WO2013140621A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2013140621A1
WO2013140621A1 PCT/JP2012/057589 JP2012057589W WO2013140621A1 WO 2013140621 A1 WO2013140621 A1 WO 2013140621A1 JP 2012057589 W JP2012057589 W JP 2012057589W WO 2013140621 A1 WO2013140621 A1 WO 2013140621A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating film
thickness
semiconductor device
semiconductor layer
Prior art date
Application number
PCT/JP2012/057589
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 新井
剛 可知
義典 星野
田畑 剛
靖之 斉藤
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to PCT/JP2012/057589 priority Critical patent/WO2013140621A1/en
Publication of WO2013140621A1 publication Critical patent/WO2013140621A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0839Cathode regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the present invention relates to a semiconductor device and a manufacturing technique thereof, and more particularly, to a semiconductor device including a planar gate IGBT (Insulated Gate Bipolar Transistor) and a technology effective when applied to the manufacturing thereof.
  • IGBT Insulated Gate Bipolar Transistor
  • Patent Document 1 discloses a base layer, a buried insulating film having an opening, a surface semiconductor layer connected to the base layer under the opening, and a p-type channel formed in the surface semiconductor layer.
  • An IGBT having a formation layer, an n + -type source layer, a p + -type emitter layer, a gate electrode formed on a surface semiconductor layer via a gate insulating film, an n + -type buffer layer, a p-type collector layer, and the like is disclosed. ing. Further, it is described that the thickness of the surface semiconductor layer is 20 nm to 100 nm.
  • a surface semiconductor layer is formed on the main surface (surface) of a base layer made of single crystal silicon by an epitaxial method through a buried insulating film, and a source layer, a channel layer, And an emitter layer (channel contact layer) is formed.
  • the base layer and the surface semiconductor layer have a structure connected through an opening (spaced portion) formed in the buried insulating film.
  • a plurality of active regions are defined on the main surface of the base layer by an insulating film thicker than the buried insulating film, and a surface semiconductor layer is formed in each of the plurality of active regions.
  • the thickness of the surface semiconductor layer is set to 100 nm or less, more preferably in the range of 20 nm to 40 nm in order to reduce the steady loss, turn-off time, and turn-off loss of the IGBT (see the above-mentioned Patent Document 1). .
  • the thickness from the upper surface of the buried insulating film at the position corresponding to the first opening of the buried insulating film to the upper surface of the surface semiconductor layer is equal to the buried insulation at the position corresponding to the end of the gate electrode in contact with the sidewall. It is thinner than the thickness from the upper surface of the film to the upper surface of the surface semiconductor layer.
  • the present invention is a method for manufacturing a semiconductor device including an IGBT element.
  • An insulating film including a thin film portion having a first thickness and a thick film portion surrounding the thin film portion and having a second thickness thicker than the first thickness is formed on the main surface of the substrate.
  • a first opening reaching the substrate is formed in the thin film portion.
  • the surface semiconductor layer is formed on the thin film portion of the insulating film by embedding the first opening.
  • the thickness from the main surface of the substrate to the upper surface of the surface semiconductor layer is surrounded by the thick film portion of the insulating film.
  • the surface semiconductor layer is formed so as to be the thinnest at the center of the region and gradually thicker as it approaches the thick film portion of the insulating film.
  • the thickness from the upper surface of the insulating film to the upper surface of the surface semiconductor layer is thin at the center of the region surrounded by the thick film portion of the insulating film, and gradually increases as it approaches the thick film portion of the insulating film.
  • a surface semiconductor layer is formed.
  • the thickness from the upper surface of the base layer to the upper surface of the surface semiconductor layer located under the gate electrode reaches the second opening formed in a part of the interlayer insulating film covering the gate electrode from the upper surface of the base layer. Since the thickness of the surface semiconductor layer located in the region is thinner than the upper surface, the characteristics of the IGBT element can be improved. In other words, the thickness from the upper surface of the buried insulating film at the position corresponding to the first opening of the buried insulating film to the upper surface of the surface semiconductor layer is from the upper surface of the buried insulating film at the position corresponding to the end of the gate electrode. Since the thickness is smaller than the thickness up to the upper surface of the surface semiconductor layer, the characteristics of the IGBT element can be improved.
  • the thickness from the upper surface of the n-type base layer to the upper surface of the surface semiconductor layer located in the region reached by the second opening formed in a part of the interlayer insulating film covering the gate electrode is the thickness of the n-type base layer It is formed thicker than the thickness from the upper surface to the upper surface of the surface semiconductor layer located under the gate electrode.
  • the thickness from the upper surface of the insulating film to the upper surface of the surface semiconductor layer is thin at the center of the region surrounded by the thick film portion of the insulating film, and gradually increases as it approaches the thick film portion of the insulating film.
  • a surface semiconductor layer is formed. Therefore, the manufacturing yield of semiconductor devices including IGBT can be improved.
  • FIG. 2 is a plan view of a main part of a semiconductor chip forming an IGBT according to the present embodiment (an active part is a main part plan view showing an enlarged part of a region where an IGBT element is formed), and shows a layout of the IGBT element; It is a principal part top view to explain.
  • FIG. 2 is a main part plan view for explaining in detail a layout of an IGBT element by further enlarging only a region where the IGBT element of FIG. 1 is formed; FIG.
  • FIG. 6 is a plan view of a main part of a semiconductor chip forming an IGBT according to the present embodiment (an active part is a main part plan view showing an enlarged part of a region where an IGBT element is formed), and shows a layout of the wiring of the IGBT; It is a principal part top view to explain.
  • FIG. 3 is an essential part cross-sectional view showing an active part and an outer peripheral part of a semiconductor chip forming an IGBT according to the present embodiment (the active part is an essential part cross-sectional view corresponding to a cross section along line AA ′ shown in FIG. 2); .
  • FIG. 3 is an essential part cross-sectional view (a main part cross-sectional view corresponding to a cross section taken along the line BB ′ shown in FIG.
  • FIG. 2 shows an enlarged part of the IGBT element according to the present embodiment.
  • A is a schematic diagram when the thickness of a channel layer is 40 nm or less
  • (b) is a schematic diagram when the thickness of a channel layer is thicker than 40 nm (for example, 100 nm).
  • Ic collector current
  • Vce collector-emitter voltage
  • FIG. 2 is an essential part cross-sectional view showing an enlarged part of an active part of a semiconductor chip during a manufacturing process of a semiconductor device including an IGBT according to the present embodiment (main part corresponding to a cross section taken along line AA ′ shown in FIG. 2);
  • FIG. FIG. 9 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 8;
  • FIG. 10 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 9;
  • FIG. 11 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 10;
  • FIG. 11 is an essential part plan view illustrating a part of the active portion of the semiconductor chip in the process of manufacturing the semiconductor device, enlarged from FIG. 10;
  • FIG. 13 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 11 and FIG. 12;
  • FIG. 13 is a principal part plan view of the same place as in FIG. 12 in the process of manufacturing the semiconductor device, following FIG. 11 and FIG. 12;
  • FIG. 15 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 13 and FIG. 14;
  • FIG. 15 is a plan view of main parts of the same portions as those in FIG. 12 during the manufacturing process of the semiconductor device, following FIGS.
  • FIG. 17 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 15 and FIG. 16;
  • FIG. 18 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 17;
  • FIG. 18 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 17;
  • FIG. 20 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 18 and FIG. 19;
  • FIG. 20 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 18 and FIG. 19;
  • FIG. 20 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 18 and FIG. 19;
  • FIG. 18 and FIG. 19 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of
  • FIG. 22 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 20 and FIG. 21;
  • FIG. 23 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 22;
  • FIG. 24 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 23;
  • FIG. 24 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 23;
  • FIG. 26 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 24 and FIG. 25;
  • FIG. 27 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 26;
  • FIG. 28 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 27;
  • FIG. 29 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 28;
  • FIG. 30 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 29;
  • FIG. 30 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 29;
  • FIG. 29 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 26;
  • FIG. 28 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following
  • FIG. 32 is a main-portion cross-sectional view of the same portion as shown in FIG. 8 in the manufacturing process of the semiconductor device, which is subsequent to FIGS. 30 and 31;
  • FIG. 33 is a plan view of main parts of the same portions as those in FIG. 12 during the manufacturing process of the semiconductor device, following FIGS. 30 and 31;
  • FIG. 34 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 32 and FIG. 33;
  • FIG. 35 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 34;
  • FIG. 36 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 35;
  • FIG. 35 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 35;
  • FIG. 35 is an essential part cross-sectional view of the same place as in
  • FIG. 37 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 36;
  • FIG. 38 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 37;
  • FIG. 38 is a principal part plan view of the same place as in FIG. 12 in the process of manufacturing the semiconductor device, following FIG. 37;
  • FIG. 40 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 38 and FIG. 39;
  • FIG. 40 is a principal part plan view of the same point in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 38 and FIG. 39;
  • FIG. 42 is a main-portion cross-sectional view of the same portion as shown in FIG. 8 in the manufacturing process of the semiconductor device, which is subsequent to FIGS. 40 and 41;
  • the number of elements when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
  • the constituent elements including element steps and the like
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • the specified material is a major material, and it is a sub-element, additive, unless otherwise specified or unless otherwise specified in principle or circumstances. However, this does not exclude added elements.
  • the silicon member includes not only pure silicon but also an additive impurity, a binary or ternary alloy (eg, SiGe) having silicon as a main element, and the like.
  • SiGe binary or ternary alloy
  • silicon nitride, silicon nitride, or silicon nitride not only Si 3 N 4 but also silicon nitride is used and includes an insulating film having a similar composition. .
  • FIG. 1 is a plan view of a main part of a semiconductor chip forming an IGBT (an active part is an enlarged plan view of a main part showing a part of a region where an IGBT element is formed) and describes the layout of the IGBT element. It is a principal part top view to do.
  • FIG. 2 is a plan view of an essential part for explaining in detail the layout of the IGBT element by further enlarging only the region where the IGBT element is formed.
  • FIG. 3 is a plan view of a main part of a semiconductor chip forming the IGBT (the active part is a main part plan view showing a part of a region where an IGBT element is formed), and the layout of the IGBT wiring is described. It is a principal part top view to do.
  • FIG. 4 is a principal part sectional view showing an active part and an outer peripheral part of the semiconductor chip forming the IGBT (the active part is a principal part sectional view corresponding to a section taken along the line AA ′ shown in FIG. 2).
  • FIG. 5 is an essential part cross-sectional view showing a part of the IGBT element in an enlarged manner (main part cross-sectional view corresponding to the cross section along the line BB ′ shown in FIG. 2).
  • FIG. 6A and 6B are schematic diagrams for explaining a state in which the channel layer of the IGBT element is inverted.
  • FIG. 6A is a schematic diagram when the thickness of the channel layer is 40 nm or less
  • FIG. 6B is a schematic diagram when the thickness of the channel layer is 40 nm. It is a schematic diagram when it is thicker (for example, 100 nm).
  • FIG. 7 is a graph showing the relationship between the collector current (Ic) of the IGBT element and the collector-emitter voltage (Vce).
  • an IGBT element is formed in the active portion of the semiconductor chip 1.
  • This IGBT element is made of n ⁇ type single crystal silicon via a buried insulating film (thin film portion) 3 on the main surface (surface) of the base layer 2 made of n ⁇ type single crystal silicon, for example.
  • a plurality of surface semiconductor layers 4 are formed, and the base layer 2 and the surface semiconductor layer 4 are connected through a first opening (spaced portion) 5 formed in the buried insulating film 3.
  • a plurality of active regions AC are defined on the main surface of the base layer 2 by a plurality of insulating films (thick film portions) 6 thicker than the buried insulating film 3, and the surface semiconductor layer is formed in each of the plurality of active regions AC. 4 is formed.
  • the thickness of the base layer 2 is, for example, 70 ⁇ m to 100 ⁇ m, which is determined according to the breakdown voltage of the IGBT, and is 60 ⁇ m to 100 ⁇ m when the breakdown voltage is 600V, and 120 ⁇ m to 150 ⁇ m when the breakdown voltage is 1200V. Can be exemplified.
  • the thickness (first thickness) of the buried insulating film 3 is, for example, 100 nm to 450 nm
  • the thickness (second thickness) of the insulating film 6 is thicker than 300 nm, for example, 550 nm to 650 nm.
  • the buried insulating film 3 and the insulating film 6 are desirably formed thin in order to extend the depletion layer deeply to the base layer 2 under the buried insulating film 3 and the insulating film 6 to obtain a high breakdown voltage.
  • the buried insulating film 3 and the insulating film 6 are thin, there is a risk of penetrating the buried insulating film 3 and the insulating film 6 when the second opening is formed in the interlayer insulating film, as will be described later. There is sex. Therefore, the buried insulating film 3 and the insulating film 6 are also required to have a thickness for avoiding penetration. Therefore, the thicknesses of the buried insulating film 3 and the insulating film 6 are determined by a trade-off between the breakdown voltage and the processing margin. In the present embodiment, the above numerical values are shown as an example of the thicknesses of the buried insulating film 3 and the insulating film 6. However, the present invention is not limited thereto, and various changes can be made without departing from the scope of the invention. Needless to say.
  • the active region AC in which the IGBT element is formed has a long side in the first direction (the b direction in FIGS. 1 and 2) in a top view, and a second direction (FIGS. 1 and 2) orthogonal to the first direction. This is a region having a short side in the c direction).
  • the active region AC is a pattern having a certain width in the second direction (width indicated by a symbol W in FIG. 1) in the top view and extending in a strip shape in the first direction, and includes a plurality of active regions AC. Are arranged in stripes. Actually, for example, about 700 active regions AC are formed apart from each other along the second direction, but for convenience, only 16 active regions AC are shown in an enlarged manner in FIG. ing.
  • the width (W) along the second direction of the active region AC is, for example, 3 ⁇ m or more, and a typical value may be 7 ⁇ m to 8 ⁇ m. Further, the interval between two active regions AC adjacent to each other in the second direction (the interval indicated by symbol S in FIG. 1), that is, the width of the insulating film 6 along the second direction is along the second direction of the active region AC. It is shorter than the width (W).
  • the surface semiconductor layer 4 on the buried insulating film 3 includes a p-type channel layer 7, an n-type source layer 8 including an n + -type source layer 8 a and an n ⁇ -type source layer 8 b, and p ++ -type emitter layers 9 a and p A p-type emitter layer (p-type channel contact layer) 9 including a + -type emitter layer 9b is formed.
  • the impurity concentration in the n + -type source layer 8a is higher than the impurity concentration in the n ⁇ -type source layer 8b, and is on the p-type channel layer 7 side (between the p-type channel layer 7 and the n + -type source layer 8a).
  • the impurity concentration in the p ++ type emitter layer 9 a is higher than the impurity concentration in the p + type emitter layer 9 b
  • the impurity concentration in the p + type emitter layer 9 b is higher than the impurity concentration in the p type channel layer 7.
  • the p + emitter layer 9b is formed on the p type channel layer 7 side (between the p type channel layer 7 and the p + + type emitter layer 9a).
  • the n-type source layer 8 and the p emitter layer 9 are formed side by side along the first direction in a top view, but cannot be formed in the same cross section. Therefore, the n-type source layer 8 and the p-type emitter layer 9 are alternately arranged in the first direction in one pattern extending in a band shape between the gate electrode 11 and the insulating film 6 in a top view. ing. Further, the breakdown area is increased by making the plane area of the n-type source layer 8 smaller than the plane area of the p-type emitter layer 9.
  • the p-type channel layer 7 is formed between the gate electrode 11 and the buried insulating film 3. Further, since the p-type channel layer 7 is connected to the p-type emitter layer 9 and the potential is fixed, it is possible to prevent deterioration of characteristics due to formation of a parasitic MOS (Metal Oxide Semiconductor).
  • MOS Metal Oxide Semiconductor
  • Sidewalls SW are formed on the side surfaces of the gate electrode 11.
  • high concentration impurities are ion-implanted into the surface conductor layer 4 below the side surface of the gate electrode 11 using the gate electrode 11 as a mask
  • crystal defects are generated in the surface conductor layer 4 below the side surface of the gate electrode 11 by the subsequent heat treatment. There was concern. Therefore, a sidewall SW is formed on the side surface of the gate electrode 11, and high concentration impurities are ion-implanted into the surface conductor layer 4 below the end of the sidewall SW using the sidewall SW as a mask. Crystal defects are prevented from occurring in the surface semiconductor layer 4.
  • the n ⁇ -type source layer 8b is formed on the surface conductor layer 4 near the side surface of the gate electrode 11, and the n + -type source layer 8a is formed on the surface conductor layer 4 near the edge of the sidewall SW.
  • a plurality of p-type field limiting rings (Field Limiting Ring) 12 are formed on the outer peripheral portion of the semiconductor chip 1 so as to surround the active portion in a top view, and further surround the plurality of p-type field limiting rings 12.
  • an n-type guard ring (channel stopper) 13 is formed.
  • the p-type field limiting ring 12 is formed by introducing a p-type impurity into the base layer 2.
  • the p-type field limiting ring 12 is a p + -type semiconductor layer 26 into which an impurity indicating p-type is introduced through the first opening 5 formed in the buried insulating film 3 (similar to the surface semiconductor layer 4 described above). And has a structure connected to an impurity concentration similar to that in the p + -type emitter layer 9b), and the voltage is fixed by the field limiting ring electrode 12A.
  • FIG. 1 shows an example in which two p-type field limiting rings 12 are formed, a larger number may be formed.
  • the n-type guard ring 13 formed so as to surround the plurality of p-type field limiting rings 12 has a function of protecting the IGBT elements in the semiconductor chip 1 after the semiconductor chip 1 is separated from the semiconductor wafer.
  • the n-type guard ring 13 is formed in the same manner as the surface semiconductor layer 4 and has an n-type impurity introduced therein, and the voltage is fixed by the guard ring electrode 13A.
  • the n-type guard ring 13 has an impurity concentration comparable to the impurity concentration in the n + -type source layer 8a.
  • an interlayer insulating film 14 is formed on the active part and the outer peripheral part of the semiconductor chip 1 so as to cover the IGBT element, the p-type field limiting ring 12 and the n-type guard ring 13.
  • the interlayer insulating film 14 is configured by a laminated film in which a nitride film 32, a silicon oxide film 33, a BPSG (Boron-Phospho Silicate Glass) film 34, and a PSG (Phospho Silicate Glass) film 35 are sequentially deposited from the bottom. .
  • an n-type source layer 8 and a p-type emitter layer 9, a gate electrode 11, a p + -type semiconductor layer 26, and a second opening 15 reaching the n-type guard ring 13 are formed.
  • a source pad (source electrode) 16 electrically connected to the n-type source layer 8 and the p-type emitter layer 9 on the interlayer insulating film 14, and the gate electrode 11 Gate pads 17 that are electrically connected to each other are formed apart from each other. Further, a field limiting ring electrode 12A electrically connected to the p + -type semiconductor layer 26 and a guard ring electrode 13A electrically connected to the n-type guard ring 13 are formed apart from each other. These source pads 16 and the like are made of, for example, Al (aluminum). Further, around the active portion (region between the region where the IGBT element is formed and the outer peripheral portion), a source leading electrode 16A is formed continuously with the source pad 16.
  • the source routing electrode 16A is connected to a p ++ type emitter layer (not shown) formed around the active portion through a second opening (not shown) formed in the interlayer insulating film 14 below the source leading electrode 16A.
  • strip-shaped gate fingers 17A extending in the second direction are formed at both ends of the central portion of the active portion and both ends of the active portion in the first direction (the b direction in FIG. 3).
  • the gate finger 17 ⁇ / b> A is electrically connected to the gate electrode 11 through the second opening 15 formed in the interlayer insulating film 14 thereunder, and is formed continuously with the gate pad 17.
  • a polyimide film is formed so as to cover the source pad 16 and the like, and a part of the surface of the source pad 16 and a part of the surface of the gate pad 17 are exposed on the polyimide film.
  • An opening is formed. These openings serve as bonding pads for connecting a bonding wire for electrically connecting the outside of the semiconductor chip 1 to the source pad 16 and the gate pad 17. If necessary, an opening for exposing a part of the surface of the guard ring electrode 13A may be formed in the polyimide film.
  • an n + -type buffer layer 18, a p-type collector layer 19, and a collector electrode 20 are formed in order from the base layer 2.
  • the specific resistance of the p-type collector layer 19 increases due to the low impurity concentration. Therefore, in order to reduce the series resistance component of the p-type collector layer 19, it is required to form it thinly, and the thickness is preferably, for example, 5 ⁇ m or less.
  • the thickness of the p-type collector layer 19 is, for example, 1 ⁇ m or less. It is preferable to do.
  • the collector electrode 20 can be formed from the following metal film (1), (2), or (3).
  • the semiconductor chip 1 is illustrated as a rectangle for convenience of illustration, but actually, the length along the first direction (b direction) of the semiconductor chip 1 is 1 cm.
  • the length along the second direction (c direction) is 1 cm.
  • the distance from the chip end along the first direction (b direction) of the semiconductor chip 1 to the active part (active region AC) is 200 ⁇ m to 300 ⁇ m, and the chip along the second direction (c direction) of the semiconductor chip 1.
  • the distance from the end portion to the active portion (active region AC) is 200 ⁇ m to 300 ⁇ m. That is, the outer peripheral portion of the semiconductor chip 1 is disposed on the four sides of the semiconductor chip 1 over 200 ⁇ m to 300 ⁇ m. Therefore, in FIG. 4, the active portion and the outer peripheral portion are continuously described for easy understanding, but the width of the outer peripheral portion in FIG. 4 is 200 ⁇ m to 300 ⁇ m.
  • the technical feature of the present invention resides in the thickness of the surface semiconductor layer 4 formed in each of the plurality of active regions AC.
  • the thickness of the surface semiconductor layer 4 on which the p-type channel layer 7, the n-type source layer 8, and the p-type emitter layer 9 are formed is not constant.
  • the surface semiconductor layer 4 is formed so that the thickness up to the upper surface of 4 is the thinnest at the center of the active region AC and gradually increases as it approaches the insulating film 6. That is, in the cross section of the active region AC along the second direction, the thickness (L1) from the upper surface of the base layer 2 to the upper surface of the surface semiconductor layer 4 located under the gate electrode 11 is the upper surface of the base layer 2.
  • the thickness (L3) from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 at the position corresponding to the first opening 5 of the buried insulating film 3 is the thickness of the gate electrode 11 in contact with the sidewall SW. It is formed thinner than the thickness (L4) from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 at a position corresponding to the end (L3 ⁇ L4).
  • the thickness from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 (a region where part of the p-type channel layer 7 and the p + -type emitter layer 9b is formed) located under the gate electrode 11 is It is set in consideration of the steady loss, turn-off time, and turn-off loss of the IGBT. For example, 300 nm or less is considered to be an appropriate range (which is not limited to this range depending on other conditions). Further, a range suitable for mass production is considered to be 100 nm or less, but a range of 20 nm to 40 nm is considered most preferable.
  • the thickness (L2) from the upper surface of the base layer 2 to the upper surface of the surface semiconductor layer 4 located in the region where the second opening 15 is formed prevents penetration of the second opening 15.
  • the source pad 16 is formed to be thicker than 300 nm, for example.
  • the thickness of the surface semiconductor layer 4 located below the gate electrode 11 from the upper surface of the buried insulating film 3 is more desirably set in the range of 20 nm to 40 nm will be described with reference to FIGS.
  • the thickness of the p-type channel layer 7 (surface semiconductor layer 4) under the gate electrode 11 is larger than 40 nm (for example, 100 nm)
  • the p-type channel layer 7 is entirely Since the inversion does not occur, holes flow through the p-type channel layer 7 and the amount of accumulated charges decreases.
  • the p-type channel layer 7 As shown in FIG. 7, when compared with the same collector current (Ic), the p-type channel layer 7 (surface semiconductor layer 4) has a thickness of 40 nm when the p-type channel layer 7 (surface semiconductor layer 4) has a thickness of 40 nm. It can be seen that the collector-emitter voltage (Vce) is lower and the on-voltage is lower than when the thickness of the transistor is 100 nm.
  • the thickness of the p-type channel layer 7 (surface semiconductor layer 4) is 10 nm to 15 nm, the thickness of the inversion layer formed in the p-type channel layer 7 becomes too thin, and resistance to the flow of electrons. Therefore, it becomes difficult for the electronic current to flow. From the above, it is considered that the thickness of the surface semiconductor layer 4 located below the gate electrode 11 from the upper surface of the buried insulating film 3 is desirably set in the range of 20 nm to 40 nm.
  • the thickness of the surface semiconductor layer 4 formed in each of the plurality of active regions AC gradually increases as the insulating film 6 is approached not only in the second direction but also in the first direction. Therefore, of the surface semiconductor layer 4 located under the gate electrode 11, the thickness of the surface semiconductor layer 4 located at both ends in the first direction of the active region AC is the region where the second opening 15 is formed ( The thickness of the surface semiconductor layer 4 in the region to which the source pad 16 is connected is substantially the same. However, the surface semiconductor layer 4 is located at both ends in the first direction and has a thickness substantially equal to the thickness of the surface semiconductor layer 4 in the region where the second opening 15 is formed (the region to which the source pad 16 is connected). Since the area is extremely small as compared with the entire area of the surface semiconductor layer 4 located under the gate electrode 11, the surface semiconductor layers 4 located at both ends in the first direction of the active region AC have the operating characteristics of the IGBT. Has little effect.
  • FIG. 42 is a principal part sectional view showing a part of the active part of the semiconductor chip in an enlarged manner (a principal part sectional view corresponding to the section along the line AA ′ shown in FIG. 2).
  • FIG. 16, FIG. 16, FIG. 19, FIG. 21, FIG. 25, FIG. 31, FIG. 33, FIGS. 35, 39, and 41 are enlarged plan views showing a part of the active portion of the semiconductor chip.
  • a high-resistance semiconductor substrate (hereinafter simply referred to as a substrate) 2A made of n ⁇ -type single crystal silicon is prepared.
  • the types of crystals forming the substrate 2A include FZ (Float Zoning) crystals manufactured by the floating zone method, CZ (Czochralski) crystals manufactured by the Czochralski method (pulling method), or MCZ (Magnetic Field Applied). Czochralski) crystals are preferred.
  • the surface oxide film 21 is formed on the main surface (surface) of the substrate 2A by subjecting the substrate 2A to thermal oxidation.
  • a p-type impurity for example, B (boron)
  • B boron
  • a p-type impurity for example, B (boron)
  • a photoresist film patterned by photolithography as a mask.
  • a plurality of p-type wells 23 are formed.
  • the substrate 2A is subjected to a thermal oxidation process to form a surface oxide film (not shown) on the main surface of the substrate 2A.
  • CVD on the surface oxide film
  • An oxide film (not shown) is deposited by a chemical vapor deposition method to form the surface oxide film and the insulating film 6 including the oxide film.
  • the thickness of the insulating film 6 is, for example, 300 nm to 650 nm.
  • an active region for example, a source layer, a channel layer, and an emitter layer (channel contact) is formed by isotropic wet etching using a photoresist film patterned by photolithography as a mask.
  • the insulating film 6 in a region to be a region where the layer) is formed is etched by, for example, about 200 nm.
  • the active region AC is defined on the main surface of the substrate 2A by the thick film portion of the insulating film 6 that has not been etched.
  • the region where the IGBT element of the active portion is formed, the region where the thick film portion of the insulating film 6 is formed and the region where the thin film portion of the insulating film 6 is formed are alternately striped. line up.
  • a thin film portion of the insulating film 6 is also formed in a region where the p + -type semiconductor layer 26 is formed later and in a region where the n-type guard ring 13 is formed later (see FIGS. 1 and 4).
  • the active region AC in which the IGBT element is formed has a long side in the first direction (the direction in which the gate electrode 11 extends) in the top view and a short side in the second direction orthogonal to the first direction. It is an area.
  • the width (W) along the second direction of the active region AC is, for example, 3 ⁇ m or more, and a typical value may be 7 ⁇ m to 8 ⁇ m. Further, the interval (S) between two active regions AC adjacent in the second direction is formed shorter than the width (W) along the second direction of the active region AC.
  • isotropic wet etching is used for etching the insulating film 6 described above. This is because the isotropic wet etching can etch the insulating film 6 with higher controllability than the dry etching, and can suppress variations in the thickness of the thin film portion of the insulating film 6. As will be described later, the thin film portion of the insulating film 6 constitutes the buried insulating film 3. However, the formation of the buried insulating film 3 having a uniform thickness makes it possible to change the characteristics of the IGBT due to variations in hole current. Can be suppressed. In practice, the corners of the active region AC are rounded, but for convenience, the corners of the active region AC are shown as straight lines.
  • a portion of the thin film portion of the insulating film 6 is etched using a photoresist film patterned by photolithography as a mask, so that the first opening (separating portion) 5 is formed.
  • the buried insulating film 3 which is a thin film portion of the insulating film 6 having the first opening 5 can be formed.
  • the surface of the substrate 2 ⁇ / b> A is exposed at the bottom surface of the first opening 5.
  • the first opening 5 is also formed in the thin film portion of the insulating film 6 in the region where the p + type semiconductor layer 26 will be formed later and the region where the n type guard ring 13 will be formed later (FIG. 1). And FIG. 4).
  • an n ⁇ -type single crystal whose specific resistance is substantially the same as that of the substrate 2A so that the silicon crystal continues from the first opening 5 of the buried insulating film 3 at the lattice level.
  • a silicon film 4A is formed by an epitaxial method. At this time, in order to prevent polycrystalline silicon from being deposited on the surface of the buried insulating film 3, the epitaxial film forming conditions having selectivity are set.
  • a means for supplying a mixed gas of SiHCl 3 (trichlorosilane) and HCl (hydrochloric acid) into the furnace using a carrier gas whose main component is H 2 (hydrogen) gas A means for supplying a mixed gas of SiH 2 Cl 2 (dichlorosilane) and HCl (hydrochloric acid) into the furnace using a carrier gas whose main component is H 2 (hydrogen) gas can be exemplified.
  • HCl gas has a light etching property with respect to the silicon crystal and can prevent the deposition of polycrystalline silicon on the buried insulating film 3.
  • the etching force of HCl gas is not strong enough to prevent the epitaxial film formation of crystalline silicon formed continuously from the crystal (substrate 2A) under the first opening 5, the first opening The selective epitaxial film formation from 5 becomes possible.
  • the n ⁇ -type single crystal silicon film 4A is polished by CMP (Chemical Mechanical Polishing) using the thick film portion of the insulating film 6 as a stopper (polishing end point) to form the active region AC.
  • the surface semiconductor layer 4 is formed.
  • the n ⁇ -type single crystal silicon film 4A is polished using polishing conditions in which so-called dishing (a phenomenon in which the central portion of the pattern is recessed in a dish shape) occurs.
  • the thickness from the main surface of the substrate 2A to the upper surface of the surface semiconductor layer 4 is the thinnest in the central portion of the active region AC surrounded by the thick film portion of the insulating film 6, and the thick film portion of the insulating film 6
  • the surface semiconductor layer 4 is formed so as to gradually increase as it approaches.
  • the thickness from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 located below the gate electrode 11 to be formed later is determined by the steady loss, turn-off time, and turn-off loss of the IGBT as described above. In order to reduce the thickness, it is formed to be 300 nm or less, or 100 nm or less, and more desirably in the range of 20 nm to 40 nm. In contrast, the thickness from the main surface of the substrate 2A to the upper surface of the surface semiconductor layer 4 in the region to which the source pad 16 to be formed later is connected (the total thickness of the buried insulating film 3 and the surface semiconductor layer 4). ) Is formed to be thicker than 300 nm, for example, in order to prevent the penetration of the second opening 15 to be formed later and to obtain a good connection between the source pad 16 and the surface semiconductor layer 4 to be formed later. Is done.
  • the appropriate thickness of the surface semiconductor layer 4 has been described above.
  • the surface of the surface semiconductor layer 4 is sacrificed in the process of forming the gate insulating film 10 by a predetermined thickness in a later process. Therefore, in this step, it is necessary to define the thickness of the surface semiconductor layer 4 in consideration of the thickness (including the thickness of the gate insulating film 10 itself) that is sacrificed in the step of forming the gate insulating film 10. There is. That is, in the step of forming the gate insulating film 10, before the gate insulating film 10 itself is formed, a sacrificial oxide film is formed on the surface of the surface semiconductor layer 4 by thermal oxidation in order to ion-implant impurities into the surface semiconductor layer 4.
  • the gate insulating film 10 is formed again on the surface of the surface semiconductor layer 4 by thermal oxidation treatment of the substrate 2A. That is, in consideration of the loss of the thickness of the surface semiconductor layer 4 by the thickness of the sacrificial oxide film and the gate insulating film 10, the thickness of the surface semiconductor layer 4 remaining after the CMP process must be specified. Don't be.
  • the gate insulating film of the IGBT is composed of a laminated film of an oxide film having a thickness of 10 nm formed by a thermal oxidation method and an oxide film having a thickness of 90 nm formed by a CVD method, a sacrificial oxide film and If the thickness of the gate insulating film 10 is 5 nm, in order to obtain the surface semiconductor layer 4 having a thickness of 20 nm to 40 nm after the gate insulating film 10 is formed, the thickness of the surface semiconductor layer 4 remaining after the CMP process is obtained. The thickness needs to be 30 nm to 50 nm.
  • the thickness of the surface semiconductor layer 4 remaining after the CMP process is determined by a step due to the insulating film 6, the thickness of the surface semiconductor layer 4 remaining after the CMP process is set to such a value. Needless to say, the buried insulating film 3 must be formed.
  • the p-type semiconductor layer 25 is formed by introducing a p-type impurity (for example, B (boron)) into the region to be the channel under the gate electrode 11 formed on the both sides of the gate electrode 11 by ion implantation.
  • a p-type impurity for example, B (boron)
  • the reason why the p-type semiconductor layer 25 is formed on the surface semiconductor layer 4 on which the IGBT element is formed before the gate electrode 11 is formed is as follows. That is, after the gate electrode 11 is formed and a gate electrode 11 is used as a mask and a p-type impurity is introduced into the surface semiconductor layer 4, in order to diffuse the impurity to a region to be a channel below the gate electrode 11, a high temperature is required. In addition, a long heat treatment is required. However, stress is applied to the thin film portion (embedded insulating film 3) of the insulating film 6 by this heat treatment and distortion occurs, resulting in a focus shift or a crystal defect in the photolithography technique. In order to avoid such a problem, the p-type semiconductor layer 25 is formed in the surface semiconductor layer 4 before the gate electrode 11 is formed in the active portion.
  • a part of the p-type semiconductor layer 25 is formed in the active portion using a photoresist film patterned by photolithography as a mask.
  • a p + -type emitter layer 9b is formed by introducing a p-type impurity (for example, B (boron)) into the region) by ion implantation.
  • a p-type impurity for example, B (boron)
  • the outer peripheral portion, impurities imparting p-type surface semiconductor layer 4 on the p-type field limiting rings 12 is introduced by ion implantation to form the p + -type semiconductor layer 26 (See FIG. 4).
  • the surface semiconductor layer 4 (the p-type semiconductor layer 25 and the p + -type emitter layer 9b in the active part and the p + -type semiconductor layer in the outer peripheral part) 26), a lower oxide film (not shown) is formed, and then an upper oxide film (not shown) is deposited on the lower oxide film by a CVD method to form a lower oxide film and an upper oxide film.
  • a gate insulating film 10 including a film is formed.
  • the thickness of the lower oxide film is, for example, 10 nm
  • the thickness of the upper oxide film is, for example, 90 nm.
  • a polycrystalline silicon film 27 is deposited on the main surface of the substrate 2A, and then a tungsten silicide layer 28 is formed on the polycrystalline silicon film 27.
  • the tungsten silicide layer 28 is formed in order to reduce the height of the gate electrode 11 and not increase the resistance of the gate electrode 11.
  • the tungsten silicide layer 28 and the polycrystalline silicon film 27 are sequentially patterned by etching using a photoresist film patterned by photolithography as a mask.
  • the gate electrode 11 which is a laminated film of the polycrystalline silicon film 27 and the tungsten silicide layer 28 can be formed.
  • a sacrificial oxide film 24 is formed on the exposed surface of the surface semiconductor layer 4 by subjecting the substrate 2A to thermal oxidation.
  • an n-type impurity for example, As (arsenic)
  • As (arsenic) is ionized in the p-type semiconductor layer 25 on both sides of the gate electrode 11 using a photoresist film patterned by photolithography as a mask.
  • the n ⁇ type source layer 8b is formed in a predetermined region by introducing by an implantation method.
  • the implantation energy and implantation amount of ion implantation are relatively low. Is set.
  • a silicon oxide film 30 is deposited on the main surface of the substrate 2A.
  • the silicon oxide film 30 is anisotropically dry-etched to form a sidewall SW that is to be the silicon oxide film 30 on the side surface of the gate electrode 11.
  • the n ⁇ type source layer 8b on both sides of the gate electrode 11 in the active part has an n-type impurity (for example, As (arsenic)) is introduced by ion implantation to form an n + type source layer 8a having an impurity concentration higher than that of the n ⁇ type source layer 8b.
  • the n - type source layer 8 including the n ⁇ -type source layer 8b and the n + -type source layer 8a is formed.
  • an n-type impurity for example, As (arsenic)
  • n-type guard ring channel stopper 13
  • FIG. 30 shows a mode in which the n + -type source layer 8a is formed from the upper surface of the surface semiconductor layer 4 to the lower surface in contact with the buried insulating film 3, but it is formed only on the upper surface side of the surface semiconductor layer 4. May be.
  • a p-type impurity (for example, in the p + -type emitter layer 9b on both sides of the gate electrode 11 of the active portion) is masked using a photoresist film patterned by photolithography as a mask.
  • B boron
  • B boron
  • a p-type emitter layer (p-type channel contact layer) 9 including the p + -type emitter layer 9b and the p + + type emitter layer 9a is formed.
  • FIG. 32 shows an embodiment in which the p ++ type emitter layer 9a is formed from the upper surface of the surface semiconductor layer 4 to the lower surface in contact with the buried insulating film 3, but it is formed only on the upper surface side of the surface semiconductor layer 4. May be.
  • the implantation amount is larger than that of the impurity ion implantation forming the n ⁇ -type source layer 8b.
  • the ion implantation of the impurity forming the p ++ type emitter layer 9a has a larger implantation amount than the ion implantation of the impurity forming the p + type emitter layer 9b.
  • Crystal defects can be prevented from occurring in the layer 4 and the gate insulating film 10. Further, even if crystal defects occur in the surface semiconductor layer 4 below the end portion of the sidewall SW, it is far from the side surface of the gate electrode 11 and therefore hardly affects the operation characteristics of the IGBT.
  • the n-type source layer 8 and the p-type emitter layer 9 are alternately arranged in one pattern extending in a strip shape between the gate electrode 11 and the thick film portion of the insulating film 6 in a top view. It will be. Further, the p-type semiconductor layer 25 under the gate electrode 11 where the n-type source layer 8 or the p-type emitter layer 9 is not formed constitutes the p-type channel layer 7.
  • the IGBT element according to the present embodiment can be formed through the above steps.
  • a nitride film 32 is formed on the main surface of the substrate 2A.
  • the nitride film 32 is, for example, a silicon nitride film, and the thickness thereof is, for example, 50 nm to 70 nm.
  • the nitride film 32 is etched using a photoresist film patterned by the photolithography technique as a mask to form a third opening 31 reaching the gate electrode 11.
  • a silicon oxide film 33 and a BPSG (Boron-PSG) film 34 are sequentially deposited on the main surface of the substrate 2A.
  • the thickness of the silicon oxide film 33 is, for example, 150 nm
  • the thickness of the BPSG film 34 is, for example, 400 nm to 500 nm.
  • heat treatment is performed on the substrate 2A.
  • the PSG film 35 is deposited on the BPSG film 34 to form the interlayer insulating film 14 including the nitride film 32, the silicon oxide film 33, the BGSP film 34, and the PSG film 35. .
  • the thickness of the PSG film 35 is, for example, 300 nm.
  • heat treatment is performed on the substrate 2A.
  • the interlayer insulating film 14 is etched, and in the active portion, each of the n + type source layer 8a and the p ++ type emitter layer 9a of the IGBT element and the gate electrode 11 is formed.
  • a second opening 15 is formed. In the outer peripheral portion, second openings 15 reaching the p + type semiconductor layer 26 and the n type guard ring 13 are formed (see FIGS. 3 and 4).
  • the PSG film 35, the BPSG film 34, and the silicon oxide film 33 are formed using a photoresist film patterned by photolithography as a mask and the nitride film 32 as an etching stopper. Are sequentially etched.
  • the third opening 31 is formed in a part of the nitride film 32 on the gate electrode 11 in the process described with reference to FIG. 35 described above, the tungsten silicide constituting the upper part of the gate electrode 11 is formed. A portion of layer 28 is exposed.
  • the nitride film 32 is etched using the photoresist film as a mask.
  • the etching of the PSG film 35, the BPSG film 34, and the silicon oxide film 33 in the nitride film 32 is once stopped, and then the nitride film 32 is etched to form the second opening 15. Therefore, the surface semiconductor layer 4 on which the n + -type source layer 8a and the p + + -type emitter layer 9a are formed, and the overetching amount of the thick film portion of the insulating film 6 (in the outer peripheral portion, the p + -type semiconductor layer 26 and the n-type The amount of overetching of the surface semiconductor layer 4 on which the guard ring 13 is formed (see FIGS. 3 and 4) can be made small.
  • the thickness from the main surface of the substrate 2A to the upper surface of the surface semiconductor layer 4 in the region where the second opening 15 is formed is, for example, It is formed thicker than 300 nm.
  • the second opening 15 extends through the n + -type source layer 8a and the p + + -type emitter layer 9a (in the outer periphery, the p + -type semiconductor layer 26 and the n-type guard ring 13 (see FIGS. 3 and 4)). Does not reach the substrate 2A.
  • the nitride film 32 is removed in advance. This is to avoid poor connection between the gate electrode 11 and the gate finger. That is, if an oxide film is formed between the tungsten silicide layer 28 and the nitride film 32 constituting the upper portion of the gate electrode 11, the second opening 15 is formed (after the nitride film 32 is removed). The oxide film may remain without being removed. If the oxide film remains, the contact resistance between the tungsten silicide layer 28 and the metal film constituting the gate finger increases. In order to prevent this, the nitride film 32 in the region where the second opening 15 connecting the gate electrode 11 and the gate finger to be formed later is formed is removed in advance.
  • the remaining oxide film can be removed by etching after the second opening 15 is formed (after the nitride film 32 is removed). However, at the same time, the thick film portion of the insulating film 6 is also etched, and the thickness of the thick film portion of the insulating film 6 cannot be maintained at a predetermined thickness.
  • an Al (aluminum) film is deposited on the main surface of the substrate 2A, for example, by sputtering.
  • the Al (aluminum) film is etched using a photoresist film patterned by photolithography as a mask, and the source pad is electrically connected to the n + type source layer 8a and the p + + type emitter layer 9a of the IGBT element.
  • (Source electrode) 16 is formed.
  • the following is formed.
  • the surface is formed on the main surface of the substrate 2A.
  • a polyimide film is deposited as a protective film.
  • openings reaching the source pad 16, the gate pad 17, the field limiting ring electrode 12A, and the guard ring electrode 13A are formed in the polyimide film. These openings divide the substrate 2A into individual semiconductor chips 1, and after the semiconductor chip 1 is mounted on the die pad of the lead frame, the source pads 16, the gate pads 17, and the field limiting ring electrodes 12A using bonding wires. And the guard ring electrode 13A are formed to be electrically connected to the corresponding leads.
  • a reinforcing material such as a foam double-sided tape or a glass reinforcing plate is attached to the main surface of the substrate 2A, and then the back surface of the substrate 2A is ground to form a base layer. 2 is formed.
  • the thickness of the base layer 2 is determined in accordance with the breakdown voltage of the IGBT.
  • the substrate is 60 ⁇ m to 100 ⁇ m when the breakdown voltage is 600V, and 120 ⁇ m to 150 ⁇ m when the breakdown voltage is 1200V. Grind the back of 2A. Since the reinforcing material is affixed to the main surface side of the substrate 2A, it is possible to prevent the substrate 2A from warping or drooping.
  • an n-type impurity for example, P (phosphorus)
  • a p-type impurity for example, B (boron)
  • an ion implantation method for example, using a laser annealing method.
  • an n + -type buffer layer 18 and a p-type collector layer 19 are formed.
  • the collector electrode 20 is formed by laminating an Al (aluminum) film, a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film in order from the p-type collector layer 19 by, for example, sputtering or vapor deposition. Can be formed.
  • the collector electrode 20 in which the Ni (nickel) film, the Ti (titanium) film, the Ni (nickel) film, and the Au (gold) film are stacked in order from the closest to the p-type collector layer 19 or the p-type collector layer 19
  • the collector electrode 20 may be formed by stacking a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film in order. Thereafter, the reinforcing material is removed.
  • the substrate 2A is cut into individual semiconductor chips 1 by cutting along the divided regions (dicing lines). Subsequently, after preparing a lead frame and mounting the singulated semiconductor chip 1 on a die pad of the lead frame, the source pad 16, the gate pad 17, the field limiting ring electrode 12A, and the guard using bonding wires Each of the ring electrodes 13A is electrically connected to the corresponding lead. Thereafter, the semiconductor chip 1, the lead frame, and the bonding wires are sealed with a sealing resin to manufacture the semiconductor device according to this embodiment.
  • the thickness from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 located under the gate electrode 11 is, for example, 300 nm or less, 100 nm or less, more preferably 20 nm.
  • the steady loss, turn-off time, and turn-off loss of the IGBT can be reduced.
  • the thickness from the upper surface of the base layer 2 to the upper surface of the surface semiconductor layer 4 in the region where the second opening 15 is formed (the region where the source pad 16 is connected) is formed to be thicker than 300 nm, for example. Yes.
  • the second opening 15 is formed in the interlayer insulating film 14 formed on the surface semiconductor layer 4, the second opening 15 is prevented from penetrating even if overetching is performed in order to avoid an opening defect. be able to. Thereby, since the source pad 16 and the base layer 2 are not connected, the malfunction of IBGT can be prevented.
  • the present invention can be applied to semiconductor devices employed in various inverters such as motor drive inverters in railway vehicles and hybrid cars, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A surface semiconductor layer (4), on which a p-channel layer (7), an n-channel layer (8), and p-type emitter layer (9) are formed, is formed on a plurality of active areas. The thickness from the top surface of the base layer (2) to the top surface of the surface semiconductor layer (4) positioned below a gate electrode (11) is less than the thickness from the top surface of the base layer (2) to the top surface of the surface semiconductor layer (4) in the area in which a second opening part (15) is formed.

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置およびその製造技術に関し、特に、プレーナゲート型IGBT(絶縁ゲートバイポーラトランジスタ:Insulated Gate Bipolar Transistor)を含む半導体装置およびその製造に適用して有効な技術に関するものである。 The present invention relates to a semiconductor device and a manufacturing technique thereof, and more particularly, to a semiconductor device including a planar gate IGBT (Insulated Gate Bipolar Transistor) and a technology effective when applied to the manufacturing thereof.
 例えば特開2010-62262号公報(特許文献1)には、ベース層、開口部を備えた埋め込み絶縁膜、開口部下でベース層と接続する表面半導体層、表面半導体層に形成されたp型チャネル形成層とn型ソース層とp型エミッタ層、表面半導体層上にゲート絶縁膜を介して形成されたゲート電極、n型バッファ層、およびp型コレクタ層等を有するIGBTが開示されている。そして、上記表面半導体層の厚さは、20nm~100nmとする内容が記載されている。 For example, Japanese Patent Laying-Open No. 2010-62262 (Patent Document 1) discloses a base layer, a buried insulating film having an opening, a surface semiconductor layer connected to the base layer under the opening, and a p-type channel formed in the surface semiconductor layer. An IGBT having a formation layer, an n + -type source layer, a p + -type emitter layer, a gate electrode formed on a surface semiconductor layer via a gate insulating film, an n + -type buffer layer, a p-type collector layer, and the like is disclosed. ing. Further, it is described that the thickness of the surface semiconductor layer is 20 nm to 100 nm.
特開2010-62262号公報JP 2010-62262 A
 IGBTは、表面半導体層が、単結晶シリコンとされるベース層の主面(表面)上に、埋め込み絶縁膜を介してエピタキシャル法により形成されており、この表面半導体層にソース層、チャネル層、およびエミッタ層(チャネルコンタクト層)が形成される。ベース層と表面半導体層とは、埋め込み絶縁膜に形成された開口部(離間部)を通じて接続した構造となっている。また、埋め込み絶縁膜よりも厚い絶縁膜によってベース層の主面上では複数の活性領域が規定され、それらの複数の活性領域の各々に表面半導体層が形成されている。上記表面半導体層の厚さは、IGBTの定常損失、ターンオフ時間、およびターンオフ損失を低減するために、100nm以下、より望ましくは20nm~40nmの範囲に設定されている(前述の特許文献1参照)。 In the IGBT, a surface semiconductor layer is formed on the main surface (surface) of a base layer made of single crystal silicon by an epitaxial method through a buried insulating film, and a source layer, a channel layer, And an emitter layer (channel contact layer) is formed. The base layer and the surface semiconductor layer have a structure connected through an opening (spaced portion) formed in the buried insulating film. A plurality of active regions are defined on the main surface of the base layer by an insulating film thicker than the buried insulating film, and a surface semiconductor layer is formed in each of the plurality of active regions. The thickness of the surface semiconductor layer is set to 100 nm or less, more preferably in the range of 20 nm to 40 nm in order to reduce the steady loss, turn-off time, and turn-off loss of the IGBT (see the above-mentioned Patent Document 1). .
 ところで、表面半導体層に電気的に接続するソースパッド(ソース電極)を形成する際には、まず、表面半導体層上に層間絶縁膜を形成し、この層間絶縁膜に表面半導体層に達する開口部を形成した後に、ソースパッドが形成される。しかしながら、耐圧を考慮すると、層間絶縁膜の厚さは、例えば600nm程度必要であるが、表面半導体層の厚さは、例えば20nm~100nmである。そのため、上記開口部の開口不良を回避するためにオーバエッチングを行うと、表面半導体層(ソース層およびエミッタ層)を貫通し、さらにその下の埋め込み絶縁膜を貫通して、開口部がベース層に達する場合がある。開口部がベース層に達すると、その開口部の内部に埋め込まれるソースパッドとベース層とが電気的に接続してIBGTの動作不良が生じ、その結果、IGBTを含む半導体装置の製造歩留りが低下するという問題が生じる。 By the way, when forming a source pad (source electrode) electrically connected to the surface semiconductor layer, first, an interlayer insulating film is formed on the surface semiconductor layer, and an opening reaching the surface semiconductor layer in the interlayer insulating film. After forming, a source pad is formed. However, considering the breakdown voltage, the thickness of the interlayer insulating film needs to be about 600 nm, for example, while the thickness of the surface semiconductor layer is, for example, 20 nm to 100 nm. For this reason, when over-etching is performed to avoid an opening defect in the opening, the surface semiconductor layer (source layer and emitter layer) penetrates, and the buried insulating film below the surface semiconductor layer penetrates. May be reached. When the opening reaches the base layer, the source pad embedded in the opening and the base layer are electrically connected to each other to cause an operation failure of the IBGT, resulting in a decrease in manufacturing yield of the semiconductor device including the IGBT. Problem arises.
 本発明の目的は、IGBTを含む半導体装置の特性を向上させることのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the characteristics of a semiconductor device including an IGBT.
 本発明の他の目的は、IGBTを含む半導体装置の製造歩留りを向上させることのできる技術を提供することにある。 Another object of the present invention is to provide a technique capable of improving the manufacturing yield of a semiconductor device including an IGBT.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明は、IGBTの素子を含む半導体装置である。IGBTの素子が形成される活性領域は、上面視において第1方向に長辺を有し、第1方向と直交する第2方向に短辺を有する領域である。そして、第2方向に沿った活性領域の断面において、ベース層の上面から、ゲート電極の下に位置する表面半導体層の上面までの厚さが、ベース層の上面から、ゲート電極を覆う層間絶縁膜の一部に形成された第2開口部が達する領域に位置する表面半導体層の上面までの厚さよりも薄いものである。言い換えるならば、埋め込み絶縁膜の第1開口部に対応する位置における埋め込み絶縁膜の上面から表面半導体層の上面までの厚さは、サイドウォールと接するゲート電極の端部に対応する位置における埋め込み絶縁膜の上面から表面半導体層の上面までの厚さよりも薄いものである。 The present invention is a semiconductor device including an IGBT element. The active region in which the IGBT element is formed is a region having a long side in the first direction and a short side in the second direction orthogonal to the first direction when viewed from above. Then, in the cross section of the active region along the second direction, the thickness from the upper surface of the base layer to the upper surface of the surface semiconductor layer located under the gate electrode is the interlayer insulation covering the gate electrode from the upper surface of the base layer The thickness is smaller than the thickness up to the upper surface of the surface semiconductor layer located in the region reached by the second opening formed in a part of the film. In other words, the thickness from the upper surface of the buried insulating film at the position corresponding to the first opening of the buried insulating film to the upper surface of the surface semiconductor layer is equal to the buried insulation at the position corresponding to the end of the gate electrode in contact with the sidewall. It is thinner than the thickness from the upper surface of the film to the upper surface of the surface semiconductor layer.
 また、本発明は、IGBTの素子を備える半導体装置の製造方法である。基板の主面上に、第1厚さを有する薄膜部と、薄膜部を囲み、第1厚さよりも厚い第2厚さを有する厚膜部とを含む絶縁膜を形成した後、絶縁膜の薄膜部に基板に達する第1開口部を形成する。その後、絶縁膜の薄膜部上に表面半導体層を、第1開口部を埋め込んで形成するが、基板の主面から表面半導体層の上面までの厚さは、絶縁膜の厚膜部に囲まれた領域の中央部において最も薄く、絶縁膜の厚膜部に近づくに従い徐々に厚くなるように、表面半導体層は形成される。言い換えるならば、絶縁膜の上面から表面半導体層の上面までの厚さは、絶縁膜の厚膜部に囲まれた領域の中央部において薄く、絶縁膜の厚膜部に近づくに従い徐々に厚くなるように、表面半導体層が形成される。 Further, the present invention is a method for manufacturing a semiconductor device including an IGBT element. An insulating film including a thin film portion having a first thickness and a thick film portion surrounding the thin film portion and having a second thickness thicker than the first thickness is formed on the main surface of the substrate. A first opening reaching the substrate is formed in the thin film portion. Thereafter, the surface semiconductor layer is formed on the thin film portion of the insulating film by embedding the first opening. The thickness from the main surface of the substrate to the upper surface of the surface semiconductor layer is surrounded by the thick film portion of the insulating film. The surface semiconductor layer is formed so as to be the thinnest at the center of the region and gradually thicker as it approaches the thick film portion of the insulating film. In other words, the thickness from the upper surface of the insulating film to the upper surface of the surface semiconductor layer is thin at the center of the region surrounded by the thick film portion of the insulating film, and gradually increases as it approaches the thick film portion of the insulating film. Thus, a surface semiconductor layer is formed.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 ベース層の上面から、ゲート電極の下に位置する表面半導体層の上面までの厚さは、ベース層の上面から、ゲート電極を覆う層間絶縁膜の一部に形成された第2開口部が達する領域に位置する表面半導体層の上面までの厚さよりも薄いので、IGBTの素子の特性を向上できる。言い換えるならば、埋め込み絶縁膜の第1開口部に対応する位置における埋め込み絶縁膜の上面から表面半導体層の上面までの厚さは、ゲート電極の端部に対応する位置における埋め込み絶縁膜の上面から表面半導体層の上面までの厚さよりも薄いので、IGBTの素子の特性を向上できる。 The thickness from the upper surface of the base layer to the upper surface of the surface semiconductor layer located under the gate electrode reaches the second opening formed in a part of the interlayer insulating film covering the gate electrode from the upper surface of the base layer. Since the thickness of the surface semiconductor layer located in the region is thinner than the upper surface, the characteristics of the IGBT element can be improved. In other words, the thickness from the upper surface of the buried insulating film at the position corresponding to the first opening of the buried insulating film to the upper surface of the surface semiconductor layer is from the upper surface of the buried insulating film at the position corresponding to the end of the gate electrode. Since the thickness is smaller than the thickness up to the upper surface of the surface semiconductor layer, the characteristics of the IGBT element can be improved.
 また、n型ベース層の上面から、ゲート電極を覆う層間絶縁膜の一部に形成された第2開口部が達する領域に位置する表面半導体層の上面までの厚さは、n型ベース層の上面から、ゲート電極の下に位置する表面半導体層の上面までの厚さよりも厚く形成される。層間絶縁膜に第2開口部を形成する際、第2開口部の開口不良を回避するため、ある程度のオーバーエッチングを行った場合であっても、第2開口部が表面半導体層または埋め込み絶縁膜を貫通することを防止できる。そのため、IGBTを含む半導体装置の製造歩留りを向上させることができる。言い換えるならば、絶縁膜の上面から表面半導体層の上面までの厚さは、絶縁膜の厚膜部に囲まれた領域の中央部において薄く、絶縁膜の厚膜部に近づくに従い徐々に厚くなるように、表面半導体層が形成される。そのため、IGBTを含む半導体装置の製造歩留りを向上させることができる。 In addition, the thickness from the upper surface of the n-type base layer to the upper surface of the surface semiconductor layer located in the region reached by the second opening formed in a part of the interlayer insulating film covering the gate electrode is the thickness of the n-type base layer It is formed thicker than the thickness from the upper surface to the upper surface of the surface semiconductor layer located under the gate electrode. When the second opening is formed in the interlayer insulating film, even if a certain degree of over-etching is performed in order to avoid an opening defect in the second opening, the second opening is a surface semiconductor layer or a buried insulating film. Can be prevented. Therefore, the manufacturing yield of semiconductor devices including IGBT can be improved. In other words, the thickness from the upper surface of the insulating film to the upper surface of the surface semiconductor layer is thin at the center of the region surrounded by the thick film portion of the insulating film, and gradually increases as it approaches the thick film portion of the insulating film. Thus, a surface semiconductor layer is formed. Therefore, the manufacturing yield of semiconductor devices including IGBT can be improved.
本実施例によるIGBTを形成する半導体チップの要部平面図(活性部は、IGBTの素子が形成される領域の一部を拡大して示す要部平面図)であり、IGBTの素子のレイアウトを説明する要部平面図である。FIG. 2 is a plan view of a main part of a semiconductor chip forming an IGBT according to the present embodiment (an active part is a main part plan view showing an enlarged part of a region where an IGBT element is formed), and shows a layout of the IGBT element; It is a principal part top view to explain. 図1のIGBTの素子が形成される領域のみをさらに拡大して、IGBTの素子のレイアウトを詳細に説明する要部平面図である。FIG. 2 is a main part plan view for explaining in detail a layout of an IGBT element by further enlarging only a region where the IGBT element of FIG. 1 is formed; 本実施例によるIGBTを形成する半導体チップの要部平面図(活性部は、IGBTの素子が形成される領域の一部を拡大して示す要部平面図)であり、IGBTの配線のレイアウトを説明する要部平面図である。FIG. 6 is a plan view of a main part of a semiconductor chip forming an IGBT according to the present embodiment (an active part is a main part plan view showing an enlarged part of a region where an IGBT element is formed), and shows a layout of the wiring of the IGBT; It is a principal part top view to explain. 本実施例によるIGBTを形成する半導体チップの活性部および外周部を示す要部断面図(活性部は、図2に示すA-A′線に沿った断面に該当する要部断面図)である。FIG. 3 is an essential part cross-sectional view showing an active part and an outer peripheral part of a semiconductor chip forming an IGBT according to the present embodiment (the active part is an essential part cross-sectional view corresponding to a cross section along line AA ′ shown in FIG. 2); . 本実施例によるIGBTの素子の一部を拡大して示す要部断面図(図2に示すB-B′線に沿った断面に該当する要部断面図)である。FIG. 3 is an essential part cross-sectional view (a main part cross-sectional view corresponding to a cross section taken along the line BB ′ shown in FIG. 2) showing an enlarged part of the IGBT element according to the present embodiment. 本実施例によるIGBTの素子のチャネル層が反転した状態を説明する模式図である。(a)はチャネル層の厚さが40nm以下の場合の模式図、(b)はチャネル層の厚さが40nmよりも厚い場合(例えば100nm)の模式図である。It is a schematic diagram explaining the state where the channel layer of the element of IGBT by a present Example was reversed. (A) is a schematic diagram when the thickness of a channel layer is 40 nm or less, (b) is a schematic diagram when the thickness of a channel layer is thicker than 40 nm (for example, 100 nm). 本実施例によるIGBTの素子のコレクタ電流(Ic)とコレクタ・エミッタ電圧(Vce)との関係を示すグラフ図である。It is a graph which shows the relationship between the collector current (Ic) of the element of IGBT by a present Example, and collector-emitter voltage (Vce). 本実施例によるIGBTを含む半導体装置の製造工程中の半導体チップの活性部の一部を拡大して示す要部断面図(図2に示すA-A′線に沿った断面に該当する要部断面図)である。FIG. 2 is an essential part cross-sectional view showing an enlarged part of an active part of a semiconductor chip during a manufacturing process of a semiconductor device including an IGBT according to the present embodiment (main part corresponding to a cross section taken along line AA ′ shown in FIG. 2); FIG. 図8に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 9 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 8; 図9に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 10 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 9; 図10に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 11 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 10; 図10に続く、半導体装置の製造工程中の半導体チップの活性部の一部を拡大して示す要部平面図である。FIG. 11 is an essential part plan view illustrating a part of the active portion of the semiconductor chip in the process of manufacturing the semiconductor device, enlarged from FIG. 10; 図11および図12に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 13 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 11 and FIG. 12; 図11および図12に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 13 is a principal part plan view of the same place as in FIG. 12 in the process of manufacturing the semiconductor device, following FIG. 11 and FIG. 12; 図13および図14に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 15 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 13 and FIG. 14; 図13および図14に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 15 is a plan view of main parts of the same portions as those in FIG. 12 during the manufacturing process of the semiconductor device, following FIGS. 13 and 14; 図15および図16に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 17 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 15 and FIG. 16; 図17に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 18 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 17; 図17に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 18 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 17; 図18および図19に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 20 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 18 and FIG. 19; 図18および図19に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 20 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 18 and FIG. 19; 図20および図21に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 22 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 20 and FIG. 21; 図22に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 23 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 22; 図23に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 24 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 23; 図23に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 24 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 23; 図24および図25に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 26 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 24 and FIG. 25; 図26に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 27 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 26; 図27に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 28 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 27; 図28に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 29 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 28; 図29に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 30 is an essential part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 29; 図29に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 30 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 29; 図30および図31に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 32 is a main-portion cross-sectional view of the same portion as shown in FIG. 8 in the manufacturing process of the semiconductor device, which is subsequent to FIGS. 30 and 31; 図30および図31に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 33 is a plan view of main parts of the same portions as those in FIG. 12 during the manufacturing process of the semiconductor device, following FIGS. 30 and 31; 図32および図33に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 34 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 32 and FIG. 33; 図34に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 35 is an essential part plan view of the same place in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 34; 図35に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 36 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 35; 図36に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 37 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 36; 図37に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 38 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 37; 図37に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 38 is a principal part plan view of the same place as in FIG. 12 in the process of manufacturing the semiconductor device, following FIG. 37; 図38および図39に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 40 is a principal part cross-sectional view of the same place as in FIG. 8 in the process of manufacturing the semiconductor device, following FIG. 38 and FIG. 39; 図38および図39に続く、半導体装置の製造工程中の図12と同じ個所の要部平面図である。FIG. 40 is a principal part plan view of the same point in FIG. 12 during the manufacturing process of the semiconductor device, following FIG. 38 and FIG. 39; 図40および図41に続く、半導体装置の製造工程中の図8と同じ個所の要部断面図である。FIG. 42 is a main-portion cross-sectional view of the same portion as shown in FIG. 8 in the manufacturing process of the semiconductor device, which is subsequent to FIGS. 40 and 41;
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number. Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、材料等について言及するときは、特にそうでない旨明記したとき、または、原理的または状況的にそうでないときを除く、特定した材料は主要な材料であって、副次的要素、添加物、添加要素等を排除するものではない。例えばシリコン部材は特に明示した場合等を除き、純粋なシリコンの場合だけでなく、添加不純物、シリコンを主要な要素とする2元、3元等の合金(例えばSiGe)等を含むものとする。また、以下の実施の形態において、窒化シリコン、窒化ケイ素またはシリコンナイトライドというときは、Siは勿論であるが、それのみではなく、シリコンの窒化物で類似組成の絶縁膜を含むものとする。 In addition, when referring to materials, etc., the specified material is a major material, and it is a sub-element, additive, unless otherwise specified or unless otherwise specified in principle or circumstances. However, this does not exclude added elements. For example, unless otherwise specified, the silicon member includes not only pure silicon but also an additive impurity, a binary or ternary alloy (eg, SiGe) having silicon as a main element, and the like. In the following embodiments, when referring to silicon nitride, silicon nitride, or silicon nitride, not only Si 3 N 4 but also silicon nitride is used and includes an insulating film having a similar composition. .
 また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。 Also, in the drawings used in the following embodiments, hatching may be added to make the drawings easy to see even if they are plan views. In all the drawings for explaining the following embodiments, components having the same function are denoted by the same reference numerals in principle, and repeated description thereof is omitted. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 ≪半導体装置≫
 本実施例によるプレーナゲート型IGBT(絶縁ゲートバイポーラトランジスタ:Insulated Gate Bipolar Transistor)を含む半導体装置について図1~図7を用いて説明する。図1はIGBTを形成する半導体チップの要部平面図(活性部は、IGBTの素子が形成される領域の一部を拡大して示す要部平面図)であり、IGBTの素子のレイアウトを説明する要部平面図である。図2はIGBTの素子が形成される領域のみをさらに拡大して、IGBTの素子のレイアウトを詳細に説明する要部平面図である。図3はIGBTを形成する半導体チップの要部平面図(活性部は、IGBTの素子が形成される領域の一部を拡大して示す要部平面図)であり、IGBTの配線のレイアウトを説明する要部平面図である。図4はIGBTを形成する半導体チップの活性部および外周部を示す要部断面図(活性部は、図2に示すA-A′線に沿った断面に該当する要部断面図)である。図5はIGBTの素子の一部を拡大して示す要部断面図(図2に示すB-B′線に沿った断面に該当する要部断面図)である。図6はIGBTの素子のチャネル層が反転した状態を説明する模式図であり、(a)はチャネル層の厚さが40nm以下の場合の模式図、(b)はチャネル層の厚さが40nmよりも厚い場合(例えば100nm)の模式図である。図7はIGBTの素子のコレクタ電流(Ic)とコレクタ・エミッタ電圧(Vce)との関係を示すグラフ図である。
≪Semiconductor device≫
A semiconductor device including a planar gate IGBT (Insulated Gate Bipolar Transistor) according to this embodiment will be described with reference to FIGS. FIG. 1 is a plan view of a main part of a semiconductor chip forming an IGBT (an active part is an enlarged plan view of a main part showing a part of a region where an IGBT element is formed) and describes the layout of the IGBT element. It is a principal part top view to do. FIG. 2 is a plan view of an essential part for explaining in detail the layout of the IGBT element by further enlarging only the region where the IGBT element is formed. FIG. 3 is a plan view of a main part of a semiconductor chip forming the IGBT (the active part is a main part plan view showing a part of a region where an IGBT element is formed), and the layout of the IGBT wiring is described. It is a principal part top view to do. FIG. 4 is a principal part sectional view showing an active part and an outer peripheral part of the semiconductor chip forming the IGBT (the active part is a principal part sectional view corresponding to a section taken along the line AA ′ shown in FIG. 2). FIG. 5 is an essential part cross-sectional view showing a part of the IGBT element in an enlarged manner (main part cross-sectional view corresponding to the cross section along the line BB ′ shown in FIG. 2). 6A and 6B are schematic diagrams for explaining a state in which the channel layer of the IGBT element is inverted. FIG. 6A is a schematic diagram when the thickness of the channel layer is 40 nm or less, and FIG. 6B is a schematic diagram when the thickness of the channel layer is 40 nm. It is a schematic diagram when it is thicker (for example, 100 nm). FIG. 7 is a graph showing the relationship between the collector current (Ic) of the IGBT element and the collector-emitter voltage (Vce).
 図1、図2、図3、および図4に示すように、半導体チップ1の活性部には、IGBTの素子が形成されている。このIGBTの素子は、例えばn型の単結晶シリコンとされるベース層2の主面(表面)上に、埋め込み絶縁膜(薄膜部)3を介して、n型の単結晶シリコンとされる複数の表面半導体層4が形成され、ベース層2と表面半導体層4とは、埋め込み絶縁膜3に形成された第1開口部(離間部)5を通じて接続した構造となっている。また、上記埋め込み絶縁膜3よりも厚い複数の絶縁膜(厚膜部)6によってベース層2の主面上では複数の活性領域ACが規定され、複数の活性領域ACの各々に上記表面半導体層4が形成されている。 As shown in FIGS. 1, 2, 3, and 4, an IGBT element is formed in the active portion of the semiconductor chip 1. This IGBT element is made of n type single crystal silicon via a buried insulating film (thin film portion) 3 on the main surface (surface) of the base layer 2 made of n type single crystal silicon, for example. A plurality of surface semiconductor layers 4 are formed, and the base layer 2 and the surface semiconductor layer 4 are connected through a first opening (spaced portion) 5 formed in the buried insulating film 3. A plurality of active regions AC are defined on the main surface of the base layer 2 by a plurality of insulating films (thick film portions) 6 thicker than the buried insulating film 3, and the surface semiconductor layer is formed in each of the plurality of active regions AC. 4 is formed.
 ベース層2の厚さは、例えば70μm~100μmであるが、これはIGBTの耐圧に合わせて決定されるものであり、耐圧600Vであれば60μm~100μmとし、耐圧1200Vであれば120μm~150μmとすることを例示できる。 The thickness of the base layer 2 is, for example, 70 μm to 100 μm, which is determined according to the breakdown voltage of the IGBT, and is 60 μm to 100 μm when the breakdown voltage is 600V, and 120 μm to 150 μm when the breakdown voltage is 1200V. Can be exemplified.
 また、埋め込み絶縁膜3の厚さ(第1厚さ)は、例えば100nm~450nmであり、絶縁膜6の厚さ(第2厚さ)は300nmよりも厚く、例えば550nm~650nmである。埋め込み絶縁膜3および絶縁膜6は、埋め込み絶縁膜3および絶縁膜6の下のベース層2に空乏層を深く延ばして高耐圧を得るために、薄く形成されることが望ましい。一方で、埋め込み絶縁膜3および絶縁膜6の厚さが薄いと、後に説明するように、層間絶縁膜に第2開口部を形成する際に、埋め込み絶縁膜3および絶縁膜6を貫通する危険性がある。そのため、埋め込み絶縁膜3および絶縁膜6には、貫通を回避するための厚さも必要とされる。従って、埋め込み絶縁膜3および絶縁膜6の厚さは、耐圧と加工マージンとのトレードオフから決まる。本実施例では、埋め込み絶縁膜3および絶縁膜6の厚さの一例として、上記数値を示したが、これらに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Further, the thickness (first thickness) of the buried insulating film 3 is, for example, 100 nm to 450 nm, and the thickness (second thickness) of the insulating film 6 is thicker than 300 nm, for example, 550 nm to 650 nm. The buried insulating film 3 and the insulating film 6 are desirably formed thin in order to extend the depletion layer deeply to the base layer 2 under the buried insulating film 3 and the insulating film 6 to obtain a high breakdown voltage. On the other hand, if the buried insulating film 3 and the insulating film 6 are thin, there is a risk of penetrating the buried insulating film 3 and the insulating film 6 when the second opening is formed in the interlayer insulating film, as will be described later. There is sex. Therefore, the buried insulating film 3 and the insulating film 6 are also required to have a thickness for avoiding penetration. Therefore, the thicknesses of the buried insulating film 3 and the insulating film 6 are determined by a trade-off between the breakdown voltage and the processing margin. In the present embodiment, the above numerical values are shown as an example of the thicknesses of the buried insulating film 3 and the insulating film 6. However, the present invention is not limited thereto, and various changes can be made without departing from the scope of the invention. Needless to say.
 IGBTの素子が形成される活性領域ACは、上面視において第1方向(図1および図2のb方向)に長辺を有し、第1方向と直交する第2方向(図1および図2のc方向)に短辺を有した領域である。また、活性領域ACは、上面視において第2方向に一定の幅(図1に符号Wで示す幅)を有して、第1方向に帯状に延在するパターンであり、複数の活性領域ACはストライプ状に配置されている。なお、実際には、例えば700程度の活性領域ACが第2方向に沿って互いに離間して形成されているが、便宜上、図1には、16個の活性領域ACのみを拡大して記載している。 The active region AC in which the IGBT element is formed has a long side in the first direction (the b direction in FIGS. 1 and 2) in a top view, and a second direction (FIGS. 1 and 2) orthogonal to the first direction. This is a region having a short side in the c direction). The active region AC is a pattern having a certain width in the second direction (width indicated by a symbol W in FIG. 1) in the top view and extending in a strip shape in the first direction, and includes a plurality of active regions AC. Are arranged in stripes. Actually, for example, about 700 active regions AC are formed apart from each other along the second direction, but for convenience, only 16 active regions AC are shown in an enlarged manner in FIG. ing.
 また、活性領域ACの第2方向に沿った幅(W)は、例えば3μm以上であり、代表的な値としては7μm~8μmを例示することができる。また、第2方向に隣り合う2つの活性領域ACの間隔(図1に符号Sで示す間隔)、すなわち、第2方向に沿った絶縁膜6の幅は、活性領域ACの第2方向に沿った幅(W)よりも短く形成されている。 Further, the width (W) along the second direction of the active region AC is, for example, 3 μm or more, and a typical value may be 7 μm to 8 μm. Further, the interval between two active regions AC adjacent to each other in the second direction (the interval indicated by symbol S in FIG. 1), that is, the width of the insulating film 6 along the second direction is along the second direction of the active region AC. It is shorter than the width (W).
 埋め込み絶縁膜3上の表面半導体層4には、p型チャネル層7、n型ソース層8aとn型ソース層8bとを含むn型ソース層8、およびp++型エミッタ層9aとp型エミッタ層9bとを含むp型エミッタ層(p型チャネルコンタクト層)9が形成されている。n型ソース層8a中の不純物濃度はn型ソース層8b中の不純物濃度よりも高くなっており、p型チャネル層7側(p型チャネル層7とn型ソース層8aとの間)にn型ソース層8bが形成されている。また、p++型エミッタ層9a中の不純物濃度はp型エミッタ層9b中の不純物濃度よりも高く、p型エミッタ層9b中の不純物濃度はp型チャネル層7中の不純物濃度よりも高くなっており、p型チャネル層7側(p型チャネル層7とp++型エミッタ層9aとの間)にpエミッタ層9bが形成されている。 The surface semiconductor layer 4 on the buried insulating film 3 includes a p-type channel layer 7, an n-type source layer 8 including an n + -type source layer 8 a and an n -type source layer 8 b, and p ++ -type emitter layers 9 a and p A p-type emitter layer (p-type channel contact layer) 9 including a + -type emitter layer 9b is formed. The impurity concentration in the n + -type source layer 8a is higher than the impurity concentration in the n -type source layer 8b, and is on the p-type channel layer 7 side (between the p-type channel layer 7 and the n + -type source layer 8a). ) Is formed with an n -type source layer 8b. Further, the impurity concentration in the p ++ type emitter layer 9 a is higher than the impurity concentration in the p + type emitter layer 9 b, and the impurity concentration in the p + type emitter layer 9 b is higher than the impurity concentration in the p type channel layer 7. The p + emitter layer 9b is formed on the p type channel layer 7 side (between the p type channel layer 7 and the p + + type emitter layer 9a).
 各表面半導体層4上には、ゲート絶縁膜10を介してゲート電極11が形成(パターニング)されている。ゲート電極11は、上面視において第1方向に帯状に延在するパターンであり、複数のゲート電極11はストライプ状に配置されている。ゲート電極11は、例えば下から順に多結晶シリコン膜27およびタングステンシリサイド層28が堆積された積層膜によって構成される。 A gate electrode 11 is formed (patterned) on each surface semiconductor layer 4 via a gate insulating film 10. The gate electrode 11 is a pattern extending in a strip shape in the first direction when viewed from above, and the plurality of gate electrodes 11 are arranged in stripes. The gate electrode 11 is constituted by, for example, a laminated film in which a polycrystalline silicon film 27 and a tungsten silicide layer 28 are deposited in order from the bottom.
 上記n型ソース層8および上記pエミッタ層9は、上面視において第1方向に沿って並べて形成されるが、同一断面の中に形成することは不可能である。そのため、上面視においてゲート電極11と絶縁膜6との間の帯状に延在する1本のパターンの中で、n型ソース層8とp型エミッタ層9とが第1方向に交互に配置されている。また、n型ソース層8の平面面積を、p型エミッタ層9の平面面積よりも小さくすることによって破壊耐量を高くしている。上記p型チャネル層7は、ゲート電極11と埋め込み絶縁膜3との間に形成されている。また、p型チャネル層7はp型エミッタ層9と接続して、電位が固定されているので、寄生MOS(Metal Oxide Semiconductor)が形成されることによる特性劣化を防止することができる。 The n-type source layer 8 and the p emitter layer 9 are formed side by side along the first direction in a top view, but cannot be formed in the same cross section. Therefore, the n-type source layer 8 and the p-type emitter layer 9 are alternately arranged in the first direction in one pattern extending in a band shape between the gate electrode 11 and the insulating film 6 in a top view. ing. Further, the breakdown area is increased by making the plane area of the n-type source layer 8 smaller than the plane area of the p-type emitter layer 9. The p-type channel layer 7 is formed between the gate electrode 11 and the buried insulating film 3. Further, since the p-type channel layer 7 is connected to the p-type emitter layer 9 and the potential is fixed, it is possible to prevent deterioration of characteristics due to formation of a parasitic MOS (Metal Oxide Semiconductor).
 ゲート電極11の側面には、サイドウォールSWが形成されている。ゲート電極11をマスクとしてゲート電極11の側面下の表面導体層4に高濃度の不純物をイオン注入すると、その後の熱処理によって、ゲート電極11の側面下の表面導体層4に結晶欠陥が発生することが懸念された。そこで、ゲート電極11の側面にサイドウォールSWを形成し、サイドウォールSWをマスクとしてサイドウォールSWの端部下の表面導体層4に高濃度不純物をイオン注入することにより、ゲート電極11の側面下の表面半導体層4に結晶欠陥が発生するのを防止している。すなわち、ゲート電極11の側面下近傍の表面導体層4にはn型ソース層8bを形成し、サイドウォールSWの端部下近傍の表面導体層4にはn型ソース層8aを形成する。同様に、ゲート電極11の側面下近傍の表面導体層4にはp型エミッタ層9bを形成し、サイドウォールSWの端部下近傍の表面導体層4にはp++型エミッタ層9aを形成する。 Sidewalls SW are formed on the side surfaces of the gate electrode 11. When high concentration impurities are ion-implanted into the surface conductor layer 4 below the side surface of the gate electrode 11 using the gate electrode 11 as a mask, crystal defects are generated in the surface conductor layer 4 below the side surface of the gate electrode 11 by the subsequent heat treatment. There was concern. Therefore, a sidewall SW is formed on the side surface of the gate electrode 11, and high concentration impurities are ion-implanted into the surface conductor layer 4 below the end of the sidewall SW using the sidewall SW as a mask. Crystal defects are prevented from occurring in the surface semiconductor layer 4. That is, the n -type source layer 8b is formed on the surface conductor layer 4 near the side surface of the gate electrode 11, and the n + -type source layer 8a is formed on the surface conductor layer 4 near the edge of the sidewall SW. Similarly, the surface conductor layer 4 side under the vicinity of the gate electrode 11 to form a p + -type emitter layer 9b, the surface conductor layer 4 below the end near the sidewall SW forming the p ++ type emitter layer 9a .
 活性部の複数の厚い絶縁膜6下のベース層2内には、p型ウェル23が形成されている。p型チャネル層7とベース層2とのpn接合部からベース層2へ空乏層が拡がることにより接合耐圧を保たせているが、補助的にp型ウェル23を設けることにより、さらに接合耐圧を上げることが可能となる。 A p-type well 23 is formed in the base layer 2 below the plurality of thick insulating films 6 in the active portion. Although the depletion layer extends from the pn junction between the p-type channel layer 7 and the base layer 2 to the base layer 2, the junction breakdown voltage is maintained. However, by additionally providing the p-type well 23, the junction breakdown voltage is further reduced. It is possible to raise.
 半導体チップ1の外周部には、上面視において上記活性部を囲むように複数のp型フィールドリミッティングリング(Field Limiting Ring)12が形成され、さらにそれら複数のp型フィールドリミッティングリング12を囲むようにn型ガードリング(チャネルストッパ)13が形成されている。 A plurality of p-type field limiting rings (Field Limiting Ring) 12 are formed on the outer peripheral portion of the semiconductor chip 1 so as to surround the active portion in a top view, and further surround the plurality of p-type field limiting rings 12. Thus, an n-type guard ring (channel stopper) 13 is formed.
 p型フィールドリミッティングリング12は、ベース層2内にp型を示す不純物が導入されて形成されている。また、p型フィールドリミッティングリング12は、埋め込み絶縁膜3に形成された第1開口部5を通じて、p型を示す不純物が導入されたp型半導体層26(上記表面半導体層4と同様に形成されて、p型エミッタ層9b中の不純物濃度と同程度の不純物濃度を有する)と接続した構造となっており、フィールドリミッティングリング電極12Aによって電圧が固定されている。図1では、2本のp型フィールドリミッティングリング12が形成されている例を図示しているが、さらに多数形成してもよい。上記のような複数本のp型フィールドリミッティングリング12を形成することにより、電界が複数本のp型フィールドリミッティングリング12によって分担されるので、本実施例によるIGBTを高耐圧とすることが可能となる。 The p-type field limiting ring 12 is formed by introducing a p-type impurity into the base layer 2. In addition, the p-type field limiting ring 12 is a p + -type semiconductor layer 26 into which an impurity indicating p-type is introduced through the first opening 5 formed in the buried insulating film 3 (similar to the surface semiconductor layer 4 described above). And has a structure connected to an impurity concentration similar to that in the p + -type emitter layer 9b), and the voltage is fixed by the field limiting ring electrode 12A. Although FIG. 1 shows an example in which two p-type field limiting rings 12 are formed, a larger number may be formed. By forming the plurality of p-type field limiting rings 12 as described above, the electric field is shared by the plurality of p-type field limiting rings 12, so that the IGBT according to this embodiment can have a high breakdown voltage. It becomes possible.
 複数のp型フィールドリミッティングリング12を取り囲むように形成されたn型ガードリング13は、半導体ウエハから半導体チップ1が個片化された後で半導体チップ1中のIGBTの素子を保護する機能を有する。n型ガードリング13は、上記表面半導体層4と同様に形成され、n型を示す不純物が導入された構造となっており、ガードリング電極13Aによって電圧が固定されている。n型ガードリング13は、n型ソース層8a中の不純物濃度と同程度の不純物濃度を有する。 The n-type guard ring 13 formed so as to surround the plurality of p-type field limiting rings 12 has a function of protecting the IGBT elements in the semiconductor chip 1 after the semiconductor chip 1 is separated from the semiconductor wafer. Have. The n-type guard ring 13 is formed in the same manner as the surface semiconductor layer 4 and has an n-type impurity introduced therein, and the voltage is fixed by the guard ring electrode 13A. The n-type guard ring 13 has an impurity concentration comparable to the impurity concentration in the n + -type source layer 8a.
 さらに、半導体チップ1の活性部および外周部には、IGBTの素子、p型フィールドリミッティングリング12、およびn型ガードリング13を覆うように層間絶縁膜14が形成されている。層間絶縁膜14は、例えば下から順に窒化膜32、酸化シリコン膜33、BPSG(Boron-Phospho Silicate Glass)膜34、およびPSG(Phospho Silicate Glass)膜35が順次堆積された積層膜によって構成される。この層間絶縁膜14には、n型ソース層8およびp型エミッタ層9、ゲート電極11、p型半導体層26、ならびにn型ガードリング13に達する第2開口部15がそれぞれ形成されている。 Further, an interlayer insulating film 14 is formed on the active part and the outer peripheral part of the semiconductor chip 1 so as to cover the IGBT element, the p-type field limiting ring 12 and the n-type guard ring 13. For example, the interlayer insulating film 14 is configured by a laminated film in which a nitride film 32, a silicon oxide film 33, a BPSG (Boron-Phospho Silicate Glass) film 34, and a PSG (Phospho Silicate Glass) film 35 are sequentially deposited from the bottom. . In the interlayer insulating film 14, an n-type source layer 8 and a p-type emitter layer 9, a gate electrode 11, a p + -type semiconductor layer 26, and a second opening 15 reaching the n-type guard ring 13 are formed. .
 これら第2開口部15が形成された状況下で、層間絶縁膜14上にはn型ソース層8およびp型エミッタ層9と電気的に接続するソースパッド(ソース電極)16と、ゲート電極11と電気的に接続するゲートパッド17とが、互いに離間して形成される。さらに、p型半導体層26と電気的に接続するフィールドリミッティングリング電極12Aと、n型ガードリング13と電気的に接続するガードリング電極13Aとが、互いに離間して形成されている。これらソースパッド16等は、例えばAl(アルミニウム)等から形成されている。また、活性部の周囲(IGBTの素子が形成された領域と外周部との間の領域)には、ソースパッド16と連続してソース引き回し電極16Aが形成されている。ソース引き回し電極16Aは、その下の層間絶縁膜14に形成された第2開口部(図示は省略)を通じて活性部の周囲に形成されたp++型エミッタ層(図示は省略)と接続している。また、活性部の中央部および活性部の第1方向(図3のb方向)の両端部には、第2方向に延在する帯状のゲートフィンガー17Aが形成されている。ゲートフィンガー17Aは、その下の層間絶縁膜14に形成された第2開口部15を通じてゲート電極11と電気的に接続し、ゲートパッド17と連続して形成されている。 Under the condition that these second openings 15 are formed, a source pad (source electrode) 16 electrically connected to the n-type source layer 8 and the p-type emitter layer 9 on the interlayer insulating film 14, and the gate electrode 11 Gate pads 17 that are electrically connected to each other are formed apart from each other. Further, a field limiting ring electrode 12A electrically connected to the p + -type semiconductor layer 26 and a guard ring electrode 13A electrically connected to the n-type guard ring 13 are formed apart from each other. These source pads 16 and the like are made of, for example, Al (aluminum). Further, around the active portion (region between the region where the IGBT element is formed and the outer peripheral portion), a source leading electrode 16A is formed continuously with the source pad 16. The source routing electrode 16A is connected to a p ++ type emitter layer (not shown) formed around the active portion through a second opening (not shown) formed in the interlayer insulating film 14 below the source leading electrode 16A. . In addition, strip-shaped gate fingers 17A extending in the second direction are formed at both ends of the central portion of the active portion and both ends of the active portion in the first direction (the b direction in FIG. 3). The gate finger 17 </ b> A is electrically connected to the gate electrode 11 through the second opening 15 formed in the interlayer insulating film 14 thereunder, and is formed continuously with the gate pad 17.
 さらに、図示は省略するが、ソースパッド16等を覆うようにポリイミド膜が形成されており、そのポリイミド膜には、ソースパッド16の一部の表面およびゲートパッド17の一部の表面をそれぞれ露出する開口部が形成されている。これら開口部は、半導体チップ1の外部と、ソースパッド16およびゲートパッド17とを電気的に接続するためのボンディングワイヤを接続するためのボンディングパッドとなる。なお、必要に応じては、ガードリング電極13Aの一部の表面を露出する開口部を上記ポリイミド膜に形成することもある。 Further, although not shown, a polyimide film is formed so as to cover the source pad 16 and the like, and a part of the surface of the source pad 16 and a part of the surface of the gate pad 17 are exposed on the polyimide film. An opening is formed. These openings serve as bonding pads for connecting a bonding wire for electrically connecting the outside of the semiconductor chip 1 to the source pad 16 and the gate pad 17. If necessary, an opening for exposing a part of the surface of the guard ring electrode 13A may be formed in the polyimide film.
 ベース層2の裏面には、ベース層2に近い順からn型バッファ層18、p型コレクタ層19、およびコレクタ電極20が形成されている。スイッチング速度を速くし、スイッチング損失を減らすためには、裏面からの正孔注入量を減らすことが望ましく、p型コレクタ層19に導入されているp型を示す不純物の濃度を低くする必要がある。しかし、不純物濃度が低いことに起因してp型コレクタ層19の比抵抗は高くなる。そのため、p型コレクタ層19が有する直列抵抗成分を下げるために薄く形成することが求められ、その厚さは、例えば5μm以下とすることが好ましい。さらに、p型コレクタ層19に導入されているp型を示す不純物であるB(ホウ素)の拡散係数が小さいことを考慮した場合には、p型コレクタ層19の厚さは、例えば1μm以下とすることが好ましい。 On the back surface of the base layer 2, an n + -type buffer layer 18, a p-type collector layer 19, and a collector electrode 20 are formed in order from the base layer 2. In order to increase the switching speed and reduce the switching loss, it is desirable to reduce the amount of holes injected from the back surface, and it is necessary to reduce the concentration of the p-type impurity introduced into the p-type collector layer 19. . However, the specific resistance of the p-type collector layer 19 increases due to the low impurity concentration. Therefore, in order to reduce the series resistance component of the p-type collector layer 19, it is required to form it thinly, and the thickness is preferably, for example, 5 μm or less. Further, considering that the diffusion coefficient of B (boron), which is an impurity indicating p-type introduced into the p-type collector layer 19, is small, the thickness of the p-type collector layer 19 is, for example, 1 μm or less. It is preferable to do.
 コレクタ電極20は、以下の(1)、(2)、または(3)の金属膜から形成することができる。 The collector electrode 20 can be formed from the following metal film (1), (2), or (3).
 (1)p型コレクタ層19に近い順からAl(アルミニウム)膜、Ti(チタン)膜、Ni(ニッケル)膜、およびAu(金)膜を積層した金属膜。 (1) A metal film in which an Al (aluminum) film, a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film are stacked in order from the p-type collector layer 19.
 (2)p型コレクタ層19に近い順からNi(ニッケル)膜、Ti(チタン)膜、Ni(ニッケル)膜、およびAu(金)膜を積層した金属膜。 (2) A metal film in which a Ni (nickel) film, a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film are stacked in order from the p-type collector layer 19.
 (3)p型コレクタ層19に近い順からTi(チタン)膜、Ni(ニッケル)膜、およびAu(金)膜積層した金属膜。 (3) A metal film in which a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film are stacked in order from the p-type collector layer 19.
 なお、図1においては、図面を便宜上、半導体チップ1を長方形として記載しているが、実際には、半導体チップ1の第1方向(b方向)に沿う長さは1cmとされ、半導体チップ1の第2方向(c方向)に沿う長さは1cmとされる。また、半導体チップ1の第1方向(b方向)に沿うチップ端部から活性部(活性領域AC)までの距離は200μm~300μmとされ、半導体チップ1の第2方向(c方向)に沿うチップ端部から活性部(活性領域AC)までの距離は200μm~300μmとされる。すなわち、半導体チップ1の外周部は、半導体チップ1の4辺に、200μm~300μmにわたって配置される。従って、図4では、理解を容易化するために、活性部と外周部とを連続的に記載しているが、図4の外周部の幅は、200μm~300μmとされている。 In FIG. 1, the semiconductor chip 1 is illustrated as a rectangle for convenience of illustration, but actually, the length along the first direction (b direction) of the semiconductor chip 1 is 1 cm. The length along the second direction (c direction) is 1 cm. Further, the distance from the chip end along the first direction (b direction) of the semiconductor chip 1 to the active part (active region AC) is 200 μm to 300 μm, and the chip along the second direction (c direction) of the semiconductor chip 1. The distance from the end portion to the active portion (active region AC) is 200 μm to 300 μm. That is, the outer peripheral portion of the semiconductor chip 1 is disposed on the four sides of the semiconductor chip 1 over 200 μm to 300 μm. Therefore, in FIG. 4, the active portion and the outer peripheral portion are continuously described for easy understanding, but the width of the outer peripheral portion in FIG. 4 is 200 μm to 300 μm.
 本発明の技術的特徴は、複数の活性領域ACの各々に形成された表面半導体層4の厚さにある。図5に示すように、p型チャネル層7、n型ソース層8、およびp型エミッタ層9が形成された表面半導体層4の厚さは一定ではなく、ベース層2の上面から表面半導体層4の上面までの厚さは、活性領域ACの中央部において最も薄く、絶縁膜6に近づくに従い徐々に厚くなるように、表面半導体層4は形成されている。すなわち、第2方向に沿った活性領域ACの断面において、ベース層2の上面から、ゲート電極11の下に位置する表面半導体層4の上面までの厚さ(L1)が、ベース層2の上面から、第2開口部15が形成された領域に位置する表面半導体層4の上面までの厚さ(L2)よりも薄く形成されている。言い換えるならば、埋め込み絶縁膜3の第1開口部5に対応する位置における埋め込み絶縁膜3の上面から表面半導体層4の上面までの厚さ(L3)は、サイドウォールSWに接するゲート電極11の端部に対応する位置における埋め込み絶縁膜3の上面から表面半導体層4の上面までの厚さ(L4)よりも薄く(L3<L4)形成される。 The technical feature of the present invention resides in the thickness of the surface semiconductor layer 4 formed in each of the plurality of active regions AC. As shown in FIG. 5, the thickness of the surface semiconductor layer 4 on which the p-type channel layer 7, the n-type source layer 8, and the p-type emitter layer 9 are formed is not constant. The surface semiconductor layer 4 is formed so that the thickness up to the upper surface of 4 is the thinnest at the center of the active region AC and gradually increases as it approaches the insulating film 6. That is, in the cross section of the active region AC along the second direction, the thickness (L1) from the upper surface of the base layer 2 to the upper surface of the surface semiconductor layer 4 located under the gate electrode 11 is the upper surface of the base layer 2. To a thickness (L2) from the surface semiconductor layer 4 located in the region where the second opening 15 is formed to the upper surface. In other words, the thickness (L3) from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 at the position corresponding to the first opening 5 of the buried insulating film 3 is the thickness of the gate electrode 11 in contact with the sidewall SW. It is formed thinner than the thickness (L4) from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 at a position corresponding to the end (L3 <L4).
 埋め込み絶縁膜3の上面から、ゲート電極11の下に位置する表面半導体層4(p型チャネル層7およびp型エミッタ層9bの一部が形成された領域)の上面までの厚さは、IGBTの定常損失、ターンオフ時間、およびターンオフ損失を考慮して設定されており、例えば300nm以下が適切な範囲と考えられる(他の条件によってはこの範囲に限定されないことはもとよりである)。また、量産に適した範囲としては100nm以下が考えられるが、さらに20nm~40nmの範囲が最も好適と考えられる。 The thickness from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 (a region where part of the p-type channel layer 7 and the p + -type emitter layer 9b is formed) located under the gate electrode 11 is It is set in consideration of the steady loss, turn-off time, and turn-off loss of the IGBT. For example, 300 nm or less is considered to be an appropriate range (which is not limited to this range depending on other conditions). Further, a range suitable for mass production is considered to be 100 nm or less, but a range of 20 nm to 40 nm is considered most preferable.
 これに対し、ベース層2の上面から、第2開口部15が形成された領域に位置する表面半導体層4の上面までの厚さ(L2)は、第2開口部15の突き抜けを防止して、ソースパッド16と表面半導体層4との良好な接続を得るために、例えば300nmよりも厚く形成されている。 In contrast, the thickness (L2) from the upper surface of the base layer 2 to the upper surface of the surface semiconductor layer 4 located in the region where the second opening 15 is formed prevents penetration of the second opening 15. In order to obtain a good connection between the source pad 16 and the surface semiconductor layer 4, the source pad 16 is formed to be thicker than 300 nm, for example.
 埋め込み絶縁膜3の上面から、ゲート電極11の下に位置する表面半導体層4の厚さを、より望ましくは20nm~40nmの範囲に設定する理由について、図6および図7を用いて説明する。 The reason why the thickness of the surface semiconductor layer 4 located below the gate electrode 11 from the upper surface of the buried insulating film 3 is more desirably set in the range of 20 nm to 40 nm will be described with reference to FIGS.
 図6(a)に示すように、ゲート電極11に、例えば+15Vのゲート電圧を加えると、p型チャネル層7に電子が集まり反転層が形成されてp型チャネル層7はn型の導電性を有する。ゲート電極11下のp型チャネル層7(表面半導体層4)の厚さが40nm以下の場合は、p型チャネル層7が全て反転するため、正孔は流れることができずに蓄積されて、蓄積電荷量が増加する。その結果、電子がクーロン力により引っ張られて電子電流は増加し、正孔電流は減少する。 As shown in FIG. 6A, when a gate voltage of, for example, +15 V is applied to the gate electrode 11, electrons are collected in the p-type channel layer 7 to form an inversion layer, and the p-type channel layer 7 has n-type conductivity. Have When the thickness of the p-type channel layer 7 (surface semiconductor layer 4) under the gate electrode 11 is 40 nm or less, all the p-type channel layer 7 is inverted, so that holes cannot flow and are accumulated, The amount of stored charge increases. As a result, electrons are pulled by the Coulomb force, the electron current increases, and the hole current decreases.
 一方、図6(b)に示すように、ゲート電極11下のp型チャネル層7(表面半導体層4)の厚さが40nmよりも厚い場合(例えば100nm)は、p型チャネル層7が全て反転しないため、正孔がp型チャネル層7を流れて蓄積電荷量が減少する。 On the other hand, as shown in FIG. 6B, when the thickness of the p-type channel layer 7 (surface semiconductor layer 4) under the gate electrode 11 is larger than 40 nm (for example, 100 nm), the p-type channel layer 7 is entirely Since the inversion does not occur, holes flow through the p-type channel layer 7 and the amount of accumulated charges decreases.
 図7に示すように、同じコレクタ電流(Ic)で比べると、p型チャネル層7(表面半導体層4)の厚さが40nmの場合の方が、p型チャネル層7(表面半導体層4)の厚さが100nmの場合よりもコレクタ・エミッタ電圧(Vce)は低くなり、オン電圧が低くなることが分かる。 As shown in FIG. 7, when compared with the same collector current (Ic), the p-type channel layer 7 (surface semiconductor layer 4) has a thickness of 40 nm when the p-type channel layer 7 (surface semiconductor layer 4) has a thickness of 40 nm. It can be seen that the collector-emitter voltage (Vce) is lower and the on-voltage is lower than when the thickness of the transistor is 100 nm.
 しかし、p型チャネル層7(表面半導体層4)の厚さが10nm~15nmになると、p型チャネル層7に形成される反転層の厚さが薄くなりすぎて、電子の流れに対して抵抗を持つため、電子電流が流れにくくなる。以上のことから、埋め込み絶縁膜3の上面から、ゲート電極11の下に位置する表面半導体層4の厚さは20nm~40nmの範囲に設定することが望ましいと考えられる。 However, when the thickness of the p-type channel layer 7 (surface semiconductor layer 4) is 10 nm to 15 nm, the thickness of the inversion layer formed in the p-type channel layer 7 becomes too thin, and resistance to the flow of electrons. Therefore, it becomes difficult for the electronic current to flow. From the above, it is considered that the thickness of the surface semiconductor layer 4 located below the gate electrode 11 from the upper surface of the buried insulating film 3 is desirably set in the range of 20 nm to 40 nm.
 ところで、複数の活性領域ACの各々に形成された表面半導体層4の厚さは、第2方向のみでなく第1方向においても絶縁膜6に近づくに従い徐々に厚くなる。そのため、ゲート電極11の下に位置する表面半導体層4のうち、活性領域ACの第1方向の両端部に位置する表面半導体層4の厚さは、第2開口部15が形成される領域(ソースパッド16が接続される領域)の表面半導体層4の厚さとほぼ同じ厚さとなる。しかし、第1方向の両端部に位置し、第2開口部15が形成される領域(ソースパッド16が接続される領域)の表面半導体層4の厚さとほぼ同じ厚さとなる表面半導体層4の面積は、ゲート電極11の下に位置する表面半導体層4全体の面積に比べて極めて小さいことから、活性領域ACの第1方向の両端部に位置する表面半導体層4は、IGBTの動作特性にはほとんど影響を及ぼさない。 Incidentally, the thickness of the surface semiconductor layer 4 formed in each of the plurality of active regions AC gradually increases as the insulating film 6 is approached not only in the second direction but also in the first direction. Therefore, of the surface semiconductor layer 4 located under the gate electrode 11, the thickness of the surface semiconductor layer 4 located at both ends in the first direction of the active region AC is the region where the second opening 15 is formed ( The thickness of the surface semiconductor layer 4 in the region to which the source pad 16 is connected is substantially the same. However, the surface semiconductor layer 4 is located at both ends in the first direction and has a thickness substantially equal to the thickness of the surface semiconductor layer 4 in the region where the second opening 15 is formed (the region to which the source pad 16 is connected). Since the area is extremely small as compared with the entire area of the surface semiconductor layer 4 located under the gate electrode 11, the surface semiconductor layers 4 located at both ends in the first direction of the active region AC have the operating characteristics of the IGBT. Has little effect.
 ≪半導体装置の製造方法≫
 本実施例によるIGBTを含む半導体装置の製造方法について図8~図42を用いて工程順に説明する。図8~図11、図13、図15、図17、図18、図20、図22~図24、図26~図30、図32、および図34、図36~図38、図40、および図42は半導体チップの活性部の一部を拡大して示す要部断面図(前述の図2に示すA-A′線に沿った断面に該当する要部断面図)である。図12、図14、図16、図19、図21、図25、図31、図33、図35、図39、および図41は半導体チップの活性部の一部を拡大して示す要部平面図である。
≪Semiconductor device manufacturing method≫
A method for manufacturing a semiconductor device including an IGBT according to this embodiment will be described in the order of steps with reference to FIGS. 8 to 11, 13, 15, 15, 17, 18, 20, 22 to 24, 26 to 30, 32, and 34, 36 to 38, 40, and FIG. 42 is a principal part sectional view showing a part of the active part of the semiconductor chip in an enlarged manner (a principal part sectional view corresponding to the section along the line AA ′ shown in FIG. 2). 12, FIG. 16, FIG. 16, FIG. 19, FIG. 21, FIG. 25, FIG. 31, FIG. 33, FIGS. 35, 39, and 41 are enlarged plan views showing a part of the active portion of the semiconductor chip. FIG.
 まず、図8に示すように、n型の単結晶シリコンとされる高抵抗の半導体基板(以下、単に基板と記す)2Aを用意する。基板2Aを形成する結晶の種類としては、フローティングゾーン法で製造されたFZ(Float Zoning)結晶、またはチョクラルスキー法(引き上げ法)で製造されたCZ(Czochralski)結晶、またはMCZ(Magnetic Field Applied Czochralski)結晶が望ましい。 First, as shown in FIG. 8, a high-resistance semiconductor substrate (hereinafter simply referred to as a substrate) 2A made of n -type single crystal silicon is prepared. The types of crystals forming the substrate 2A include FZ (Float Zoning) crystals manufactured by the floating zone method, CZ (Czochralski) crystals manufactured by the Czochralski method (pulling method), or MCZ (Magnetic Field Applied). Czochralski) crystals are preferred.
 次に、基板2Aに熱酸化処理を施すことによって、基板2Aの主面(表面)に表面酸化膜21を形成する。 Next, the surface oxide film 21 is formed on the main surface (surface) of the substrate 2A by subjecting the substrate 2A to thermal oxidation.
 次に、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、基板2Aの主面の外周部にp型を示す不純物(例えばB(ホウ素))をイオン注入法により導入し、複数のp型フィールドリミッティングリング12を形成する(図1および図4参照)。 Next, a p-type impurity (for example, B (boron)) is introduced into the outer peripheral portion of the main surface of the substrate 2A by an ion implantation method using a photoresist film patterned by a photolithography technique as a mask, and a plurality of p-types are introduced. A field limiting ring 12 is formed (see FIGS. 1 and 4).
 次に、図9に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、基板2Aの主面の活性部にp型を示す不純物(例えばB(ホウ素))をイオン注入法により導入し、複数のp型ウェル23を形成する。 Next, as shown in FIG. 9, a p-type impurity (for example, B (boron)) is ion-implanted into the active portion of the main surface of the substrate 2A using a photoresist film patterned by photolithography as a mask. Introducing, a plurality of p-type wells 23 are formed.
 次に、図10に示すように、基板2Aに熱酸化処理を施すことによって、基板2Aの主面に表面酸化膜(図示は省略)を形成し、続いて、この表面酸化膜上にCVD(Chemical Vapor Deposition)法により酸化膜(図示は省略)を堆積して、上記表面酸化膜および上記酸化膜を含む絶縁膜6を形成する。絶縁膜6の厚さは、例えば300nm~650nmである。 Next, as shown in FIG. 10, the substrate 2A is subjected to a thermal oxidation process to form a surface oxide film (not shown) on the main surface of the substrate 2A. Subsequently, CVD (on the surface oxide film) An oxide film (not shown) is deposited by a chemical vapor deposition method to form the surface oxide film and the insulating film 6 including the oxide film. The thickness of the insulating film 6 is, for example, 300 nm to 650 nm.
 次に、図11および図12に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとした等方性ウエットエッチングにより、活性領域(例えばソース層、チャネル層、およびエミッタ層(チャネルコンタクト層)が形成される領域)となる領域の絶縁膜6を、例えば200nm程度エッチングする。これにより、エッチングされなかった絶縁膜6の厚膜部によって基板2Aの主面では活性領域ACが規定される。本実施例では、活性部のIGBTの素子が形成される領域では、絶縁膜6の厚膜部が形成された領域と、絶縁膜6の薄膜部が形成された領域とが交互にストライプ状に並ぶ。同時に、外周部では、後にp型半導体層26が形成される領域および後にn型ガードリング13が形成される領域にも絶縁膜6の薄膜部を形成する(図1および図4参照)。 Next, as shown in FIGS. 11 and 12, an active region (for example, a source layer, a channel layer, and an emitter layer (channel contact) is formed by isotropic wet etching using a photoresist film patterned by photolithography as a mask. The insulating film 6 in a region to be a region where the layer) is formed is etched by, for example, about 200 nm. Thus, the active region AC is defined on the main surface of the substrate 2A by the thick film portion of the insulating film 6 that has not been etched. In this embodiment, in the region where the IGBT element of the active portion is formed, the region where the thick film portion of the insulating film 6 is formed and the region where the thin film portion of the insulating film 6 is formed are alternately striped. line up. At the same time, in the outer peripheral portion, a thin film portion of the insulating film 6 is also formed in a region where the p + -type semiconductor layer 26 is formed later and in a region where the n-type guard ring 13 is formed later (see FIGS. 1 and 4).
 IGBTの素子が形成される活性領域ACは、上面視において第1方向(ゲート電極11が延在する方向)に長辺を有し、第1方向と直交する第2方向に短辺を有した領域である。活性領域ACの第2方向に沿った幅(W)は、例えば3μm以上であり、代表的な値としては7μm~8μmを例示することができる。また、第2方向に隣り合う2つの活性領域ACの間隔(S)は、活性領域ACの第2方向に沿った幅(W)よりも短く形成されている。 The active region AC in which the IGBT element is formed has a long side in the first direction (the direction in which the gate electrode 11 extends) in the top view and a short side in the second direction orthogonal to the first direction. It is an area. The width (W) along the second direction of the active region AC is, for example, 3 μm or more, and a typical value may be 7 μm to 8 μm. Further, the interval (S) between two active regions AC adjacent in the second direction is formed shorter than the width (W) along the second direction of the active region AC.
 また、本実施例では、上述の絶縁膜6のエッチングに等方性ウエットエッチングを用いている。これは、等方性ウエットエッチングはドライエッチングよりも絶縁膜6を制御性よくエッチングできるので、絶縁膜6の薄膜部の厚さのばらつきを抑えることができるからである。後述するように、絶縁膜6の薄膜部は埋め込み絶縁膜3を構成するが、均一な厚さを有する埋め込み絶縁膜3が形成されることにより、正孔電流のばらつきに起因するIGBTの特性変動を抑えることができる。なお、実際には、活性領域ACの角部は丸くなるが、便宜上、活性領域ACの角部は直線で記載している。 In this embodiment, isotropic wet etching is used for etching the insulating film 6 described above. This is because the isotropic wet etching can etch the insulating film 6 with higher controllability than the dry etching, and can suppress variations in the thickness of the thin film portion of the insulating film 6. As will be described later, the thin film portion of the insulating film 6 constitutes the buried insulating film 3. However, the formation of the buried insulating film 3 having a uniform thickness makes it possible to change the characteristics of the IGBT due to variations in hole current. Can be suppressed. In practice, the corners of the active region AC are rounded, but for convenience, the corners of the active region AC are shown as straight lines.
 次に、図13および図14に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして絶縁膜6の薄膜部の一部をエッチングして、第1開口部(離間部)5を形成する。これにより、第1開口部5を備えた絶縁膜6の薄膜部とされる埋め込み絶縁膜3を形成することができる。このとき、第1開口部5の底面には基板2Aの表面が露出する。同時に、外周部では、後にp型半導体層26が形成される領域および後にn型ガードリング13が形成される領域の絶縁膜6の薄膜部にも第1開口部5を形成する(図1および図4参照)。 Next, as shown in FIGS. 13 and 14, a portion of the thin film portion of the insulating film 6 is etched using a photoresist film patterned by photolithography as a mask, so that the first opening (separating portion) 5 is formed. Form. Thereby, the buried insulating film 3 which is a thin film portion of the insulating film 6 having the first opening 5 can be formed. At this time, the surface of the substrate 2 </ b> A is exposed at the bottom surface of the first opening 5. At the same time, in the outer peripheral portion, the first opening 5 is also formed in the thin film portion of the insulating film 6 in the region where the p + type semiconductor layer 26 will be formed later and the region where the n type guard ring 13 will be formed later (FIG. 1). And FIG. 4).
 次に、図15および図16に示すように、埋め込み絶縁膜3の第1開口部5からシリコン結晶が格子レベルで連続するように、比抵抗が基板2Aとほぼ同じであるn型単結晶シリコン膜4Aをエピタキシャル法により成膜する。この時、埋め込み絶縁膜3の表面に多結晶シリコンが堆積しないようにするために、選択性を有するエピタキシャル成膜条件とする。すなわち、基板2Aをエピタキシャル炉に導入してから、主成分がH(水素)ガスのキャリアガスを用い、SiHCl(トリクロロシラン)およびHCl(塩酸)の混合ガスを炉内に供給する手段や、主成分がH(水素)ガスのキャリアガスを用い、SiHCl(ジクロロシラン)およびHCl(塩酸)の混合ガスを炉内に供給する手段を例示することができる。エピタキシャル炉内に導入するガスのうち、HClガスは、シリコン結晶に対して軽いエッチング性を有しており、埋め込み絶縁膜3上に多結晶シリコンが堆積してしまうことを阻止することができる。しかし、HClガスのエッチング力は、第1開口部5下の結晶(基板2A)から連続して成膜される結晶シリコンのエピタキシャル成膜を阻止するほどの強いエッチング力ではないので、第1開口部5からの選択エピタキシャル成膜が可能となる。 Next, as shown in FIGS. 15 and 16, an n -type single crystal whose specific resistance is substantially the same as that of the substrate 2A so that the silicon crystal continues from the first opening 5 of the buried insulating film 3 at the lattice level. A silicon film 4A is formed by an epitaxial method. At this time, in order to prevent polycrystalline silicon from being deposited on the surface of the buried insulating film 3, the epitaxial film forming conditions having selectivity are set. That is, after introducing the substrate 2A into the epitaxial furnace, a means for supplying a mixed gas of SiHCl 3 (trichlorosilane) and HCl (hydrochloric acid) into the furnace using a carrier gas whose main component is H 2 (hydrogen) gas, A means for supplying a mixed gas of SiH 2 Cl 2 (dichlorosilane) and HCl (hydrochloric acid) into the furnace using a carrier gas whose main component is H 2 (hydrogen) gas can be exemplified. Of the gases introduced into the epitaxial furnace, HCl gas has a light etching property with respect to the silicon crystal and can prevent the deposition of polycrystalline silicon on the buried insulating film 3. However, since the etching force of HCl gas is not strong enough to prevent the epitaxial film formation of crystalline silicon formed continuously from the crystal (substrate 2A) under the first opening 5, the first opening The selective epitaxial film formation from 5 becomes possible.
 次に、図17に示すように、絶縁膜6の厚膜部をストッパ(研磨終点)としたCMP(Chemical Mechanical Polishing)法によりn型単結晶シリコン膜4Aを研磨して、活性領域ACに表面半導体層4を形成する。ここで、いわゆるディッシング(Dishing:パターンの中央部が皿状に窪む現象)が生じる研磨条件を用いてn型単結晶シリコン膜4Aを研磨する。これにより、基板2Aの主面から表面半導体層4の上面までの厚さが、絶縁膜6の厚膜部に囲まれた活性領域ACの中央部において最も薄く、絶縁膜6の厚膜部に近づくに従い徐々に厚くなるように、表面半導体層4は形成される。 Next, as shown in FIG. 17, the n -type single crystal silicon film 4A is polished by CMP (Chemical Mechanical Polishing) using the thick film portion of the insulating film 6 as a stopper (polishing end point) to form the active region AC. The surface semiconductor layer 4 is formed. Here, the n -type single crystal silicon film 4A is polished using polishing conditions in which so-called dishing (a phenomenon in which the central portion of the pattern is recessed in a dish shape) occurs. As a result, the thickness from the main surface of the substrate 2A to the upper surface of the surface semiconductor layer 4 is the thinnest in the central portion of the active region AC surrounded by the thick film portion of the insulating film 6, and the thick film portion of the insulating film 6 The surface semiconductor layer 4 is formed so as to gradually increase as it approaches.
 すなわち、埋め込み絶縁膜3の上面から、後に形成されるゲート電極11の下に位置する表面半導体層4の上面までの厚さは、前述したように、IGBTの定常損失、ターンオフ時間、およびターンオフ損失を低減するために、300nm以下、または100nm以下、より望ましくは20nm~40nmの範囲となるように形成される。これに対し、基板2Aの主面から、後に形成されるソースパッド16が接続される領域の表面半導体層4の上面までの厚さ(埋め込み絶縁膜3と表面半導体層4との合計の厚さ)は、後に形成される第2開口部15の突き抜けを防止して、後に形成されるソースパッド16と表面半導体層4との良好な接続を得るために、例えば300nmよりも厚くなるように形成される。 That is, the thickness from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 located below the gate electrode 11 to be formed later is determined by the steady loss, turn-off time, and turn-off loss of the IGBT as described above. In order to reduce the thickness, it is formed to be 300 nm or less, or 100 nm or less, and more desirably in the range of 20 nm to 40 nm. In contrast, the thickness from the main surface of the substrate 2A to the upper surface of the surface semiconductor layer 4 in the region to which the source pad 16 to be formed later is connected (the total thickness of the buried insulating film 3 and the surface semiconductor layer 4). ) Is formed to be thicker than 300 nm, for example, in order to prevent the penetration of the second opening 15 to be formed later and to obtain a good connection between the source pad 16 and the surface semiconductor layer 4 to be formed later. Is done.
 本実施例において、表面半導体層4の適切な厚さを前述したが、後の工程で表面半導体層4の表面は、所定の厚さだけゲート絶縁膜10の形成工程で犠牲となってしまうことから、本工程では、そのゲート絶縁膜10の形成工程で犠牲となってしまう厚さ分(ゲート絶縁膜10の厚さ自体も含む)を考慮して表面半導体層4の厚さを規定する必要がある。すなわち、ゲート絶縁膜10の形成工程では、ゲート絶縁膜10自体を形成する前に、表面半導体層4に不純物をイオン注入するために、熱酸化法によって表面半導体層4の表面に犠牲酸化膜を形成し、その犠牲酸化膜を除去した後で改めて基板2Aの熱酸化処理によって表面半導体層4の表面にゲート絶縁膜10を形成する。つまり、犠牲酸化膜およびゲート絶縁膜10の厚さ分だけ表面半導体層4の厚さが失われてしまうことを考慮して、上記CMP工程後に残る表面半導体層4の厚さを規定しなければならない。 In the present embodiment, the appropriate thickness of the surface semiconductor layer 4 has been described above. However, the surface of the surface semiconductor layer 4 is sacrificed in the process of forming the gate insulating film 10 by a predetermined thickness in a later process. Therefore, in this step, it is necessary to define the thickness of the surface semiconductor layer 4 in consideration of the thickness (including the thickness of the gate insulating film 10 itself) that is sacrificed in the step of forming the gate insulating film 10. There is. That is, in the step of forming the gate insulating film 10, before the gate insulating film 10 itself is formed, a sacrificial oxide film is formed on the surface of the surface semiconductor layer 4 by thermal oxidation in order to ion-implant impurities into the surface semiconductor layer 4. After the formation and removal of the sacrificial oxide film, the gate insulating film 10 is formed again on the surface of the surface semiconductor layer 4 by thermal oxidation treatment of the substrate 2A. That is, in consideration of the loss of the thickness of the surface semiconductor layer 4 by the thickness of the sacrificial oxide film and the gate insulating film 10, the thickness of the surface semiconductor layer 4 remaining after the CMP process must be specified. Don't be.
 例えばIGBTのゲート絶縁膜を、熱酸化法により形成される10nmの厚さの酸化膜と、CVD法により形成される90nmの厚さの酸化膜との積層膜により構成した場合、犠牲酸化膜およびゲート絶縁膜10の厚さ分をそれぞれ5nmとすると、ゲート絶縁膜10を形成した後に20nm~40nmの厚さの表面半導体層4を得るためには、そのCMP工程後に残る表面半導体層4の厚さを、30nm~50nmとする必要がある。また、このCMP工程後に残る表面半導体層4の厚さは、絶縁膜6による段差で決定されるものであるから、CMP工程後に残る表面半導体層4の厚さがそのような値となるように埋め込み絶縁膜3を形成しなければならないことは言うまでもない。 For example, when the gate insulating film of the IGBT is composed of a laminated film of an oxide film having a thickness of 10 nm formed by a thermal oxidation method and an oxide film having a thickness of 90 nm formed by a CVD method, a sacrificial oxide film and If the thickness of the gate insulating film 10 is 5 nm, in order to obtain the surface semiconductor layer 4 having a thickness of 20 nm to 40 nm after the gate insulating film 10 is formed, the thickness of the surface semiconductor layer 4 remaining after the CMP process is obtained. The thickness needs to be 30 nm to 50 nm. In addition, since the thickness of the surface semiconductor layer 4 remaining after the CMP process is determined by a step due to the insulating film 6, the thickness of the surface semiconductor layer 4 remaining after the CMP process is set to such a value. Needless to say, the buried insulating film 3 must be formed.
 次に、図18および図19に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、活性領域では、IGBTの素子が形成される表面半導体層4の一部領域(後の工程で形成されるゲート電極11下のチャネルとなる領域とその両側)にp型を示す不純物(例えばB(ホウ素))をイオン注入法により導入して、p型半導体層25を形成する。 Next, as shown in FIGS. 18 and 19, a partial region of the surface semiconductor layer 4 in which an IGBT element is formed (later process) in the active region using a photoresist film patterned by a photolithography technique as a mask. The p-type semiconductor layer 25 is formed by introducing a p-type impurity (for example, B (boron)) into the region to be the channel under the gate electrode 11 formed on the both sides of the gate electrode 11 by ion implantation.
 ゲート電極11を形成する前に、IGBTの素子が形成される表面半導体層4にp型半導体層25を形成するのは、以下の理由による。すなわち、ゲート電極11を形成した後に、ゲート電極11をマスクとして表面半導体層4にp型を示す不純物を導入すると、その不純物をゲート電極11下のチャネルとなる領域まで拡散させるためには、高温かつ長時間の熱処理が必要となる。しかし、この熱処理により絶縁膜6の薄膜部(埋め込み絶縁膜3)に応力がかかり、歪みが生じるため、フォトリソグラフィ技術におけるフォーカスの合わせずれ、または結晶欠陥が発生する。このような問題を回避するために、活性部にゲート電極11を形成する前に、表面半導体層4にp型半導体層25を形成している。 The reason why the p-type semiconductor layer 25 is formed on the surface semiconductor layer 4 on which the IGBT element is formed before the gate electrode 11 is formed is as follows. That is, after the gate electrode 11 is formed and a gate electrode 11 is used as a mask and a p-type impurity is introduced into the surface semiconductor layer 4, in order to diffuse the impurity to a region to be a channel below the gate electrode 11, a high temperature is required. In addition, a long heat treatment is required. However, stress is applied to the thin film portion (embedded insulating film 3) of the insulating film 6 by this heat treatment and distortion occurs, resulting in a focus shift or a crystal defect in the photolithography technique. In order to avoid such a problem, the p-type semiconductor layer 25 is formed in the surface semiconductor layer 4 before the gate electrode 11 is formed in the active portion.
 次に、図20および図21に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、活性部では、p型半導体層25の一部領域(エミッタ層(チャネルコンタクト層)となる領域)にp型を示す不純物(例えばB(ホウ素))をイオン注入法により導入して、p型エミッタ層9bを形成する。同時に、外周部では、p型フィールドリミッティングリング12上の表面半導体層4にp型を示す不純物(例えばB(ホウ素))をイオン注入法により導入して、p型半導体層26を形成する(図4参照)。 Next, as shown in FIGS. 20 and 21, a part of the p-type semiconductor layer 25 (emitter layer (channel contact layer)) is formed in the active portion using a photoresist film patterned by photolithography as a mask. A p + -type emitter layer 9b is formed by introducing a p-type impurity (for example, B (boron)) into the region) by ion implantation. At the same time, the outer peripheral portion, impurities imparting p-type surface semiconductor layer 4 on the p-type field limiting rings 12 (for example, B (boron)) is introduced by ion implantation to form the p + -type semiconductor layer 26 (See FIG. 4).
 ここでは、IGBTの素子が形成される領域では、p型エミッタ層9bの内側にp型半導体層25を残しているが、p型半導体層25の全てにp型エミッタ層9bを形成してもよい。 Here, in a region where elements of the IGBT is formed, but leaving the p-type semiconductor layer 25 on the inner side of the p + -type emitter layer 9b, the p + -type emitter layer 9b is formed on all the p-type semiconductor layer 25 May be.
 次に、図22に示すように、基板2Aに熱酸化処理を施すことによって、表面半導体層4(活性部のp型半導体層25およびp型エミッタ層9bならびに外周部のp型半導体層26も含む)の表面に下層酸化膜(図示は省略)を形成し、続いて、この下層酸化膜上にCVD法により上層酸化膜(図示は省略)を堆積して、下層酸化膜および上層酸化膜を含むゲート絶縁膜10を形成する。下層酸化膜の厚さは、例えば10nmであり、上層酸化膜の厚さは、例えば90nmである。 Next, as shown in FIG. 22, by subjecting the substrate 2A to thermal oxidation treatment, the surface semiconductor layer 4 (the p-type semiconductor layer 25 and the p + -type emitter layer 9b in the active part and the p + -type semiconductor layer in the outer peripheral part) 26), a lower oxide film (not shown) is formed, and then an upper oxide film (not shown) is deposited on the lower oxide film by a CVD method to form a lower oxide film and an upper oxide film. A gate insulating film 10 including a film is formed. The thickness of the lower oxide film is, for example, 10 nm, and the thickness of the upper oxide film is, for example, 90 nm.
 次に、図23に示すように、基板2Aの主面上に多結晶シリコン膜27を堆積し、続いて、多結晶シリコン膜27上にタングステンシリサイド層28を形成する。タングステンシリサイド層28を形成するのは、ゲート電極11の高さを低くして、かつゲート電極11の抵抗を増加させないためである。 Next, as shown in FIG. 23, a polycrystalline silicon film 27 is deposited on the main surface of the substrate 2A, and then a tungsten silicide layer 28 is formed on the polycrystalline silicon film 27. The tungsten silicide layer 28 is formed in order to reduce the height of the gate electrode 11 and not increase the resistance of the gate electrode 11.
 次に、図24および図25に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとしたエッチングにより、タングステンシリサイド層28および多結晶シリコン膜27を順次パターニングする。これにより、多結晶シリコン膜27とタングステンシリサイド層28との積層膜とされるゲート電極11を形成することができる。 Next, as shown in FIGS. 24 and 25, the tungsten silicide layer 28 and the polycrystalline silicon film 27 are sequentially patterned by etching using a photoresist film patterned by photolithography as a mask. Thereby, the gate electrode 11 which is a laminated film of the polycrystalline silicon film 27 and the tungsten silicide layer 28 can be formed.
 次に、図26に示すように、基板2Aに熱酸化処理を施すことによって、露出した表面半導体層4の表面に犠牲酸化膜24を形成する。 Next, as shown in FIG. 26, a sacrificial oxide film 24 is formed on the exposed surface of the surface semiconductor layer 4 by subjecting the substrate 2A to thermal oxidation.
 次に、図27に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、ゲート電極11の両側のp型半導体層25にn型を示す不純物(例えばAs(ヒ素))をイオン注入法により導入して、所定の領域にn型ソース層8bを形成する。このn型を示す不純物の導入により、ゲート電極11の側面下の表面半導体層4およびゲート絶縁膜10に結晶欠陥が生じるのを防止するため、イオン注入の注入エネルギーおよび注入量は相対的に低く設定される。 Next, as shown in FIG. 27, an n-type impurity (for example, As (arsenic)) is ionized in the p-type semiconductor layer 25 on both sides of the gate electrode 11 using a photoresist film patterned by photolithography as a mask. The n type source layer 8b is formed in a predetermined region by introducing by an implantation method. In order to prevent crystal defects from being generated in the surface semiconductor layer 4 and the gate insulating film 10 below the side surface of the gate electrode 11 by the introduction of the n-type impurity, the implantation energy and implantation amount of ion implantation are relatively low. Is set.
 次に、図28に示すように、基板2Aの主面上に酸化シリコン膜30を堆積する。 Next, as shown in FIG. 28, a silicon oxide film 30 is deposited on the main surface of the substrate 2A.
 次に、図29に示すように、酸化シリコン膜30を異方性ドライエッチングして、ゲート電極11の側面に酸化シリコン膜30とされるサイドウォールSWを形成する。 Next, as shown in FIG. 29, the silicon oxide film 30 is anisotropically dry-etched to form a sidewall SW that is to be the silicon oxide film 30 on the side surface of the gate electrode 11.
 次に、図30および図31に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、活性部では、ゲート電極11の両側のn型ソース層8bにn型を示す不純物(例えばAs(ヒ素))をイオン注入法により導入して、n型ソース層8bよりも不純物濃度の高いn型ソース層8aを形成する。これにより、n型ソース層8bとn型ソース層8aとを含むn型ソース層8を形成する。同時に、外周部では、表面半導体層4にn型を示す不純物(例えばAs(ヒ素))をイオン注入法により導入して、n型ガードリング(チャネルストッパ)13を形成する(図1および図4参照)。図30には、n型ソース層8aが、表面半導体層4の上面から埋め込み絶縁膜3と接する下面まで形成されている態様を示しているが、表面半導体層4の上面側のみに形成してもよい。 Next, as shown in FIGS. 30 and 31, using the photoresist film patterned by the photolithography technique as a mask, the n type source layer 8b on both sides of the gate electrode 11 in the active part has an n-type impurity ( For example, As (arsenic)) is introduced by ion implantation to form an n + type source layer 8a having an impurity concentration higher than that of the n type source layer 8b. Thereby, the n - type source layer 8 including the n -type source layer 8b and the n + -type source layer 8a is formed. At the same time, in the outer peripheral portion, an n-type impurity (for example, As (arsenic)) is introduced into the surface semiconductor layer 4 by ion implantation to form an n-type guard ring (channel stopper) 13 (FIGS. 1 and 4). reference). FIG. 30 shows a mode in which the n + -type source layer 8a is formed from the upper surface of the surface semiconductor layer 4 to the lower surface in contact with the buried insulating film 3, but it is formed only on the upper surface side of the surface semiconductor layer 4. May be.
 次に、図32および図33に示すように、フォトリソグラフィ技術によってパターニングされたフォトレジスト膜をマスクとして、活性部のゲート電極11の両側のp型エミッタ層9bにp型を示す不純物(例えばB(ホウ素))をイオン注入法により導入して、p型エミッタ層9bよりも不純物濃度の高いp++型エミッタ層9aを形成する。これにより、p型エミッタ層9bとp++型エミッタ層9aとを含むp型エミッタ層(p型チャネルコンタクト層)9を形成する。図32には、p++型エミッタ層9aが、表面半導体層4の上面から埋め込み絶縁膜3と接する下面まで形成されている態様を示しているが、表面半導体層4の上面側のみに形成してもよい。 Next, as shown in FIGS. 32 and 33, a p-type impurity (for example, in the p + -type emitter layer 9b on both sides of the gate electrode 11 of the active portion) is masked using a photoresist film patterned by photolithography as a mask. B (boron)) is introduced by an ion implantation method to form a p ++ type emitter layer 9a having an impurity concentration higher than that of the p + type emitter layer 9b. Thereby, a p-type emitter layer (p-type channel contact layer) 9 including the p + -type emitter layer 9b and the p + + type emitter layer 9a is formed. FIG. 32 shows an embodiment in which the p ++ type emitter layer 9a is formed from the upper surface of the surface semiconductor layer 4 to the lower surface in contact with the buried insulating film 3, but it is formed only on the upper surface side of the surface semiconductor layer 4. May be.
 n型ソース層8aを形成する不純物のイオン注入では、n型ソース層8bを形成する不純物のイオン注入よりも注入量を多くしている。また、p++型エミッタ層9aを形成する不純物のイオン注入では、p型エミッタ層9bを形成する不純物のイオン注入よりも注入量を多くしている。このように、高濃度の不純物が導入されても、ゲート電極11の側面からサイドウォールSWのサイドウォール長分の距離を離れて不純物がイオン注入されるので、ゲート電極11の側面下の表面半導体層4およびゲート絶縁膜10に結晶欠陥が生じるのを防止することができる。また、サイドウォールSWの端部下の表面半導体層4に結晶欠陥が生じても、ゲート電極11の側面から離れているので、IGBTの動作特性へはほとんど影響を及ぼさない。 In the ion implantation of the impurity forming the n + -type source layer 8a, the implantation amount is larger than that of the impurity ion implantation forming the n -type source layer 8b. Further, the ion implantation of the impurity forming the p ++ type emitter layer 9a has a larger implantation amount than the ion implantation of the impurity forming the p + type emitter layer 9b. Thus, even if a high concentration of impurities is introduced, the impurities are ion-implanted from the side surface of the gate electrode 11 at a distance corresponding to the side wall length of the side wall SW, so that the surface semiconductor below the side surface of the gate electrode 11 is implanted. Crystal defects can be prevented from occurring in the layer 4 and the gate insulating film 10. Further, even if crystal defects occur in the surface semiconductor layer 4 below the end portion of the sidewall SW, it is far from the side surface of the gate electrode 11 and therefore hardly affects the operation characteristics of the IGBT.
 ところで、IGBTの素子が形成される領域では、n型ソース層8およびp型エミッタ層9は同一断面の中に形成することは不可能である。そのため、上面視においてゲート電極11と絶縁膜6の厚膜部との間の帯状に延在する1本のパターンの中でn型ソース層8とp型エミッタ層9とは交互に配置されることになる。また、n型ソース層8またはp型エミッタ層9が形成されなかったゲート電極11下のp型半導体層25は、p型チャネル層7を構成することになる。 By the way, in the region where the IGBT element is formed, it is impossible to form the n-type source layer 8 and the p-type emitter layer 9 in the same cross section. Therefore, the n-type source layer 8 and the p-type emitter layer 9 are alternately arranged in one pattern extending in a strip shape between the gate electrode 11 and the thick film portion of the insulating film 6 in a top view. It will be. Further, the p-type semiconductor layer 25 under the gate electrode 11 where the n-type source layer 8 or the p-type emitter layer 9 is not formed constitutes the p-type channel layer 7.
 ここまでの工程により、本実施例によるIGBTの素子を形成することができる。 The IGBT element according to the present embodiment can be formed through the above steps.
 次に、図34に示すように、基板2Aの主面上に窒化膜32を形成する。窒化膜32は、例えば窒化シリコン膜であり、その厚さは、例えば50nm~70nmである。 Next, as shown in FIG. 34, a nitride film 32 is formed on the main surface of the substrate 2A. The nitride film 32 is, for example, a silicon nitride film, and the thickness thereof is, for example, 50 nm to 70 nm.
 次に、図35に示すように、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとして窒化膜32をエッチングし、ゲート電極11に達する第3開口部31を形成する。 Next, as shown in FIG. 35, the nitride film 32 is etched using a photoresist film patterned by the photolithography technique as a mask to form a third opening 31 reaching the gate electrode 11.
 次に、図36に示すように、基板2Aの主面上に酸化シリコン膜33およびBPSG(Boron-PSG)膜34を順次堆積する。酸化シリコン膜33の厚さは、例えば150nm、BPSG膜34の厚さは、例えば400nm~500nmである。その後、基板2Aに対して熱処理を施す。この熱処理により、外周部では、p型フィールドリミッティングリング12上の表面半導体層4に形成されたp型半導体層26中の不純物が拡散して、p型フィールドリミッティングリング12とp型半導体層26との間の表面半導体層4(第1開口部5)にも不純物が導入されて、両者は低抵抗で接続される。同様に、n型ガードリング13中の不純物が拡散して、n型ガードリング13と基板2Aとの間の表面半導体層4(第1開口部5)にも不純物が導入されて、両者は低抵抗で接続される(図3および図4参照)。 Next, as shown in FIG. 36, a silicon oxide film 33 and a BPSG (Boron-PSG) film 34 are sequentially deposited on the main surface of the substrate 2A. The thickness of the silicon oxide film 33 is, for example, 150 nm, and the thickness of the BPSG film 34 is, for example, 400 nm to 500 nm. Thereafter, heat treatment is performed on the substrate 2A. By this heat treatment, the outer peripheral portion, and an impurity diffusion of p-type field limiting ring in p + -type semiconductor layer 26 formed on the surface semiconductor layer 4 on 12, p-type field limiting ring 12 and the p + -type Impurities are also introduced into the surface semiconductor layer 4 (first opening 5) between the semiconductor layer 26 and the two are connected with low resistance. Similarly, impurities in the n-type guard ring 13 are diffused, and impurities are also introduced into the surface semiconductor layer 4 (first opening 5) between the n-type guard ring 13 and the substrate 2A. The resistors are connected (see FIGS. 3 and 4).
 次に、図37に示すように、BPSG膜34上にPSG膜35を堆積することにより、窒化膜32、酸化シリコン膜33、BGSP膜34、およびPSG膜35を含む層間絶縁膜14を形成する。PSG膜35の厚さは、例えば300nmである。その後、基板2Aに対して熱処理を施す。 Next, as shown in FIG. 37, the PSG film 35 is deposited on the BPSG film 34 to form the interlayer insulating film 14 including the nitride film 32, the silicon oxide film 33, the BGSP film 34, and the PSG film 35. . The thickness of the PSG film 35 is, for example, 300 nm. Thereafter, heat treatment is performed on the substrate 2A.
 次に、図38および図39に示すように、層間絶縁膜14をエッチングして、活性部では、IGBTの素子のn型ソース層8aおよびp++型エミッタ層9a、ならびにゲート電極11のそれぞれに達する第2開口部15を形成する。また、外周部では、p型半導体層26およびn型ガードリング13のそれぞれに達する第2開口部15を形成する(図3および図4参照)。 Next, as shown in FIGS. 38 and 39, the interlayer insulating film 14 is etched, and in the active portion, each of the n + type source layer 8a and the p ++ type emitter layer 9a of the IGBT element and the gate electrode 11 is formed. A second opening 15 is formed. In the outer peripheral portion, second openings 15 reaching the p + type semiconductor layer 26 and the n type guard ring 13 are formed (see FIGS. 3 and 4).
 この第2開口部15を形成する際には、まず、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとし、窒化膜32をエッチングストッパとして、PSG膜35、BPSG膜34、および酸化シリコン膜33を順次エッチングする。このとき、ゲート電極11上の窒化膜32の一部に、前述の図35を用いて説明した工程において、第3開口部31が形成されているので、ゲート電極11の上部を構成するタングステンシリサイド層28の一部が露出する。続いて、上記フォトレジスト膜をマスクとして、窒化膜32をエッチングする。 In forming the second opening 15, first, the PSG film 35, the BPSG film 34, and the silicon oxide film 33 are formed using a photoresist film patterned by photolithography as a mask and the nitride film 32 as an etching stopper. Are sequentially etched. At this time, since the third opening 31 is formed in a part of the nitride film 32 on the gate electrode 11 in the process described with reference to FIG. 35 described above, the tungsten silicide constituting the upper part of the gate electrode 11 is formed. A portion of layer 28 is exposed. Subsequently, the nitride film 32 is etched using the photoresist film as a mask.
 このように、一旦、窒化膜32においてPSG膜35、BPSG膜34、および酸化シリコン膜33のエッチングを止めて、その後、窒化膜32をエッチングして第2開口部15を形成している。そのため、n型ソース層8aおよびp++型エミッタ層9aが形成された表面半導体層4、ならびに絶縁膜6の厚膜部のオーバエッチング量(外周部では、p型半導体層26およびn型ガードリング13が形成された表面半導体層4のオーバエッチング量(図3および図4参照))を僅かとすることができる。また、基板2Aの主面から、第2開口部15が形成される領域の表面半導体層4の上面までの厚さ(埋め込み絶縁膜3と表面半導体層4との合計の厚さ)は、例えば300nmよりも厚く形成されている。 As described above, the etching of the PSG film 35, the BPSG film 34, and the silicon oxide film 33 in the nitride film 32 is once stopped, and then the nitride film 32 is etched to form the second opening 15. Therefore, the surface semiconductor layer 4 on which the n + -type source layer 8a and the p + + -type emitter layer 9a are formed, and the overetching amount of the thick film portion of the insulating film 6 (in the outer peripheral portion, the p + -type semiconductor layer 26 and the n-type The amount of overetching of the surface semiconductor layer 4 on which the guard ring 13 is formed (see FIGS. 3 and 4) can be made small. The thickness from the main surface of the substrate 2A to the upper surface of the surface semiconductor layer 4 in the region where the second opening 15 is formed (total thickness of the buried insulating film 3 and the surface semiconductor layer 4) is, for example, It is formed thicker than 300 nm.
 従って、n型ソース層8aおよびp++型エミッタ層9a(外周部では、p型半導体層26およびn型ガードリング13(図3および図4参照))を突き抜けて、第2開口部15が基板2Aに達することがない。 Therefore, the second opening 15 extends through the n + -type source layer 8a and the p + + -type emitter layer 9a (in the outer periphery, the p + -type semiconductor layer 26 and the n-type guard ring 13 (see FIGS. 3 and 4)). Does not reach the substrate 2A.
 一方、ゲート電極11と後に形成されるゲートフィンガー(図3に符号17Aで示すゲートフィンガー)とを接続する第2開口部15が形成される領域では、予め窒化膜32が除去されている。これは、ゲート電極11とゲートフィンガーとの接続不良を回避するためである。すなわち、ゲート電極11の上部を構成するタングステンシリサイド層28と窒化膜32との間に酸化膜が形成されていると、第2開口部15を形成した後(窒化膜32を除去した後)も、上記酸化膜が除去できずに残存することがある。上記酸化膜が残存していると、タングステンシリサイド層28とゲートフィンガーを構成する金属膜との接触抵抗が増加する。これを防ぐために、ゲート電極11と後に形成されるゲートフィンガーとを接続する第2開口部15が形成される領域の窒化膜32を予め除去しておく。 On the other hand, in the region where the second opening 15 that connects the gate electrode 11 and the gate finger formed later (a gate finger indicated by reference numeral 17A in FIG. 3) is formed, the nitride film 32 is removed in advance. This is to avoid poor connection between the gate electrode 11 and the gate finger. That is, if an oxide film is formed between the tungsten silicide layer 28 and the nitride film 32 constituting the upper portion of the gate electrode 11, the second opening 15 is formed (after the nitride film 32 is removed). The oxide film may remain without being removed. If the oxide film remains, the contact resistance between the tungsten silicide layer 28 and the metal film constituting the gate finger increases. In order to prevent this, the nitride film 32 in the region where the second opening 15 connecting the gate electrode 11 and the gate finger to be formed later is formed is removed in advance.
 なお、この残存した酸化膜を、第2開口部15を形成した後(窒化膜32を除去した後)にエッチングにより除去することは可能である。しかし、同時に絶縁膜6の厚膜部もエッチングされて、絶縁膜6の厚膜部の厚さを所定の厚さに維持することができなくなる。 The remaining oxide film can be removed by etching after the second opening 15 is formed (after the nitride film 32 is removed). However, at the same time, the thick film portion of the insulating film 6 is also etched, and the thickness of the thick film portion of the insulating film 6 cannot be maintained at a predetermined thickness.
 次に、図40および図41に示すように、例えばスパッタリング法により基板2Aの主面上にAl(アルミニウム)膜を堆積する。次いで、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとしてそのAl(アルミニウム)膜をエッチングし、IGBTの素子のn型ソース層8aおよびp++型エミッタ層9aと電気的に接続するソースパッド(ソース電極)16を形成する。同時に、前述の図3および図4に示したように、以下が形成される。 Next, as shown in FIGS. 40 and 41, an Al (aluminum) film is deposited on the main surface of the substrate 2A, for example, by sputtering. Next, the Al (aluminum) film is etched using a photoresist film patterned by photolithography as a mask, and the source pad is electrically connected to the n + type source layer 8a and the p + + type emitter layer 9a of the IGBT element. (Source electrode) 16 is formed. At the same time, as shown in FIGS. 3 and 4 described above, the following is formed.
 1)ソースパッド16と電気的に接続しソースパッド16と連続したパターンを有するソース引き回し電極16A、
 2)ゲート電極11と電気的に接続するゲートパッド17、
 3)ゲート電極11と電気的に接続しゲートパッド17と連続したパターンを有するゲートフィンガー17A、
 4)p型フィールドリミッティングリング12とp型半導体層26を介して電気的に接続するフィールドリミッティングリング電極12A、および、
 5)n型ガードリング13と電気的に接続するガードリング電極13A。
1) A source lead electrode 16A electrically connected to the source pad 16 and having a pattern continuous with the source pad 16;
2) a gate pad 17 electrically connected to the gate electrode 11;
3) A gate finger 17A that is electrically connected to the gate electrode 11 and has a continuous pattern with the gate pad 17.
4) A field limiting ring electrode 12A electrically connected to the p-type field limiting ring 12 via the p + -type semiconductor layer 26, and
5) A guard ring electrode 13A electrically connected to the n-type guard ring 13.
 さらに、図示は省略するが、ソースパッド16、ソース引き回し電極16A、ゲートパッド17、ゲートフィンガー17A、フィールドリミッティングリング電極12A、およびガードリング電極13Aを形成した後、基板2Aの主面上に表面保護膜としてポリイミド膜を堆積する。続いて、このポリイミド膜に、ソースパッド16、ゲートパッド17、フィールドリミッティングリング電極12A、およびガードリング電極13Aのそれぞれに達する開口部を形成する。これら開口部は、基板2Aを個々の半導体チップ1へ分割し、半導体チップ1をリードフレームのダイパッドに搭載した後で、ボンディングワイヤを用いてソースパッド16、ゲートパッド17、フィールドリミッティングリング電極12A、およびガードリング電極13Aのそれぞれを対応するリードと電気的に接続するために形成するものである。 Furthermore, although illustration is omitted, after the source pad 16, the source routing electrode 16A, the gate pad 17, the gate finger 17A, the field limiting ring electrode 12A, and the guard ring electrode 13A are formed, the surface is formed on the main surface of the substrate 2A. A polyimide film is deposited as a protective film. Subsequently, openings reaching the source pad 16, the gate pad 17, the field limiting ring electrode 12A, and the guard ring electrode 13A are formed in the polyimide film. These openings divide the substrate 2A into individual semiconductor chips 1, and after the semiconductor chip 1 is mounted on the die pad of the lead frame, the source pads 16, the gate pads 17, and the field limiting ring electrodes 12A using bonding wires. And the guard ring electrode 13A are formed to be electrically connected to the corresponding leads.
 次に、図42に示すように、基板2Aの主面上に発泡性両面テープまたはガラス補強板などの補強材(図示は省略)を貼り付けた後、基板2Aの裏面を研削し、ベース層2を形成する。前述したように、ベース層2の厚さは、IGBTの耐圧に合わせて決定するものであり、耐圧600Vであれば60μm~100μmとなるまで、また耐圧1200Vであれば120μm~150μmとなるまで基板2Aの裏面を研削する。基板2Aの主面側に補強材を貼り付けているので、基板2Aの反りや垂れ下がりを防止することができる。 Next, as shown in FIG. 42, a reinforcing material (not shown) such as a foam double-sided tape or a glass reinforcing plate is attached to the main surface of the substrate 2A, and then the back surface of the substrate 2A is ground to form a base layer. 2 is formed. As described above, the thickness of the base layer 2 is determined in accordance with the breakdown voltage of the IGBT. The substrate is 60 μm to 100 μm when the breakdown voltage is 600V, and 120 μm to 150 μm when the breakdown voltage is 1200V. Grind the back of 2A. Since the reinforcing material is affixed to the main surface side of the substrate 2A, it is possible to prevent the substrate 2A from warping or drooping.
 次に、ベース層2の裏面にn型を示す不純物(例えばP(リン))およびp型を示す不純物(例えばB(ホウ素))を順次イオン注入法により導入し、例えばレーザーアニール法を用いて上記不純物を活性化することにより、n型バッファ層18およびp型コレクタ層19を形成する。 Next, an n-type impurity (for example, P (phosphorus)) and a p-type impurity (for example, B (boron)) are sequentially introduced into the back surface of the base layer 2 by an ion implantation method, for example, using a laser annealing method. By activating the impurities, an n + -type buffer layer 18 and a p-type collector layer 19 are formed.
 次に、p型コレクタ層19と電気的に接続するコレクタ電極20を形成する。このコレクタ電極20は、たとえばスパッタリング法または蒸着法により、p型コレクタ層19に近い順からAl(アルミニウム)膜、Ti(チタン)膜、Ni(ニッケル)膜、およびAu(金)膜を積層することで形成することができる。また、p型コレクタ層19に近い順からNi(ニッケル)膜、Ti(チタン)膜、Ni(ニッケル)膜、およびAu(金)膜を積層したコレクタ電極20、もしくはp型コレクタ層19に近い順からTi(チタン)膜、Ni(ニッケル)膜、およびAu(金)膜を積層したコレクタ電極20としてもよい。その後、補強材を除去する。 Next, a collector electrode 20 that is electrically connected to the p-type collector layer 19 is formed. The collector electrode 20 is formed by laminating an Al (aluminum) film, a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film in order from the p-type collector layer 19 by, for example, sputtering or vapor deposition. Can be formed. Further, the collector electrode 20 in which the Ni (nickel) film, the Ti (titanium) film, the Ni (nickel) film, and the Au (gold) film are stacked in order from the closest to the p-type collector layer 19 or the p-type collector layer 19 The collector electrode 20 may be formed by stacking a Ti (titanium) film, a Ni (nickel) film, and an Au (gold) film in order. Thereafter, the reinforcing material is removed.
 次に、基板2Aを分割領域(ダイシングライン)に沿って切断することにより、個々の半導体チップ1へ個片化する。続いて、リードフレームを用意し、個片化された半導体チップ1をリードフレームのダイパッドに搭載した後で、ボンディングワイヤを用いてソースパッド16、ゲートパッド17、フィールドリミッティングリング電極12A、およびガードリング電極13Aのそれぞれを対応するリードと電気的に接続する。その後、封止用樹脂で半導体チップ1、リードフレーム、およびボンディングワイヤを封止して、本実施例による半導体装置を製造する。 Next, the substrate 2A is cut into individual semiconductor chips 1 by cutting along the divided regions (dicing lines). Subsequently, after preparing a lead frame and mounting the singulated semiconductor chip 1 on a die pad of the lead frame, the source pad 16, the gate pad 17, the field limiting ring electrode 12A, and the guard using bonding wires Each of the ring electrodes 13A is electrically connected to the corresponding lead. Thereafter, the semiconductor chip 1, the lead frame, and the bonding wires are sealed with a sealing resin to manufacture the semiconductor device according to this embodiment.
 このように、本実施例によれば、埋め込み絶縁膜3の上面から、ゲート電極11の下に位置する表面半導体層4の上面までの厚さを、例えば300nm以下、100nm以下、より望ましくは20nm~40nmの範囲に設定することにより、IGBTの定常損失、ターンオフ時間、およびターンオフ損失を低減することができる。一方、ベース層2の上面から、第2開口部15が形成される領域(ソースパッド16が接続される領域)の表面半導体層4の上面までの厚さは、例えば300nmよりも厚く形成されている。従って、表面半導体層4上に形成された層間絶縁膜14に第2開口部15を形成する際、開口不良を回避するためにオーバエッチングを行っても、第2開口部15の突き抜けを防止することができる。これにより、ソースパッド16とベース層2とは接続しないので、IBGTの動作不良を防止することができる。 Thus, according to the present embodiment, the thickness from the upper surface of the buried insulating film 3 to the upper surface of the surface semiconductor layer 4 located under the gate electrode 11 is, for example, 300 nm or less, 100 nm or less, more preferably 20 nm. By setting in the range of ˜40 nm, the steady loss, turn-off time, and turn-off loss of the IGBT can be reduced. On the other hand, the thickness from the upper surface of the base layer 2 to the upper surface of the surface semiconductor layer 4 in the region where the second opening 15 is formed (the region where the source pad 16 is connected) is formed to be thicker than 300 nm, for example. Yes. Therefore, when the second opening 15 is formed in the interlayer insulating film 14 formed on the surface semiconductor layer 4, the second opening 15 is prevented from penetrating even if overetching is performed in order to avoid an opening defect. be able to. Thereby, since the source pad 16 and the base layer 2 are not connected, the malfunction of IBGT can be prevented.
 以上、本発明者らによってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Although the invention made by the present inventors has been specifically described based on the embodiment, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、例えば鉄道車両およびハイブリッドカーにおけるモータードライブ用インバータ等の種々のインバータに採用される半導体装置に適用することができる。 The present invention can be applied to semiconductor devices employed in various inverters such as motor drive inverters in railway vehicles and hybrid cars, for example.
1 半導体チップ
2 ベース層
2A 半導体基板
3 埋め込み絶縁膜
4 表面半導体層
4A n型単結晶シリコン膜
5 第1開口部
6 絶縁膜(厚膜部)
7 p型チャネル層
8 n型ソース層
8a n型ソース層
8b n型ソース層
9 p型エミッタ層(p型チャネルコンタクト層)
9a p++型エミッタ層
9b p型エミッタ層
10 ゲート絶縁膜
11 ゲート電極
12 p型フィールドリミッティングリング
12A フィールドリミッティングリング電極
13 n型ガードリング(チャネルストッパ)
13A ガードリング電極
14 層間絶縁膜
15 第2開口部
16 ソースパッド(ソース電極)
16A ソース引き回し電極
17 ゲートパッド
17A ゲートフィンガー
18 n型バッファ層
19 p型コレクタ層
20 コレクタ電極
21 表面酸化膜
23 p型ウェル
24 犠牲酸化膜
25 p型半導体層
26 p型半導体層
27 多結晶シリコン膜
28 タングステンシリサイド層
30 酸化シリコン膜
31 第3開口部
32 窒化膜
33 酸化シリコン膜
34 BPSG膜
35 PSG膜
AC 活性領域
SW サイドウォール
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Base layer 2A Semiconductor substrate 3 Embedded insulating film 4 Surface semiconductor layer 4A n type single crystal silicon film 5 First opening 6 Insulating film (thick film part)
7 p-type channel layer 8 n-type source layer 8a n + -type source layer 8b n - -type source layer 9 p-type emitter layer (p-type channel contact layer)
9a p ++ type emitter layer 9b p + type emitter layer 10 Gate insulating film 11 Gate electrode 12 p type field limiting ring 12A field limiting ring electrode 13 n type guard ring (channel stopper)
13A guard ring electrode 14 interlayer insulating film 15 second opening 16 source pad (source electrode)
16A source routing electrode 17 gate pad 17A gate finger 18 n + type buffer layer 19 p type collector layer 20 collector electrode 21 surface oxide film 23 p type well 24 sacrificial oxide film 25 p type semiconductor layer 26 p + type semiconductor layer 27 polycrystalline Silicon film 28 Tungsten silicide layer 30 Silicon oxide film 31 Third opening 32 Nitride film 33 Silicon oxide film 34 BPSG film 35 PSG film AC Active region SW Side wall

Claims (21)

  1.  IGBTの素子を含む半導体装置であって、
     第1導電型を示す前記IGBTのコレクタ層と、
     前記コレクタ層の上面に形成された、前記第1導電型と異なる第2導電型を示す前記IGBTのバッファ層と、
     前記バッファ層上に形成された、前記第2導電型を示す前記IGBTのベース層と、
     前記ベース層上に形成された、第1厚さを有する埋め込み絶縁膜と、
     前記埋め込み絶縁膜に形成された第1開口部と、
     前記埋め込み絶縁膜の周囲に形成され、前記第1厚さよりも厚い第2厚さを有し、活性領域を規定する絶縁膜と、
     前記活性領域において、前記埋め込み絶縁膜上に形成された表面半導体層と、
     前記表面半導体層内に形成された、前記第1導電型を示す前記IGBTのチャネル層と、
     前記表面半導体層内にて、前記チャネル層と接するように形成され、前記チャネル層よりも高濃度の前記第1導電型を示す前記IGBTのエミッタ層と、
     前記表面半導体層内に形成された、前記第2導電型を示す前記IGBTのソース層と、
     前記表面半導体層上の一部に形成された、前記IGBTのゲート絶縁膜と、
     前記ゲート絶縁膜上に形成された、前記IGBTのゲート電極と、
     前記ゲート電極および前記表面半導体層を覆うように形成された層間絶縁膜と、
     前記層間絶縁膜に形成され、前記エミッタ層および前記ソース層に達する第2開口部と、
     前記第2開口部を通じて前記エミッタ層および前記ソース層と電気的に接続された、前記IGBTのソース電極と、
     前記コレクタ層の上面と反対側の面に形成され、前記コレクタ層と電気的に接続された、前記IGBTのコレクタ電極と、
    を有し、
     前記活性領域は、上面視において第1方向に長辺を有し、前記第1方向と直交する第2方向に短辺を有する領域であり、
     前記第2方向に沿った前記活性領域の断面において、
     前記ベース層の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さが、前記ベース層の上面から、前記第2開口部が形成された領域に位置する前記表面半導体層の上面までの厚さよりも薄いことを特徴とする半導体装置。
    A semiconductor device including an IGBT element,
    A collector layer of the IGBT exhibiting a first conductivity type;
    A buffer layer of the IGBT having a second conductivity type different from the first conductivity type, formed on an upper surface of the collector layer;
    A base layer of the IGBT having the second conductivity type formed on the buffer layer;
    A buried insulating film having a first thickness formed on the base layer;
    A first opening formed in the buried insulating film;
    An insulating film formed around the buried insulating film, having a second thickness greater than the first thickness, and defining an active region;
    A surface semiconductor layer formed on the buried insulating film in the active region;
    A channel layer of the IGBT having the first conductivity type formed in the surface semiconductor layer;
    An emitter layer of the IGBT formed in contact with the channel layer in the surface semiconductor layer and exhibiting the first conductivity type having a higher concentration than the channel layer;
    A source layer of the IGBT having the second conductivity type formed in the surface semiconductor layer;
    A gate insulating film of the IGBT formed in a part on the surface semiconductor layer;
    A gate electrode of the IGBT formed on the gate insulating film;
    An interlayer insulating film formed to cover the gate electrode and the surface semiconductor layer;
    A second opening formed in the interlayer insulating film and reaching the emitter layer and the source layer;
    A source electrode of the IGBT electrically connected to the emitter layer and the source layer through the second opening;
    A collector electrode of the IGBT formed on a surface opposite to the upper surface of the collector layer and electrically connected to the collector layer;
    Have
    The active region is a region having a long side in a first direction in a top view and a short side in a second direction orthogonal to the first direction;
    In a cross section of the active region along the second direction,
    The surface semiconductor in which the thickness from the upper surface of the base layer to the upper surface of the surface semiconductor layer located under the gate electrode is located in a region where the second opening is formed from the upper surface of the base layer A semiconductor device characterized by being thinner than the thickness up to the upper surface of the layer.
  2.  請求項1記載の半導体装置において、
     前記埋め込み絶縁膜の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さは、300nm以下であることを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    A thickness of the semiconductor device, wherein the thickness from the upper surface of the buried insulating film to the upper surface of the surface semiconductor layer located under the gate electrode is 300 nm or less.
  3.  請求項1記載の半導体装置において、
     前記埋め込み絶縁膜の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さは、100nm以下であることを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    A thickness of the semiconductor device, wherein the thickness from the upper surface of the buried insulating film to the upper surface of the surface semiconductor layer located under the gate electrode is 100 nm or less.
  4.  請求項1記載の半導体装置において、
     前記埋め込み絶縁膜の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さは、20nm~40nmであることを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    A semiconductor device characterized in that the thickness from the upper surface of the buried insulating film to the upper surface of the surface semiconductor layer located under the gate electrode is 20 nm to 40 nm.
  5.  請求項1記載の半導体装置において、
     前記活性領域を規定する前記絶縁膜の前記第2厚さは、300nmよりも厚いことを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device according to claim 1, wherein the second thickness of the insulating film defining the active region is greater than 300 nm.
  6.  請求項1記載の半導体装置において、
     前記活性領域の前記第2方向の幅は、前記第2方向に隣り合う前記活性領域の間隔よりも広いことを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    A width of the active region in the second direction is wider than an interval between the active regions adjacent to each other in the second direction.
  7.  請求項6記載の半導体装置において、
     前記活性領域の前記第2方向の幅は3μm以上であることを特徴とする半導体装置。
    The semiconductor device according to claim 6.
    A width of the active region in the second direction is 3 μm or more.
  8.  絶縁ゲート型バイポーラトランジスタの素子を含む半導体装置であって、
     前記絶縁ゲート型バイポーラトランジスタの素子が形成される活性領域は、上面視において第1方向に長辺を有し、前記第1方向と直交する第2方向に短辺を有する領域とされ、
     前記第2方向に沿った前記活性領域の断面において、ベース層の上面から、ゲート電極の下に位置する表面半導体層の上面までの厚さが、前記ベース層の上面から、前記ゲート電極を覆う層間絶縁膜の一部に形成された第2開口部が達する領域に位置する表面半導体層の上面までの厚さよりも薄いことを特徴とする半導体装置。
    A semiconductor device including an element of an insulated gate bipolar transistor,
    The active region in which the element of the insulated gate bipolar transistor is formed is a region having a long side in the first direction and a short side in the second direction orthogonal to the first direction when viewed from above.
    In the cross section of the active region along the second direction, the thickness from the upper surface of the base layer to the upper surface of the surface semiconductor layer located under the gate electrode covers the gate electrode from the upper surface of the base layer. A semiconductor device characterized in that the thickness is smaller than the thickness up to the upper surface of a surface semiconductor layer located in a region reached by a second opening formed in a part of an interlayer insulating film.
  9.  絶縁ゲート型バイポーラトランジスタの素子を含む半導体装置であって、
     前記絶縁ゲート型バイポーラトランジスタの素子が形成される活性領域は、上面視において第1方向に長辺を有し、前記第1方向と直交する第2方向に短辺を有する領域とされ、
     前記第2方向に沿った前記活性領域の断面において、埋め込み絶縁膜の第1開口部に対応する位置における前記埋め込み絶縁膜の上面から表面半導体層の上面までの厚さは、ゲート電極の端部に対応する位置における前記埋め込み絶縁膜の上面から前記表面半導体層の上面までの厚さよりも薄いことを特徴とする半導体装置。
    A semiconductor device including an element of an insulated gate bipolar transistor,
    The active region in which the element of the insulated gate bipolar transistor is formed is a region having a long side in the first direction and a short side in the second direction orthogonal to the first direction when viewed from above.
    In the cross section of the active region along the second direction, the thickness from the upper surface of the buried insulating film to the upper surface of the surface semiconductor layer at the position corresponding to the first opening of the buried insulating film is the end of the gate electrode And a thickness from the upper surface of the buried insulating film to the upper surface of the surface semiconductor layer at a position corresponding to.
  10.  以下の工程を含むIGBTの素子を備える半導体装置の製造方法:
    (a)前記IGBTのベース層となる第2導電型を示す基板を準備する工程;
    (b)前記基板の主面上に、第1厚さを有する薄膜部と前記第1厚さよりも厚い第2厚さを有する厚膜部とを含む絶縁膜を形成する工程;
    (c)前記絶縁膜の前記薄膜部に、前記基板に達する第1開口部を形成する工程;
    (d)前記絶縁膜の前記薄膜部上に、前記第2導電型を示す表面半導体層を、前記第1開口部を埋め込んで形成する工程;
    (e)前記表面半導体層内の所定の領域に、前記第2導電型と異なる第1導電型を示す前記IGBTのチャネル層を形成する工程;
    (f)前記チャネル層内の所定の領域に、前記チャネル層よりも高濃度の前記第1導電型を示す前記IGBTの第1エミッタ層を形成する工程;
    (g)前記工程(f)の後、前記表面半導体層上に、前記IGBTのゲート絶縁膜を形成する工程;
    (h)前記ゲート絶縁膜上に、前記IGBTのゲート電極を形成する工程;
    (i)前記表面半導体層内に前記第2導電型を示す不純物を導入して、前記ゲート電極の両側の前記表面半導体層の前記第1エミッタ層が形成されていない領域に、前記IGBTの第1ソース層を形成する工程;
    (j)前記ゲート電極の側面にサイドウォールを形成する工程;
    (k)前記表面半導体層内に前記第1導電型を示す不純物を導入して、前記サイドウォールの両側の前記表面半導体層の前記第1エミッタ層が形成されている領域に、前記第1エミッタ層よりも高濃度の前記IGBTの第2エミッタ層を形成し、
     前記表面半導体層内に前記第2導電型を示す不純物を導入して、前記サイドウォールの両側の前記表面半導体層の前記第1ソース層が形成されている領域に、前記第1ソース層よりも高濃度の前記IGBTの第2ソース層を形成する工程;
    (l)前記工程(k)の後、前記基板の前記主面側に、窒化膜を形成する工程;
    (m)前記ゲート電極上の前記窒化膜に、第3開口部を形成する工程;
    (n)前記工程(m)の後、前記基板の前記主面側に、層間絶縁膜を形成する工程;
    (o)前記第3開口部が形成された領域の前記層間絶縁膜、ならびに前記第2エミッタ層上および前記第2ソース層上の前記層間絶縁膜および前記窒化膜をエッチングして、前記ゲート電極、ならびに前記第2エミッタ層および前記第2ソース層に達する第2開口部をそれぞれ形成する工程;
    (p)前記第2エミッタ層および前記第2ソース層と電気的に接続する前記IGBTのソース電極、ならびに前記ゲート電極と電気的に接続するゲートパッドを形成する工程;
    (q)前記基板を前記主面と反対側の裏面から薄くして、前記IGBTの前記ベース層を形成する工程;
    (r)前記工程(q)の後、前記基板の前記裏面側に前記第2導電型を示す前記IGBTのバッファ層を形成する工程;
    (s)前記工程(r)の後、前記基板の前記裏面側に前記第1導電型を示す前記IGBTのコレクタ層を形成する工程;
    (t)前記コレクタ層と電気的に接続する前記IGBTのコレクタ電極を形成する工程、
     ここで、前記工程(d)において、前記基板の前記主面から、前記表面半導体層の上面までの厚さが、前記絶縁膜の前記厚膜部に囲まれた領域の中央部において最も薄く、前記絶縁膜の前記厚膜部に近づくに従い徐々に厚くなるように、前記表面半導体層は形成される。
    Method for manufacturing a semiconductor device including an IGBT element including the following steps:
    (A) a step of preparing a substrate having a second conductivity type which becomes a base layer of the IGBT;
    (B) forming an insulating film including a thin film portion having a first thickness and a thick film portion having a second thickness greater than the first thickness on a main surface of the substrate;
    (C) forming a first opening reaching the substrate in the thin film portion of the insulating film;
    (D) forming a surface semiconductor layer having the second conductivity type on the thin film portion of the insulating film by embedding the first opening;
    (E) forming a channel layer of the IGBT having a first conductivity type different from the second conductivity type in a predetermined region in the surface semiconductor layer;
    (F) forming a first emitter layer of the IGBT exhibiting the first conductivity type at a higher concentration than the channel layer in a predetermined region in the channel layer;
    (G) After the step (f), forming a gate insulating film of the IGBT on the surface semiconductor layer;
    (H) forming a gate electrode of the IGBT on the gate insulating film;
    (I) Impurities of the second conductivity type are introduced into the surface semiconductor layer, and the first emitter layer of the IGBT is formed in a region of the surface semiconductor layer on both sides of the gate electrode where the first emitter layer is not formed. Forming one source layer;
    (J) forming a sidewall on a side surface of the gate electrode;
    (K) An impurity having the first conductivity type is introduced into the surface semiconductor layer, and the first emitter is formed in a region where the first emitter layer of the surface semiconductor layer on both sides of the sidewall is formed. Forming a second emitter layer of the IGBT having a higher concentration than the layer;
    An impurity having the second conductivity type is introduced into the surface semiconductor layer, and the first source layer is formed in a region where the first source layer of the surface semiconductor layer on both sides of the sidewall is formed. Forming a high concentration second source layer of the IGBT;
    (L) After the step (k), forming a nitride film on the main surface side of the substrate;
    (M) forming a third opening in the nitride film on the gate electrode;
    (N) After the step (m), a step of forming an interlayer insulating film on the main surface side of the substrate;
    (O) etching the interlayer insulating film in the region where the third opening is formed, and the interlayer insulating film and the nitride film on the second emitter layer and the second source layer, to thereby form the gate electrode And forming second openings respectively reaching the second emitter layer and the second source layer;
    (P) forming a source electrode of the IGBT electrically connected to the second emitter layer and the second source layer, and a gate pad electrically connected to the gate electrode;
    (Q) forming the base layer of the IGBT by thinning the substrate from the back surface opposite to the main surface;
    (R) After the step (q), forming a buffer layer of the IGBT showing the second conductivity type on the back side of the substrate;
    (S) After the step (r), a step of forming a collector layer of the IGBT showing the first conductivity type on the back surface side of the substrate;
    (T) forming a collector electrode of the IGBT electrically connected to the collector layer;
    Here, in the step (d), the thickness from the main surface of the substrate to the upper surface of the surface semiconductor layer is the thinnest in the central portion of the region surrounded by the thick film portion of the insulating film, The surface semiconductor layer is formed so as to gradually increase as it approaches the thick film portion of the insulating film.
  11.  請求項10記載の半導体装置の製造方法において、
     前記絶縁膜の前記厚膜部に囲まれた領域は、上面視において第1方向に長辺を有し、前記第1方向と直交する第2方向に短辺を有し、
     前記第2方向に沿った、前記絶縁膜の前記厚膜部に囲まれた領域の断面において、
     前記ベース層の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さが、前記ベース層の上面から、前記第2開口部が形成された領域に位置する前記表面半導体層の上面までの厚さよりも薄くなるように、前記表面半導体層が形成されることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 10.
    The region surrounded by the thick film portion of the insulating film has a long side in the first direction in a top view, and a short side in a second direction orthogonal to the first direction,
    In a cross section of the region surrounded by the thick film portion of the insulating film along the second direction,
    The surface semiconductor in which the thickness from the upper surface of the base layer to the upper surface of the surface semiconductor layer located under the gate electrode is located in a region where the second opening is formed from the upper surface of the base layer A method of manufacturing a semiconductor device, wherein the surface semiconductor layer is formed so as to be thinner than a thickness up to an upper surface of the layer.
  12.  請求項11記載の半導体装置の製造方法において、
     前記絶縁膜の前記薄膜部の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さは、300nm以下であることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11.
    A method of manufacturing a semiconductor device, wherein a thickness from an upper surface of the thin film portion of the insulating film to an upper surface of the surface semiconductor layer located under the gate electrode is 300 nm or less.
  13.  請求項11記載の半導体装置の製造方法において、
     前記絶縁膜の前記薄膜部の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さは、100nm以下であることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11.
    A method of manufacturing a semiconductor device, wherein a thickness from an upper surface of the thin film portion of the insulating film to an upper surface of the surface semiconductor layer located under the gate electrode is 100 nm or less.
  14.  請求項11記載の半導体装置の製造方法において、
     前記絶縁膜の前記薄膜部の上面から、前記ゲート電極の下に位置する前記表面半導体層の上面までの厚さは、20nm~40nmの範囲であることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 11.
    A method of manufacturing a semiconductor device, wherein a thickness from an upper surface of the thin film portion of the insulating film to an upper surface of the surface semiconductor layer located under the gate electrode is in a range of 20 nm to 40 nm.
  15.  請求項10記載の半導体装置の製造方法において、
     前記絶縁膜の前記厚膜部の前記第2厚さは、300nmよりも厚いことを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 10.
    The method of manufacturing a semiconductor device, wherein the second thickness of the thick film portion of the insulating film is greater than 300 nm.
  16.  請求項10記載の半導体装置の製造方法において、
     前記窒化膜の厚さは、50nm~70nmであることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 10.
    A method of manufacturing a semiconductor device, wherein the nitride film has a thickness of 50 nm to 70 nm.
  17.  請求項10記載の半導体装置の製造方法において、さらに、前記工程(b)は、以下の工程を含む:
    (b1)前記基板の前記主面上に、前記第2厚さを有する前記絶縁膜を形成する工程;
    (b2)前記厚膜部を形成する領域にレジストパターンを形成する工程;
    (b3)前記レジストパターンをマスクとした等方性ウエットエッチングにより、前記絶縁膜に前記第1厚さを有する前記薄膜部を形成する工程。
    11. The method for manufacturing a semiconductor device according to claim 10, wherein the step (b) further includes the following steps:
    (B1) forming the insulating film having the second thickness on the main surface of the substrate;
    (B2) forming a resist pattern in a region where the thick film portion is to be formed;
    (B3) A step of forming the thin film portion having the first thickness on the insulating film by isotropic wet etching using the resist pattern as a mask.
  18.  請求項10記載の半導体装置の製造方法において、さらに、前記工程(d)は、以下の工程を含む:
    (d1)前記絶縁膜の前記薄膜部上に、前記絶縁膜の前記厚膜部の前記第2厚さよりも厚い前記第2導電型を示す導電膜を形成する工程;
    (d2)前記導電膜をCMP法により研磨して、前記絶縁膜の前記薄膜部上に前記表面半導体層を形成する工程。
    The method of manufacturing a semiconductor device according to claim 10, wherein the step (d) further includes the following steps:
    (D1) forming a conductive film having the second conductivity type, which is thicker than the second thickness of the thick film portion of the insulating film, on the thin film portion of the insulating film;
    (D2) A step of polishing the conductive film by a CMP method to form the surface semiconductor layer on the thin film portion of the insulating film.
  19.  請求項18記載の半導体装置の製造方法において、
     前記導電膜は、エピタキシャル法により形成されることを特徴とする半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 18.
    The method for manufacturing a semiconductor device, wherein the conductive film is formed by an epitaxial method.
  20.  以下の工程を含む絶縁ゲート型バイポーラトランジスタの素子を備える半導体装置の製造方法:
    (a)基板の主面上に、第1厚さを有する薄膜部と、前記第1厚さよりも厚い第2厚さを有する厚膜部とを含む絶縁膜を形成する工程;
    (b)前記絶縁膜の前記薄膜部に前記基板に達する第1開口部を形成する工程;
    (c)前記工程(b)の後、前記絶縁膜の前記薄膜部上に表面半導体層を、前記第1開口部を埋め込んで形成する工程、
     ここで、前記基板の主面から前記表面半導体層の上面までの厚さは、前記絶縁膜の前記厚膜部に囲まれた領域の中央部において薄く、前記絶縁膜の前記厚膜部に近づくに従い徐々に厚くなる。
    Method for manufacturing a semiconductor device comprising an element of an insulated gate bipolar transistor including the following steps:
    (A) forming an insulating film including a thin film portion having a first thickness and a thick film portion having a second thickness greater than the first thickness on a main surface of the substrate;
    (B) forming a first opening reaching the substrate in the thin film portion of the insulating film;
    (C) After the step (b), forming a surface semiconductor layer on the thin film portion of the insulating film by embedding the first opening,
    Here, the thickness from the main surface of the substrate to the upper surface of the surface semiconductor layer is thin in the central portion of the region surrounded by the thick film portion of the insulating film and approaches the thick film portion of the insulating film. It becomes thicker gradually.
  21.  以下の工程を含む絶縁ゲート型バイポーラトランジスタの素子を備える半導体装置の製造方法:
    (a)基板の主面上に、第1厚さを有する薄膜部と、前記第1厚さよりも厚い第2厚さを有する厚膜部とを含む絶縁膜を形成する工程;
    (b)前記絶縁膜の前記薄膜部に前記基板に達する第1開口部を形成する工程;
    (c)前記工程(b)の後、前記絶縁膜の前記薄膜部上に表面半導体層を、前記第1開口部を埋め込んで形成する工程、
     ここで、前記絶縁膜の上面から前記表面半導体層の上面までの厚さは、前記絶縁膜の厚膜部に囲まれた領域の中央部において薄く、前記絶縁膜の前記厚膜部に近づくに従い徐々に厚くなるように、前記表面半導体層が形成される。
    Method for manufacturing a semiconductor device comprising an element of an insulated gate bipolar transistor including the following steps:
    (A) forming an insulating film including a thin film portion having a first thickness and a thick film portion having a second thickness greater than the first thickness on a main surface of the substrate;
    (B) forming a first opening reaching the substrate in the thin film portion of the insulating film;
    (C) After the step (b), forming a surface semiconductor layer on the thin film portion of the insulating film by embedding the first opening,
    Here, the thickness from the upper surface of the insulating film to the upper surface of the surface semiconductor layer is thin at the center of the region surrounded by the thick film portion of the insulating film, and as the thickness approaches the thick film portion of the insulating film The surface semiconductor layer is formed so as to gradually increase in thickness.
PCT/JP2012/057589 2012-03-23 2012-03-23 Semiconductor device and method for manufacturing same WO2013140621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057589 WO2013140621A1 (en) 2012-03-23 2012-03-23 Semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057589 WO2013140621A1 (en) 2012-03-23 2012-03-23 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013140621A1 true WO2013140621A1 (en) 2013-09-26

Family

ID=49222112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057589 WO2013140621A1 (en) 2012-03-23 2012-03-23 Semiconductor device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013140621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996671B2 (en) * 2012-12-28 2016-09-21 株式会社日立製作所 Silicon carbide semiconductor device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235383A (en) * 2007-03-19 2008-10-02 Fuji Electric Device Technology Co Ltd Mos type semiconductor device and its fabrication process
JP2010062262A (en) * 2008-09-02 2010-03-18 Renesas Technology Corp Semiconductor device and manufacturing method of same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235383A (en) * 2007-03-19 2008-10-02 Fuji Electric Device Technology Co Ltd Mos type semiconductor device and its fabrication process
JP2010062262A (en) * 2008-09-02 2010-03-18 Renesas Technology Corp Semiconductor device and manufacturing method of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996671B2 (en) * 2012-12-28 2016-09-21 株式会社日立製作所 Silicon carbide semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5816570B2 (en) Semiconductor device manufacturing method and semiconductor device
US9576841B2 (en) Semiconductor device and manufacturing method
WO2019069580A1 (en) Semiconductor device
US10403554B2 (en) Method for manufacturing semiconductor device
JP2018129378A (en) Semiconductor device and method of manufacturing the same, and semiconductor wafer structure
JP7029710B2 (en) Semiconductor device
WO2014129404A1 (en) Semiconductor device and method for manufacturing same
US11094790B2 (en) Silicon carbide semiconductor device
JP2018110164A (en) Semiconductor device
JPWO2018139556A1 (en) Semiconductor device
JP7319072B2 (en) semiconductor equipment
JP5904276B2 (en) Semiconductor device
JP6589263B2 (en) Semiconductor device
JP4432332B2 (en) Semiconductor device and manufacturing method thereof
US20130207158A1 (en) Semiconductor device
WO2013140621A1 (en) Semiconductor device and method for manufacturing same
JP5239254B2 (en) Method for manufacturing insulated gate type semiconductor device
JP2013251467A (en) Semiconductor device and semiconductor device manufacturing method
US20240170569A1 (en) Semiconductor device and method of manufacturing the same
JP7129436B2 (en) SiC semiconductor device
WO2021039348A1 (en) Semiconductor device and method for producing same
JP7329348B2 (en) semiconductor equipment
JP6511125B2 (en) Semiconductor device manufacturing method
JP2008210899A (en) Semiconductor device and method for manufacturing the same
JP2020170859A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP