WO2013136900A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2013136900A1
WO2013136900A1 PCT/JP2013/053481 JP2013053481W WO2013136900A1 WO 2013136900 A1 WO2013136900 A1 WO 2013136900A1 JP 2013053481 W JP2013053481 W JP 2013053481W WO 2013136900 A1 WO2013136900 A1 WO 2013136900A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
resin layer
substrate
emitting device
Prior art date
Application number
PCT/JP2013/053481
Other languages
French (fr)
Japanese (ja)
Inventor
小野 高志
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013136900A1 publication Critical patent/WO2013136900A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light emitting device using a light emitting element represented by a light emitting diode (LED).
  • LED light emitting diode
  • Light emitting devices using light emitting elements such as LEDs have advantages such as low power consumption, small size, high luminance, and long life, and thus have been used in various applications in recent years. For example, as an alternative to an incandescent lamp with high power consumption, it has come to be used in lighting devices.
  • Patent Documents 1 and 2 Examples of such light emitting devices are disclosed in Patent Documents 1 and 2.
  • the light-emitting elements are sealed with a sealing material such as a resin in order to protect the light-emitting elements mounted on the substrate or to adjust the light emitted from the light-emitting devices. Yes.
  • light-emitting devices having various emission colors can be manufactured by dispersing phosphors that absorb part of light output from the light-emitting element and output light of different wavelengths in the resin.
  • Patent Document 3 discloses a method of forming independently by line application using the surface tension of a resin without using a mold.
  • FIG. 7A is a cross-sectional view of a surface perpendicular to the substrate of the light emitting device showing a conventional sealing method of the light emitting element.
  • FIG. 7B shows a wiring layout viewed from the top surface of the substrate.
  • FIG. 7A is a cross-sectional view in the A-A ′ direction of FIG. 7 includes a substrate 201, wiring layers (anode wiring layer and cathode wiring layer) 202a and 202b formed on the substrate 201, a light emitting element 203 provided on the wiring layer 202a, and light emission.
  • a resin layer 204 that seals the element 203, and the connection between the light emitting element 203 and the wiring layers 202 a and 202 b is wire-bonded by a wire 206.
  • the dam material 205 is provided on the wiring layers 202a and 202b.
  • the dam material 205 is made of a material having repellency to the resin layer 204 in a fluid state.
  • the resin layer 204 in a fluid state is the dam material 205. It prevents the outflow and intrusion outside. Thereby, the resin layer 204 is formed in a convex shape in a region surrounded by the dam material 205.
  • the shape of the resin layer 204 may be asymmetric. This is because the wiring pattern of the wiring layer formed on the substrate is asymmetric, and the wettability of the substrate and the wiring layer in contact with the resin layer 204 is asymmetric.
  • the resin layer 204 is formed in an asymmetrical and irregular shape, so that the distribution of the phosphors is not uniform, so that there is a possibility that a variation in the amount of light and a variation in chromaticity within the lot may occur.
  • the shape of the resin layer 204 is asymmetric, the light distribution characteristic is distorted, and there is a possibility that luminance variation and color variation occur.
  • the center position of the light emitting part constituted by the resin layer 204 and the light emitting element 203 is shifted from the arrangement position of the light emitting element 203.
  • the resin layer 204 is formed in an irregular shape that is biased to the left side of the drawing, the position of the center of the light emitting part is shifted to the left side.
  • the position of the groove center (optical axis) of the transparent resin layer 208 and the center of the light emitting part may be shifted, and the optical axis may be decentered.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to realize a light-emitting device in which the shape of the sealing resin is symmetrized (stabilized) and the light distribution characteristics are symmetric.
  • a light emitting device includes a substrate, a light emitting element disposed on an upper layer of the substrate, two or more wiring layers formed on the substrate, and sealing the light emitting element.
  • the wiring pattern in which the layer is formed is formed so as to be line symmetric with respect to any one straight line passing through the arrangement position of the light emitting element or point symmetric with respect to the arrangement position of the light emitting element.
  • a second resin layer is formed on the first resin layer,
  • the second resin layer has a concave portion on the surface, and a central plane or center axis perpendicular to the substrate of the concave portion is a central plane or center perpendicular to the substrate of the convex first resin layer.
  • the second feature is that it coincides with the position of the shaft.
  • a dam material that prevents the first resin layer from entering outward from the convex formation region so as to surround the light emitting element is provided. Formed on an upper layer of the substrate; In the region surrounded by the dam material, the wiring pattern in which the wiring layer is formed on the substrate is axisymmetric with respect to any one straight line passing through the arrangement position of the light emitting element or the arrangement position of the light emitting element.
  • a third feature is that the center is point-symmetric.
  • the light emitting device of the third feature according to the present invention comprises an anode wiring layer and a cathode wiring layer that are electrically connected to the light emitting element,
  • the region where the dam material is formed on the wiring layer is only on one of the anode wiring layer and the cathode wiring layer,
  • a fourth feature is that the light emitting element is disposed above any one of the wiring layers.
  • the light emitting device includes an anode wiring layer and a cathode wiring layer electrically connected to the light emitting element, and the anode wiring layer and the cathode wiring layer. It has an isolated wiring layer that is not connected to either A fifth feature is that the light emitting element is disposed above the isolated wiring layer.
  • the light emitting device is characterized in that the light emitting element is not disposed above the wiring layer.
  • a phosphor is dispersed in the first resin layer.
  • the wettability of the substrate and the wiring layer to the first resin layer is at least in the convex formation region. It may be formed so as to be line-symmetric with respect to any one straight line passing through the light-emitting element arrangement position or point-symmetric with respect to the light-emitting element arrangement position.
  • the three-dimensional shape of the first resin layer passes through the arrangement position of the light emitting element, and the substrate. It may be formed so as to be symmetric with respect to any one plane perpendicular to the substrate or symmetrical with respect to a straight line passing through the arrangement position of the light emitting element and perpendicular to the substrate.
  • the first resin layer is formed by designing the wiring pattern so that the wiring pattern of the wiring layer formed on the substrate is symmetrical in the convex formation region of the first resin layer.
  • the wettability of the substrate to be bonded and the wiring layer is symmetrical, and the first resin layer is formed in a symmetrical three-dimensional shape.
  • the light distribution characteristics are also symmetric, and brightness variations and color variations can be improved.
  • the eccentricity of the optical axis can be improved.
  • Sectional drawing which shows an example of a structure of the light-emitting device which concerns on 1st Embodiment of this invention, and the wiring layout figure of a board
  • substrate upper surface Sectional drawing which shows the modification of the structure of the light-emitting device which concerns on 1st Embodiment of this invention
  • substrate upper surface Sectional drawing which shows the modification of the structure of the light-emitting device which concerns on 1st Embodiment of this invention
  • substrate upper surface Sectional drawing which shows the modification of the structure of the light-emitting device which concerns on 1st Embodiment of this invention
  • substrate upper surface Sectional drawing which shows an example of a structure of the light-emitting device concerning 2nd Embodiment of this invention
  • substrate upper surface which shows the modification of the structure of the light-emitting device concerning 2nd Embodiment of this invention
  • Sectional drawing which shows an example of a structure of the light-emitting device which concerns on another embodiment of
  • a light emitting device 1 to 4 including a light emitting element composed of an LED and a first resin layer including a phosphor that emits fluorescence when excited by light emitted from the light emitting element is provided.
  • the case where the present invention is applied will be exemplified.
  • the light emitting device to which the present invention can be applied is not limited to the one having an LED as a light emitting element.
  • the present invention can be applied to a light emitting device including a light emitting element other than an LED such as a laser diode.
  • FIG. 1A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 1
  • FIG. 1B is a wiring layout as viewed from the top surface of the substrate.
  • FIG. 1A is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 1 for convenience of explanation, the main parts are shown with emphasis, and the dimensional ratios of the thicknesses and lengths of the constituent members may not necessarily match the actual dimensional ratios. The same applies to the sectional views and wiring layout diagrams shown below.
  • the light emitting device 1 is provided on a substrate 11, wiring layers (anode wiring layer and cathode wiring layer) 12a and 12b formed on the substrate 11, and above the wiring layer.
  • a light emitting element 13 and a first resin layer 14 that seals the light emitting element 13 are provided, and the connection between the light emitting element 13 and the wiring layers 12 a and 12 b is wire-bonded by a wire 16.
  • the substrate 11 may be a printed circuit board based on ceramic, glass epoxy, Al, or the like, or may be a lead frame, a tape carrier, or the like.
  • the wiring layers 12a and 12b are made of, for example, a copper foil having a thickness of about 17 ⁇ m to 37 ⁇ m.
  • the light emitting element 13 is, for example, a chip-like LED, and emits blue light (specifically, for example, the peak wavelength is 450 nm).
  • the light emitting element 13 may emit light other than blue light.
  • the light emitting element 12 may be an LED that emits ultraviolet light (for example, a peak wavelength of 390 nm to 420 nm).
  • the light emitting element 13 is arrange
  • the light source 1 is assumed to be a linear light source in which light emitting elements 13 are arranged one-dimensionally at equal intervals above a rectangular substrate.
  • the wiring layers 12 a and 12 b are two-dimensionally patterned on the substrate, the light emitting elements 13 are two-dimensionally arranged in a matrix, and then the light emitting elements 13 are sealed with the first resin layer 14.
  • the light-emitting element substrate formed is cut in one direction by dicing.
  • the side surface of the light emitting device 1 in the short direction is a cut surface by dicing.
  • the first resin layer 14 is a material that has fluidity when mounted and can be cured by applying heat or light thereafter, and is made of, for example, an epoxy resin or a silicone resin.
  • the first resin layer 14 includes a phosphor that is excited by blue light emitted from the light emitting element 13 and emits, for example, yellow fluorescence.
  • the light emitted from the light emitting device 1 is white light in which blue light and yellow light are mixed. Note that the color of light emitted from the light emitting device 1 can be arbitrarily adjusted by appropriately selecting the type of light emitting element 13 or phosphor (color of emitted light).
  • the dam material 15 is provided on the wiring layers 12a and 12b.
  • the dam material 15 prevents the first resin layer 14 having fluidity from flowing out and entering outside the dam material 15 when the first resin layer 14 is applied and formed.
  • the dam material 15 is preferably composed of a material having repellency with respect to the first resin layer 14 in a fluid state.
  • the dam material 15 does not necessarily need to be a material having repellency.
  • the first resin layer 14 is a highly viscous material such as a silicone resin, the first resin is caused by its viscosity (thixotropic property). Intrusion of the layer 14 outward from the dam material 15 can be prevented.
  • the first resin layer 14 is lowered so that the height of the first resin layer 14 decreases as the distance from the arrangement position of the upper layer of the light emitting element 13 increases. Is formed in a convex shape.
  • the dam material 15 is made of, for example, a solder resist or a silicone resin having a thickness of about 10 ⁇ m to 20 ⁇ m.
  • the dam material 15 is preferably white with high reflectance.
  • the second resin layer 18 is formed on the first resin layer 14.
  • the second resin layer 18 is, for example, a transparent resin such as an epoxy resin, a silicone resin, or acrylic, and serves as a lens that diffuses the light emitted from the light emitting element 13.
  • a concave portion (groove) 19 is formed on the surface of the second resin layer 18, and the position of the central plane perpendicular to the substrate 11 of the concave portion 19 passes through the center of the light emitting element 13 and diverges in the longitudinal direction of the substrate 11. It is formed so as to coincide with the surface to be the line direction.
  • the dam material 15 is formed only on one of the wiring layers 12a and 12b (here, the wiring layer 12a).
  • the light emitting element 13 is disposed above the. Further, the connection between the wire 16 and the wiring layers 12a and 12b is made outside the dam material 15 (on the side facing the light emitting element 13 with the dam material 15 in between).
  • the wiring patterns of the wiring layers 12a and 12b on the substrate 11 are line symmetric or point symmetric. Become. That is, in the region 17 of FIG. 1B, the wiring patterns of the wiring layers 12a and 12b pass through the arrangement positions of the light emitting elements 13 and are line symmetric with respect to the respective straight lines parallel to the longitudinal direction and the short direction of the substrate 11. And is symmetrical with respect to the arrangement position of the light emitting element 13.
  • attaches with the 1st resin layer 14 becomes symmetrical, and the three-dimensional shape of the 1st resin layer 14 does not become distorted, but is formed with the symmetrical three-dimensional shape.
  • the three-dimensional shape of the first resin layer 14 is symmetric with respect to a plane that passes through the arrangement position of the light emitting element 13 and has the longitudinal direction of the substrate 11 as the normal direction. On this surface, the center (top) of the convex portion of the first resin layer 14 is located, and the center of the concave portion 19 of the second resin layer 18 is located.
  • the light distribution characteristics are symmetric, the luminance variation and the color variation are greatly suppressed, and the eccentricity of the optical axis is improved.
  • the wiring pattern on the substrate 11 including the wiring layers 12 a and 12 b is arranged outside the formation region 17 of the first resin layer 14 surrounded by the dam material 15 and the anode wiring layer and the cathode wiring layer.
  • the dam material 15 only on one of the anode wiring layer and the cathode wiring layer, a symmetric wiring pattern is formed in the formation region 17 of the first resin layer 14.
  • the three-dimensional shape of the first resin layer 14 is symmetrical, and a light emitting device having symmetrical light distribution characteristics is realized.
  • FIG. 2 shows a modification of the configuration of the light emitting device 1.
  • 2A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 2
  • FIG. 2B is a wiring layout viewed from the top surface of the substrate. Note that FIG. 2A is a cross-sectional view in the A-A ′ direction of FIG.
  • the light emitting element 13 is disposed above another isolated wiring layer 12c separated from the wiring layers 12a and 12b.
  • the dam material 15 is formed on the wiring layers 12a and 12b. Then, outside the dam material 15 (on the side facing the light emitting element 13 across the dam material 15), the connection between the light emitting element 13 and the wiring layers 12a and 12b is wire-bonded by a wire 16. Thereby, the wiring pattern on the substrate 11 composed of the wiring layers 12a, 12b, and 12c is symmetrical at least in the formation region 17 of the first resin layer 14 surrounded by the dam material 15, as shown in FIG. Can be.
  • FIG. 3 shows another modification of the configuration of the light emitting device 1.
  • 3A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 3
  • FIG. 3B is a wiring layout viewed from the top surface of the substrate. Note that FIG. 3A is a cross-sectional view in the A-A ′ direction of FIG.
  • the light emitting element 13 is not disposed above the wiring layers 12a and 12b, but is disposed on the substrate 11 via a reflective layer (not shown).
  • a dam material 15 is formed on the wiring layers 12a and 12b, and the connection between the light emitting element 13 and the wiring layers 12a and 12b is a wire outside the dam material 15 (on the side facing the light emitting element 13 across the dam material 15). 16 is wire-bonded.
  • the wiring pattern on the substrate 11 composed of the wiring layers 12a and 12b can be made symmetric at least in the formation region 17 of the first resin layer 14 surrounded by the dam material 15, as shown in FIG. .
  • the wiring patterns of the wiring layers 12a, 12b, and 12c on the substrate 11 are symmetrical, so that the three-dimensional shape of the first resin layer 14 is formed symmetrically. It is possible to realize a light emitting device that has symmetrical characteristics, greatly suppresses luminance variation and color variation, and does not cause a problem of eccentricity of the optical axis.
  • FIG. 4A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 1
  • FIG. 4B is a top surface layout thereof.
  • a point light source in which one light emitting element 13 is arranged above the substrate 11 is assumed.
  • a ring-shaped dam material 15 is formed on the substrate 11 and the wiring layers 12 a and 12 b so as to surround the light emitting element 13.
  • the light emitting element 13 is not formed above the wiring layers 12a and 12b, but is formed on the substrate 11 via a reflective layer (not shown).
  • the connection between the light emitting element 13 and the wiring layers 12 a and 12 b is wire-bonded by a wire 16.
  • a second resin layer 18 is formed on the first resin layer 14.
  • the second resin layer 18 is, for example, a transparent resin such as an epoxy resin, a silicone resin, or acrylic, and serves as a lens that diffuses the light emitted from the light emitting element 13.
  • the second resin layer 18 has an inverted conical recess (groove) 19 formed on the surface, and the position of the central axis perpendicular to the substrate 11 of the recess 19 (the position of the cone axis) is the light emitting element 13. It is formed so as to coincide with the arrangement position.
  • the wiring patterns of the wiring layers 12 a and 12 b pass through the arrangement positions of the light emitting elements 13.
  • the wiring layers 12a and 12b of the substrate 11 are line symmetric with respect to straight lines perpendicular to and parallel to the direction in which the wiring layers 12a and 12b face each other, and are point symmetric with respect to the arrangement position of the light emitting element 13.
  • the wettability of the substrate 11 and the wiring layers 12a and 12b bonded to the first resin layer 14 is symmetric, and the three-dimensional shape of the first resin layer 14 is not distorted and can be formed in a symmetric three-dimensional shape.
  • the three-dimensional shape of the first resin layer 14 passes through the arrangement position of the light emitting element 13 and is perpendicular to the substrate 11 and is perpendicular to and parallel to the direction in which the wiring layers 12a and 12b face each other. It becomes symmetrical with respect to it.
  • the center (top) of the convex portion of the first resin layer 14 is located on the intersecting line of each surface, and the central axis of the concave portion 20 of the second resin layer 18 is located.
  • the light distribution characteristics are symmetric, the luminance variation and the color variation are greatly suppressed, and the eccentricity of the optical axis is improved.
  • FIG. 5 shows a modification of the wiring layout shown in FIG.
  • the wiring layers 12 a and 12 b are formed in a ring shape like the dam material 15 so as to extend the lower layer of the dam material 15.
  • the wiring layers 12a and 12b are formed apart by a distance L.
  • the gap L between the wiring layers 12a and 12b is preferably as short as possible as long as insulation between the wiring layers can be ensured.
  • the wiring patterns of the wiring layers 12 a and 12 b are substantially rotationally symmetric about the arrangement position of the light emitting element 13. That is, it can be said that the wiring pattern is line symmetric with respect to an arbitrary straight line passing through the arrangement position of the light emitting element 13 on the substrate 11, and is point symmetric with respect to the arrangement position of the light emitting element 13.
  • the three-dimensional shape of the first resin layer 14 is formed substantially axisymmetrically.
  • the light distribution characteristics are symmetric, and the luminance variation and color It is possible to realize the light emitting device 4 in which the variation is greatly suppressed and the problem of the eccentricity of the optical axis does not occur.
  • the configuration of the light emitting devices 1 to 4 that emit white light by dispersing the phosphor in the first resin layer 14 has been described in detail. It is not limited to this. Even in the case of a light emitting device that does not include a phosphor in the first resin layer 14 and emits monochromatic light, the light emitting element 13 is sealed by designing the layout so that the wiring pattern on the substrate 11 is symmetric. The three-dimensional shape of the first resin layer 14 is symmetrized, the light distribution characteristics are symmetric, and brightness variations and color variations can be improved.
  • one light emitting element (LED chip) is sealed with the first resin layer 14 in the formation region 17 of the first resin layer 14 surrounded by the dam material 15.
  • the number of light-emitting elements sealed in the formation region 17 is not limited to one.
  • a plurality of light emitting elements can be sealed in the formation region 17. For example, three types of light emitting elements that emit three colors of red, blue, and green can be sealed in the same first resin layer 14 formation region 17.
  • the wiring layers 12a and 12b are used to connect the plurality of light emitting elements in series or in parallel to form a light emitting device.
  • Another wiring layer or a plurality of wiring layers are required.
  • the connection position on the wiring layer side of the wire 16 connecting each light emitting element and each wiring layer is provided outside the formation region 17.
  • each light emitting element is not arranged above the wiring layer, or each light emitting element is arranged above the isolated wiring layer patterned in a symmetrical shape.
  • the light emitting element 13 is disposed above the substrate 11 without the wiring layers 12a and 12b interposed therebetween.
  • the dam material 15 may be formed on only one of the wiring layers 12a and 12b as described with reference to FIG. 1, and the light emitting element is disposed above the one wiring layer as described with reference to FIG. 13 may be arranged.
  • the first resin layer 14 is formed in the region 17 surrounded by the dam material 15, and the dam material 15 disposes the first resin layer 14.
  • the dam material 15 disposes the first resin layer 14.
  • the first resin layer 14 in a fluid state is prevented from flowing out and entering the region 19 beyond the dam material 15.
  • the dam material 15 is not always necessary for the application of the present invention. As shown in the cross-sectional view and the wiring layout diagram of FIG.
  • the dam material 15 is not formed and the first resin layer 14 is formed on the entire surface but with undulations, at least the first The wiring pattern on the substrate in the region (convex formation region) 17 where the first resin layer 14 is formed in a convex shape so that the height of the resin layer 14 is lowered as the distance from the arrangement position of the upper layer of the light emitting element 13 increases.
  • the light emitting element 13 is formed so as to be line symmetric with respect to any one straight line passing through the arrangement position of the light emitting element 13 or to be point symmetric with respect to the arrangement position of the light emitting element 13, the effect of the present invention is achieved.
  • the present invention can be used for a light-emitting device using a light-emitting element, and in particular, can be used as a backlight for a liquid crystal display device such as a liquid crystal television or a liquid crystal monitor, or a lighting device.
  • a liquid crystal display device such as a liquid crystal television or a liquid crystal monitor, or a lighting device.
  • Light-emitting device according to an embodiment of the present invention (device of the present invention) 11, 201: Substrate 12a, 12b, 12c, 202a, 202b: Wiring layer 13, 203: Light-emitting element 14: First resin layer 15, 205: Dam material 16, 206: Wire 17: Convex forming region 18: Second Resin layer 19: Concave portion (groove) of second resin layer 200: Conventionally configured light emitting device 204: Resin layer 208: Transparent resin layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a light-emitting device that has symmetrical light distribution characteristics and in which variations in luminance and color are suppressed. In this light-emitting device which has a light-emitting element (LED) 13 sealed with a resin, the pattern for wiring wiring layers (12a, 12b) that are formed on a substrate (11) is designed so as to have line symmetry with respect to a straight line passing through the position where the light-emitting element (13) is arranged, or point symmetry about the position where the light-emitting element (13) is arranged, within a region (17) in which a first resin layer (sealing resin layer) (14) is formed in a convex shape such that the height of at least the first resin layer decreases in accordance with the distance from the position where the light-emitting element (13) is arranged on an upper layer of the substrate. In this way, the wettability of the substrate (11) and the wiring layers (12a, 12b), which adhere to the first resin layer (14), becomes symmetrical in said region (17), and the first resin layer (14) is formed in a symmetrical three-dimensional shape.

Description

発光装置Light emitting device
本発明は、発光ダイオード(LED:Light Emitting Diode)などに代表される発光素子を用いた発光装置に関する。 The present invention relates to a light emitting device using a light emitting element represented by a light emitting diode (LED).
 LEDなどの発光素子を用いた発光装置は、低消費電力や、小型、高輝度、長寿命などの利点があるため、近年様々な用途で利用されている。例えば、消費電力の大きい白熱灯の代替として、照明装置に利用されるようになってきている。 Light emitting devices using light emitting elements such as LEDs have advantages such as low power consumption, small size, high luminance, and long life, and thus have been used in various applications in recent years. For example, as an alternative to an incandescent lamp with high power consumption, it has come to be used in lighting devices.
 このような発光装置の例が、特許文献1及び2に開示されている。特許文献1及び2に記載の発光装置では、基板等に実装した発光素子の保護や、発光装置が出射する光の調整等のために、発光素子を樹脂等の封止材で封止している。 Examples of such light emitting devices are disclosed in Patent Documents 1 and 2. In the light-emitting devices described in Patent Documents 1 and 2, the light-emitting elements are sealed with a sealing material such as a resin in order to protect the light-emitting elements mounted on the substrate or to adjust the light emitted from the light-emitting devices. Yes.
 特に、発光素子から出力される光の一部を吸収して異なる波長の光を出力する蛍光体をかかる樹脂に分散させることで、種々の発光色を有する発光装置を作製することができる。 In particular, light-emitting devices having various emission colors can be manufactured by dispersing phosphors that absorb part of light output from the light-emitting element and output light of different wavelengths in the resin.
 また、樹脂封止の方法として、金型を用いず、樹脂の表面張力を利用したライン塗布により自立的に形成する方法が、特許文献3に開示されている。 Further, as a resin sealing method, Patent Document 3 discloses a method of forming independently by line application using the surface tension of a resin without using a mold.
特開2008-159753号公報JP 2008-159753 A 特開2006-229055号公報JP 2006-229055 A 特許第4107349号明細書Japanese Patent No. 4107349
 ところが、上記の従来技術を用いて樹脂封止を塗布により行うとした場合、下記に示す問題が生じる。 However, when resin sealing is performed by coating using the above-described conventional technology, the following problems occur.
 図7(A)に、発光素子の従来の封止方法を示す発光装置の基板に垂直な面の断面図を示す。図7(B)にその基板上面から見た配線レイアウトを示す。図7(A)は図7(B)のA-A’方向の断面図である。図7に示す発光装置200は、基板201と、基板201上に形成される配線層(アノード配線層及びカソード配線層)202a、202bと、配線層202a上に設けられた発光素子203と、発光素子203を封止する樹脂層204と、を備え、発光素子203と配線層202a、202bとの接続がワイヤ206によりワイヤボンディングされてなる。 FIG. 7A is a cross-sectional view of a surface perpendicular to the substrate of the light emitting device showing a conventional sealing method of the light emitting element. FIG. 7B shows a wiring layout viewed from the top surface of the substrate. FIG. 7A is a cross-sectional view in the A-A ′ direction of FIG. 7 includes a substrate 201, wiring layers (anode wiring layer and cathode wiring layer) 202a and 202b formed on the substrate 201, a light emitting element 203 provided on the wiring layer 202a, and light emission. A resin layer 204 that seals the element 203, and the connection between the light emitting element 203 and the wiring layers 202 a and 202 b is wire-bonded by a wire 206.
 さらに、発光装置200において、ダム材料205が、配線層202a及び202b上に設けられている。かかるダム材料205は、流動性を有する状態の樹脂層204に対して撥性を有する材料で構成され、樹脂層204を塗布形成する際に、流動性を有する状態の樹脂層204がダム材料205を超えて外方に流出・浸入するのを防いでいる。これにより、ダム材料205で囲まれる領域に、樹脂層204が凸状に形成される。 Furthermore, in the light emitting device 200, the dam material 205 is provided on the wiring layers 202a and 202b. The dam material 205 is made of a material having repellency to the resin layer 204 in a fluid state. When the resin layer 204 is applied and formed, the resin layer 204 in a fluid state is the dam material 205. It prevents the outflow and intrusion outside. Thereby, the resin layer 204 is formed in a convex shape in a region surrounded by the dam material 205.
 しかしながら、この場合、樹脂層204の形状が非対称となる場合がある。これは、基板上に形成される配線層の配線パターンが非対称であり、これに伴って樹脂層204と接触する基板および配線層の濡れ性が非対称となることに起因する。 However, in this case, the shape of the resin layer 204 may be asymmetric. This is because the wiring pattern of the wiring layer formed on the substrate is asymmetric, and the wettability of the substrate and the wiring layer in contact with the resin layer 204 is asymmetric.
 このように、樹脂層204が非対称な、いびつな形状に形成されると、蛍光体の分布が均一でないことから光量のばらつきや、ロット内での色度ばらつきが発生する虞がある。 As described above, if the resin layer 204 is formed in an asymmetrical and irregular shape, the distribution of the phosphors is not uniform, so that there is a possibility that a variation in the amount of light and a variation in chromaticity within the lot may occur.
 また、樹脂層204の形状が非対称であることから、配光特性のいびつ化が生じ、輝度ばらつきや色ばらつきが発生する虞がある。 Further, since the shape of the resin layer 204 is asymmetric, the light distribution characteristic is distorted, and there is a possibility that luminance variation and color variation occur.
 さらに、樹脂層204の形状が非対称であることから、樹脂層204と発光素子203で構成される発光部の中心位置が、発光素子203の配置位置からずれる。図7の例では、樹脂層204が図の左側に偏ったいびつな形状で形成されているため、発光部中心の位置が左側にずれる。この結果、透明樹脂層208の溝中心(光軸)と発光部中心との位置がずれ、光軸の偏心が発生する虞がある。 Furthermore, since the shape of the resin layer 204 is asymmetrical, the center position of the light emitting part constituted by the resin layer 204 and the light emitting element 203 is shifted from the arrangement position of the light emitting element 203. In the example of FIG. 7, since the resin layer 204 is formed in an irregular shape that is biased to the left side of the drawing, the position of the center of the light emitting part is shifted to the left side. As a result, the position of the groove center (optical axis) of the transparent resin layer 208 and the center of the light emitting part may be shifted, and the optical axis may be decentered.
 本発明は上記従来技術に係る問題を鑑みてなされたものであり、封止樹脂の形状を対称化(安定化)させ、配光特性が対称な発光装置を実現することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to realize a light-emitting device in which the shape of the sealing resin is symmetrized (stabilized) and the light distribution characteristics are symmetric.
 上記課題を解決するための本発明に係る発光装置は、基板と、前記基板の上層に配置された発光素子と、前記基板上に形成された2以上の配線層と、前記発光素子を封止するための第1樹脂層を備え、
 少なくとも前記第1樹脂層の高さが前記発光素子の基板上層の配置位置から離れるに従って下降するように前記第1樹脂層が凸状に形成される凸状形成領域において、前記基板上に前記配線層が形成される配線パターンが、前記発光素子の配置位置を通る何れか一の直線に対して線対称あるいは前記発光素子の配置位置を中心として点対称となるように形成されていることを第1の特徴とする。
In order to solve the above problems, a light emitting device according to the present invention includes a substrate, a light emitting element disposed on an upper layer of the substrate, two or more wiring layers formed on the substrate, and sealing the light emitting element. A first resin layer for
In the convex formation region where the first resin layer is formed in a convex shape so that at least the height of the first resin layer is lowered as the distance from the arrangement position of the substrate upper layer of the light emitting element is increased, the wiring is formed on the substrate. The wiring pattern in which the layer is formed is formed so as to be line symmetric with respect to any one straight line passing through the arrangement position of the light emitting element or point symmetric with respect to the arrangement position of the light emitting element. One feature.
 更に、本発明に係る上記第1の特徴の発光装置は、前記第1樹脂層上に、第2樹脂層が形成され、
 前記第2樹脂層は、表面に凹部を有し、前記凹部の前記基板に垂直な中心面または中心軸の位置が、前記凸状の前記第1樹脂層の前記基板に垂直な中心面または中心軸の位置と一致することを第2の特徴とする。
Furthermore, in the light emitting device of the first feature according to the present invention, a second resin layer is formed on the first resin layer,
The second resin layer has a concave portion on the surface, and a central plane or center axis perpendicular to the substrate of the concave portion is a central plane or center perpendicular to the substrate of the convex first resin layer. The second feature is that it coincides with the position of the shaft.
 更に、本発明に係る上記第1又は第2の特徴の発光装置は、前記発光素子を囲むように、前記第1樹脂層の前記凸状形成領域より外方への浸入を防止するダム材料が前記基板の上層に形成され、
 前記ダム材料で囲まれた領域において、基板上に前記配線層が形成される配線パターンが、前記発光素子の配置位置を通る何れか一の直線に対して線対称あるいは前記発光素子の配置位置を中心として点対称となるように形成されていることを第3の特徴とする。
Furthermore, in the light emitting device according to the first or second feature of the present invention, a dam material that prevents the first resin layer from entering outward from the convex formation region so as to surround the light emitting element is provided. Formed on an upper layer of the substrate;
In the region surrounded by the dam material, the wiring pattern in which the wiring layer is formed on the substrate is axisymmetric with respect to any one straight line passing through the arrangement position of the light emitting element or the arrangement position of the light emitting element. A third feature is that the center is point-symmetric.
 更に、本発明に係る上記第3の特徴の発光装置は、前記発光素子と電気的に接続するアノード配線層およびカソード配線層を備え、
 前記ダム材料が前記配線層上に形成される領域が、前記アノード配線層および前記カソード配線層のうち何れか一方の配線層上のみであり、
 前記発光素子が、前記何れか一方の配線層の上方に配置されていることを第4の特徴とする。
Furthermore, the light emitting device of the third feature according to the present invention comprises an anode wiring layer and a cathode wiring layer that are electrically connected to the light emitting element,
The region where the dam material is formed on the wiring layer is only on one of the anode wiring layer and the cathode wiring layer,
A fourth feature is that the light emitting element is disposed above any one of the wiring layers.
 更に、本発明に係る上記第1乃至第3の何れかの特徴の発光装置は、前記発光素子と電気的に接続するアノード配線層およびカソード配線層と、前記アノード配線層および前記カソード配線層の何れとも接続しない孤立配線層を備え、
 前記発光素子が、前記孤立配線層の上方に配置されていることを第5の特徴とする。
Furthermore, the light emitting device according to any one of the first to third aspects of the present invention includes an anode wiring layer and a cathode wiring layer electrically connected to the light emitting element, and the anode wiring layer and the cathode wiring layer. It has an isolated wiring layer that is not connected to either
A fifth feature is that the light emitting element is disposed above the isolated wiring layer.
 更に、本発明に係る上記第1乃至第3の何れかの特徴の発光装置は、前記発光素子が、前記配線層の上方に配置されていないことを第6の特徴とする。 Furthermore, the light emitting device according to any one of the first to third features according to the present invention is characterized in that the light emitting element is not disposed above the wiring layer.
 更に、本発明に係る上記第1乃至第6の何れかの特徴の発光装置は、前記第1樹脂層に、蛍光体が分散されてなることが好ましい。 Furthermore, in the light emitting device having any one of the first to sixth features according to the present invention, it is preferable that a phosphor is dispersed in the first resin layer.
 本発明に係る上記第1乃至第6の何れかの特徴の発光装置は、少なくとも前記凸状形成領域において、前記基板および前記配線層の前記第1樹脂層との接着面における濡れ性が、前記発光素子の配置位置を通る何れか一の直線に対して線対称あるいは前記発光素子の配置位置を中心として点対称となるように形成されていることができる。 In the light emitting device according to any one of the first to sixth features according to the present invention, the wettability of the substrate and the wiring layer to the first resin layer is at least in the convex formation region. It may be formed so as to be line-symmetric with respect to any one straight line passing through the light-emitting element arrangement position or point-symmetric with respect to the light-emitting element arrangement position.
 本発明に係る上記第1乃至第6の何れかの特徴の発光装置は、少なくとも前記凸状形成領域上において、前記第1樹脂層の3次元形状が、前記発光素子の配置位置を通り前記基板に垂直な何れか一の平面に対して対称あるいは前記発光素子の配置位置を通り前記基板に垂直な直線を軸として軸対称となるように形成されていることができる。 In the light emitting device according to any one of the first to sixth features according to the present invention, at least on the convex formation region, the three-dimensional shape of the first resin layer passes through the arrangement position of the light emitting element, and the substrate. It may be formed so as to be symmetric with respect to any one plane perpendicular to the substrate or symmetrical with respect to a straight line passing through the arrangement position of the light emitting element and perpendicular to the substrate.
 上記特徴の発光装置に依れば、基板上に形成される配線層の配線パターンが、第1樹脂層の凸状形成領域において対称となるように配線パターンを設計することにより、第1樹脂層と接着する基板および配線層の濡れ性が対称となり、第1樹脂層が対称な3次元形状で形成される。 According to the light emitting device having the above characteristics, the first resin layer is formed by designing the wiring pattern so that the wiring pattern of the wiring layer formed on the substrate is symmetrical in the convex formation region of the first resin layer. The wettability of the substrate to be bonded and the wiring layer is symmetrical, and the first resin layer is formed in a symmetrical three-dimensional shape.
 これにより、第1樹脂層に蛍光体を含む場合であっても、光量のばらつきや、ロット内での色度ばらつきは大幅に抑制される。 Thereby, even when the first resin layer contains a phosphor, the variation in the amount of light and the variation in chromaticity within the lot are greatly suppressed.
 また、配光特性も対称となり、輝度ばらつきや色ばらつきの改善が図れる。 In addition, the light distribution characteristics are also symmetric, and brightness variations and color variations can be improved.
 さらに、第2樹脂層の凹部の中心(光軸)と第1樹脂層の中心の位置が一致することで、光軸の偏心の改善が図れる。 Furthermore, since the center of the concave portion (optical axis) of the second resin layer coincides with the center of the first resin layer, the eccentricity of the optical axis can be improved.
本発明の第1実施形態に係る発光装置の構成の一例を示す断面図および基板上面の配線レイアウト図Sectional drawing which shows an example of a structure of the light-emitting device which concerns on 1st Embodiment of this invention, and the wiring layout figure of a board | substrate upper surface 本発明の第1実施形態に係る発光装置の構成の変形例を示す断面図および基板上面の配線レイアウト図Sectional drawing which shows the modification of the structure of the light-emitting device which concerns on 1st Embodiment of this invention, and the wiring layout figure of a board | substrate upper surface 本発明の第1実施形態に係る発光装置の構成の変形例を示す断面図および基板上面の配線レイアウト図Sectional drawing which shows the modification of the structure of the light-emitting device which concerns on 1st Embodiment of this invention, and the wiring layout figure of a board | substrate upper surface 本発明の第2実施形態に係る発光装置の構成の一例を示す断面図および基板上面の配線レイアウト図Sectional drawing which shows an example of a structure of the light-emitting device concerning 2nd Embodiment of this invention, and the wiring layout figure of a board | substrate upper surface 本発明の第2実施形態に係る発光装置の構成の変形例を示す基板上面の配線レイアウト図The wiring layout figure of the board | substrate upper surface which shows the modification of the structure of the light-emitting device concerning 2nd Embodiment of this invention 本発明の別実施形態に係る発光装置の構成の一例を示す断面図および基板上面の配線レイアウト図Sectional drawing which shows an example of a structure of the light-emitting device which concerns on another embodiment of this invention, and the wiring layout figure of a board | substrate upper surface 従来技術における発光装置の構成例を示す断面図および基板上面の配線レイアウト図Sectional view showing configuration example of light emitting device in prior art and wiring layout diagram on upper surface of substrate
 以下に、本発明の実施形態として、LEDからなる発光素子と、かかる発光素子が出射する光により励起して蛍光を出射する蛍光体を含む第1樹脂層とを備えた発光装置1~4に本発明を適用する場合について例示する。ただし、本発明を適用可能な発光装置は、発光素子としてLEDを備えるものに限られない。例えば、レーザダイオードなどのLED以外の発光素子を備えた発光装置であっても、本発明は適用可能である。 Hereinafter, as an embodiment of the present invention, a light emitting device 1 to 4 including a light emitting element composed of an LED and a first resin layer including a phosphor that emits fluorescence when excited by light emitted from the light emitting element is provided. The case where the present invention is applied will be exemplified. However, the light emitting device to which the present invention can be applied is not limited to the one having an LED as a light emitting element. For example, the present invention can be applied to a light emitting device including a light emitting element other than an LED such as a laser diode.
 〈第1実施形態〉
 本発明の一実施形態に係る発光装置1の構成の一例を図1に示す。図1(A)は、発光装置1の基板に垂直な面の断面図であり、図1(B)はその基板上面から見た配線レイアウトである。なお、図1(A)は図1(B)のA-A’方向の断面図である。また、図1では、説明の都合上、要部を強調して示しており、構成部材の夫々の厚みや長さなどの寸法比は実際の寸法比とは必ずしも一致しない場合がある。これは、以降に示す断面図および配線レイアウト図についても同様とする。
<First Embodiment>
An example of the configuration of a light emitting device 1 according to an embodiment of the present invention is shown in FIG. 1A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 1, and FIG. 1B is a wiring layout as viewed from the top surface of the substrate. Note that FIG. 1A is a cross-sectional view taken along the line AA ′ of FIG. Further, in FIG. 1, for convenience of explanation, the main parts are shown with emphasis, and the dimensional ratios of the thicknesses and lengths of the constituent members may not necessarily match the actual dimensional ratios. The same applies to the sectional views and wiring layout diagrams shown below.
 図1(A)に示すように、発光装置1は、基板11と、基板11上に形成される配線層(アノード配線層及びカソード配線層)12a、12bと、かかる配線層の上方に設けられる発光素子13と、発光素子13を封止する第1樹脂層14を備え、発光素子13と配線層12a、12bとの接続がワイヤ16によりワイヤボンディングされてなる。 As shown in FIG. 1A, the light emitting device 1 is provided on a substrate 11, wiring layers (anode wiring layer and cathode wiring layer) 12a and 12b formed on the substrate 11, and above the wiring layer. A light emitting element 13 and a first resin layer 14 that seals the light emitting element 13 are provided, and the connection between the light emitting element 13 and the wiring layers 12 a and 12 b is wire-bonded by a wire 16.
 基板11は、例えばセラミック、ガラスエポキシ、Al等を基材とするプリント基板であってもよいし、リードフレームやテープキャリアなどであってもよい。配線層12a、12bは、例えば、厚さ17μm~37μm程度の銅箔からなる。 The substrate 11 may be a printed circuit board based on ceramic, glass epoxy, Al, or the like, or may be a lead frame, a tape carrier, or the like. The wiring layers 12a and 12b are made of, for example, a copper foil having a thickness of about 17 μm to 37 μm.
 発光素子13は、例えばチップ状のLEDであり、青色の光(具体的には、例えば、ピーク波長が450nm)を出射する。なお、発光素子13が、青色以外の光を出射するものであってもよい。例えば、発光素子12が、紫外の光(例えば、ピーク波長が390nm以上420nm以下)を出射するLEDであってもよい。なお、発光素子13は、反射コーティングがされた配線層12a上に、かかる反射層(図示せず)を介して配線層上に配置されている。 The light emitting element 13 is, for example, a chip-like LED, and emits blue light (specifically, for example, the peak wavelength is 450 nm). The light emitting element 13 may emit light other than blue light. For example, the light emitting element 12 may be an LED that emits ultraviolet light (for example, a peak wavelength of 390 nm to 420 nm). In addition, the light emitting element 13 is arrange | positioned on the wiring layer via this reflective layer (not shown) on the wiring layer 12a by which reflective coating was carried out.
 本実施形態では、発光装置1として、長方形の基板上方に、発光素子13を等間隔に、一次元的に配列してなる線状光源を想定している。かかる発光装置1は、基板上に配線層12a、12bを2次元的にパターニングし、発光素子13を2次元的にマトリクス状に配置して、その後発光素子13を第1樹脂層14で封止してなる発光素子基板を、ダイシングにより一方向に切断することにより製造される。発光装置1の短手方向の側面が、ダイシングによる切断面となる。 In the present embodiment, the light source 1 is assumed to be a linear light source in which light emitting elements 13 are arranged one-dimensionally at equal intervals above a rectangular substrate. In the light emitting device 1, the wiring layers 12 a and 12 b are two-dimensionally patterned on the substrate, the light emitting elements 13 are two-dimensionally arranged in a matrix, and then the light emitting elements 13 are sealed with the first resin layer 14. The light-emitting element substrate formed is cut in one direction by dicing. The side surface of the light emitting device 1 in the short direction is a cut surface by dicing.
 第1樹脂層14は、実装時に流動性を有し、その後に熱や光などを加えることで硬化可能な材料であり、例えば、エポキシ樹脂やシリコーン樹脂等からなる。また、第1樹脂層14は、発光素子13が出射する青色の光により励起して、例えば黄色の蛍光を出射する蛍光体を含んでなる。この場合、発光装置1が出射する光は、青色の光と黄色の光とが混合された白色光になる。なお、発光素子13や蛍光体の種類(出射される光の色)を適宜選択することで、発光装置1が出射する光の色を任意に調整することができる。 The first resin layer 14 is a material that has fluidity when mounted and can be cured by applying heat or light thereafter, and is made of, for example, an epoxy resin or a silicone resin. The first resin layer 14 includes a phosphor that is excited by blue light emitted from the light emitting element 13 and emits, for example, yellow fluorescence. In this case, the light emitted from the light emitting device 1 is white light in which blue light and yellow light are mixed. Note that the color of light emitted from the light emitting device 1 can be arbitrarily adjusted by appropriately selecting the type of light emitting element 13 or phosphor (color of emitted light).
 発光装置1において、ダム材料15が、配線層12a、12b上に設けられている。かかるダム材料15は、第1樹脂層14を塗布形成する際に、流動性を有する状態の第1樹脂層14がダム材料15を超えて外方に流出・浸入するのを防いでいる。ダム材料15は、流動性を有する状態の第1樹脂層14に対して撥性を有する材料で構成されることが好ましい。しかしながら、必ずしもダム材料15が撥性を有する材料である必要はなく、第1樹脂層14が例えばシリコーン樹脂のように高粘度の材料である場合は、その粘度(チクソ性)により、第1樹脂層14のダム材料15より外方への侵入を防止することができる。 In the light emitting device 1, the dam material 15 is provided on the wiring layers 12a and 12b. The dam material 15 prevents the first resin layer 14 having fluidity from flowing out and entering outside the dam material 15 when the first resin layer 14 is applied and formed. The dam material 15 is preferably composed of a material having repellency with respect to the first resin layer 14 in a fluid state. However, the dam material 15 does not necessarily need to be a material having repellency. When the first resin layer 14 is a highly viscous material such as a silicone resin, the first resin is caused by its viscosity (thixotropic property). Intrusion of the layer 14 outward from the dam material 15 can be prevented.
 この結果、ダム材料15で囲まれる領域(凸状形成領域)17において、第1樹脂層14の高さが発光素子13の基板上層の配置位置から離れるに従って下降するように、第1樹脂層14が凸状に形成される。なお、かかるダム材料15は、例えば、厚さ10μm~20μm程度のソルダーレジストやシリコーン樹脂で形成される。ダム材料15は反射率の高い白色を採用する事が好ましい。 As a result, in the region (convex formation region) 17 surrounded by the dam material 15, the first resin layer 14 is lowered so that the height of the first resin layer 14 decreases as the distance from the arrangement position of the upper layer of the light emitting element 13 increases. Is formed in a convex shape. The dam material 15 is made of, for example, a solder resist or a silicone resin having a thickness of about 10 μm to 20 μm. The dam material 15 is preferably white with high reflectance.
 第1樹脂層14上に、第2樹脂層18が形成されている。第2樹脂層18は、例えばエポキシ樹脂やシリコーン樹脂、アクリルなどの透明樹脂であり、発光素子13から出射された光を拡散するレンズの役割を果たしている。第2樹脂層18には、表面に凹部(溝)19が形成されており、かかる凹部19の基板11に垂直な中心面の位置が、発光素子13の中心を通り基板11の長手方向を法線方向とする面と一致するように形成される。 The second resin layer 18 is formed on the first resin layer 14. The second resin layer 18 is, for example, a transparent resin such as an epoxy resin, a silicone resin, or acrylic, and serves as a lens that diffuses the light emitted from the light emitting element 13. A concave portion (groove) 19 is formed on the surface of the second resin layer 18, and the position of the central plane perpendicular to the substrate 11 of the concave portion 19 passes through the center of the light emitting element 13 and diverges in the longitudinal direction of the substrate 11. It is formed so as to coincide with the surface to be the line direction.
 発光装置1では、図7に示す従来構成の発光装置と異なり、ダム材料15が、配線層12a、12bの何れか一方(ここでは、配線層12a)上のみに形成され、かかる一方の配線層の上方に、発光素子13が配置されている。また、ワイヤ16と配線層12a、12bとの接続は、ダム材料15より外側(ダム材料15を挟んで発光素子13と対向する側)でされている。 In the light emitting device 1, unlike the conventional light emitting device shown in FIG. 7, the dam material 15 is formed only on one of the wiring layers 12a and 12b (here, the wiring layer 12a). The light emitting element 13 is disposed above the. Further, the connection between the wire 16 and the wiring layers 12a and 12b is made outside the dam material 15 (on the side facing the light emitting element 13 with the dam material 15 in between).
 この結果、図1(B)に示すように、ダム材料15で囲まれた第1樹脂層14の形成領域17において、基板11上の配線層12a、12bの配線パターンが線対称または点対称となる。すなわち、図1(B)の領域17において、配線層12a、12bの配線パターンが、発光素子13の配置位置を通り、基板11の長手方向及び短手方向に平行な各直線に対して線対称であり、且つ、発光素子13の配置位置を中心として点対称となる。 As a result, as shown in FIG. 1B, in the formation region 17 of the first resin layer 14 surrounded by the dam material 15, the wiring patterns of the wiring layers 12a and 12b on the substrate 11 are line symmetric or point symmetric. Become. That is, in the region 17 of FIG. 1B, the wiring patterns of the wiring layers 12a and 12b pass through the arrangement positions of the light emitting elements 13 and are line symmetric with respect to the respective straight lines parallel to the longitudinal direction and the short direction of the substrate 11. And is symmetrical with respect to the arrangement position of the light emitting element 13.
 これにより、第1樹脂層14と接着する基板11および配線層12a、12bの濡れ性が対称となり、第1樹脂層14の三次元形状がいびつにならず、対称な3次元形状で形成される。本実施形態の場合、第1樹脂層14の3次元形状は、発光素子13の配置位置を通り基板11の長手方向を法線方向とする面に対して対称となる。かかる面上に、第1樹脂層14の凸部の中心(頂上)が位置し、また、第2樹脂層18の凹部19の中心が位置する。 Thereby, the wettability of the board | substrate 11 and wiring layer 12a, 12b which adhere | attaches with the 1st resin layer 14 becomes symmetrical, and the three-dimensional shape of the 1st resin layer 14 does not become distorted, but is formed with the symmetrical three-dimensional shape. . In the case of the present embodiment, the three-dimensional shape of the first resin layer 14 is symmetric with respect to a plane that passes through the arrangement position of the light emitting element 13 and has the longitudinal direction of the substrate 11 as the normal direction. On this surface, the center (top) of the convex portion of the first resin layer 14 is located, and the center of the concave portion 19 of the second resin layer 18 is located.
 この結果、発光装置1では、配光特性が対称であり、また、輝度ばらつきや色ばらつきが大幅に抑制され、また、光軸の偏心についても改善されている。 As a result, in the light emitting device 1, the light distribution characteristics are symmetric, the luminance variation and the color variation are greatly suppressed, and the eccentricity of the optical axis is improved.
 つまり、上述の発光装置1では、配線層12a、12bからなる基板11上の配線パターンが、ダム材料15で囲まれた第1樹脂層14の形成領域17の外側でアノード配線層とカソード配線層に分離するようにし、ダム材料15をアノード配線層とカソード配線層のうちどちらか一方の配線層上にのみ形成することで、かかる第1樹脂層14の形成領域17内において対称な配線パターンを実現でき、この結果、第1樹脂層14の3次元形状が対称となって、配光特性が対称な発光装置が実現されている。 That is, in the above-described light emitting device 1, the wiring pattern on the substrate 11 including the wiring layers 12 a and 12 b is arranged outside the formation region 17 of the first resin layer 14 surrounded by the dam material 15 and the anode wiring layer and the cathode wiring layer. By forming the dam material 15 only on one of the anode wiring layer and the cathode wiring layer, a symmetric wiring pattern is formed in the formation region 17 of the first resin layer 14. As a result, the three-dimensional shape of the first resin layer 14 is symmetrical, and a light emitting device having symmetrical light distribution characteristics is realized.
 なお、基板11上の配線パターンを対称化する方法としては、上記図1に示した発光装置1の構成のほか、図2、図3に示す変形例の構成が挙げられる。 In addition, as a method for symmetrizing the wiring pattern on the substrate 11, in addition to the configuration of the light emitting device 1 shown in FIG. 1, the configuration of the modification shown in FIGS.
 図2に、発光装置1の構成の変形例を示す。図2(A)は、発光装置2の基板に垂直な面の断面図であり、図2(B)はその基板上面から見た配線レイアウトである。なお、図2(A)は図2(B)のA-A’方向の断面図である。 FIG. 2 shows a modification of the configuration of the light emitting device 1. 2A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 2, and FIG. 2B is a wiring layout viewed from the top surface of the substrate. Note that FIG. 2A is a cross-sectional view in the A-A ′ direction of FIG.
 図2に示す発光装置2では、発光素子13は、配線層12a、12bと分離された別の孤立配線層12cの上方に配置されている。一方、ダム材料15は配線層12a、12b上に形成されている。そして、ダム材料15より外側(ダム材料15を挟んで発光素子13と対向する側)において、発光素子13と配線層12a、12bとの接続がワイヤ16によりワイヤボンディングされてなる。これにより、配線層12a、12b、12cからなる基板11上の配線パターンを、図2(B)に示すように、少なくともダム材料15で囲まれた第1樹脂層14の形成領域17内において対称にできる。 In the light emitting device 2 shown in FIG. 2, the light emitting element 13 is disposed above another isolated wiring layer 12c separated from the wiring layers 12a and 12b. On the other hand, the dam material 15 is formed on the wiring layers 12a and 12b. Then, outside the dam material 15 (on the side facing the light emitting element 13 across the dam material 15), the connection between the light emitting element 13 and the wiring layers 12a and 12b is wire-bonded by a wire 16. Thereby, the wiring pattern on the substrate 11 composed of the wiring layers 12a, 12b, and 12c is symmetrical at least in the formation region 17 of the first resin layer 14 surrounded by the dam material 15, as shown in FIG. Can be.
 図3に、発光装置1の構成の他の変形例を示す。図3(A)は、発光装置3の基板に垂直な面の断面図であり、図3(B)はその基板上面から見た配線レイアウトである。なお、図3(A)は図3(B)のA-A’方向の断面図である。 FIG. 3 shows another modification of the configuration of the light emitting device 1. 3A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 3, and FIG. 3B is a wiring layout viewed from the top surface of the substrate. Note that FIG. 3A is a cross-sectional view in the A-A ′ direction of FIG.
 図3に示す発光装置3では、発光素子13は、配線層12a、12bの上方には配置せず、基板11上に反射層(図示せず)を介して配置している。ダム材料15が配線層12a、12b上に形成され、ダム材料15より外側(ダム材料15を挟んで発光素子13と対向する側)において、発光素子13と配線層12a、12bとの接続がワイヤ16によりワイヤボンディングされてなる。これにより、配線層12a、12bからなる基板11上の配線パターンを、図3(B)に示すように、少なくともダム材料15で囲まれた第1樹脂層14の形成領域17内において対称にできる。 In the light emitting device 3 shown in FIG. 3, the light emitting element 13 is not disposed above the wiring layers 12a and 12b, but is disposed on the substrate 11 via a reflective layer (not shown). A dam material 15 is formed on the wiring layers 12a and 12b, and the connection between the light emitting element 13 and the wiring layers 12a and 12b is a wire outside the dam material 15 (on the side facing the light emitting element 13 across the dam material 15). 16 is wire-bonded. As a result, the wiring pattern on the substrate 11 composed of the wiring layers 12a and 12b can be made symmetric at least in the formation region 17 of the first resin layer 14 surrounded by the dam material 15, as shown in FIG. .
 上記の発光装置2、3によっても、基板11上の配線層12a、12b、12cの配線パターンが対称であることにより、第1樹脂層14の三次元形状が対称に形成され、結果、配光特性が対称であり、また、輝度ばらつきや色ばらつきが大幅に抑制され、また、光軸の偏心の問題の生じない発光装置を実現できる。 Also in the light emitting devices 2 and 3 described above, the wiring patterns of the wiring layers 12a, 12b, and 12c on the substrate 11 are symmetrical, so that the three-dimensional shape of the first resin layer 14 is formed symmetrically. It is possible to realize a light emitting device that has symmetrical characteristics, greatly suppresses luminance variation and color variation, and does not cause a problem of eccentricity of the optical axis.
 〈第2実施形態〉
 本発明の一実施形態に係る発光装置4の構成の一例を図4に示す。図4(A)は、発光装置1の基板に垂直な面の断面図であり、図4(B)はその上面レイアウトである。本実施形態では、上記の発光装置1~3と異なり、基板11上方に1つの発光素子13を配置した点光源を想定している。
Second Embodiment
An example of the configuration of the light emitting device 4 according to an embodiment of the present invention is shown in FIG. 4A is a cross-sectional view of a surface perpendicular to the substrate of the light-emitting device 1, and FIG. 4B is a top surface layout thereof. In the present embodiment, unlike the light emitting devices 1 to 3 described above, a point light source in which one light emitting element 13 is arranged above the substrate 11 is assumed.
 発光装置4において、発光素子13を囲むように、リング状のダム材料15が基板11上、及び、配線層12a、12b上に形成されている。発光素子13は、配線層12a、12bの上方に形成せず、基板11上に反射層(図示せず)を介して形成している。そして、ダム材料15より外側において、発光素子13と配線層12a、12bとの接続がワイヤ16によりワイヤボンディングされてなる。さらに、第1樹脂層14上に、第2樹脂層18が形成されている。第2樹脂層18は、例えばエポキシ樹脂やシリコーン樹脂、アクリルなどの透明樹脂であり、発光素子13から出射された光を拡散するレンズの役割を果たしている。第2樹脂層18には、表面に逆円錐状の凹部(溝)19が形成されており、かかる凹部19の基板11に垂直な中心軸の位置(円錐の軸の位置)が、発光素子13の配置位置と一致するように形成される。 In the light emitting device 4, a ring-shaped dam material 15 is formed on the substrate 11 and the wiring layers 12 a and 12 b so as to surround the light emitting element 13. The light emitting element 13 is not formed above the wiring layers 12a and 12b, but is formed on the substrate 11 via a reflective layer (not shown). Then, outside the dam material 15, the connection between the light emitting element 13 and the wiring layers 12 a and 12 b is wire-bonded by a wire 16. Furthermore, a second resin layer 18 is formed on the first resin layer 14. The second resin layer 18 is, for example, a transparent resin such as an epoxy resin, a silicone resin, or acrylic, and serves as a lens that diffuses the light emitted from the light emitting element 13. The second resin layer 18 has an inverted conical recess (groove) 19 formed on the surface, and the position of the central axis perpendicular to the substrate 11 of the recess 19 (the position of the cone axis) is the light emitting element 13. It is formed so as to coincide with the arrangement position.
 この場合、図4(B)に示すように、少なくともダム材料15で囲まれた第1樹脂層14の形成領域17において、配線層12a、12bの配線パターンが、発光素子13の配置位置を通り、基板11の配線層12aと12bとが対向する方向に対して垂直および平行な各直線に対して線対称であり、且つ、発光素子13の配置位置を中心として点対称となっている。 In this case, as shown in FIG. 4B, at least in the formation region 17 of the first resin layer 14 surrounded by the dam material 15, the wiring patterns of the wiring layers 12 a and 12 b pass through the arrangement positions of the light emitting elements 13. The wiring layers 12a and 12b of the substrate 11 are line symmetric with respect to straight lines perpendicular to and parallel to the direction in which the wiring layers 12a and 12b face each other, and are point symmetric with respect to the arrangement position of the light emitting element 13.
 これにより、第1樹脂層14と接着する基板11および配線層12a、12bの濡れ性が対称となり、第1樹脂層14の三次元形状がいびつにならず、対称な3次元形状で形成できる。本実施形態の場合、第1樹脂層14の3次元形状は、発光素子13の配置位置を通り基板11に垂直であって配線層12aと12bとが対向する方向に垂直および平行な各面に対して対称となる。かかる各面の交線上に、第1樹脂層14の凸部の中心(頂上)が位置し、また、第2樹脂層18の凹部20の中心軸が位置する。 Thereby, the wettability of the substrate 11 and the wiring layers 12a and 12b bonded to the first resin layer 14 is symmetric, and the three-dimensional shape of the first resin layer 14 is not distorted and can be formed in a symmetric three-dimensional shape. In the case of the present embodiment, the three-dimensional shape of the first resin layer 14 passes through the arrangement position of the light emitting element 13 and is perpendicular to the substrate 11 and is perpendicular to and parallel to the direction in which the wiring layers 12a and 12b face each other. It becomes symmetrical with respect to it. The center (top) of the convex portion of the first resin layer 14 is located on the intersecting line of each surface, and the central axis of the concave portion 20 of the second resin layer 18 is located.
 この結果、発光装置4では、配光特性が対称であり、また、輝度ばらつきや色ばらつきが大幅に抑制され、また、光軸の偏心についても改善されている。 As a result, in the light emitting device 4, the light distribution characteristics are symmetric, the luminance variation and the color variation are greatly suppressed, and the eccentricity of the optical axis is improved.
 図5に図4(B)に示した配線レイアウトの変形例を示す。図5では、配線層12aと12bを、ダム材料15の下層を延伸するように、ダム材料15と同様リング状に形成している。ただし、配線層12aと12bは、距離Lだけ離間して形成されている。かかる配線層12aと12bとの間の間隙Lは、配線層同士の絶縁を確保できる限り、できるだけ短くすることが好ましい。 FIG. 5 shows a modification of the wiring layout shown in FIG. In FIG. 5, the wiring layers 12 a and 12 b are formed in a ring shape like the dam material 15 so as to extend the lower layer of the dam material 15. However, the wiring layers 12a and 12b are formed apart by a distance L. The gap L between the wiring layers 12a and 12b is preferably as short as possible as long as insulation between the wiring layers can be ensured.
 この場合、ダム材料15で囲まれた第1樹脂層14の形成領域17において、配線層12a、12bの配線パターンが、発光素子13の配置位置を中心として略回転対称となる。すなわち、配線パターンが、基板11の発光素子13の配置位置を通る任意の直線に対して線対称であるといえ、且つ、発光素子13の配置位置を中心として点対称となっている。 In this case, in the formation region 17 of the first resin layer 14 surrounded by the dam material 15, the wiring patterns of the wiring layers 12 a and 12 b are substantially rotationally symmetric about the arrangement position of the light emitting element 13. That is, it can be said that the wiring pattern is line symmetric with respect to an arbitrary straight line passing through the arrangement position of the light emitting element 13 on the substrate 11, and is point symmetric with respect to the arrangement position of the light emitting element 13.
 このように配線層12a、12bの配線パターンを構成することで、第1樹脂層14の三次元形状が略軸対称に形成され、結果、配光特性が対称であり、また、輝度ばらつきや色ばらつきが大幅に抑制され、また、光軸の偏心の問題の生じない発光装置4を実現できる。 By configuring the wiring patterns of the wiring layers 12a and 12b in this way, the three-dimensional shape of the first resin layer 14 is formed substantially axisymmetrically. As a result, the light distribution characteristics are symmetric, and the luminance variation and color It is possible to realize the light emitting device 4 in which the variation is greatly suppressed and the problem of the eccentricity of the optical axis does not occur.
 〈別実施形態〉
 以下に、別実施形態について説明する。
<Another embodiment>
Another embodiment will be described below.
 〈1〉上記第1及び第2実施形態では、第1樹脂層14に蛍光体を分散させたことで、白色光を出射する発光装置1~4の構成について詳細に説明したが、本発明はこれに限られるものではない。第1樹脂層14に蛍光体を含まず、単色光を出射する発光装置の場合についても、基板11上の配線パターンが対称となるようにレイアウトを設計することで、発光素子13を封止する第1樹脂層14の3次元形状が対称化され、配光特性が対称となり、輝度ばらつきや色ばらつきの改善が図れる。 <1> In the first and second embodiments described above, the configuration of the light emitting devices 1 to 4 that emit white light by dispersing the phosphor in the first resin layer 14 has been described in detail. It is not limited to this. Even in the case of a light emitting device that does not include a phosphor in the first resin layer 14 and emits monochromatic light, the light emitting element 13 is sealed by designing the layout so that the wiring pattern on the substrate 11 is symmetric. The three-dimensional shape of the first resin layer 14 is symmetrized, the light distribution characteristics are symmetric, and brightness variations and color variations can be improved.
 〈2〉また、上記第1及び第2実施形態では、ダム材料15で囲まれた第1樹脂層14の形成領域17内において、1つの発光素子(LEDチップ)を第1樹脂層14で封止して、発光装置が構成されているが、形成領域17内に封止される発光素子は1つに限られるものではない。複数の発光素子を形成領域17内に封止することができる。例えば、夫々、赤青緑の3色を出射する3種類の発光素子を、同じ第1樹脂層14の形成領域17内に封止することもできる。 <2> In the first and second embodiments, one light emitting element (LED chip) is sealed with the first resin layer 14 in the formation region 17 of the first resin layer 14 surrounded by the dam material 15. Although the light-emitting device is configured, the number of light-emitting elements sealed in the formation region 17 is not limited to one. A plurality of light emitting elements can be sealed in the formation region 17. For example, three types of light emitting elements that emit three colors of red, blue, and green can be sealed in the same first resin layer 14 formation region 17.
 ここで、形成領域17内に複数の発光素子を樹脂封止する場合には、かかる複数の発光素子同士を直列または並列に接続して発光装置を構成するために、配線層12aと12bとは別の一または複数の配線層が必要となる。しかしながら、この場合であっても、第1樹脂層14の形成領域17内において、かかる配線層12aと12bを含む3以上の配線層からなる配線パターンが対称になっている限り、本発明の効果を奏する。この場合、各発光素子と各配線層を接続するワイヤ16の配線層側の接続位置を、形成領域17より外側に設ける構成とするのが好適である。併せて、各発光素子を配線層上方に配置しない構成とするか、或いは対称な形状にパターニングされた孤立配線層の上方に各発光素子を配置する構成とするのがより好ましい。 Here, when a plurality of light emitting elements are resin-sealed in the formation region 17, the wiring layers 12a and 12b are used to connect the plurality of light emitting elements in series or in parallel to form a light emitting device. Another wiring layer or a plurality of wiring layers are required. However, even in this case, as long as the wiring pattern composed of three or more wiring layers including the wiring layers 12a and 12b is symmetrical in the formation region 17 of the first resin layer 14, the effect of the present invention is achieved. Play. In this case, it is preferable that the connection position on the wiring layer side of the wire 16 connecting each light emitting element and each wiring layer is provided outside the formation region 17. In addition, it is more preferable that each light emitting element is not arranged above the wiring layer, or each light emitting element is arranged above the isolated wiring layer patterned in a symmetrical shape.
 〈3〉上記第2実施形態(図4、図5)では、発光素子13を基板11の上方に、配線層12a、12bを介さず配置しているが、図2で説明したように、孤立配線層上に配置してもよいし、図1で説明したように、ダム材料15を配線層12a、12bの何れか一方のみの上に形成し、かかる一方の配線層の上方に、発光素子13を配置してもよい。 <3> In the second embodiment (FIGS. 4 and 5), the light emitting element 13 is disposed above the substrate 11 without the wiring layers 12a and 12b interposed therebetween. However, as described with reference to FIG. The dam material 15 may be formed on only one of the wiring layers 12a and 12b as described with reference to FIG. 1, and the light emitting element is disposed above the one wiring layer as described with reference to FIG. 13 may be arranged.
 〈4〉上記第1及び第2実施形態では、ダム材料15で囲まれる領域17内に第1樹脂層14が形成される構成であり、また、かかるダム材料15が、第1樹脂層14を塗布形成する際に、流動性を有する状態の第1樹脂層14がダム材料15を超えて領域19の外方に流出・浸入するのを防ぐ構成である。しかしながら、本発明の適用上、必ずしもダム材料15は必要ではない。図6の断面図及び配線レイアウト図に示すように、ダム材料15を形成せず、第1樹脂層14が全面に、ただし起伏を有して形成されている場合であっても、少なくとも第1樹脂層14の高さが発光素子13の基板上層の配置位置から離れるに従って下降するように第1樹脂層14が凸状に形成される領域(凸状形成領域)17における基板上の配線パターンが、発光素子13の配置位置を通る何れか一の直線に対して線対称あるいは発光素子13の配置位置を中心として点対称となるように形成されている限り、本発明の効果を奏する。 <4> In the first and second embodiments, the first resin layer 14 is formed in the region 17 surrounded by the dam material 15, and the dam material 15 disposes the first resin layer 14. When the coating is formed, the first resin layer 14 in a fluid state is prevented from flowing out and entering the region 19 beyond the dam material 15. However, the dam material 15 is not always necessary for the application of the present invention. As shown in the cross-sectional view and the wiring layout diagram of FIG. 6, even if the dam material 15 is not formed and the first resin layer 14 is formed on the entire surface but with undulations, at least the first The wiring pattern on the substrate in the region (convex formation region) 17 where the first resin layer 14 is formed in a convex shape so that the height of the resin layer 14 is lowered as the distance from the arrangement position of the upper layer of the light emitting element 13 increases. As long as the light emitting element 13 is formed so as to be line symmetric with respect to any one straight line passing through the arrangement position of the light emitting element 13 or to be point symmetric with respect to the arrangement position of the light emitting element 13, the effect of the present invention is achieved.
 本発明は、発光素子を用いた発光装置に利用可能であり、特に、液晶テレビや液晶モニターなどの液晶表示装置用のバックライト、或いは照明装置としての利用が可能である。 The present invention can be used for a light-emitting device using a light-emitting element, and in particular, can be used as a backlight for a liquid crystal display device such as a liquid crystal television or a liquid crystal monitor, or a lighting device.
1~4: 本発明の一実施形態に係る発光装置(本発明装置)
 11、201: 基板
 12a、12b、12c、202a、202b:配線層
 13、203: 発光素子
 14: 第1樹脂層
 15、205: ダム材料
 16、206: ワイヤ
 17: 凸状形成領域
 18: 第2樹脂層
 19: 第2樹脂層の凹部(溝)
200: 従来構成の発光装置
204: 樹脂層
208: 透明樹脂層
 
1-4: Light-emitting device according to an embodiment of the present invention (device of the present invention)
11, 201: Substrate 12a, 12b, 12c, 202a, 202b: Wiring layer 13, 203: Light-emitting element 14: First resin layer 15, 205: Dam material 16, 206: Wire 17: Convex forming region 18: Second Resin layer 19: Concave portion (groove) of second resin layer
200: Conventionally configured light emitting device 204: Resin layer 208: Transparent resin layer

Claims (9)

  1.  基板と、
     前記基板の上層に配置された発光素子と、
     前記基板上に形成された2以上の配線層と、
     前記発光素子を封止するための第1樹脂層を備え、
     少なくとも前記第1樹脂層の高さが前記発光素子の基板上層の配置位置から離れるに従って下降するように前記第1樹脂層が凸状に形成される凸状形成領域において、前記基板上に前記配線層が形成される配線パターンが、前記発光素子の配置位置を通る何れか一の直線に対して線対称あるいは前記発光素子の配置位置を中心として点対称となるように形成されていることを特徴とする発光装置。
    A substrate,
    A light emitting device disposed on an upper layer of the substrate;
    Two or more wiring layers formed on the substrate;
    A first resin layer for sealing the light emitting element;
    In the convex formation region where the first resin layer is formed in a convex shape so that at least the height of the first resin layer is lowered as the distance from the arrangement position of the substrate upper layer of the light emitting element is increased, the wiring is formed on the substrate. The wiring pattern in which the layer is formed is formed so as to be line symmetric with respect to any one straight line passing through the light emitting element arrangement position or point symmetric with respect to the light emitting element arrangement position. A light emitting device.
  2.  前記第1樹脂層上に、第2樹脂層が形成され、
     前記第2樹脂層は、表面に凹部を有し、前記凹部の前記基板に垂直な中心面または中心軸の位置が、前記凸状の前記第1樹脂層の前記基板に垂直な中心面または中心軸の位置と一致することを特徴とする請求項1に記載の発光装置。
    A second resin layer is formed on the first resin layer,
    The second resin layer has a concave portion on the surface, and a central plane or center axis perpendicular to the substrate of the concave portion is a central plane or center perpendicular to the substrate of the convex first resin layer. The light emitting device according to claim 1, wherein the light emitting device coincides with a position of an axis.
  3.  前記発光素子を囲むように、前記第1樹脂層の前記凸状形成領域より外方への浸入を防止するダム材料が前記基板の上層に形成され、
     前記ダム材料で囲まれた領域において、基板上に前記配線層が形成される配線パターンが、前記発光素子の配置位置を通る何れか一の直線に対して線対称あるいは前記発光素子の配置位置を中心として点対称となるように形成されていることを特徴とする請求項1又は2に記載の発光装置。
    A dam material is formed in the upper layer of the substrate to prevent the first resin layer from penetrating outward from the convex formation region so as to surround the light emitting element.
    In the region surrounded by the dam material, the wiring pattern in which the wiring layer is formed on the substrate is axisymmetric with respect to any one straight line passing through the arrangement position of the light emitting element or the arrangement position of the light emitting element. The light-emitting device according to claim 1, wherein the light-emitting device is formed to be point-symmetric with respect to the center.
  4.  前記発光素子と電気的に接続するアノード配線層およびカソード配線層を備え、
     前記ダム材料が前記配線層上に形成される領域が、前記アノード配線層および前記カソード配線層のうち何れか一方の配線層上のみであり、
     前記発光素子が、前記何れか一方の配線層の上方に配置されていることを特徴とする請求項3に記載の発光装置。
    An anode wiring layer and a cathode wiring layer electrically connected to the light emitting element;
    The region where the dam material is formed on the wiring layer is only on one of the anode wiring layer and the cathode wiring layer,
    The light emitting device according to claim 3, wherein the light emitting element is disposed above any one of the wiring layers.
  5.  前記発光素子と電気的に接続するアノード配線層およびカソード配線層と、前記アノード配線層および前記カソード配線層の何れとも接続しない孤立配線層を備え、
     前記発光素子が、前記孤立配線層の上方に配置されていることを特徴とする請求項1~3の何れか一項に記載の発光装置。
    An anode wiring layer and a cathode wiring layer that are electrically connected to the light emitting element, and an isolated wiring layer that is not connected to any of the anode wiring layer and the cathode wiring layer,
    The light emitting device according to any one of claims 1 to 3, wherein the light emitting element is disposed above the isolated wiring layer.
  6.  前記発光素子が、前記配線層の上方に配置されていないことを特徴とする請求項1~3の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the light emitting element is not disposed above the wiring layer.
  7.  前記第1樹脂層に、蛍光体が分散されてなることを特徴とする請求項1~6の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein a phosphor is dispersed in the first resin layer.
  8.  少なくとも前記凸状形成領域において、前記基板および前記配線層の前記第1樹脂層との接着面における濡れ性が、前記発光素子の配置位置を通る何れか一の直線に対して線対称あるいは前記発光素子の配置位置を中心として点対称となるように形成されていることを特徴とする請求項1~7の何れか一項に記載の発光装置。 At least in the convex formation region, the wettability of the substrate and the wiring layer on the bonding surface with the first resin layer is symmetrical with respect to any one straight line passing through the arrangement position of the light emitting element or the light emission. The light emitting device according to any one of claims 1 to 7, wherein the light emitting device is formed so as to be point-symmetric with respect to an element arrangement position.
  9.  少なくとも前記凸状形成領域上において、前記第1樹脂層の3次元形状が、前記発光素子の配置位置を通り前記基板に垂直な何れか一の平面に対して対称あるいは前記発光素子の配置位置を通り前記基板に垂直な直線を軸として軸対称となるように形成されていることを特徴とする請求項1~8の何れか一項に記載の発光装置。 At least on the convex formation region, the three-dimensional shape of the first resin layer is symmetrical with respect to any one plane passing through the arrangement position of the light emitting element and perpendicular to the substrate, or the arrangement position of the light emitting element. 9. The light-emitting device according to claim 1, wherein the light-emitting device is formed so as to be axially symmetric about a straight line perpendicular to the substrate.
PCT/JP2013/053481 2012-03-16 2013-02-14 Light-emitting device WO2013136900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012060931 2012-03-16
JP2012-060931 2012-03-16

Publications (1)

Publication Number Publication Date
WO2013136900A1 true WO2013136900A1 (en) 2013-09-19

Family

ID=49160819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053481 WO2013136900A1 (en) 2012-03-16 2013-02-14 Light-emitting device

Country Status (2)

Country Link
TW (1) TW201340417A (en)
WO (1) WO2013136900A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428269A (en) * 1990-05-23 1992-01-30 Fujikura Ltd Mounting structure of led bare chip
JP2002344027A (en) * 2001-05-15 2002-11-29 Stanley Electric Co Ltd Surface-mounted led
JP2004087812A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Light emitting device
JP2004165352A (en) * 2002-11-12 2004-06-10 Citizen Electronics Co Ltd Light-emitting diode and liquid crystal display
JP2005303211A (en) * 2004-04-15 2005-10-27 Stanley Electric Co Ltd Flat surface irradiation-type light emitting diode (led)
JP2012044034A (en) * 2010-08-20 2012-03-01 Stanley Electric Co Ltd Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428269A (en) * 1990-05-23 1992-01-30 Fujikura Ltd Mounting structure of led bare chip
JP2002344027A (en) * 2001-05-15 2002-11-29 Stanley Electric Co Ltd Surface-mounted led
JP2004087812A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Light emitting device
JP2004165352A (en) * 2002-11-12 2004-06-10 Citizen Electronics Co Ltd Light-emitting diode and liquid crystal display
JP2005303211A (en) * 2004-04-15 2005-10-27 Stanley Electric Co Ltd Flat surface irradiation-type light emitting diode (led)
JP2012044034A (en) * 2010-08-20 2012-03-01 Stanley Electric Co Ltd Semiconductor light-emitting device and semiconductor light-emitting device manufacturing method

Also Published As

Publication number Publication date
TW201340417A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5158472B2 (en) Semiconductor light emitting device
JP7125636B2 (en) light emitting device
TWI758388B (en) Light emitting device
JP6512321B2 (en) Light emitting device
TWI546984B (en) Light emitting device module
US8405304B2 (en) Light emtting device
JP6331389B2 (en) Light emitting device
JP5698808B2 (en) Semiconductor light emitting device
WO2012001938A1 (en) Light emitting device, backlight unit, liquid crystal display device, and lighting device
JP7048873B2 (en) Light emitting device and manufacturing method of light emitting device
JP2020141149A (en) Light-emitting device
JP2016539501A (en) LED mounting component and manufacturing method thereof
JP2012038862A (en) Semiconductor light-emitting device
JP2008227485A (en) Led package
JP2012069577A (en) Semiconductor light-emitting device and method of manufacturing the same
JP2011040494A (en) Light emitting module
JP2007088060A (en) Light emitting device
JP2020061543A (en) Light-emitting device
JP5450680B2 (en) Semiconductor light emitting device
US10700245B2 (en) Light-emitting device
KR100609970B1 (en) Substrate for mounting light emitting device, fabricating method thereof and package using the same
WO2013136900A1 (en) Light-emitting device
JP7492119B2 (en) Light-emitting device
JP2019062116A (en) Light-emitting device
JP7481632B2 (en) Light emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP