WO2013140810A1 - Method for adjusting precursor powder for sintering, and precursor powder for sintering - Google Patents

Method for adjusting precursor powder for sintering, and precursor powder for sintering Download PDF

Info

Publication number
WO2013140810A1
WO2013140810A1 PCT/JP2013/001934 JP2013001934W WO2013140810A1 WO 2013140810 A1 WO2013140810 A1 WO 2013140810A1 JP 2013001934 W JP2013001934 W JP 2013001934W WO 2013140810 A1 WO2013140810 A1 WO 2013140810A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
powder
ore
iron ore
coke
Prior art date
Application number
PCT/JP2013/001934
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013140810A8 (en
Inventor
憲司 大屋
隆英 樋口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to AU2013236700A priority Critical patent/AU2013236700B2/en
Priority to CN201380015426.8A priority patent/CN104204243B/en
Priority to BR112014023425-6A priority patent/BR112014023425B1/en
Priority to JP2013556705A priority patent/JP5516832B2/en
Priority to KR1020147028654A priority patent/KR101525068B1/en
Publication of WO2013140810A1 publication Critical patent/WO2013140810A1/en
Publication of WO2013140810A8 publication Critical patent/WO2013140810A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Definitions

  • the present invention relates to a method for adjusting a raw powder for sintered ore for blast furnace and a raw powder for sintered ore obtained thereby.
  • the sintered ore is manufactured by the following method. First, iron ore having a particle size of about 10 mm or less is added to and mixed with coke as a coagulant, CaO-containing auxiliary material such as limestone, SiO 2- containing auxiliary material such as nickel slag, and the like. And mix and granulate with a disk pelletizer. Thereafter, the obtained pelletized raw material for sintered ore is charged together with powdered coke on a pallet of a sintering machine, and a raw material layer for sintered ore is formed on the pallet. Next, the sintered ore raw material layer is ignited through the solid fuel in the surface layer portion.
  • the solid fuel in the sintered ore raw material layer is sequentially burned and sintered by the action of air to form a sintered cake.
  • the sintered cake is crushed and sized, and then a cake having a certain particle size or more is sent to the blast furnace as a blast furnace sintered ore. That is, the sintered ore is obtained by reacting and melting iron ore with a slag component such as a so-called CaO or SiO 2 , agglomerated, and pelletized.
  • the powder coke in the raw material is burned by the air passing through the raw material layer for the sintered ore. That is, it can be said that the productivity is determined by the passing air volume (breathability) of the raw material layer for sintered ore.
  • the air permeability is determined by the cold air permeability before sintering determined by the particle size of iron ore and the pore size of the sintered cake, which is the air flow path generated through the flow of the melt. It is roughly divided into hot air permeability during and after sintering, but the cold air permeability before sintering determined by the particle size of iron ore etc. is the quality of the iron ore raw material mentioned above. It is easily affected by variations, and in recent years it has become a major issue for improving productivity.
  • the present invention has been developed in view of the above-described situation, and is a raw material powder for sintered ore used in a blast furnace, and is excellent in production efficiency of sintered ore even if there is a variation in the particle size of the iron ore raw material. It aims at providing the adjustment method of the raw material powder for sintered ores, and the raw material powder for sintered ores.
  • the inventors have intensively studied to solve the above problems. As a result, when mixing with a disk pelletizer, etc., it is possible to adjust the mixing ratio of the iron ore raw material of a predetermined shape and the powder coke of a predetermined shape in the raw material powder for sintering ore to a certain range. It has been found that it has an advantageous effect on improving efficiency. That is, in the present invention, the cold air permeability before sintering is improved by changing the properties of the powder coke according to the quality of the iron ore raw material (particle size variation). As a result, an excellent sintered pallet The air permeability (JPU index) of the raw material powder for sintered ore (granulated and pseudo-particle raw material) is achieved, and the production efficiency of the sintered ore can be improved.
  • JPU index The air permeability
  • the present invention is based on the above-described knowledge, and the gist configuration is as follows. 1.
  • Particle size in the iron ore raw material the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [(C / F) ⁇ 100] is adjusted to a range of 7 to 8%.
  • a raw material powder for sintered ore for blast furnace consisting of iron ore raw material, powder coke and auxiliary material, Particle size in the iron ore raw material: the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [(C / F) ⁇ 100] is a raw material powder for sintered ore in the range of 7 to 8%.
  • the air permeability (JPU index) of the raw material powder for sintered ore in the sintered pallet is stably excellent.
  • the production efficiency of sintered ore can be effectively improved.
  • iron ore raw material, powder coke and auxiliary raw material are mixed and granulated by a disk pelletizer to form raw material powder for sintered ore, and then this raw material powder for sintered ore is charged into a sintering machine.
  • the sintered ore for blast furnace is manufactured by sintering.
  • the productivity at the time of sintering that is, the firing calculated by the following equation (1):
  • the air permeability (JPU index: hereinafter simply referred to as JPU) of the sintered ore raw material powder in the pallet can be maintained high.
  • JPU means that air permeability is so good that a numerical value is large, and about 22 or more is a value made favorable from a viewpoint of productivity at the time of sinter ore manufacture.
  • (JPU) [air volume (m 3 / min) / firing area (m 2 )] ⁇ [layer thickness (mm) / negative pressure (mmAq)] 0.6
  • Air volume The air volume that passes through the raw material powder for sintered ore in a certain sintering area
  • Firing area the area of the raw material powder for sintered ore where the air volume is measured
  • Layer thickness The layer thickness of the raw powder for sintered ore at the location where the air volume was measured
  • the particle size is measured by a sieve classification method (JIS R6001 (1998)).
  • the iron ore raw material used in the present invention include South American hematite ore, North American magnetite ore, South American magnetite ore, Australian pisolite ore and Maramamba ore.
  • the particle size in the iron ore raw material the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [( C / F) ⁇ 100] is adjusted to a range of 7 to 8%, but the mass of the iron ore raw material when calculating the F is calculated without including the mass of the return ore. Shall.
  • the mechanism for achieving a good JPU by controlling the mixing ratio [(C / F) ⁇ 100] is considered as follows.
  • the mixing ratio is small, that is, less than 7, it means that the ore has a larger particle size than the powder coke particle size. Therefore, if the particle size of the powder coke becomes too small, the sintering speed increases, but the width of the sintered molten zone also increases and the hot air permeability deteriorates.
  • the mixing ratio is large, that is, larger than 8, the particle size of the powder coke is coarsened, and in the granulation process, the generation of pseudo particles having the powder coke as core particles becomes remarkable.
  • the disk pelletizer used in the present invention may be a normal disk pelletizer used for manufacturing (granulating) raw material powder for sintered ore.
  • a drum mixer can also be used by a conventionally well-known method for the lime exterior after preliminary mixing or granulation.
  • the sintering machine used in the present invention is preferably a downward suction droidoid sintering machine.
  • a known sintering machine for producing raw material powder for sintered ore can be used.
  • a raw material powder for sintered ore for a blast furnace that is excellent in production efficiency, which is composed of an iron ore raw material, a powder coke, and an auxiliary material. That is, the particle size in the iron ore raw material excluding reverse ore: mixing of the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powdered coke: the mass of powder coke of 0.5 mm or less (C)
  • a raw material powder for sintered ore having a ratio [(C / F) ⁇ 100] of 7 to 8%, preferably 7.2 to 7.8% can be obtained.
  • flour etc. the equipment used, and its operating conditions other than what was specified in the above.
  • Example 1 The raw material powder for sintered ore was adjusted under the conditions shown below. Next, the obtained raw material powder for sintered ore was charged and filled in a downward suctioned Dwytroid type sintering machine to produce a sintered ore. JPU at the time of sintering this raw material powder for sinter was investigated and the effect of the present invention was confirmed.
  • Basic unit of iron ore raw material 1100-1200 (kg / t-sr) Ratio of iron ore raw material of 0.5 mm or less: 20 to 35 (% raw material charge)
  • Basic unit of powder coke powder coke 45-50 (kg / t-sr) Ratio of powder coke of 0.5 mm or less: 30-50 (% vs. powder coke)
  • Auxiliary material is limestone: 6 to 10 (% of raw material charged)
  • Disc pelletizer 7.2m diameter
  • FIG. 1 shows the relationship between the mixing ratio [(C / F) ⁇ 100] of iron ore raw material of 0.5 mm or less and fine coke of 0.5 mm or less and JPU. From the figure, the JPU of the raw material powder for sintered ore made at a mixing ratio [(C / F) ⁇ 100] in a range satisfying the conditions of the present invention shows a good value of about 22 or more. In contrast, as shown in FIG. 1, the mixing ratio [(C / F) ⁇ 100] that does not satisfy the conditions of the present invention was inferior to JPU when the JPU was about 19 to 21, that is, 21 or less.
  • Example 2 An embodiment when the present invention is used in an actual machine will be described.
  • the iron ore raw material used in the normal sintering process was automatically sampled in the raw material yard, and then the particle size distribution was measured in accordance with Japanese Industrial Standard JIS 8706.
  • the powdered coke the lump coke produced at the coke factory and the purchased anthracite were accepted at the sintering factory and pulverized until the particle size distribution suitable for operation was used in the sintering process.
  • a device such as a rod mill, a cage mill, or a ball mill was used.
  • the ground coke after pulverization was sampled with a sampler installed in the belt conveyor transfer section, then dried with a dryer, and the particle size distribution was measured with a low-tap sieve.
  • the pulverization condition of the powder coke was adjusted according to the particle size composition of the iron ore that was received, that is, the abundance ratio of 0.5 mm or less, and the abundance ratio of 0.5 mm or less in the powder coke was changed.
  • JPU of the raw material powder for sintered ore made at a mixing ratio [(C / F) ⁇ 100] in a range satisfying the conditions of the present invention shows a good value of about 22 or more.
  • the mixing ratio [(C / F) ⁇ 100] did not satisfy the conditions of the present invention, the JPU was about 19 to 21, that is, 21 or less, which was inferior to the JPU.
  • the mixing ratio of C / F shown in the invention method is adjusted by adjusting not only the pulverizing conditions of the powder coke but also the coarse pulverizing conditions of the iron ore. Can be realized.
  • the present invention it is possible to obtain a raw material powder for sinter having excellent production efficiency of sinter. Further, in addition to improving productivity, the permeability of the sintered ore is maintained and the strength of the sintered ore is improved, so that stable and highly efficient operation of the blast furnace can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

According to the present invention, by adjusting a mixing ratio [(C/F) × 100] between the mass of an iron ore raw material (F) having particles with a diameter of not more than 0.5 mm, and the mass of coke breeze (C) having particles with a diameter of not more than 0.5 mm, to a range of seven to eight percent, a precursor powder for sintering, which is excellent for efficiently producing sinter, can be adjusted, without depending on the quality of the iron ore.

Description

焼結鉱用原料粉の調整方法および焼結鉱用原料粉Method for adjusting raw material powder for sintered ore and raw material powder for sintered ore
 本発明は、高炉用の焼結鉱用原料粉を調整する方法およびそれにより得られる焼結鉱用原料粉に関するものである。 The present invention relates to a method for adjusting a raw powder for sintered ore for blast furnace and a raw powder for sintered ore obtained thereby.
 安定的で高効率な高炉の操業には、冷間強度や被還元性、耐還元粉化性などの諸特性に優れた高品質の焼結鉱を使用することが重要である。しかし、このような焼結鉱は製造時における制御項目が多く、成品の歩留りや生産性の向上を図るために種々の問題が生じていた。 For stable and highly efficient blast furnace operation, it is important to use high-quality sintered ore with excellent properties such as cold strength, reducibility, and resistance to reduction dusting. However, such a sintered ore has many control items at the time of manufacture, and various problems have arisen in order to improve the yield and productivity of the product.
 一般に、焼結鉱は以下のような方法で製造されている。
 まず、10mm程度以下の粒径の鉄鉱石に対し、凝結材であるコークスや、石灰石などのCaO含有副原料、ニッケルスラグ等のSiO含有副原料などを加えて混合し、これに適当な水分を加えて、ディスクペレタイザーなどで混合や造粒を行う。その後、得られたペレット状の焼結鉱用原料は、焼結機のパレット上に粉コークスと共に装入され、パレット上に焼結鉱用原料層が形成される。次いで、焼結鉱用原料層に対して表層部の固体燃料を介して着火が行われる。そして、空気の作用により、焼結鉱用原料層中の固体燃料が順次に燃焼し、焼結して、焼結ケーキとなる。その焼結ケーキは、破砕されて整粒されたのち、一定粒径以上のものが高炉用焼結鉱として高炉に送られる。
 すなわち、焼結鉱は、鉄鉱石がフラックス、いわゆるCaOやSiOなどのスラグ成分と反応溶融し、塊状化し、ペレット化したものである。
Generally, the sintered ore is manufactured by the following method.
First, iron ore having a particle size of about 10 mm or less is added to and mixed with coke as a coagulant, CaO-containing auxiliary material such as limestone, SiO 2- containing auxiliary material such as nickel slag, and the like. And mix and granulate with a disk pelletizer. Thereafter, the obtained pelletized raw material for sintered ore is charged together with powdered coke on a pallet of a sintering machine, and a raw material layer for sintered ore is formed on the pallet. Next, the sintered ore raw material layer is ignited through the solid fuel in the surface layer portion. Then, the solid fuel in the sintered ore raw material layer is sequentially burned and sintered by the action of air to form a sintered cake. The sintered cake is crushed and sized, and then a cake having a certain particle size or more is sent to the blast furnace as a blast furnace sintered ore.
That is, the sintered ore is obtained by reacting and melting iron ore with a slag component such as a so-called CaO or SiO 2 , agglomerated, and pelletized.
 ここで、アジア諸国を始めとする新興国における鉄鋼材料の需要の伸びは、近年、特に目覚しいものがある。その伸びにつれて、高炉用の焼結鉱および高炉用の焼結鉱の原料である鉄鉱石の需要もまた伸び続けている。 Here, the growth in demand for steel materials in emerging countries including Asian countries has been particularly remarkable in recent years. With the growth, the demand for iron ore, which is a raw material for blast furnace sinter and blast furnace sinter, also continues to grow.
 上述した鉄鉱石の需要の伸びは、従来になかった問題を生じさせている。すなわち、供給される鉄鉱石の品質が自由に選べなくなってきていることである。特に、粒度分布のばらつきが大きい鉄鉱石などが供給されることが多くなってきている。
 加えて、前述したように、従来からの問題点である成品の歩留りや生産性の向上を図るという問題は依然として残っていた。すなわち、現在では、鉄鉱石の粒度のばらつきが大きいなかで、従来よりさらに焼結鉱の製造効率を向上させることが望まれているのである。
The above-mentioned growth in demand for iron ore has caused problems that have not existed before. In other words, the quality of iron ore to be supplied cannot be freely selected. In particular, iron ore having a large variation in particle size distribution is often supplied.
In addition, as described above, the problems of improving the product yield and productivity, which are the conventional problems, remain. That is, at present, it is desired to further improve the production efficiency of sintered ore than before, in spite of the large variation in the particle size of iron ore.
 ここに、焼結鉱を製造する際は、原料中の粉コークスを、焼結鉱用原料層内を通過する空気によって燃焼させている。すなわち、その生産性は、焼結鉱用原料層の通過風量(通気性)によって決定されると言える。また、通気性は、鉄鉱石などの粒径によって決定される焼結前の冷間通気性と、融液の流動を介して生成される空気の流路である焼結ケーキの気孔径によって決定される焼結中や焼結後の熱間通気性に大きく分けられているが、鉄鉱石などの粒径によって決定される焼結前の冷間通気性は、上述した鉄鉱石原料の品質のばらつきに影響を受けやすく、近年特に生産性向上に対する大きな課題になっていた。 Here, when producing the sintered ore, the powder coke in the raw material is burned by the air passing through the raw material layer for the sintered ore. That is, it can be said that the productivity is determined by the passing air volume (breathability) of the raw material layer for sintered ore. The air permeability is determined by the cold air permeability before sintering determined by the particle size of iron ore and the pore size of the sintered cake, which is the air flow path generated through the flow of the melt. It is roughly divided into hot air permeability during and after sintering, but the cold air permeability before sintering determined by the particle size of iron ore etc. is the quality of the iron ore raw material mentioned above. It is easily affected by variations, and in recent years it has become a major issue for improving productivity.
 しかしながら、現行では、上記した課題に対して、必ずしも有効な方策が提案されてはいなかった。 However, at present, effective measures have not necessarily been proposed for the above-mentioned problems.
 本発明は、上記した現状に鑑み開発されたもので、高炉に用いられる焼結鉱用原料粉であって、鉄鉱石原料の粒径にばらつきがあっても、焼結鉱の製造効率に優れる焼結鉱用原料粉の調整方法および焼結鉱用原料粉を提供することを目的とする。 The present invention has been developed in view of the above-described situation, and is a raw material powder for sintered ore used in a blast furnace, and is excellent in production efficiency of sintered ore even if there is a variation in the particle size of the iron ore raw material. It aims at providing the adjustment method of the raw material powder for sintered ores, and the raw material powder for sintered ores.
 発明者らは、上記した課題を解決するために鋭意検討を行った。その結果、ディスクペレタイザーで混合等を行うに当たり、焼結鉱用原料粉における所定形状の鉄鉱石原料と所定形状の粉コークスとの混合比を一定の範囲に調整することが、焼結鉱の製造効率の向上に有利に作用することを知見した。すなわち、本発明では、特に焼結前の冷間通気性を、鉄鉱石原料の品質(粒径のばらつき)に応じて粉コークスの性状を変えることで改善し、その結果、優れた焼結パレット内の焼結鉱用原料粉(造粒し擬似粒子化した焼結鉱用原料)の通気性(JPU指数)が達成されて、焼結鉱の製造効率の向上が図れるのである。 The inventors have intensively studied to solve the above problems. As a result, when mixing with a disk pelletizer, etc., it is possible to adjust the mixing ratio of the iron ore raw material of a predetermined shape and the powder coke of a predetermined shape in the raw material powder for sintering ore to a certain range. It has been found that it has an advantageous effect on improving efficiency. That is, in the present invention, the cold air permeability before sintering is improved by changing the properties of the powder coke according to the quality of the iron ore raw material (particle size variation). As a result, an excellent sintered pallet The air permeability (JPU index) of the raw material powder for sintered ore (granulated and pseudo-particle raw material) is achieved, and the production efficiency of the sintered ore can be improved.
 本発明は、上記した知見に基づくものであって、要旨構成は次のとおりである。
1.鉄鉱石原料と粉コークスと副原料とをディスクペレタイザーで混合、造粒した後、焼結機に装入して焼結することによって高炉用の焼結鉱を製造するに当たり、
 上記鉄鉱石原料中の粒径:0.5mm以下の鉄鉱石原料質量(F)と、上記粉コークス中の粒径:0.5mm以下の粉コークス質量(C)との混合比率〔(C/F)×100〕を、7~8%の範囲に調整する焼結鉱用原料粉の調整方法。
The present invention is based on the above-described knowledge, and the gist configuration is as follows.
1. In order to produce sintered ore for blast furnace by mixing and granulating iron ore raw material, powdered coke and auxiliary raw material with a disk pelletizer, charging in a sintering machine and sintering,
Particle size in the iron ore raw material: the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [(C / F) × 100] is adjusted to a range of 7 to 8%.
2.前記混合比率〔(C/F)×100〕を、7.2~7.8%の範囲とする前記1に記載の焼結鉱用原料粉の調整方法。 2. 2. The method for preparing a raw material powder for sintered ore according to 1 above, wherein the mixing ratio [(C / F) × 100] is in the range of 7.2 to 7.8%.
3.鉄鉱石原料と粉コークスと副原料とからなる高炉用の焼結鉱用原料粉であって、
 上記鉄鉱石原料中の粒径:0.5mm以下の鉄鉱石原料質量(F)と、上記粉コークス中の粒径:0.5mm以下の粉コークス質量(C)との混合比率〔(C/F)×100〕が7~8%の範囲である焼結鉱用原料粉。
3. A raw material powder for sintered ore for blast furnace consisting of iron ore raw material, powder coke and auxiliary material,
Particle size in the iron ore raw material: the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [(C / F) × 100] is a raw material powder for sintered ore in the range of 7 to 8%.
4.前記混合比率〔(C/F)×100〕が7.2~7.8%の範囲である前記3に記載の焼結鉱用原料粉。 4). 4. The raw material powder for sintered ore as described in 3 above, wherein the mixing ratio [(C / F) × 100] is in the range of 7.2 to 7.8%.
 本発明に従うことで、鉄鉱石原料の品質(粒度分布)にばらつきがあっても、安定的に優れた焼結パレット内の焼結鉱用原料粉の通気性(JPU指数)が達成されるので、焼結鉱の製造効率の向上が効果的に図れる。 By following the present invention, even if the quality (particle size distribution) of the iron ore raw material varies, the air permeability (JPU index) of the raw material powder for sintered ore in the sintered pallet is stably excellent. The production efficiency of sintered ore can be effectively improved.
鉄鉱石原料と粉コークスの混合比率〔(C/F)×100〕とJPUの関係を示すグラフである。It is a graph which shows the relationship between the mixing ratio [(C / F) * 100] of an iron ore raw material and powdered coke, and JPU.
 以下、本発明について具体的に説明する。
 本発明は、鉄鉱石原料と粉コークスと副原料とをディスクペレタイザーで混合、造粒して、焼結鉱用原料粉とした後、この焼結鉱用原料粉を焼結機に装入して焼結することにより高炉用の焼結鉱を製造するものである。その際、特に、以下述べるように、鉄鉱石原料と粉コークスとをその粒径に着目して、適宜組み合わせることにより、焼結時の生産性、すなわち、以下の(1)式で求められる焼結パレット内の焼結鉱用原料粉の通気性(JPU指数:以下単に、JPUという)を高く維持することができる。なお、JPUは数値が大きいほど通気性が良いことを意味し、22以上程度が焼結鉱製造時の生産性の観点から良好とされる値である。
 (JPU)=〔風量(m/min)/焼成面積(m)〕・〔層厚(mm)/負圧(mmAq)〕0.6  ・・・(1)
 ここで、式中、
風量:ある焼結面積における焼結鉱用原料粉を通り抜ける風量、
焼成面積:上記の風量を測定した焼結鉱用原料粉の面積、
層厚:風量を測定した場所の焼結鉱用原料粉の層厚、
負圧:焼結鉱用原料粉下部の吸引部の気圧
をそれぞれ示す。なお、1mmAq=9806.38Paである。
Hereinafter, the present invention will be specifically described.
In the present invention, iron ore raw material, powder coke and auxiliary raw material are mixed and granulated by a disk pelletizer to form raw material powder for sintered ore, and then this raw material powder for sintered ore is charged into a sintering machine. The sintered ore for blast furnace is manufactured by sintering. At that time, as described below, in particular, iron ore raw material and coke breeze pay attention to the particle size, and by combining them appropriately, the productivity at the time of sintering, that is, the firing calculated by the following equation (1): The air permeability (JPU index: hereinafter simply referred to as JPU) of the sintered ore raw material powder in the pallet can be maintained high. In addition, JPU means that air permeability is so good that a numerical value is large, and about 22 or more is a value made favorable from a viewpoint of productivity at the time of sinter ore manufacture.
(JPU) = [air volume (m 3 / min) / firing area (m 2 )] · [layer thickness (mm) / negative pressure (mmAq)] 0.6 (1)
Where
Air volume: The air volume that passes through the raw material powder for sintered ore in a certain sintering area,
Firing area: the area of the raw material powder for sintered ore where the air volume is measured,
Layer thickness: The layer thickness of the raw powder for sintered ore at the location where the air volume was measured,
Negative pressure: Indicates the pressure of the suction part at the bottom of the raw powder for sintered ore. Note that 1 mmAq = 9806.68 Pa.
 本発明で、粒径とは、篩い分級法(JIS R6001 (1998))により測定されたものである。
 なお、本発明に用いる鉄鉱石原料は、南米産ヘマタイト鉱石、北米産マグネタイト鉱、南米産マグネタイト鉱、豪州産ピソライト鉱石およびマラマンバ鉱石などが挙げられる。
In the present invention, the particle size is measured by a sieve classification method (JIS R6001 (1998)).
Examples of the iron ore raw material used in the present invention include South American hematite ore, North American magnetite ore, South American magnetite ore, Australian pisolite ore and Maramamba ore.
 本発明では、鉄鉱石原料中の粒径:0.5mm以下の鉄鉱石原料質量(F)と、粉コークス中の粒径:0.5mm以下の粉コークス質量(C)との混合比率〔(C/F)×100〕を、7~8%の範囲に調整することが特徴であるが、上記Fを求める際の鉄鉱石原料の質量には、返し鉱の質量分を含めないで計算するものとする。 In the present invention, the particle size in the iron ore raw material: the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [( C / F) × 100] is adjusted to a range of 7 to 8%, but the mass of the iron ore raw material when calculating the F is calculated without including the mass of the return ore. Shall.
 上記した混合比率〔(C/F)×100〕を制御することで、良好なJPUを達成するメカニズムについては、以下のように考えられる。
 上記混合比率が小さい、すなわち7未満の時は、粉コークス粒度に対して鉱石の粒度が大きいことを意味する。それ故、粉コークスの粒度が小さくなりすぎると、焼結速度は増加するものの、焼結溶融帯の幅も増加して熱間における通気性を悪化させる。一方、混合比率が大きい、すなわち8よりも大きい時は、粉コークスの粒度が粗粒化しており、造粒過程において、粉コークスを核粒子とする擬似粒子の生成が顕著となる。粉コークスを核粒子とする擬似粒子は、粉コークスの濡れ性が低いために、擬似粒子の強度が発現せず、焼結パレットへ装入されるまでのハンドリング過程で崩壊しやすく、その結果、焼結パレットへ装入される擬似粒子が細粒化し通気性を悪化させる。
 従って、鉱石粒径に対する粉コークス粒径の適正範囲が存在することは明らかであるが、その範囲は、C/F×100の値で示すことができ、上述のとおり7~8%である。なお、上記C/F×100の値の好適範囲は、7.2~7.8%である。
The mechanism for achieving a good JPU by controlling the mixing ratio [(C / F) × 100] is considered as follows.
When the mixing ratio is small, that is, less than 7, it means that the ore has a larger particle size than the powder coke particle size. Therefore, if the particle size of the powder coke becomes too small, the sintering speed increases, but the width of the sintered molten zone also increases and the hot air permeability deteriorates. On the other hand, when the mixing ratio is large, that is, larger than 8, the particle size of the powder coke is coarsened, and in the granulation process, the generation of pseudo particles having the powder coke as core particles becomes remarkable. Pseudoparticles with powdered coke as the core particles have low wettability of the powdered coke, so the strength of the pseudoparticles does not develop, and it tends to collapse in the handling process until it is charged into the sintered pallet. The pseudo particles charged into the sintering pallet become fine and deteriorate the air permeability.
Therefore, it is clear that there is an appropriate range of the powder coke particle size with respect to the ore particle size, but the range can be represented by a value of C / F × 100, and is 7 to 8% as described above. The preferable range of the value of C / F × 100 is 7.2 to 7.8%.
 本発明において、副原料とは、石灰石などのCaO含有副原料、ニッケルスラグ等のSiO含有副原料などが挙げられるが、特に制限はなく、通常公知の焼結鉱用原料粉に用いられる副原料や不可避的に混合してしまう不純物も含むものとする。
 また、その混合比率としては、焼結鉱中のCaO/SiO(=塩基度)が2.0付近となる様に定められる。
In the present invention, the auxiliary raw material includes CaO-containing auxiliary raw materials such as limestone, SiO 2 -containing auxiliary raw materials such as nickel slag, etc., but there is no particular limitation, and the auxiliary auxiliary materials used for commonly known sintered ore raw material powders. It shall contain raw materials and impurities that inevitably mix.
The mixing ratio is determined so that CaO / SiO 2 (= basicity) in the sintered ore is around 2.0.
 本発明に用いるディスクペレタイザーは、焼結鉱用原料粉の製造(造粒)に用いられる通常のディスクペレタイザーで良い。また、予備混合や造粒後の石灰外装等に、ドラムミキサーを従来公知の方法で用いることもできる。 The disk pelletizer used in the present invention may be a normal disk pelletizer used for manufacturing (granulating) raw material powder for sintered ore. Moreover, a drum mixer can also be used by a conventionally well-known method for the lime exterior after preliminary mixing or granulation.
 本発明に用いる焼結機は、下方吸引のドワイトロイド式焼結機が好ましい。その他、公知の焼結鉱用原料粉製造用の焼結機を用いることができる。 The sintering machine used in the present invention is preferably a downward suction droidoid sintering machine. In addition, a known sintering machine for producing raw material powder for sintered ore can be used.
 以上述べたように、本発明に従うことで、鉄鉱石原料と粉コークスと副原料とからなる製造効率に優れた高炉用の焼結鉱用原料粉を得ることができる。
 すなわち、返し鉱を除く鉄鉱石原料中の粒径:0.5mm以下の鉄鉱石原料質量(F)と、上記粉コークス中の粒径:0.5mm以下の粉コークス質量(C)との混合比率〔(C/F)×100〕が7~8%、好ましくは7.2~7.8%の範囲となる焼結鉱用原料粉を得ることができるのである。
 なお、上記において特に定めたもの以外、原料粉等の材料や使用設備、その運転条件等の製造方法は、常法に従えば良い。
As described above, according to the present invention, it is possible to obtain a raw material powder for sintered ore for a blast furnace that is excellent in production efficiency, which is composed of an iron ore raw material, a powder coke, and an auxiliary material.
That is, the particle size in the iron ore raw material excluding reverse ore: mixing of the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powdered coke: the mass of powder coke of 0.5 mm or less (C) A raw material powder for sintered ore having a ratio [(C / F) × 100] of 7 to 8%, preferably 7.2 to 7.8% can be obtained.
In addition, what is necessary is just to follow conventional methods for manufacturing methods, such as raw material powder | flour etc., the equipment used, and its operating conditions other than what was specified in the above.
 〔実施例1〕
 以下に示す条件で、焼結鉱用原料粉を調整した。ついで、得られた焼結鉱用原料粉を用いて、下方吸引のドワイトロイド式焼結機に装入充填し焼結鉱を作製した。この焼結鉱用原料粉を焼結する際のJPUを調査し本発明の効果を確認した。 
鉄鉱石原料
鉄鉱石原料の原単位:1100~1200(kg/t-sr)
0.5mm以下の鉄鉱石原料の比率:20~35(%対装入原料)
粉コークス
粉コークスの原単位:45~50(kg/t-sr)
0.5mm以下の粉コークスの比率:30~50(%対粉コークス)
混合比率〔(C/F)×100〕:6.5~8.2%
副原料は、石灰石:6~10(%対装入原料)
ディスクペレタイザー:7.2m径
[Example 1]
The raw material powder for sintered ore was adjusted under the conditions shown below. Next, the obtained raw material powder for sintered ore was charged and filled in a downward suctioned Dwytroid type sintering machine to produce a sintered ore. JPU at the time of sintering this raw material powder for sinter was investigated and the effect of the present invention was confirmed.
Basic unit of iron ore raw material: 1100-1200 (kg / t-sr)
Ratio of iron ore raw material of 0.5 mm or less: 20 to 35 (% raw material charge)
Basic unit of powder coke powder coke: 45-50 (kg / t-sr)
Ratio of powder coke of 0.5 mm or less: 30-50 (% vs. powder coke)
Mixing ratio [(C / F) × 100]: 6.5 to 8.2%
Auxiliary material is limestone: 6 to 10 (% of raw material charged)
Disc pelletizer: 7.2m diameter
 図1に、0.5mm以下の鉄鉱石原料と0.5mm以下の粉コークスの混合比率〔(C/F)×100〕とJPUの関係を示す。同図より、本発明の条件を満たす範囲の混合比率〔(C/F)×100〕で作られた焼結鉱用原料粉のJPUは、22以上程度の良好な数値を示している。
 これに対し、混合比率〔(C/F)×100〕が本発明の条件を満足しないものは、図1に示したとおり、JPUが19~21程度、すなわち21以下でJPUに劣っていた。
FIG. 1 shows the relationship between the mixing ratio [(C / F) × 100] of iron ore raw material of 0.5 mm or less and fine coke of 0.5 mm or less and JPU. From the figure, the JPU of the raw material powder for sintered ore made at a mixing ratio [(C / F) × 100] in a range satisfying the conditions of the present invention shows a good value of about 22 or more.
In contrast, as shown in FIG. 1, the mixing ratio [(C / F) × 100] that does not satisfy the conditions of the present invention was inferior to JPU when the JPU was about 19 to 21, that is, 21 or less.
 〔実施例2〕
 本発明を実機に用いた場合の実施例について説明する。
 通常焼結工程で使用する鉄鉱石原料は、原料ヤードにおいて自動サンプリングした後、日本工業規格JIS8706に従って粒度分布を測定した。
 粉コークスに関しては、通常コークス工場で製造された塊コークスの篩下や、購入無煙炭を焼結工場にて受け入れ、操業に適した粒度分布になるまで粉砕して焼結工程で使用した。
 粉砕は、ロッドミル、ケージミル、ボールミルなどの装置を用いた。ついで、粉砕後の粉コークスをベルトコンベア乗継部に設置されたサンプラーで採取し、その後、乾燥機で乾燥し、ロータップ式篩機にて粒度分布を測定した。
 本発明に従い、入荷した鉄鉱石の粒度構成、すなわち0.5mm以下の存在比率に応じて、粉コークスの粉砕条件を調整し、粉コークス中の0.5mm以下の存在比率を変更した。
[Example 2]
An embodiment when the present invention is used in an actual machine will be described.
The iron ore raw material used in the normal sintering process was automatically sampled in the raw material yard, and then the particle size distribution was measured in accordance with Japanese Industrial Standard JIS 8706.
As for the powdered coke, the lump coke produced at the coke factory and the purchased anthracite were accepted at the sintering factory and pulverized until the particle size distribution suitable for operation was used in the sintering process.
For grinding, a device such as a rod mill, a cage mill, or a ball mill was used. Next, the ground coke after pulverization was sampled with a sampler installed in the belt conveyor transfer section, then dried with a dryer, and the particle size distribution was measured with a low-tap sieve.
According to the present invention, the pulverization condition of the powder coke was adjusted according to the particle size composition of the iron ore that was received, that is, the abundance ratio of 0.5 mm or less, and the abundance ratio of 0.5 mm or less in the powder coke was changed.
 表1に、0.5mm以下の鉄鉱石原料(鉱石)と0.5mm以下の粉コークスの混合比率〔(C/F)×100〕とJPUの測定結果を併記する。なお、コークス成分をA(kg/t)、鉱石成分をB(kg/t)とし、コークスの0.5mm以下の比率をa(%)、鉱石の0.5mm以下の比率をb(%)とすると、C=A×a、F=B×bである。 In Table 1, the mixing ratio [(C / F) × 100] of the iron ore raw material (ore) of 0.5 mm or less and the powdered coke of 0.5 mm or less and the measurement result of JPU are shown together. The coke component is A (kg / t), the ore component is B (kg / t), the ratio of coke to 0.5 mm or less is a (%), and the ratio of ore to 0.5 mm or less is b (%). Then, C = A × a and F = B × b.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の条件を満たす範囲の混合比率〔(C/F)×100〕で作られた焼結鉱用原料粉のJPUは、22以上程度の良好な数値を示している。
 これに対し、混合比率〔(C/F)×100〕が本発明の条件を満足しないものは、表1に示したとおり、JPUが19~21程度、すなわち21以下でJPUに劣っていた。
From Table 1, JPU of the raw material powder for sintered ore made at a mixing ratio [(C / F) × 100] in a range satisfying the conditions of the present invention shows a good value of about 22 or more.
In contrast, as shown in Table 1, when the mixing ratio [(C / F) × 100] did not satisfy the conditions of the present invention, the JPU was about 19 to 21, that is, 21 or less, which was inferior to the JPU.
 また、鉄鉱石を分級し、粉砕できるラインを有する場合には、粉コークスの粉砕条件のみならず、鉄鉱石の粗粒粉砕条件を調整することにより、発明法で示す、C/Fの混合比率を実現することが可能である。 In addition, when the iron ore has a line that can be classified and pulverized, the mixing ratio of C / F shown in the invention method is adjusted by adjusting not only the pulverizing conditions of the powder coke but also the coarse pulverizing conditions of the iron ore. Can be realized.
 本発明によれば、焼結鉱の製造効率に優れた焼結鉱用原料粉を得ることができる。また、生産性向上のほか、通気性が維持されるため焼結鉱の塊歩留まり、強度が向上し、そのため、安定的で高効率な高炉の操業が図れる。 According to the present invention, it is possible to obtain a raw material powder for sinter having excellent production efficiency of sinter. Further, in addition to improving productivity, the permeability of the sintered ore is maintained and the strength of the sintered ore is improved, so that stable and highly efficient operation of the blast furnace can be achieved.

Claims (4)

  1.  鉄鉱石原料と粉コークスと副原料とをディスクペレタイザーで混合、造粒した後、焼結機に装入して焼結することによって高炉用の焼結鉱を製造するに当たり、
     上記鉄鉱石原料中の粒径:0.5mm以下の鉄鉱石原料質量(F)と、上記粉コークス中の粒径:0.5mm以下の粉コークス質量(C)との混合比率〔(C/F)×100〕を、7~8%の範囲に調整する焼結鉱用原料粉の調整方法。
    In order to produce sintered ore for blast furnace by mixing and granulating iron ore raw material, powdered coke and auxiliary raw material with a disk pelletizer, charging in a sintering machine and sintering,
    Particle size in the iron ore raw material: the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [(C / F) × 100] is adjusted to a range of 7 to 8%.
  2.  前記混合比率〔(C/F)×100〕を、7.2~7.8%の範囲とする請求項1に記載の焼結鉱用原料粉の調整方法。 The method for adjusting raw material powder for sintered ore according to claim 1, wherein the mixing ratio [(C / F) x 100] is in the range of 7.2 to 7.8%.
  3.  鉄鉱石原料と粉コークスと副原料とからなる高炉用の焼結鉱用原料粉であって、
     上記鉄鉱石原料中の粒径:0.5mm以下の鉄鉱石原料質量(F)と、上記粉コークス中の粒径:0.5mm以下の粉コークス質量(C)との混合比率〔(C/F)×100〕が7~8%の範囲である焼結鉱用原料粉。
    A raw material powder for sintered ore for blast furnace consisting of iron ore raw material, powder coke and auxiliary material,
    Particle size in the iron ore raw material: the iron ore raw material mass (F) of 0.5 mm or less and the particle size in the powder coke: the mixing ratio of the powder coke mass (C) of 0.5 mm or less [(C / F) × 100] is a raw material powder for sintered ore in the range of 7 to 8%.
  4.  前記混合比率〔(C/F)×100〕が7.2~7.8%の範囲である請求項3に記載の焼結鉱用原料粉。 4. The raw material powder for sintered ore according to claim 3, wherein the mixing ratio [(C / F) × 100] is in the range of 7.2 to 7.8%.
PCT/JP2013/001934 2012-03-22 2013-03-21 Method for adjusting precursor powder for sintering, and precursor powder for sintering WO2013140810A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2013236700A AU2013236700B2 (en) 2012-03-22 2013-03-21 Method for adjusting precursor powder for sintered ore, and precursor powder for sintered ore
CN201380015426.8A CN104204243B (en) 2012-03-22 2013-03-21 Method of adjustment and the sintering deposit raw meal of raw meal for sintering deposit
BR112014023425-6A BR112014023425B1 (en) 2012-03-22 2013-03-21 METHOD FOR ADJUSTING PRECURSOR POWDER FOR SINTERIZED ORE, AND PRECURSOR POWDER FOR SYNTHESIZED ORE
JP2013556705A JP5516832B2 (en) 2012-03-22 2013-03-21 Method for adjusting raw material powder for sintered ore and raw material powder for sintered ore
KR1020147028654A KR101525068B1 (en) 2012-03-22 2013-03-21 Method for adjusting precursor powder for sintered ore, and precursor powder for sintered ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066333 2012-03-22
JP2012-066333 2012-03-22

Publications (2)

Publication Number Publication Date
WO2013140810A1 true WO2013140810A1 (en) 2013-09-26
WO2013140810A8 WO2013140810A8 (en) 2014-10-16

Family

ID=49222283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001934 WO2013140810A1 (en) 2012-03-22 2013-03-21 Method for adjusting precursor powder for sintering, and precursor powder for sintering

Country Status (7)

Country Link
JP (1) JP5516832B2 (en)
KR (1) KR101525068B1 (en)
CN (1) CN104204243B (en)
AU (1) AU2013236700B2 (en)
BR (1) BR112014023425B1 (en)
TW (1) TWI473882B (en)
WO (1) WO2013140810A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181672A1 (en) * 2018-03-20 2019-09-26 Jfeスチール株式会社 Granulated material, method for producing granulated material, and method for producing sintered ore
WO2019188668A1 (en) * 2018-03-29 2019-10-03 Jfeスチール株式会社 Granulated substance, method for producing granulated article, method for producing sintered ore

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288003B1 (en) * 2016-12-28 2021-08-09 제이에프이 스틸 가부시키가이샤 Manufacturing method of sintered ore
BR112019021450B1 (en) * 2017-04-17 2023-03-21 Jfe Steel Corporation METHOD TO PRODUCE SINTERED ORE
CN114264585B (en) * 2020-09-16 2023-11-14 宝山钢铁股份有限公司 Method for simulating and measuring air permeability of carbon-iron composite furnace burden for production
EP4286546A1 (en) * 2023-02-23 2023-12-06 Tata Steel IJmuiden B.V. Method for the manufacturing of sinter granules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118215A (en) * 1977-03-26 1978-10-16 Sumitomo Metal Ind Ltd Sintering method
JPH024658B2 (en) * 1985-06-27 1990-01-30 Nippon Kokan Kk
JPH07331343A (en) * 1994-05-31 1995-12-19 Nippon Steel Corp Exhaust gas circulated sintering operation method
JP2008101263A (en) * 2006-10-20 2008-05-01 Nippon Steel Corp Method for granulating raw material to be sintered

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089739B2 (en) * 1989-08-23 1996-01-31 日本鋼管株式会社 Method for producing calcined agglomerated ore
KR100587709B1 (en) * 2003-03-20 2006-06-08 가부시키가이샤 고베 세이코쇼 manufacturing process for sintered ore
JP5004421B2 (en) * 2004-09-17 2012-08-22 Jfeスチール株式会社 Method for producing sintered ore
JP4661154B2 (en) * 2004-10-01 2011-03-30 Jfeスチール株式会社 Method for producing sintered ore
CN101928824B (en) * 2009-06-22 2013-05-01 鞍钢股份有限公司 Sinter production method for reducing sintering solid burnup and enhancing intensity
CN102206744B (en) * 2010-03-29 2013-04-10 攀钢集团钢铁钒钛股份有限公司 Method for granulating sinter mixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118215A (en) * 1977-03-26 1978-10-16 Sumitomo Metal Ind Ltd Sintering method
JPH024658B2 (en) * 1985-06-27 1990-01-30 Nippon Kokan Kk
JPH07331343A (en) * 1994-05-31 1995-12-19 Nippon Steel Corp Exhaust gas circulated sintering operation method
JP2008101263A (en) * 2006-10-20 2008-05-01 Nippon Steel Corp Method for granulating raw material to be sintered

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181672A1 (en) * 2018-03-20 2019-09-26 Jfeスチール株式会社 Granulated material, method for producing granulated material, and method for producing sintered ore
CN111902549A (en) * 2018-03-20 2020-11-06 杰富意钢铁株式会社 Granulated substance, method for producing granulated substance, and method for producing sintered ore
CN111902549B (en) * 2018-03-20 2022-11-15 杰富意钢铁株式会社 Granulated substance, method for producing granulated substance, and method for producing sintered ore
WO2019188668A1 (en) * 2018-03-29 2019-10-03 Jfeスチール株式会社 Granulated substance, method for producing granulated article, method for producing sintered ore

Also Published As

Publication number Publication date
JP5516832B2 (en) 2014-06-11
TW201339314A (en) 2013-10-01
TWI473882B (en) 2015-02-21
CN104204243B (en) 2016-05-04
WO2013140810A8 (en) 2014-10-16
KR20140134327A (en) 2014-11-21
AU2013236700A1 (en) 2014-10-02
AU2013236700B2 (en) 2015-04-23
BR112014023425B1 (en) 2019-05-28
JPWO2013140810A1 (en) 2015-08-03
KR101525068B1 (en) 2015-06-02
CN104204243A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5516832B2 (en) Method for adjusting raw material powder for sintered ore and raw material powder for sintered ore
CN109423555B (en) Efficient iron ore sintering method using low-silicon iron fine powder
CN101701289A (en) Method for intensifying limonite sintering
US10683562B2 (en) Reduced iron manufacturing method
US9175363B2 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
KR20150071388A (en) Method for manufacturing sintered iron ore
CN110791645B (en) Production method of vanadium-titanium alkaline pellet ore
JP2016020520A (en) Pretreatment method of sintering raw material
JP5505579B2 (en) Method for adjusting raw material powder for sintered ore and raw material powder for sintered ore
JP2009019224A (en) Method for manufacturing sintered ore
WO2016039247A1 (en) Method for producing granular metallic iron
JP7024649B2 (en) Granulation method of raw material for sintering
KR102458931B1 (en) Method for manufacturing sintered ore
JPH0742519B2 (en) Pretreatment method for raw material for blast furnace
JP2017172020A (en) Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same
KR20210079990A (en) Method for manufacturing sintered ore
JP2014167164A (en) Method for manufacturing reduced iron
JP2015196900A (en) Method for manufacturing reduced iron
CN114317948A (en) Production method for improving drum strength of sinter
JPH0693346A (en) Method for pre-granulating sintering raw material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380015426.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556705

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013236700

Country of ref document: AU

Date of ref document: 20130321

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147028654

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014023425

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13764948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014023425

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140922