WO2013141131A1 - 接続体の製造方法、及び電子部品の接続方法 - Google Patents

接続体の製造方法、及び電子部品の接続方法 Download PDF

Info

Publication number
WO2013141131A1
WO2013141131A1 PCT/JP2013/057161 JP2013057161W WO2013141131A1 WO 2013141131 A1 WO2013141131 A1 WO 2013141131A1 JP 2013057161 W JP2013057161 W JP 2013057161W WO 2013141131 A1 WO2013141131 A1 WO 2013141131A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
region
irradiation
light
electronic component
Prior art date
Application number
PCT/JP2013/057161
Other languages
English (en)
French (fr)
Inventor
圭亮 稲瀬
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201380016005.7A priority Critical patent/CN104206032B/zh
Priority to KR1020147029148A priority patent/KR102028466B1/ko
Publication of WO2013141131A1 publication Critical patent/WO2013141131A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29194Material with a principal constituent of the material being a liquid not provided for in groups H01L2224/291 - H01L2224/29191
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29316Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29357Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/2936Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29371Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83874Ultraviolet [UV] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning

Definitions

  • the present invention relates to a method for manufacturing a connection body in which electronic components and the like are connected using a photocurable adhesive, and a connection method for connecting electronic components and the like using a photocurable adhesive.
  • liquid crystal display devices are often used as various display means such as televisions, PC monitors, mobile phones, portable game machines, tablet PCs, and in-vehicle monitors.
  • COG chip on glass
  • FOG film on ⁇ ⁇ glass
  • a liquid crystal display device 100 employing a COG mounting system has a liquid crystal display panel 104 that performs a main function for liquid crystal display.
  • the liquid crystal display panel 104 is a glass substrate or the like. And two transparent substrates 102 and 103 facing each other.
  • the transparent substrates 102 and 103 are bonded to each other by a frame-shaped seal 105, and the liquid crystal 106 is sealed in a space surrounded by the transparent substrates 102 and 103 and the seal 105.
  • a panel display unit 107 is provided.
  • the transparent substrates 102 and 103 have a pair of striped transparent electrodes 108 and 109 made of ITO (Indium Tin Oxide) or the like on both inner surfaces facing each other so as to intersect each other.
  • the transparent substrates 102 and 103 are configured such that a pixel as a minimum unit of liquid crystal display is constituted by the intersection of the transparent electrodes 108 and 109.
  • one transparent substrate 103 is formed to have a larger planar dimension than the other transparent substrate 102, and the transparent electrode 109 is formed on the edge 103a of the transparent substrate 103 formed to be large. Terminal portion 109a is formed.
  • alignment films 111 and 112 subjected to a predetermined rubbing process are formed on both transparent electrodes 108 and 109, and the initial alignment of liquid crystal molecules is regulated by the alignment films 111 and 112. ing.
  • a pair of polarizing plates 118 and 119 are disposed outside the transparent electrodes 108 and 109, and the vibration direction of transmitted light from the light source 120 such as a backlight is regulated by the polarizing plates 118 and 119. It has come to be.
  • the liquid crystal driving IC 115 is thermocompression-bonded on the terminal portion 109a via an anisotropic conductive film 114.
  • the anisotropic conductive film 114 is a film formed by mixing conductive particles in a thermosetting binder resin, and heat conduction is performed between the two conductors so that the electrical conduction between the conductors is achieved by the conductive particles. And the mechanical connection between the conductors is maintained by the binder resin.
  • the liquid crystal driving IC 115 can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying a liquid crystal driving voltage to the pixels.
  • the adhesive constituting the anisotropic conductive film 114 the most reliable thermosetting adhesive is usually used.
  • the anisotropic conductive film 114 is attached to the terminal portion 109a of the transparent electrode 109 by a temporary crimping means (not shown). Temporarily crimp. Subsequently, after the liquid crystal driving IC 115 is mounted on the anisotropic conductive film 114, the liquid crystal driving IC 115 is connected to the terminal together with the anisotropic conductive film 114 by the thermocompression bonding means 121 such as a thermocompression bonding head as shown in FIG. The thermocompression bonding means 121 is caused to generate heat while being pressed toward the portion 109a.
  • the anisotropic conductive film 114 undergoes a thermosetting reaction, whereby the liquid crystal driving IC 115 is bonded onto the terminal portion 109a via the anisotropic conductive film 114.
  • the heat pressing temperature is high, and the thermal shock to the electronic components such as the liquid crystal driving IC 115 and the transparent substrate 103 is increased.
  • connection method using an ultraviolet curable adhesive instead of the anisotropic conductive film 114 using such a thermosetting adhesive has been proposed.
  • the adhesive softens and flows due to heat, and the temperature is high enough to sandwich the conductive particles between the terminal portion 109a of the transparent electrode 109 and the electrode of the liquid crystal driving IC 115. Stop heating and cure the adhesive by UV irradiation.
  • the adhesive shrinks as it is cured by ultraviolet irradiation. Therefore, due to the shrinkage, the IC connection portion of the transparent substrate 103 that sandwiches the liquid crystal 106 is warped, so that the surface uniformity of the gap between the transparent substrates 102 and 103 in the panel display portion 107 is lost. The orientation of the liquid crystal is disturbed, and there is a risk of causing problems such as display unevenness. Further, there is a risk of causing a connection failure of the liquid crystal driving IC 115 due to the warp generated in the IC connection portion of the transparent substrate 103.
  • the present invention solves the above-described problems, and uses an ultraviolet curable adhesive to connect electronic components at a low temperature, and suppresses distortion due to curing shrinkage of the adhesive, thereby connecting the electronic components. It is an object of the present invention to provide a method for manufacturing a connection body that improves defects and a method for connecting electronic components.
  • a method of manufacturing a connection body according to the present invention includes a step of placing an electronic component on a substrate via a photocurable adhesive, and irradiating the adhesive with light.
  • a region where the substrate and the electronic component are connected is divided into a plurality of connection regions, and each of the connection regions is cured by shifting the timing of the light irradiation start.
  • the electronic component connection method includes a step of placing an electronic component on a substrate via a photocurable adhesive, and a step of irradiating and curing the adhesive with light.
  • a region where the substrate and the electronic component are connected is divided into a plurality of connection regions, and the light irradiation start timing is shifted and cured for each connection region.
  • the timing of the start of curing is different for each connection region, and the connection between the electronic component and the substrate is attempted while absorbing the distortion due to the curing shrinkage in each connection region. be able to.
  • FIG. 1 is a cross-sectional view showing a mounting process to which the present invention is applied.
  • FIG. 2 is a cross-sectional view showing an anisotropic conductive film.
  • FIG. 3 is a perspective view showing a connection region formed by connecting an electronic component and a glass substrate.
  • 4A to 4D are plan views showing the start timing of ultraviolet irradiation to which the present invention is applied.
  • 5A and 5B are plan views showing other embodiments of the present invention.
  • 6A to 6E are plan views showing other embodiments of the present invention.
  • 7A to 7C are plan views showing other embodiments of the present invention. It is a top view which shows other embodiment of this invention.
  • the liquid crystal display panel 10 includes two transparent substrates 11 and 12 made of a glass substrate and the like, and the transparent substrates 11 and 12 are bonded to each other by a frame-shaped seal 13. .
  • the liquid crystal 14 is sealed in a space surrounded by the transparent substrates 11 and 12 to form a panel display unit 15.
  • the transparent substrates 11 and 12 have a pair of striped transparent electrodes 16 and 17 made of ITO (Indium Tin Oxide) or the like on both inner surfaces facing each other so as to intersect each other.
  • the transparent electrodes 16 and 17 are configured such that a pixel as a minimum unit of liquid crystal display is configured by the intersection of the transparent electrodes 16 and 17.
  • one transparent substrate 12 is formed to have a larger planar dimension than the other transparent substrate 11, and a liquid crystal driving edge is formed on the edge 12a of the formed transparent substrate 12.
  • a COG mounting unit 20 on which an electronic component 18 such as an IC is mounted is provided, and an FOG mounting unit 22 on which a flexible substrate 21 on which a liquid crystal driving circuit is formed is mounted near the outside of the COG mounting unit 20. ing.
  • liquid crystal driving IC and the liquid crystal driving circuit can perform predetermined liquid crystal display by selectively changing the alignment of the liquid crystal by selectively applying the liquid crystal driving voltage to the pixels. ing.
  • the terminal portions 17a of the transparent electrodes 17 are formed on the mounting portions 20 and 22, respectively.
  • an electronic component 18 such as a liquid crystal driving IC and a flexible substrate 21 are connected using the anisotropic conductive film 1 as a conductive adhesive.
  • the anisotropic conductive film 1 contains the conductive particles 4, and conducts the electrode of the electronic component 18 or the flexible substrate 21 and the terminal portion 17 a of the transparent electrode 17 formed on the edge portion 12 a of the transparent substrate 12. Electrically connected through the conductive particles 4.
  • the anisotropic conductive film 1 is an ultraviolet curable adhesive, and is fluidized by being thermocompression bonded by a heating and pressing head 30 described later, whereby the conductive particles 4 are converted into the terminal portions 17a, the electronic component 18, and the flexible substrate 21.
  • the conductive particles 4 are cured in a crushed state.
  • the anisotropic conductive film 1 electrically and mechanically connects the transparent substrate 12 to the electronic component 18 and the flexible substrate 21.
  • an alignment film 24 subjected to a predetermined rubbing process is formed on both the transparent electrodes 16 and 17, and the initial alignment of liquid crystal molecules is regulated by the alignment film 24.
  • a pair of polarizing plates 25 and 26 are disposed outside the transparent substrates 11 and 12, and these polarizing plates 25 and 26 allow transmitted light from a light source (not shown) such as a backlight to be transmitted. The vibration direction is regulated.
  • an anisotropic conductive film (ACF) 1 is generally formed by forming a conductive particle-containing layer 3 on a release film 2 serving as a base material. As shown in FIG. 1, the anisotropic conductive film 1 has a conductive particle-containing layer 3 interposed between a transparent electrode 17 formed on a transparent substrate 12 of the liquid crystal display panel 10 and an electronic component 18 or a flexible substrate 21. By doing so, the liquid crystal display panel 10 and the electronic component 18 or the flexible substrate 21 are connected and used for electrical connection.
  • a substrate such as a polyethylene terephthalate film generally used in anisotropic conductive films can be used.
  • the conductive particle-containing layer 3 is formed by dispersing conductive particles 4 in a binder.
  • the binder contains a film-forming resin, a curable resin, a curing agent, a silane coupling agent, and the like, and is the same as the binder used for a normal anisotropic conductive film.
  • the film forming resin is preferably a resin having an average molecular weight of about 10,000 to 80,000.
  • the film forming resin include various resins such as a phenoxy resin, an epoxy resin, a modified epoxy resin, and a urethane resin.
  • phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.
  • the curable resin is not particularly limited, and examples thereof include an epoxy resin and an acrylic resin.
  • an epoxy resin there is no restriction
  • naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, naphthol type epoxy resin, A dicyclopentadiene type epoxy resin, a triphenylmethane type epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.
  • an acrylic resin there is no restriction
  • the curing agent is not particularly limited as long as it is a photo-curing type, and can be appropriately selected according to the purpose.
  • the curable resin is an epoxy resin, a cationic curing agent is preferable, and the curable resin is an acrylic resin. In this case, a radical curing agent is preferable.
  • curing agent there is no restriction
  • curing agent For example, a sulfonium salt, onium salt, etc. can be mentioned, Among these, an aromatic sulfonium salt is preferable.
  • curing agent According to the objective, it can select suitably, For example, an organic peroxide can be mentioned.
  • silane coupling agents include epoxy, amino, mercapto sulfide, ureido and the like. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.
  • Examples of the conductive particles 4 include any known conductive particles used in anisotropic conductive films.
  • Examples of the conductive particles 4 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, Examples thereof include those in which the surface of particles such as plastic is coated with metal, or those in which the surface of these particles is further coated with an insulating thin film.
  • examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, a divinylbenzene resin, a styrene resin, and the like. Can be mentioned.
  • the anisotropic conductive film 1 is temporarily pressure-bonded onto the transparent electrode 17.
  • the method for temporarily press-bonding the anisotropic conductive film 1 is such that the conductive particle-containing layer 3 is on the transparent electrode 17 side on the transparent electrode 17 of the transparent substrate 12 of the liquid crystal display panel 10. Place.
  • the electroconductive particle content layer 3 is heated and pressurized by the heating press head 30, for example from the peeling film 2 side, and the heating press head 30 is peeled from the peeling film 2.
  • the heating press head 30 is peeled from the peeling film 2.
  • Temporary pressure bonding by the heating and pressing head 30 heats the upper surface of the release film 2 while pressing it against the transparent electrode 17 side with a slight pressure (for example, about 0.1 MPa to 2 MPa).
  • the heating temperature is set to such a temperature that the thermosetting resin such as epoxy resin or acrylic resin in the anisotropic conductive film 1 is not cured (for example, about 70 to 100 ° C.).
  • the electronic component 18 is arranged so that the transparent electrode 17 of the transparent substrate 12 and the electrode terminal of the electronic component 18 face each other with the conductive particle-containing layer 3 interposed therebetween.
  • ultraviolet rays are irradiated by an ultraviolet irradiator 31 disposed below the transparent substrate 12, the conductive particle-containing layer 3 is cured, and the electronic component 18 is connected to the transparent substrate 12.
  • the region where the terminal portion 17a of the transparent electrode 17 and the electronic component 18 are connected is divided into a plurality of connection regions as shown in FIG. Harden by shifting the timing of irradiation start.
  • a region where the electrode terminal of the electronic component 18 and the terminal portion 17a of the transparent electrode 17 are connected is appropriately divided into a plurality of connection regions.
  • the electrode terminal of the electronic component 18 and the transparent electrode 17 are connected to each other. When forming a channel, it is divided for each channel. Or the area
  • the electronic component 18 and the terminal portion 17a of the transparent electrode 17 are provided with five first to fifth connection regions CH1 to CH5 that are connected to form a channel. Show.
  • the first to fifth connection regions CH1 to CH5 are substantially uniform over the entire width of the region where the terminal portion of the electronic component 18 and the terminal portion 17a of the transparent electrode 17 are connected via the anisotropic conductive film 1. Has been placed.
  • the ultraviolet irradiator 31 is provided with first to fifth ultraviolet irradiators 31a to 31e corresponding to, for example, the first to fifth connection regions CH1 to CH5.
  • the ultraviolet irradiator 31 can individually control the irradiation of the ultraviolet irradiators 31a to 31e, and in this connection step, the ultraviolet irradiation timing can be shifted for each connection region and cured.
  • Each of the ultraviolet irradiation units 31a to 31e partially overlaps with the adjacent ultraviolet irradiation unit so that there is no portion that is not irradiated with ultraviolet rays.
  • the timing of the start of curing differs for each connection region, and the connection between the electronic component 18 and the transparent substrate 12 is sequentially performed while absorbing distortion due to curing shrinkage in each connection region.
  • the connection start timing is different for each connection region, so that when the connection region first irradiated with ultraviolet rays begins to cure and the binder shrinks and cures, no UV irradiation is applied adjacent to the connection region.
  • the binder since the binder is uncured and has fluidity, the strain due to curing shrinkage in the connection region irradiated with ultraviolet rays can be absorbed by flowing to the connection region side irradiated with ultraviolet rays. It is done.
  • connection region CH1 to CH5 shown in FIG. 3 As shown in FIG. 4A, the irradiation of ultraviolet rays is started from the third ultraviolet irradiation unit 31c, and the third region located in the central portion is started. It hardens
  • ultraviolet irradiation from the third ultraviolet irradiation unit 31c after a predetermined time has elapsed, for example, 1 second later, as shown in FIG. 4B, ultraviolet irradiation from the adjacent second and fourth ultraviolet irradiation units 31b and 31d is performed.
  • the second and fourth connection regions CH2 and CH4 are cured.
  • the first and fifth ultraviolet irradiation units 31a at both ends are provided.
  • 31e is started, and the first and fifth connection regions CH1 and CH5 are cured.
  • the distortion at the time of curing of the third connection region CH3 located in the center is made different by changing the irradiation timing of the ultraviolet rays to the first to fifth connection regions CH1 to CH5.
  • the first and fifth connection regions CH1 adjacent to each other are absorbed by the uncured binder in the second and fourth connection regions CH2 and CH4 adjacent to each other, and distortion at the time of curing the second and fourth connection regions CH2 and CH4 is adjacent to each other. , Absorbed with an uncured binder of CH5.
  • connection regions CH1 to CH5 when the first to fifth connection regions CH1 to CH5 are irradiated with ultraviolet rays at the same time, the connection regions CH1 to CH5 start to cure at the same time, so that the distortion of the adjacent connection regions can be absorbed. Can not. Therefore, according to this connection process, it is possible to suppress the distortion of the transparent substrate 12 and to prevent the connection failure of the electronic component 18.
  • the distortion due to curing shrinkage of the binder is minimized by irradiating the minimum irradiation amount necessary for ultraviolet curing. Can be suppressed.
  • connection step the first and fifth connection regions CH1 and CH5 that are finally irradiated with ultraviolet rays are irradiated with the minimum dose necessary for ultraviolet curing, and then all the connection regions CH1 to CH5 are irradiated.
  • UV irradiation may be stopped.
  • the ultraviolet irradiator 31 starts irradiation from the first and fifth ultraviolet irradiators 31a and 31e, and after a predetermined time has elapsed, for example, 2 seconds, as shown in FIG. 4D. Stop irradiation from.
  • the first and fifth connection regions CH1 and CH5 that are finally irradiated with ultraviolet rays do not have an adjacent region including an uncured binder that absorbs curing shrinkage. By irradiating only the irradiation amount, the distortion accompanying the curing shrinkage of the binder can be minimized.
  • connection step it is only necessary to cure the timing at which the ultraviolet irradiation is started, and it is not always necessary to align the end of the ultraviolet irradiation in each of the connection regions CH1 to CH5.
  • FOG film glass on
  • the COG mounting in which the liquid crystal driving IC is directly mounted on the glass substrate of the liquid crystal display panel and the FOG mounting in which the flexible substrate is directly mounted on the substrate of the liquid crystal display panel have been described as examples. It can be used for other various connections other than the FOG mounting.
  • region which starts ultraviolet irradiation initially may not be one place, and you may start ultraviolet irradiation simultaneously in the several places which are not mutually adjacent
  • ultraviolet irradiation may be started from the second and fourth connection regions CH2 and CH4.
  • the uncured binder in the connection region adjacent to the connection region irradiated with ultraviolet rays for example, the first, third, and fifth connection regions CH1, CH3, and CH5 is converted into the second and fourth connection regions CH2, By flowing to CH4, strain in the second and fourth connection regions CH2 and CH4 irradiated with ultraviolet rays can be absorbed.
  • the connection regions that are not adjacent to the connection region that is not irradiated with the ultraviolet rays such as the first, third, and fifth connection regions CH1, CH3, and CH5, are irradiated with the ultraviolet rays. In the case of irradiating with the minimum irradiation amount necessary for ultraviolet curing, the distortion accompanying curing shrinkage of the binder can be minimized.
  • the ultraviolet irradiator 31 starts the ultraviolet irradiation from the first ultraviolet irradiation unit 31a to the first connection region CH1, and after a predetermined time has elapsed, for example, after 1 second, The ultraviolet irradiation to the second connection region CH2 is started from the ultraviolet irradiation unit 31b (FIG. 6B), and the ultraviolet irradiation to the adjacent connection region is started until the fifth connection region CH5 is sequentially reached every 1 second. (FIGS. 6C to 6E).
  • the uncured binder in the connection region adjacent to the connection region irradiated with ultraviolet rays flows to the first connection region CH1.
  • the strain in the first connection region CH1 irradiated with ultraviolet rays can be absorbed.
  • the minimum irradiation amount necessary for ultraviolet curing is irradiated, so that the binder Distortion accompanying curing shrinkage can be minimized.
  • the ultraviolet irradiator 31 starts the ultraviolet irradiation from the first ultraviolet irradiation unit 31a to the first connection region CH1, and from the fifth ultraviolet irradiation unit 31e to the fifth connection region. Start UV irradiation on CH5. After a predetermined time elapses, for example, 1 second later, as shown in FIG.
  • the second ultraviolet irradiation unit 31b starts the ultraviolet irradiation to the second connection region CH2, and the fourth ultraviolet irradiation unit 31d is connected to the fourth connection. Irradiation of ultraviolet rays to the region CH4 is started. Further, after a predetermined time has elapsed, for example, after 1 second, as shown in FIG. 7C, ultraviolet irradiation from the third ultraviolet irradiation unit 31c to the third connection region CH3 is started.
  • the uncured binder in the connection region adjacent to the connection region irradiated with the ultraviolet light for example, the second and fourth connection regions CH2 and CH4 adjacent to the first and fifth connection regions CH1 and CH5 is the first.
  • strain in the first and fifth connection regions CH1 and CH5 irradiated with ultraviolet rays can be absorbed.
  • the binder is cured by irradiating with the minimum irradiation amount necessary for ultraviolet curing. Distortion accompanying shrinkage can be minimized.
  • connection regions arranged in a line.
  • the curing shrinkage of the binder can be achieved by stiffening the UV irradiation start timing for each connection region, such as from the center to the end, from the end to the end, or from multiple ends to the center. Can be absorbed.
  • an ultraviolet curable binder is used.
  • light other than ultraviolet light may be used as long as the binder can be cured by irradiation.
  • the anisotropic conductive film 1 which has a film shape as an electroconductive adhesive was demonstrated above, even if it is a paste form, there is no problem.
  • a film-like conductive adhesive film such as the anisotropic conductive film 1 containing the conductive particles 4 or a paste-like conductive adhesive paste is defined as “adhesive”.
  • connection body provided with first to fifth connection regions CH1 to CH5 constituting five channels by connecting a transparent electrode provided on a glass substrate and an electrode terminal provided on an IC chip.
  • the connection state between the IC chip and the substrate is evaluated by the conduction resistance value ( ⁇ ), and the display unevenness is measured by the amount of warpage ( ⁇ m) of the substrate. Substitute evaluation.
  • the anisotropic conductive film used for connection is composed of an adhesive layer composed of a conductive particle-containing layer (ACF layer) having a thickness of 18 ⁇ m.
  • ACF layer is Phenoxy resin (YP-70: manufactured by Nippon Steel Chemical Co., Ltd.); 20 mass parts liquid epoxy resin (EP-828: manufactured by Mitsubishi Chemical Corporation); 30 mass parts solid epoxy resin (YD014 :) Nippon Steel Chemical Co., Ltd.
  • the anisotropic conductive film was obtained by adjusting and laminating this ACF so as to have a thickness of 18 ⁇ m.
  • the anisotropic conductive film used for an Example and a comparative example is width 4.0mm x length 40.0mm.
  • a glass substrate having a glass thickness of 0.5 mm and formed with wiring for continuity measurement was used as the evaluation base material to which the evaluation IC is connected.
  • An IC for evaluation was placed on the glass substrate via the anisotropic conductive film, and connected by heat pressing with a heating press head and ultraviolet irradiation to form a connected body sample.
  • the heat-pressing surface of the heating and pressing head is 10.0 mm ⁇ 40.0 mm, and the heat-pressing surface of the heating and pressing head is processed with a fluororesin having a thickness of 0.05 mm as a buffer material.
  • the temperature conditions of the heating and pressing head are all 110 ° C., and the pressing conditions are 70 MPa and 5 seconds.
  • the ultraviolet irradiation is performed 5 seconds after the start of the thermal pressing of the evaluation IC by the heating and pressing head set to a predetermined temperature, and the irradiation is performed after a predetermined time has elapsed from the start of the thermal pressing for each connection region. Then, the irradiation was uniformly stopped after 5 seconds from the start of the heat press with the heating press head.
  • Table 1 shows the elapsed time from the start of the thermal pressing of the evaluation IC by the heating and pressing head to the ultraviolet irradiation to the connection regions CH1 to CH5 according to the example and the comparative example.
  • Example 1 the elapsed time until the third connection region CH3 is irradiated with ultraviolet rays is set to 0 second, and the first, second, fourth, and fifth connection regions CH1, CH2, CH4, and CH5 are irradiated with ultraviolet rays.
  • the elapsed time of each was 1 second. That is, in Example 1, the ultraviolet irradiation time of the third connection region CH3 is 5 seconds, and the ultraviolet irradiation time of the first, second, fourth, and fifth connection regions CH1, CH2, CH4, and CH5 is 4 seconds. is there.
  • Example 2 the elapsed time until the third to fifth connection regions CH3 to CH5 are irradiated with ultraviolet rays is 1 second, the elapsed time until the second connection region CH2 is irradiated with ultraviolet rays is 2 seconds, and the first The elapsed time until the ultraviolet irradiation of the connection region CH1 was 3 seconds. That is, in Example 2, the ultraviolet irradiation time of the third to fifth connection regions CH3 to CH5 is 4 seconds, the ultraviolet irradiation time of the second connection region CH2 is 3 seconds, and the ultraviolet irradiation time of the first connection region CH1. Is 2 seconds.
  • Example 3 the elapsed time until the third connection region CH3 is irradiated with ultraviolet light is 1 second, the elapsed time until the second and fourth connection regions CH2 and CH4 are irradiated with ultraviolet light is 2 seconds, The elapsed time until the ultraviolet irradiation to the fifth connection regions CH1 and CH5 was 3 seconds. That is, in Example 3, the ultraviolet irradiation time of the third connection region CH3 is 4 seconds, the ultraviolet irradiation time of the second and fourth connection regions CH2 and CH4 is 3 seconds, and the first and fifth The ultraviolet irradiation time of the connection regions CH1 and CH5 is 2 seconds.
  • Example 4 the elapsed time until the first and fifth connection regions CH1 and CH5 are irradiated with ultraviolet light is 1 second, and the elapsed time until the second and fourth connection regions CH2 and CH4 are irradiated with ultraviolet light is 3 seconds. Seconds, and the elapsed time until the third connection region CH3 was irradiated with ultraviolet rays was 4 seconds. That is, in Example 4, the ultraviolet irradiation time of the first and fifth connection regions CH1 and CH5 is 4 seconds, the ultraviolet irradiation time of the second and fourth connection regions CH2 and CH4 is 2 seconds, The UV irradiation time of the third connection region CH3 is 1 second.
  • Comparative Example 1 the elapsed time until ultraviolet irradiation to the first to fifth connection regions CH1 to CH5 was uniformly set to 0 seconds. That is, in Comparative Example 1, the ultraviolet irradiation time of the first to fifth connection regions CH1 to CH5 is uniformly 5 seconds.
  • Comparative Example 2 the elapsed time until the UV irradiation to the first to fifth connection regions CH1 to CH5 was uniformly 4 seconds. That is, in Comparative Example 2, the ultraviolet irradiation time of the first to fifth connection regions CH1 to CH5 is uniformly 1 second.
  • a stylus type surface roughness meter (SE-3H: manufactured by Kosaka Laboratory Ltd.) is used to scan the stylus 41 from the lower surface of the glass substrate 40 of the joined body sample as shown in FIG. Then, the warpage amount ( ⁇ m) of the glass substrate surface after connection of the evaluation IC was measured.
  • the conduction resistance value After performing a high temperature and high humidity test in which the connected body sample is left in an environment of 85 ° C. and 85% RH for 500 hours, it is connected to the bumps 42 of the evaluation IC as shown in FIG. An ammeter A and a voltmeter V were connected to the metal wiring 43 of the glass substrate 40, and a conduction resistance value was measured when a current of 1 mA was passed by a so-called four-terminal method. The results are shown in Table 2.
  • the connection region where the ultraviolet irradiation is performed first is cured.
  • the distortion in the resin is absorbed by the uncured binder in the adjacent connection region. Therefore, according to each Example, the warpage amount was within 11.3 ⁇ m at the maximum, and the connection resistance was 12.4 ⁇ at the maximum. Therefore, according to this connection process, it turns out that the distortion of a glass substrate can be suppressed and the connection failure of evaluation IC can be prevented.
  • Comparative Example 1 in which the first to fifth connection regions CH1 to CH5 are irradiated with ultraviolet rays simultaneously with heat pressurization, the respective connection regions CH1 to CH5 start to cure simultaneously, and the ultraviolet rays are irradiated. Since the time was long and the cure shrinkage ratio was as large as 2.7%, it was not possible to absorb the distortion of the adjacent connection region, the warpage amount was as large as 14.5 ⁇ m, and the connection resistance was 15.1 ⁇ .
  • the irradiation is started from the third connection region CH3 at the center, and the ultraviolet rays are sequentially irradiated toward the end portion, and from the connection regions CH1 and CH5 at the end portion to the center portion.
  • Example 4 where ultraviolet rays were irradiated toward the surface, the amount of warpage and connection resistance were relatively good. This is because a connection region that is not irradiated with ultraviolet rays is always provided in the connection region that is irradiated with ultraviolet rays, and in many connection regions, distortion during curing is absorbed by the uncured binder in the adjacent connection region. It is thought that it was possible to continue.
  • Example 3 the irradiation of ultraviolet rays to the end connection regions CH1 and CH5 is the last, the irradiation time is short, and the curing shrinkage rate is low. Since the warpage of the glass substrate increases from the central portion toward the outer side, Example 3 in which the outer side (end portion) curing shrinkage rate is low was able to suppress the warp most.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 光硬化型の接着剤3を介して、基板12上に電子部品18を配置する工程と、接着剤3に光を照射して硬化させる工程とを有し、基板12と電子部品18とが接続される領域が複数の接続領域CH1~CH5に分割され、接続領域CH1~CH5ごとに、光の照射開始のタイミングをずらして硬化させる。光硬化型接着剤の硬化収縮を抑え、電子部品の接続不良を改善する。

Description

接続体の製造方法、及び電子部品の接続方法
 本発明は、光硬化型の接着剤を用いて電子部品等が接続された接続体の製造方法、及び光硬化型の接着剤を用いて電子部品等を接続する接続方法に関する。
 本出願は、日本国において2012年3月23日に出願された日本特許出願番号特願2012-68140を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 従来から、テレビやPCモニタ、携帯電話、携帯型ゲーム機、タブレットPCあるいは車載用モニタ等の各種表示手段として、液晶表示装置が多く用いられている。近年、このような液晶表示装置においては、ファインピッチ化、軽量薄型化等の観点から、液晶駆動用ICを直接液晶表示パネルの基板上に実装するいわゆるCOG(chip on glass)や、液晶駆動回路が形成されたフレキシブル基板を直接液晶表示パネルの基板上に実装するいわゆるFOG(film on glass)が採用されている。
 例えばCOG実装方式が採用された液晶表示装置100は、図11に示すように、液晶表示のための主機能を果たす液晶表示パネル104を有しており、この液晶表示パネル104は、ガラス基板等からなる互いに対向する二枚の透明基板102,103を有している。そして、液晶表示パネル104は、これら両透明基板102,103が枠状のシール105によって互いに貼り合わされるとともに、両透明基板102,103およびシール105によって囲繞された空間内に液晶106が封入されたパネル表示部107が設けられている。
 透明基板102,103は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極108,109が、互いに交差するように形成されている。そして、両透明基板102,103は、これら両透明電極108,109の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。
 両透明基板102,103のうち、一方の透明基板103は、他方の透明基板102よりも平面寸法が大きく形成されており、この大きく形成された透明基板103の縁部103aには、透明電極109の端子部109aが形成されている。また、両透明電極108,109上には、所定のラビング処理が施された配向膜111,112が形成されており、この配向膜111,112によって液晶分子の初期配向が規制されるようになっている。さらに、両透明電極108,109の外側には、一対の偏光板118,119が配設されており、これら両偏光板118,119によってバックライト等の光源120からの透過光の振動方向が規制されるようになっている。
 端子部109a上には、異方性導電フィルム114を介して液晶駆動用IC115が熱圧着されている。異方性導電フィルム114は、熱硬化型のバインダー樹脂に導電性粒子を混ぜ込んでフィルム状としたもので、2つの導体間で加熱圧着されることにより導電粒子で導体間の電気的導通がとられ、バインダー樹脂にて導体間の機械的接続が保持される。液晶駆動用IC115は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。なお、異方性導電フィルム114を構成する接着剤としては、通常、最も信頼性の高い熱硬化性の接着剤を用いるようになっている。
 このような異方性導電フィルム114を介して液晶駆動用IC115を端子部109aへ接続する場合は、先ず、透明電極109の端子部109a上に異方性導電フィルム114を図示しない仮圧着手段によって仮圧着する。続いて、異方性導電フィルム114上に液晶駆動用IC115を載置した後、図12に示すように熱圧着ヘッド等の熱圧着手段121によって液晶駆動用IC115を異方性導電フィルム114とともに端子部109a側へ押圧しつつ熱圧着手段121を発熱させる。この熱圧着手段121による発熱によって、異方性導電フィルム114は熱硬化反応を起こし、これにより、異方性導電フィルム114を介して液晶駆動用IC115が端子部109a上に接着される。
 しかし、このような異方性導電フィルムを用いた接続方法においては、熱加圧温度が高く、液晶駆動用IC115等の電子部品や透明基板103に対する熱衝撃が大きくなる。
 そこで、このような熱硬化型の接着剤を用いた異方性導電フィルム114に代えて、紫外線硬化型の接着剤を用いた接続方法も提案されている。紫外線硬化型の接着剤を用いる接続方法においては、接着剤が熱によって軟化流動し、透明電極109の端子部109aと液晶駆動用IC115の電極間で導電性粒子を挟持するのに十分な温度まで加熱するに止め、紫外線照射によって接着剤を硬化させる。
 しかし、かかる紫外線硬化型の接着剤を用いる接続方法においても、紫外線照射による硬化に伴って接着剤の収縮が起きる。そのため、当該収縮に起因して、液晶106を挟持する透明基板103のIC接続部に反りが生じ、そのため、パネル表示部107における透明基板102,103間のギャップの面均一性が失われるとともに、液晶の配向が乱れ、表示ムラ等の不具合を引き起こすおそれがある。また、透明基板103のIC接続部に生じた反りにより液晶駆動用IC115の接続不良を引き起こすおそれもある。
WO00/46315号公報
 そこで、本発明は、上述した課題を解決するものであり、紫外線硬化型の接着剤を用いることで低温で電子部品の接続を行うと共に、接着剤の硬化収縮による歪みを抑え、電子部品の接続不良を改善する接続体の製造方法、及び電子部品の接続方法を提供することを目的とする。
 上述した課題を解決するために、本発明に係る接続体の製造方法は、光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、上記接着剤に光を照射して硬化させる工程とを有し、上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記光の照射開始のタイミングをずらして硬化させる。
 また、本発明に係る電子部品の接続方法は、光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、上記接着剤に光を照射して硬化させる工程とを有し、上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記光の照射開始のタイミングをずらして硬化させるものである。
 本発明によれば、光照射のタイミングをずらすことで、各接続領域ごとに硬化開始のタイミングが異なり、順次、各接続領域における硬化収縮による歪みを吸収しながら電子部品と基板との接続を図ることができる。
図1は、本発明が適用された実装工程を示す断面図である。 図2は、異方性導電フィルムを示す断面図である。 図3は、電子部品及びガラス基板が接続されることにより形成される接続領域を示す斜視図である。 図4A~Dは、本発明が適用された紫外線照射の開始タイミングを示す平面図である。 図5A及び図5Bは、本発明の他の実施の形態を示す平面図である。 図6A~図6Eは、本発明の他の実施の形態を示す平面図である。 図7A~図7Cは、本発明の他の実施の形態を示す平面図である。 本発明の他の実施の形態を示す平面図である。 実施例及び比較例に係るガラス基板の反りの測定方法を説明するための図である。 実施例及び比較例に係る導通抵抗の測定方法を説明するための図である。 従来の液晶表示パネルを示す断面図である。 従来の液晶表示パネルのCOG実装工程を示す断面図である。
 以下、本発明が適用された接続体の製造方法及び接続方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 以下では、接続対象物及び被接続対象物として、基板に電子部品を接続する場合を例に説明するが、本技術は、基板と電子部品との接続以外にも適用することができる。例えば、液晶表示パネルのガラス基板に液晶駆動用のICチップを実装するいわゆるCOG(chip on glass)実装を行う。この液晶表示パネル10は、図1に示すように、ガラス基板等からなる二枚の透明基板11,12が対向配置され、これら透明基板11,12が枠状のシール13によって互いに貼り合わされている。そして、液晶表示パネル10は、透明基板11,12によって囲繞された空間内に液晶14が封入されることによりパネル表示部15が形成されている。
 透明基板11,12は、互いに対向する両内側表面に、ITO(酸化インジウムスズ)等からなる縞状の一対の透明電極16,17が、互いに交差するように形成されている。そして、両透明電極16,17は、これら両透明電極16,17の当該交差部位によって液晶表示の最小単位としての画素が構成されるようになっている。
 両透明基板11,12のうち、一方の透明基板12は、他方の透明基板11よりも平面寸法が大きく形成されており、この大きく形成された透明基板12の縁部12aには、液晶駆動用IC等の電子部品18が実装されるCOG実装部20が設けられ、またCOG実装部20の外側近傍には、液晶駆動回路が形成されたフレキシブル基板21が実装されるFOG実装部22が設けられている。
 なお、液晶駆動用ICや液晶駆動回路は、画素に対して液晶駆動電圧を選択的に印加することにより、液晶の配向を部分的に変化させて所定の液晶表示を行うことができるようになっている。
 各実装部20,22には、透明電極17の端子部17aが形成されている。端子部17a上には、導電性の接着剤として異方性導電フィルム1を用いて液晶駆動用IC等の電子部品18やフレキシブル基板21が接続される。異方性導電フィルム1は、導電性粒子4を含有しており、電子部品18やフレキシブル基板21の電極と透明基板12の縁部12aに形成された透明電極17の端子部17aとを、導電性粒子4を介して電気的に接続させるものである。この異方性導電フィルム1は、紫外線硬化型の接着剤であり、後述する加熱押圧ヘッド30により熱圧着されることにより流動化して導電性粒子4が端子部17aと電子部品18やフレキシブル基板21の各電極との間で押し潰され、紫外線照射器31により紫外線が照射されることにより、導電性粒子4が押し潰された状態で硬化する。これにより、異方性導電フィルム1は、透明基板12と電子部品18やフレキシブル基板21とを電気的、機械的に接続する。
 また、両透明電極16,17上には、所定のラビング処理が施された配向膜24が形成されており、この配向膜24によって液晶分子の初期配向が規制されるようになっている。さらに、両透明基板11,12の外側には、一対の偏光板25,26が配設されており、これら両偏光板25,26によってバックライト等の光源(図示せず)からの透過光の振動方向が規制されるようになっている。
 [異方性導電フィルム]
 異方性導電フィルム(ACF:Anisotropic Conductive Film)1は、図2に示すように、通常、基材となる剥離フィルム2上に導電性粒子含有層3が形成されたものである。異方性導電フィルム1は、図1に示すように、液晶表示パネル10の透明基板12に形成された透明電極17と電子部品18やフレキシブル基板21との間に導電性粒子含有層3を介在させることで、液晶表示パネル10と電子部品18あるいはフレキシブル基板21とを接続し、導通させるために用いられる。
 剥離フィルム2としては、異方性導電フィルムにおいて一般に用いられている例えばポリエチレンテレフタレートフィルム等の基材を使用することができる。
 導電性粒子含有層3は、バインダー中に導電性粒子4を分散してなるものである。バインダーは、膜形成樹脂、硬化性樹脂、硬化剤、シランカップリング剤等を含有するものであり、通常の異方性導電フィルムに用いられるバインダーと同様である。
 膜形成樹脂としては、平均分子量が10000~80000程度の樹脂が好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。
 硬化性樹脂としては、特に限定されず、エポキシ樹脂、アクリル樹脂等が挙げられる。
 エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。具体例として、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。
 アクリル樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、具体例として、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。
 硬化剤としては、光硬化型であれば特に制限はなく、目的に応じて適宜選択することができるが、硬化性樹脂がエポキシ樹脂の場合はカチオン系硬化剤が好ましく、硬化性樹脂がアクリル樹脂の場合はラジカル系硬化剤が好ましい。
 カチオン系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スルホニウム塩、オニウム塩等を挙げることができ、これらの中でも、芳香族スルホニウム塩が好ましい。ラジカル系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機過酸化物を挙げることができる。
 シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。
 導電性粒子4としては、異方性導電フィルムにおいて使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子4としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。
 [製造方法]
 次いで、異方性導電フィルム1を介して電子部品18やフレキシブル基板21が透明基板12の透明電極17上に接続された接続体の製造工程について説明する。先ず、異方性導電フィルム1を透明電極17上に仮圧着する。異方性導電フィルム1を仮圧着する方法は、液晶表示パネル10の透明基板12の透明電極17上に、導電性粒子含有層3が透明電極17側となるように、異方性導電フィルム1を配置する。
 そして、導電性粒子含有層3を透明電極17上に配置した後、剥離フィルム2側から導電性粒子含有層3を例えば加熱押圧ヘッド30で加熱及び加圧し、加熱押圧ヘッド30を剥離フィルム2から離し、剥離フィルム2を透明電極17上の導電性粒子含有層3から剥離することによって、導電性粒子含有層3のみが透明電極17上に仮圧着される。加熱押圧ヘッド30による仮圧着は、剥離フィルム2の上面を僅かな圧力(例えば0.1MPa~2MPa程度)で透明電極17側に押圧しながら加熱する。ただし、加熱温度は、異方性導電フィルム1中のエポキシ樹脂やアクリル樹脂等の熱硬化性樹脂が硬化しない程度の温度(例えば70~100℃程度)とする。
 次に、透明基板12の透明電極17と電子部品18の電極端子とが導電性粒子含有層3を介して対向するように、電子部品18を配置する。
 次いで、透明基板12の下部に配された紫外線照射器31によって紫外線を照射し、導電性粒子含有層3を硬化させ、透明基板12に電子部品18を接続する。このとき、本接続工程では、透明電極17の端子部17aと電子部品18とが接続される領域を、図3に示すように、複数の接続領域に分割し、各接続領域ごとに、紫外線の照射開始のタイミングをずらして硬化させる。
 電子部品18の電極端子と透明電極17の端子部17aとが接続される領域は、適宜複数の接続領域に分割され、例えば電子部品18の電極端子と透明電極17とが接続されることで多チャンネルを形成する場合に、各チャンネル毎に分割される。あるいは、電子部品18の電極端子と透明電極17の端子部17aとが接続される領域は、全領域を均等な面積で複数領域に分割してもよい。図3では、一例として、電子部品18及び透明電極17の端子部17aには、接続されることによりチャンネルを構成する第1~第5の接続領域CH1~CH5の5つが設けられている場合を示す。第1~第5の接続領域CH1~CH5は、異方性導電フィルム1を介して電子部品18の端子部と透明電極17の端子部17aとが接続される領域の全幅に亘って略均等に配置されている。
 また、紫外線照射器31は、例えば第1~第5の接続領域CH1~CH5に対応して、第1~第5の紫外線照射部31a~31eが設けられている。紫外線照射器31は、各紫外線照射部31a~31eを個別に照射制御が可能とされ、これにより、本接続工程では、接続領域ごとに、紫外線照射のタイミングをずらして硬化させることができる。なお、各紫外線照射部31a~31eは、隣接する紫外線照射部と一部照射範囲が重複し、紫外線が照射されない部分がないようにされている。
 このように、紫外線照射のタイミングをずらすことで、各接続領域ごとに硬化開始のタイミングが異なり、順次、各接続領域における硬化収縮による歪みを吸収しながら電子部品18と透明基板12との接続を図ることができる。これは、各接続領域ごとに硬化開始のタイミングを異ならせることで、最初に紫外線が照射された接続領域が硬化し始めバインダーの硬化収縮が起こったときに、当該接続領域に隣接する紫外線未照射の接続領域では、バインダーが未硬化で流動性を有することから、紫外線が照射された接続領域側に流動することで、紫外線照射の接続領域における硬化収縮による歪みを吸収することができるためと考えられる。
 具体的に、図3に示す第1~第5の接続領域CH1~CH5では、図4Aに示すように、第3の紫外線照射部31cから紫外線の照射を開始し、中央部に位置する第3の接続領域CH3から硬化させる。次いで、第3の紫外線照射部31cからの照射開始後、所定時間経過後、例えば1秒後に、図4Bに示すように、隣接する第2、第4の紫外線照射部31b,31dからの紫外線照射を開始し、第2、第4の接続領域CH2、CH4を硬化させる。最後に、第2、第4の紫外線照射部31b,31dからの照射開始後、所定時間経過後、例えば1秒後に、図4Cに示すように、両端の第1、第5の紫外線照射部31a、31eからの紫外線照射を開始し、第1、第5の接続領域CH1、CH5を硬化させる。
 このように、本接続工程によれば、第1~第5の接続領域CH1~CH5に対する紫外線の照射タイミングを異ならせることで、中央部に位置する第3の接続領域CH3の硬化時における歪みを隣接する第2、第4の接続領域CH2、CH4の未硬化のバインダーで吸収し、第2、第4の接続領域CH2、CH4の硬化時における歪みを隣接する第1、第5の接続領域CH1、CH5の未硬化のバインダーで吸収していく。
 これに対し、第1~第5の接続領域CH1~CH5に対して同時に紫外線を照射する場合、各接続領域CH1~CH5が同時に硬化を開始するため、隣接する接続領域の歪みを吸収することができない。したがって、本接続工程によれば、透明基板12の歪みを抑制するとともに、電子部品18の接続不良を防止することができる。
 また、紫外線が未照射の接続領域と隣接しない接続領域に対して紫外線を照射する場合は、紫外線硬化に必要最小限度の照射量を照射することで、バインダーの硬化収縮に伴う歪みを最小限に抑えることができる。
 具体的に、本接続工程では、最後に紫外線が照射される第1、第5の接続領域CH1、CH5に、紫外線硬化に必要最小限度の照射量が照射された後、全接続領域CH1~CH5に対する紫外線照射が停止されるようにしてもよい。例えば、紫外線照射器31は、第1、第5の紫外線照射部31a、31eからの照射開始後、所定時間経過後、例えば2秒後に、図4Dに示すように、全紫外線照射部31a~31eからの照射を停止する。
 このように、最後に紫外線が照射される第1、第5の接続領域CH1、CH5には、硬化収縮を吸収する未硬化のバインダーを備える隣接領域が存在しないため、紫外線硬化に必要最小限度の照射量を照射するにとどめることで、バインダーの硬化収縮に伴う歪みを最小限に抑えることができる。
 なお、本接続工程では、紫外線照射を開始するタイミングをずらして硬化させればよく、必ずしも紫外線照射の終期を、各接続領域CH1~CH5で揃える必要はない。
 電子部品18を透明基板12の透明電極17上に接続した後、同様にしてフレキシブル基板21が透明基板12の透明電極17上に実装するいわゆるFOG(film on glass)実装が行われる。これにより、異方性導電フィルム1を介して透明基板12と電子部品18やフレキシブル基板21とが接続された接続体を製造することができる。なお、これらCOG実装とFOG実装は、同時に行ってもよい。
 以上、液晶駆動用ICを直接液晶表示パネルのガラス基板上に実装するCOG実装、及びフレキシブル基板を直接液晶表示パネルの基板上に実装するFOG実装を例に説明したが、本技術は、COG実装、FOG実装以外のその他の各種接続に用いることができる。
 [他のタイミング1]
 また、最初に紫外線照射を開始する領域は、1箇所でなくともよく、互いに隣接し合わない複数箇所で、同時に紫外線照射を開始してもよい。例えば、図5Aに示すように、第2及び第4の接続領域CH2、CH4から紫外線照射を開始してもよい。
 この場合も、紫外線が照射された接続領域に隣接する接続領域、例えば第1、第3、第5の接続領域CH1、CH3、CH5における未硬化のバインダーが第2及び第4の接続領域CH2、CH4へ流動することで、紫外線が照射された第2及び第4の接続領域CH2、CH4における歪みを吸収することができる。また、この場合も、図5Bに示すように、第1、第3、第5の接続領域CH1、CH3、CH5といった紫外線が未照射の接続領域と隣接しない接続領域に対して紫外線を照射する場合は、紫外線硬化に必要最小限度の照射量が照射することで、バインダーの硬化収縮に伴う歪みを最小限に抑えることができる。
 [他のタイミング2]
 また、本接続工程では、複数に分割された接続領域の一方の端部から紫外線を照射するようにしてもよい。例えば、図6Aに示すように、紫外線照射器31は、第1の紫外線照射部31aから第1の接続領域CH1への紫外線照射を開始し、所定時間経過後、例えば1秒後に、第2の紫外線照射部31bから第2の接続領域CH2への紫外線照射を開始し(図6B)、順次1秒経過ごとに、第5の接続領域CH5に至るまで、隣接する接続領域への紫外線照射を開始していく(図6C~図6E)。
 この場合も、紫外線が照射された接続領域に隣接する接続領域、例えば第1の接続領域CH1に隣接する第2の接続領域CH2における未硬化のバインダーが第1の接続領域CH1へ流動することで、紫外線が照射された第1の接続領域CH1における歪みを吸収することができる。また、この場合も、紫外線が未照射の接続領域と隣接しない接続領域、例えば接続領域CH5に対して紫外線を照射する場合は、紫外線硬化に必要最小限度の照射量が照射することで、バインダーの硬化収縮に伴う歪みを最小限に抑えることができる。
 [他のタイミング3]
 また、本接続工程では、複数に分割された接続領域の複数の端部から紫外線を照射するようにしてもよい。例えば、図7Aに示すように、紫外線照射器31は、第1の紫外線照射部31aから第1の接続領域CH1への紫外線照射を開始するとともに第5の紫外線照射部31eから第5の接続領域CH5への紫外線照射を開始する。所定時間経過後、例えば1秒後に、図7Bに示すように、第2の紫外線照射部31bから第2の接続領域CH2への紫外線照射を開始するとともに第4の紫外線照射部31d第4の接続領域CH4への紫外線照射を開始する。さらに所定時間経過後、例えば1秒後に、図7Cに示すように、第3の紫外線照射部31cから第3の接続領域CH3への紫外線照射を開始する。
 この場合も、紫外線が照射された接続領域に隣接する接続領域、例えば第1、第5の接続領域CH1、CH5に隣接する第2、第4の接続領域CH2、CH4における未硬化のバインダーが第1、第5の接続領域CH1、CH5へ流動することで、紫外線が照射された第1、第5の接続領域CH1、CH5における歪みを吸収することができる。また、この場合も、紫外線が未照射の接続領域と隣接しない第3の接続領域CH3に対して紫外線を照射する場合は、紫外線硬化に必要最小限度の照射量が照射することで、バインダーの硬化収縮に伴う歪みを最小限に抑えることができる。
 [他のタイミング4]
 上記では透明電極17の端子部17aと電子部品18とが接続される領域を、一列に配列された接続領域に分割したが、図8に示すように、平面上においてXY方向に区分けされた接続領域に分割してもよい。この場合も、中央から端部、端部から端部、あるいは複数の端部から中央等のように、各接続領域ごとに紫外線の照射開始のタイミングをずらして硬化させることで、バインダーの硬化収縮に伴う歪みを吸収させることができる。
 また、上記では、紫外線硬化型のバインダーを用いたが、本発明は、照射によりバインダーを硬化させることができれば、紫外線以外の光を用いてもよい。また、上記では、導電性の接着剤としてフィルム形状を有する異方性導電フィルム1について説明したが、ペースト状であっても問題は無い。本願では、導電性粒子4を含有する異方性導電フィルム1等のフィルム状の導電性接着フィルムまたはペースト状の導電性接着ペーストを「接着剤」と定義する。
 次いで、本発明の実施例について説明する。本実施例では、ガラス基板に設けた透明電極とICチップに設けた電極端子とが接続されることによって5つのチャンネルを構成する第1~第5の接続領域CH1~CH5が設けられた接続体サンプルを形成し(図3参照)、各接続体サンプルについて、ICチップと基板との接続状態を導通抵抗値(Ω)によって評価し、表示ムラを基板の反り量(μm)を測定することで代替評価した。
 接続に用いる異方性導電フィルムは、厚さ18μmの導電性粒子含有層(ACF層)からなる接着剤層からなる。ACF層は、
フェノキシ樹脂(YP-70:新日鐵化学株式会社製);20質量部
液状エポキシ樹脂(EP-828:三菱化学株式会社製);30質量部
固形エポキシ樹脂(YD014:)新日鐵化学株式会社製);20質量部
導電性粒子;(AUL704:積水化学工業株式会社製):30質量部
カチオン系硬化剤(LW-S1:サンアプロ株式会社製);5質量部
を溶媒に溶融させて混合溶液を作成し、この混合溶液をPETフィルム上に塗布し、オーブンにて乾燥し、フィルム状に成形した。
 このACFを、厚さ18μmとなるように調整して積層ラミネートすることにより、異方性導電フィルムを得た。実施例及び比較例に用いる異方性導電フィルムは、幅4.0mm×長さ40.0mmである。
 評価素子として、
外形;1.8mm×34.0mm
厚さ;0.5mm
で、導通測定用配線を形成した評価用ICを用いた。
 評価用ICが接続される評価基材として、ガラス厚0.5mmで、導通測定用配線が形成されたガラス基板を用いた。
 このガラス基板に上記異方性導電フィルムを介して評価用ICを配置し、加熱押圧ヘッドによる熱加圧及び紫外線照射によって接続することにより、接続体サンプルを形成した。加熱押圧ヘッドの熱加圧面は、10.0mm×40.0mmであり、加熱押圧ヘッドの熱加圧面には緩衝材として厚さ0.05mmのフッ素樹脂加工が施されている。加熱押圧ヘッドの温度条件はいずれも110℃、押圧条件はいずれも70MPa、5秒である。
 紫外線照射は、所定温度に設定された加熱押圧ヘッドによる評価用ICの熱加圧の開始後5秒の間に行い、各接続領域ごとに熱加圧の開始から所定時間が経過した後から照射を開始し、加熱押圧ヘッドによる熱加圧の開始から5秒後に一律に照射を停止した。加熱押圧ヘッドによる評価用ICの熱加圧の開始から、実施例及び比較例にかかる各接続領域CH1~CH5への紫外線照射までの経過時間は、表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 実施例1では、第3の接続領域CH3への紫外線照射までの経過時間を0秒とし、第1、第2、第4、第5の接続領域CH1、CH2、CH4、CH5への紫外線照射までの経過時間を、いずれも1秒とした。すなわち、実施例1では、第3の接続領域CH3の紫外線照射時間は5秒、第1、第2、第4、第5の接続領域CH1、CH2、CH4、CH5の紫外線照射時間は4秒である。
 実施例2では、第3~第5の接続領域CH3~CH5への紫外線照射までの経過時間を1秒とし、第2の接続領域CH2への紫外線照射までの経過時間を2秒とし、第1の接続領域CH1への紫外線照射までの経過時間を3秒とした。すなわち、実施例2では、第3~第5の接続領域CH3~CH5の紫外線照射時間は4秒、第2の接続領域CH2の紫外線照射時間は3秒、第1の接続領域CH1の紫外線照射時間は2秒である。
 実施例3では、第3の接続領域CH3への紫外線照射までの経過時間を1秒とし、第2、第4の接続領域CH2、CH4への紫外線照射までの経過時間を2秒とし、第1、第5の接続領域CH1、CH5への紫外線照射までの経過時間を3秒とした。すなわち、実施例3では、第3の接続領域CH3の紫外線照射時間は4秒であり、第2、第4の接続領域CH2、CH4の紫外線照射時間は3秒であり、第1、第5の接続領域CH1、CH5の紫外線照射時間は2秒である。
 実施例4では、第1、第5の接続領域CH1、CH5への紫外線照射までの経過時間を1秒とし、第2、第4の接続領域CH2、CH4への紫外線照射までの経過時間を3秒とし、第3の接続領域CH3への紫外線照射までの経過時間を4秒とした。すなわち、実施例4では、第1、第5の接続領域CH1、CH5の紫外線照射時間は4秒であり、第2、第4の接続領域CH2、CH4の紫外線照射時間は2秒であり、第3の接続領域CH3の紫外線照射時間は1秒である。
 比較例1では、第1~第5の接続領域CH1~CH5への紫外線照射までの経過時間を一律0秒とした。すなわち、比較例1では、第1~第5の接続領域CH1~CH5の紫外線照射時間は一律5秒である。
 比較例2では、第1~第5の接続領域CH1~CH5への紫外線照射までの経過時間を一律4秒とした。すなわち、比較例2では、第1~第5の接続領域CH1~CH5の紫外線照射時間は一律1秒である。
 なお、紫外線照射時間と、実施例及び比較例に係る異方性導電フィルムの硬化収縮率との関係について、表2に示す。硬化収縮率とは、紫外線硬化に伴って異方性導電フィルムが収縮する割合をいい、
硬化収縮率=(接着剤層の硬化物比重-接着剤層の樹脂液比重)/接着剤層の硬化物比重×100
で求めることができる。
 以上の条件で加熱押圧及び紫外線照射を行って、評価用ICがガラス基板に接続された接続体サンプルを形成し、各サンプルについて、反り(μm)の大きさ、及び導通抵抗値(Ω)を測定した。
 反りの測定方法は、触針式表面粗度計(SE-3H:株式会社小阪研究所製)を用いて、図9に示すように、接合体サンプルのガラス基板40下面から触針41をスキャンし、評価用ICの接続後のガラス基板面の反り量(μm)を測定した。
 導通抵抗値の測定は、接続体サンプルを85℃、85%RHの環境下に500時間放置する高温高湿試験を実施した後、図10に示すように、評価用ICのバンプ42と接続されたガラス基板40の金属配線43に電流計A、電圧計Vを接続し、いわゆる4端子法にて電流1mAを流したときの導通抵抗値を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、各実施例では、第1~第5の接続領域CH1~CH5にかけて紫外線の照射タイミングをずらして硬化させているため、先行して紫外線照射が行われる接続領域の硬化時における歪みを隣接する接続領域の未硬化のバインダーで吸収していく。したがって、各実施例によれば、反り量も最大で11.3μmに収まり、また接続抵抗も最大で12.4Ωであった。したがって、本接続工程によれば、ガラス基板の歪みを抑制するとともに、評価用ICの接続不良を防止することができることがわかる。
 これに対し、第1~第5の接続領域CH1~CH5に対して熱加圧と同時に紫外線を照射を開始した比較例1では、各接続領域CH1~CH5が同時に硬化が開始し、また紫外線照射時間も長く、硬化収縮率も2.7%と大きいため、隣接する接続領域の歪みを吸収することができず、反り量14.5μmと大きく、また接続抵抗も15.1Ωとなった。
 また、第1~第5の接続領域CH1~CH5に対して熱加圧から4秒経過後に紫外線を照射を開始した比較例2では、硬化収縮率が1.1%と小さいため反りは5.0μmに抑えられたが、硬化が不十分となり、高温高湿試験後の接続抵抗は110.8Ωとなった。
 各実施例をみると、中央の第3の接続領域CH3から照射を開始し、順次端部へ向かって紫外線を照射していく実施例3や、端部の接続領域CH1、CH5から中央部へ向かって紫外線を照射していく実施例4において反り量及び接続抵抗が比較的良好であった。これは、紫外線が照射される接続領域に必ず紫外線が未照射の接続領域が設けられていることから、多くの接続領域において、硬化時における歪みを隣接する接続領域の未硬化のバインダーで吸収していくことができたためと考えられる。
 なかでも、実施例3では、端部の接続領域CH1、CH5への紫外線照射を最後にして、かつ照射時間も短く硬化収縮率も低くしている。ガラス基板の反りは中央部から外側に向かって大きくなることから、外側(端部)の硬化収縮率が低くなる実施例3が最も反りを抑えることができた。
1 異方性導電フィルム、2 剥離フィルム、3 導電性粒子含有層、4 導電性粒子、10 液晶表示パネル、11 透明基板、12 透明基板、13 シール、14 液晶、15 パネル表示部、16 透明電極、17 透明電極、17a 端子部、18 電子部品、20 COG実装部、21 フレキシブル基板、22 FOG実装部、24 配向膜、25 偏光板、26 偏光板、30 加熱押圧ヘッド、31 紫外線照射器

Claims (9)

  1.  光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、
     上記接着剤に光を照射して硬化させる工程とを有し、
     上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記光の照射開始のタイミングをずらして硬化させる、上記基板上に上記電子部品が接続された接続体の製造方法。
  2.  複数に分割された上記接続領域の任意の一つ又は複数から上記光の照射を開始し、
     所定時間経過後に、上記任意の一つ又は複数の接続領域以外の接続領域への上記光の照射を開始する請求項1記載の接続体の製造方法。
  3.  上記光が最後に照射される接続領域に、光硬化に必要最小限度の照射量が照射された後、全接続領域に対する光照射が停止される請求項2記載の接続体の製造方法。
  4.  複数に分割された上記接続領域のうち、上記基板と上記電子部品とが接続される領域の中央の接続領域から上記光の照射を開始し、
     所定時間経過後に、上記中央の接続領域以外の接続領域への上記光の照射を開始する請求項2又は請求項3記載の接続体の製造方法。
  5.  上記中央の接続領域から上記基板と上記電子部品とが接続される領域の端部の上記接続領域へ向かって段階的に上記光の照射を開始するタイミングを遅らせる請求項4記載の接続体の製造方法。
  6.  上記基板と上記電子部品とが接続される領域の一又は複数の端部の上記接続領域から上記光の照射を開始し、
     所定時間経過後に、上記一又は複数の端部の接続領域以外の接続領域へ上記光の照射を開始する請求項2又は請求項3記載の接続体の製造方法。
  7.  上記基板と上記電子部品とが接続される領域の一の端部の上記接続領域から上記光の照射を開始し、
     上記基板と上記電子部品とが接続される領域の他の端部の上記接続領域へ向かって段階的に上記光の照射を開始するタイミングを遅らせる請求項6記載の接続体の製造方法。
  8.  上記基板と上記電子部品とが接続される領域の複数の端部の上記接続領域から上記光の照射を開始し、
     上記基板と上記電子部品とが接続される領域の中央の上記接続領域へ向かって段階的に上記光の照射を開始するタイミングを遅らせる請求項6記載の接続体の製造方法。
  9.  光硬化型の接着剤を介して、基板上に電子部品を配置する工程と、
     上記接着剤に光を照射して硬化させる工程とを有し、
     上記基板と上記電子部品とが接続される領域が複数の接続領域に分割され、上記接続領域ごとに、上記光の照射開始のタイミングをずらして硬化させる、上記基板上に上記電子部品を接続する電子部品の接続方法。
PCT/JP2013/057161 2012-03-23 2013-03-14 接続体の製造方法、及び電子部品の接続方法 WO2013141131A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380016005.7A CN104206032B (zh) 2012-03-23 2013-03-14 连接体的制造方法及电子部件的连接方法
KR1020147029148A KR102028466B1 (ko) 2012-03-23 2013-03-14 접속체의 제조 방법 및 전자 부품의 접속 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-068140 2012-03-23
JP2012068140A JP5926590B2 (ja) 2012-03-23 2012-03-23 接続体の製造方法、及び電子部品の接続方法

Publications (1)

Publication Number Publication Date
WO2013141131A1 true WO2013141131A1 (ja) 2013-09-26

Family

ID=49222590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057161 WO2013141131A1 (ja) 2012-03-23 2013-03-14 接続体の製造方法、及び電子部品の接続方法

Country Status (5)

Country Link
JP (1) JP5926590B2 (ja)
KR (1) KR102028466B1 (ja)
CN (1) CN104206032B (ja)
TW (1) TWI581972B (ja)
WO (1) WO2013141131A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291165B2 (ja) * 2013-03-15 2018-03-14 デクセリアルズ株式会社 接続体の製造方法、及び電子部品の接続方法
JP6324020B2 (ja) * 2013-10-28 2018-05-16 三菱電機株式会社 表示装置の製造方法および製造装置
JP2015179156A (ja) * 2014-03-19 2015-10-08 トッパン・フォームズ株式会社 情報表示媒体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180242A (ja) * 1990-11-14 1992-06-26 Matsushita Electric Ind Co Ltd Ic半導体素子の接合方法
JPH04346237A (ja) * 1991-05-23 1992-12-02 Matsushita Electric Ind Co Ltd Ic部品のリード接合装置及び方法
JPH08281958A (ja) * 1995-04-11 1996-10-29 Canon Inc 液体噴射記録ヘッドの製造方法
JP2005129756A (ja) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd 半導体素子の接合方法
JP2009004767A (ja) * 2007-05-24 2009-01-08 Sony Chemical & Information Device Corp 電気装置、接続方法及び接着フィルム
JP2009224395A (ja) * 2008-03-13 2009-10-01 Omron Corp 接合方法および接合装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483565B1 (ko) 1999-02-08 2005-04-15 히다치 가세고교 가부시끼가이샤 회로접속재료
TW200500387A (en) * 2003-06-02 2005-01-01 Showa Denko Kk Flexible wiring board and flex-rigid wiring board
WO2005052891A1 (ja) * 2003-11-26 2005-06-09 Sharp Kabushiki Kaisha フォトマスクおよびこれを用いた貼り合わせ基板の製造方法
JP4689249B2 (ja) * 2003-11-28 2011-05-25 株式会社半導体エネルギー研究所 表示装置の作製方法
JP2007298608A (ja) * 2006-04-28 2007-11-15 Victor Co Of Japan Ltd 光学部品の製造方法
JP2009224394A (ja) * 2008-03-13 2009-10-01 Omron Corp 接合装置および接合方法
WO2011077978A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
JP5730035B2 (ja) * 2011-01-25 2015-06-03 デクセリアルズ株式会社 接続構造体の製造方法、異方性導電接続方法及び接続構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180242A (ja) * 1990-11-14 1992-06-26 Matsushita Electric Ind Co Ltd Ic半導体素子の接合方法
JPH04346237A (ja) * 1991-05-23 1992-12-02 Matsushita Electric Ind Co Ltd Ic部品のリード接合装置及び方法
JPH08281958A (ja) * 1995-04-11 1996-10-29 Canon Inc 液体噴射記録ヘッドの製造方法
JP2005129756A (ja) * 2003-10-24 2005-05-19 Matsushita Electric Ind Co Ltd 半導体素子の接合方法
JP2009004767A (ja) * 2007-05-24 2009-01-08 Sony Chemical & Information Device Corp 電気装置、接続方法及び接着フィルム
JP2009224395A (ja) * 2008-03-13 2009-10-01 Omron Corp 接合方法および接合装置

Also Published As

Publication number Publication date
JP5926590B2 (ja) 2016-05-25
TWI581972B (zh) 2017-05-11
TW201345724A (zh) 2013-11-16
KR20140148421A (ko) 2014-12-31
JP2013201241A (ja) 2013-10-03
KR102028466B1 (ko) 2019-10-04
CN104206032A (zh) 2014-12-10
CN104206032B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5972844B2 (ja) 異方性導電フィルム、異方性導電フィルムの製造方法、接続体の製造方法、及び接続方法
TWI540591B (zh) A connection method, a method of manufacturing a connector, and a linker
WO2016060098A1 (ja) 接続体の製造方法、電子部品の接続方法、接続体
WO2013129437A1 (ja) 接続体の製造方法、及び異方性導電接着剤
CN107078071B (zh) 连接体的制造方法、电子部件的连接方法、连接体
JP6882224B2 (ja) 接続体の製造方法、及び電子部品の接続方法
WO2013141131A1 (ja) 接続体の製造方法、及び電子部品の接続方法
JP5836830B2 (ja) 接続体の製造方法、及び接続方法
JP6291165B2 (ja) 接続体の製造方法、及び電子部品の接続方法
WO2015111599A1 (ja) 接続体の製造方法、電子部品の接続方法
WO2016117613A1 (ja) 接続体の製造方法、電子部品の接続方法、接続体
JP2016039308A (ja) 接続体、接続体の製造方法及び電子部品の接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147029148

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13765021

Country of ref document: EP

Kind code of ref document: A1