that may be formed together.
  • a heterocyclic structure having 4 to 20 carbon atoms can be mentioned.
  • a polycyclic heterocyclic structure having a bridged skeleton such as an adamantane skeleton or norbornane skeleton containing an oxygen atom
  • a monocyclic heterocyclic structure having a cycloalkane skeleton such as cyclopentane or cyclohexane containing an oxygen atom Is mentioned.
  • these structures may be substituted with, for example, one or more linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms.
  • the above A 1 is preferably represented by the above formula (2-1), and any two of R 3 to R 5 in the formula (2-1) are bonded to each other, and the carbon to which they are bonded It is more preferable to form a ring structure with atoms, and this ring structure is particularly preferably a monocyclic alicyclic hydrocarbon structure having a cycloalkane skeleton such as cyclopentane, cyclohexane, cyclooctane or the like.
  • G preferably has an acid dissociable group in the linking chain, and preferably has an acid dissociable group represented by the above formulas (2-1) to (2-3). It is more preferable to have an acid dissociable group represented by the above formula (2-1).
  • G is preferably an acid dissociable group represented by the above formulas (2-1) to (2-3), and is represented by the above formula (2-1). Particularly preferred is an acid dissociable group.
  • the structural unit (I) is preferably represented by the above formula (1-2).
  • the structural unit (I) is the specific structural unit, the connecting chain is effectively cleaved by an alkali developer during alkali development, and the molecular weight of the [C] polymer can be reduced. Thereby, the solubility with respect to the alkali developing solution of a [C] polymer can be improved more, generation
  • R 1 , R 2 , E 1 , E 2 and n are as defined in the above formula (1).
  • R A is a group having an alkali dissociable group in the linking chain.
  • Two R 12 s are each independently a single bond, a divalent chain hydrocarbon group having 1 to 10 carbon atoms or a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms.
  • R 13 represents a single bond, a (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, or —CO—, —COO—, —OCO—, —O—, —NR—, —CS—, —S—.
  • —SO—, and —SO 2 — are groups obtained by combining at least one group selected from the group consisting of —SO 2 — and a hydrocarbon group having 1 to 20 carbon atoms.
  • R 14 is a divalent hydrocarbon group having 1 to 20 carbon atoms.
  • Two X 0 s are each independently a single bond or a divalent chain hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms are substituted with fluorine atoms.
  • n is 2 or more, the plurality of R 12 , X 0 , R A , R 14 , E 2 and R 2 may be the same or different.
  • Examples of the (n + 1) valent hydrocarbon group having 1 to 20 carbon atoms include linear or branched chain hydrocarbon groups, alicyclic hydrocarbon groups having 3 to 20 carbon atoms, and 6 to 20 carbon atoms. An aromatic hydrocarbon group is mentioned.
  • linear or branched hydrocarbon group having 1 to 20 carbon atoms examples include hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, decane, icosane and triacontane (n + 1) And a group excluding individual hydrogen atoms.
  • Examples of the alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic saturated hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, methylcyclohexane, and ethylcyclohexane; Monocyclic unsaturated hydrocarbons such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclopentadiene, cyclohexadiene, cyclooctadiene, cyclodecadiene; Bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, tricyclo [5.2.1.0 2,6 ] decane, tricyclo [3.3.1.1 3,7 ] decane, Tetracycl
  • aromatic hydrocarbon group having 6 to 20 carbon atoms examples include aromatic hydrocarbon groups such as benzene, naphthalene, phenanthrene, anthracene, tetracene, pentacene, pyrene, picene, toluene, xylene, ethylbenzene, mesitylene, cumene ( a group excluding n + 1) hydrogen atoms.
  • the group having an alkali dissociable group represented by R A is not particularly limited, but is preferably a group represented by the above formula (1-3).
  • RA alkali dissociation property of RA is further increased, the solubility of [C] polymer in an alkaline developer can be further improved, and the occurrence of development defects can be further suppressed.
  • a resist pattern having a smaller LWR and a good pattern shape can be formed.
  • R 15 is a divalent hydrocarbon group which may have a fluorine atom.
  • the two Y 0 are each independently —O—, * 2 —O—CO—, * 2 —CO—O—, * 2 —SO 2 —O—. * 2 indicates the site for binding to X 0.
  • divalent hydrocarbon groups optionally having a fluorine atom represented by R 15
  • examples of the divalent hydrocarbon group include a divalent chain hydrocarbon group and a divalent alicyclic group.
  • a hydrocarbon group, a divalent aromatic hydrocarbon group, etc. are mentioned.
  • divalent chain hydrocarbon group examples include a methanediyl group, an ethanediyl group, a propanediyl group, and a butanediyl group. Of these, ethanediyl group and butanediyl group are preferable.
  • divalent alicyclic hydrocarbon group examples include a cyclopropanediyl group, a cyclobutanediyl group, a cyclopentanediyl group, a cyclohexanediyl group, a norbornanediyl group, and an adamantanediyl group.
  • divalent aromatic hydrocarbon group examples include phenylene group, benzylene group, phenethylene group, phenylenepropylene group, naphthylene group, naphthylene methylene group and the like.
  • R 15 is preferably a divalent chain hydrocarbon group which may have a fluorine atom, more preferably an ethanediyl group or a 2,2,3,3-tetrafluorobutanediyl group.
  • Y 0 is preferably * 2 —CO—O—. However, * 2 shows a site that binds to the X 0.
  • Examples of the divalent chain hydrocarbon group having 1 to 10 carbon atoms represented by R 12 include the same groups as the divalent chain hydrocarbon group exemplified for R 15 .
  • Examples of the divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R 12 include the same groups as the divalent alicyclic hydrocarbon group exemplified for R 15 .
  • R 12 is preferably a divalent chain hydrocarbon group having 1 to 10 carbon atoms, and more preferably a propanediyl group.
  • Examples of the (n + 1) -valent hydrocarbon group having 1 to 20 carbon atoms represented by R 13 include, for example, by removing (n-1) hydrogen atoms from the divalent hydrocarbon group exemplified as R 15 above. And the like.
  • R 13 is preferably a single bond.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by R 14 include the same groups as the divalent hydrocarbon group exemplified as R 15 .
  • R 14 is preferably a single bond.
  • Examples of the divalent chain hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms represented by X 0 are substituted with fluorine atoms include those represented by the following formula (X 0 -1): Can be mentioned.
  • R f is independently of each other a fluorine atom or a perfluoroalkyl group having 1 to 10 carbon atoms.
  • P is preferably 1 or 2, and more preferably 1.
  • R f is preferably a trifluoromethyl group or a fluorine atom, and more preferably a fluorine atom.
  • X 0 is preferably a difluoromethanediyl group.
  • structural unit (I) examples include structural units represented by the following formulas (I-1) to (I-9) (hereinafter also referred to as “structural units (I-1) to (I-9)”), etc. Is mentioned.
  • R ⁇ 1 > and R ⁇ 2 > are synonymous with the said Formula (1).
  • structural units (I-1) to (I-5) are preferred.
  • the content ratio of the structural unit (I) in the polymer is preferably 3 mol% or more and 40 mol% or less, and preferably 5 mol% or more and 30 mol% with respect to all the structural units constituting the [C] polymer.
  • the following is more preferable, and 7 mol% or more and 20 mol% or less is particularly preferable.
  • Examples of the monomer that gives the structural unit (I) include a monomer represented by the following formula.
  • the polymer preferably further has a structural unit containing an acid-dissociable group other than the structural unit (I).
  • the structural unit containing an acid dissociable group the structural unit (II) in the [A] polymer is preferable.
  • the structural unit (IV) is a structural unit other than the structural unit (I) and includes an alkali dissociable group.
  • the structural unit (IV) includes a structural unit represented by the following formula (IV-1) (hereinafter also referred to as “structural unit (IV-1)”), and a structural unit represented by the following formula (IV-2): (Hereinafter also referred to as “structural unit (IV-2)”) is preferred.
  • R 20 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • k is an integer of 1 to 3.
  • R 21 is a (k + 1) -valent linking group.
  • X 1 is a divalent linking group having a fluorine atom.
  • R 22 is a monovalent linear or branched hydrocarbon group having 1 to 20 carbon atoms which may have a hydrogen atom or a fluorine atom. However, when k is 2 or 3, the plurality of X 1 and R 22 may be the same or different.
  • R 23 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R 24 is a linking group having no (m + 1) valent fluorine atom.
  • m is an integer of 1 to 3.
  • a 2 is —COO—.
  • R 25 is a hydrocarbon group containing at least one fluorine atom.
  • Examples of the (k + 1) -valent linking group represented by R 21 include a linear or branched hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, and a carbon number.
  • linear or branched hydrocarbon group having 1 to 30 carbon atoms examples include hydrocarbon groups such as methane, ethane, propane, butane, pentane, hexane, heptane, decane, icosane and triacontane (k + 1). And a group excluding individual hydrogen atoms.
  • Examples of the alicyclic hydrocarbon group having 3 to 30 carbon atoms include monocyclic saturated hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, methylcyclohexane, and ethylcyclohexane; Monocyclic unsaturated hydrocarbons such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclopentadiene, cyclohexadiene, cyclooctadiene, cyclodecadiene; Bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, tricyclo [5.2.1.0 2,6 ] decane, tricyclo [3.3.1.1 3,7 ] decane, Tetracycl
  • aromatic hydrocarbon group having 6 to 30 carbon atoms examples include aromatic hydrocarbon groups such as benzene, naphthalene, phenanthrene, anthracene, tetracene, pentacene, pyrene, picene, toluene, xylene, ethylbenzene, mesitylene, cumene ( and groups excluding k + 1) hydrogen atoms.
  • Examples of the divalent linking group having a fluorine atom represented by X 1 include a divalent linear hydrocarbon group having 1 to 20 carbon atoms having a fluorine atom, and a carbon number having a fluorine atom containing a carbonyl group. Examples thereof include 1 to 20 divalent linear hydrocarbon groups. Examples of the C 1-20 divalent linear hydrocarbon group having a fluorine atom include groups represented by the following formulas (X 1 -1) to (X 1 -7).
  • X 1 is preferably a group represented by the above formula (X 1 -7).
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms which may have a fluorine atom represented by R 22 include alkyl groups such as a methyl group and an ethyl group; Examples thereof include a fluorinated alkyl group having 1 to 20 carbon atoms such as a fluoroethyl group.
  • Examples of the structural unit (IV-1) include structural units represented by the following formulas (IV-1a) and (IV-1b).
  • R 20 has the same meaning as in the above formula (IV-1).
  • Examples of the linking group having no (m + 1) -valent fluorine atom represented by R 24 include a linear or branched hydrocarbon group having 1 to 30 carbon atoms and an alicyclic group having 3 to 30 carbon atoms.
  • Examples of the hydrocarbon group containing at least one fluorine atom represented by R 25 include a fluorinated alkyl group containing at least one fluorine atom.
  • Examples of the structural unit (IV-2) include a structural unit represented by the following formula (IV-2a).
  • R 23 has the same meaning as in the above formula (IV-2).
  • structural unit (IV) structural units represented by the above formulas (IV-1a), (IV-1b) and (IV-2a) are preferable.
  • the content of the structural unit (IV) in the polymer is preferably 0 mol% or more and 80 mol% or less, more preferably 20 mol% or more and 75 mol% or less, and particularly preferably 30 mol% or more and 70 mol% or less. preferable.
  • the polymer is further selected from the group consisting of structural unit (I), a structural unit containing a fluorine atom other than structural unit (IV), a lactone structure, a cyclic carbonate structure, and a sultone structure as another structural unit. You may have a structural unit containing at least 1 type of structure, and a structural unit containing a polar group.
  • Monomers that give structural units containing fluorine atoms other than structural unit (I) and structural unit (IV) include 2- (1,1,1,3,3,3-hexafluoro) propyl (meth) acrylate Is preferred.
  • the structural unit (III) in the [A] polymer is preferred.
  • the polar group a carboxy group and a hydroxy group are preferable.
  • the content of the [C] polymer is preferably 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the [A] polymer.
  • the polymer can be synthesized, for example, by polymerizing a monomer that gives each predetermined structural unit in a suitable solvent using a radical polymerization initiator.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, 2-butanone, 4-methyl-2-p
  • the reaction temperature in the above polymerization is usually 40 ° C to 150 ° C, preferably 50 ° C to 120 ° C.
  • the reaction time is usually 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the Mw of the [C] polymer is preferably 1,000 to 20,000, more preferably 2,000 to 10,000, and particularly preferably 3,000 to 9,000.
  • Mw of the polymer is less than 1,000, there is a tendency that a sufficient receding contact angle cannot be obtained.
  • Mw of the [C] polymer exceeds 20,000, the developability when used as a resist tends to be lowered.
  • the ratio (Mw / Mn) of Mw of the polymer to the number average molecular weight (Mn) in terms of polystyrene by GPC method is usually 1 to 5, preferably 1 to 3, and more preferably 1 to 2.
  • the photoresist composition preferably contains a [D] acid diffusion controller.
  • [D] The acid diffusion controller controls the diffusion phenomenon in the resist film of the acid generated from the [B] acid generator by exposure, and has an effect of suppressing an undesirable chemical reaction in the non-exposed region.
  • the photoresist composition further contains a [D] acid diffusion controller, the photoresist composition can form a resist pattern that is more excellent in pattern developability and LWR performance.
  • a compound form as described later hereinafter also referred to as “[D] acid diffusion controller” as appropriate
  • Examples of the acid diffusion controller include Nt-alkoxycarbonyl group-containing amino compounds, tertiary amine compounds, quaternary ammonium hydroxide compounds, and the like.
  • Nt-alkoxycarbonyl group-containing amino compound examples include Nt-butoxycarbonyldi-n-octylamine, Nt-amyloxycarbonyldi-n-octylamine, and Nt-butoxycarbonyldi- n-nonylamine, Nt-amyloxycarbonyldi-n-nonylamine, Nt-butoxycarbonyldi-n-decylamine, Nt-amyloxycarbonyldi-n-decylamine, Nt-butoxycarbonyldicyclohexylamine Nt-amyloxycarbonyldicyclohexylamine, Nt-butoxycarbonyl-1-adamantylamine, Nt-amyloxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, N- t-Amyloxycarbonyl-2-adamadama Tylamine, Nt-
  • tertiary amine compound examples include triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, and tri-n-octyl.
  • Tri (cyclo) alkylamines such as amine, cyclohexyldimethylamine, dicyclohexylmethylamine, and tricyclohexylamine; Fragrances such as aniline, N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-nitroaniline, 2,6-dimethylaniline, 2,6-diisopropylaniline Group amines; Alkanolamines such as triethanolamine, N, N-di (hydroxyethyl) aniline; N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine, 1,3-bis [1- (4-aminophenyl) -1- Methylethyl] benzenetetramethylenediamine, bis (2-dimethylaminoethyl) ether, bis (2-dieth
  • Examples of the quaternary ammonium hydroxide compound include tetra-n-propylammonium hydroxide and tetra-n-butylammonium hydroxide.
  • an onium salt compound which is decomposed by exposure and loses basicity as acid diffusion controllability can be used.
  • an onium salt compound include a sulfonium salt compound represented by the following formula (5-1), an iodonium salt compound represented by the formula (5-2), and the like.
  • R 26 to R 30 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a hydroxy group, or a halogen atom.
  • Anb ⁇ is OH ⁇ , R 31 —COO ⁇ , R 31 —SO 3 ⁇ , or an anion represented by the following formula (6).
  • R 31 is each independently an alkyl group, an aryl group or an alkanol group.
  • Examples of the sulfonium salt compound and the iodonium salt compound include triphenylsulfonium hydroxide, triphenylsulfonium acetate, triphenylsulfonium salicylate, diphenyl-4-hydroxyphenylsulfonium hydroxide, diphenyl-4-hydroxyphenylsulfonium acetate, and diphenyl.
  • the content when the acid diffusion controller is a [D] acid diffusion controller is preferably 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polymer [A]. 0.4 to 15 parts by mass is more preferable. [D] By making content of an acid diffusion control agent into the said range, the pattern developability and LWR performance of the said photoresist composition improve more.
  • the photoresist composition usually contains an [E] solvent.
  • the solvent a solvent that can uniformly dissolve or disperse each component and does not react with each component is preferably used.
  • Examples of the solvent include alcohols, ethers, ketones, amides, esters, hydrocarbons and the like. In addition, these solvents can use 2 or more types together.
  • alcohols include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec -Pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-he Mono
  • ethers examples include diethyl ether, dipropyl ether, dibutyl ether, diphenyl ether, methoxybenzene and the like.
  • ketones include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, and methyl-n-hexyl.
  • ketones di-iso-butyl ketone, trimethylnonanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amides include N, N′-dimethylimidazolidinone, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N -Methylpropionamide, N-methylpyrrolidone and the like.
  • esters examples include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, and 3-acetate acetate.
  • hydrocarbons examples include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane, Aliphatic hydrocarbons such as methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbons, etc.
  • esters and ketones are preferable, and propylene glycol monomethyl ether acetate, cyclohexanone, and ⁇ -butyrolactone are more preferable.
  • the photoresist composition may contain a surfactant, a sensitizer, and the like as other optional components.
  • the said photoresist composition may contain 2 or more types of said other arbitrary components.
  • Surfactants have the effect of improving coatability, striation, developability, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • Nonionic surfactants such as stearate are listed.
  • Examples of commercially available products include KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the sensitizer exhibits the effect of increasing the amount of [B] acid generators produced, and has the effect of improving the “apparent sensitivity” of the photoresist composition.
  • the sensitizer include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like.
  • the photoresist composition contains, for example, an [A] polymer, a [B] acid generator, a [C] polymer, and a [D] acid diffusion control agent and other optional components in a [E] solvent. It is prepared by mixing at a predetermined ratio. In use, the photoresist composition is usually dissolved in a solvent such that the total solid content is usually 1% by mass to 30% by mass, preferably 1.5% by mass to 25% by mass, and then, for example, the pore diameter is about 200 nm. It is prepared by filtering with a filter.
  • the resist pattern forming method of the present invention comprises: A step of forming a resist film on a substrate using the photoresist composition (hereinafter, also referred to as “resist film forming step”), A step of exposing the resist film (hereinafter also referred to as “exposure step”) and a step of developing the exposed resist film (hereinafter also referred to as “development step”).
  • resist film forming step A step of forming a resist film on a substrate using the photoresist composition
  • exposure step A step of exposing the resist film
  • development step a step of developing the exposed resist film
  • a resist film is formed on the substrate using the photoresist composition.
  • the substrate for example, a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
  • an organic or inorganic lower antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
  • the film thickness of the resist film to be formed is usually 10 nm to 1,000 nm, and preferably 10 nm to 500 nm.
  • the solvent in the coating film may be volatilized by pre-baking (PB).
  • PB pre-baking
  • the temperature condition of PB is appropriately selected depending on the composition of the photoresist composition, but is usually about 30 ° C. to 200 ° C., preferably 50 ° C. to 150 ° C.
  • Exposure process In this step, exposure is performed by reducing and projecting a desired pattern of the resist film formed in the resist film forming step through a mask having a specific pattern and, if necessary, an immersion liquid.
  • an isotrench pattern can be formed by performing reduced projection exposure on a desired region through an isoline pattern mask.
  • the immersion liquid used for exposure include water and a fluorine-based inert liquid.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index temperature coefficient that is as small as possible so as to minimize distortion of the optical image projected onto the film.
  • the exposure light is ArF excimer laser light (wavelength 193 nm)
  • water is preferable from the viewpoints of availability and ease of handling in addition to the above-described viewpoints.
  • an additive that decreases the surface tension of water and increases the surface activity may be added in a small proportion.
  • This additive is preferably one that does not dissolve the resist layer on the wafer and can ignore the influence on the optical coating on the lower surface of the lens.
  • the water used is preferably distilled water.
  • the exposure light used for exposure is appropriately selected according to the type of [B] acid generator, and examples thereof include ultraviolet rays, far ultraviolet rays, EUV (ultra-ultraviolet rays), X-rays, and charged particle beams. Of these, far ultraviolet rays such as ArF excimer laser light and KrF excimer laser light (wavelength 248 nm) are preferable, and ArF excimer laser light is more preferable.
  • the exposure conditions such as the exposure amount are appropriately selected according to the composition of the photoresist composition and the type of additive.
  • PEB post-exposure baking
  • the dissociation reaction of the acid dissociable group in the photoresist composition can proceed smoothly.
  • PEB temperature it is 30 degreeC or more and less than 200 degreeC normally, and 50 degreeC or more and less than 150 degreeC are preferable.
  • the dissociation reaction may not proceed smoothly.
  • the acid generated from the [B] acid generator diffuses widely to the unexposed area and is good. There is a possibility that a pattern cannot be obtained.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is allowed to stand for a certain time (a paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • dip method a method in which a substrate is immersed in a tank filled with a developer for a certain time
  • a paddle method a method in which the developer is raised on the surface of the substrate by surface tension and is allowed to stand for a certain time
  • a method of spraying the developer on the substrate surface spray method
  • a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed dynamic dispensing method
  • the polymer of the present invention has a fluorine atom and the structural unit (I) represented by the above formula (1), it can be suitably used as a component of the photoresist composition of the present invention.
  • the said monomer solution was dripped there over 4 hours, and also it age
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the polymerization solution was concentrated under reduced pressure using an evaporator until the weight of the polymerization solution reached 200 g. Thereafter, the polymerization solution was put into 1,000 g of methanol, and reprecipitation operation was performed. The precipitated slurry was filtered by suction, and the solid content was washed with methanol three times. This solid content was vacuum dried at 60 ° C.
  • Example 2 to 16 and Synthesis Examples 2 and 3 Each polymer was synthesized in the same manner as in Example 1 except that the types and amounts of compounds (monomers) shown in Table 2 were used. Table 2 also shows the yield (%), Mw, and Mw / Mn of each synthesized polymer. In Table 2, “-” indicates that the corresponding compound was not used.
  • D-1 Compound represented by the following formula (D-1)
  • D-2 Compound represented by the following formula (D-2)
  • D-3 Compound represented by the following formula (D-3)
  • [Example 17] [A] 100 parts by mass of (A-1) as a polymer, [B] 10 parts by mass of (B-1) as an acid generator, [C] 3 parts by mass of (C-1) as a polymer, D] 7 parts by mass of (D-1) as an acid diffusion controlling agent, and (E-1) 1, 732.5 parts by mass, (E-2) 742.5 parts by mass and (E -3) 275 parts by mass were mixed to prepare a photoresist composition.
  • Example 18 to 37 and Comparative Examples 1 and 2 Each photoresist composition was prepared in the same manner as in Example 17 except that the components having the types and contents shown in Table 3 were used.
  • a film having a thickness of 80 nm was formed on an 8-inch silicon wafer using a photoresist composition, and soft baking (SB) was performed at 120 ° C. for 60 seconds. Then, the receding contact angle of the formed film was measured in the following procedure using DSA-10 manufactured by KRUS under an environment of room temperature 23 ° C., humidity 45%, and normal pressure.
  • the developer dissolution rate measurement sample was spin-coated on an 8-inch silicon wafer on which an underlayer antireflection film (manufactured by Nissan Chemical Co., ARC29A) was formed, using the trade name “CLEAN TRACK ACT8”, and heated at 120 ° C. for 60 seconds.
  • an underlayer antireflection film manufactured by Nissan Chemical Co., ARC29A
  • a coating film having a thickness of 200 nm was formed.
  • this coating film was irradiated with an excimer laser having a wavelength of 193 nm using an ArF excimer laser exposure apparatus (manufactured by NIKON, NSR S306C, numerical aperture 0.78) at 60 mJ / cm 2 , and then heated at 100 ° C. for 60 seconds. did.
  • the thickness (film thickness) of the coating film was measured by a trade name “Lambda Ace VM2010” (Dainippon Screen). Thereafter, the dissolution rate in a developing solution (2.38% TMAH (tetramethylammonium hydroxide) aqueous solution) was measured using a trade name “Resist Development Analyzer MODEL RDA-808R8”. When this dissolution rate was 1,000 nm / sec or more, the dissolution rate was “A”, and when it was less than 1,000 nm / sec, “B”.
  • TMAH tetramethylammonium hydroxide
  • PEB was performed at 100 ° C. for 60 seconds. Thereafter, development was performed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 30 seconds using a GP nozzle of a developing device of Clean Electron “ACT12” manufactured by Tokyo Electron, rinsed with pure water for 7 seconds, and shaken off at 3,000 rpm. It was dried to form a positive resist pattern.
  • the exposure amount for forming 1 L / 1S having a width of 45 nm was determined as the optimum exposure amount. With this optimum exposure amount, 1L / 1S having a line width of 45 nm was formed on the entire surface of the wafer to obtain a defect inspection wafer.
  • the number of defects on the defect inspection wafer was measured using KLA2810 manufactured by KLA-Tencor. Furthermore, the defects measured by the KLA2810 were classified into those judged to be derived from the resist film and those derived from the outside. After classification, the total number of defects determined to be derived from the resist film was defined as development defect evaluation. When the total number of defects was less than 1,000 / wafer, the development defect evaluation was “A”, and when it was 1,000 or more, “B”.
  • a 110 nm-thick film was formed from a photoresist composition on a 12-inch silicon wafer on which the lower antireflection film was formed, and soft baking (SB) was performed at 120 ° C. for 60 seconds.
  • the cross-sectional shape of the formed pattern was observed with a scanning electron microscope (2) (trade name: “S-4800”, manufactured by Hitachi High-Technologies Corporation), and the line width of the line portion at the intermediate portion in the thickness direction of the film Lb and the line width La on the coating surface were measured. Thereafter, the formula: (La ⁇ Lb) / Lb is calculated, and when the calculated value is 0.90 ⁇ (La ⁇ Lb), “T-top” is set, and (La ⁇ Lb) ⁇ 1.1. In this case, the top round was selected. When 0.90 ⁇ (La ⁇ Lb) ⁇ 1.1, “A” was set. In addition, when the unmelted portion was generated in the exposed portion, it was set as “B”.
  • LWR (nm) A positive resist pattern was formed by the same method as in the development defect evaluation, and the optimum exposure (Eop) was measured.
  • the 3-sigma value (variation) of the measured line width was defined as LWR (nm).
  • the polymer of the present invention was superior in solubility in the developer compared to the comparative example. Further, as is clear from the results in Table 3, the photoresist composition of the present invention can suppress the occurrence of development defects while improving the receding contact angle on the resist film surface as compared with the comparative example. In addition, it was found that a resist pattern having a small LWR and a good shape can be formed.
  • the photoresist composition, resist pattern forming method and polymer of the present invention in the immersion exposure process, the receding contact angle of the resist film surface during exposure can be improved, and receding contact during alkali development. As a result, it is possible to greatly reduce the corners, thereby suppressing development defects and forming a resist pattern having a small LWR and a good pattern shape. Therefore, the photoresist composition, resist pattern forming method, and polymer can be suitably used in a lithography process that requires further miniaturization.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、[A]酸解離性基を有する重合体、[B]酸発生体、及び[C]下記式(1)で表される構造単位(I)を有し、フッ素原子を含む重合体を含有するフォトレジスト組成物である。式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はトリフルオロメチル基である。E及びEは、酸素原子、*-CO-O-又は*-CO-NH-である。Aは、連結鎖中に酸解離性基又はアルカリ解離性基を有する2価の基である。Gは、単結合又は(n+1)価の連結基である。nは、1~3の整数である。

Description

フォトレジスト組成物、レジストパターン形成方法及び重合体
 本発明は、フォトレジスト組成物、レジストパターン形成方法及び重合体に関する。
 集積回路素子の製造に代表される微細加工の分野においては、酸解離性基を有する重合体を含むフォトレジスト組成物によって基板上にレジスト膜を形成し、マスクパターンを介してそのレジスト膜にエキシマレーザー等の短波長の放射線を露光し、露光部をアルカリ現像液で除去することにより微細なレジストパターンを形成することが行われている。
 近年、線幅45nm程度のより微細なレジストパターンを形成する方法として、液浸露光法の利用が拡大しつつある。液浸露光法ではレンズの開口数(NA)を増大させた場合でも焦点深度が低下し難く、かつ高い解像性が得られるという利点がある。液浸露光法に用いられるフォトレジスト組成物には、レジスト膜から液浸媒体への酸発生剤等の溶出の抑制により塗膜性能の低下やレンズ等の汚染を防止すると共に、レジスト膜表面の後退接触角の向上によりウォーターマークの残存を防止し、高速スキャン露光を可能にすることが要求される。
 それらを達成する手段として、例えば特開2005-352384号公報には、レジスト膜上に上層膜(保護膜)を形成する技術が提案されているが、成膜工程が別途必要になり煩雑である。そのため、レジスト膜表面の疎水性を高める方法が検討されており、例えば国際公開第2007/116664号には、疎水性が高いフッ素含有重合体を含有せしめたフォトレジスト組成物が提案されている。
 しかし、レジスト膜の疎水性を上げると、現像液やリンス液の表面濡れ性が低下するため、現像時に現像欠陥が発生することがある。このような現像欠陥の抑制を目的として、特開2010-032994号公報には、液浸露光時には疎水性であるが、アルカリ現像時には疎水性が低下するフッ素原子含有重合体が提案されている。しかし、上記フッ素原子含有重合体を用いたレジスト膜でも、このフッ素原子含有重合体の現像液に対する溶解性は満足できるものではなく、レジストパターンのライン幅のばらつきを表す値であるLWR性能(Line Width Roughness)や得られるパターン形状を十分に満足できるものではない。
特開2005-352384号公報 国際公開第2007/116664号 特開2010-032994号公報
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、液浸露光プロセスにおいて、露光時におけるレジスト膜表面の後退接触角を向上させることができると共に、アルカリ現像時においては後退接触角を大きく低下させ、その結果現像欠陥の発生を抑制でき、LWRが小さく、パターン形状が良好なレジストパターンを形成できるフォトレジスト組成物を提供することである。
 上記課題を解決するためになされた発明は、
 [A]酸解離性基を有する重合体(以下、「[A]重合体」とも称する)、
 [B]酸発生体、及び
 [C]下記式(1)で表される構造単位(I)を有し、フッ素原子を含む重合体(以下、「[C]重合体」とも称する)
を含有するフォトレジスト組成物である。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はトリフルオロメチル基である。E及びEは、それぞれ独立して、酸素原子、*-CO-O-又は*-CO-NH-である。*は、隣接する重合体鎖の炭素原子に結合する部位を示す。Aは、連結鎖中に酸解離性基又はアルカリ解離性基を有する2価の基である。Gは、単結合又は(n+1)価の連結基である。nは、1~3の整数である。nが2以上の場合、複数のA、E及びRは、それぞれ同一でも異なっていてもよい。)
 当該フォトレジスト組成物は、LWRが小さくパターン形状が良好なレジストパターンを形成することができる。当該フォトレジスト組成物が、上記構成を有することで上記効果を発揮する理由は必ずしも明確ではないが、例えば、[C]重合体が上記特定構造を有することで、構造単位(I)が有する連結鎖が酸又はアルカリ切断されてより低分子化し、現像液に対する溶解性が向上する。その結果、レジスト膜表面の後退接触角を向上させつつ、現像欠陥の発生を抑制することができ、かつLWRが小さく形状が良好なレジストパターンを形成することができると考えられる。
 [C]重合体のフッ素原子含有率は、[A]重合体のフッ素原子含有率よりも高いことが好ましい。このような構成とすることで、より効果的に[C]重合体をレジスト膜の表面に偏在化させることができ、レジスト膜表面は、より高い後退接触角を発揮することができる。
 [C]重合体の含有量は、[A]重合体100質量部に対し、0.1質量部以上20質量部以下であることが好ましい。[C]重合体の含有量を上記特定範囲とすることで、[C]重合体の偏在化をより促進することができ、レジスト膜表面は、さらに高い後退接触角を発揮することができ、現像欠陥の発生を抑制することができ、かつLWRが小さく形状が良好なレジストパターンを形成することができる。
 本発明のフォトレジスト組成物は、上述の性質を有しているので、液浸露光に好適に用いられる。当該フォトレジスト組成物は、液浸露光プロセスにおいて、露光時にはレジスト膜表面の後退接触角を向上させるとともに、アルカリ現像時においては後退接触角を大きく低下させて、形成されるレジスト膜の現像欠陥の発生を抑制でき、LWRが小さくパターン形状が良好なレジストパターンを形成できる。
 構造単位(I)は、下記式(1-1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(1-1)中、R、R、G及びnは上記式(1)と同義である。Aは、2価の酸解離性基である。nが2以上の場合、複数のA及びRは、それぞれ同一でも異なっていてもよい。)
 構造単位(I)が上記特定の構造単位であると、露光により[B]酸発生体から発生する酸により、効果的に上記連結鎖が切断され、[C]重合体の分子量を低下することができる。これにより、露光部における[C]重合体のアルカリ現像液に対する溶解性をより向上させ、露光部におけるブリッジ欠陥等の現像欠陥の発生をより抑制できる。
 上記式(1-1)におけるGは、連結鎖中に酸解離性基を有することが好ましい。Aに加えて、Gも酸解離性基を有することで、[C]重合体の分子量がより低下し、露光部における[C]重合体のアルカリ現像液に対する溶解性をさらに向上させ、露光部におけるブリッジ欠陥等の現像欠陥の発生をさらに抑制することができる。
 上記Aは下記式(2-1)、(2-2)又は(2-3)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(2-1)中、R及びRは、それぞれ独立して、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。Rは、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。但し、R~Rのいずれか2つが互いに結合して、それらが結合している炭素原子と共に環構造を形成してもよい。
 式(2-2)中、R及びRは、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。Rは、単結合、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。但し、R~Rのいずれか2つが互いに結合して、R及びRが結合している炭素原子と共に環構造を形成してもよい。
 式(2-3)中、Rは、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。R10は、単結合、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。R11は、水素原子、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。但し、R~R11のいずれか2つが互いに結合して、R10及びR11が結合している炭素原子と共に環構造を形成してもよい。
 なお、式(2-1)~(2-3)中、**は、式(1-1)中のエステル基との結合部位を示す。また、R~R11が有する水素原子の一部又は全部は、置換されていてもよい。)
 上記Aが上記特定の酸解離性基であると、Aの酸解離性がより高まり、現像欠陥の発生をより抑制でき、LWRがより小さなレジストパターンを形成できる。
 上記式(2-1)におけるR~Rのいずれか2つは互いに結合してそれらが結合している炭素原子と共に環構造を形成することが好ましい。上記Aをこのような環構造を含む酸解離性基とすることで、Aの酸解離性がさらに高まり、現像欠陥の発生をさらに抑制でき、LWRがさらに小さなレジストパターンを形成できる。
 構造単位(I)は、下記式(1-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(1-2)中、R、R、E、E及びnは、上記式(1)と同義である。Rは、連結鎖中にアルカリ解離性基を有する基である。2つのR12は、それぞれ独立して、単結合、炭素数1~10の2価の鎖状炭化水素基又は炭素数4~20の2価の脂環式炭化水素基である。R13は、単結合、炭素数1~20の(n+1)価の炭化水素基、又は-CO-、-COO-、-OCO-、-O-、-NR-、-CS-、-S-、-SO-、及び-SO-からなる群より選択される少なくとも1種の基と炭素数1~20の炭化水素基とを組み合わせた基である。R14は、炭素数1~20の2価の炭化水素基である。2つのXは、それぞれ独立して、単結合又は一部若しくは全部の水素原子がフッ素原子で置換された炭素数1~20の2価の鎖状炭化水素基である。nが2以上の場合、複数のR12、X、R、R14、E及びRはそれぞれ同一でも異なっていてもよい。)
 構造単位(I)が上記特定構造であると、アルカリ現像時において、アルカリ現像液により上記連結鎖が効果的に切断され、[C]重合体の分子量を低下することができる。これにより、[C]重合体のアルカリ現像液に対する溶解性をより向上させ、現像欠陥の発生をより抑制でき、LWRがより小さくパターン形状が良好なレジストパターンを形成できる。
 上記式(1-2)におけるRは、下記式(1-3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
(式(1-3)中、R15は、フッ素原子を有していてもよい2価の炭化水素基である。2つのYは、それぞれ独立して、-O-、*-O-CO-、*-CO-O-、*-SO-O-である。*は、Xに結合する部位を示す。)
 このようにRを上記特定基とすることで、Rのアルカリ解離性がより高まり、[C]重合体のアルカリ現像液に対する溶解性をより向上させ、現像欠陥の発生をより抑制でき、LWRがより小さくパターン形状が良好なレジストパターンを形成できる。
 [C]重合体は、構造単位(I)以外の構造単位であって酸解離性基を含む構造単位をさらに有することが好ましい。[C]重合体が、このような構造単位をさらに有することで、露光部における[C]重合体のアルカリ現像液に対する溶解性をより向上させ、露光部における現像欠陥の発生をより抑制することができる。
 [C]重合体は、構造単位(I)以外の構造単位であってアルカリ解離性基を含む構造単位をさらに有することが好ましい。[C]重合体が、このような構造単位をさらに有することで、[C]重合体のアルカリ現像液に対する親和性を向上させ、現像欠陥の発生をより抑制することができる。
 本発明のレジストパターン形成方法は、
 当該フォトレジスト組成物を用い、基板上にレジスト膜を形成する工程、
 上記レジスト膜を露光する工程、及び
 上記露光されたレジスト膜を現像する工程
を有する。
 当該レジストパターン形成方法によれば、本発明のフォトレジスト組成物を用いるため、現像欠陥の発生が少なく、パターン形状及びLWRに優れるレジストパターンを形成することができる。
 上記露光工程における露光を、上記レジスト膜上に液浸露光液を配置し、この液浸露光液を介して行うことが好ましい。当該レジストパターン形成方法によれば、高い後退接触角により液浸露光を良好に行うことができる。
 本発明の重合体は、下記式(1)で表される構造単位(I)を有し、フッ素原子を含む重合体である。
Figure JPOXMLDOC01-appb-C000012
(式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はトリフルオロメチル基である。E及びEは、それぞれ独立して、酸素原子、*-CO-O-又は*-CO-NH-である。*は、隣接する重合体鎖の炭素原子に結合する部位を示す。Aは、連結鎖中に酸解離性基又はアルカリ解離性基を有する2価の基である。Gは、単結合又は(n+1)価の連結基である。nは、1~3の整数である。nが2以上の場合、複数のA、E及びRは、それぞれ同一でも異なっていてもよい。)
 当該重合体は、フッ素原子及び上記式(1)で表される構造単位(I)を有するので、本発明のフォトレジスト組成物の成分として好適に用いることができる。
 なお、本明細書において、「連結鎖」とは、GとEとを連結する複数の原子で構成される鎖をいう。「酸解離性基」とは、例えばカルボキシ基、ヒドロキシ基等の極性基の水素原子を置換する基であって、酸の存在下で解離する基をいう。アルカリ解離性基とは、例えばヒドロキシ基、カルボキシ基等の極性官能基中の水素原子を置換する基であって、アルカリの存在下(例えば、23℃のテトラメチルアンモニウムヒドロキシド2.38質量%水溶液中)で解離する基をいう。
 本発明のフォトレジスト組成物、レジストパターン形成方法及び重合体によれば、液浸露光プロセスにおいて、露光時におけるレジスト膜表面の後退接触角を向上させることができると共に、アルカリ現像時においては後退接触角を大きく低下させ、その結果現像欠陥の発生を抑制でき、LWRが小さく、パターン形状が良好なレジストパターンを形成できる。従って、当該フォトレジスト組成物、レジストパターン形成方法及び重合体は、更なる微細化が求められるリソグラフィー工程において好適に用いることができる。
<フォトレジスト組成物>
 本発明のフォトレジスト組成物は、[A]重合体、[B]酸発生体及び[C]重合体を含有する。また、当該フォトレジスト組成物は、好適成分として、[D]酸拡散制御体及び[E]溶媒を含有することができる。さらに、当該フォトレジスト組成物は、本発明の効果を損なわない限り、その他の任意成分を含有してもよい。以下、各成分を詳述する。
<[A]重合体>
 [A]重合体は酸解離性基を有する重合体である。また、[A]重合体は、当該フォトレジスト組成物におけるベース重合体となる。なお、「ベース重合体」とは、フォトレジスト組成物から形成されるレジスト膜を構成する重合体の主成分となる重合体をいい、好ましくは、レジスト膜を構成する全重合体に対して50質量%以上を占める重合体をいう。[A]重合体は酸解離性基を含む構造単位(以下、「構造単位(II)」とも称する)有する重合体であれば、その具体的な構造は特に限定されるものではない。また、[A]重合体は、構造単位(II)以外の構造単位にも、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種の構造を含む構造単位(III)を有することが好ましい。さらに、[A]重合体は、構造単位(II)及び構造単位(III)以外の、他の構造単位を有してもよい。なお、[A]重合体は、各構造単位を2種以上有していてもよい。以下、各構造単位を詳述する。
[構造単位(II)]
 構造単位(II)は、酸解離性基を含む構造単位である。当該フォトレジスト組成物は、露光部において、構造単位(II)中の酸解離性基が、[B]酸発生体から発生した酸の作用により解離することにより、[A]重合体のアルカリ現像液に対する溶解性が変化するので、レジストパターンを形成することができる。構造単位(II)における「酸解離性基」とは、例えばカルボキシ基、ヒドロキシ基等の極性基の水素原子を置換する基であって、酸の存在下で解離する基をいう。構造単位(II)としては、酸解離性基を含む限り特に限定されないが、例えば下記式(3)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式(3)中、R16は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R17~R19は、それぞれ独立して、炭素数1~6のアルキル基又は炭素数4~20の脂環式炭化水素基である。但し、R17及びR18が、互いに結合して、これらが結合している炭素原子と共に2価の脂環式炭化水素基を形成してもよい。
 上記R17~R19で表される炭素数1~6のアルキル基としては、例えばメチル基、エチル基、プロピル基等が挙げられる。
 上記R17~R19で表される炭素数4~20の脂環式炭化水素基としては、例えばシクロブチル基、シクロペンチル基、シクロへキシル基、シクロオクチル基、アダマンチル基等が挙げられる。
 上記R17及びR18が互いに結合して形成してもよい2価の脂環式炭化水素基としては、例えばシクロペンタンジイル基、ノルボルナンジイル基、アダマンタンジイル基等が挙げられる。
 構造単位(II)としては、例えば下記式(3-1)~(3-12)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式中、R16は、上記式(3)と同義である。
 上記構造単位のうち、上記式(3-2)、(3-3)、(3-7)、(3-9)、(3-11)及び(3-12)で表される構造単位が好ましい。
 [A]重合体における構造単位(II)の含有割合としては、[A]重合体を構成する全構造単位に対して20モル%~80モル%が好ましく、30モル%~70モル%がより好ましい。[A]重合体における構造単位(II)の含有割合を上記範囲とすることで、当該フォトレジスト組成物は、感度等をより向上させることができる。
[構造単位(III)]
 [A]重合体は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも1種の構造を含む構造単位(III)をさらに有することが好ましい。[A]重合体が構造単位(III)をさらに有することで、レジスト膜の基板への密着性等を高めることができる。
 構造単位(III)としては、例えば下記式(4-1)~(4-14)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 上記構造単位のうち、上記式(4-1)及び(4-14)で表される構造単位が好ましい。
 [A]重合体における構造単位(III)の含有割合としては、[A]重合体を構成する全構造単位に対して10モル%以上65モル%以下が好ましく、15モル%以上60モル%以下がより好ましい。構造単位(III)の含有割合を上記範囲とすることでレジスト膜の基板への密着性をより高めることができる。
[他の構造単位]
 [A]重合体はさらに、他の構造単位として、例えばフッ素原子を含む構造単位、極性基を含む構造単位等を有してもよい。極性基としては、カルボキシ基、ヒドロキシ基等が好ましい。
 当該フォトレジスト組成物における[A]重合体の含有量としては、当該フォトレジスト組成物中の全固形分(溶媒を除いた成分)に対して、通常70質量%以上であり、80質量%以上が好ましい。
<[A]重合体の合成方法>
 [A]重合体は、酸解離性基を含む構造単位を与える単量体等を用い、ラジカル重合等の常法に従って合成できる。合成方法としては、例えば単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;各々の単量体を含有する複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等が挙げられる。
 上記重合における反応温度としては、ラジカル開始剤種によって適宜決定されるが、通常30℃~180℃であり、40℃~160℃が好ましく、50℃~140℃がより好ましい。滴下時間は、反応温度、ラジカル開始剤の種類、反応させる単量体等によって異なるが、通常30分~8時間であり、45分~6時間が好ましく、1時間~5時間がより好ましい。また、滴下時間を含む全反応時間は、通常30分~8時間であり、45分~7時間が好ましく、1時間~6時間がより好ましい。
 上記ラジカル開始剤としては、例えば2,2’-アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2-アゾビスイソブチレート等が挙げられる。これらのラジカル開始剤は2種以上を混合して使用できる。
 上記重合に用いられる溶媒としては、各単量体の重合を阻害する溶媒以外の溶媒であって、その単量体を溶解可能な溶媒であれば限定されない。溶媒としては、例えばアルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、ラクトン系溶媒、ニトリル系溶媒等が挙げられる。これらの溶媒は、2種以上を併用できる。
 重合反応により得られた重合体は、再沈殿法により回収することができる。再沈溶媒としては、アルコール系溶媒等を使用できる。
 [A]重合体を合成するための重合反応においては、分子量を調整するために、分子量調整剤を使用できる。分子量調整剤としては、例えばクロロホルム、四臭化炭素等のハロゲン化炭化水素類;n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、チオグリコール酸等のメルカプタン類;ジメチルキサントゲンスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン類;ターピノーレン、α-メチルスチレンダイマー等が挙げられる。
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)としては、1,000~20,000が好ましく、2,000~15,000がより好ましい。[A]重合体のMwを上記範囲とすることで、当該フォトレジスト組成物は、感度等のリソグラフィー性能に優れたものとなる。
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常1以上5以下であり、1以上3以下が好ましく、1以上2以下がより好ましい。なお、本明細書における重合体のMw及びMnは下記の条件によるGPCにより測定した。
カラム:G2000HXL 2本、G3000HXL 1本、及びG4000HXL 1本(東ソー製)
溶出溶媒:テトラヒドロフラン
流量:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
カラム温度:40℃
検出器:示差屈折計
標準物質:単分散ポリスチレン
<[B]酸発生体>
 当該フォトレジスト組成物は、[B]酸発生体を含有する。[B]酸発生体は、露光により酸を発生し、その酸により[A]重合体が有する酸解離性基を解離させ、カルボキシ基等を発生させる。その結果、[A]重合体の極性が増大し、露光部における[A]重合体がアルカリ現像液に対して可溶性となる。当該フォトレジスト組成物における[B]酸発生体の含有形態としては、後述するような化合物の形態(以下、適宜「[B]酸発生剤」とも称する)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [B]酸発生剤としては、例えばオニウム塩化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。これらのうち、オニウム塩化合物、スルホンイミド化合物が好ましい。
 オニウム塩化合物としては、例えばスルホニウム塩(テトラヒドロチオフェニウム塩を含む)、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。これらのうち、スルホニウム塩、ヨードニウム塩が好ましい。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、トリフェニルスルホニウム4-(アダマンチルカルボニルオキシ)-1,1,2-トリフルオロブタンスルホネート、トリフェニルスルホニウム2-(アダマンタン-1-イル)-1,1-ジフルオロエタンスルホネート、2-(アダマンチルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパンスルホネート、トリフェニルスルホニウムアダマンチルオキシカルボニル-1,1-ジフルオロメタンスルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート等が挙げられる。
 スルホンイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 これらの[B]酸発生剤のうち、アダマンチル基等の多環の脂環式炭化水素構造をもつスルホニウム塩がより好ましく、トリフェニルスルホニウム4-(アダマンチルカルボニルオキシ)-1,1,2-トリフルオロブタンスルホネート、トリフェニルスルホニウム2-(アダマンタン-1-イル)-1,1-ジフルオロエタンスルホネート、2-(アダマンチルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパンスルホネート、トリフェニルスルホニウムアダマンチルオキシカルボニル-1,1-ジフルオロメタンスルホネートが特に好ましく、トリフェニルスルホニウム4-(アダマンチルカルボニルオキシ)-1,1,2-トリフルオロブタンスルホネートが最も好ましい。
 これらの[B]酸発生剤は、2種以上を併用することができる。[B]酸発生体が[B]酸発生剤である場合の含有量としては、レジストとしての感度及び現像性を確保する観点から、[A]重合体100質量部に対して、通常0.1質量部以上20質量部以下であり、0.5質量部以上15質量部以下が好ましい。[B]酸発生体の含有量が0.1質量部未満の場合、フォトレジスト組成物の感度及び現像性が低下する傾向がある。一方、[B]酸発生体の含有量が20質量部を超えると、放射線に対する透明性が低下する傾向がある。
<[C]重合体>
 [C]重合体は、上記式(1)で表される構造単位(I)を有し、フッ素原子を含む重合体である。[C]重合体は、当該フォトレジスト組成物において、表面疎水化重合体として機能する。「表面疎水化重合体」とは、フォトレジスト組成物に含有させることで、形成されるレジスト膜の表層に偏在化する傾向を有する副成分の重合体をいう。当該フォトレジスト組成物が[A]重合体と[C]重合体とを含有することで、レジスト膜を形成した際に[C]重合体が偏在化して、露光時にレジスト膜表面を疎水化することにより、液浸露光における高速スキャン等を可能にすることができる。
 当該フォトレジスト組成物において、[C]重合体が表面疎水化重合体として良好に機能するには、[A]重合体よりも、[C]重合体のフッ素原子含有率が高いことが好ましい。これにより、より効果的に[C]重合体が、レジスト膜の表層に偏在化する。また、[C]重合体のフッ素原子含有率は5質量%以上であることが好ましく、7質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。一方、[A]重合体のフッ素原子含有率としては、5質量%未満が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましい。なお、このフッ素原子含有率(質量%)は、13C-NMRの測定により求めた重合体の構造から算出することができる。
 [C]重合体は、構造単位(I)以外の構造単位であって、例えば上記式(2)で表される酸解離性基を含む構造単位(II)及び/又は構造単位(I)以外の構造単位であって、アルカリ解離性基を含む構造単位(IV)をさらに有することが好ましい。また、[C]重合体は、本発明の効果を損なわない限り、構造単位(I)、構造単位(IV)以外のフッ素原子を含む構造単位、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも1種の構造を含む構造単位、極性基を含む構造単位等の他の構造単位を有してもよい。なお、[C]重合体は、各構造単位を2種以上有していてもよい。以下、各構造単位を詳述する。
[構造単位(I)]
 構造単位(I)は、上記式(1)で表される構造単位である。[C]重合体が上記構成を有することで、当該フォトレジスト組成物は、LWRが小さくパターン形状が良好なレジストパターンを形成することができる。[C]重合体が上記構成を有することで上記効果を発揮する理由は必ずしも明確ではないが、例えば、[C]重合体が上記特定構造を有することで、構造単位(I)が有する連結鎖が酸又はアルカリ切断されてより低分子化し、現像液に対する溶解性が向上する。その結果、レジスト膜表面の後退接触角を向上させつつ、現像欠陥の発生を抑制することができ、かつLWRが小さく形状が良好なレジストパターンを形成することができると考えられる。
 上記式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はトリフルオロメチル基である。E及びEは、それぞれ独立して、酸素原子、*-CO-O-又は*-CO-NH-である。*は、隣接する重合体鎖の炭素原子に結合する部位を示す。Aは、連結鎖中に酸解離性基又はアルカリ解離性基を有する2価の基である。Gは、単結合又は(n+1)価の連結基である。nは、1~3の整数である。nが2以上の場合、複数のA、E及びRは、それぞれ同一でも異なっていてもよい。
 上記E及びEとしては、酸素原子又は*-CO-O-が好ましく、*-CO-O-がより好ましい。
 上記Aで表される2価の基が有する酸解離性基としては、例えば後述する上記式(1-1)におけるAと同様の基等が挙げられる。
 上記Aで表されるアルカリ解離性基を有する2価の基としては、例えば後述する上記式(1-2)におけるRと同様の基等が挙げられる。
 Aとしては、酸解離性基又はアルカリ解離性基のみからなる基、酸解離性基又はアルカリ解離性基と他の連結基とが結合した基が挙げられる。他の連結基としては、以下にGとして例示するものが挙げられる。
 上記Gで表される(n+1)価の連結基としては、例えば炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又は-CO-、-COO-、-OCO-、-O-、-NR-、-CS-、-S-、-SO-、及び-SO-からなる群より選択される少なくとも1種の基と炭素数1~30の炭化水素基とを組み合わせた基等が挙げられる。
 上記炭素数1~30の直鎖状又は分岐状の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、デカン、イコサン、トリアコンタン等の炭化水素基から(n+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数3~30の脂環式炭化水素基としては、例えば
 シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等の単環式飽和炭化水素;
 シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等の単環式不飽和炭化水素;
 ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等の多環式飽和炭化水素;
 ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、トリシクロ[3.3.1.13,7]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等の多環式炭化水素から(n+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数6~30の芳香族炭化水素基としては、例えばベンゼン、ナフタレン、フェナントレン、アントラセン、テトラセン、ペンタセン、ピレン、ピセン、トルエン、キシレン、エチルベンゼン、メシチレン、クメン等の芳香族炭化水素から(n+1)個の水素原子を除いた基等が挙げられる。
 なお、Gで表される連結基は、酸解離性基又はアルカリ解離性基を有していてもよい。
 nとしては、1又は2が好ましく、1がより好ましい。
 構造単位(I)は、上記式(1-1)で表されることが好ましい。構造単位(I)が上記特定の構造単位であると、露光により[B]酸発生体から発生する酸により、効果的に上記連結鎖が切断され、[C]重合体の分子量を低下することができる。これにより、露光部における[C]重合体のアルカリ現像液に対する溶解性をより向上させ、露光部におけるブリッジ欠陥等の現像欠陥の発生をより抑制することができる。
 式(1-1)中、R、R、G及びnは上記式(1)と同義である。Aは、2価の酸解離性基である。nが2以上の場合、複数のA及びRは、それぞれ同一でも異なっていてもよい。
 上記Aは、上記式(2-1)、(2-2)又は(2-3)で表されることが好ましい。Aが上記特定の酸解離性基であると、Aの酸解離性がより高まり、現像欠陥の発生をより抑制でき、LWRがより小さなレジストパターンを形成できる。
 上記式(2-1)中、R及びRは、それぞれ独立して、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。Rは、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。但し、R~Rのいずれか2つが互いに結合して、それらが結合している炭素原子と共に環構造を形成してもよい。
 上記式(2-2)中、R及びRは、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。Rは、単結合、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。但し、R~Rのいずれか2つが互いに結合して、R及びRが結合している炭素原子と共に環構造を形成してもよい。
 上記式(2-3)中、Rは、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。R10は、単結合、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。R11は、水素原子、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。但し、R~R11のいずれか2つが互いに結合して、R10及びR11が結合している炭素原子と共に環構造を形成してもよい。
 なお、式(2-1)~(2-3)中、**は、式(1-1)中のエステル基との結合部位を示す。また、R~R11が有する水素原子の一部又は全部は、置換されていてもよい。
 上記R、R、R、R、R及びR11で表される炭素数1~4のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等が挙げられる。
 上記R、R、R、R、R及びR11で表される炭素数4~20の1価の脂環式炭化水素基としては、例えば、
 シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基等の単環の脂肪族飽和炭化水素基;
 シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロデセニル基、シクロドデセニル基、シクロペンタジエニル基、シクロヘキサジエニル基、シクロデカジエニル基等の単環の脂肪族不飽和炭化水素基;
 ビシクロ[2.2.1]ヘプテニル基、ビシクロ[2.2.2]オクタニル基、トリシクロ[5.2.1.02,6]デカニル基、トリシクロ[3.3.1.13,7]デカニル基、テトラシクロ[6.2.1.13,6.02,7]ドデカニル基、アダマンタニル基等の多環の脂肪族飽和炭化水素基;
 ビシクロ[2.2.1]ヘプテニル基、ビシクロ[2.2.2]オクテニル基、トリシクロ[5.2.1.02,6]デセニル基、トリシクロ[3.3.1.1.3,7]デセニル基、テトラシクロ[6.2.1.13,6.02,7]ドデセニル基等の多環の脂肪族不飽和炭化水素基等が挙げられる。
 上記R、R、R、R、R及びR11で表される炭素数6~22の1価の芳香族炭化水素基としては、例えばベンジル基、ナフチル基、フェナントリル基、アントリル基、テトラセニル基、ペンタセニル基、トリル基、キシリル基、エチルベンジル基、メシチル基、クミル基等が挙げられる。
 上記R、R及びR10で表される炭素数1~4のアルカンジイル基としては、例えば上記R、R、R、R、R及びR11で表される炭素数1~4のアルキル基から水素原子を1つ除いた基等が挙げられる。
 上記R、R及びR10で表される炭素数4~20の2価の脂環式炭化水素基としては、例えば上記R、R、R、R、R及びR11で表される炭素数4~20の1価の脂環式炭化水素基から水素原子を1つ除いた基等が挙げられる。
 上記R、R及びR10で表される炭素数6~22の2価の芳香族炭化水素基としては、例えば上記R、R、R、R、R及びR11で表される炭素数6~22の1価の芳香族炭化水素基から水素原子を1つ除いた基等が挙げられる。
 上記R~Rのいずれか2つが互いに結合して、それらが結合している炭素原子と共に形成してもよい環構造としては、例えば炭素数4~20の脂環式炭化水素構造等が挙げられる。具体的には、アダマンタン骨格、ノルボルナン骨格等の有橋式骨格を有する多環の脂環式炭化水素構造;シクロペンタン、シクロヘキサン、シクロオクタン等のシクロアルカン骨格を有する単環の脂環式炭化水素構造等が挙げられる。また、これらの構造は、例えば炭素数1~10の直鎖状、分岐状又は環状のアルキル基の1種以上で置換されていてもよい。
 上記R~Rのいずれか2つが互いに結合してR及びRが結合している炭素原子と共に形成してもよい環構造及び上記R~R11のいずれか2つが互いに結合して、R10及びR11が結合している炭素原子と共に形成してもよい環構造としては、例えば上記R~Rのいずれか2つが互いに結合して、それぞれが結合している炭素原子と共に形成してもよい環構造として例示したものと同様の環構造等が挙げられる。それに加えて、例えば炭素数4~20の複素環構造が挙げられる。具体的には、酸素原子を含むアダマンタン骨格、ノルボルナン骨格等の有橋式骨格を有する多環の複素環構造;酸素原子を含むシクロペンタン、シクロヘキサン等のシクロアルカン骨格を有する単環の複素環構造が挙げられる。また、これらの構造は、例えば炭素数1~10の直鎖状、分岐状又は環状のアルキル基の1種以上で置換されていてもよい。
 上記Aは、上記式(2-1)で表されることが好ましく、式(2-1)におけるR~Rのいずれか2つは互いに結合して、それらが結合している炭素原子と共に環構造を形成することがより好ましく、この環構造は、シクロペンタン、シクロヘキサン、シクロオクタン等のシクロアルカン骨格を有する単環の脂環式炭化水素構造であることが特に好ましい。
 式(1-1)において、Gは、連結鎖中に酸解離性基を有することが好ましく、上記式(2-1)~(2-3)で表される酸解離性基を有することがより好ましく、上記式(2-1)で表される酸解離性基を有することが特に好ましい。
 また、式(1-1)において、Gは、上記式(2-1)~(2-3)で表される酸解離性基であることが好ましく、上記式(2-1)で表される酸解離性基であることが特に好ましい。
 構造単位(I)は、上記式(1-2)で表されることが好ましい。構造単位(I)が上記特定構造単位であると、アルカリ現像時において、アルカリ現像液により上記連結鎖が効果的に切断され、[C]重合体の分子量を低下することができる。これにより、[C]重合体のアルカリ現像液に対する溶解性をより向上させ、現像欠陥の発生をより抑制でき、LWRがより小さくパターン形状が良好なレジストパターンを形成できる。
 上記式(1-2)中、R、R、E、E及びnは、上記式(1)と同義である。Rは、連結鎖中にアルカリ解離性基を有する基である。2つのR12は、それぞれ独立して、単結合、炭素数1~10の2価の鎖状炭化水素基又は炭素数4~20の2価の脂環式炭化水素基である。R13は、単結合、炭素数1~20の(n+1)価の炭化水素基、又は-CO-、-COO-、-OCO-、-O-、-NR-、-CS-、-S-、-SO-、及び-SO-からなる群より選択される少なくとも1種の基と炭素数1~20の炭化水素基とを組み合わせた基である。R14は、炭素数1~20の2価の炭化水素基である。2つのXは、それぞれ独立して、単結合又は一部若しくは全部の水素原子がフッ素原子で置換された炭素数1~20の2価の鎖状炭化水素基である。nが2以上の場合、複数のR12、X、R、R14、E及びRは、それぞれ同一でも異なっていてもよい。
 上記炭素数1~20の(n+1)価の炭化水素基としては、直鎖状若しくは分岐状の鎖状炭化水素基、炭素数3~20の脂環式炭化水素基、炭素数6~20の芳香族炭化水素基が挙げられる。
 上記炭素数1~20の直鎖状又は分岐状の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、デカン、イコサン、トリアコンタン等の炭化水素基から(n+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数3~20の脂環式炭化水素基としては、例えば
 シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等の単環式飽和炭化水素;
 シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等の単環式不飽和炭化水素;
 ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等の多環式飽和炭化水素;
 ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、トリシクロ[3.3.1.13,7]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等の多環式炭化水素基から(n+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数6~20の芳香族炭化水素基としては、例えばベンゼン、ナフタレン、フェナントレン、アントラセン、テトラセン、ペンタセン、ピレン、ピセン、トルエン、キシレン、エチルベンゼン、メシチレン、クメン等の芳香族炭化水素基から(n+1)個の水素原子を除いた基等が挙げられる。
 上記Rで表されるアルカリ解離性基を有する基としては、特に限定されないが、上記式(1-3)で表される基であることが好ましい。このようにRを上記特定基とすることで、Rのアルカリ解離性がより高まり、[C]重合体のアルカリ現像液に対する溶解性をより向上させ、現像欠陥の発生をより抑制でき、LWRがより小さくパターン形状が良好なレジストパターンを形成できる。
 上記式(1-3)中、R15は、フッ素原子を有していてもよい2価の炭化水素基である。2つのYは、それぞれ独立して、-O-、*-O-CO-、*-CO-O-、*-SO-O-である。*は、Xに結合する部位を示す。
 上記R15で表されるフッ素原子を有していてもよい2価の炭化水素基のうち、2価の炭化水素基としては、例えば2価の鎖状炭化水素基、2価の脂環式炭化水素基、2価の芳香族炭化水素基等が挙げられる。
 上記2価の鎖状炭化水素基としては、例えばメタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基等が挙げられる。これらのうち、エタンジイル基、ブタンジイル基が好ましい。
 上記2価の脂環式炭化水素基としては、例えばシクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルナンジイル基、アダマンタンジイル基等が挙げられる。
 上記2価の芳香族炭化水素基としては、例えば、フェニレン基、ベンジレン基、フェネチレン基、フェニレンプロピレン基、ナフチレン基、ナフチレンメチレン基等が挙げられる。
 上記R15としては、フッ素原子を有していてもよい2価の鎖状炭化水素基が好ましく、エタンジイル基、2,2,3,3-テトラフルオロブタンジイル基がより好ましい。
 上記Yとしては、*-CO-O-が好ましい。但し、*は、Xに結合する部位を示す。
 上記R12で表される炭素数1~10の2価の鎖状炭化水素基としては、上記R15で例示した2価の鎖状炭化水素基と同様の基等が挙げられる。
 上記R12で表される炭素数4~20の2価の脂環式炭化水素基としては、上記R15で例示した2価の脂環式炭化水素基と同様の基等が挙げられる。
 上記R12としては、炭素数1~10の2価の鎖状炭化水素基が好ましく、プロパンジイル基がより好ましい。
 上記R13で表される炭素数1~20の(n+1)価の炭化水素基としては、例えば上記R15として例示した2価の炭化水素基からさらに(n-1)個の水素原子を除いた基等が挙げられる。
 R13としては、単結合が好ましい。
 上記R14で表される炭素数1~20の2価の炭化水素基としては、例えば上記R15として例示した2価の炭化水素基と同様の基等が挙げられる。
 R14としては、単結合が好ましい。
 上記Xで表される一部若しくは全部の水素原子がフッ素原子で置換された炭素数1~20の2価の鎖状炭化水素基としては、例えば下記式(X-1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記式(X-1)中、pは、1~4の整数である。Rは、互いに独立して、フッ素原子又は炭素数1~10のパーフルオロアルキル基である。
 pとしては、1又は2が好ましく、1がより好ましい。
 上記Rとしては、トリフルオロメチル基又はフッ素原子が好ましく、フッ素原子がより好ましい。
 上記Xとしては、ジフルオロメタンジイル基が好ましい。
 構造単位(I)としては、例えば下記式(I-1)~(I-9)で表される構造単位(以下、「構造単位(I-1)~(I-9)」とも称する)等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 上記式中、R及びRは、上記式(1)と同義である。
 これらのうち、構造単位(I-1)~(I-5)が好ましい。
 [C]重合体における構造単位(I)の含有割合としては、[C]重合体を構成する全構造単位に対して、3モル%以上40モル%以下が好ましく、5モル%以上30モル%以下がより好ましく、7モル%以上20モル%以下が特に好ましい。構造単位(I)の含有割合を上記範囲とすることで、本願発明の効果をより向上させることができる。
 構造単位(I)を与える単量体としては、例えば下記式で表される単量体等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
[構造単位(I)以外の酸解離性基を含む構造単位]
 [C]重合体は、構造単位(I)以外の酸解離性基を含む構造単位をさらに有することが好ましい。[C]重合体が、このような構造単位をさらに有することで、露光部における[C]重合体のアルカリ現像液に対する溶解性をより向上させ、露光部における現像欠陥の発生をより抑制することができる。酸解離性基を含む構造単位としては、[A]重合体における構造単位(II)が好ましい。
[構造単位(IV)]
 構造単位(IV)は、構造単位(I)以外の構造単位であって、アルカリ解離性基を含む構造単位である。[C]重合体が、このような構造単位をさらに有することで、[C]重合体のアルカリ現像液に対する親和性を向上させ、現像欠陥の発生をより抑制することができる。構造単位(IV)としては、下記式(IV-1)で表される構造単位(以下、「構造単位(IV-1)」とも称する)、下記式(IV-2)で表される構造単位(以下、「構造単位(IV-2)」とも称する)が好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(IV-1)中、R20は、水素原子、メチル基又はトリフルオロメチル基である。kは、1~3の整数である。R21は、(k+1)価の連結基である。Xは、フッ素原子を有する2価の連結基である。R22は、水素原子又はフッ素原子を有していてもよい炭素数1~20の1価の直鎖状又は分岐状の炭化水素基である。但し、kが2又は3の場合、複数のX及びR22は、それぞれ同一であっても異なっていてもよい。
 上記式(IV-2)中、R23は、水素原子、メチル基又はトリフルオロメチル基である。R24は、(m+1)価のフッ素原子を有さない連結基である。mは、1~3の整数である。Aは、-COO-である。R25は、少なくとも1個のフッ素原子を含む炭化水素基である。
 上記R21で表される(k+1)価の連結基としては、例えば炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数1~30の炭化水素基と-CO-、-COO-、-OCO-、-O-、-NR-、-CS-、-S-、-SO-、及び-SO-からなる群より選ばれる1種以上の基とを組み合わせた基等が挙げられる。
 上記炭素数1~30の直鎖状又は分岐状の炭化水素基としては、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、デカン、イコサン、トリアコンタン等の炭化水素基から(k+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数3~30の脂環式炭化水素基としては、例えば
 シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロデカン、メチルシクロヘキサン、エチルシクロヘキサン等の単環式飽和炭化水素;
 シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、シクロデカジエン等の単環式不飽和炭化水素;
 ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、アダマンタン等の多環式飽和炭化水素;
 ビシクロ[2.2.1]ヘプテン、ビシクロ[2.2.2]オクテン、トリシクロ[5.2.1.02,6]デセン、トリシクロ[3.3.1.13,7]デセン、テトラシクロ[6.2.1.13,6.02,7]ドデセン等の多環式炭化水素基から(k+1)個の水素原子を除いた基等が挙げられる。
 上記炭素数6~30の芳香族炭化水素基としては、例えばベンゼン、ナフタレン、フェナントレン、アントラセン、テトラセン、ペンタセン、ピレン、ピセン、トルエン、キシレン、エチルベンゼン、メシチレン、クメン等の芳香族炭化水素基から(k+1)個の水素原子を除いた基等が挙げられる。
 上記Xで表されるフッ素原子を有する2価の連結基としては、例えばフッ素原子を有する炭素数1~20の2価の直鎖状炭化水素基、カルボニル基を含むフッ素原子を有する炭素数1~20の2価の直鎖状炭化水素基等が挙げられる。上記フッ素原子を有する炭素数1~20の2価の直鎖状炭化水素基としては、例えば下記式(X-1)~(X-7)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 Xとしては、上記式(X-7)で表される基が好ましい。
 上記R22で表されるフッ素原子を有していてもよい炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基等のアルキル基;1,1,1トリフルオロエチル基等の炭素数1~20のフッ素化アルキル基等が挙げられる。
 構造単位(IV-1)としては、例えば下記式(IV-1a)及び(IV-1b)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 上記式中、R20は、上記式(IV-1)と同義である。
 上記R24で表される(m+1)価のフッ素原子を有さない連結基としては、例えば炭素数1~30の直鎖状又は分岐状の炭化水素基、炭素数3~30の脂環式炭化水素基、炭素数6~30の芳香族炭化水素基、又は炭素数1~30の炭化水素基と-CO-、-COO-、-OCO-、-O-、-NR-、-CS-、-S-、-SO-、及び-SO-からなる群より選ばれる1種以上の基とを組み合わせた基等が挙げられる。
 上記R25で表される少なくとも1個のフッ素原子を含む炭化水素基としては、少なくとも1個のフッ素原子を含むフッ素化アルキル基等が挙げられる。
 構造単位(IV-2)としては、例えば下記式(IV-2a)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 上記式中、R23は、上記式(IV-2)と同義である。
 構造単位(IV)としては、上記式(IV-1a)、(IV-1b)及び(IV-2a)で表される構造単位が好ましい。
 [C]重合体における構造単位(IV)の含有割合としては、0モル%以上80モル%以下が好ましく、20モル%以上75モル%以下がより好ましく、30モル%以上70モル%以下が特に好ましい。構造単位(IV)の含有割合を上記範囲とすることで、[C]重合体のアルカリ現像液に対する親和性をより向上させ、現像欠陥の発生をより抑制することができる。
<他の構造単位>
 [C]重合体はさらに、他の構造単位として、構造単位(I)、構造単位(IV)以外のフッ素原子を含む構造単位、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも1種の構造を含む構造単位、極性基を含む構造単位を有してもよい。構造単位(I)、構造単位(IV)以外のフッ素原子を含む構造単位を与える単量体としては、2-(1,1,1,3,3,3-ヘキサフルオロ)プロピル(メタ)アクリレートが好ましい。ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選択される少なくとも1種の構造を含む構造単位としては、[A]重合体における構造単位(III)が好ましい。極性基としては、カルボキシ基、ヒドロキシ基が好ましい。
 [C]重合体の含有量としては、[A]重合体100質量部に対して0.1質量部以上20質量部以下が好ましい。[C]重合体の含有量を上記特定範囲とすることで、[C]重合体の偏在化をより促進することができ、レジスト膜表面は、さらに高い後退接触角を発揮することができる。
<[C]重合体の合成方法>
 [C]重合体は、例えば所定の各構造単位を与える単量体を、ラジカル重合開始剤を使用し、適当な溶媒中で重合することにより合成できる。
 上記重合に使用される溶媒としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノンなどのケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。なお、これらの溶媒は、2種以上を併用してもよい。
 上記重合における反応温度としては、通常40℃~150℃であり、好ましくは50℃~120℃である。反応時間としては、通常1時間~48時間であり、好ましくは1時間~24時間である。
 [C]重合体のMwとしては、1,000~20,000が好ましく、2,000~10,000がより好ましく、3,000~9,000が特に好ましい。[C]重合体のMwが1,000未満の場合、十分な後退接触角を得ることができない傾向にある。一方、[C]重合体のMwが2,0000を超えると、レジストとした際の現像性が低下する傾向にある。
 [C]重合体のMwとGPC法によるポリスチレン換算数平均分子量(Mn)との比(Mw/Mn)としては、通常1~5であり、1~3が好ましく、1~2がより好ましい。
<[D]酸拡散制御体>
 当該フォトレジスト組成物は、[D]酸拡散制御体を含有することが好ましい。[D]酸拡散制御体は、露光により[B]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。当該フォトレジスト組成物が、[D]酸拡散制御体をさらに含有することで、当該フォトレジスト組成物は、パターン現像性及びLWR性能により優れるレジストパターンを形成することができる。当該フォトレジスト組成物における[D]酸拡散制御体の含有形態としては、後述するような化合物の形態(以下、適宜「[D]酸拡散制御剤」とも称する)でも重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [D]酸拡散制御剤としては、例えばN-t-アルコキシカルボニル基含有アミノ化合物、3級アミン化合物、4級アンモニウムヒドロキシド化合物等が挙げられる。
 上記N-t-アルコキシカルボニル基含有アミノ化合物としては、例えばN-t-ブトキシカルボニルジ-n-オクチルアミン、N-t-アミロキシカルボニルジ-n-オクチルアミン、N-t-ブトキシカルボニルジ-n-ノニルアミン、N-t-アミロキシカルボニルジ-n-ノニルアミン、N-t-ブトキシカルボニルジ-n-デシルアミン、N-t-アミロキシカルボニルジ-n-デシルアミン、N-t-ブトキシカルボニルジシクロヘキシルアミン、N-t-アミロキシカルボニルジシクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、N-t-アミロキシカルボニル-2-アダマンチルアミン、N-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-アミロキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-ブトキシカルボニルベンズイミダゾール、N-t-アミロキシカルボニル-2-メチルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-t-アミロキシカルボニル-2-フェニルベンズイミダゾールN-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン等が挙げられる。これらのうち、N-t-アミロキシカルボニル-4-ヒドロキシピペリジンが特に好ましい。
 上記3級アミン化合物としては、例えば
 トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、シクロヘキシルジメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;
 アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、2,6-ジメチルアニリン、2,6-ジイソプロピルアニリン等の芳香族アミン類;
 トリエタノールアミン、N,N-ジ(ヒドロキシエチル)アニリン等のアルカノールアミン類;
 N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼンテトラメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル等が挙げられる。
 上記4級アンモニウムヒドロキシド化合物としては、例えばテトラ-n-プロピルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド等が挙げられる。
 [D]酸拡散制御剤としては、露光により分解して酸拡散制御性としての塩基性を失うオニウム塩化合物を用いることもできる。このようなオニウム塩化合物としては、例えば下記式(5-1)で表されるスルホニウム塩化合物、式(5-2)で表されるヨードニウム塩化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 上記式(5-1)及び式(5-2)中、R26~R30は、それぞれ独立して水素原子、アルキル基、アルコキシ基、ヒドロキシ基又はハロゲン原子である。Anbは、OH、R31-COO、R31-SO 、又は下記式(6)で表されるアニオンである。R31は、それぞれ独立してアルキル基、アリール基又はアルカノール基である。
Figure JPOXMLDOC01-appb-C000024
 上記スルホニウム塩化合物及びヨードニウム塩化合物としては、例えばトリフェニルスルホニウムハイドロオキサイド、トリフェニルスルホニウムアセテート、トリフェニルスルホニウムサリチレート、ジフェニル-4-ヒドロキシフェニルスルホニウムハイドロオキサイド、ジフェニル-4-ヒドロキシフェニルスルホニウムアセテート、ジフェニル-4-ヒドロキシフェニルスルホニウムサリチレート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムサリチレート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムハイドロオキサイド、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムアセテート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムサリチレート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ジフェニルヨードニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、4-t-ブトキシフェニル・ジフェニルスルホニウム10-カンファースルホネート等が挙げられる。これらのうち、トリフェニルスルホニウムサリチレート、トリフェニルスルホニウム10-カンファースルホネートが特に好ましい。
 [D]酸拡散制御剤は2種以上を併用してもよい。[D]酸拡散制御体が、[D]酸拡散制御剤である場合の含有量としては、[A]重合体100質量部に対して、0.1質量部以上20質量部以下が好ましく、0.4質量部以上15質量部以下がより好ましい。[D]酸拡散制御剤の含有量を上記範囲とすることで、当該フォトレジスト組成物のパターン現像性、LWR性能がより向上する。
<[E]溶媒>
 当該フォトレジスト組成物は、通常[E]溶媒を含有する。[E]溶媒としては、各成分を均一に溶解又は分散でき、各成分と反応しないものが好適に用いられる。[E]溶媒としては、例えばアルコール類、エーテル類、ケトン類、アミド類、エステル類、炭化水素類等が挙げられる。なお、これらの溶媒は2種以上を併用することができる。
 アルコール類としては、例えば
 メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール類;
 エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール類;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル類等が挙げられる。
 エーテル類としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、メトキシベンゼン等が挙げられる。
 ケトン類としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド類としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等が挙げられる。
 エステル類としては、例えば酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等が挙げられる。
 炭化水素類としては、例えば
 n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素類;
 ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素類等が挙げられる
 これらのうち、エステル類、ケトン類が好ましく、酢酸プロピレングリコールモノメチルエーテル、シクロヘキサノン、γ-ブチロラクトンがより好ましい。
<その他の任意成分>
 当該フォトレジスト組成物は、上記成分の他、その他の任意成分として、界面活性剤、増感剤等を含有してもよい。なお、当該フォトレジスト組成物は、上記その他の任意成分を2種以上含有してもよい。
[界面活性剤]
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤が挙げられる。市販品としては、例えばKP341(信越化学工業製)、ポリフローNo.75、同No.95(以上、共栄社化学製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ製)、メガファックF171、同F173(以上、大日本インキ化学工業製)、フロラードFC430、同FC431(以上、住友スリーエム製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業製)等が挙げられる。
[増感剤]
 増感剤は、[B]酸発生体の生成量を増加する作用を示すものであり、当該フォトレジスト組成物の「みかけの感度」を向上させる効果を奏する。増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。
<フォトレジスト組成物の調製方法>
 当該フォトレジスト組成物は、例えば[E]溶媒中で[A]重合体、[B]酸発生体、[C]重合体、必要に応じて[D]酸拡散制御剤及びその他の任意成分を所定の割合で混合することにより調製される。当該フォトレジスト組成物は通常、使用に際して、全固形分濃度が通常1質量%~30質量%、好ましくは1.5質量%~25質量%となるように溶媒に溶解した後、例えば孔径200nm程度のフィルターでろ過することによって、調製される。
<レジストパターン形成方法>
 本発明のレジストパターン形成方法は、
 当該フォトレジスト組成物を用い、基板上にレジスト膜を形成する工程(以下、「レジスト膜形成工程」とも称する)、
 上記レジスト膜を露光する工程(以下、「露光工程」とも称する)、及び
 上記露光されたレジスト膜を現像する工程(以下、「現像工程」とも称する)を有する。以下、各工程を詳述する。
[レジスト膜形成工程]
 本工程では、当該フォトレジスト組成物を用い、基板上にレジスト膜を形成する。基板としては、例えばシリコンウェハ、アルミニウムで被覆されたウェハ等の従来公知の基板を使用できる。また、例えば特公平6-12452号公報や、特開昭59-93448号公報等に開示されている有機系又は無機系の下層反射防止膜を基板上に形成してもよい。
 塗布方法としては、例えば回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。なお、形成されるレジスト膜の膜厚としては、通常10nm~1,000nmであり、10nm~500nmが好ましい。
 当該フォトレジスト組成物を塗布した後、必要に応じてプレベーク(PB)によって塗膜中の溶媒を揮発させてもよい。PBの温度条件としては、当該フォトレジスト組成物の配合組成によって適宜選択されるが、通常30℃~200℃程度であり、50℃~150℃が好ましい。
[露光工程]
 本工程では、レジスト膜形成工程で形成したレジスト膜の所望の領域に特定パターンのマスク、及び必要に応じて液浸液を介して縮小投影することにより露光を行う。例えば、所望の領域にアイソラインパターンマスクを介して縮小投影露光を行うことにより、アイソトレンチパターンを形成できる。また、露光は2回以上行ってもよい。なお、露光の際に用いられる液浸液としては、例えば水、フッ素系不活性液体等が挙げられる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましい。露光光がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水が好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤を僅かな割合で添加してもよい。この添加剤は、ウェハ上のレジスト層を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
 露光に使用される露光光としては、[B]酸発生体の種類に応じて適宜選択されるが、例えば紫外線、遠紫外線、EUV(超紫外線)、X線、荷電粒子線等が挙げられる。これらのうち、ArFエキシマレーザー光、KrFエキシマレーザー光(波長248nm)の遠紫外線が好ましく、ArFエキシマレーザー光がより好ましい。露光量等の露光条件は、当該フォトレジスト組成物の配合組成や添加剤の種類等に応じて適宜選択される。
 本工程では、露光後にポストエクスポージャーベーク(PEB)を行なうことが好ましい。PEBを行なうことにより、当該フォトレジスト組成物中の酸解離性基の解離反応を円滑に進行できる。PEB温度としては、通常30℃以上200℃未満であり、50℃以上150℃未満が好ましい。30℃より低い温度では、上記解離反応が円滑に進行しないおそれがあり、一方、200℃以上の温度では、[B]酸発生体から発生する酸が未露光部にまで広く拡散し、良好なパターンが得られないおそれがある。
[現像工程]
 本工程では、上記露光工程の後に現像液を用いて現像を行い、レジストパターンを形成する。現像後は水で洗浄し、乾燥することが一般的である。現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液が好ましい。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
<重合体>
 本発明の重合体は、フッ素原子及び上記式(1)で表される構造単位(I)を有するので、本発明のフォトレジスト組成物の成分として好適に用いることができる。
 なお、当該重合体の詳細な説明は、当該フォトレジスト組成物に含有される[C]重合体の項で行っているので、ここでは説明を省略する。
 以下、実施例に基づき本発明を詳述するが、この実施例に本発明が限定されるものではない。各種物性値の測定方法を以下に示す。
[重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)の測定]
 東ソー製GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、流量:1.0ミリリットル/分、溶出溶媒:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
<重合体の合成>
 [A]重合体、[C]重合体並びに合成例2及び3の重合体の合成に用いた各単量体を下記に示す。なお、化合物(M-1)~(M-5)は構造単位(I)を、化合物(M-6)~(M-8)は構造単位(IV)を、化合物(M-9)~(M-14)は構造単位(II)を、化合物(M-17)及び(M-19)は構造単位(III)を、化合物(M-15)、(M-16)、(M-18)及び(M-20)は他の構造単位をそれぞれ与える。
Figure JPOXMLDOC01-appb-C000025
[[A]重合体の合成]
[合成例1](重合体(A-1)の合成)
 化合物(M-10)11.92g、化合物(M-11)41.07g、化合物(M-19)15.75g、化合物(M-20)11.16g、化合物(M-17)20.10g、ジメチル2,2’-アゾビス(2-イソブチロニトリル)3.88gを2-ブタノン200gに溶解して単量体溶液を調製した。一方、1,000mLの三口フラスコに2-ブタノン100gを投入し、30分窒素パージした後、反応釜を攪拌しながら80℃に加熱した。そこへ上記単量体溶液を4時間かけて滴下し、さらに滴下終了後2時間80℃にて熟成した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。その重合溶液をエバポレーターにて重合溶液の重量が200gになるまで減圧濃縮した。その後、重合溶液を1,000gのメタノールへ投入し、再沈操作を行った。析出したスラリーを吸引濾過して濾別し、固形分をメタノールにて3回洗浄した。この固形分を60℃で15時間真空乾燥し、白色粉末状の重合体(A-1)88.0g(収率88%)を合成した。この重合体(A-1)のMwは9,300であり、Mw/Mnは1.60であった。また、13C-NMR分析の結果、化合物(M-10)、(M-11)、(M-19)、(M-20)及び(M-17)に由来する構造単位の含有率は、それぞれ16モル%、26モル%、19モル%、11モル%及び28モル%であった。
Figure JPOXMLDOC01-appb-T000026
[[C]重合体の合成]
[実施例1]
 化合物(M-1)3.16gと、化合物(M-9)4.94gと、化合物(M-6)11.9gを、2-ブタノン60gに溶解し、更に2,2’-アゾビス(2-イソブチロニトリル)1.0gを200mLの三口フラスコに投入した。30分窒素パージした後、反応釜を攪拌しながら80℃に加熱し、加熱開始を重合開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却し、エバポレーターにて重合溶液の重量が25gになるまで減圧濃縮した。重合液を0℃に冷却したn-ヘキサン160gへゆっくり投入し、固形分を析出させた。混合液をデカンテーションして液体を除去し、固形分をn-ヘキサンで3回洗浄し、得られた樹脂をプロピレングリコールモノメチルエーテルアセテートに溶解させ、エバポレータにより濃縮する事で固形分濃度20%の重合体(C-1)溶液65gを得た(収率65%)。この重合体(C-1)のMwは6,700であり、Mw/Mnは1.6であった。
[実施例2~16並びに合成例2及び3]
 表2に示す種類及び量の化合物(単量体)を用いた以外は実施例1と同様に操作して、各重合体を合成した。合成した各重合体の収率(%)、Mw、Mw/Mnを表2に併せて示す。なお、表2中の「-」は、該当する化合物を使用しなかったことを示す。
Figure JPOXMLDOC01-appb-T000027
<フォトレジスト組成物の調製>
 フォトレジスト組成物を構成する[A]重合体及び[C]重合体以外の各成分について以下に示す。
<[B]酸発生剤>
B-1:下記式(B-1)で表される化合物
B-2:下記式(B-2)で表される化合物
B-3:下記式(B-3)で表される化合物
B-4:下記式(B-4)で表される化合物
Figure JPOXMLDOC01-appb-C000028
<[D]酸拡散制御剤>
D-1:下記式(D-1)で表される化合物
D-2:下記式(D-2)で表される化合物
D-3:下記式(D-3)で表される化合物
Figure JPOXMLDOC01-appb-C000029
<[E]溶媒>
 E-1:プロピレングリコールモノメチルエーテルアセテート
 E-2:シクロヘキサノン
 E-3:γーブチロラクトン
[実施例17]
 [A]重合体としての(A-1)100質量部、[B]酸発生剤としての(B-1)10質量部、[C]重合体としての(C-1)3質量部、[D]酸拡散制御剤としての(D-1)7質量部、並びに[E]溶媒としての(E-1)1,732.5質量部、(E-2)742.5質量部及び(E-3)275質量部を混合し、フォトレジスト組成物を調製した。
[実施例18~37、並びに比較例1及び2]
 表3に示す種類、含有量の各成分を用いたこと以外は、実施例17と同様に操作して、各フォトレジスト組成物を調製した。
<評価>
 後退接触角、LWR、現像欠陥及びパターンの断面形状を測定した。後退接触角、LWR、現像欠陥及びパターンの断面形状の測定結果を表3に、[C]重合体の溶解速度の評価結果を表2に合わせて示す。
[後退接触角の測定]
 8インチシリコンウェハ上にフォトレジスト組成物を用いて、膜厚80nmの被膜を形成し、120℃で60秒間ソフトベーク(SB)を行った。そして、形成した被膜について、室温23℃、湿度45%、常圧の環境下で、KRUS社のDSA-10を用いて以下の手順で後退接触角を測定した。
 DSA-10の針を測定前にアセトンとイソプロピルアルコールで洗浄した後、針に水を注入するとともに、ウェハステージ上にウェハをセットした。次いで、ウェハ表面と針の先端の距離が1mm以下になるようステージの高さを調整した。針から水を排出してウェハ上に25μLの水滴を形成した後、針によって水滴を10μL/分の速度で180秒間吸引するとともに、接触角を毎秒(計180回)測定した。そして、接触角が安定した時点から計20点の接触角について平均値を算出し、SB後の後退接触角(°)とした。
 また、アルカリ現像については、上記条件でSBを行った後、クリーントラック「ACT8」(東京エレクトロン製)の現像装置のGPノズルによって2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により10秒間現像し、その後、15秒間純水によりリンスした。リンス後、2,000rpmで液振り切り乾燥し、その乾燥後の塗膜の後退接触角を、上記と同様に測定した。そして、得られた塗膜の後退接触角を、現像後の後退接触角(°)とした。
[溶解速度]
 重合体(C-1)100質量部、酸発生剤(B-1)10質量部、酸拡散抑制剤(D-3)7質量部、溶媒として(E-1)1,200質量部、(E-3)200質量部を混合し、2時間撹拌した後、孔径200nmのフィルターでろ過することにより、固形分濃度7.7%の現像液溶解速度の測定サンプルを調製した。
 下層反射防止膜(日産化学製、ARC29A)を形成した8インチシリコンウェハ上に、商品名「CLEAN TRACK ACT8」を使用して上記現像液溶解速度の測定サンプルをスピンコートし、120℃で60秒間SBを行うことにより膜厚200nmの塗膜を形成した。次に、この塗膜について、ArFエキシマレーザー露光装置(NIKON製、NSR S306C、開口数0.78)を用いて波長193nmのエキシマレーザーを60mJ/cm照射した後、100℃で60秒間、加熱した。尚、塗膜の厚み(膜厚)は、商品名「ラムダエースVM2010」(大日本スクリーン製)により測定した。その後、商品名「Resist Development Analyzer MODEL RDA-808R8」を使用して、現像液(2.38%TMAH(テトラメチルアンモニウムヒドロキシド)水溶液)への溶解速度の測定を行った。この溶解速度が1,000nm/sec以上であった場合、溶解速度は「A」とし、1,000nm/sec未満であった場合を「B」とした。
 重合体(C-2)~(C-16)並びに(c-1)及び(c-2)についても上記と同様の手順で溶解速度を測定した。結果を表2に合わせて示す。
[現像欠陥評価]
 下層反射防止膜(日産化学製、ARC66)を形成した12インチシリコンウェハ上に、フォトレジスト組成物によって膜厚75nmの被膜を形成し、120℃で60秒間SBを行うことによりレジスト膜を形成した。次に、このレジスト膜について、ArFエキシマレーザー液浸露光装置(NIKON製、NSR S610C)を用い、NA=1.3、ratio=0.750、Crosspoleの条件により、ターゲットサイズが幅45nmのラインアンドスペース(1L/1S)のマスクパターンを介して露光した。露光後、100℃で60秒間PEBを行った。その後、東京エレクトロン製、クリーントラック「ACT12」の現像装置のGPノズルによって2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により30秒間現像し、7秒間純水によりリンスし、3,000rpmで液振り切り乾燥して、ポジ型のレジストパターンを形成した。このとき、幅45nmの1L/1Sを形成する露光量を最適露光量とした。この最適露光量にてウェハ全面に線幅45nmの1L/1Sを形成し、欠陥検査用ウェハとした。なお、測長には走査型電子顕微鏡(日立ハイテクノロジーズ製、CC-4000)を用いた。その後、欠陥検査用ウェハ上の欠陥数を、KLA-Tencor製、KLA2810を用いて測定した。更に、上記KLA2810にて測定された欠陥を、レジスト膜由来と判断されるものと外部由来の異物とに分類した。分類後、レジスト膜由来と判断される欠陥数の合計を現像欠陥評価とした。この欠陥数の合計が1,000個/ウェハ未満であった場合、現像欠陥評価は「A」とし、1,000個以上であった場合「B」とした。
[パターンの断面形状]
 まず、前記下層反射防止膜を形成した12インチシリコンウェハ上に、フォトレジスト組成物によって、膜厚110nmの被膜を形成し、120℃で60秒間ソフトベーク(SB)を行った。次に、この被膜を、前記ArFエキシマレーザー液浸露光装置を用い、NA=1.3、ratio=0.800、Dipoleの条件により、ターゲットサイズが幅45nmのラインアンドスペース(1L/1S)のマスクパターンを介して露光した。露光後、100℃で60秒間PEBを行った。その後、前記現像欠陥の評価と同じ方法で、現像、水洗、乾燥を行って、ポジ型のレジストパターンを形成した。
 形成したパターンの断面形状を、走査型電子顕微鏡(2)(商品名:「S-4800」、日立ハイテクノロジーズ製)にて観察し、ライン部の、被膜の厚さ方向の中間部における線幅Lbと、被膜表面における線幅Laを測定した。その後、式:(La-Lb)/Lbを算出し、算出された値が、0.90<(La-Lb)の場合は「T-top」とし、(La-Lb)<1.1の場合は「トップラウンド」とした。0.90≦(La-Lb)≦1.1の場合は「A」とした。また、露光部に溶け残りが発生していた場合は「B」とした。
[LWR(nm)]
 上記現像欠陥評価における方法と同様の方法により、ポジ型のレジストパターンを形成し、最適露光量(Eop)を測定した。上記Eopにて形成された線幅50nmLine100nmPitchを、走査型電子顕微鏡(日立ハイテクノロジーズ製、CG4000)を用い、パターン上部から観察し、任意の10点において線幅を測定した。線幅の測定値の3シグマ値(ばらつき)をLWR(nm)とした。
Figure JPOXMLDOC01-appb-T000030
 表2の結果から明らかなように、本発明の重合体は、比較例のものと比べ、現像液に対する溶解性に優れることが分かった。また、表3の結果から明らかなように、本発明のフォトレジスト組成物は、比較例のものと比べ、レジスト膜表面の後退接触角を向上させつつ、現像欠陥の発生を抑制することができ、かつLWRが小さく形状が良好なレジストパターンを形成することができることが分かった。
 本発明のフォトレジスト組成物、レジストパターン形成方法及び重合体によれば、液浸露光プロセスにおいて、露光時におけるレジスト膜表面の後退接触角を向上させることができると共に、アルカリ現像時においては後退接触角を大きく低下させ、その結果現像欠陥の発生を抑制でき、LWRが小さく、パターン形状が良好なレジストパターンを形成できる。従って、当該フォトレジスト組成物、レジストパターン形成方法及び重合体は、更なる微細化が求められるリソグラフィー工程において好適に用いることができる。

Claims (15)

  1.  [A]酸解離性基を有する重合体、
     [B]酸発生体、及び
     [C]下記式(1)で表される構造単位(I)を有し、フッ素原子を含む重合体
    を含有するフォトレジスト組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はトリフルオロメチル基である。E及びEは、それぞれ独立して、酸素原子、*-CO-O-又は*-CO-NH-である。*は、隣接する重合体鎖の炭素原子に結合する部位を示す。Aは、連結鎖中に酸解離性基又はアルカリ解離性基を有する2価の基である。Gは、単結合又は(n+1)価の連結基である。nは、1~3の整数である。nが2以上の場合、複数のA、E及びRは、それぞれ同一でも異なっていてもよい。)
  2.  [C]重合体のフッ素原子含有率が、[A]重合体のフッ素原子含有率よりも高い請求項1に記載のフォトレジスト組成物。
  3.  [C]重合体の含有量が、[A]重合体100質量部に対し、0.1質量部以上20質量部以下である請求項1に記載のフォトレジスト組成物。
  4.  液浸露光に用いられる請求項1に記載のフォトレジスト組成物。
  5.  構造単位(I)が、下記式(1-1)で表される請求項1に記載のフォトレジスト組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1-1)中、R、R、G及びnは上記式(1)と同義である。Aは、2価の酸解離性基である。nが2以上の場合、複数のA及びRは、それぞれ同一でも異なっていてもよい。)
  6.  上記式(1-1)におけるGが、連結鎖中に酸解離性基を有する請求項5に記載のフォトレジスト組成物。
  7.  上記Aが、下記式(2-1)、(2-2)又は(2-3)で表される請求項5に記載のフォトレジスト組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(2-1)中、R及びRは、それぞれ独立して、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。Rは、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。但し、R~Rのいずれか2つが互いに結合して、それらが結合している炭素原子と共に環構造を形成してもよい。
     式(2-2)中、R及びRは、それぞれ独立して、水素原子、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。Rは、単結合、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。但し、R~Rのいずれか2つが互いに結合して、R及びRが結合している炭素原子と共に環構造を形成してもよい。
     式(2-3)中、Rは、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。R10は、単結合、炭素数1~4のアルカンジイル基、炭素数4~20の2価の脂環式炭化水素基又は炭素数6~22の2価の芳香族炭化水素基である。R11は、水素原子、炭素数1~4のアルキル基、炭素数4~20の1価の脂環式炭化水素基又は炭素数6~22の1価の芳香族炭化水素基である。但し、R~R11のいずれか2つが互いに結合して、R10及びR11が結合している炭素原子と共に環構造を形成してもよい。
     なお、式(2-1)~(2-3)中、**は、式(1-1)中のエステル基との結合部位を示す。また、R~R11が有する水素原子の一部又は全部は、置換されていてもよい。)
  8.  上記式(2-1)におけるR~Rのいずれか2つが互いに結合してそれらが結合している炭素原子と共に環構造を形成する請求項7に記載のフォトレジスト組成物。
  9.  構造単位(I)が、下記式(1-2)で表される請求項1に記載のフォトレジスト組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1-2)中、R、R、E、E及びnは、上記式(1)と同義である。Rは、連結鎖中にアルカリ解離性基を有する基である。2つのR12は、それぞれ独立して、単結合、炭素数1~10の2価の鎖状炭化水素基又は炭素数4~20の2価の脂環式炭化水素基である。R13は、単結合、炭素数1~20の(n+1)価の炭化水素基、又は-CO-、-COO-、-OCO-、-O-、-NR-、-CS-、-S-、-SO-、及び-SO-からなる群より選択される少なくとも1種の基と炭素数1~20の炭化水素基とを組み合わせた基である。R14は、炭素数1~20の2価の炭化水素基である。2つのXは、それぞれ独立して、単結合又は一部若しくは全部の水素原子がフッ素原子で置換された炭素数1~20の2価の鎖状炭化水素基である。nが2以上の場合、複数のR12、X、R、R14、E及びRはそれぞれ同一でも異なっていてもよい。)
  10.  上記式(1-2)におけるRが、下記式(1-3)で表される基である請求項9に記載のフォトレジスト組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(1-3)中、R15は、フッ素原子を有していてもよい2価の炭化水素基である。2つのYは、それぞれ独立して、-O-、*-O-CO-、*-CO-O-、*-SO-O-である。*は、Xに結合する部位を示す。)
  11.  [C]重合体が、構造単位(I)以外の構造単位であって酸解離性基を含む構造単位をさらに有する請求項1に記載のフォトレジスト組成物。
  12.  [C]重合体が、構造単位(I)以外の構造単位であってアルカリ解離性基を含む構造単位をさらに有する請求項1に記載のフォトレジスト組成物。
  13.  請求項1に記載のフォトレジスト組成物を用い、基板上にレジスト膜を形成する工程、
     上記レジスト膜を露光する工程、及び
     上記露光されたレジスト膜を現像する工程
    を有するレジストパターン形成方法。
  14.  上記露光工程における露光を、上記レジスト膜上に液浸露光液を配置し、この液浸露光液を介して行う請求項13に記載のレジストパターン形成方法。
  15.  下記式(1)で表される構造単位(I)を有し、フッ素原子を含む重合体。
    Figure JPOXMLDOC01-appb-C000006
    (式(1)中、R及びRは、それぞれ独立して、水素原子、メチル基又はトリフルオロメチル基である。E及びEは、それぞれ独立して、酸素原子、*-CO-O-又は*-CO-NH-である。*は、隣接する重合体鎖の炭素原子に結合する部位を示す。Aは、連結鎖中に酸解離性基又はアルカリ解離性基を有する2価の基である。Gは、単結合又は(n+1)価の連結基である。nは、1~3の整数である。nが2以上の場合、複数のA、E及びRは、それぞれ同一でも異なっていてもよい。)
PCT/JP2013/057913 2012-03-23 2013-03-19 フォトレジスト組成物、レジストパターン形成方法及び重合体 WO2013141265A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014506257A JP6064990B2 (ja) 2012-03-23 2013-03-19 フォトレジスト組成物及びレジストパターン形成方法
KR1020147026028A KR20140148383A (ko) 2012-03-23 2013-03-19 포토레지스트 조성물, 레지스트 패턴 형성 방법 및 중합체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-068406 2012-03-23
JP2012068406 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013141265A1 true WO2013141265A1 (ja) 2013-09-26

Family

ID=49222722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057913 WO2013141265A1 (ja) 2012-03-23 2013-03-19 フォトレジスト組成物、レジストパターン形成方法及び重合体

Country Status (3)

Country Link
JP (1) JP6064990B2 (ja)
KR (1) KR20140148383A (ja)
WO (1) WO2013141265A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246203A (ja) * 2012-05-23 2013-12-09 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、高分子化合物及び高分子化合物の製造方法
JP2014071159A (ja) * 2012-09-27 2014-04-21 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、高分子化合物、化合物
JP2014081633A (ja) * 2012-09-28 2014-05-08 Jsr Corp フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物
JP2014112158A (ja) * 2012-12-05 2014-06-19 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法及び高分子化合物
JP2014145809A (ja) * 2013-01-28 2014-08-14 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト組成物
JP2017021342A (ja) * 2015-07-14 2017-01-26 住友化学株式会社 レジスト組成物
JP2017105770A (ja) * 2015-12-09 2017-06-15 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP2017105769A (ja) * 2015-12-09 2017-06-15 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP2020033337A (ja) * 2018-08-22 2020-03-05 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
CN111902437A (zh) * 2018-03-07 2020-11-06 丸善石油化学株式会社 新型二官能(甲基)丙烯酸酯化合物和聚合物
CN112041353A (zh) * 2018-03-07 2020-12-04 丸善石油化学株式会社 新型二官能(甲基)丙烯酸酯化合物和聚合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214587A (ja) * 1999-01-27 2000-08-04 Shin Etsu Chem Co Ltd 化学増幅ポジ型レジスト組成物及びパタ―ン形成方法
JP2003137939A (ja) * 2001-11-05 2003-05-14 Central Glass Co Ltd 含フッ素高分子化合物および感光性コーティング材料
JP2004256562A (ja) * 2003-02-24 2004-09-16 Central Glass Co Ltd 含フッ素化合物、含フッ素重合性単量体、含フッ素高分子化合物、それらを用いたレジスト材料とパターン形成方法、及び含フッ素化合物の製造方法
JP2007219504A (ja) * 2006-01-08 2007-08-30 Rohm & Haas Electronic Materials Llc フォトレジストのためのコーティング組成物
WO2008090827A1 (ja) * 2007-01-22 2008-07-31 Nissan Chemical Industries, Ltd. ポジ型感光性樹脂組成物
JP2010271668A (ja) * 2009-05-25 2010-12-02 Central Glass Co Ltd 液浸レジスト用撥水性添加剤
JP2012063728A (ja) * 2010-09-17 2012-03-29 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、並びに、該組成物を用いたレジスト膜及びパターン形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214587A (ja) * 1999-01-27 2000-08-04 Shin Etsu Chem Co Ltd 化学増幅ポジ型レジスト組成物及びパタ―ン形成方法
JP2003137939A (ja) * 2001-11-05 2003-05-14 Central Glass Co Ltd 含フッ素高分子化合物および感光性コーティング材料
JP2004256562A (ja) * 2003-02-24 2004-09-16 Central Glass Co Ltd 含フッ素化合物、含フッ素重合性単量体、含フッ素高分子化合物、それらを用いたレジスト材料とパターン形成方法、及び含フッ素化合物の製造方法
JP2007219504A (ja) * 2006-01-08 2007-08-30 Rohm & Haas Electronic Materials Llc フォトレジストのためのコーティング組成物
WO2008090827A1 (ja) * 2007-01-22 2008-07-31 Nissan Chemical Industries, Ltd. ポジ型感光性樹脂組成物
JP2010271668A (ja) * 2009-05-25 2010-12-02 Central Glass Co Ltd 液浸レジスト用撥水性添加剤
JP2012063728A (ja) * 2010-09-17 2012-03-29 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、並びに、該組成物を用いたレジスト膜及びパターン形成方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246203A (ja) * 2012-05-23 2013-12-09 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、高分子化合物及び高分子化合物の製造方法
JP2014071159A (ja) * 2012-09-27 2014-04-21 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法、高分子化合物、化合物
JP2014081633A (ja) * 2012-09-28 2014-05-08 Jsr Corp フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物
JP2014112158A (ja) * 2012-12-05 2014-06-19 Tokyo Ohka Kogyo Co Ltd レジスト組成物、レジストパターン形成方法及び高分子化合物
JP2014145809A (ja) * 2013-01-28 2014-08-14 Shin Etsu Chem Co Ltd パターン形成方法及びレジスト組成物
US9551932B2 (en) 2013-01-28 2017-01-24 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
JP2017021342A (ja) * 2015-07-14 2017-01-26 住友化学株式会社 レジスト組成物
JP2017105769A (ja) * 2015-12-09 2017-06-15 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP2017105770A (ja) * 2015-12-09 2017-06-15 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
CN111902437A (zh) * 2018-03-07 2020-11-06 丸善石油化学株式会社 新型二官能(甲基)丙烯酸酯化合物和聚合物
CN112041353A (zh) * 2018-03-07 2020-12-04 丸善石油化学株式会社 新型二官能(甲基)丙烯酸酯化合物和聚合物
JPWO2019171958A1 (ja) * 2018-03-07 2021-03-18 丸善石油化学株式会社 新規の二官能(メタ)アクリレート化合物および重合物
EP3763751A4 (en) * 2018-03-07 2021-11-24 Maruzen Petrochemical Co., Ltd. NEW BIFUNCTIONAL (METH) ACRYLATE COMPOUND AND POLYMER
JP7119066B2 (ja) 2018-03-07 2022-08-16 丸善石油化学株式会社 新規の二官能(メタ)アクリレート化合物および重合物
CN111902437B (zh) * 2018-03-07 2022-10-11 丸善石油化学株式会社 新型二官能(甲基)丙烯酸酯化合物和聚合物
TWI798372B (zh) * 2018-03-07 2023-04-11 日商丸善石油化學股份有限公司 新穎之二官能(甲基)丙烯酸酯化合物及聚合物
US11919850B2 (en) 2018-03-07 2024-03-05 Maruzen Petrochemical Co., Ltd. Bifunctional (meth)acrylate compound and polymer
JP2020033337A (ja) * 2018-08-22 2020-03-05 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP7264764B2 (ja) 2018-08-22 2023-04-25 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法

Also Published As

Publication number Publication date
KR20140148383A (ko) 2014-12-31
JPWO2013141265A1 (ja) 2015-08-03
JP6064990B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6064990B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP6269766B2 (ja) 感放射線性樹脂組成物及び重合体
WO2018070327A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP5835319B2 (ja) レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜
WO2015045739A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP5729114B2 (ja) 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
WO2012074025A1 (ja) 感放射線性樹脂組成物、これを用いたパターン形成方法、重合体及び化合物
JP5737114B2 (ja) 化合物、重合体及びフォトレジスト組成物
JP6060967B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP6443000B2 (ja) 感放射線性樹脂組成物
WO2013047044A1 (ja) 液浸露光用膜形成組成物、重合体、化合物及びレジストパターン形成方法
JP6007913B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP5655579B2 (ja) 感放射線性樹脂組成物、パターン形成方法、重合体及び化合物
JP5569402B2 (ja) 感放射線性樹脂組成物、重合体及び化合物
JP6528692B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6555011B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP5790382B2 (ja) フォトレジスト組成物
JP5573730B2 (ja) 感放射線性樹脂組成物及びこれを用いたパターン形成方法
JP5673038B2 (ja) 感放射線性樹脂組成物及びこれを用いたパターン形成方法
JP5954332B2 (ja) フォトレジスト組成物及びレジストパターン形成方法
JP6094574B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
KR20120122947A (ko) 감방사선성 수지 조성물, 패턴 형성 방법, 중합체 및 화합물
JP2016224123A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506257

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147026028

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763496

Country of ref document: EP

Kind code of ref document: A1