WO2013140711A1 - Clinical thermometer - Google Patents

Clinical thermometer Download PDF

Info

Publication number
WO2013140711A1
WO2013140711A1 PCT/JP2013/000732 JP2013000732W WO2013140711A1 WO 2013140711 A1 WO2013140711 A1 WO 2013140711A1 JP 2013000732 W JP2013000732 W JP 2013000732W WO 2013140711 A1 WO2013140711 A1 WO 2013140711A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
acoustic wave
surface acoustic
wave type
type temperature
Prior art date
Application number
PCT/JP2013/000732
Other languages
French (fr)
Japanese (ja)
Inventor
孝博 相馬
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013140711A1 publication Critical patent/WO2013140711A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/32Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0008Temperature signals

Definitions

  • the present invention relates to a thermometer.
  • thermometer that is attached to the body surface of a subject and measures the body temperature in the deep part of the subject (see, for example, Patent Documents 1 and 2).
  • a non-heating type thermometer is disposed so as to face a first temperature sensor that is in contact with the body surface when the sample is attached to the body surface of the subject, and to the first temperature sensor via a heat insulating material. At least two temperature sensor pairs each including a second temperature sensor are provided. And it comprises so that the heat conductivity of each heat insulating material in which each pair of temperature sensors was arranged may mutually differ, and the temperature difference of the 1st temperature sensor in each temperature sensor pair and the 2nd temperature sensor is each By detecting, the heat flow from the deep part is obtained, and the body temperature of the deep part is calculated.
  • thermometer In such a thermometer (hereinafter referred to as a heat flow type thermometer), a thermistor, a thermocouple, or the like is usually used as a temperature sensor.
  • thermometer in the case of a heat flow thermometer, it is assumed that it is used by being attached to the body surface of a subject, and it is indispensable to transmit the detection result by the temperature sensor to the outside.
  • temperature sensors such as thermistors and thermocouples generally do not have a wireless communication function. Therefore, when these temperature sensors are applied to a heat flow thermometer, it is necessary to add a wireless communication function separately. For this reason, as a temperature sensor applied to a heat flow type thermometer, it is more preferable that it is a temperature sensor provided with the wireless communication function.
  • thermometer in the case of a heat flow thermometer, it is essential to reduce the weight and size in order to reduce the burden on the subject, and as a temperature sensor having a wireless communication function, a temperature sensor having an active wireless communication function Thus, it is preferable to use a passive temperature sensor that does not need to provide these functions, rather than a signal processing function such as a digital conversion function, a power supply function, and the like.
  • Examples of such a temperature sensor include a temperature sensor using surface acoustic waves (SAW).
  • a surface acoustic wave is an acoustic acoustic wave that propagates on the surface of a substance
  • a temperature sensor that uses surface acoustic waves is the distance between two comb-shaped electrodes (IDTs) that are arranged on a piezoelectric crystal substrate at a predetermined distance.
  • IDTs comb-shaped electrodes
  • This is a sensor that emits electromagnetic waves by exciting one surface with electromagnetic waves and receiving the surface acoustic waves propagating on the piezoelectric crystal substrate with the other comb-shaped electrode.
  • This is a passive power temperature sensor with a wireless communication function that can calculate the temperature by measuring the change in the propagation speed of the sensor.
  • thermometer If such a temperature sensor is applied, it is not necessary to arrange a CPU or the like and perform various signal processing including conversion processing into a digital signal with a heat flow thermometer, and further wireless communication for transmitting signals. Since there is no need to provide functions and power supply for driving them, there is an advantage that it can be reduced in weight and size.
  • thermometer in the case of a heat flow type thermometer, four temperature sensors (two sets of first and second temperature sensors, a total of four temperature sensors) are used to calculate the body temperature in the deep part. It is necessary to configure so as not to receive thermal interference.
  • the temperature sensor using the surface acoustic wave (SAW) described above is applied to a heat flow thermometer, a configuration in which four temperature sensors are connected to one antenna can be considered.
  • SAW surface acoustic wave
  • Cu or Al used for wiring has high thermal conductivity, and when the antenna is shared, the four temperature sensors are thermally coupled via the wiring, which adversely affects the accuracy of the calculated deep temperature. May affect.
  • a series of series of calculating the deep temperature by emitting electromagnetic waves that excite the comb electrodes of the temperature sensors, catching the electromagnetic waves emitted from each temperature sensor, and calculating the temperature detected by each temperature sensor. It is desirable that the processing is configured so that a predetermined reader can be performed only by bringing it closer to a heat flow thermometer attached to the body surface. Therefore, it is necessary to complete these series of processing (temperature measurement processing) accurately in a short time.
  • the present invention has been made in view of the above problems, and in a heat flow thermometer using a temperature sensor using surface acoustic waves, the temperature interference between the temperature sensors is reduced, and the electromagnetic waves emitted from the temperature sensors are reduced.
  • the object of the present invention is to enable identification and to calculate and display the deep body temperature in a short time.
  • thermometer has the following configuration. That is, A thermometer that measures deep body temperature by contacting the body surface of a subject, A first surface acoustic wave type temperature sensor and antenna are arranged on the side in contact with the body surface, and a second surface acoustic wave type temperature sensor and antenna are arranged on the side facing the surface on the side in contact with the body surface. A first thermal resistor, A third surface acoustic wave type temperature sensor and antenna are arranged on the side in contact with the body surface, and a fourth surface acoustic wave type temperature sensor and antenna are arranged on the side facing the surface in contact with the body surface.
  • a second thermal resistor A uniformizing member configured to cover a surface of the first thermal resistor and the second thermal resistor that are opposed to a surface that is in contact with the body surface;
  • Each of the first to fourth surface acoustic wave type temperature sensors is characterized in that the respective comb electrodes are arranged so that the delay times under the same temperature are different from each other.
  • thermometer in a heat flow thermometer using a temperature sensor using surface acoustic waves, temperature interference between the temperature sensors can be reduced.
  • the deep body temperature can be calculated and displayed in a short time.
  • FIG. 1 is a diagram expressing the heat flow in a heat flow thermometer as an electric circuit using an electric circuit similarity method in order to explain the measurement principle of the heat flow thermometer.
  • FIG. 2 is a diagram illustrating an overall configuration of a body temperature measurement system including a heat flow type thermometer.
  • FIG. 3 is a diagram showing a cross-sectional configuration of the heat flow thermometer.
  • FIG. 4 is a diagram illustrating a planar configuration of the heat flow thermometer.
  • FIG. 5 is a diagram showing a configuration of each temperature sensor constituting the heat flow type thermometer.
  • FIG. 6 is a diagram illustrating an example of an electromagnetic wave caught by the reader.
  • FIG. 7 is a diagram illustrating a functional configuration of the reader.
  • FIG. 1 is a diagram showing the heat flow in a heat flow thermometer as an electric circuit using an electric circuit similarity method in order to explain the measurement principle of the heat flow thermometer.
  • the heat flow in the heat flow thermometer can be expressed by an equivalent circuit 100 by setting the heat flow to current I, the temperature to voltage T, and the heat resistance to electric resistance R.
  • Tb is the deep body temperature
  • Rt is the thermal resistance of the subcutaneous tissue of the subject
  • Tt1 is the temperature detected by the first temperature sensor 111
  • Ta1 is the temperature detected by the second temperature sensor 112.
  • Ra1 indicates the thermal resistance value of the thermal resistor 113, respectively.
  • Tt2 represents the temperature detected by the third temperature sensor 121
  • Ta2 represents the temperature detected by the fourth temperature sensor 122
  • Ra2 represents the thermal resistance value of the thermal resistor 123.
  • Tc represents the external temperature
  • Rc represents the thermal resistance value of the homogenizing member 130 for equalizing the measured temperature on the outside air side.
  • the equivalent circuit 100 can be replaced with one in which the constant voltage Tb is applied. Therefore, it is assumed that a constant current I flows in the equivalent circuit 100. be able to.
  • the current I1 and the current I2 can be expressed by the following equations (1) and (2).
  • the deep body temperature Tb can be uniquely determined.
  • FIG. 2 is a diagram showing an overall configuration of a body temperature measurement system including a heat flow type thermometer according to the present embodiment.
  • reference numeral 200 denotes a heat flow type thermometer according to the present embodiment.
  • 210 emits electromagnetic waves to excite a surface acoustic wave in one of the comb electrodes of the first to fourth temperature sensors 111 to 122 of the heat flow thermometer 200 and to the first to fourth temperature sensors 111 to 122.
  • the reader 210 calculates the deep body temperature of the subject by calculating the temperature of each of the first to fourth temperature sensors 111 to 122 from the measured propagation time using a known delay time-temperature characteristic. To do.
  • FIG. 3 is a diagram showing a cross-sectional configuration of the heat flow thermometer 200 according to the present embodiment.
  • reference numerals 111 and 121 denote a first temperature sensor and a third temperature sensor located on the side in contact with the body surface when they are attached to the body surface of the subject. These are a second temperature sensor and a fourth temperature sensor arranged on the side facing the temperature sensor 111 and the third temperature sensor 121.
  • or 4th temperature sensor shall be comprised by the temperature sensor (surface acoustic wave type temperature sensor) using a surface acoustic wave.
  • 113 is a thermal resistor that is disposed between the first temperature sensor 111 and the second temperature sensor 112 and allows a heat flow from the body surface of the subject to pass therethrough.
  • 123 is a thermal resistor that is arranged between the third temperature sensor 121 and the fourth temperature sensor 122 and allows a heat flow from the body surface of the subject to pass therethrough.
  • the thermal resistor 113 is made of a material having a thermal conductivity of approximately 0.2 W / mK
  • the thermal resistor 123 is made of a material having a thermal conductivity that is about twice that of the thermal resistor 113. Each material is assumed to have flexibility and sufficient restoration.
  • the thermal resistors 113 and 123 are formed in the same shape, and for example, have a flat plate shape with a thickness of 1 mm and a diameter of 20 mm. And the 1st temperature sensor 111, the 2nd temperature sensor 112, the 3rd temperature sensor 121, and the 4th temperature sensor 122 are arrange
  • a uniformizing member 130 made of aluminum having a thermal conductivity of 236 W / mK is disposed on the upper surfaces of the thermal resistor 113 and the thermal resistor 123, and covers the upper surfaces of the thermal resistor 113 and the thermal resistor 123. Yes. Thereby, the temperature of the upper surface of the thermal resistor 123 and the upper surface of the thermal resistor 123 (that is, the outside air side where the heat flow is dissipated) are made uniform.
  • thermal resistor 113 and the thermal resistor 123 are fixed to the uniformizing member 130 so that the bottom surfaces thereof form the same plane.
  • the bottom surface of the thermal resistor 113 and the bottom surface of the thermal resistor 123 are each affixed to the body surface of the subject without a gap.
  • the body surface sides (bottom surfaces) of the temperature sensor 111 and the temperature sensor 121 are respectively covered with heat conductive members 301 and 302 having good heat conductivity such as aluminum tape, and further the body of the heat flow thermometer 200.
  • the surface side is covered with an adhesive tape (adhesive layer) 303 and an adhesive tape (release paper) 304.
  • FIG. 4 is a diagram showing a planar configuration of the heat flow thermometer 200 according to the present embodiment.
  • the first temperature sensor 111, the second temperature sensor 112, the third temperature sensor 121, and the fourth temperature sensor 122 are individually connected to the antennas 411 to 422, respectively. Yes.
  • each temperature sensor 111 to 122 is arranged in the deep portion by arranging four antennas independently instead of arranging one common antenna for each temperature sensor 111 to 122.
  • thermal coupling through an antenna may affect the detection results of the temperature sensors 111 to 122. Can be avoided.
  • the first temperature sensor 111 and the third temperature sensor 121 are arranged at the center position of the surface of the thermal resistor 113 (or 123) that contacts the body surface, and the antennas 411 and 421 and the antenna wiring are In order to make the heat conduction as small as possible, the conductor is made of a thin and thin conductor and is disposed so as to surround the side surface of the thermal resistor 113 (or 123). Thereby, it is possible to reduce the influence of heat transfer from the antennas 411 and 421 to the first temperature sensor 111 and the third temperature sensor 121 as much as possible.
  • the antennas 411 and 421 can have larger diameters, and the reader 210 can stably excite surface acoustic waves and catch electromagnetic waves.
  • the second temperature sensor 112 and the fourth temperature sensor 122 are arranged at the center position of the surface facing the body surface of the thermal resistor 113 (or 123) and facing the body surface.
  • 422 and the antenna wiring are made of a thin conductor with a small thickness in order to make the heat conduction as small as possible, and are arranged so as to surround the side surface of the thermal resistor 113 (or 123). .
  • the antennas 412 and 422 can have larger diameters, and the reader 210 can stably excite surface acoustic waves and catch electromagnetic waves.
  • the heat flow in the thermal resistor 113 is not dissipated from the first to fourth temperature sensors (111 to 122) through the respective antennas (411 to 422). Is formed by arranging a Cu or Al conductor having a width of 0.1 mm or less and a thickness of 10 to 50 ⁇ m by etching or vapor deposition on a synthetic resin film or paper having a width of about 1 mm and a thickness of 0.2 mm or less. Yes.
  • the equalization member 130 covers the 2nd temperature sensor 112 and the 4th temperature sensor 122 from the side facing the surface of the side which contacts a body surface (uniform).
  • the outer periphery of the forming member 130 is positioned outside the second temperature sensor 112 and the fourth temperature sensor 122), and is more uniform than the outer edge formed by the thermal resistors 113 and 123. (The size of the uniformizing member 130 is defined in this way).
  • the uniformizing member 130 is defined in such a size is that if the uniformizing member 130 is made of aluminum and is formed to be larger than the outer edge formed by the thermal resistors 113 and 123, This is because the antennas 411 to 422 provided on the outer circumferences of the resistors 113 and 123 become obstacles when excited by electromagnetic waves emitted from the reader or when electromagnetic waves are emitted (the uniformizing member 130). In order to avoid the influence on the antennas 412 and 422 as much as possible).
  • the uniformizing member 130 serves to equalize the temperature on the outside air side where the heat flow is dissipated, which is detected by the second temperature sensor 112 and the fourth temperature sensor 122, and therefore at least the thermal resistor 113.
  • the size needs to be large enough to cover the second temperature sensor 112 and the fourth temperature sensor 122 respectively disposed at the center position of 123.
  • the outer periphery of the uniformizing member 130 is located outside the second temperature sensor 112 and the fourth temperature sensor 122, and inside the outer edge formed by the thermal resistors 113 and 123. It is the composition located in.
  • FIG. 5 is a diagram showing the configuration of the first to fourth temperature sensors (111, 112, 121, 122).
  • the antenna 411 is connected to the matching circuit 502 of the first temperature sensor 111. Thereby, the high frequency generated by the antenna 411 catching the electromagnetic wave emitted from the reader 210 is supplied to the comb-shaped electrode 503 by the matching circuit 502.
  • the surface acoustic wave is excited in the comb electrode 503 by the supplied high frequency and propagates on the surface of the piezoelectric crystal substrate 501.
  • the propagated surface acoustic wave is received by the comb electrode 504 arranged at a distance L1 from the comb electrode 503, generates a high frequency, and emits electromagnetic waves from the antenna 411 via the matching circuit 502.
  • the emitted electromagnetic wave is caught by the reader 210.
  • the time (delay time) until the surface acoustic wave generated by the comb electrode 503 is received by the comb electrode 504 is determined by the material of the piezoelectric crystal substrate 501 and the distance L1 when the temperature is constant. Come. In other words, when the material of the piezoelectric crystal substrate 501 and the distance L1 are fixed (known), the delay time changes depending on the temperature change of the piezoelectric crystal substrate 501.
  • the reader 210 is based on the measured delay time, The temperature in the first temperature sensor 111 can be calculated.
  • the second temperature sensor 112, the third temperature sensor 121, and the fourth temperature sensor 122 have the same configuration, so that the temperature at each temperature sensor can be calculated.
  • the distances L1 to L4 between the comb-shaped electrodes in the first temperature sensor 111, the second temperature sensor 112, the third temperature sensor 121, and the fourth temperature sensor 122 are configured to be different from each other. (It is assumed that each comb electrode is arranged so that the delay times under the same temperature are different).
  • the distance between the comb-shaped electrodes of each temperature sensor (temperature sensor using surface acoustic waves) arranged in the heat flow thermometer 200 is different from each other. It is possible to distinguish and catch any of the four temperature sensors from only one of the four temperature sensors only by emitting the electromagnetic waves.
  • FIG. 6 shows the emission from the comb electrodes 504, 514, 524, and 534 of the temperature sensors 111 to 122 with reference to the timing of catching the electromagnetic waves emitted from the comb electrodes 503 after the reader 210 emits the electromagnetic waves.
  • the timing of catching the electromagnetic wave is shown (assuming that the electromagnetic waves are emitted from the comb-shaped electrodes 503, 513, 523, and 533 substantially simultaneously).
  • the distance between the comb electrodes is configured to satisfy the relationship of L1 ⁇ L2 ⁇ L3 ⁇ L4. Therefore, as shown in FIG. 6, the first temperature sensor 111 (the comb electrode 504) Electromagnetic waves from are caught the fastest. Hereinafter, electromagnetic waves are caught in the order of the second temperature sensor 112 (comb electrode 514), the third temperature sensor 121 (comb electrode 524), and the fourth temperature sensor 122 (comb electrode 534).
  • the time from when excited by the electromagnetic wave emitted from the reader until the electromagnetic wave emitted from each temperature sensor 111 to 122 is caught by the reader also varies depending on the temperature change of the surface of the piezoelectric crystal substrate of each temperature sensor. To do. For this reason, in the heat flow thermometer 200 according to this embodiment, even if the delay time changes due to a temperature change, the change depending on the assumed temperature change so that the signals from the temperature sensors do not overlap. It is assumed that the distances L1 to L4 are set so that the change due to the difference in the distances L1 to L4 is larger than the minutes.
  • FIG. 7 is a diagram illustrating a functional configuration of the reader 210.
  • the reader 210 includes a power supply unit including a battery, a rechargeable battery, and an operation switch including a power ON / OFF switch, but is omitted here.
  • reference numeral 700 denotes a reader unit, which includes an antenna 701, an electromagnetic wave emission / detection unit (electromagnetic wave emission unit and electromagnetic wave detection unit) 702, a signal conversion unit 703, and a signal processing unit 704.
  • the antenna 701 generates an electromagnetic wave having a predetermined frequency, for example, 20 MHz, and magnetically couples with the antenna connected to each temperature sensor of the heat flow thermometer 200, thereby exciting the comb electrodes of each temperature sensor. Or catching electromagnetic waves emitted from each temperature sensor.
  • a predetermined frequency for example, 20 MHz
  • the voltage applied to the antenna 701 is controlled in order to excite the comb-shaped electrode of the temperature sensor of the heat flow thermometer 200 via the antenna 701, or the heat flow thermometer 200 is connected via the antenna 701.
  • the electromagnetic wave emitted from each temperature sensor is caught, noise is removed through a band-pass filter, amplified, and then transmitted to the signal conversion unit 703.
  • signals obtained by the electromagnetic wave emission / detection unit 702 catching electromagnetic waves emitted from the comb electrodes 503, 513, 523, and 533 and emitted from the comb electrodes 504, 514, 524, and 534 Signals obtained by the electromagnetic wave emission / detection unit 702 catching the electromagnetic waves and processed by the electromagnetic wave emission / detection unit 702 are converted into digital data and transmitted to the signal processing unit 704.
  • the timing at which each signal becomes equal to or higher than a predetermined threshold is measured.
  • a delay time from when the electromagnetic waves from the comb electrodes 503 to 533 are caught until the electromagnetic wave from the comb electrodes 504 to 534 is caught, and a delay time set in advance for each of the first to fourth temperature sensors, Are respectively identified from which temperature sensor the signal is.
  • the temperature of each temperature sensor is calculated from the delay time based on the relational function between the temperature of each temperature sensor and the delay time stored in advance in each of the first to fourth temperature sensors, and sent to the control unit.
  • the control unit 711 controls operations of the electromagnetic wave emission detection unit 702, the signal conversion unit 703, and the signal processing unit 704. Further, based on the signal of each temperature sensor transmitted from the signal processing unit 704, the deep body temperature is calculated and stored in the storage unit 712 or displayed on the display unit 713. Furthermore, the deep body temperature data stored in the storage unit 712 is transmitted to another information processing device (another information processing device connected by wire via the wired communication unit 714) via the wired communication unit 714. .
  • the control unit 711 includes a CPU such as a microcomputer, a ROM that stores a control program and various data for the entire reader 210 executed by the CPU, and a RAM that temporarily stores measurement data and various data as a work area. And controls the operation and judgment of the reader 210 as a whole.
  • a CPU such as a microcomputer
  • ROM that stores a control program and various data for the entire reader 210 executed by the CPU
  • RAM that temporarily stores measurement data and various data as a work area. And controls the operation and judgment of the reader 210 as a whole.
  • the antennas are individually arranged.
  • each antenna was arranged so as to surround the outer periphery of the thermal resistor.
  • the outer periphery of the homogenizing member should be located inside the outer edge formed by the thermal resistor so that the antenna does not become an obstacle when the antenna catches or emits electromagnetic waves.
  • the size of the homogenizing member was defined. ⁇ Different distances between comb electrodes for each temperature sensor so that electromagnetic waves from multiple temperature sensors can be identified while catching and releasing electromagnetic waves in a short time with the reader. Configured.
  • the heat flow thermometer with the temperature sensor using the surface acoustic wave it becomes possible to reduce the temperature interference between the temperature sensors.
  • the deep body temperature can be calculated and displayed in a short time.
  • the excitation-side comb electrode and the receiving-side comb electrode are arranged, but the present invention is not limited to this.
  • a reflector that reflects surface acoustic waves generated from a comb-shaped electrode may be provided, and the surface acoustic waves reflected by the reflector may be received by the comb-shaped electrode.
  • the distance between the comb electrodes is set to satisfy the relationship of L1 ⁇ L2 ⁇ L3 ⁇ L4, but the present invention is not limited to this. Since the second temperature sensors 112 and 122 are covered with the uniformizing member 130 and are generally at the same temperature, the delay time associated with the temperature change is also substantially equal. On the other hand, the first temperature sensor 111 and the third temperature sensor 121 have different temperatures, and the delay time associated with the temperature change also differs. For this reason, it is important to configure so that the signal from the first temperature sensor 111 and the signal from the third temperature sensor 121 do not overlap. Therefore, for example, the distance between the comb-shaped electrodes may be configured to satisfy the relationship of L1 ⁇ L2 ⁇ L4 ⁇ L3.
  • the configuration is such that the thermal resistance Rt of the subcutaneous tissue of the subject can be set as a fixed or variable parameter, and only one set of thermal resistors in which two surface acoustic wave type temperature sensors are arranged to face each other is prepared. It is good.
  • the deep body temperature is calculated using the formula (3) or the formula (4) described in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

The present invention is capable of preventing thermal interference between a plurality of temperature sensors, and identifying the detection result of each temperature sensor in a passive heat-flow clinical thermometer. The present invention is a clinical thermometer (200) that is brought into contact with the body surface of a subject so as to measure deep body temperature, and is characterized by being provided with: a first thermal resistor (113) on which antennas are disposed, said antennas being independently connected to each of a first surface acoustic wave (SAW) temperature sensor (111) and a second SAW temperature sensor (112); a second thermal resistor (123) on which antennas are disposed, said antennas being independently connected to each of a third SAW temperature sensor (121) and a fourth SAW temperature sensor (122); and a homogenizing member (130) configured in such a manner as to cover the surfaces of the first and second thermal resistance bodies (113, 123) on the side facing the surface on the side that comes into contact with the body surface. The clinical thermometer is further characterized in that the first to fourth SAW temperature sensors (111 to 122) each have a comb-shaped electrode positioned thereupon in such a manner that the delay times at the same temperature differ from each other.

Description

体温計Thermometer
 本発明は、体温計に関するものである。 The present invention relates to a thermometer.
 被検体の体表面に貼り付け、被検体の深部の体温を測定する体温計として、従来より、非加熱型の体温計が知られている(例えば、特許文献1及び2参照)。 Conventionally, a non-heated thermometer is known as a thermometer that is attached to the body surface of a subject and measures the body temperature in the deep part of the subject (see, for example, Patent Documents 1 and 2).
 一般に、非加熱型の体温計には、被検体の体表面に貼り付けた際に、体表面に接触する第1の温度センサと、該第1の温度センサに断熱材を介して対向して配される第2の温度センサとから構成される温度センサのペアが少なくとも2組備えられている。そして、各温度センサのペアが配されたそれぞれの断熱材の熱伝導率が互いに異なるように構成し、各温度センサのペアにおける第1の温度センサと第2の温度センサとの温度差をそれぞれ検出することにより、深部からの熱流量を求め、深部の体温を算出することとしている。 In general, a non-heating type thermometer is disposed so as to face a first temperature sensor that is in contact with the body surface when the sample is attached to the body surface of the subject, and to the first temperature sensor via a heat insulating material. At least two temperature sensor pairs each including a second temperature sensor are provided. And it comprises so that the heat conductivity of each heat insulating material in which each pair of temperature sensors was arranged may mutually differ, and the temperature difference of the 1st temperature sensor in each temperature sensor pair and the 2nd temperature sensor is each By detecting, the heat flow from the deep part is obtained, and the body temperature of the deep part is calculated.
 このような体温計(以下、熱流式体温計と称す)においては、通常、温度センサとして、サーミスタや熱電対等が用いられる。 In such a thermometer (hereinafter referred to as a heat flow type thermometer), a thermistor, a thermocouple, or the like is usually used as a temperature sensor.
 一方で、熱流式体温計の場合、被検体の体表面に貼り付けて用いられることが前提となっており、温度センサによる検出結果を外部に送信することが不可欠となってくる。しかしながら、サーミスタや熱電対等の温度センサの場合、一般に、無線通信機能を備えていないため、これらの温度センサを熱流式体温計に適用するにあたっては、別途、無線通信機能を付加する必要がある。このため、熱流式体温計に適用する温度センサとしては、無線通信機能を備えた温度センサであることがより好ましい。 On the other hand, in the case of a heat flow thermometer, it is assumed that it is used by being attached to the body surface of a subject, and it is indispensable to transmit the detection result by the temperature sensor to the outside. However, temperature sensors such as thermistors and thermocouples generally do not have a wireless communication function. Therefore, when these temperature sensors are applied to a heat flow thermometer, it is necessary to add a wireless communication function separately. For this reason, as a temperature sensor applied to a heat flow type thermometer, it is more preferable that it is a temperature sensor provided with the wireless communication function.
 また、熱流式体温計の場合、被検体の負担を軽減させるために、軽量・小型化することが不可欠であり、無線通信機能を備えた温度センサとしては、能動的な無線通信機能を有する温度センサのように、デジタル変換機能等の信号処理機能や電源機能等を別途配する必要のあるものよりも、これらの機能を配する必要のない無給電な受動型の温度センサであることが好ましい。 In addition, in the case of a heat flow thermometer, it is essential to reduce the weight and size in order to reduce the burden on the subject, and as a temperature sensor having a wireless communication function, a temperature sensor having an active wireless communication function Thus, it is preferable to use a passive temperature sensor that does not need to provide these functions, rather than a signal processing function such as a digital conversion function, a power supply function, and the like.
 このような温度センサとしては、例えば、表面弾性波(SAW)を用いた温度センサが挙げられる。表面弾性波とは、物質の表面を伝播する音響弾性波であり、表面弾性波を用いた温度センサとは、圧電結晶基板上に規定の距離だけ離して配置した2つの櫛形電極(IDT)の一方を電磁波で励振し、圧電結晶基板上を伝播した表面弾性波を他方の櫛形電極で受波することで電磁波を放出するセンサであり、温度変化に伴う弾性係数の変化に起因する表面弾性波の伝播速度の変化を測定することで温度を算出できる、無線通信機能を備えた、無給電な受動型温度センサである。 Examples of such a temperature sensor include a temperature sensor using surface acoustic waves (SAW). A surface acoustic wave is an acoustic acoustic wave that propagates on the surface of a substance, and a temperature sensor that uses surface acoustic waves is the distance between two comb-shaped electrodes (IDTs) that are arranged on a piezoelectric crystal substrate at a predetermined distance. This is a sensor that emits electromagnetic waves by exciting one surface with electromagnetic waves and receiving the surface acoustic waves propagating on the piezoelectric crystal substrate with the other comb-shaped electrode. This is a passive power temperature sensor with a wireless communication function that can calculate the temperature by measuring the change in the propagation speed of the sensor.
 このような温度センサを適用すれば、CPU等を配し、デジタル信号への変換処理をはじめとする各種信号処理を熱流式体温計にて行う必要もなく、更に、信号を送信するための無線通信機能や、これらを駆動する電源を配する必要もなくなるため、軽量・小型化できるといった利点がある。 If such a temperature sensor is applied, it is not necessary to arrange a CPU or the like and perform various signal processing including conversion processing into a digital signal with a heat flow thermometer, and further wireless communication for transmitting signals. Since there is no need to provide functions and power supply for driving them, there is an advantage that it can be reduced in weight and size.
特開2007-212407号公報JP 2007-212407 A 特開2009-222543号公報JP 2009-222543 A
 ここで、熱流式体温計の場合、深部の体温を算出するにあたり、4つの温度センサ(第1及び第2の温度センサが2組、計4つの温度センサ)を用いるが、個々の温度センサは互いに熱的な干渉を受けないよう構成することが必要である。 Here, in the case of a heat flow type thermometer, four temperature sensors (two sets of first and second temperature sensors, a total of four temperature sensors) are used to calculate the body temperature in the deep part. It is necessary to configure so as not to receive thermal interference.
 一方で、上述した表面弾性波(SAW)を用いた温度センサを熱流式体温計に適用するにあたっては、4つの温度センサを1つのアンテナに配線接続する構成が考えられる。しかしながら、配線に用いられるCuまたはAlは熱伝導率が高く、アンテナを共有させた場合、配線を介して4つの温度センサが熱的に結合されることとなり、算出される深部温度の精度に悪影響を及ぼす可能性がある。 On the other hand, when the temperature sensor using the surface acoustic wave (SAW) described above is applied to a heat flow thermometer, a configuration in which four temperature sensors are connected to one antenna can be considered. However, Cu or Al used for wiring has high thermal conductivity, and when the antenna is shared, the four temperature sensors are thermally coupled via the wiring, which adversely affects the accuracy of the calculated deep temperature. May affect.
 また、4つの温度センサのアンテナから放出される電磁波をキャッチするにあたっては、どの位置に配置された温度センサから放出された電磁波であるのかを、識別する必要がある。 Also, in order to catch the electromagnetic waves emitted from the antennas of the four temperature sensors, it is necessary to identify at which position the electromagnetic waves are emitted from the temperature sensors.
 更に、温度センサの櫛形電極を励振させる電磁波を放出するとともに、各温度センサから放出された電磁波をキャッチし、それぞれの温度センサにおいて検出された温度を演算することで、深部温度を算出する一連の処理は、所定のリーダを、体表面に貼り付けた熱流式体温計に近づけるだけで行うことができるよう構成されていることが望ましい。したがって、これらの一連の処理(温度測定処理)は、短時間の間に正確に完了させることが必要である。 Furthermore, a series of series of calculating the deep temperature by emitting electromagnetic waves that excite the comb electrodes of the temperature sensors, catching the electromagnetic waves emitted from each temperature sensor, and calculating the temperature detected by each temperature sensor. It is desirable that the processing is configured so that a predetermined reader can be performed only by bringing it closer to a heat flow thermometer attached to the body surface. Therefore, it is necessary to complete these series of processing (temperature measurement processing) accurately in a short time.
 このように、表面弾性波を用いた温度センサを熱流式体温計に適用するにあたっては、上述のような課題を解決することが重要である。 Thus, in applying a temperature sensor using surface acoustic waves to a heat flow thermometer, it is important to solve the above-described problems.
 本発明は上記課題に鑑みてなされたものであり、表面弾性波を用いた温度センサによる熱流式体温計において、各温度センサ間の温度干渉を低減させ、かつ、各温度センサから放出される電磁波を識別可能に構成するとともに、短時間で深部体温の算出・表示ができるようにすることを目的とする。 The present invention has been made in view of the above problems, and in a heat flow thermometer using a temperature sensor using surface acoustic waves, the temperature interference between the temperature sensors is reduced, and the electromagnetic waves emitted from the temperature sensors are reduced. The object of the present invention is to enable identification and to calculate and display the deep body temperature in a short time.
 上記の目的を達成するために、本発明に係る体温計は以下のような構成を備える。即ち、
 被検体の体表面に接触させることで、深部体温を測定する体温計であって、
 前記体表面に接触する側に第1の表面弾性波型温度センサ及びアンテナが配され、前記体表面に接触する側の面と対向する側に第2の表面弾性波型温度センサ及びアンテナが配された第1の熱抵抗体と、
 前記体表面に接触する側に第3の表面弾性波型温度センサ及びアンテナが配され、前記体表面に接触する側の面と対向する側に第4の表面弾性波型温度センサ及びアンテナが配された第2の熱抵抗体と、
 前記第1の熱抵抗体及び前記第2の熱抵抗体の、前記体表面に接触する側の面と対向する側の面を覆うように構成される均一化部材と、を備え、
 前記第1乃至第4の表面弾性波型温度センサは、同一の温度下における遅延時間が互いに異なるように、それぞれの櫛形電極が配置されていることを特徴とする。
In order to achieve the above object, the thermometer according to the present invention has the following configuration. That is,
A thermometer that measures deep body temperature by contacting the body surface of a subject,
A first surface acoustic wave type temperature sensor and antenna are arranged on the side in contact with the body surface, and a second surface acoustic wave type temperature sensor and antenna are arranged on the side facing the surface on the side in contact with the body surface. A first thermal resistor,
A third surface acoustic wave type temperature sensor and antenna are arranged on the side in contact with the body surface, and a fourth surface acoustic wave type temperature sensor and antenna are arranged on the side facing the surface in contact with the body surface. A second thermal resistor,
A uniformizing member configured to cover a surface of the first thermal resistor and the second thermal resistor that are opposed to a surface that is in contact with the body surface;
Each of the first to fourth surface acoustic wave type temperature sensors is characterized in that the respective comb electrodes are arranged so that the delay times under the same temperature are different from each other.
 本発明によれば、表面弾性波を用いた温度センサによる熱流式体温計において、各温度センサ間の温度干渉を低減させることが可能となる。また、各温度センサから放出される電磁波を識別することが可能になる。更に、短時間で深部体温の算出・表示ができるようになる。 According to the present invention, in a heat flow thermometer using a temperature sensor using surface acoustic waves, temperature interference between the temperature sensors can be reduced. In addition, it is possible to identify electromagnetic waves emitted from each temperature sensor. Furthermore, the deep body temperature can be calculated and displayed in a short time.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、熱流式体温計の測定原理を説明するために、熱流式体温計における熱流を電気回路相似法を用いて電気回路として表現した図である。 図2は、熱流式体温計を含む体温測定システムの全体構成を示す図である。 図3は、熱流式体温計の断面構成を示す図である。 図4は、熱流式体温計の平面構成を示す図である。 図5は、熱流式体温計を構成する各温度センサの構成を示す図である。 図6は、リーダにおいてキャッチした電磁波の一例を示す図である。 図7は、リーダの機能構成を示す図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
FIG. 1 is a diagram expressing the heat flow in a heat flow thermometer as an electric circuit using an electric circuit similarity method in order to explain the measurement principle of the heat flow thermometer. FIG. 2 is a diagram illustrating an overall configuration of a body temperature measurement system including a heat flow type thermometer. FIG. 3 is a diagram showing a cross-sectional configuration of the heat flow thermometer. FIG. 4 is a diagram illustrating a planar configuration of the heat flow thermometer. FIG. 5 is a diagram showing a configuration of each temperature sensor constituting the heat flow type thermometer. FIG. 6 is a diagram illustrating an example of an electromagnetic wave caught by the reader. FIG. 7 is a diagram illustrating a functional configuration of the reader.
 以下、本発明の各実施形態について添付図面を参照しながら詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiment described below is a preferred specific example of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. Unless otherwise stated, the present invention is not limited to these embodiments.
 [第1の実施形態]
 <1.熱流式体温計による深部体温の測定原理>
 はじめに、熱流式体温計(被検体の体表面に貼り付け、被検体の深部の体温を測定する体温計であって、加熱機能を有していないタイプの体温計)における、深部体温の測定原理について簡単に説明する。
[First Embodiment]
<1. Principle of measuring deep body temperature with heat flow thermometer>
First, the principle of measuring deep body temperature in a heat flow thermometer (a thermometer that is attached to the body surface of a subject and measures the body temperature in the deep part of the subject and does not have a heating function) is briefly described. explain.
 図1は、熱流式体温計の測定原理を説明するために、熱流式体温計における熱流を電気回路相似法を用いて電気回路として表現した図である。 FIG. 1 is a diagram showing the heat flow in a heat flow thermometer as an electric circuit using an electric circuit similarity method in order to explain the measurement principle of the heat flow thermometer.
 図1に示すように、熱流を電流I、温度を電圧T、熱抵抗を電気抵抗Rとすることで、熱流式体温計における熱流は、等価回路100により表現することができる。 As shown in FIG. 1, the heat flow in the heat flow thermometer can be expressed by an equivalent circuit 100 by setting the heat flow to current I, the temperature to voltage T, and the heat resistance to electric resistance R.
 図1において、Tbは深部体温を、Rtは被検体の皮下組織の熱抵抗を、Tt1は第1の温度センサ111において検出された温度を、Ta1は第2の温度センサ112において検出された温度を、Ra1は熱抵抗体113の熱抵抗値をそれぞれ示している。また、Tt2は第3の温度センサ121において検出された温度を、Ta2は第4の温度センサ122において検出された温度を、Ra2は熱抵抗体123の熱抵抗値をそれぞれ示している。更に、Tcは外部温度を、Rcは、外気側の測定温度を均一化させるための均一化部材130の熱抵抗値をそれぞれ示している。 In FIG. 1, Tb is the deep body temperature, Rt is the thermal resistance of the subcutaneous tissue of the subject, Tt1 is the temperature detected by the first temperature sensor 111, and Ta1 is the temperature detected by the second temperature sensor 112. Ra1 indicates the thermal resistance value of the thermal resistor 113, respectively. Tt2 represents the temperature detected by the third temperature sensor 121, Ta2 represents the temperature detected by the fourth temperature sensor 122, and Ra2 represents the thermal resistance value of the thermal resistor 123. Further, Tc represents the external temperature, and Rc represents the thermal resistance value of the homogenizing member 130 for equalizing the measured temperature on the outside air side.
 ここで、深部体温が一定であると仮定すると、等価回路100では、一定の電圧Tbが印加されているものと置き換えることができることから、等価回路100内には一定の電流Iが流れると仮定することができる。 Here, if it is assumed that the deep body temperature is constant, the equivalent circuit 100 can be replaced with one in which the constant voltage Tb is applied. Therefore, it is assumed that a constant current I flows in the equivalent circuit 100. be able to.
 このうち、熱抵抗体113における熱流を電流I1、熱抵抗体123における熱流を電流I2とすると、電流I1及び電流I2は下式(1)、(2)のように表すことができる。 Of these, assuming that the heat flow in the thermal resistor 113 is the current I1, and the heat flow in the thermal resistor 123 is the current I2, the current I1 and the current I2 can be expressed by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 そして、それぞれの式を変形すると、下式(3)、(4)のようになる。 And when each formula is transformed, the following formulas (3) and (4) are obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、皮下組織の熱抵抗Rtは、個人ごと及び部位ごとに異なり、一定ではない。そこで、上式(3)、(4)からRtを削除すべく、Rtについて求めると、下式(5)のようになる。 Here, the thermal resistance Rt of the subcutaneous tissue varies from person to person and from site to site and is not constant. Therefore, when Rt is calculated to remove Rt from the above equations (3) and (4), the following equation (5) is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、上式(5)を上式(4)に代入することで、下式(6)が求められる。 Then, the following equation (6) is obtained by substituting the above equation (5) into the above equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、Ra1及びRa2は既知であるため、4つの温度(Tt1、Tt2、Ta1、Ta2)を検出すれば、一義的に深部体温Tbを求めることができる。 Here, since Ra1 and Ra2 are known, if the four temperatures (Tt1, Tt2, Ta1, Ta2) are detected, the deep body temperature Tb can be uniquely determined.
 <2.体温測定システムの全体構成>
 次に本実施形態に係る熱流式体温計を含む体温測定システムの全体構成について説明する。図2は、本実施形態に係る熱流式体温計を含む体温測定システムの全体構成を示す図である。図2において、200は本実施形態に係る熱流式体温計である。210は電磁波を放出することにより熱流式体温計200の第1乃至第4の温度センサ111~122の一方の櫛形電極に表面弾性波を励起させるとともに、該第1乃至第4の温度センサ111~122の他方の櫛形電極からアンテナを介して放出される電磁波をキャッチし、該第1乃至第4の温度センサ111~122それぞれの櫛形電極間の表面弾性波の伝播時間を計測するリーダである。リーダ210では、既知の遅延時間-温度特性を利用して、計測した伝播時間より、第1乃至第4の温度センサ111~122それぞれの温度を算出することで、被検者の深部体温を算出する。
<2. Overall structure of body temperature measurement system>
Next, the whole structure of the body temperature measurement system including the heat flow type thermometer according to the present embodiment will be described. FIG. 2 is a diagram showing an overall configuration of a body temperature measurement system including a heat flow type thermometer according to the present embodiment. In FIG. 2, reference numeral 200 denotes a heat flow type thermometer according to the present embodiment. 210 emits electromagnetic waves to excite a surface acoustic wave in one of the comb electrodes of the first to fourth temperature sensors 111 to 122 of the heat flow thermometer 200 and to the first to fourth temperature sensors 111 to 122. This is a reader that catches the electromagnetic wave emitted from the other comb-shaped electrode via the antenna and measures the propagation time of the surface acoustic wave between the respective comb-shaped electrodes of the first to fourth temperature sensors 111 to 122. The reader 210 calculates the deep body temperature of the subject by calculating the temperature of each of the first to fourth temperature sensors 111 to 122 from the measured propagation time using a known delay time-temperature characteristic. To do.
 <3.熱流式体温計の断面構成>
 次に、熱流式体温計200の断面構成について説明する。図3は、本実施形態に係る熱流式体温計200の断面構成を示す図である。
<3. Cross-sectional configuration of heat flow thermometer>
Next, the cross-sectional configuration of the heat flow thermometer 200 will be described. FIG. 3 is a diagram showing a cross-sectional configuration of the heat flow thermometer 200 according to the present embodiment.
 図3において、111、121は、被検体の体表面に貼り付けた際に、体表面に接触する側に位置する第1の温度センサ及び第3の温度センサであり、112、122は第1の温度センサ111及び第3の温度センサ121に対向する側に配された第2の温度センサ及び第4の温度センサである。なお、第1乃至第4の温度センサ(111、121、112、122)は、表面弾性波を用いた温度センサ(表面弾性波型温度センサ)により構成されているものとする。 In FIG. 3, reference numerals 111 and 121 denote a first temperature sensor and a third temperature sensor located on the side in contact with the body surface when they are attached to the body surface of the subject. These are a second temperature sensor and a fourth temperature sensor arranged on the side facing the temperature sensor 111 and the third temperature sensor 121. In addition, the 1st thru | or 4th temperature sensor (111, 121, 112, 122) shall be comprised by the temperature sensor (surface acoustic wave type temperature sensor) using a surface acoustic wave.
 113は第1の温度センサ111と第2の温度センサ112との間に配され、被検体の体表面からの熱流を通過させる熱抵抗体である。同様に、123は第3の温度センサ121と第4の温度センサ122との間に配され、被検体の体表面からの熱流を通過させる熱抵抗体である。 113 is a thermal resistor that is disposed between the first temperature sensor 111 and the second temperature sensor 112 and allows a heat flow from the body surface of the subject to pass therethrough. Similarly, 123 is a thermal resistor that is arranged between the third temperature sensor 121 and the fourth temperature sensor 122 and allows a heat flow from the body surface of the subject to pass therethrough.
 なお、熱抵抗体113は熱伝導率がおおよそ0.2W/mKの素材により構成され、熱抵抗体123は、熱抵抗体113の熱伝導率の2倍程度の熱伝導率を有する素材により構成されており、それぞれの素材は、ともに、柔軟性と十分な復元性を有しているものとする。また、熱抵抗体113、123は、同じ形状に形成されており、例えば、厚さ1mmで直径が20mmの平板形状を有しているものとする。そして、第1の温度センサ111、第2の温度センサ112及び第3の温度センサ121、第4の温度センサ122はそれぞれ、熱抵抗体113及び熱抵抗体123内の中央位置に配置されているものとする。 The thermal resistor 113 is made of a material having a thermal conductivity of approximately 0.2 W / mK, and the thermal resistor 123 is made of a material having a thermal conductivity that is about twice that of the thermal resistor 113. Each material is assumed to have flexibility and sufficient restoration. The thermal resistors 113 and 123 are formed in the same shape, and for example, have a flat plate shape with a thickness of 1 mm and a diameter of 20 mm. And the 1st temperature sensor 111, the 2nd temperature sensor 112, the 3rd temperature sensor 121, and the 4th temperature sensor 122 are arrange | positioned in the center position in the thermal resistor 113 and the thermal resistor 123, respectively. Shall.
 更に、熱抵抗体113及び熱抵抗体123の上面には、熱伝導率236W/mKのアルミニウムからなる均一化部材130が配されており、熱抵抗体113及び熱抵抗体123の上面を覆っている。これにより、熱抵抗体123の上面及び熱抵抗体123の上面(つまり、熱流が放散される外気側)の温度は均一化される。 Furthermore, a uniformizing member 130 made of aluminum having a thermal conductivity of 236 W / mK is disposed on the upper surfaces of the thermal resistor 113 and the thermal resistor 123, and covers the upper surfaces of the thermal resistor 113 and the thermal resistor 123. Yes. Thereby, the temperature of the upper surface of the thermal resistor 123 and the upper surface of the thermal resistor 123 (that is, the outside air side where the heat flow is dissipated) are made uniform.
 熱抵抗体113及び熱抵抗体123はそれぞれの底面が同一平面を形成するように均一化部材130に固定されているものとする。この結果、被検体の体表面に貼り付けられた際に、熱抵抗体113の底面及び熱抵抗体123の底面がそれぞれ、被検体の体表面に対して隙間なく貼り付けられることとなる。 It is assumed that the thermal resistor 113 and the thermal resistor 123 are fixed to the uniformizing member 130 so that the bottom surfaces thereof form the same plane. As a result, when affixed to the body surface of the subject, the bottom surface of the thermal resistor 113 and the bottom surface of the thermal resistor 123 are each affixed to the body surface of the subject without a gap.
 なお、温度センサ111と温度センサ121の体表面側(底面)には、それぞれ、アルミテープ等の熱伝導性のよい熱伝導部材301、302により覆われており、更に、熱流式体温計200の体表面側は、貼り付けテープ(粘着層)303及び貼り付けテープ(剥離紙)304により覆われているものとする。 The body surface sides (bottom surfaces) of the temperature sensor 111 and the temperature sensor 121 are respectively covered with heat conductive members 301 and 302 having good heat conductivity such as aluminum tape, and further the body of the heat flow thermometer 200. The surface side is covered with an adhesive tape (adhesive layer) 303 and an adhesive tape (release paper) 304.
 <4.熱流式体温計の平面構成>
 次に、熱流式体温計200の平面構成について説明する。図4は、本実施形態に係る熱流式体温計200の平面構成を示した図である。
<4. Planar configuration of heat flow thermometer>
Next, the planar configuration of the heat flow thermometer 200 will be described. FIG. 4 is a diagram showing a planar configuration of the heat flow thermometer 200 according to the present embodiment.
 図4の4Aに示すように、第1の温度センサ111、第2の温度センサ112、第3の温度センサ121、第4の温度センサ122は、それぞれ、個別にアンテナ411~422に接続されている。 As shown in 4A of FIG. 4, the first temperature sensor 111, the second temperature sensor 112, the third temperature sensor 121, and the fourth temperature sensor 122 are individually connected to the antennas 411 to 422, respectively. Yes.
 このように、各温度センサ111~122に対して、共通の1つのアンテナを配するのではなく、独立して4つのアンテナを配する構成とすることで、各温度センサ111~122が、深部体温を測定するために必要な熱抵抗体を介しての熱的な結合以外に、アンテナを介して熱的に結合し、各温度センサ111~122の検出結果に影響が生じてしまうといった事態となることを回避することができる。 As described above, each temperature sensor 111 to 122 is arranged in the deep portion by arranging four antennas independently instead of arranging one common antenna for each temperature sensor 111 to 122. In addition to thermal coupling through a thermal resistor necessary for measuring body temperature, thermal coupling through an antenna may affect the detection results of the temperature sensors 111 to 122. Can be avoided.
 また、第1の温度センサ111、第3の温度センサ121は、熱抵抗体113(または123)の体表面に接触する側の面の中央位置に配置され、アンテナ411、421及びアンテナ配線は、熱伝導をできるだけ小さくするために、厚みが薄く、太さの細い導電体により構成されており、熱抵抗体113(または123)の側面を取り囲むように配置されている。これにより、アンテナ411、421から第1の温度センサ111、第3の温度センサ121への熱の伝達の影響を極力低減させることが可能となる。また、アンテナ411、421の径をより大きくとることが可能となり、リーダ210による安定的な表面弾性波の励起と電磁波のキャッチとが可能となる。 In addition, the first temperature sensor 111 and the third temperature sensor 121 are arranged at the center position of the surface of the thermal resistor 113 (or 123) that contacts the body surface, and the antennas 411 and 421 and the antenna wiring are In order to make the heat conduction as small as possible, the conductor is made of a thin and thin conductor and is disposed so as to surround the side surface of the thermal resistor 113 (or 123). Thereby, it is possible to reduce the influence of heat transfer from the antennas 411 and 421 to the first temperature sensor 111 and the third temperature sensor 121 as much as possible. In addition, the antennas 411 and 421 can have larger diameters, and the reader 210 can stably excite surface acoustic waves and catch electromagnetic waves.
 同様に、第2の温度センサ112、第4の温度センサ122は、熱抵抗体113(または123)の体表面に接触する側の面と対向する側の面の中央位置に配置され、アンテナ412、422及びアンテナ配線は、熱伝導をできるだけ小さくするために、厚みが薄く、太さの細い導電体により構成されており、熱抵抗体113(または123)の側面を取り囲むように配置されている。これにより、アンテナ412、422から第2の温度センサ111、第4の温度センサ122のへの熱の伝達の影響を極力低減させることが可能となる。また、アンテナ412、422の径をより大きくとることが可能となり、リーダ210による安定的な表面弾性波の励起と電磁波のキャッチとが可能となる。 Similarly, the second temperature sensor 112 and the fourth temperature sensor 122 are arranged at the center position of the surface facing the body surface of the thermal resistor 113 (or 123) and facing the body surface. 422 and the antenna wiring are made of a thin conductor with a small thickness in order to make the heat conduction as small as possible, and are arranged so as to surround the side surface of the thermal resistor 113 (or 123). . Thereby, it is possible to reduce the influence of heat transfer from the antennas 412 and 422 to the second temperature sensor 111 and the fourth temperature sensor 122 as much as possible. In addition, the antennas 412 and 422 can have larger diameters, and the reader 210 can stably excite surface acoustic waves and catch electromagnetic waves.
 なお、熱抵抗体113(または123)における熱流が、第1乃至第4の温度センサ(111~122)から、それぞれのアンテナ(411~422)を伝って放散されることがないよう、各アンテナは、幅約1mm、厚さ0.2mm以下の合成樹脂フィルムまたは紙に、エッチングまたは蒸着等にて幅0.1mm以下、厚さ10~50μmのCu、Al導体を配することにより構成されている。 It should be noted that the heat flow in the thermal resistor 113 (or 123) is not dissipated from the first to fourth temperature sensors (111 to 122) through the respective antennas (411 to 422). Is formed by arranging a Cu or Al conductor having a width of 0.1 mm or less and a thickness of 10 to 50 μm by etching or vapor deposition on a synthetic resin film or paper having a width of about 1 mm and a thickness of 0.2 mm or less. Yes.
 更に、図4の4Bに示すように、均一化部材130は、第2の温度センサ112、第4の温度センサ122を、体表面に接触する側の面と対向する側から覆うように(均一化部材130の外周が第2の温度センサ112、第4の温度センサ122の外側に位置するように)構成されており、熱抵抗体113及び123により形成される外縁よりも、均一化部材130の外周の方が内側に位置するように構成されている(均一化部材130の大きさはこのように規定されている)。 Furthermore, as shown to 4B of FIG. 4, the equalization member 130 covers the 2nd temperature sensor 112 and the 4th temperature sensor 122 from the side facing the surface of the side which contacts a body surface (uniform). The outer periphery of the forming member 130 is positioned outside the second temperature sensor 112 and the fourth temperature sensor 122), and is more uniform than the outer edge formed by the thermal resistors 113 and 123. (The size of the uniformizing member 130 is defined in this way).
 均一化部材130をこのような大きさに規定したのは、均一化部材130がアルミニウムからなり、熱抵抗体113及び123により形成される外縁よりも、大きくなるように形成してしまうと、熱抵抗体113及び123の外周に設けられたアンテナ411~422がリーダより放出される電磁波により励起される際に、あるいは、電磁波の放出を行う際に、障害となるからである(均一化部材130のアンテナ412、422への影響を極力回避するためである)。 The reason why the uniformizing member 130 is defined in such a size is that if the uniformizing member 130 is made of aluminum and is formed to be larger than the outer edge formed by the thermal resistors 113 and 123, This is because the antennas 411 to 422 provided on the outer circumferences of the resistors 113 and 123 become obstacles when excited by electromagnetic waves emitted from the reader or when electromagnetic waves are emitted (the uniformizing member 130). In order to avoid the influence on the antennas 412 and 422 as much as possible).
 一方で、均一化部材130は、第2の温度センサ112、第4の温度センサ122により検出される、熱流が放散される外気側の温度を均一化させる役割を果たすため、少なくとも熱抵抗体113または123の中央位置にそれぞれ配置された第2の温度センサ112、第4の温度センサ122を覆うだけの大きさとなっている必要がある。 On the other hand, the uniformizing member 130 serves to equalize the temperature on the outside air side where the heat flow is dissipated, which is detected by the second temperature sensor 112 and the fourth temperature sensor 122, and therefore at least the thermal resistor 113. Alternatively, the size needs to be large enough to cover the second temperature sensor 112 and the fourth temperature sensor 122 respectively disposed at the center position of 123.
 このような理由により、均一化部材130は、その外周が第2の温度センサ112、第4の温度センサ122の外側に位置し、かつ、熱抵抗体113、123により形成される外縁よりも内側に位置する構成となっている。 For this reason, the outer periphery of the uniformizing member 130 is located outside the second temperature sensor 112 and the fourth temperature sensor 122, and inside the outer edge formed by the thermal resistors 113 and 123. It is the composition located in.
 <5.熱流式体温計を構成する温度センサ>
 次に、熱流式体温計200を構成する温度センサについて説明する。図5は、第1乃至第4の温度センサ(111、112、121、122)の構成を示す図である。
<5. Temperature sensor composing a heat flow thermometer>
Next, the temperature sensor which comprises the heat flow type thermometer 200 is demonstrated. FIG. 5 is a diagram showing the configuration of the first to fourth temperature sensors (111, 112, 121, 122).
 アンテナ411は、第1の温度センサ111の整合回路502と接続されている。これにより、リーダ210より放出された電磁波をアンテナ411がキャッチすることにより発生した高周波は、整合回路502により、櫛形電極503に供給される。 The antenna 411 is connected to the matching circuit 502 of the first temperature sensor 111. Thereby, the high frequency generated by the antenna 411 catching the electromagnetic wave emitted from the reader 210 is supplied to the comb-shaped electrode 503 by the matching circuit 502.
 供給された高周波により、櫛形電極503に表面弾性波が励起され、圧電結晶基板501の表面を伝播する。伝播した表面弾性波は、櫛形電極503から距離L1だけ離れた位置に配置された櫛形電極504にて受波され、高周波を発生し、整合回路502を介して、アンテナ411より電磁波を放出する。放出された電磁波は、リーダ210によりキャッチされる。 The surface acoustic wave is excited in the comb electrode 503 by the supplied high frequency and propagates on the surface of the piezoelectric crystal substrate 501. The propagated surface acoustic wave is received by the comb electrode 504 arranged at a distance L1 from the comb electrode 503, generates a high frequency, and emits electromagnetic waves from the antenna 411 via the matching circuit 502. The emitted electromagnetic wave is caught by the reader 210.
 ここで、櫛形電極503にて発生した表面弾性波が櫛形電極504にて受波されるまでの時間(遅延時間)は、温度が一定の場合、圧電結晶基板501の材質と距離L1とによって決まってくる。換言すると、圧電結晶基板501の材質及び距離L1が固定(既知)であった場合、遅延時間は、圧電結晶基板501の温度変化に依存して変化する。 Here, the time (delay time) until the surface acoustic wave generated by the comb electrode 503 is received by the comb electrode 504 is determined by the material of the piezoelectric crystal substrate 501 and the distance L1 when the temperature is constant. Come. In other words, when the material of the piezoelectric crystal substrate 501 and the distance L1 are fixed (known), the delay time changes depending on the temperature change of the piezoelectric crystal substrate 501.
 つまり、圧電結晶基板501の材質及び距離L1を固定し、既知の温度での当該遅延時間をリーダ210側にて予め保持しておくことで、リーダ210では、測定された遅延時間に基づいて、第1の温度センサ111における温度を算出することができる。 That is, by fixing the material and distance L1 of the piezoelectric crystal substrate 501 and holding the delay time at a known temperature in advance on the reader 210 side, the reader 210 is based on the measured delay time, The temperature in the first temperature sensor 111 can be calculated.
 なお、第2の温度センサ112、第3の温度センサ121、第4の温度センサ122についても同様の構成とすることで、各温度センサにおける温度を算出することができる。ただし、第1の温度センサ111、第2の温度センサ112、第3の温度センサ121、第4の温度センサ122における櫛形電極間の距離L1~L4は互いに異なるように構成されているものとする(同一の温度下における遅延時間が異なるように、各櫛形電極が配置されているものとする)。 Note that the second temperature sensor 112, the third temperature sensor 121, and the fourth temperature sensor 122 have the same configuration, so that the temperature at each temperature sensor can be calculated. However, the distances L1 to L4 between the comb-shaped electrodes in the first temperature sensor 111, the second temperature sensor 112, the third temperature sensor 121, and the fourth temperature sensor 122 are configured to be different from each other. (It is assumed that each comb electrode is arranged so that the delay times under the same temperature are different).
 このように、熱流式体温計200に配された各温度センサ(表面弾性波を用いた温度センサ)の櫛形電極間の距離が相互に異なるように構成することで、リーダ210側では、1回の電磁波の放出だけで、4つの温度センサのいずれの温度センサからの電磁波かを区別してキャッチすることが可能となる。 As described above, the distance between the comb-shaped electrodes of each temperature sensor (temperature sensor using surface acoustic waves) arranged in the heat flow thermometer 200 is different from each other. It is possible to distinguish and catch any of the four temperature sensors from only one of the four temperature sensors only by emitting the electromagnetic waves.
 図6を用いて詳細に説明する。図6は、リーダ210にて電磁波の放出を行った後に、櫛形電極503から放出された電磁波のキャッチのタイミングを基準として、各温度センサ111~122の櫛形電極504、514、524、534から放出された電磁波のキャッチのタイミングを示している(なお、櫛形電極503、513、523、533からは略同時に電磁波が放出されるものとする)。 This will be described in detail with reference to FIG. FIG. 6 shows the emission from the comb electrodes 504, 514, 524, and 534 of the temperature sensors 111 to 122 with reference to the timing of catching the electromagnetic waves emitted from the comb electrodes 503 after the reader 210 emits the electromagnetic waves. The timing of catching the electromagnetic wave is shown (assuming that the electromagnetic waves are emitted from the comb-shaped electrodes 503, 513, 523, and 533 substantially simultaneously).
 図5の例では、櫛形電極間の距離がL1<L2<L3<L4の関係となるように構成されているため、図6に示すように、第1の温度センサ111(の櫛形電極504)からの電磁波が最も早くキャッチされる。以下、第2の温度センサ112(の櫛形電極514)、第3の温度センサ121(の櫛形電極524)、第4の温度センサ122(の櫛形電極534)の順で、電磁波がキャッチされる。 In the example of FIG. 5, the distance between the comb electrodes is configured to satisfy the relationship of L1 <L2 <L3 <L4. Therefore, as shown in FIG. 6, the first temperature sensor 111 (the comb electrode 504) Electromagnetic waves from are caught the fastest. Hereinafter, electromagnetic waves are caught in the order of the second temperature sensor 112 (comb electrode 514), the third temperature sensor 121 (comb electrode 524), and the fourth temperature sensor 122 (comb electrode 534).
 なお、リーダより放出された電磁波により励起してから、各温度センサ111~122が放出した電磁波がリーダによってキャッチされるまでの時間は、各温度センサの圧電結晶基板の表面の温度変化によっても変化する。このため、本実施形態に係る熱流式体温計200では、温度変化によって遅延時間が変化した場合であっても、各温度センサからの信号が重なることがないよう、想定される温度変化に依存する変化分よりも、距離L1~L4の違いによる変化分の方が大きくなるように、距離L1~L4が設定されているものとする。 Note that the time from when excited by the electromagnetic wave emitted from the reader until the electromagnetic wave emitted from each temperature sensor 111 to 122 is caught by the reader also varies depending on the temperature change of the surface of the piezoelectric crystal substrate of each temperature sensor. To do. For this reason, in the heat flow thermometer 200 according to this embodiment, even if the delay time changes due to a temperature change, the change depending on the assumed temperature change so that the signals from the temperature sensors do not overlap. It is assumed that the distances L1 to L4 are set so that the change due to the difference in the distances L1 to L4 is larger than the minutes.
 <6.リーダの構成>
 次に、リーダ210の機能構成について説明する。図7は、リーダ210の機能構成を示す図である。リーダ210は、電池、充電池等で構成される電源部、電源ON/OFFスイッチを含む操作スイッチを備えているが、ここでは省略している。
<6. Configuration of reader>
Next, the functional configuration of the reader 210 will be described. FIG. 7 is a diagram illustrating a functional configuration of the reader 210. The reader 210 includes a power supply unit including a battery, a rechargeable battery, and an operation switch including a power ON / OFF switch, but is omitted here.
 図7において、700はリーダユニットであり、アンテナ701と、電磁波放出・検出部(電磁波の放出部と電磁波の検出部)702と、信号変換部703と、信号処理部704とを備える。 In FIG. 7, reference numeral 700 denotes a reader unit, which includes an antenna 701, an electromagnetic wave emission / detection unit (electromagnetic wave emission unit and electromagnetic wave detection unit) 702, a signal conversion unit 703, and a signal processing unit 704.
 アンテナ701は、所定の周波数、例えば20MHzの周波数の電磁波を発生させて、熱流式体温計200の各温度センサに接続されたアンテナとの間で磁気結合することで、各温度センサの櫛形電極を励振させたり、各温度センサから放出された電磁波をキャッチしたりする。 The antenna 701 generates an electromagnetic wave having a predetermined frequency, for example, 20 MHz, and magnetically couples with the antenna connected to each temperature sensor of the heat flow thermometer 200, thereby exciting the comb electrodes of each temperature sensor. Or catching electromagnetic waves emitted from each temperature sensor.
 電磁波放出・検出部702では、アンテナ701を介して熱流式体温計200の温度センサの櫛形電極を励振させるために、アンテナ701に印加する電圧を制御したり、アンテナ701を介して熱流式体温計200の各温度センサより放出された電磁波をキャッチし、バンドパスフィルタを介してノイズを除去した後、増幅したうえで、信号変換部703に伝達したりする。 In the electromagnetic wave emission / detection unit 702, the voltage applied to the antenna 701 is controlled in order to excite the comb-shaped electrode of the temperature sensor of the heat flow thermometer 200 via the antenna 701, or the heat flow thermometer 200 is connected via the antenna 701. The electromagnetic wave emitted from each temperature sensor is caught, noise is removed through a band-pass filter, amplified, and then transmitted to the signal conversion unit 703.
 信号変換部703では、櫛形電極503、513、523、533から放出された電磁波を電磁波放出・検出部702がキャッチすることにより得られた信号及び櫛形電極504、514、524、534から放出された電磁波を電磁波放出・検出部702がキャッチすることにより得られた信号であって、それぞれ電磁波放出・検出部702において処理された信号を、デジタルデータに変換し、信号処理部704に送信する。 In the signal conversion unit 703, signals obtained by the electromagnetic wave emission / detection unit 702 catching electromagnetic waves emitted from the comb electrodes 503, 513, 523, and 533 and emitted from the comb electrodes 504, 514, 524, and 534 Signals obtained by the electromagnetic wave emission / detection unit 702 catching the electromagnetic waves and processed by the electromagnetic wave emission / detection unit 702 are converted into digital data and transmitted to the signal processing unit 704.
 信号処理部704では、デジタルフィルタ等によりノイズを除去した後、各電磁波のキャッチのタイミングを測定すべく、各信号が規定の閾値以上となったタイミングを測定する。 In the signal processing unit 704, after removing noise by a digital filter or the like, in order to measure the timing of catching each electromagnetic wave, the timing at which each signal becomes equal to or higher than a predetermined threshold is measured.
 そして、櫛形電極503~533からの電磁波をキャッチしてから、櫛形電極504~534からの電磁波をキャッチするまでの遅延時間と、第1乃至第4の温度センサそれぞれについて予め設定された遅延時間とを対比し、それぞれ、どの温度センサからの信号であるのかを識別する。 A delay time from when the electromagnetic waves from the comb electrodes 503 to 533 are caught until the electromagnetic wave from the comb electrodes 504 to 534 is caught, and a delay time set in advance for each of the first to fourth temperature sensors, Are respectively identified from which temperature sensor the signal is.
 また、第1乃至第4の温度センサそれぞれに予め記憶されている、各温度センサごとの温度と遅延時間との関係関数により、遅延時間から各温度センサの温度を計算し、コントロール部に送る。 Also, the temperature of each temperature sensor is calculated from the delay time based on the relational function between the temperature of each temperature sensor and the delay time stored in advance in each of the first to fourth temperature sensors, and sent to the control unit.
 コントロール部711では、電磁波放出検出部702、信号変換部703、信号処理部704の動作を制御する。また、信号処理部704から送信された各温度センサの信号に基づいて、深部体温を算出し、記憶部712に格納したり、表示部713に表示したりする。更に、記憶部712に格納された深部体温データを、有線通信部714を介して、他の情報処理装置(有線通信部714を介して有線接続された他の情報処理装置)に送信したりする。 The control unit 711 controls operations of the electromagnetic wave emission detection unit 702, the signal conversion unit 703, and the signal processing unit 704. Further, based on the signal of each temperature sensor transmitted from the signal processing unit 704, the deep body temperature is calculated and stored in the storage unit 712 or displayed on the display unit 713. Furthermore, the deep body temperature data stored in the storage unit 712 is transmitted to another information processing device (another information processing device connected by wire via the wired communication unit 714) via the wired communication unit 714. .
 なお、コントロール部711は、マイクロコンピュータなどのCPUと、該CPUにより実行されるリーダ210全体の制御プログラムや各種データを記憶するROMと、ワークエリアとして測定データや各種データを一時的に記憶するRAMとを備えており、リーダ210全体の動作及び判断を司っている。 The control unit 711 includes a CPU such as a microcomputer, a ROM that stores a control program and various data for the entire reader 210 executed by the CPU, and a RAM that temporarily stores measurement data and various data as a work area. And controls the operation and judgment of the reader 210 as a whole.
 以上の説明から明らかなように、本実施形態に係る熱流式体温計では、表面弾性波を用いた温度センサを適用するにあたり、
・熱的な結合により、相互の温度センサに影響が生じるのを回避するために、個別にアンテナを配する構成とした。
・リーダとの安定的な無線通信を実現するために、各アンテナを熱抵抗体の外周を取り囲むように配置した。
・アンテナが電磁波をキャッチしたり放出したりするうえで、均一化部材が障害となることがないよう、均一化部材の外周が、熱抵抗体により形成される外縁よりも内側に位置するように、均一化部材の大きさを規定した。
・リーダとの間の短時間での電磁波のキャッチ、放出を実現しつつ、複数の温度センサからの電磁波を識別することができるよう、各温度センサごとに、櫛形電極間の距離が異なるように構成した。
As is clear from the above description, in the heat flow thermometer according to the present embodiment, in applying the temperature sensor using the surface acoustic wave,
-In order to avoid the mutual influence of temperature sensors due to thermal coupling, the antennas are individually arranged.
-In order to realize stable wireless communication with the reader, each antenna was arranged so as to surround the outer periphery of the thermal resistor.
-The outer periphery of the homogenizing member should be located inside the outer edge formed by the thermal resistor so that the antenna does not become an obstacle when the antenna catches or emits electromagnetic waves. The size of the homogenizing member was defined.
・ Different distances between comb electrodes for each temperature sensor so that electromagnetic waves from multiple temperature sensors can be identified while catching and releasing electromagnetic waves in a short time with the reader. Configured.
 この結果、表面弾性波を用いた温度センサによる熱流式体温計において、各温度センサ間の温度干渉を低減させることが可能となる。また、各温度センサから放出される電磁波を識別することが可能になる。更に、短時間で深部体温の算出・表示ができるようになる。 As a result, in the heat flow thermometer with the temperature sensor using the surface acoustic wave, it becomes possible to reduce the temperature interference between the temperature sensors. In addition, it is possible to identify electromagnetic waves emitted from each temperature sensor. Furthermore, the deep body temperature can be calculated and displayed in a short time.
 [第2の実施形態]
 上記第1の実施形態では、励振側の櫛形電極と受波側の櫛形電極とを配する構成としたが、本発明はこれに限定されない。例えば、櫛形電極より発生した表面弾性波を反射させるリフレクタを配し、リフレクタにて反射した表面弾性波を、当該櫛形電極で受波する構成としてもよい。このような構成とすることで、同じ大きさの圧電結晶基板であっても、励振から受波までの時間差をより大きくすることが可能となる。
[Second Embodiment]
In the first embodiment, the excitation-side comb electrode and the receiving-side comb electrode are arranged, but the present invention is not limited to this. For example, a reflector that reflects surface acoustic waves generated from a comb-shaped electrode may be provided, and the surface acoustic waves reflected by the reflector may be received by the comb-shaped electrode. By adopting such a configuration, it is possible to further increase the time difference from excitation to wave reception even with a piezoelectric crystal substrate of the same size.
 また、上記第1の実施形態では、櫛形電極間の距離を、L1<L2<L3<L4の関係となるように構成したが、本発明はこれに限定されない。第2の温度センサ112と122とは、均一化部材130で覆われており、概ね、同じ温度となることから、温度変化に伴う遅延時間も概ね等しくなる。一方で、第1の温度センサ111と第3の温度センサ121とは、異なる温度となり、温度変化に伴う遅延時間も異なってくる。このため、第1の温度センサ111からの信号と、第3の温度センサ121からの信号とが重なることがないように構成することが重要である。したがって、例えば、櫛形電極間の距離を、L1<L2<L4<L3の関係となるように構成してもよい。 In the first embodiment, the distance between the comb electrodes is set to satisfy the relationship of L1 <L2 <L3 <L4, but the present invention is not limited to this. Since the second temperature sensors 112 and 122 are covered with the uniformizing member 130 and are generally at the same temperature, the delay time associated with the temperature change is also substantially equal. On the other hand, the first temperature sensor 111 and the third temperature sensor 121 have different temperatures, and the delay time associated with the temperature change also differs. For this reason, it is important to configure so that the signal from the first temperature sensor 111 and the signal from the third temperature sensor 121 do not overlap. Therefore, for example, the distance between the comb-shaped electrodes may be configured to satisfy the relationship of L1 <L2 <L4 <L3.
 [第3の実施形態]
 上記第1及び第2の実施形態では、被検体の皮下組織の熱抵抗Rtの影響を除去するために、2つの表面弾性波型温度センサが互いに対向して配された熱抵抗体を2組用意する構成としたが、本発明はこれに限定されない。
[Third Embodiment]
In the first and second embodiments, in order to remove the influence of the thermal resistance Rt of the subcutaneous tissue of the subject, two sets of thermal resistors in which two surface acoustic wave temperature sensors are arranged to face each other are provided. However, the present invention is not limited to this.
 例えば、被検体の皮下組織の熱抵抗Rtを固定または可変のパラメータとして設定可能に構成し、2つの表面弾性波型温度センサが互いに対向して配された熱抵抗体を1組のみ用意する構成としてもよい。この場合、上記第1の実施形態において説明した式(3)または式(4)を用いて深部体温を算出することとなる。 For example, the configuration is such that the thermal resistance Rt of the subcutaneous tissue of the subject can be set as a fixed or variable parameter, and only one set of thermal resistors in which two surface acoustic wave type temperature sensors are arranged to face each other is prepared. It is good. In this case, the deep body temperature is calculated using the formula (3) or the formula (4) described in the first embodiment.
 [その他の実施形態]
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
[Other Embodiments]
The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2012年3月23日提出の日本国特許出願特願2012-067376を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2012-067376 filed on Mar. 23, 2012, the entire contents of which are incorporated herein by reference.

Claims (7)

  1.  被検体の体表面に接触させることで、深部体温を測定する体温計であって、
     前記体表面に接触する側に第1の表面弾性波型温度センサ及びアンテナが配され、前記体表面に接触する側の面と対向する側に第2の表面弾性波型温度センサ及びアンテナが配された第1の熱抵抗体と、
     前記体表面に接触する側に第3の表面弾性波型温度センサ及びアンテナが配され、前記体表面に接触する側の面と対向する側に第4の表面弾性波型温度センサ及びアンテナが配された第2の熱抵抗体と、
     前記第1の熱抵抗体及び前記第2の熱抵抗体の、前記体表面に接触する側の面と対向する側の面を覆うように構成される均一化部材と、を備え、
     前記第1乃至第4の表面弾性波型温度センサは、同一の温度下における遅延時間が互いに異なるように、それぞれの櫛形電極が配置されていることを特徴とする体温計。
    A thermometer that measures deep body temperature by contacting the body surface of a subject,
    A first surface acoustic wave type temperature sensor and antenna are arranged on the side in contact with the body surface, and a second surface acoustic wave type temperature sensor and antenna are arranged on the side facing the surface in contact with the body surface. A first thermal resistor,
    A third surface acoustic wave type temperature sensor and antenna are arranged on the side in contact with the body surface, and a fourth surface acoustic wave type temperature sensor and antenna are arranged on the side opposite to the surface in contact with the body surface. A second thermal resistor,
    A uniformizing member configured to cover a surface of the first thermal resistor and the second thermal resistor that are opposed to a surface that is in contact with the body surface;
    The thermometer according to any one of claims 1 to 4, wherein each of the first to fourth surface acoustic wave temperature sensors has respective comb-shaped electrodes arranged so that delay times under the same temperature are different from each other.
  2.  第1の表面弾性波型温度センサ及び第2の表面弾性波型温度センサが接続されるアンテナは、それぞれ、第1の熱抵抗体の側面を取り囲むように配されており、
     第3の表面弾性波型温度センサ及び第4の表面弾性波型温度センサが接続されるアンテナは、それぞれ、第2の熱抵抗体の側面を取り囲むように配されていることを特徴とする請求項1に記載の体温計。
    The antenna to which the first surface acoustic wave type temperature sensor and the second surface acoustic wave type temperature sensor are connected is arranged so as to surround the side surface of the first thermal resistor,
    The antenna to which the third surface acoustic wave type temperature sensor and the fourth surface acoustic wave type temperature sensor are connected is disposed so as to surround the side surface of the second thermal resistor, respectively. Item 1. The thermometer according to Item 1.
  3.  前記均一化部材は、前記第2の表面弾性波型温度センサと、前記第4の表面弾性波型温度センサとを覆うように配置されており、
     前記均一化部材の外周が、前記第1の熱抵抗体と前記第2の熱抵抗体とにより形成される外縁よりも内側に位置するように、前記均一化部材の大きさが規定されていることを特徴とする請求項2に記載の体温計。
    The uniformizing member is disposed so as to cover the second surface acoustic wave type temperature sensor and the fourth surface acoustic wave type temperature sensor,
    The size of the homogenizing member is defined such that the outer periphery of the homogenizing member is located inside the outer edge formed by the first thermal resistor and the second thermal resistor. The thermometer according to claim 2.
  4.  前記第1乃至第4の表面弾性波型温度センサは、それぞれの圧電結晶基板において対向して配された櫛形電極間の距離が、互いに異なるように構成されていることを特徴とする請求項3に記載の体温計。 4. The first to fourth surface acoustic wave type temperature sensors are configured such that distances between comb-shaped electrodes arranged opposite to each other in each piezoelectric crystal substrate are different from each other. Thermometer described in 1.
  5.  前記第1の表面弾性波型温度センサの圧電結晶基板において対向して配された櫛形電極間の距離をL1、前記第2の表面弾性波型温度センサの圧電結晶基板において対向して配された櫛形電極間の距離をL2、前記第3の表面弾性波型温度センサの圧電結晶基板において対向して配された櫛形電極間の距離をL3、前記第4の表面弾性波型温度センサの圧電結晶基板において対向して配された櫛形電極間の距離をL4とした場合、L1、L2、L3、L4は、各温度センサの測定温度に起因する表面弾性波の伝搬速度の変化に基づく時間差より、大きな時間差が生じる距離差をもって、昇順に、または、降順に設定されていることを特徴とする請求項4に記載の体温計。 The distance between the comb-shaped electrodes arranged opposite to each other on the piezoelectric crystal substrate of the first surface acoustic wave type temperature sensor is L1, and the distance between the comb electrodes disposed on the piezoelectric crystal substrate of the second surface acoustic wave type temperature sensor is arranged opposite to each other. The distance between the comb-shaped electrodes is L2, the distance between the comb-shaped electrodes arranged opposite to each other on the piezoelectric crystal substrate of the third surface acoustic wave type temperature sensor is L3, and the piezoelectric crystal of the fourth surface acoustic wave type temperature sensor. When the distance between the comb-shaped electrodes arranged opposite to each other on the substrate is L4, L1, L2, L3, and L4 are based on the time difference based on the change in the propagation speed of the surface acoustic wave caused by the measurement temperature of each temperature sensor. The thermometer according to claim 4, wherein the thermometer is set in ascending order or descending order with a distance difference that causes a large time difference.
  6.  前記第1乃至第4の表面弾性波型温度センサは、それぞれの圧電結晶基板において対向して配された櫛形電極とリフレクタとの間の距離が、互いに異なるように構成されていることを特徴とする請求項3に記載の体温計。 The first to fourth surface acoustic wave type temperature sensors are configured such that the distances between the comb-shaped electrodes and the reflectors arranged opposite to each other in each piezoelectric crystal substrate are different from each other. The thermometer according to claim 3.
  7.  被検体の体表面に接触させることで、深部体温を測定する体温計であって、
     前記体表面に接触する側に第1の表面弾性波型温度センサ及びアンテナが配され、前記体表面に接触する側の面と対向する側に第2の表面弾性波型温度センサ及びアンテナが配された熱抵抗体を備え、
     前記第1及び第2の表面弾性波型温度センサは、同一の温度下における遅延時間が互いに異なるように、それぞれの櫛形電極が配置されていることを特徴とする体温計。
    A thermometer that measures deep body temperature by contacting the body surface of a subject,
    A first surface acoustic wave type temperature sensor and antenna are arranged on the side in contact with the body surface, and a second surface acoustic wave type temperature sensor and antenna are arranged on the side facing the surface in contact with the body surface. Provided with a thermal resistor,
    The thermometer according to claim 1, wherein the first and second surface acoustic wave type temperature sensors have respective comb-shaped electrodes arranged so that delay times under the same temperature are different from each other.
PCT/JP2013/000732 2012-03-23 2013-02-12 Clinical thermometer WO2013140711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-067376 2012-03-23
JP2012067376A JP2015111048A (en) 2012-03-23 2012-03-23 Clinical thermometer

Publications (1)

Publication Number Publication Date
WO2013140711A1 true WO2013140711A1 (en) 2013-09-26

Family

ID=49222197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000732 WO2013140711A1 (en) 2012-03-23 2013-02-12 Clinical thermometer

Country Status (2)

Country Link
JP (1) JP2015111048A (en)
WO (1) WO2013140711A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000295A1 (en) * 2015-07-02 2017-01-05 深圳市谷玛鹤健康科技有限公司 Electronic clinical thermometer and control method therefor
JP2020046257A (en) * 2018-09-18 2020-03-26 富士電機株式会社 Wireless temperature measuring system
CN113286991A (en) * 2019-03-14 2021-08-20 生物数据银行股份有限公司 Temperature sensor unit and in-vivo thermometer
US11672428B2 (en) * 2017-11-30 2023-06-13 Techno-Commons Inc. Biological data measurement device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131203A1 (en) 2017-12-27 2019-07-04 株式会社村田製作所 Affixing type thermometer
EP4266018A3 (en) 2018-12-06 2023-11-08 Avery Dennison Retail Information Services LLC Temperature-sensing rfid device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553797A (en) * 1978-10-13 1980-04-19 Tokyo Shibaura Electric Co Elastic surface wave unit
JP2006259357A (en) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd Image display device and image writing device
JP2007315917A (en) * 2006-05-25 2007-12-06 Terumo Corp Apparatus for measuring deep temperature and external communication device
JP2009222543A (en) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd Clinical thermometer
JP2009236624A (en) * 2008-03-26 2009-10-15 Terumo Corp Deep temperature measurement apparatus of living body
JP2012007963A (en) * 2010-06-24 2012-01-12 Murata Mfg Co Ltd Wireless thermometer and wireless body temperature measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553797A (en) * 1978-10-13 1980-04-19 Tokyo Shibaura Electric Co Elastic surface wave unit
JP2006259357A (en) * 2005-03-17 2006-09-28 Fuji Xerox Co Ltd Image display device and image writing device
JP2007315917A (en) * 2006-05-25 2007-12-06 Terumo Corp Apparatus for measuring deep temperature and external communication device
JP2009222543A (en) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd Clinical thermometer
JP2009236624A (en) * 2008-03-26 2009-10-15 Terumo Corp Deep temperature measurement apparatus of living body
JP2012007963A (en) * 2010-06-24 2012-01-12 Murata Mfg Co Ltd Wireless thermometer and wireless body temperature measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000295A1 (en) * 2015-07-02 2017-01-05 深圳市谷玛鹤健康科技有限公司 Electronic clinical thermometer and control method therefor
US11672428B2 (en) * 2017-11-30 2023-06-13 Techno-Commons Inc. Biological data measurement device
JP2020046257A (en) * 2018-09-18 2020-03-26 富士電機株式会社 Wireless temperature measuring system
CN113286991A (en) * 2019-03-14 2021-08-20 生物数据银行股份有限公司 Temperature sensor unit and in-vivo thermometer
CN113286991B (en) * 2019-03-14 2024-05-10 生物数据银行股份有限公司 Temperature sensor unit and in-vivo thermometer

Also Published As

Publication number Publication date
JP2015111048A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
WO2013140711A1 (en) Clinical thermometer
US20210275032A1 (en) Core body thermometer
JP6081983B2 (en) Thermometer and body temperature measurement system
TWI568997B (en) Infrared sensor
US20150144543A1 (en) Flowmeter, dialysis machine and medicinal solution injection device
JP5647022B2 (en) Thermometer
US10175120B2 (en) Internal temperature measurement method and internal temperature measurement device
JP2013200152A (en) Clinical thermometer
US9909928B2 (en) Wireless thermometer on a film-like substrate using quartz vibrator
JP5756226B2 (en) Thermometer, thermometer antenna unit and manufacturing method thereof
WO2012042759A1 (en) Clinical thermometer
TWI477779B (en) Thermal convection type linear accelerometer
JP2013044624A (en) Clinical thermometer
US9970802B2 (en) Thermal-type flow-rate sensor
JP5898204B2 (en) Thermometer
CN210487079U (en) Infrared temperature sensor, probe comprising same and infrared thermometer
JP2013170907A (en) Thermometer
JP2015161520A (en) Noncontact temperature sensor
JP2012073128A (en) Clinical thermometer
JP2013200153A (en) Temperature reader
JP2012073127A (en) Clinical thermometer
CN112113664A (en) Infrared temperature sensor, probe comprising same and infrared thermometer
JP4569588B2 (en) Flow line measurement system
JP3995009B2 (en) Position detection system
JP7345117B2 (en) Temperature sensor and temperature measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP