WO2013140560A1 - pH自動調整装置 - Google Patents

pH自動調整装置 Download PDF

Info

Publication number
WO2013140560A1
WO2013140560A1 PCT/JP2012/057276 JP2012057276W WO2013140560A1 WO 2013140560 A1 WO2013140560 A1 WO 2013140560A1 JP 2012057276 W JP2012057276 W JP 2012057276W WO 2013140560 A1 WO2013140560 A1 WO 2013140560A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
container
automatic
intensity
adjustment
Prior art date
Application number
PCT/JP2012/057276
Other languages
English (en)
French (fr)
Inventor
彦北 朱
光一 千葉
寿晴 黒田
道雄 堀内
Original Assignee
システム・インスツルメンツ株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by システム・インスツルメンツ株式会社, 独立行政法人産業技術総合研究所 filed Critical システム・インスツルメンツ株式会社
Priority to PCT/JP2012/057276 priority Critical patent/WO2013140560A1/ja
Publication of WO2013140560A1 publication Critical patent/WO2013140560A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D21/00Control of chemical or physico-chemical variables, e.g. pH value
    • G05D21/02Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means

Definitions

  • the present invention relates to an automatic pH adjusting device, and more particularly to an automatic pH adjusting device that can be suitably used for pH adjustment as a pretreatment for solid phase extraction.
  • trace elements including heavy metals is conducted for the study of material circulation in the ocean, water quality inspection of tap water, water quality survey of lake water and river water.
  • a chelate resin or the like for the purpose of separation from interference components and improvement of analysis sensitivity.
  • Patent Document 1 discloses an automatic pH adjusting device that automatically adjusts the pH of boiler water.
  • This automatic pH adjusting device includes a water supply device that supplies water containing ammonium ions to a boiler water system, and a pH measurement device that measures the pH of boiler water flowing through the boiler water system.
  • the amount of water supplied from the water supply device is controlled based on the pH measured by the pH measurement device, and the acidic components contained in the boiler water are neutralized and reduced.
  • Non-Patent Document 1 discloses an electrode insertion type pH measurement device in which an electrode is directly inserted into a sample.
  • Non-Patent Document 2 discloses a portable pH measurement device that enables pH measurement of a very small amount of sample.
  • Non-Patent Document 3 discloses a flow-type pH measuring device capable of measuring the pH of a sample flowing in a pipe.
  • the amount of sample required for analysis of trace elements is usually several ⁇ l to several tens of ml. Therefore, in the separation and concentration described above, it is sufficient if a sample exceeding the required sample amount can be prepared in a short time, and it is not necessary to use a large-scale apparatus such as Patent Document 1.
  • Patent Document 1 since ammonium ion-containing water is directly supplied to the boiler water system, there is a possibility that the hydrogen ion concentration distribution in the boiler water is biased and a long time is required for pH adjustment. Therefore, it is not suitable for adjusting the pH of the sample for separation and concentration.
  • the measurement device of Non-Patent Document 2 is portable and the device itself is small. Therefore, it is necessary to take a small amount from the sample during pH adjustment and perform pH measurement, and as a result, the pH adjustment may take a long time. Therefore, it is not suitable for pH measurement of a sample during separation and concentration.
  • Non-Patent Documents 1 to 3 it is necessary to directly contact the pH measurement device with the sample, and the possibility of contamination derived from the apparatus cannot be excluded. Therefore, it is not suitable for pH measurement of a sample during separation and concentration.
  • an object of the present invention is to provide an automatic pH adjusting device that can prepare a sample for separation and concentration in a short time or can minimize contamination factors during sample preparation.
  • a first invention is an automatic pH adjusting device, a container capable of containing a pH adjustment target solution; A stirring device capable of stirring the solution to be adjusted for pH contained in the container; When the pH adjustment target solution is accommodated in the container, a spraying device having an injection port arranged at a location where the pH adjusting agent atomized with respect to the liquid surface can be injected, It is characterized by providing.
  • the second invention is the first invention, wherein
  • the pH adjustment target solution is one to which an indicator that changes color according to pH is added,
  • a light irradiation device for irradiating light from outside the container into the container;
  • An intensity detection device that is disposed opposite to the light irradiation device and the container and detects the intensity of transmitted light that has passed through the container;
  • a pH calculator that calculates the pH of the pH adjustment target solution contained in the container using the intensity of transmitted light detected by the intensity detector; It is characterized by providing.
  • the third invention is the first or second invention, wherein
  • the light irradiation device includes a light irradiation unit that emits light
  • the intensity detector includes an intensity detector that detects the intensity of transmitted light
  • the intensity detection unit and the light irradiation unit are arranged perpendicular to the opposing surface of the container to which the intensity detection device and the light irradiation device respectively face, and the intensity detection unit is connected to the light irradiation unit. It is arrange
  • the spray apparatus which has the injection port arrange
  • the bias of the hydrogen ion concentration distribution can be reduced. Accordingly, the pH condition can be adjusted more stably, so that an amount of sample necessary for separation and concentration can be prepared in a short time. Further, since the spray device does not come into contact with the pH adjustment target solution, it is possible to eliminate a cross-contamination factor between samples.
  • the device for calculating the pH of the pH adjustment target solution contained in the container that is, the light irradiation device and the intensity detection device are arranged outside the container, the contamination derived from the device. Factors can be eliminated. Therefore, contamination factors during sample preparation can be minimized.
  • the intensity detection unit and the light irradiation unit are arranged perpendicularly to the opposing surfaces of the container facing the intensity detection device and the light irradiation device, respectively, and the intensity detection unit is Since it arrange
  • FIG. 2 is an enlarged schematic diagram of the nebulizer 28 of FIG. 1.
  • FIG. 2 is an example of the flowchart which shows the pH adjustment process routine performed by PC42.
  • FIG. 1 is a schematic diagram illustrating a configuration of an automatic pH adjusting device 10 according to the present embodiment.
  • the automatic pH adjusting device 10 of this embodiment is a device for automatically adjusting the pH of the sample 12 to which a pH indicator is added.
  • the pH automatic adjustment device 10 includes a container 14 including a rectangular main body portion 14 a that can store a sample 12 and an opening portion 14 b for taking in and out the sample 12.
  • the container 14 is a transparent container made of PET.
  • the material of the container 14 can be used instead of PET as long as it shows a high transmittance with respect to the specific wavelength light described later.
  • the main body 14 a is installed on the stirrer 16.
  • a stirrer 18 is installed inside the main body 14a.
  • the stirrer 16 rotates the stirrer 18 at a low speed by an electromagnetic coil, and the sample 12 can be gently stirred by rotating the stirrer 18 at a low speed.
  • the stirrer 18 is of a shape and material that does not wear due to contact with the main body 14a during rotation.
  • a light source unit 20 that generates an illumination light beam for irradiating the sample 12 and a pinhole plate 22 are installed.
  • the light source unit 20 for example, an LED light source, a halogen light source, a tungsten lamp, a single wavelength laser device, or the like is employed.
  • an optical diffraction device such as a mirror may be used in combination with the light sources according to the enumeration.
  • the light diffraction device is provided at a location where the light source unit 20 in FIG. 1 is disposed, and functions as the light source unit 20. Accordingly, such a light diffraction device can also be adopted as the light source unit 20.
  • a pinhole 22a that transmits part of the illumination light beam generated by the light source unit 20 is provided.
  • a pinhole plate 24 having a pinhole 24a formed at the center thereof and a spectroscope 26 for measuring the intensity of specific wavelength light out of the light flux that has passed through the pinhole 24a are installed on the other side surface of the main body portion 14a.
  • a spectroscope 26 for measuring the intensity of specific wavelength light out of the light flux that has passed through the pinhole 24a.
  • a photodiode, an optical sensor or the like having sufficient sensitivity to the specific wavelength light is employed.
  • the opening 14b is provided with a nebulizer 28 capable of injecting a liquid in a mist form.
  • the nebulizer 28 is attached to a height adjusting member (not shown). The height adjusting member is adjusted so that the liquid surface of the sample 12 and the injection port 28a do not come into contact with each other during the liquid injection.
  • FIG. 2 is an enlarged schematic view of the nebulizer 28 of FIG.
  • the nebulizer 28 includes a gas supply pipe 30 through which compressed air, an inert gas, and the like can be circulated, and a liquid supply pipe 32 through which a liquid can be circulated.
  • the gas supply pipe 30 includes a gas supply port 30a and a gas injection port 30b.
  • the gas supply port 30a is connected to an inert gas tank (not shown) such as nitrogen.
  • the liquid supply pipe 32 includes a liquid supply port 32a and a liquid ejection port 32b.
  • the liquid supply port 32 a is connected to a non-metallic tube 34.
  • FIG. 2 shows a coaxial nebulizer having a double-pipe structure, a coaxial type having a multi-pipe structure and a nebulizer characterized by a cross-flow type fine spray are also employed.
  • the nebulizer 28 is connected via a tube 34 to a container 38 that contains a pH adjusting liquid 36 therein.
  • a solenoid-type opening / closing valve 40 is provided in the middle of the tube 34. When the opening / closing valve 40 is opened while gas is flowing through the gas supply pipe 30, the pH adjustment liquid refined by the gas suction pressure is ejected from the liquid ejection port 32 b toward the liquid surface of the sample 12.
  • the pH automatic adjusting device 10 includes a PC 42 for controlling the entire device.
  • the spectroscope 26 is connected to the input side of the PC 42, and the transmitted light signal 44 from the spectroscope 26 is input to the PC 42.
  • an opening / closing valve 40 is connected to the output side of the PC 42 via an I / O board 46, and an opening / closing signal 48 from the PC 42 is generated from the PC 42.
  • the stirrer 16 and the height adjusting member may be connected to the output side of the PC 42.
  • a substrate integrated controller may be used instead of the PC 42 and the I / O board 46.
  • a valve opening degree conversion model for converting the valve opening degree of the opening / closing valve 40 into the opening / closing signal 48, or the difference between the target transmitted light intensity I tar corresponding to the adjustment target pH and the measured transmitted light intensity I mv A supply amount map that defines the relationship between ⁇ I and the supply amount of the pH adjusting liquid 36, a valve opening map that defines the relationship between the supply amount of the pH adjusting solution 36 and the valve opening of the opening / closing valve 40, etc. It is assumed that it is stored in
  • the amount of sample required for analysis of trace elements is usually several ⁇ l to several tens of ml, and this is necessary for pH adjustment for separation and concentration. It is sufficient if the amount exceeding the sample amount can be prepared in a short time.
  • the pH adjustment liquid 36 is added to the sample 12 in a droplet state using an auto burette or the like to adjust the pH.
  • the pH of the solution for separating and concentrating trace elements is in the vicinity of neutrality, and the injection of the adjustment liquid having a droplet size (about 0.1 to 0.3 ml) causes a drastic change in the solution pH.
  • the pH automatic adjusting device 10 of the present embodiment the pH adjusting liquid 36 can be sprayed in the form of a mist toward the liquid surface of the sample 12, so that the intensity fluctuation is reduced and the target pH is stably adjusted Can be reached. Therefore, the amount necessary for separation and concentration can be prepared in a short time.
  • the light source unit 20 and the spectroscope 26 used for pH measurement are installed outside the container 14. Further, the injection port 28 a of the nebulizer 28 does not come into contact with the liquid level of the sample 12. As described above, in the automatic pH adjusting device 10 of the present embodiment, since the device used for pH adjustment is not in contact with the sample 12, contamination factors during pH adjustment can be minimized.
  • FIG. 3 is an example of a flowchart showing a pH adjustment processing routine executed in the PC 42 in the present embodiment. Note that the routine shown in FIG. 3 is repeatedly executed at predetermined intervals.
  • a difference ⁇ I between the target transmitted light intensity I tar and the measured transmitted light intensity I mv is calculated (step 110). Specifically, first, the spectroscope 26 obtains the intensity of the specific wavelength light (measured transmitted light intensity I mv ), and the difference between the measured transmitted light intensity I mv and the target transmitted light intensity I tar is calculated as ⁇ I. It should be noted that a value that is separately set and stored in advance in the PC 42 is used as the target transmitted light intensity I tar .
  • step 120 it is determined whether or not the absolute value
  • > ⁇ I th ⁇ I is applied to the supply amount map, and the supply amount of the pH adjusting liquid 36 is calculated (step 130).
  • ⁇ ⁇ I th in this step the process proceeds to step 140.
  • the threshold value ⁇ I th used in this step can be changed as appropriate according to the pH adjustment accuracy.
  • the opening degree of the on-off valve 40 is changed (step 150). Specifically, first, the valve opening degree of the on-off valve 40 is calculated by applying the supply amount of the pH adjusting liquid 36 calculated in step 130 to the valve opening degree map. Next, the calculated valve opening is applied to the valve opening conversion model to be converted into an opening / closing signal 48 and transmitted to the opening / closing valve 40. Thereby, the supply amount of the pH adjusting liquid 36 from the nebulizer 28 is changed. Following this step, a counter value described later is reset (step 160).
  • step 140 it is determined whether or not the counter value is equal to a predetermined value.
  • the counter value used in this step is counted when
  • the automatic pH adjusting device of this embodiment will be further described with reference to experimental examples.
  • the sample for trace element analysis is basically prepared and stored under acidic conditions, and the separation and concentration of trace elements by solid phase extraction is in a weakly acidic to neutral pH range.
  • the pH of the sample is adjusted by increasing the pH of the sample by adding ammonia water as the pH adjusting liquid 36.
  • pH automatic adjustment device 10 pH automatic adjustment device 12 Sample (solution for pH adjustment) 14,38 container 16 stirrer (stirring device) 18 Stirrer (stirring device) 20 Light source part (light irradiation device, light irradiation part) 26 Spectrometer (Intensity detector, Intensity detector) 28 Nebulizer (spraying device) 28a injection port 36 pH adjusting liquid 42 PC (pH calculation device) 44 Transmitted light signal 48 Open / close signal

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 この発明は、pH自動調整装置に関し、分離濃縮用のサンプルを短時間で準備でき、または、サンプル準備中のコンタミネーション要因を最小化できるpH自動調整装置を提供することを目的とする。 本実施形態のpH自動調整装置10によれば、試料12の液面に向けてpH調整液36を霧状に噴射できるので、上記の強度変動を小さくして安定的に調整目標pHに到達させることができる。よって、分離濃縮に必要な量を短時間で準備できる。また、pH測定に使用する光源部20や分光器26が容器14の外部に設置され、ネブライザ28の噴射口28aが試料12の液面に接触することもない。このように、本実施形態のpH自動調整装置10では、pH調整に使用する機器を試料12と非接触としたので、pH調整中のコンタミネーション要因を最小化できる。

Description

pH自動調整装置
 本発明は、pH自動調整装置に関し、より詳細には、固相抽出の前処理としてのpH調整に好適に使用できるpH自動調整装置に関する。
 重金属を含む微量元素の分析は、海洋における物質循環研究・水道水の水質検査・湖水や河川水の水質調査などのために行われている。この微量元素の分析に際し、干渉成分からの分離や分析の感度向上を目的として、キレート樹脂などを用いた固相抽出による微量元素の分離濃縮が必要となる場合がある。この分離濃縮を行う際には、サンプルを予め最適なpH条件に調整することが要求される。
 pH条件の調整に関し、例えば特許文献1には、ボイラ水のpHを自動的に調整するpH自動調整装置が開示されている。このpH自動調整装置は、アンモニウムイオンを含む水をボイラ水系に供給する水供給装置と、当該ボイラ水系を流れるボイラ水のpHを測定するpH測定装置とを備えている。このpH自動調整装置においては、該pH測定装置で測定したpHに基づいて該水供給装置からの水供給量を制御し、ボイラ水中に含まれる酸性成分を中和低減している。
 また、pH測定装置に関し、例えば非特許文献1には、サンプルに電極を直接挿入する電極挿入型のpH測定装置が開示されている。また、例えば非特許文献2には、微量サンプルのpH測定を可能とした携帯型のpH測定装置が開示されている。更に、例えば非特許文献3には、配管中を流れるサンプルのpHを測定可能なフロー式のpH測定装置が開示されている。
日本特開2011-20012号公報
"pH検出器およびORP検出器"、[online]、平成23年1月23日、第7版、横河電機株式会社、インターネット〈URL:http://www.yokogawa.co.jp/an/download/general/GS12B07B02-00.pdf〉 "コンパクトpHメータ<Twin pH>B-211/212型"、[online]、株式会社堀場製作所、インターネット〈URL:http://www.horiba.com/jp/process-environmental/products/water-quality-measurement/lab-use/details/b-211-212-213-twin-compact-ph-meter-416/〉 "CAT 1000 AUTOMATED pH CONTROLLER OWNER'S MANUAL"、[online]、CAT CONTROLLERS. INC.、インターネット〈URL:http://www.chemauto.com/mediacenter/Manual-CAT1000.pdf〉
 ところで、微量元素の分析に必要となるサンプル量は通常、数μl~数十mlである。そのため、上述した分離濃縮においては、必要サンプル量を上回る量のサンプルを短時間で準備できれば十分であり、上記特許文献1のような大掛かりな装置を用いる必要はない。特に上記特許文献1では、アンモニウムイオン含有水を直接ボイラ水系に供給するので、ボイラ水中の水素イオン濃度分布に偏りが生じpH調整に長時間を要する可能性がある。よって、分離濃縮用サンプルのpH調整には不向きである。また、上記非特許文献2の測定装置は携帯型であり装置自体が小さい。そのため、pH調整中のサンプルから少量分取してpH測定を行う必要があり、結果的にpH調整に長時間を要する可能性がある。よって、分離濃縮中のサンプルのpH測定には不向きである。
 また、微量元素の分析目的に鑑みれば、その分析に至るまでのコンタミネーション要因は極力排除しておくことが望ましい。この点を考慮すると、上記非特許文献1乃至3ではサンプルにpH測定機器を直接接触させる必要があり、装置由来のコンタミネーション可能性を排除できない。よって、分離濃縮中のサンプルのpH測定には不向きである。
 本発明は、上述の課題の少なくとも1つを解決するために鑑みなされたものである。即ち、分離濃縮用のサンプルを短時間で準備でき、または、サンプル準備中のコンタミネーション要因を最小化できるpH自動調整装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、pH自動調整装置であって、
 pH調整対象溶液を収容可能な容器と、
 前記容器内に収容したpH調整対象溶液を撹拌可能な撹拌装置と、
 前記容器内にpH調整対象溶液を収容した場合に、その液面に対して霧状にしたpH調整剤を噴射可能な箇所に配置された噴射口を有する噴霧装置と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記pH調整対象溶液は、pHに応じて変色する指示薬を添加したものであり、
 前記容器外から前記容器内に向かって光を照射する光照射装置と、
 前記光照射装置と前記容器を隔てて対向配置され、前記容器を透過した透過光の強度を検出する強度検出装置と、
 前記強度検出装置で検出した透過光の強度を用いて、前記容器内に収容したpH調整対象溶液のpHを算出するpH算出装置と、
 を備えることを特徴とする。
 また、第3の発明は、第1または第2の発明において、
 前記光照射装置は光を照射する光照射部を備え、
 前記強度検出装置は透過光の強度を検出する強度検出部を備え、
 前記強度検出部および前記光照射部は、前記強度検出装置および前記光照射装置がそれぞれ対向する前記容器の対向面に対して垂直に配置されると共に、前記強度検出部は、前記光照射部からの光照射方向の延長線上に配置されることを特徴とする。
 第1の発明によれば、pH調整対象溶液の液面に対して霧状にしたpH調整剤を噴射可能な箇所に配置された噴射口を有する噴霧装置を備えるので、pH調整対象溶液中の水素イオン濃度分布の偏りを小さくできる。従って、pH条件をより安定的に調整できるので、分離濃縮に必要な量のサンプルを短時間で準備できる。また、噴射装置はpH調整対象溶液と接触しないので、サンプル間のクロスコンタミネーション要因を排除できる。
 第2の発明によれば、容器内に収容したpH調整対象溶液のpHを算出するための機器、即ち、光照射装置や強度検出装置を容器の外部に配置したので、当該機器由来のコンタミネーション要因を排除できる。よって、サンプル準備中のコンタミネーション要因を最小化できる。
 第3の発明によれば、強度検出部および光照射部が上記強度検出装置および上記光照射装置がそれぞれ対向する上記容器の対向面に対して垂直に配置されると共に、上記強度検出部が上記光照射部からの光照射方向の延長線上に配置されるので、上記容器を透過する透過光の強度を安定的に検出できる。
実施形態のpH自動調整装置の構成を示す概略図である。 図1のネブライザ28の拡大模式図である。 本実施形態において、PC42により実行されるpH調整処理ルーチンを示すフローチャートの一例である。
[pH自動調整装置の構成]
 以下、図1乃至図3や実験例を参照しながら、本発明の実施の形態について説明する。図1は、本実施形態のpH自動調整装置10の構成を示す概略図である。本実施形態のpH自動調整装置10は、pH指示薬を添加した試料12のpHを自動的に調整するための装置である。図1に示すように、pH自動調整装置10は、試料12を収容可能な四角形状の本体部14aと、試料12を出し入れするための開口部14bとから構成される容器14を備えている。容器14はPET製の透明容器である。但し、容器14の材料は、後述する特定波長光に対して高い透過性を示すものであればPETの代わりに採用できる。
 本体部14aは撹拌器16上に設置されている。本体部14aの内部には撹拌子18が設置されている。撹拌器16は電磁コイルによって撹拌子18を低速回転させるものであり、撹拌子18を低速回転させることで試料12を緩やかに撹拌することができる。なお、撹拌子18としては、回転中に本体部14aとの接触によって磨耗することの無いような形状、材料のものが採用される。
 本体部14aの一方の側面には、試料12を照射するための照明光束を発生させる光源部20と、ピンホール板22とが設置されている。光源部20としては、例えばLED光源、ハロゲン光源、タングステンランプ、単波長レーザ装置などが採用される。なお、光路長の増加による検出感度向上を図る場合は、例えばミラーといった光回折装置を、列挙に係る光源と組み合わせて用いることがある。この場合、当該光回折装置は、図1の光源部20の配置箇所に設けられ、光源部20として機能することになる。従って、光源部20としては、このような光回折装置も採用できる。ピンホール板22の中心には、光源部20で発生させた照明光束のうちの一部を透過するピンホール22aが設けられている。
 本体部14aの他方の側面には、その中心にピンホール24aが形成されたピンホール板24と、ピンホール24aを通過した光束のうちの特定波長光の強度を測定する分光器26とが設置されている。分光器26としては、上記特定波長光に十分な感度を有するフォトダイオード、光センサなどが採用される。
 開口部14bには、液体を霧状に噴射可能なネブライザ28が設けられている。ネブライザ28は高さ調節部材(不図示)に取り付けられている。この高さ調節部材により、試料12の液面と噴射口28aとが液体噴射中に接触することのないように調節される。ここで、図2を参照しながら、ネブライザ28の構成について説明する。図2は、図1のネブライザ28の拡大模式図である。図2に示すように、ネブライザ28は、圧縮空気、不活性ガス等を流通可能なガス供給管30と、液体を流通可能な液体供給管32とを備えている。ガス供給管30は、ガス供給口30aとガス噴射口30bとを備えている。ガス供給口30aは、窒素等の不活性ガスタンク(不図示)と接続されている。同様に、液体供給管32は、液体供給口32aと液体噴射口32bとを備えている。液体供給口32aは、非金属製のチューブ34と接続されている。なお、図2には二重管構造を有する同軸型のネブライザを示しているが、このほか多重管構造を有する同軸型や、クロスフロー型の微細噴霧を特徴とするネブライザも採用される。
 再び図1に戻り、pH自動調整装置10の構成について説明する。ネブライザ28は、pH調整液36を内部に収納した容器38とチューブ34を介して接続されている。チューブ34の途中には、ソレノイド式の開閉バルブ40が設けられている。
 ガス供給管30にガスを流しつつ開閉バルブ40を開くと、ガスの吸引圧によって微細化されたpH調整液が液体噴射口32bから試料12の液面に向けて噴射される。
 また、pH自動調整装置10は、装置全体をコントロールするためのPC42を備えている。PC42の入力側には分光器26が接続されており、分光器26からの透過光信号44がPC42に入力される。一方、PC42の出力側にはI/Oボード46を介して開閉バルブ40が接続されており、PC42からの開閉信号48がPC42から発せられる。なお、開閉バルブ40同様、PC42の出力側に撹拌器16や、上記高さ調節部材が接続されていてもよい。また、PC42およびI/Oボード46の代わりに、基板集積コントローラを使用してもよい。
 PC42の内部には、各種計算モデル、関係マップなどが予め構築、設定等された上で記憶されているものとする。例えば、開閉バルブ40のバルブ開度を開閉信号48に変換するためのバルブ開度変換モデルや、調整目標pHに対応する目標透過光強度Itarと、測定した透過光の強度Imvとの差ΔIと、pH調整液36の供給量との関係を規定した供給量マップ、pH調整液36の供給量と開閉バルブ40のバルブ開度との関係を規定したバルブ開度マップなどがPC42の内部に記憶されているものとする。
[pH自動調整装置の特徴]
 上述したように、微量元素の分析に必要となるサンプル量(例えば、分析機器に投入されるサンプル量)は通常数μl~数十mlであり、分離濃縮のためのpH調整においては、この必要サンプル量を上回る量を短時間で準備できれば十分である。ここで、オートビュレット等を用いてpH調整液36を液滴状態で試料12に添加しpH調整すると仮定する。微量元素の分離濃縮用溶液のpHは中性付近の場合が多く、液滴サイズ(約0.1~0.3ml)の調整液の注入は、溶液pHの激しい変化を引き起こす。そうすると、試料12を通過する特定波長光の強度が変動し、その結果、pH調整に長時間(例えば10分~30分)を要する可能性がある。この点、本実施形態のpH自動調整装置10によれば、試料12の液面に向けてpH調整液36を霧状に噴射できるので、上記の強度変動を小さくして安定的に調整目標pHに到達させることができる。よって、分離濃縮に必要な量を短時間で準備できる。
 また、上述したように、微量元素の分析目的に鑑みれば、その分析に至るまでのコンタミネーション要因を極力排除しておくことが望ましい。この点、本実施形態のpH自動調整装置10では、pH測定に使用する光源部20や分光器26が容器14の外部に設置されている。また、ネブライザ28の噴射口28aが試料12の液面に接触することもない。このように、本実施形態のpH自動調整装置10では、pH調整に使用する機器を試料12と非接触としたので、pH調整中のコンタミネーション要因を最小化できる。
[実施の形態における具体的処理]
 次に、図3を参照しながら、pH自動調整装置10によるpH自動調整を実現するための具体的な処理について説明する。図3は、本実施形態において、PC42において実行されるpH調整処理ルーチンを示すフローチャートの一例である。なお、図3に示すルーチンは、所定間隔にて繰り返し実行されるものとする。
 図3に示すルーチンにおいて、先ず、目標透過光強度Itarと測定透過光強度Imvとの差ΔIが算出される(ステップ110)。具体的には先ず、分光器26において特定波長光の強度(測定透過光強度Imv)が求められ、測定透過光強度Imvと目標透過光強度Itarとの差分がΔIとして算出される。なお、目標透過光強度Itarには、別途設定され予めPC42の内部に記憶されている値が用いられるものとする。
 続いて、ステップ110で算出したΔIの絶対値|ΔI|が閾値ΔIthよりも大きいか否かが判定される(ステップ120)。本ステップにおいて、この|ΔI|>ΔIthの場合には、ΔIが上記供給量マップに適用されpH調整液36の供給量が算出される(ステップ130)。一方、本ステップにおいて、|ΔI|≦ΔIthの場合には、ステップ140に進む。なお、本ステップで用いる閾値ΔIthは、pH調整精度に応じて適宜変更が可能である。
 ステップ130に続いて、開閉バルブ40の開度が変更される(ステップ150)。具体的には先ず、ステップ130で算出したpH調整液36の供給量を上記バルブ開度マップに適応して開閉バルブ40のバルブ開度を算出する。次いで、算出したバルブ開度を上記バルブ開度変換モデルに適用して開閉信号48に変換され、開閉バルブ40に発信される。これにより、ネブライザ28からのpH調整液36の供給量が変更される。本ステップに続いて、後述のカウンタ値がリセットされる(ステップ160)。
 ステップ140では、カウンタ値が所定値と等しいか否かが判定される。本ステップで用いるカウンタ値は、|ΔI|≦ΔIthの場合にカウントされるものである。また、本ステップで用いる所定値は、pH調整精度に応じて別途設定され、予めPC42の内部に記憶されているものとする。本ステップにおいて、カウンタ値が所定値と等しい場合、pH調整が終了したと判断できるので、閉信号としての開閉信号48が開閉バルブ40に発信される(ステップ170)。一方、本ステップにおいて、カウンタ値が所定値と等しくない場合、カウンタ値に1が加算される(ステップ180)。
[実験例]
 次に、実験例を参照しながら、本実施形態のpH自動調整装置について更に説明する。
 なお、本実験例においては、微量元素分析用の試料が基本的に酸性条件に調製し保存されていること、および、固相抽出による微量元素の分離濃縮が弱酸性から中性のpH範囲で行われることを考慮し、アンモニア水をpH調整液36として添加することで試料pHを上昇させてpH調整を実現している。
 pH調整に際しては、先ず、0.2%硝酸溶液100ml中に、メチルレッド指示薬(0.1%)および酢酸(99%)0.5ml、アンモニア水(28%)0.85mlを添加してテスト試料を調製した。次いで、調製したテスト試料を容器14に収容し、アンモニア水(28%)をネブライザ28から添加した。分光器26での計測波長は560nmを用いた。透過光信号44の計測および開閉バルブ40のコントロールは、目的透過光強度の2/3に到達するまでは300ms間隔で行い、その後は100ms間隔で行った。直近3回の透過光信号強度が目標強度となった場合にpH調整が完了するとした。
 調整目標pH=6.0としてpH調整を行ったところ、10個の独立したテスト試料のうち、pH=5.9となったものが2個、pH=6.0となったものが5個、pH=6.1となったものが3個であった。この結果から、本実施形態のpH自動調整装置によれば、固相抽出における微量元素の回収率の再現性を確保するのに十分な精度でpH調整できることが明らかとなった。また、各テスト試料の調整は2分以内に完了できた。そのため、固相抽出に必要な量を短時間で準備できることも明らかとなった。
 10 pH自動調整装置
 12 試料(pH調整対象溶液)
 14,38 容器
 16 撹拌器(撹拌装置)
 18 撹拌子(撹拌装置)
 20 光源部(光照射装置、光照射部)
 26 分光器(強度検出装置、強度検出部)
 28 ネブライザ(噴霧装置)
 28a 噴射口
 36 pH調整液
 42 PC(pH算出装置)
 44 透過光信号
 48 開閉信号

Claims (3)

  1.  pH調整対象溶液を収容可能な容器と、
     前記容器内に収容したpH調整対象溶液を撹拌可能な撹拌装置と、
     前記容器内にpH調整対象溶液を収容した場合に、その液面に対して霧状にしたpH調整剤を噴射可能な箇所に配置された噴射口を有する噴霧装置と、
     を備えることを特徴とするpH自動調整装置。
  2.  前記pH調整対象溶液は、pHに応じて変色する指示薬を添加したものであり、
     前記容器外から前記容器内に向かって光を照射する光照射装置と、
     前記光照射装置と前記容器を隔てて対向配置され、前記容器を透過した透過光の強度を検出する強度検出装置と、
     前記強度検出装置で検出した透過光の強度を用いて、前記容器内に収容したpH調整対象溶液のpHを算出するpH算出装置と、
     を備えることを特徴とする請求項1に記載のpH自動調整装置。
  3.  前記光照射装置は光を照射する光照射部を備え、
     前記強度検出装置は透過光の強度を検出する強度検出部を備え、
     前記強度検出部および前記光照射部は、前記強度検出装置および前記光照射装置がそれぞれ対向する前記容器の対向面に対して垂直に配置されると共に、前記強度検出部は、前記光照射部からの光照射方向の延長線上に配置されることを特徴とする請求項1または2に記載のpH自動調整装置。
PCT/JP2012/057276 2012-03-22 2012-03-22 pH自動調整装置 WO2013140560A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057276 WO2013140560A1 (ja) 2012-03-22 2012-03-22 pH自動調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057276 WO2013140560A1 (ja) 2012-03-22 2012-03-22 pH自動調整装置

Publications (1)

Publication Number Publication Date
WO2013140560A1 true WO2013140560A1 (ja) 2013-09-26

Family

ID=49222054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057276 WO2013140560A1 (ja) 2012-03-22 2012-03-22 pH自動調整装置

Country Status (1)

Country Link
WO (1) WO2013140560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029624A1 (ja) * 2013-08-30 2015-03-05 システム・インスツルメンツ株式会社 pH自動調整装置
EP3719607A1 (en) * 2019-04-02 2020-10-07 Covestro Deutschland AG Smart container device, transportation tool, user terminal and management system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386251A (ja) * 1989-08-28 1991-04-11 Todoroki Sangyo Kk 化学反応制御装置
JP2001249134A (ja) * 1999-12-28 2001-09-14 Matsushita Electric Ind Co Ltd タンパク質濃度計測用試薬、これを用いたタンパク質濃度計測方法および尿検査方法
JP2004085146A (ja) * 2002-08-29 2004-03-18 Miura Co Ltd ボイラ装置の腐食抑制およびスケール生成抑制方法
JP2005195412A (ja) * 2004-01-06 2005-07-21 Dkk Toa Corp Cod計用エアーノズル式自動滴定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386251A (ja) * 1989-08-28 1991-04-11 Todoroki Sangyo Kk 化学反応制御装置
JP2001249134A (ja) * 1999-12-28 2001-09-14 Matsushita Electric Ind Co Ltd タンパク質濃度計測用試薬、これを用いたタンパク質濃度計測方法および尿検査方法
JP2004085146A (ja) * 2002-08-29 2004-03-18 Miura Co Ltd ボイラ装置の腐食抑制およびスケール生成抑制方法
JP2005195412A (ja) * 2004-01-06 2005-07-21 Dkk Toa Corp Cod計用エアーノズル式自動滴定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU YANBEI ET AL.: "Bibun Genso no Bunri Noshuku-yo Koso Chushutsu Zenjido Shori System no Kaihatsu", THE OCEANOGRAPHIC SOCIETY OF JAPAN KOEN YOSHISHU, vol. 2011, 14 March 2011 (2011-03-14), pages 159 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029624A1 (ja) * 2013-08-30 2015-03-05 システム・インスツルメンツ株式会社 pH自動調整装置
US9952606B2 (en) 2013-08-30 2018-04-24 System Instruments Co., Ltd. Automatic pH adjustment device
EP3719607A1 (en) * 2019-04-02 2020-10-07 Covestro Deutschland AG Smart container device, transportation tool, user terminal and management system

Similar Documents

Publication Publication Date Title
US11703494B2 (en) Measuring device
US20160103089A1 (en) Opto-Electochemical Sensing System for Monitoring and Controlling Industrial Fluids
Rocha et al. An improved flow system for spectrophotometric determination of anions exploiting multicommutation and multidetection
WO2013140560A1 (ja) pH自動調整装置
Chaparro et al. A multisyringe flow-based system for kinetic–catalytic determination of cobalt (II)
CN105445389B (zh) 校准色谱***以及分析样品的自动化方法
CN203365401U (zh) 用于测定碳酸根和碳酸氢根离子的经济型半自动滴定装置
Huseyinli et al. Spectrophotometric determination of aluminium and indium with 2, 2′, 3, 4-tetrahydroxy-3′, 5′-disulphoazobenzene
US20090275144A1 (en) System and Method for Colorimetric Titration Measurements
KR101897373B1 (ko) pH 자동 조정 장치
KR100414550B1 (ko) 다성분 용액의 농도 분석 시스템 및 방법
Carnrick et al. Spectral interferences using the Zeeman effect for furnace atomic absorption spectroscopy
CN105115918A (zh) 基于吸收光谱的pH值快速在线检测装置及方法
Zhu et al. Development of an automatic pH-adjustment system for solid phase extraction prior to the determination of REEs in seawater by ICP-MS
Trojanowicz et al. Multicomponent analysis with a computerized flow injection system using led photometric detection
Tubino et al. Flow injection visible diffuse reflectance quantitative analysis of nickel
Micić et al. Application of tartrazine for sensitive and selective kinetic determination of Cu (II) traces
Zhou et al. A Nonlinear Integrated Modeling Method of Extended Kalman Filter Based on Adaboost Algorithm
CN217846060U (zh) 一种水中锰离子浓度测定装置
TWI539146B (zh) On - line concentration determination probe and concentration determination system
WO2015198151A2 (en) Automatic colorimetric titration device with noninvasive probe
HUSSEIN New Approach for the Turbidimetric/CFIA Determination of Cobalt (II) Ion Using: 11 LEDS as a Source and Two Solar Cells at±90° for Cell A and/or 6 LEDS and One Detector for Cell B.
HUSSEIN New Approach for the Turbidimetric/CFIA Determination of Cobalt (II) Ion Using: 11 LEDS as a Source and Two Solar Cells at±𝟗𝟎 for Cell A and/or 6 LEDS and One Detector for Cell B
JP4686723B2 (ja) 光学的分析装置
JPH0894520A (ja) 蛍光物質による冷却水系水処理剤濃度及び保有水量の測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP