WO2013140786A1 - 炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法 - Google Patents

炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法 Download PDF

Info

Publication number
WO2013140786A1
WO2013140786A1 PCT/JP2013/001863 JP2013001863W WO2013140786A1 WO 2013140786 A1 WO2013140786 A1 WO 2013140786A1 JP 2013001863 W JP2013001863 W JP 2013001863W WO 2013140786 A1 WO2013140786 A1 WO 2013140786A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
region
sheet
preform
area
Prior art date
Application number
PCT/JP2013/001863
Other languages
English (en)
French (fr)
Inventor
絢太郎 長崎
鈴木 保
治彦 辻
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP13764651.9A priority Critical patent/EP2829569A4/en
Priority to KR1020147024723A priority patent/KR20140139493A/ko
Priority to US14/385,907 priority patent/US20150048555A1/en
Priority to CN201380014825.2A priority patent/CN104245803A/zh
Publication of WO2013140786A1 publication Critical patent/WO2013140786A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/12Dielectric heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/142Variation across the area of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential

Definitions

  • the present invention relates to a carbon fiber preform.
  • Carbon fiber reinforced plastic is widely known as a composite material with improved resin strength.
  • Such a carbon fiber reinforced plastic is produced, for example, by impregnating a base material containing carbon fibers (hereinafter, also referred to as “carbon fiber preform” or simply “preform”) with a thermosetting resin and heating.
  • the As a kind of carbon fiber preform a type manufactured by laminating a plurality of carbon fiber sheets and bonding the sheets together is known.
  • As a method of bonding a plurality of laminated carbon fiber sheets a method of placing a laminate of a plurality of carbon fiber sheets on a heated mold and pressurizing, an electric heating method, an induction heating method, an ultrasonic welding method, etc. Can be illustrated.
  • a resin disposed between the layers of the carbon fiber sheet and the carbon fiber sheet, a resin disposed on the surface of the carbon fiber sheet, or a resin impregnated in the carbon fiber sheet is heated and melted.
  • a method for fixing the carbon fiber sheets by cooling and solidifying the resin later is common.
  • a method for bonding a plurality of laminated carbon fiber sheets has to be selected according to the use of the carbon fiber preform.
  • the electric heating method, the dielectric heating method, and the ultrasonic welding method can be bonded in a relatively short time.
  • the ultrasonic welding method requires an instrument (horn) serving as an ultrasonic transmission source
  • the induction heating method requires an instrument (coil) serving as a magnetic field transmission source.
  • the device becomes expensive.
  • the ultrasonic welding method it is easy to bond a planar carbon fiber sheet, but it is difficult to place the carbon fiber sheet having a three-dimensional shape in a mold, and there are many restrictions.
  • the current heating method uses the mold itself as an electrode and generates heat using the contact resistance between the layers of a plurality of carbon fiber sheets, so the configuration of the apparatus used is simple.
  • the energization heating method is a type of preform in which an insulating member is interposed in the energization path (for example, a preform in which a glass fiber sheet is disposed between laminated carbon fiber sheets or on the surface layer of the laminate). It is not suitable for the production of (reform). This is because current cannot be applied in the stacking direction, and as a result, the resin as the adhesive resin cannot be heated and melted using resistance heat generation.
  • a preform having an insulating member can be manufactured with an apparatus having a simple configuration. Further, in view of the time required for the process after manufacturing the preform, it is required that the preform can be manufactured in a short time. There is also a need for a preform that has a repulsive force in the stacking direction of the carbon fiber sheets. There is also a need to reduce the energy required to manufacture the preform.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms or application examples.
  • a resistance region having a higher electrical resistance in the stacking direction than the carbon fiber sheet and a conduction region having a lower electrical resistance in the stacking direction than the resistance region are distributed in a plane direction perpendicular to the stacking direction.
  • the partially energized layer is provided in at least one of a position between at least one set of adjacent carbon fiber sheets of the plurality of carbon fiber sheets and a position on a surface layer of the carbon fiber preform, A carbon fiber preform in which the plurality of carbon fiber sheets are bonded to each other through the adhesive resin in the energization region provided in the partial energization layer and in a region corresponding to the periphery of the energization region.
  • the carbon fiber preform having such a configuration can be manufactured by an electric heating method. Specifically, the carbon fiber sheet can be bonded by energizing in the direction of lamination of the carbon fiber sheets through the energization region of the partial energization layer. Therefore, the carbon fiber preform can be manufactured in a relatively short time. Moreover, since it is sufficient to provide a pair of electrodes used in the energization heating method in the direction of lamination, a carbon fiber preform can be manufactured with a device having a simple configuration. It should be noted that a current-carrying region whose electrical resistance in the stacking direction is lower than that of the resistance region can also be grasped as “a region where current can be passed” or “a region where current can be easily passed”.
  • the electric resistance of the energized region in the stacking direction may be smaller than the electric resistance of the carbon fiber sheet or larger than the electric resistance of the carbon fiber sheet.
  • the partial energization layer may further include a region having a resistance with a magnitude between the resistance size of the resistance region and the resistance size of the energization region.
  • the repulsive force in the direction of stacking the carbon fiber sheets can be ensured as compared with the case where the entire surface of the carbon fiber sheets are bonded.
  • the carbon fiber preform according to Application Example 1 or Application Example 2 is composed of an insulating sheet,
  • region is a carbon fiber preform containing the opening part which penetrates the said insulating sheet in the direction of the said lamination
  • the partially energized layer can have a simple configuration.
  • the cost of the carbon fiber preform can be reduced.
  • the manufacturing process of a carbon fiber preform can be simplified.
  • the carbon fiber preform according to any one of Application Examples 1 to 3 The carbon fiber preform has an area of the energization region that is larger than 1% of an area of the carbon fiber sheet.
  • the carbon fiber sheets when the energization region exceeds 1%, the carbon fiber sheets can be bonded to such an extent that the form of the preform can be maintained.
  • the carbon fiber preform having such a configuration energy required in the manufacturing process can be reduced. Specifically, the amount of power required for energization heating can be reduced.
  • the present invention can also be configured as carbon fiber reinforced plastics of Application Examples 6 to 9.
  • the carbon fiber reinforced plastics of the application examples 6 to 9 have the same effects as the carbon fiber preforms of the application examples 1 to 4 corresponding thereto.
  • a resistance region having a higher electrical resistance in the stacking direction than the carbon fiber sheet and a conduction region having a lower electrical resistance in the stacking direction than the resistance region are distributed in a plane direction perpendicular to the stacking direction.
  • the partially energized layer is provided in at least one of a position between at least one pair of adjacent carbon fiber sheets among the plurality of carbon fiber sheets and a position on the surface layer of the carbon fiber reinforced plastic.
  • the partially energized layer includes a position between at least one set of adjacent carbon fiber sheets among the plurality of carbon fiber sheets, and a position on the surface layer of one or more carbon fiber sheets among the plurality of carbon fiber sheets. It can also be set as the aspect with which at least one is provided.
  • the carbon fiber reinforced plastic according to Application Example 6 is composed of an insulating sheet,
  • the energization region is a carbon fiber reinforced plastic including an opening that penetrates the insulating sheet in the direction of the lamination.
  • region is a carbon fiber reinforced plastic which is 20% or less of the area of the said carbon fiber sheet.
  • the present invention can also be realized as a method for manufacturing carbon fiber preforms of application examples 10 to 13.
  • the manufacturing methods of Application Example 10 to Application Example 13 have the same effects as Application Example 3, Application Example 2, Application Example 4, and Application Example 5, respectively.
  • this invention is realizable also as a manufacturing method of a carbon fiber reinforced plastic.
  • a laminate in which an insulating sheet and a plurality of carbon fiber sheets are laminated via an adhesive resin having thermoplastic properties is prepared. Functions as an electrode for applying a voltage to the laminate of the insulating sheet and the plurality of carbon fiber sheets, sandwiching the laminate with two opposing molds, In the method for producing a carbon fiber preform, wherein the mold shape of the two molds is transferred to the laminate, As the insulating sheet, using an insulating sheet in which an opening penetrating in the direction of the lamination is formed, preparing the laminate, and placing the laminate in the two molds; The two molds pressurize the laminated body in the direction of the lamination, apply a voltage to the two molds to pass a current through the laminated body, and heat the plurality of carbon fiber sheets.
  • a carbon fiber preform manufacturing method according to Application Example 10 or Application Example 11, The method for producing a carbon fiber preform, wherein an opening area of the opening is greater than 1% of an area of the carbon fiber sheet.
  • a carbon fiber preform manufacturing method according to any one of Application Example 10 to Application Example 12,
  • the opening area of the said opening part is a manufacturing method of the carbon fiber preform which is 20% or less of the area of the said carbon fiber sheet.
  • FIG. 3 is an explanatory diagram schematically showing a cross-sectional configuration of a preform 20.
  • FIG. 4 is a process diagram illustrating a manufacturing procedure of the preform 20. It is explanatory drawing which shows the structure of the insulating sheet.
  • 5 is an explanatory diagram showing a laminated body 60.
  • FIG. It is explanatory drawing which shows a mode that the laminated body 60 is arrange
  • FIG. 1 shows a schematic configuration of a preform 20 as an embodiment of the carbon fiber preform of the present invention.
  • the preform 20 is used when manufacturing a carbon fiber reinforced plastic.
  • a carbon fiber reinforced plastic can be manufactured, for example, using an RTM (Resin Transfer Molding) method. Specifically, first, the preform 20 is placed in a mold having a cavity having a shape corresponding to the shape of the preform 20. Then, a thermosetting resin is injected into the cavity, the preform 20 is impregnated with the thermosetting resin, and then heated. As a result, a carbon fiber reinforced plastic is completed. For this reason, the shape of the preform 20 is a shape corresponding to the shape of the carbon fiber reinforced plastic as a finished product.
  • the preform 20 includes a flat portion 21 and a protruding portion 22.
  • the flat part 21 is a flat plate-shaped part.
  • the outer edge of the flat part 21 has a rectangular shape.
  • the protruding part 22 is a part protruding from the flat part 21 to one side.
  • the thickness of the preform 20 at the protruding portion 22 is substantially the same as the thickness of the flat portion 21. That is, a cavity having a shape corresponding to the shape of the protruding portion 22 is formed on the side opposite to the protruding side of the protruding portion 22.
  • the protruding portion 22 has a substantially circular flat top surface that protrudes concentrically from a substantially circular base end portion 23. In other words, the shape of the protrusion 22 is substantially a truncated cone. In the protruding portion 22, the boundary between the top surface and the side surface is referred to as a tip portion 24.
  • the shape of the preform 20 can be any desired shape.
  • FIG. 2 schematically shows a cross-sectional configuration of the preform 20.
  • FIG. 2 shows a cross section of the preform 20 cut in the thickness direction.
  • the size and thickness of each illustrated component do not necessarily match the actual size and thickness.
  • the preform 20 has a multilayer structure. Specifically, the preform 20 has a structure in which four carbon fiber sheets 31 to 34 and one insulating sheet 40 are laminated. The direction in which the carbon fiber sheets 31 to 34 and the insulating sheet 40 are laminated is also referred to as “lamination direction”.
  • the carbon fiber sheets 31 to 34 are sheet-like members in which carbon fibers are knitted in this embodiment.
  • the form of the carbon fiber sheet is a woven fabric made of carbon fibers in this embodiment.
  • the form of the carbon fiber sheet is not limited to this.
  • the form of the carbon fiber sheet is (i) a woven fabric, (ii) a knitted fabric, (iii) a braided fabric, (iv) a non-woven fabric, and (v) a reinforcing fiber sheet aligned in one direction as a binder or a fusible non-woven fabric.
  • it may be a unidirectional sheet whose form is stabilized with stitch yarn or the like, or (vi) a mat composed of short fibers of random orientation.
  • the insulating sheet 40 is a sheet-like member made of an insulator.
  • a mat made of glass fiber was used as the insulating sheet 40.
  • the insulating sheet for example, natural fibers such as cotton, hemp, bamboo, or synthetic fibers such as polyester and nylon may be used.
  • the material of the insulating sheet 40 is not limited to these materials, and various insulating members can be used as the material of the insulating sheet 40.
  • the insulating member is preferably in the form of a sheet such as a woven fabric, a nonwoven fabric, or a film.
  • the aspect of the insulating member is not limited to a sheet shape.
  • the insulating sheet 40 is between the carbon fiber sheet 32 and the carbon fiber sheet 33, that is, in the center (third layer) of the five-layer structure including the carbon fiber sheets 31 to 34 and the insulating sheet 40. positioned.
  • the insulating sheet 40 has a plurality of openings 41 formed therein.
  • the opening 41 is a through hole that penetrates the insulating sheet 40 in the thickness direction (stacking direction).
  • An adhesive resin 50 is interposed between the layers including the carbon fiber sheets 31 to 34 and the insulating sheet 40.
  • the adhesive resin 50 is schematically represented by a circle.
  • the adhesive resin 50 is dispersed in the plane direction of the carbon fiber sheets 31 to 34 and the insulating sheet 40 (hereinafter also simply referred to as “plane direction”).
  • the adhesive resin 50 is used for bonding the carbon fiber sheets.
  • the adhesive resin 50 a member that exhibits an adhesive function of adhering each layer by being melted by heating, further cooled and solidified can be used.
  • the adhesive resin 50 is also called “tackfire”.
  • the adhesive resin 50 is a particulate thermoplastic resin.
  • thermoplastic resin for example, polyolefin resin, styrene resin, nylon resin, polyamide resin, polyurethane resin and the like can be used.
  • the thermoplastic resin used for the adhesive resin 50 is not limited to these materials, and various thermoplastic resins can be used. In addition, as the thermoplastic resin used for the adhesive resin 50, these thermoplastic resins can be used in combination.
  • the material of the adhesive resin 50 is not limited to a thermoplastic resin.
  • a thermosetting resin may be used as the material of the adhesive resin 50. Examples of such a thermosetting resin include an epoxy resin, a phenol resin, and an unsaturated polyester resin.
  • the form of the adhesive resin 50 is not limited to the particulate form, and can be set as appropriate.
  • the adhesive resin 50 may be fibrous. Moreover, the adhesive resin 50 may exist in places other than an interlayer, and the form of the adhesive resin 50 is not specifically limited. For example, the adhesive resin 50 may be randomly distributed in the carbon fiber sheet. Alternatively, when the adhesive resin 50 is in the form of a fiber, the adhesive resin fibers are aligned in the carbon fiber sheet, the adhesive resin fiber is used as an auxiliary yarn (warp or weft) of the fabric, or the carbon fiber sheet Stitching of the adhesive resin fibers may be performed.
  • the layers of the carbon fiber sheets 31 to 34 and the insulating sheet 40 are bonded via an adhesive resin 50 at positions corresponding to the opening 41 and the periphery thereof in the surface direction. That is, the adhesive resin 50 present at positions corresponding to the opening 41 and the periphery thereof is melted and cooled and solidified to exhibit an adhesive function. In other regions where the electrical resistance is high, since the electrical resistance is high and almost no current is supplied, the adhesive resin 50 is not melted. Therefore, in these regions, the layers of the carbon fiber sheets 31 to 34 and the insulating sheet 40 are not bonded, or even if there is a partially bonded portion, the portion is defined as the preform 20. It does not lead to exhibiting an adhesive force that can fix the form. In FIG. 2, only the circle corresponding to the adhesive resin 50 exhibiting the adhesive function is displayed in black. This configuration results from the manufacturing method of the preform 20. A method for manufacturing the preform 20 will be described later.
  • the carbon fiber sheet 32 and the carbon fiber sheet 33 are illustrated so as not to be in direct contact with each other. That is, in the portion where the adhesive resin 50 does not exist between the carbon fiber sheet 32 and the carbon fiber sheet 33, the carbon fiber sheet 32 and the carbon fiber sheet 33 are illustrated so as not to contact each other.
  • the fiber orientation of the carbon fiber sheets 32 and 33 is not completely constant along the in-plane direction of the sheet. For this reason, the carbon fiber sheets 32 and 33 are usually in contact with each other by some fibers extending in the stacking direction. The same applies between the carbon fiber sheets 31 and 32 and between the carbon fiber sheets 33 and 34.
  • the carbon fiber sheet 32 and the carbon fiber sheet 33 disposed on both sides of the insulating sheet 40 are bonded via an adhesive resin 50 that exhibits an adhesive function. It is glued.
  • the carbon fiber sheet 32 and the carbon fiber sheet 33 are not bonded inside the opening 41b. This is because the adhesive resin 50 exhibiting an adhesive function does not exist inside the opening 41b. That is, in the present embodiment, the carbon fiber sheet 32 and the carbon fiber sheet 33 do not necessarily have to be bonded via the adhesive resin 50 inside all the openings 41.
  • the aspect in which the carbon fiber sheet and the carbon fiber sheet are bonded in a part of the openings is realized by reducing the amount of the adhesive resin used or by unevenly distributing the adhesive resin in the plane direction between the layers. Can.
  • FIG. 3 shows the manufacturing procedure of the preform 20 described above.
  • the carbon fiber sheets 31 to 34 and the insulating sheet 40 are prepared (step S110).
  • the carbon fiber sheets 31 to 34 and the insulating sheet 40 at this stage do not have the shape of the preform 20 shown in FIG. That is, the sheet surfaces of the carbon fiber sheets 31 to 34 and the insulating sheet 40 have a rectangular shape in which the entire surface is flat.
  • the carbon fiber sheets 31 to 34 and the insulating sheet 40 have substantially the same area.
  • the areas of the carbon fiber sheets 31 to 34 and the insulating sheet 40 do not necessarily have to be substantially the same.
  • the area of the carbon fiber sheets 31 to 34 may be larger or smaller than the area of the insulating sheet 40.
  • the basis weight of the carbon fiber sheets 31 to 34 that is, the weight per unit area is 200 g / m 2 in this embodiment.
  • the basis weight of the insulating sheet 40 is 60 g / m 2 in this embodiment.
  • the basis weights of the carbon fiber sheets 31 to 34 and the insulating sheet 40 are such that the carbon fiber sheet 32 and the carbon fiber sheet 34 can be brought into contact with each other inside the opening 41 and can be energized in step S150 described later.
  • To 34 and the basis weight relationship of the insulating sheet 40 may be set. For example, even if the basis weight of the carbon fiber sheets 31 to 34 is about 70 to 500 g / m 2 and the basis weight of the insulating sheet 40 is about 30 to 180 g / m 2 , the above relationship can be secured.
  • FIG. 4 shows a specific example of the insulating sheet 40 prepared in step S110.
  • the sheet surface of the insulating sheet 40 has a rectangular shape.
  • the insulating sheet 40 has a plurality of openings 41 penetrating the sheet surface (see FIG. 2).
  • each opening 41 is formed in a circular shape.
  • the openings 41 are distributed on the sheet surface of the insulating sheet 40 at almost equal intervals.
  • Each opening 41 has a diameter of 4.5 mm (area is about 16 mm 2 ) in this embodiment.
  • the size of the opening 41 only needs to be set to a size that allows the carbon fiber sheet 32 and the carbon fiber sheet 34 to contact with each other inside the opening 41 in step S150 to be described later. For example, if the area of each opening 41 is 10 mm 2 or more, the current can be reliably supplied.
  • the ratio of the total area of the openings 41 to the area of the carbon fiber sheets 31 to 34 (area of one sheet) (hereinafter also referred to as “opening area ratio”) is 6 %.
  • the opening area ratio is desirably larger than 1%.
  • the opening area ratio is desirably 20% or less. The reason will be described later.
  • the area of the insulating sheet 40 is smaller than the area of the carbon fiber sheets 31 to 34, the total area of the openings 41, the area of the carbon fiber sheets 31 to 34, and the area of the insulating sheet 40
  • the ratio of the total value with the difference value (positive number) to the area of the carbon fiber sheets 31 to 34 is referred to as “opening area ratio”.
  • the description returns to the manufacturing procedure of the preform 20 (FIG. 3).
  • the adhesive resin 50 is then applied to the carbon fiber sheets 31 to 34 (step S120).
  • a technique such as spraying or coating can be used.
  • the application of the adhesive resin 50 may be performed on both surfaces of the carbon fiber sheets 31 to 34, or may be performed on one surface.
  • the application of the adhesive resin 50 may be performed on the insulating sheet 40 instead of the carbon fiber sheets 32 and 33. That is, the adhesive resin 50 may be applied so that the adhesive resin 50 is interposed between the respective layers when the carbon fiber sheets 31 to 34 and the insulating sheet 40 are laminated.
  • the surface of the laminate 60 in which the carbon fiber sheets 31 to 34 and the insulating sheet 40 are laminated that is, the surface of the two surfaces of the carbon fiber sheet 31 opposite to the insulating sheet 40, and 2 of the carbon fiber sheet 34.
  • the adhesive resin 50 is not applied to the surface of the surface opposite to the insulating sheet 40.
  • the application amount of the adhesive resin 50 is such that the entire surfaces of the carbon fiber sheets 31 to 34 and the insulating sheet 40 are not covered with the adhesive resin 50, that is, energization is possible in the stacking direction of the laminate 60 in step S150 described later. What is necessary is just to set within the range of a certain amount.
  • the amount of the adhesive resin 50 applied is an amount that can be reliably applied to each of the positions corresponding to the openings 41.
  • the adhesive resin 50 may be impregnated in, for example, the carbon fiber sheets 31 to 34 or the insulating sheet 40. Or insulating sheet 40 itself may be comprised with adhesive resin. In these cases, since the adhesive resin is contained in the carbon fiber sheets 31 to 34 and the insulating sheet 40 prepared in Step S110, Step S120 can be omitted.
  • FIG. 5 shows how the laminated body 60 is formed by laminating the carbon fiber sheets 31 to 34 and the insulating sheet 40.
  • the adhesive resin 50 is applied, next, as shown in FIG. 5, the carbon fiber sheets 31 to 34 and the insulating sheet 40 are laminated to form a laminated body 60 (step S130 in FIG. 3).
  • illustration of the adhesive resin 50 is omitted.
  • FIG. 6 shows a state in which the laminate 60 is arranged in the mold 70.
  • the mold 70 includes an upper mold 71 and a lower mold 72.
  • the upper mold 71 and the lower mold 72 have a shape corresponding to the shape of the preform 20 (see FIG. 1).
  • the upper mold 71 and the lower mold 72 are connected to a power source 81 via a transformer 82.
  • the upper die 71 and the lower die 72 function as a press die. That is, the upper mold 71 and the lower mold 72 have a function of transferring the shape of the upper mold 71 and the lower mold 72 to the stacked body 60.
  • the upper mold 71 and the lower mold 72 act as electrodes.
  • the voltage of the power supply 81 is adjusted by the transformer 82 and applied to the upper mold 71 and the lower mold 72 via the rectifier 83.
  • the laminated body 60 When the laminated body 60 is placed in the mold 70, the laminated body 60 is pressurized in the laminating direction, and a voltage is applied to the upper mold 71 and the lower mold 72 (step S150 in FIG. 3).
  • the pressurization is performed by applying a pressing force in the direction of the lower die 72 to the upper die 71 by an actuator (not shown in FIG. 6) such as a hydraulic cylinder.
  • an actuator such as a hydraulic cylinder.
  • a configuration in which a pressing force is applied to both the upper die 71 and the lower die 72 or only to the lower die 72 may be employed.
  • the laminate 60 is press-molded into the shape of the preform 20 by being pressed in the laminating direction.
  • the carbon fiber sheet 32 and the carbon fiber sheet 33 disposed on both sides of the insulating sheet 40 are pressed by the upper mold 71 and the lower mold 72 to press the laminate 60, so that the carbon fiber sheet 32 and a part of the carbon fiber sheet 33 are It enters the opening 41 formed in the insulating sheet 40.
  • the carbon fiber sheet 32 and the carbon fiber sheet 33 are reliably in contact with each other inside the opening 41. For this reason, between the carbon fiber sheet 32 and the carbon fiber sheet 33 is also reliably energized in the stacking direction.
  • step S150 a current flows in the stacking direction in the stacking direction through the opening 41 formed in the insulating sheet 40 in the stack 60 as shown by the black arrow in FIG. .
  • the heat generation of the carbon fiber sheets 31 to 34 described above occurs in the plane direction around the position corresponding to the opening 41 and the position corresponding to the periphery thereof.
  • the adhesive resin 50 existing in the region corresponding to the opening 41 and the region corresponding to the periphery thereof is melted by the heat generation of the carbon fiber sheets 31 to 34. Since the region other than the region corresponding to the opening 41 and its periphery is hardly energized, the adhesive resin 50 existing in those regions hardly melts.
  • the application of voltage to the laminate 60 is maintained for a required time, that is, a time necessary for the adhesive resin 50 at the above-described position to melt. This required time is usually about several seconds.
  • the laminate 60 and the mold 70 are then left for the required time (step S160).
  • the required time is the time required for the molten adhesive resin 50 to cool and solidify. This required time is usually about several seconds.
  • the adjacent layers of the carbon fiber sheets 31 to 34 and the insulating sheet 40 are bonded within the region corresponding to the opening 41 and the periphery of the entire surface by solidifying the adhesive resin 50. “In the area corresponding to the opening 41 and its periphery” may be “only in the area corresponding to the opening 41” or “only in the area corresponding to the periphery of the opening 41”.
  • the adhesive resin 50 does not exist in the region corresponding to the opening 41, and the adhesive resin 50 exists in the region corresponding to the periphery of the opening 41. It can also be assumed that it exists. In such a case, adjacent layers of the carbon fiber sheets 31 to 34 and the insulating sheet 40 may be bonded only in a region corresponding to the periphery of the opening 41.
  • the preform 20 is completed.
  • the laminate 60 is heated by energization, it is not necessary to heat the mold 70. Therefore, it is possible to remove the mold immediately after the preform 20 is completed.
  • FIG. 7 shows the opening area ratio and the current required for bonding the laminate 60 (the carbon fiber sheets 31 to 34 and the insulating sheet 40) when the opening area ratio is changed for the insulating sheet 40 described above.
  • it is also referred to as “required current”.
  • data with an opening area ratio of 1% to 12% is actually measured data (indicated by hatching in FIG. 7). That is, the required current when the opening area ratio is 1% to 12% is the current value actually required for adhesion.
  • the experimental conditions that are the premise of such measured data are as follows. Data with an opening area ratio of 20% or more is a calculation result based on actual measurement data. (Experimental conditions) Area of carbon fiber sheets 31 to 34: 40,000 mm 2 Area of one opening 41: about 16 mm 2 (4.5 mm in diameter) Energizing time: 3 seconds
  • the required current increases as the opening area ratio increases.
  • the required current was 128 A (ampere).
  • the opening area ratio is 2%, 3%, 4%, 5%, 6%, 10%, and 12%
  • the required currents are 256A, 384A, 500A, 640A, 800A, 1280A, and 1300A, respectively.
  • Met When the opening area ratio was set to 1%, it was confirmed that each layer of the laminate 60 can be adhered. However, it was confirmed that the adhesive strength of each layer of the laminate 60 was weak and that the shape of the preform 20 could not be retained after a predetermined time.
  • the opening area ratio is set to 2% or more, it was confirmed that each layer of the laminate 60 was adhered by a good adhesive force, hardly peeled off, and the shape of the preform 20 was stable. . From the experimental results, it is desirable that the opening area ratio is larger than 1%. By making the opening area ratio larger than 1%, the laminates 60 can be bonded to such an extent that the form of the preform 20 can be maintained.
  • the opening area ratio is 20%, the required current was calculated to be 2,560 A. Similarly, when the opening area ratio was 30% and 50%, the required currents were calculated as 3,840 A and 6,400 A, respectively.
  • the required power exceeds 3,000 A, it is necessary to raise the rank of the capacity of the power source used by one rank. That is, the apparatus becomes larger and the consumed energy increases. Therefore, the opening area ratio is desirably 20% or less. If it carries out like this, the power consumption required for energization heating can be controlled, and it contributes to cost reduction and saving of energy consumption. When the opening area ratio was 50% or more, a calculation result that required current exceeded 10,000 A was obtained. Such an aspect is not practical from the viewpoint of saving cost and energy consumption.
  • an evaluation “C” (adoptable) is obtained.
  • an evaluation “D” (not realistic) is obtained.
  • an evaluation of evaluation “B” (good) or higher is obtained.
  • the evaluation “A” excellent is evaluated. can get.
  • the preform 20 described above can be manufactured by an electric heating method. Specifically, since the opening 41 is formed in the insulating sheet 40, the adhesive resin 50 is melted by flowing an electric current through the opening 60 along the stacking direction through the opening 41. Adjacent layers of the carbon fiber sheets 31 to 34 and the insulating sheet 40 can be bonded to each other. Since the electric heating method can be bonded in a relatively short time, the manufacturing time of the insulating sheet 40 can be shortened. Further, since the temperature of the melted adhesive resin 50 is lowered in a short time, no special cooling process is required. Further, it is sufficient to provide a pair of electrodes used in the energization heating method in the stacking direction.
  • type 72 can be utilized as an electrode used for an electrical heating method.
  • the preform 20 can be manufactured with an apparatus having a simple configuration. Further, no special apparatus is required unlike the induction heating method and the ultrasonic welding method. Moreover, in this manufacturing method, the three-dimensional preform 20 can be preferably manufactured.
  • the opening 41 functions as “a current-carrying region having a lower electrical resistance in the stacking direction than the resistance region”, and functions as a “carrying current-carrying region”.
  • “can be energized” is not limited to a configuration that can energize the preform 20 without applying an external force. For example, even if the carbon fiber sheet 32 and the carbon fiber sheet 33 are not in contact with each other inside the opening 41, the carbon fiber sheet 32 and the carbon fiber sheet are pressed by pressing the preform 20 in the stacking direction. A configuration in which power can be supplied by contact with 33 is also included in a configuration in which power can be supplied.
  • the region S1 of the insulating sheet 40 when the area (referred to as S1) of the insulating sheet 40 is smaller than the area (referred to as S2) of the carbon fiber sheets 31 to 34, the position (region) where the carbon fiber sheets 31 to 34 exist in the plane direction. Accordingly, the region outside the insulating sheet 40 (the region S2-S1) may also be regarded as the “energized region where energization is possible”.
  • the preform 20 is bonded to the carbon fiber sheets 31 to 34 and the insulating sheet 40 in the area corresponding to the opening 41 formed in the insulating sheet 40 and its periphery in the plane direction, and in the other areas. No gluing is performed. Therefore, the repulsive force in the stacking direction of the preform 20 can be ensured as compared with the case where the entire surface of the carbon fiber sheet is bonded.
  • the bonding positions of the carbon fiber sheets 31 to 34 and the insulating sheet 40 are also distributed. Therefore, the shape of the preform 20 is easily maintained.
  • the preform 20 can adjust the amount of energy required for energization heating, that is, adhesion of the laminate 60 by adjusting the opening area ratio.
  • a carbon fiber reinforced plastic including an insulating sheet 40 between the carbon fiber sheets 31 to 34 can be produced.
  • the insulating sheet 40 also has an effect of promoting the penetration of the thermosetting resin injected into the mold into the surface direction. As a result, the impregnation speed of the thermosetting resin can be increased. Alternatively, the uniformity of the thermosetting resin impregnation can be improved.
  • the insulating sheet 40 is disposed between the carbon fiber sheet 32 and the carbon fiber sheet 33.
  • the arrangement of the insulating sheet 40 is not limited to this example.
  • the insulating sheet 40 can be disposed between any layers of the carbon fiber sheets 31 to 34.
  • the insulating sheet 40 is not necessarily arranged between the carbon fiber sheets 31 to 34.
  • the insulating sheet 40 may be disposed on the surfaces of the carbon fiber sheets 31 to 34.
  • the laminate 60 may be configured by laminating the insulating sheet 40 and the carbon fiber sheets 31 to 34 in this order.
  • the number of carbon fiber sheets should just be more than one, and can be set to arbitrary numbers of 2 or more.
  • the laminate 60 is configured by laminating a plurality of carbon fiber sheets 31 to 34 and one insulating sheet 40.
  • the laminate 60 may include a plurality of insulating sheets 40.
  • the insulating sheets 40 may be disposed between the carbon fiber sheet 31 and the carbon fiber sheet 32 and between the carbon fiber sheet 33 and the carbon fiber sheet 34, respectively.
  • the plurality of openings 41 formed in the insulating sheet 40 are uniformly distributed in the surface direction.
  • the arrangement of the plurality of openings 41 is not limited to this mode. Arrangement
  • positioning of the some opening part 41 can be set arbitrarily.
  • the opening areas of the plurality of openings 41 do not have to be the same, and the opening area may be arbitrarily set for each of the openings 41.
  • the arrangement and the opening area of the opening 41 may be appropriately set according to the shape of the preform 20 to be manufactured.
  • FIG. 8 shows a structure of an insulating sheet 140 as a modified example.
  • the preform manufactured using the insulating sheet 140 has the same shape as the preform 20 (see FIG. 1) shown in the embodiment.
  • a plurality of openings 141 are formed in the insulating sheet 140.
  • lines indicated by two-dot chain lines indicate positions where the base end portion 23 and the tip end portion 24 (see FIG. 1) are formed.
  • openings 141 are formed at a higher density than other portions around the position where the base end portion 23 and the tip end portion 24 are formed.
  • a configuration may be adopted in which openings are intensively disposed around the entire surface of the laminate around a portion that is deformed by processing from the initial state before the shape transfer (a sheet shape that is flat on the entire surface).
  • the shape after processing is easily maintained.
  • the area of the opening 141b formed in the inner region of the base end 23, which is a relatively narrow region, is the opening 141a formed in the region outside the base end 23, which is a relatively wide region. It is set smaller than the face seat.
  • the opening 141 is disposed around the proximal end portion 23 and the distal end portion 24.
  • the same effect can be obtained even if the opening 141 is arranged on the position where the base end portion 23 and the tip end portion 24 are formed.
  • the shape of the opening 41 formed in the insulating sheet 40 is a circle.
  • the shape of the opening 41 can be arbitrarily set.
  • FIG. 9 shows a structure of an insulating sheet 240 as a modified example.
  • a plurality of openings 241 having a rectangular shape are formed.
  • the shape of the opening 241 may also be set in accordance with the processed shape of the preform 20 to be manufactured, as in the third modification described above.
  • the opening 241 may be formed along a portion of the entire surface of the laminate that is deformed by processing from the initial state. More specifically, for example, the opening 241 may be formed in a ring shape along the outer periphery of the base end portion 23.
  • the configuration in which the insulating sheet 40 is disposed between the carbon fiber sheets 31 to 34 is exemplified.
  • a partially energized sheet may be arranged.
  • the “partially energized sheet” is a sheet having an insulating area made of an insulator and an energized area made of a conductive member in the entire area of the sheet.
  • the insulating region and the energizing region are arranged at different positions in the surface direction.
  • the partially energized sheet can be a sheet having a conductive member at the position of the opening 41 of the insulating sheet 40. Carbon fiber may be used as the conductive member.
  • Modification 6 In the above-described embodiment, the configuration in which the insulating sheet 40 is disposed between the carbon fiber sheets 31 to 34 is exemplified. However, instead of the insulating sheet 40, a member having a higher electric resistance in the stacking direction than the carbon fiber sheet is used. May be. Usually, the electrical resistance in the thickness direction around one layer of the carbon fiber sheet is in the range of 10 to 300 ⁇ / cm 2 (carbon fiber basis weight: 330 g / m 2 , number of carbon fibers: 1200, pressing pressure: 0.1 to 0.00. 5 MPa). Even in this case, the above-described effects can be achieved to some extent. In addition, the partially energized sheet described in Modification 5 may be configured as a sheet having a high resistance region made of a member having a higher electric resistance in the direction of lamination than the carbon fiber sheet and an energization region.
  • FIG. 10 is an explanatory view showing the structure of a partially energized fabric 90 as a modified example.
  • a plan view of a partially energized fabric 90 as a partially energized layer is shown in the lower part of FIG.
  • the upper part of FIG. 10 shows a cross-sectional view of the partially energized fabric 90 taken along line 91 in the lower part of the figure.
  • a configuration in which the opening 41 is provided in the insulating sheet 40 made of glass fiber as the partially energized layer is shown.
  • a partially energized fabric 90 in which carbon fibers 35 are partially woven into a fabric structure mainly composed of glass fibers 42 may be used as a partially energized layer.
  • this partially energized layer itself is composed of reinforcing fibers such as glass fibers and carbon fibers, which can contribute to the development of component strength when it finally becomes a fiber reinforced plastic. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】絶縁部材を有するプリフォームを簡素な構成の装置で製造可能とする。 【解決手段】炭素繊維プリフォームは、複数の炭素繊維シートが積層され、熱可塑特性を有する接着樹脂を介して互いに接着されている。この炭素繊維プリフォームは、複数の炭素繊維シートの少なくとも1つの層間、および、表層の少なくとも一方に配置され、炭素繊維シートよりも積層の方向に電気抵抗が大きい抵抗領域と、積層の方向に通電可能な通電領域とを、積層の方向と直交する面方向に有する部分通電層を備える。面方向における、通電領域および通電領域の周辺に対応する領域内で、複数の炭素繊維シートが接着樹脂を介して接着されている。通電領域および通電領域の周辺に対応する領域を除く領域では、複数の炭素繊維シートは、接着樹脂を介して接着されていない。

Description

炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法
 本発明は、炭素繊維プリフォームに関する。
 樹脂の強度を向上させた複合材料として、炭素繊維強化プラスチックが広く知られている。かかる炭素繊維強化プラスチックは、例えば、炭素繊維を含む基材(以下、「炭素繊維プリフォーム」、または、単に「プリフォーム」ともいう)に熱硬化性樹脂を含浸させ、加熱することにより製造される。また、炭素繊維プリフォームの一種として、複数の炭素繊維シートを積層し、各シート間を接着することで製造するタイプが知られている。積層された複数の炭素繊維シートを接着する方法としては、複数の炭素繊維シートの積層体を、加熱した金型に配置して加圧する方法、通電加熱法、誘導加熱法、超音波溶着法などを例示できる。これらの手法では、炭素繊維シートと炭素繊維シートとの層間に配された樹脂や、炭素繊維シートの表面に配された樹脂、または、炭素繊維シートに含浸させた樹脂を、加熱および溶融させた後に、冷却して、樹脂を固化させることにより、炭素繊維シート同士を固着させる手法が一般的である。
特開昭58-155926号公報 特開昭59-2815号公報 特開2009-73132号公報
河越正羽、外3名、「CFRP継手の電気抵抗を利用した融着法に関する基礎的研究」、第2回複合材料合同会議JCCM-2講,論文集2011,Paper#2B-07
 しかしながら、上述した種々の手法には、それぞれ一長一短がある。このため、従来は、積層された複数の炭素繊維シートを接着する方法を、炭素繊維プリフォームの用途に応じて選択しなければならなかった。例えば、加熱した金型を使用する方法では、金型の温度の上昇および下降に長い時間と大きなエネルギーとを必要とする。一方、通電加熱法、誘電加熱法、および超音波溶着法は、比較的短時間で接着が可能である。しかし、超音波溶着法では、超音波の発信源となる器具(ホーン)が必要になり、誘導加熱法では、磁界の発信源となる器具(コイル)が必要になる。その結果、装置が高価になってしまう。また、超音波溶着法では、平面形状の炭素繊維シートの接着は容易ではあるが、立体的な形状を有する炭素繊維シートに対しては、型への配置が難しく、制約が多い。
 それに比べて、通電加熱法では、型自体を電極として使用し、複数の炭素繊維シートの層間の接触抵抗を利用して発熱させるので、使用する装置の構成が簡素である。一方で、通電加熱法は、通電経路の途中に絶縁性の部材が介在するタイプのプリフォーム(たとえば、積層された炭素繊維シートの間または、積層体の表層にガラス繊維シートが配されたプリフォーム)の製造には、適さない。積層方向に通電することができず、その結果、接着樹脂としての樹脂を、抵抗発熱を利用して加熱および溶融することができないからである。この場合、炭素繊維シートの面方向に通電することで、炭素繊維シートの固有抵抗を利用して発熱させ、樹脂を加熱および溶融することが可能である。しかし、このような手法では、複数の炭素繊維シートの1枚ごとに電極が必要になり、装置の構成が複雑化する。
 さらに、通電加熱法により、炭素繊維シートの全面を接着する場合、炭素繊維シートの電気抵抗が小さいために大電流が流れるので、瞬間的に膨大なエネルギーが必要になる。このため、面積が大きい炭素繊維シートを接着することが困難である。また、炭素繊維シートの全面を接着した場合、全面が固定されることになる。その結果、プリフォームを製造した後に実施される樹脂成形工程において、成形型にプリフォームを配置した際に必要となる、厚さ方向(積層方向)への反発力を確保しにくい。成形型内のプリフォームの厚さ方向の反発力が不足していると、プリフォームと上型の間およびプリフォームと下型の間に隙間ができる。その結果、成形時に注入した樹脂が、その隙間に多く残り、不良の原因となる。
 以上のことから、絶縁部材を有するプリフォームを簡素な構成の装置で製造可能とすることが求められている。また、プリフォームの製造後の工程にかかる時間を鑑みて、当該プリフォームを短時間で製造可能とすることが求められている。また、炭素繊維シートの積層方向の反発力が確保されたプリフォームが求められている。また、プリフォームの製造に必要なエネルギーを低減することが求められている。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]複数の炭素繊維シートが積層され、熱可塑特性を有する接着樹脂を介して互いに接着された炭素繊維プリフォームにおいて、
 前記炭素繊維シートよりも前記積層の方向についての電気抵抗が高い抵抗領域と、前記抵抗領域よりも前記積層の方向の電気抵抗が低い通電領域とが、前記積層の方向と直交する面方向に分布している部分通電層を、前記複数の炭素繊維シートのうち少なくとも1組の隣り合う炭素繊維シートの間の位置と、前記炭素繊維プリフォームの表層上の位置と、の少なくとも一方に備え、
 前記部分通電層に設けられた前記通電領域内および前記通電領域の周辺に対応する領域内において、前記複数の炭素繊維シートが前記接着樹脂を介して接着されている、炭素繊維プリフォーム。
 かかる構成の炭素繊維プリフォームは、通電加熱法によって製造することができる。具体的には、部分通電層のうちの通電領域を通じて、炭素繊維シートの積層の方向に通電し、炭素繊維シートを接着することができる。したがって、炭素繊維プリフォームを比較的短時間で製造できる。また、通電加熱法に使用する電極は、積層の方向に1対設ければ足りるので、炭素繊維プリフォームを簡素な構成の装置で製造できる。なお、積層の方向についての電気抵抗が抵抗領域よりも低い通電領域は、「通電可能な領域」または「通電容易な領域」として把握することもできる。積層の方向についての通電領域の電気抵抗は、炭素繊維シートの電気抵抗よりも小さくてもよいし、炭素繊維シートの電気抵抗よりも大きくてもよい。また、部分通電層は、さらに、抵抗領域の抵抗の大きさと通電領域の抵抗の大きさとの間の大きさの抵抗を有する領域を、備えていてもよい。
[適用例2]適用例1に記載の炭素繊維プリフォームであって、
 前記抵抗領域内の少なくとも一部において、前記複数の炭素繊維シートが前記接着樹脂を介して接着されていない、炭素繊維プリフォーム。
 なお、抵抗領域内の他の一部において、炭素繊維シートが接着樹脂を介して接着されていてもよい。
 このような態様とすれば、炭素繊維シートの全面が接着される場合と比べて、炭素繊維シートの積層の方向の反発力を確保できる。
[適用例3]適用例1または適用例2に記載の炭素繊維プリフォームであって、
 前記部分通電層は、絶縁シートで構成され、
 前記通電領域は、前記絶縁シートを前記積層の方向に貫通する開口部を含む、炭素繊維プリフォーム。
 かかる構成の炭素繊維プリフォームによれば、部分通電層を簡単な構成とすることができる。その結果、炭素繊維プリフォームのコストを低減することができる。また、炭素繊維プリフォームの製造工程を簡素化することができる。
[適用例4]適用例1から適用例3のいずれかに記載の炭素繊維プリフォームであって、
 前記通電領域の面積は、前記炭素繊維シートの面積の1%より大きい、炭素繊維プリフォーム。
 かかる構成の炭素繊維プリフォームによれば、通電領域が1%を超えることによって、プリフォームの形態を保持できる程度に炭素繊維シート間を接着させることができる。
[適用例5]適用例1から適用例4のいずれかに記載の炭素繊維プリフォームであって、
 前記通電領域の面積は、前記炭素繊維シートの面積の20%以下である、炭素繊維プリフォーム。
 かかる構成の炭素繊維プリフォームによれば、製造工程で必要となるエネルギーを低減できる。具体的には、通電加熱に必要な電力量を低減できる。
 また、本発明は、適用例6~適用例9の炭素繊維強化プラスチックとしても構成することができる。適用例6~適用例9の炭素繊維強化プラスチックは、それぞれに対応する適用例1~4の炭素繊維プリフォームと同様の効果を奏する。
[適用例6]複数の炭素繊維シートが積層された炭素繊維強化プラスチックにおいて、
 前記炭素繊維シートよりも前記積層の方向についての電気抵抗が高い抵抗領域と、前記抵抗領域よりも前記積層の方向の電気抵抗が低い通電領域とが、前記積層の方向と直交する面方向に分布している部分通電層を、前記複数の炭素繊維シートのうち少なくとも1組の隣り合う炭素繊維シートの間の位置と、前記炭素繊維強化プラスチックの表層上の位置と、の少なくとも一方に備えたことを特徴とする炭素繊維強化プラスチック。
 なお、部分通電層を、前記複数の炭素繊維シートのうち少なくとも1組の隣り合う炭素繊維シートの間の位置と、前記複数の炭素繊維シートのうち1以上の炭素繊維シートの表層上の位置と、の少なくとも一方に備える態様とすることもできる。
[適用例7]適用例6記載の炭素繊維強化プラスチックであって、
 前記部分通電層は、絶縁シートで構成され、
 前記通電領域は、前記絶縁シートを前記積層の方向に貫通する開口部を含む、炭素繊維強化プラスチック。
[適用例8]適用例6または適用例7に記載の炭素繊維強化プラスチックであって、
 前記通電領域の面積は、前記炭素繊維シートの面積の1%より大きい、炭素繊維強化プラスチック。
[適用例9]適用例6から適用例8のいずれかに記載の炭素繊維強化プラスチックであって、
 前記通電領域の面積は、前記炭素繊維シートの面積の20%以下である、炭素繊維強化プラスチック。
 また、本発明は、適用例10~適用例13の炭素繊維プリフォームの製造方法としても実現することができる。適用例10~適用例13の製造方法は、それぞれ対応する適用例3、適用例2、適用例4、適用例5と同様の効果を奏する。なお、本発明は、炭素繊維強化プラスチックの製造方法としても実現可能である。
[適用例10]絶縁シートと、複数の炭素繊維シートとを、熱可塑特性を有する接着樹脂を介して積層した積層体を用意し、
 前記絶縁シートおよび前記複数の炭素繊維シートの積層体に電圧を印加するための電極として機能する、向かい合う2つの型で前記積層体を挟み込み、
 前記2つの型が有する型形状を前記積層体に転写する、炭素繊維プリフォームの製造方法において、
 前記絶縁シートとして、前記積層の方向に貫通する開口部が形成された絶縁シートを使用して、前記積層体を用意し、前記2つの型内に配置する工程と、
 前記2つの型により、前記積層体を前記積層の方向に加圧するとともに、前記2つの型に電圧を印加して前記積層体に電流を流し、前記複数の炭素繊維シートを発熱させることで、前記開口部を含む通電領域内および前記通電領域の周辺に対応する領域内で、前記接着樹脂を溶融および固着させて、前記複数の炭素繊維シート間を、前記接着樹脂を介して接着する工程と
 を備える、炭素繊維プリフォームの製造方法。
[適用例11]
 適用例10に記載の炭素繊維プリフォームの製造方法であって、
 前記複数の炭素繊維シート間を接着する工程は、前記通電領域以外の少なくとも一部の領域で、前記接着樹脂を溶融させない状態で実行される、炭素繊維プリフォームの製造方法。
 なお、複数の炭素繊維シート間を接着する工程は、通電領域以外の他の一部の領域で、接着樹脂を溶融させて実行されてもよい。
[適用例12]適用例10または適用例11に記載の炭素繊維プリフォームの製造方法であって、
 前記開口部の開口面積は、前記炭素繊維シートの面積の1%より大きい、炭素繊維プリフォームの製造方法。
[適用例13]適用例10から適用例12のいずれかに記載の炭素繊維プリフォームの製造方法であって、
 前記開口部の開口面積は、前記炭素繊維シートの面積の20%以下である、炭素繊維プリフォームの製造方法。
本発明の炭素繊維プリフォームの実施例としてのプリフォーム20の外観を示す説明図である。 プリフォーム20の断面構成を模式的に示す説明図である。 プリフォーム20の製造手順を示す工程図である。 絶縁シート40の構造を示す説明図である。 積層体60を示す説明図である。 積層体60を金型70内に配置して加圧し、電圧を印加する様子を示す説明図である。 開口部41の開口部面積率と、必要電流との関係を示す図表である。 変形例としての絶縁シート140の構造を示す説明図である。 変形例としての絶縁シート240の構造を示す説明図である。 変形例としての部分通電織物90の構造を示す説明図である。
 A.実施例:
 図1は、本発明の炭素繊維プリフォームの実施例としてのプリフォーム20の概略構成を示す。プリフォーム20は、炭素繊維強化プラスチックを製造する際に使用される。かかる炭素繊維強化プラスチックは、例えば、RTM(Resin Transfer Molding)法を使用して、製造することができる。具体的には、まず、プリフォーム20を、プリフォーム20の形状に対応する形状を有するキャビティを備えた型内に配置する。そして、キャビティに熱硬化性樹脂を注入して、プリフォーム20に熱硬化性樹脂を含浸させ、その後、加熱する。その結果、炭素繊維強化プラスチックが完成する。このため、プリフォーム20の形状は、完成品としての炭素繊維強化プラスチックの形状に対応した形状となっている。本実施例では、プリフォーム20は、平坦部21と突出部22とを備えている。
 平坦部21は、平坦な板状の部位である。平坦部21の外縁は、矩形形状を有している。突出部22は、平坦部21から一方の側に突出した部位である。突出部22におけるプリフォーム20の厚みは、平坦部21の厚みとほぼ同一である。つまり、突出部22の突出する側と反対の側には、突出部22の形状に対応する形状の空洞が形成されている。突出部22は、略円形である基端部23から同心円状に突出した略円形の平坦な頂面を有する。言い換えれば、突出部22の形状は、ほぼ円錐台である。突出部22において、頂面と側面の境界を先端部24と呼ぶ。なお、プリフォーム20の形状は、所望の任意の形状とすることができる。
 図2は、プリフォーム20の断面構成を模式的に示す。図2は、プリフォーム20を厚み方向に切断した断面を示している。図2では、技術の理解を容易にするため、図示される各構成要素の大きさおよび厚みと、実際の大きさおよび厚みとは、必ずしも一致していない。プリフォーム20は、多層構造を有している。具体的には、プリフォーム20は、4つの炭素繊維シート31~34と、1つの絶縁シート40とを積層した構造を有している。炭素繊維シート31~34および絶縁シート40を積層する方向を「積層方向」ともいう。
 炭素繊維シート31~34は、本実施例では、炭素繊維を編み込んだシート状の部材である。炭素繊維シートの形態は、本実施例では炭素繊維からなる織物である。しかし、炭素繊維シートの形態は、これに限るものではない。例えば、炭素繊維シートの形態は、(i)織物、(ii)編み物、(iii)組み物、(iv)不織布、(v)一方向に引き揃えられた強化繊維シートをバインダや融着性不織布、ステッチ糸などで形態を安定化した一方向性シート、(vi)ランダム配向の短繊維で構成されるマットなどとしてもよい。
 絶縁シート40は、本実施例では、絶縁体からなるシート状の部材である。本実施例では、絶縁シート40として、ガラス繊維からなるマットを使用した。しかし、絶縁シートとして、例えば、綿、麻、竹などの天然繊維や、ポリエステル、ナイロンなどの合成繊維などが使用されてもよい。また、絶縁シート40の材料は、これらの材料に限られるものではなく、種々の絶縁部材を絶縁シート40の材料として使用することができる。かかる絶縁部材の態様は、織物、不織布、フィルム等のシート状のものが好ましい。ただし、絶縁部材の態様は、シート状に限るものではない。すなわち、変形性を持ち、シート自体が柔軟にその形状を変化させることがものであれば、様々な絶縁部材を採用しうる。また、完全な絶縁材料だけでなく、炭素繊維シートに比べて、抵抗の高い材料であっても良い。本実施例では、絶縁シート40は、炭素繊維シート32と炭素繊維シート33との間、つまり、炭素繊維シート31~34および絶縁シート40からなる5層構造のうちの中央(第3層)に位置している。
 かかる絶縁シート40には、開口部41が複数形成されている。本実施例では、開口部41は、絶縁シート40を厚み方向(積層方向)に貫通する貫通孔である。
 炭素繊維シート31~34および絶縁シート40を含む各層の間には、接着樹脂50が介在している。図2において、接着樹脂50は、模式的に丸で表現されている。接着樹脂50は、本実施例では、炭素繊維シート31~34および絶縁シート40の面方向(以下、単に「面方向」ともいう)に分散して存在する。接着樹脂50は、炭素繊維シート同士の接着に使用される。例えば、接着樹脂50として、加熱により溶融され、さらに冷却されて固化されることにより、各層を接着する接着機能を発揮する部材を、使用することができる。接着樹脂50は、「タッキファイヤ」とも呼ばれる。本実施例では、接着樹脂50は、粒子状の熱可塑性樹脂である。熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、スチレン系樹脂、ナイロン樹脂、ポリアミド樹脂、ポリウレタン樹脂などを使用できる。接着樹脂50に使用する熱可塑性樹脂は、これらの材料に限られるものではなく、種々の熱可塑性樹脂を使用することができる。また、接着樹脂50に使用する熱可塑性樹脂として、これらの熱可塑性樹脂を組み合わせて使用することもできる。さらに、接着樹脂50の材料は、熱可塑性樹脂に限るものではない。例えば、接着樹脂50の材料として、熱硬化性樹脂が使用されてもよい。こうした熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂などを例示できる。また、接着樹脂50の形態は、粒子状に限るものではなく、適宜設定可能である。例えば、接着樹脂50は、繊維状であってもよい。また、接着樹脂50は、層間以外の場所に存在してもよく、接着樹脂50の形態は、特に限定されるものではない。例えば、接着樹脂50は、炭素繊維シート内にランダムに分散されて配されていてもよい。あるいは、接着樹脂50が繊維状である場合、炭素繊維シートの中に接着樹脂繊維を引き揃えたり、織物の補助糸(縦糸、または、横糸)として接着樹脂繊維を使用したり、炭素繊維シートに接着樹脂繊維のスティッチングを実施したりしてもよい。
 プリフォーム20において、炭素繊維シート31~34および絶縁シート40の各層は、面方向において、開口部41およびその周辺に対応する位置において、接着樹脂50を介して接着されている。つまり、開口部41およびその周辺に対応する位置に存在する接着樹脂50が、溶融および冷却固化されて、接着機能を発揮している。その他の電気抵抗が高い領域においては、電気抵抗が高く、ほとんど通電されないため、接着樹脂50が溶融されていない。このため、それらの領域については、炭素繊維シート31~34および絶縁シート40の各層は、接着されないか、または、部分的には接着された部位があっても、その部位は、プリフォーム20として形態を固定できる程度の接着力を発揮するまでには至らない。図2では、接着機能を発揮している接着樹脂50に対応する丸のみを黒色で塗りつぶして表示している。この構成は、プリフォーム20の製造方法に起因する。プリフォーム20の製造方法については後述する。
 図2において、炭素繊維シート32と炭素繊維シート33とは、直接的には、接触していないように図示している。つまり、炭素繊維シート32と炭素繊維シート33との間に接着樹脂50が存在しない部分においては、炭素繊維シート32と炭素繊維シート33とは接触していないように図示している。しかし、実際には、炭素繊維シート32,33の繊維の配向は、完全にはシートの面内の方向に沿って一定してはいない。このため、炭素繊維シート32,33は、積層方向に延びる一部の繊維により、通常は、相互に接触する。炭素繊維シート31,32の間、炭素繊維シート33,34の間についても、同様である。
 絶縁シート40に形成された開口部41aの内部において、絶縁シート40の両脇に配置された炭素繊維シート32と炭素繊維シート33とは、接着機能を発揮している接着樹脂50を介して、接着されている。一方、開口部41bの内部において、炭素繊維シート32と炭素繊維シート33とは、接着されていない。これは、開口部41bの内部には、接着機能を発揮している接着樹脂50が存在しないためである。つまり、本実施例においては、炭素繊維シート32と炭素繊維シート33とは、必ずしも、すべての開口部41の内部で接着樹脂50を介して接着されていなくてもよい。炭素繊維シートと炭素繊維シートとが一部の開口部において接着されている態様は、接着樹脂の使用量を少なくすることにより、または、接着樹脂を層間の面方向について偏在させることにより、実現されることができる。
 図3は、上述したプリフォーム20の製造手順を示す。プリフォーム20の製造においては、まず、炭素繊維シート31~34および絶縁シート40が用意される(ステップS110)。この段階での炭素繊維シート31~34および絶縁シート40は、図1に示したプリフォーム20の形状を有していない。つまり、炭素繊維シート31~34および絶縁シート40のシート面は、全面が平坦である矩形形状を有している。本実施例では、炭素繊維シート31~34および絶縁シート40は、ほぼ同一の面積を有している。ただし、必ずしも、炭素繊維シート31~34および絶縁シート40の面積は、ほぼ同一でなくてもよい。例えば、炭素繊維シート31~34の面積は、絶縁シート40の面積よりも大きくてもよいし、小さくてもよい。
 炭素繊維シート31~34の目付、すなわち、単位面積当たりの重量は、本実施例では、200g/m2である。絶縁シート40の目付は、本実施例では、60g/m2である。ただし、炭素繊維シート31~34および絶縁シート40の目付は、後述するステップS150において炭素繊維シート32と炭素繊維シート34とが開口部41の内部で接触して通電できる程度の、炭素繊維シート31~34および絶縁シート40の目付の関係の範囲内で、設定されていればよい。例えば、炭素繊維シート31~34の目付を70~500g/m2程度とし、絶縁シート40の目付を30~180g/m2程度としても、上述の関係を確保できる。
 図4は、ステップS110で用意される絶縁シート40の具体例を示す。絶縁シート40のシート面は、矩形形状を備えている。絶縁シート40には、上述したとおり、シート面を貫通する複数の開口部41が形成されている(図2参照)。本実施例では、各々の開口部41は、円形に形成されている。また、本実施例では、各々の開口部41は、絶縁シート40のシート面上に、ほぼ均等な間隔で分散配置されている。各々の開口部41の大きさは、本実施例では、直径4.5mm(面積は、約16mm2)である。ただし、開口部41の大きさは、後述するステップS150において炭素繊維シート32と炭素繊維シート34とが開口部41の内部で接触して通電できる程度の大きさに、設定されていればよい。例えば、各々の開口部41の面積を10mm2以上とすれば、確実に通電できる。
 本実施例では、各々の開口部41の面積の合計値が、炭素繊維シート31~34の面積(1つのシートの面積)に占める割合(以下、「開口部面積率」ともいう)は、6%である。開口部面積率は、1%より大きくすることが望ましい。また、開口部面積率は、20%以下とすることが望ましい。その理由については、後述する。なお、絶縁シート40の面積が、炭素繊維シート31~34の面積よりも小さい場合には、各々の開口部41の面積の合計値と、炭素繊維シート31~34の面積と絶縁シート40の面積との差分値(正の数)との総合計値が、炭素繊維シート31~34の面積に占める割合を、「開口部面積率」とする。
 ここで、説明をプリフォーム20の製造手順(図3)に戻す。炭素繊維シート31~34および絶縁シート40を用意すると、次に、炭素繊維シート31~34に、接着樹脂50が付与される(ステップS120)。接着樹脂50の付与は、吹き付け、塗布などの手法を利用することができる。接着樹脂50の付与は、炭素繊維シート31~34の両面に対して行ってもよいし、片面に対して行ってもよい。また、接着樹脂50の付与は、炭素繊維シート32,33に対して行う代わりに、絶縁シート40に対して行ってもよい。つまり、接着樹脂50は、炭素繊維シート31~34および絶縁シート40を積層した際に、各層間に接着樹脂50が介在するように、付与されればよい。ただし、炭素繊維シート31~34および絶縁シート40を積層した積層体60の表面、すなわち、炭素繊維シート31の2面のうちの絶縁シート40と反対側の面、および、炭素繊維シート34の2面のうちの絶縁シート40と反対側の面には、接着樹脂50は付与されない。接着樹脂50の付与量は、炭素繊維シート31~34および絶縁シート40の全面が、接着樹脂50で覆われない程度の量、つまり、後述するステップS150において積層体60の積層方向に通電が可能な程度の量の範囲内で、設定すればよい。また、接着樹脂50の付与量は、開口部41に対応する位置の各々に確実に付与される程度の量とすることが望ましい。なお、接着樹脂50は、例えば、炭素繊維シート31~34や絶縁シート40に含浸させてもよい。あるいは、絶縁シート40自体が接着樹脂で構成されてもよい。これらの場合には、ステップS110で用意される炭素繊維シート31~34や絶縁シート40に接着樹脂が含まれるので、ステップS120は省略可能である。
 図5は、炭素繊維シート31~34および絶縁シート40を積層して、積層体60を作成する様子を示す。接着樹脂50を付与すると、次に、図5に示すように、炭素繊維シート31~34および絶縁シート40が積層され、積層体60を作成される(図3のステップS130)。なお、図5では、接着樹脂50の図示を省略している。
 図6は、積層体60を金型70内に配置した様子を示す。積層体60を作成すると、次に、図6に示すように、積層体60が金型70内に配置される(図3のステップS140)。金型70は、上型71と下型72とを備えている。上型71および下型72は、プリフォーム20の形状(図1参照)に対応する形状を有している。この上型71および下型72は、トランス82を介して、電源81に接続されている。上型71および下型72は、プレス金型として作用する。つまり、上型71および下型72は、自身が有する形状を積層体60に転写する機能を有する。また、上型71および下型72は、電極として作用する。電源81の電圧は、トランス82によって調整され、整流器83を介して上型71および下型72に印加される。
 積層体60を金型70内に配置すると、積層体60を積層方向に加圧するとともに、上型71および下型72に電圧が印加される(図3のステップS150)。本実施例では、加圧は、油圧シリンダなどのアクチュエータ(図6では図示を省略)によって、下型72の方向への押圧力を上型71に作用させることによって行う。なお、上型71と下型72との両方、または下型72のみに押圧力を作用させる構成でもよい。積層体60は、積層方向に加圧されることによって、プリフォーム20の形状にプレス成形される。
 上型71および下型72に電圧を印加することで、積層体60には、積層方向に電流が流れる。積層体60に電流が流れると、炭素繊維シート31~34は、接触抵抗によって発熱する。上型71および下型72は、金型70を積層方向に加圧しているので、炭素繊維シート31と炭素繊維シート32との接触の程度が増し、炭素繊維シート31と炭素繊維シート32との間は、積層方向に確実に通電される。炭素繊維シート33と炭素繊維シート34との間についても同様である。絶縁シート40の両側に配置された、炭素繊維シート32および炭素繊維シート33が上型71および下型72が積層体60を加圧することにより、炭素繊維シート32および炭素繊維シート33の一部分が、絶縁シート40に形成された開口部41の内部に入り込む。その結果、炭素繊維シート32と炭素繊維シート33とは、開口部41の内部で確実に接触する。このため、炭素繊維シート32と炭素繊維シート33との間も積層方向に確実に通電される。
 以上の説明からも明らかなように、ステップS150において、積層体60には、図6において黒い矢印で示すように、絶縁シート40に形成された開口部41を通る経路で積層方向に電流が流れる。このため、上述した炭素繊維シート31~34の発熱は、面方向において、開口部41に対応する位置、および、その周辺に対応する位置を中心に生じる。その結果、面方向において、開口部41に対応する領域、および、その周辺に対応する領域に存在する接着樹脂50が、炭素繊維シート31~34の発熱によって溶融する。開口部41およびその周辺に対応する領域以外の領域ついては、ほとんど通電されないため、それらの領域に存在する接着樹脂50は、ほとんど溶融しない。積層体60への電圧の印加は、所要時間、すなわち、上述の位置の接着樹脂50が溶融するのに必要な時間だけ、維持される。この所要時間は、通常、数秒程度である。
 そして、所要時間、電圧が印加されると、次に、所要時間だけ積層体60および金型70は放置される(ステップS160)。ここでの所要時間とは、溶融した接着樹脂50が冷却固化するのに必要な時間である。この所要時間は、通常、数秒程度である。所要時間を経過すると、接着樹脂50の固化によって、炭素繊維シート31~34および絶縁シート40のうち隣り合う層が、全面のうち開口部41およびその周辺に対応する領域内で、接着される。「開口部41およびその周辺に対応する領域内で」とは、「開口部41に対応する領域内のみ」であってもよいし、「開口部41の周辺に対応する領域内のみ」であってもよいし、「開口部41に対応する領域内、および、その周辺に対応する領域内の両方」であってもよいことを意味する。例えば、接着樹脂50の付与密度や、開口部41の開口面積によっては、開口部41に対応する領域には接着樹脂50が存在せず、開口部41の周辺に対応する領域に接着樹脂50が存在する、という状況も想定し得る。このような場合には、開口部41の周辺に対応する領域においてのみ、炭素繊維シート31~34および絶縁シート40のうちの隣り合う層が、接着されてもよい。
 このように、炭素繊維シート31~34および絶縁シート40が、隣り合う層間で接着されると、プリフォーム20が完成する。かかる方法では、通電により積層体60を発熱させるので、金型70を加熱する必要はない。したがって、プリフォーム20の完成後、即時に脱型することができる。
 図7は、上述した絶縁シート40について、開口部面積率を変化させた場合の、開口部面積率と、積層体60(炭素繊維シート31~34および絶縁シート40)の接着に必要な電流(以下、「必要電流」ともいう)との関係を示す。図示するデータのうちの、開口部面積率が1%~12%のデータについては、実測データである(図7では、ハッチングで示した)。つまり、開口部面積率が1%~12%の場合の必要電流は、接着のために実際に要した電流値である。かかる実測データの前提となる実験条件は、以下の通りである。開口部面積率が20%以上のデータについては、実測データに基づく計算結果である。
(実験条件)
 炭素繊維シート31~34の面積:40,000mm2
 1つの開口部41の面積:約16mm2(直径4.5mm)
 通電時間:3秒
 図7に示す実験データによれば、開口部面積率が大きくなるにしたがい、必要電流は大きくなる。図7に示すように、開口部面積率を1%とした場合、必要電流は128A(アンペア)であった。同様に、開口部面積率を2%,3%,4%,5%,6%,10%,12%とした場合、必要電流は、それぞれ256A,384A,500A,640A,800A,1280A,1300Aであった。開口部面積率を1%に設定した場合、積層体60の各層の接着は可能であることが確認された。しかし、積層体60の各層の接着力は弱く、また、プリフォーム20の形状が所定時間経過すると保持できないことが確認された。一方、開口部面積率を2%以上に設定した場合には、積層体60の各層は、良好な接着力によって接着され、剥がれにくく、また、プリフォーム20の形状も安定することが確認された。かかる実験結果から、開口部面積率は、1%よりも大きくすることが望ましい。開口部面積率を1%よりも大きくすることで、プリフォーム20の形態を保持できる程度に積層体60間を接着させることができる。
 一方、開口部面積率が20%の場合には、必要電流は、2,560Aとの計算結果が得られた。同様に、開口部面積率が30%および50%の場合には、必要電流は、それぞれ3,840A、6,400Aとの計算結果が得られた。必要電力が3,000Aを越える場合には、使用する電源の容量のランクを1ランク上げる必要がある。つまり、装置が大型化し、消費されるエネルギーも増大してしまう。したがって、開口部面積率は、20%以下とすることが望ましい。こうすれば、通電加熱に必要な消費電力を抑制することができ、コストの低減、消費エネルギーの節約に資する。開口部面積率が50%以上の場合には、必要電流が10,000Aを越える計算結果が得られた。かかる態様は、コストや消費エネルギーの節約の観点からは、現実的ではなくなる。
 以上から、開口部面積率は、1%、および、30%以上かつ75%未満の場合には、評価「C」(採用可能)との評価が得られる。75%以上の場合には、評価「D」(現実的ではない)との評価が得られる。開口部面積率が1%よりも大きく、20%以下の範囲では、評価「B」(良好)以上の評価が得られる。特に、確実に接着力および形状保持力が得られるとともに、必要電流もある程度低減できる5%以上、6%以下の開口部面積率の範囲では、評価「A」(優れている)との評価が得られる。
 上述したプリフォーム20は、通電加熱法によって製造することができる。具体的には、絶縁シート40には、開口部41が形成されているので、開口部41を介して、積層体60に積層方向に沿って電流を流すことにより、接着樹脂50を溶融し、炭素繊維シート31~34および絶縁シート40のうちの隣り合う層同士を接着することができる。通電加熱法は、比較的短時間で接着が可能であることから、絶縁シート40の製造時間を短くすることができる。また、溶融した接着樹脂50は、僅かな時間で温度が低下するので、特別な冷却工程を必要としない。また、通電加熱法に使用する電極は、積層方向に1対設ければ足りる。つまり、上型71および下型72を、通電加熱法に使用する電極として利用できる。このため、プリフォーム20を簡素な構成の装置で製造できる。また、誘導加熱法や超音波溶着法のように、特別な装置を必要としない。また、かかる製造方法では、立体形状のプリフォーム20を好適に製造できる。
 なお、開口部41は、「抵抗領域よりも積層の方向の電気抵抗が低い通電領域」として機能し、「通電可能な通電領域」として機能する。ここで、「通電可能」とは、プリフォーム20に外力を作用させない状態で通電可能な構成に限定されない。例えば、開口部41の内部において、炭素繊維シート32と炭素繊維シート33とが接触していない場合であっても、プリフォーム20を積層方向に加圧することにより、炭素繊維シート32と炭素繊維シート33とが接触して、通電可能となる構成も、「通電可能」な構成に含まれる。また、絶縁シート40の面積(S1とする)が炭素繊維シート31~34の面積(S2とする)よりも小さい場合には、面方向において、炭素繊維シート31~34が存在する位置(領域)に対応し、絶縁シート40の外部にある領域(S2-S1の領域)についても、「通電可能な通電領域」と捉えてよい。
 また、プリフォーム20は、面方向において、絶縁シート40に形成された開口部41およびその周辺に対応する領域内で、炭素繊維シート31~34および絶縁シート40が接着され、その他の領域内では、接着は行われない。したがって、炭素繊維シートの全面が接着される場合と比べて、プリフォーム20の積層方向の反発力を確保できる。
 また、開口部41は、絶縁シート40の面方向において、分散して複数形成されているので、炭素繊維シート31~34および絶縁シート40の接着箇所も分散配置される。したがって、プリフォーム20の形状が維持されやすい。
 また、プリフォーム20は、開口部面積率を調節することにより、通電加熱、すなわち、積層体60の接着に必要なエネルギー量を調節することができる。
 かかるプリフォーム20を使用すれば、炭素繊維シート31~34の層間に絶縁シート40を備えた炭素繊維強化プラスチックを製造することができる。プリフォーム20を使用して、RTM法によって炭素繊維強化プラスチックを製造する場合、絶縁シート40は、型内に注入された熱硬化性樹脂の面方向への進入を促進する効果も奏する。その結果、熱硬化性樹脂の含浸速度を高めることができる。あるいは、熱硬化性樹脂の含浸について、均一性を高めることができる。
 B:変形例:
 B-1.変形例1:
 上述した実施例では、炭素繊維シート32と炭素繊維シート33との間に、絶縁シート40が配置された。しかし、絶縁シート40の配置は、かかる例に限らない。絶縁シート40は、炭素繊維シート31~34の任意の層間に配置することができる。さらに、絶縁シート40は、必ずしも炭素繊維シート31~34の層間に配置されなくてもよい。絶縁シート40は、炭素繊維シート31~34の表面に配置されてもよい。例えば、積層体60は、絶縁シート40、炭素繊維シート31~34の順に積層されて構成されてもよい。また、炭素繊維シートの数は、複数であればよく、2以上の任意の数に設定可能である。
 B-2.変形例2:
 上述の実施例では、複数の炭素繊維シート31~34と、1つの絶縁シート40とを積層して、積層体60を構成した。ただし、積層体60は、複数の絶縁シート40を備えていてもよい。例えば、炭素繊維シート31と炭素繊維シート32の間と、炭素繊維シート33と炭素繊維シート34との間に、それぞれ絶縁シート40が配置されてもよい。
 B-3.変形例3:
 上述の実施例では、絶縁シート40に形成される複数の開口部41は、面方向に均一に分散して配置された。しかし、複数の開口部41の配置は、かかる態様に限られない。複数の開口部41の配置は、任意に設定可能である。また、複数の開口部41の開口面積は、同一である必要はなく、開口部41のそれぞれについて、開口面積が任意に設定されてもよい。開口部41の配置や開口面積は、製造されるプリフォーム20の形状に合わせて、適宜設定されてもよい。
 図8は、変形例としての絶縁シート140の構造を示す。絶縁シート140を使用して製造されるプリフォームは、実施例に示したプリフォーム20(図1参照)と同一の形状である。絶縁シート140には、複数の開口部141が形成されている。図8に示す絶縁シート140において、二点鎖線で示すラインは、基端部23および先端部24(図1参照)がそれぞれ形成される位置を示している。この例では、基端部23および先端部24が形成される位置の周辺に、他の部分よりも高い密度で開口部141が形成されている。
 このように、積層体の全面のうち、形状転写前の初期状態(全面が平坦なシート形状)から加工によって変形する箇所の周辺に、重点的に開口部が配置される構成としてもよい。かかる構成によれば、積層体において、変形する箇所の周辺が重点的に接着されるので、加工後の形状が維持されやすくなる。また、比較的狭い領域である、基端部23の内側の領域に形成された開口部141bの面積は、比較的広い領域である、基端部23の外側の領域に形成された開口部141aの面席よりも小さく設定されている。このように、プリフォームの加工形状に合わせて、開口部の面積を調節することで、接着箇所の配置の自由度が向上する。なお、図8の態様では、基端部23および先端部24の周辺に開口部141を配置した。しかし、基端部23および先端部24が形成される位置上に開口部141を配置しても、同様の効果が得られる。
 B-4.変形例4:
 上述の実施例では、絶縁シート40に形成される開口部41の形状は、円形であった。しかし、開口部41の形状は、任意に設定可能である。図9は、変形例としての絶縁シート240の構造を示す。図示する例では、矩形形状を有する複数の開口部241が形成されている。勿論、開口部241の形状も、上述した変形例3と同様に、製造されるプリフォーム20の加工形状に合わせて、設定されてもよい。例えば、積層体の全面のうちで初期状態から加工によって変形する箇所に沿って、開口部241が形成されてもよい。さらに具体的には、例えば、基端部23の外周に沿って、環状に開口部241が形成されてもよい。
 B-5.変形例5:
 上述の実施例では、炭素繊維シート31~34の層間に絶縁シート40を配置する構成を例示した。しかし、絶縁シート40に代えて、部分通電シートが配置されてもよい。「部分通電シート」とは、シートの全領域の中に、絶縁体からなる絶縁領域と、導電性部材からなる通電領域と、を有するシートである。絶縁領域と通電領域とは、面方向について異なる位置に配置される。例えば、部分通電シートは、絶縁シート40の開口部41の位置に導電性部材を有するシートとすることができる。導電性部材としては、炭素繊維が使用されてもよい。
 B-6.変形例6:
 上述の実施例では、炭素繊維シート31~34の層間に絶縁シート40を配置する構成を例示したが、絶縁シート40に代えて、炭素繊維シートよりも積層の方向に電気抵抗が高い部材が使用されてもよい。通常、炭素繊維シート1層辺りの厚さ方向の電気抵抗は10~300Ω/cm2の範囲(炭素繊維目付:330g/m2,炭素繊維本数:1200本,押し付け圧:0.1~0.5MPaの場合)である。こうしても、上述した効果をある程度奏することができる。また、変形例5で述べた部分通電シートは、炭素繊維シートよりも積層の方向に電気抵抗が高い部材からなる高抵抗領域と、通電領域とを有するシートとして構成されてもよい。
 B-7.変形例7:
 図10は、変形例としての部分通電織物90の構造を示す説明図である。図10の下段に、部分通電層としての部分通電織物90の平面図を示す。図10の上段に、下段の図中の線91における部分通電織物90の断面図を示す。上述の実施例では、部分通電層として、ガラス繊維からなる絶縁シート40に開口部41を設けた構成をしめした。しかし、図10に示すように、主にガラス繊維42からなる織物組織に、炭素繊維35を部分的に織り込んだ部分通電織物90を、部分通電層として使用してもよい。織物構造の中に部分的に炭素繊維35を用いることで、電流が流れる経路を確保できる。炭素繊維が存在する領域が通電領域となり、一方で炭素繊維が存在しない部分は抵抗領域となる。更に良い効果として、この部分通電層自身がガラス繊維や炭素繊維のような強化繊維によって構成されることにより、最終的に繊維強化プラスチックとなった際に、部品強度の発現に寄与することができる。
 以上、本発明の実施形態について説明したが、本発明は、このような実施形態に限定されず、その趣旨を逸脱しない範囲で種々の構成を採ることができる。例えば、上述した各適用例の構成要素や、実施形態中の要素は、本願の課題の少なくとも一部を解決可能な態様、または、上述した各効果の少なくとも一部を奏する態様において、適宜、組み合わせ、省略、上位概念化を行うことが可能である。
  20…プリフォーム
  21…平坦部
  22…突出部
  23…基端部
  24…先端部
  31~34…炭素繊維シート
  35…炭素繊維
  40,140,240…絶縁シート
  41,41a,41b,141,141a,141b,241…開口部
  42…ガラス繊維
  50…接着樹脂
  60…積層体
  70…金型
  71…上型
  72…下型
  81…電源
  82…トランス
  83…整流器
  90…部分通電織物
  91…断面線

Claims (13)

  1.  複数の炭素繊維シートが積層され、熱可塑特性を有する接着樹脂を介して互いに接着された炭素繊維プリフォームにおいて、
     前記炭素繊維シートよりも前記積層の方向についての電気抵抗が高い抵抗領域と、前記抵抗領域よりも前記積層の方向の電気抵抗が低い通電領域とが、前記積層の方向と直交する面方向に分布している部分通電層を、前記複数の炭素繊維シートのうち少なくとも1組の隣り合う炭素繊維シートの間の位置と、前記炭素繊維プリフォームの表層上の位置と、の少なくとも一方に備え、
     前記部分通電層に設けられた前記通電領域内および前記通電領域の周辺に対応する領域内において、前記複数の炭素繊維シートが前記接着樹脂を介して接着されている炭素繊維プリフォーム。
  2.  請求項1に記載の炭素繊維プリフォームであって、
     前記抵抗領域内の少なくとも一部において、前記複数の炭素繊維シートが前記接着樹脂を介して接着されていない、炭素繊維プリフォーム。
  3.  請求項1または請求項2に記載の炭素繊維プリフォームであって、
     前記部分通電層は、絶縁シートで構成され、
     前記通電領域は、前記絶縁シートを前記積層の方向に貫通する開口部を含む、炭素繊維プリフォーム。
  4.  請求項1から請求項3のいずれかに記載の炭素繊維プリフォームであって、
     前記通電領域の面積は、前記炭素繊維シートの面積の1%より大きい、炭素繊維プリフォーム。
  5.  請求項1から請求項4のいずれかに記載の炭素繊維プリフォームであって、
     前記通電領域の面積は、前記炭素繊維シートの面積の20%以下である、炭素繊維プリフォーム。
  6.  複数の炭素繊維シートが積層された炭素繊維強化プラスチックにおいて、
     前記炭素繊維シートよりも前記積層の方向についての電気抵抗が高い抵抗領域と、前記抵抗領域よりも前記積層の方向の電気抵抗が低い通電領域とが、前記積層の方向と直交する面方向に分布している部分通電層を、前記複数の炭素繊維シートのうち少なくとも1組の隣り合う炭素繊維シートの間の位置と、前記炭素繊維強化プラスチックの表層上の位置と、の少なくとも一方に、備えたことを特徴とする炭素繊維強化プラスチック。
  7.  請求項6記載の炭素繊維強化プラスチックであって、
     前記部分通電層は、絶縁シートで構成され、
     前記通電領域は、前記絶縁シートを前記積層の方向に貫通する開口部を含む、炭素繊維強化プラスチック。
  8.  請求項6または請求項7に記載の炭素繊維強化プラスチックであって、
     前記通電領域の面積は、前記炭素繊維シートの面積の1%より大きい、炭素繊維強化プラスチック。
  9.  請求項6から請求項8のいずれかに記載の炭素繊維強化プラスチックであって、
     前記通電領域の面積は、前記炭素繊維シートの面積の20%以下である、炭素繊維強化プラスチック。
  10.  絶縁シートと、複数の炭素繊維シートとを、熱可塑特性を有する接着樹脂を介して積層した積層体を用意し、
     前記絶縁シートおよび前記複数の炭素繊維シートの積層体に電圧を印加するための電極として機能する、向かい合う2つの型で前記積層体を挟み込み、
     前記2つの型が有する型形状を前記積層体に転写する、炭素繊維プリフォームの製造方法において、
     前記絶縁シートとして、前記積層の方向に貫通する開口部が形成された絶縁シートを使用して、前記積層体を用意し、前記2つの型内に配置する工程と、
     前記2つの型により、前記積層体を前記積層の方向に加圧するとともに、前記2つの型に電圧を印加して前記積層体に電流を流し、前記複数の炭素繊維シートを発熱させることで、前記開口部を含む通電領域内および前記通電領域の周辺に対応する領域内で、前記接着樹脂を溶融および固着させて、前記複数の炭素繊維シート間を、前記接着樹脂を介して接着する工程と
     を備える、炭素繊維プリフォームの製造方法。
  11.  請求項10に記載の炭素繊維プリフォームの製造方法であって、
     前記複数の炭素繊維シート間を接着する工程は、前記通電領域以外の少なくとも一部の領域で、前記接着樹脂を溶融させない状態で実行される、炭素繊維プリフォームの製造方法。
  12.  請求項10または請求項11に記載の炭素繊維プリフォームの製造方法であって、
     前記開口部の開口面積は、前記炭素繊維シートの面積の1%より大きい、炭素繊維プリフォームの製造方法。
  13.  請求項10から請求項12のいずれかに記載の炭素繊維プリフォームの製造方法であって、
     前記開口部の開口面積は、前記炭素繊維シートの面積の20%以下である、炭素繊維プリフォームの製造方法。
PCT/JP2013/001863 2012-03-19 2013-03-19 炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法 WO2013140786A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13764651.9A EP2829569A4 (en) 2012-03-19 2013-03-19 CARBON FIBER REINFORCED CARBON FIBER PREFORM, AND CARBON FIBER PREFORM MANUFACTURING METHOD
KR1020147024723A KR20140139493A (ko) 2012-03-19 2013-03-19 탄소 섬유 프리폼, 탄소 섬유 강화 플라스틱, 탄소 섬유 프리폼의 제조 방법
US14/385,907 US20150048555A1 (en) 2012-03-19 2013-03-19 Carbon fiber preform, carbon fiber-reinforced plastic and manufacturing method of carbon fiber preform
CN201380014825.2A CN104245803A (zh) 2012-03-19 2013-03-19 碳纤维预成型体、碳纤维增强塑料、碳纤维预成型体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-061510 2012-03-19
JP2012061510 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013140786A1 true WO2013140786A1 (ja) 2013-09-26

Family

ID=49222265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001863 WO2013140786A1 (ja) 2012-03-19 2013-03-19 炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法

Country Status (6)

Country Link
US (1) US20150048555A1 (ja)
EP (1) EP2829569A4 (ja)
JP (1) JPWO2013140786A1 (ja)
KR (1) KR20140139493A (ja)
CN (1) CN104245803A (ja)
WO (1) WO2013140786A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129481A1 (ja) * 2013-02-21 2014-08-28 東レ株式会社 プリフォームの製造方法および製造装置
KR20150069163A (ko) * 2013-12-13 2015-06-23 코오롱글로텍주식회사 열가소성 프리프레그의 제조방법
WO2015146668A1 (ja) * 2014-03-28 2015-10-01 本田技研工業株式会社 繊維強化複合材料及びその製造方法
CN109070498A (zh) * 2016-02-23 2018-12-21 Lm Wp 专利控股有限公司 制造复合层压结构的方法
WO2021187043A1 (ja) * 2020-03-18 2021-09-23 東レ株式会社 積層体およびそれを用いた溶着体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129632A1 (ja) * 2005-05-30 2006-12-07 Kaneka Corporation グラファイトフィルムの製造方法、およびその方法で製造されたグラファイトフィルム
WO2017163605A1 (ja) * 2016-03-25 2017-09-28 倉敷紡績株式会社 補強用炭素繊維シート
CA3008119C (en) * 2016-03-31 2024-02-13 Toray Industries, Inc. Reinforced fiber laminate sheet, fiber-reinforced resin molded body, and method for manufacturing reinforced fiber laminate sheet
CN106808715B (zh) * 2016-12-29 2018-12-14 盐城赛福汽车零部件有限公司 一种碳纤维复合材料汽车零部件的制备方法
US10967576B2 (en) * 2017-11-10 2021-04-06 Local Motors IP, LLC Additive manufactured structure having a plurality of layers in a stacking direction and method for making the same
CN108081518B (zh) * 2017-12-20 2019-08-20 南京航空航天大学 一种碳纤维增强复合材料电损耗加热温度场主动控制方法
EP3784472B1 (en) 2018-04-23 2022-11-02 Local Motors IP, LLC Method for additive manufacturing
US11813790B2 (en) 2019-08-12 2023-11-14 Rapidflight Holdings, Llc Additively manufactured structure and method for making the same
JP7328833B2 (ja) 2019-08-30 2023-08-17 株式会社Subaru プリフォーム賦形装置、プリフォーム賦形方法及び複合材成形方法
JP7382117B2 (ja) * 2019-08-30 2023-11-16 株式会社Subaru プリフォーム賦形装置、プリフォーム賦形方法及び複合材成形方法
EP4067038A1 (en) * 2021-04-01 2022-10-05 Siemens Gamesa Renewable Energy A/S Method for manufacturing of a pre-form part for a wind turbine blade and mould for the manufacturing of a pre-form part

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155926A (ja) 1982-03-12 1983-09-16 Mitsubishi Rayon Co Ltd 複合材料成形物の製造方法
JPS592815A (ja) 1982-06-30 1984-01-09 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂複合材料の製造方法
JPS6044328A (ja) * 1983-08-22 1985-03-09 Tsunehiko Tsuboi 強化プラスチック板の成形法
JPH0288204A (ja) * 1988-09-26 1990-03-28 Toho Rayon Co Ltd Frp製型
JPH05330482A (ja) * 1992-06-01 1993-12-14 Hitachi Chem Co Ltd 繊維強化プラスチック製小型船舶の製造法
JPH06297632A (ja) * 1993-04-20 1994-10-25 Teijin Ltd 曲げ加工用複合材料およびその曲げ加工方法
JP2004009601A (ja) * 2002-06-07 2004-01-15 Toyota Motor Corp 繊維強化プラスチック用プリフォーム及びその製造方法
JP2009073132A (ja) 2007-09-24 2009-04-09 Toyota Motor Corp 融着体の製造方法
JP2011202095A (ja) * 2010-03-26 2011-10-13 Toray Ind Inc プリプレグの製造装置および製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618359Y2 (ja) * 1986-09-10 1994-05-11 ソマ−ル株式会社 X線フイルムカセツテ用表板
JPH01239767A (ja) * 1988-03-18 1989-09-25 Toray Ind Inc 電極基材およびその製造方法
US5648137A (en) * 1994-08-08 1997-07-15 Blackmore; Richard Advanced cured resin composite parts and method of forming such parts
EP1139471A4 (en) * 1999-09-22 2002-09-04 Toray Industries POROUS, ELECTRICALLY CONDUCTIVE SHEET AND METHOD FOR THE PRODUCTION THEREOF
JP3894035B2 (ja) * 2001-07-04 2007-03-14 東レ株式会社 炭素繊維強化基材、それからなるプリフォームおよび複合材料
US8630534B2 (en) * 2006-03-20 2014-01-14 Airbus Operations Gmbh Heating system and component with such a heating system
JP4969363B2 (ja) * 2006-08-07 2012-07-04 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155926A (ja) 1982-03-12 1983-09-16 Mitsubishi Rayon Co Ltd 複合材料成形物の製造方法
JPS592815A (ja) 1982-06-30 1984-01-09 Mitsubishi Rayon Co Ltd 繊維強化熱可塑性樹脂複合材料の製造方法
JPS6044328A (ja) * 1983-08-22 1985-03-09 Tsunehiko Tsuboi 強化プラスチック板の成形法
JPH0288204A (ja) * 1988-09-26 1990-03-28 Toho Rayon Co Ltd Frp製型
JPH05330482A (ja) * 1992-06-01 1993-12-14 Hitachi Chem Co Ltd 繊維強化プラスチック製小型船舶の製造法
JPH06297632A (ja) * 1993-04-20 1994-10-25 Teijin Ltd 曲げ加工用複合材料およびその曲げ加工方法
JP2004009601A (ja) * 2002-06-07 2004-01-15 Toyota Motor Corp 繊維強化プラスチック用プリフォーム及びその製造方法
JP2009073132A (ja) 2007-09-24 2009-04-09 Toyota Motor Corp 融着体の製造方法
JP2011202095A (ja) * 2010-03-26 2011-10-13 Toray Ind Inc プリプレグの製造装置および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASATOBU KAWAGOE: "Fundamental Study on Melting Method Using Electric Resistance of CFRP Joint", JCCM-2, PROCEEDINGS 2011, PAPER #2B-07, 2011

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129481A1 (ja) * 2013-02-21 2014-08-28 東レ株式会社 プリフォームの製造方法および製造装置
JPWO2014129481A1 (ja) * 2013-02-21 2017-02-02 東レ株式会社 プリフォームの製造方法および製造装置
US10065401B2 (en) 2013-02-21 2018-09-04 Toray Industries, Inc. Method and apparatus for producing preform
KR20150069163A (ko) * 2013-12-13 2015-06-23 코오롱글로텍주식회사 열가소성 프리프레그의 제조방법
KR102100953B1 (ko) * 2013-12-13 2020-04-14 코오롱글로텍주식회사 열가소성 프리프레그의 제조방법
WO2015146668A1 (ja) * 2014-03-28 2015-10-01 本田技研工業株式会社 繊維強化複合材料及びその製造方法
JPWO2015146668A1 (ja) * 2014-03-28 2017-04-13 本田技研工業株式会社 繊維強化複合材料及びその製造方法
CN109070498A (zh) * 2016-02-23 2018-12-21 Lm Wp 专利控股有限公司 制造复合层压结构的方法
CN109070498B (zh) * 2016-02-23 2021-04-30 Lm Wp 专利控股有限公司 制造复合层压结构的方法
WO2021187043A1 (ja) * 2020-03-18 2021-09-23 東レ株式会社 積層体およびそれを用いた溶着体
CN115243880A (zh) * 2020-03-18 2022-10-25 东丽株式会社 层叠体及使用其的熔接体
CN115243880B (zh) * 2020-03-18 2024-02-02 东丽株式会社 层叠体及使用其的熔接体

Also Published As

Publication number Publication date
EP2829569A1 (en) 2015-01-28
JPWO2013140786A1 (ja) 2015-08-03
US20150048555A1 (en) 2015-02-19
KR20140139493A (ko) 2014-12-05
EP2829569A4 (en) 2015-09-09
CN104245803A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2013140786A1 (ja) 炭素繊維プリフォーム、炭素繊維強化プラスチック、炭素繊維プリフォームの製造方法
US9421742B2 (en) Sandwich laminate and manufacturing method
JP5223130B2 (ja) 熱可塑性樹脂補強シート材及びその製造方法、並びに熱可塑性樹脂多層補強シート材
US20100212823A1 (en) Method for producing fusion-bonded body
JP5833323B2 (ja) 炭素繊維複合材料の接合部材の製造方法
US5756973A (en) Barbed susceptor for improviing pulloff strength in welded thermoplastic composite structures
JP6226486B2 (ja) 複合部品の製造における複合部品の横方向の電気伝導率を改善する貫通工程の使用
JP2008132650A (ja) 強化繊維積層体およびその製造方法
JP2012011568A (ja) 繊維強化複合材用の不織布素材
JPH04504386A (ja) 複合材料の接合方法
US20190061273A1 (en) Method and apparatus for welding a thermoset object to a further object via thermoplastic outer layers
JP2019098704A (ja) 複合材料の接合方法及び複合材料
WO2020031771A1 (ja) 強化繊維テープ材料およびその製造方法、強化繊維テープ材料を用いた強化繊維積層体および繊維強化樹脂成形体
JP7467681B2 (ja) 電磁溶接での使用のためのファイバー強化複合ラミネート及びこのラミネート製の成形パーツの電磁溶接方法
JP2011057767A (ja) 繊維強化複合材用プリフォームの製造方法と製造装置
JP2933310B1 (ja) 熱可塑性樹脂成形品の熱溶着に際して用いられる発熱体
JP2015030108A (ja) 炭素繊維プリフォームの製造装置および炭素繊維プリフォームの製造方法
JP2013129159A (ja) 接合体の製造方法
JPH04229209A (ja) 炭素繊維で強化された熱可塑性ポリマー系複合材料成形品の製造方法
JP6287831B2 (ja) プリフォームの製造方法および製造装置
JP2006138031A (ja) 強化繊維基材、プリフォームおよびそれらの製造方法
WO2019159443A1 (ja) 複合材料の製造方法及び複合材料
JP7362018B2 (ja) 複合積層体およびその製造方法
CN212979507U (zh) 一种夹芯板制备装置
JPH09168350A (ja) 釣 竿

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514432

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147024723

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013764651

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013764651

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14385907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE