WO2013136436A1 - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
WO2013136436A1
WO2013136436A1 PCT/JP2012/056390 JP2012056390W WO2013136436A1 WO 2013136436 A1 WO2013136436 A1 WO 2013136436A1 JP 2012056390 W JP2012056390 W JP 2012056390W WO 2013136436 A1 WO2013136436 A1 WO 2013136436A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
fingers
solar cell
finger portion
line width
Prior art date
Application number
PCT/JP2012/056390
Other languages
French (fr)
Japanese (ja)
Inventor
悟司 東方田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/056390 priority Critical patent/WO2013136436A1/en
Publication of WO2013136436A1 publication Critical patent/WO2013136436A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell.
  • Patent Document 1 discloses a solar cell including a collector electrode composed of a bus bar and fingers provided on a substrate.
  • the finger has a first end and a second end.
  • the first end is a portion of the finger that is connected to the bus bar.
  • the second end is the part of the finger that is farthest from the bus bar.
  • the fingers are configured so that the width decreases monotonously from the first end toward the second end.
  • the current collected by the fingers increases as it approaches the bus bar.
  • the aforementioned fingers are not optimized to sufficiently reduce power loss due to current and finger resistance.
  • a solar cell according to the present invention includes a photoelectric conversion unit and a collector electrode provided on a main surface of the photoelectric conversion unit, and the collector electrode includes a bus bar and a finger that intersects with the bus bar.
  • the first finger portion extended so that the line width becomes narrower with increasing distance from the side, and the first finger portion continuously extending from the first finger portion while maintaining the line width at the boundary between the first finger portion and the first finger portion.
  • 2 finger parts, and the 2nd finger part is shorter than the length of the 1st finger part.
  • the output of the solar cell can be improved.
  • FIG. 3 is a cross-sectional view taken along line AA in FIGS. 1 and 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • it is an output characteristic figure when a horizontal axis is set to L1 / L and a vertical axis
  • shaft is made into the output (%) of a solar cell.
  • FIG. 1 is a plan view of the light-receiving surface side of the solar cell 1.
  • FIG. 2 is a plan view of the back surface side of the solar cell 1.
  • FIG. 3 is a cross-sectional view taken along line AA in FIGS.
  • the “light-receiving surface” means a main surface on the side on which sunlight is mainly incident.
  • the “back surface” means a main surface opposite to the light receiving surface.
  • the solar cell 1 includes a photoelectric conversion unit 2, a collector electrode 4 provided on the light receiving surface of the photoelectric conversion unit 2, and a collector electrode 6 provided on the back surface of the photoelectric conversion unit 2.
  • a part such as a layer, a film, or a region
  • another part includes not only a case where the part is directly stacked, but also a case where another part exists between them.
  • the photoelectric conversion unit 2 includes a transparent conductive film 11, a p-type amorphous silicon film 12, an i-type amorphous silicon film 13, an n-type single crystal silicon substrate 14, and an i-type amorphous material from the light receiving surface side.
  • the n-type single crystal silicon substrate 14 is a power generation layer that receives light and generates carriers.
  • the power generation layer is not limited to the n-type single crystal silicon substrate 14.
  • the power generation layer may be either n-type or p-type conductivity type.
  • the power generation layer may be any of a crystalline semiconductor substrate, a polycrystalline silicon substrate, a gallium arsenide (GaAs) substrate, and an indium phosphide (InP) substrate.
  • the i-type amorphous silicon film 13 is formed on the light-receiving surface of the n-type single crystal silicon substrate 14.
  • the i-type amorphous silicon film 13 is an intrinsic amorphous silicon film.
  • the p-type amorphous silicon film 12 is formed on the i-type amorphous silicon film 13.
  • the p-type amorphous silicon film 12 is an amorphous silicon film doped with p-type impurities.
  • the transparent conductive film 11 is formed on the p-type amorphous silicon film 12.
  • the transparent conductive film 11 includes at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ). .
  • the i-type amorphous silicon film 15 is formed on the back surface of the n-type single crystal silicon substrate 14.
  • the i-type amorphous silicon film 15 is an intrinsic amorphous silicon film.
  • the n-type amorphous silicon film 16 is formed on the i-type amorphous silicon film 15.
  • the n-type amorphous silicon film 16 is an amorphous silicon film doped with n-type impurities.
  • the transparent conductive film 17 is formed on the n-type amorphous silicon film 16.
  • the transparent conductive film 17 includes the same material as that of the transparent conductive film 11.
  • the collecting electrode 4 is formed on the transparent conductive film 11.
  • the collector electrode 4 is a conductive material, for example, a metal such as silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), nickel (Ni) and chromium (Cr), or these metals. It can comprise with the alloy containing 1 or more types of these.
  • the collector electrode 4 includes bus bars 19a and 19b and fingers 20a to 20d.
  • the bus bars 19a and 19b are provided to take out the carriers generated in the photoelectric conversion unit 2.
  • the bus bars 19a and 19b are arranged in parallel with a predetermined interval so as to collect the current collected by the fingers 20a to 20d as evenly as possible.
  • the bus bar 19a is arranged at the center of the left half when the main surface of the photoelectric conversion unit 2 is divided into two, and the bus bar 19b is arranged at the center of the right half.
  • the width of the bus bars 19a and 19b is 1 mm.
  • the fingers 20a to 20d are provided to collect carriers generated in the photoelectric conversion unit 2.
  • the fingers 20a to 20d are arranged so as to cross the bus bars 19a and 19b and be electrically connected.
  • the fingers 20a to 20d are arranged in parallel at predetermined intervals so that current can be collected evenly from the surface of the photoelectric conversion unit 2.
  • the n sets of fingers 20a to 20d divide the area of the main surface of the photoelectric conversion unit 2 into (n + 1) equal parts. Placed in.
  • the plurality of fingers 20a are arranged in parallel with each other at an interval of 2 mm, for example.
  • the collector electrode 6 may have the same configuration as that of the collector electrode 4, or may include a configuration that is partially different in terms of width, material, or shape.
  • the finger 20 a has a line width that changes along its extending direction, and includes a first finger portion 203 and a second finger portion 204.
  • the line width here means the length in the short direction of the fingers 20a to 20d when the fingers 20a to 20d are viewed from above.
  • the first finger portion 203 is divided into multiple stages so that the change rate of the line width changes, and is extended so that the line width gradually decreases as the distance from the bus bar 19a side increases.
  • the first finger 203 is connected to the bus bar 19a at the end 201.
  • the end part 201 is the widest part in the first finger part 203.
  • the boundary portion 202 is a portion having the narrowest width in the first finger portion 203.
  • the first finger portion 203 has a first region 203a in which the line width Y is reduced at a multi-stage change rate and the line width Y is reduced at a change rate of ⁇ Y 1 / ⁇ X 1, and a change rate of ⁇ Y 2 / ⁇ X 2.
  • the first finger portion 203 has a line width that becomes narrower from the end 201 at a change rate ⁇ Y 1 / ⁇ X 1, and a change rate ⁇ Y 2 / ⁇ X 2 that is a change rate different from the change rate ⁇ Y 1 / ⁇ X 1 on the way.
  • the line width becomes narrower.
  • the change rate ⁇ Y 2 / ⁇ X 2 is smaller than the change rate ⁇ Y 1 / ⁇ X 1 .
  • the rate of change in line width of the first finger portion 203 increases as it approaches the bus bar 19a side.
  • the second finger portion 204 extends continuously from the boundary portion 202 with the first finger portion 203 and extends in the longitudinal direction of the finger 20a while maintaining the line width at the line width of the boundary portion 202 of the first finger portion 203. Is done. That is, the distance X 3 from the end portion 201, a distance when the X 3 is a line width Y 3 of the second finger portions 204, per unit change amount of the distance X 3 along the extending direction of the second finger portion 204 the rate of change [Delta] Y 3 / [Delta] X 3 showing the rate of change [Delta] Y 3 line width is zero.
  • the line widths of the boundary part 202 and the second finger part 204 of the first finger part 203 are not less than a rubbing prevention line width that does not cause printing rubbing when screen printing is performed.
  • the printing rubbing referred to here is a printing defect such as a part missing when the finger 20a is formed.
  • the length of the second finger portion 204 of the finger 20a is shorter than the length of the first finger portion 203 of the finger 20a.
  • the fingers 20b, 20c, and 20d also include a first finger portion 203 including an end portion 201 and a boundary portion 202, and a second finger portion 204.
  • the fingers 20b and 20c include a connecting portion 205 to which the second finger portion 204 of the finger 20b and the second finger portion 204 of the finger 20c are connected.
  • the length of the finger 20b extending from the connecting portion 205 toward the bus bar 19a is the same as the length of the finger 20c extending from the connecting portion 205 toward the bus bar 19b.
  • the finger 20d includes a first finger portion 203 including an end portion 201 and a boundary portion 202, and a second finger portion 204, and extends in a direction opposite to the finger 20a.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG. 1 and shows a cross-sectional view of the finger 20a.
  • the thickness of the first finger portion 203 is thickest at the end portion 201 having a large line width, continuously thins toward the boundary portion 202, and thinnest at the boundary portion 202.
  • the change ⁇ Z of the thickness Z per unit change amount of the distance X along the extending direction of the first finger portion 203 using the distance X from the end portion 201 and the thickness Z of the first finger portion 203 at the distance X. Can be expressed as a change rate ⁇ Z / ⁇ X.
  • the first finger portion 203 has a first region 203a in which the thickness Z is reduced at a multistage change rate, and the thickness Z is reduced at a change rate of ⁇ Z 1 / ⁇ X 1 , and a thickness Z at a change rate of ⁇ Z 2 / ⁇ X 2. And a second region 203b that becomes smaller. That is, the first finger 203, thickness becomes thin in the rate of change [Delta] Z 1 / [Delta] X 1 from the end portion 201, on the way for a change rate [Delta] Z 1 / [Delta] X 1 is different from the rate of change and the rate of change [Delta] Z 2 / [Delta] X 2 The thickness is reduced.
  • the rate of change Z 2 / ⁇ X 2 is smaller than the rate of change ⁇ Z 1 / ⁇ X 1 .
  • the rate of change in thickness of the first finger portion 203 increases as it approaches the bus bar 19a side.
  • the second finger portion 204 extends continuously from the boundary portion 202 with the first finger portion 203 and extends in the longitudinal direction of the finger 20a while maintaining the thickness of the boundary portion 202 of the first finger portion 203. Is done.
  • the thickness of the 2nd finger part 204 shall be more than predetermined minimum thickness.
  • the intervals between the plurality of fingers 22a to 22d are set narrower than the plurality of fingers 20a to 20d.
  • the plurality of fingers 22a to 22d are arranged in parallel with each other at an interval of 1 mm.
  • the fingers 22a to 22d change in line width along the extending direction, and include a first finger portion 223 and a second finger portion 224.
  • the intervals between the fingers 22a to 22d are set narrower than the plurality of fingers 20a to 20d, the number of carriers collected per one finger 22a to 22d is reduced.
  • the length of the fingers 22a to 22d of the second finger portion 224 having the narrowest line width is set to be long. ing. That is, as can be seen from FIGS. 1 and 2, when the lengths of the second finger portions 204 of the fingers 20a to 20d are compared with the lengths of the second finger portions 224 of the fingers 22a to 22d, the second fingers of the fingers 20a to 20d are compared. The length of the portion 204 is shorter than the length of the second finger portion 224 of the fingers 22a to 22d.
  • the photoelectric conversion part 2 is produced
  • FIG. 5 is a diagram showing the screen plate 20.
  • the screen plate 20 has openings 190a and 190b and openings 200a to 200d corresponding to the shapes of the bus bars 19a and 19b and the fingers 20a to 20d.
  • the openings 190a, 190b, 200a to 200d are filled with a conductive paste, which is a constituent material of the bus bars 19a and 19b and the fingers 20a to 20d, with a squeegee, and the photoelectric conversion unit 2 has a light receiving surface.
  • Print the conductive paste Specifically, a conductive paste is placed on the screen plate 20 in which the openings 190a, 190b, 200a to 200d are formed, and the squeegee is moved along the printing direction D to move the openings 190a, 190b, 200a to 200d. Fill with conductive paste.
  • the conductive paste remains from the openings 190a, 190b, 200a to 200d and is printed on the light receiving surface, and the bus bars 19a and 19b and the fingers 20a to 20a. 20d is formed.
  • the cross-sectional area S of the finger 20a will be described in detail.
  • the cross-sectional area S means the area of a cross section along the line CC in FIG.
  • the thickness of the screen plate 20 is designed to be constant. Therefore, the cross-sectional area S of the finger 20a is determined by the cross-sectional area of the conductive paste filled in the opening 200a, and is represented by the product of the opening width and the filling thickness of the conductive paste.
  • the change rate of the opening width of the opening 200a of the screen plate 20 increases as the opening 200a approaches the opening 190a corresponding to the bus bar 19a in accordance with the shape of the finger 20a.
  • the cross-sectional area S of the finger 20a increases in accordance with the change rate of the width of the opening 200a of the screen plate 20 as it approaches the bus bar 19a.
  • the distance X from the end part 201 and the cross-sectional area S of the first finger part 203 at the distance X are used along the extending direction of the first finger part 203.
  • the ratio of the change ⁇ S of the cross-sectional area S per unit change amount of the distance X can be expressed as a change rate ⁇ S / ⁇ X.
  • the first finger 203 has a first area 203a in which the cross-sectional area S increases at a multistage change rate, the cross-sectional area S increases at a change rate of ⁇ S 1 / ⁇ X 1, and a change rate of ⁇ S 2 / ⁇ X 2.
  • the change rate ⁇ S 2 / ⁇ X 2 is smaller than the change rate ⁇ S 1 / ⁇ X 1 .
  • the cross-sectional area S of the 1st finger part 203 is large as it approaches the bus-bar 19a, changing linear change rate (DELTA) S / (DELTA) X once or more.
  • the change in the cross-sectional area S of the first finger portion 203 can be made to approach an ideal quadratic function as described later.
  • the line widths of the fingers 20a to 20d are designed so as to suppress the light shielding loss and the power loss.
  • the light blocking loss indicates a loss of light that does not reach the photoelectric conversion unit 2 because sunlight is blocked by the collector electrode 4.
  • the power loss indicates a power loss that occurs when carriers flow through the collector electrode 4 as a current.
  • the power loss P generated when the carriers collected by the fingers 20a to 20d are collected by the bus bars 19a and 19b is I 2 R (I: current value flowing through the fingers 20a to 20d, R: resistance of the fingers 20a to 20d) Value).
  • the resistance value R of the fingers 20a to 20d is a relational expression of ⁇ ⁇ L / S ( ⁇ : electrical resistivity of the fingers 20a to 20d, L: length of the fingers 20a to 20d, S: cross-sectional area of the fingers 20a to 20d) Determined by
  • electrical resistivity of the fingers 20a to 20d
  • L length of the fingers 20a to 20d
  • S cross-sectional area of the fingers 20a to 20d
  • a shape suitable for minimizing the power loss P is a shape in which the cross-sectional area S of the fingers 20a to 20d is 0 at the tip portion and increases in a quadratic function as it approaches the bus bars 19a and 19b. is there.
  • the region where the line width is constant is short. The rate of change of the cross-sectional area S of the fingers 20a to 20d increases as the bus bars 19a and 19b are approached.
  • the increase in the cross-sectional area S of the fingers 20a to 20d can be made closer to an ideal quadratic function as compared to the conventional linear cross-sectional area change.
  • the change in the cross-sectional area S of the fingers 20a to 20d can be made close to a quadratic function.
  • electric power loss can be reduced more.
  • the light shielding loss can be reduced by reducing the line width toward the boundary portion 202 of the fingers 20a to 20d.
  • the line width in the second finger portion 204 to be a rubbing prevention line width, the effective light-shielding loss is reduced, the fingers 20a to 20d are more easily formed, and workability is improved.
  • a preferable value was examined for the ratio of the length of the second finger portion 204 to the total length of the fingers 20a to 20d.
  • the examination result will be described with reference to FIGS.
  • the electrical resistivity ⁇ of the fingers 20a to 20d is set to 8 ⁇ ⁇ cm
  • the number N stack of screen printings is set to 1
  • the sheet resistance R TCO of the transparent conductive layer 11 is set to 50 ⁇
  • the fingers 20a to 20d The length L was 2.036 cm.
  • the minimum width W1 of the second finger portion 204 and the minimum width W2 of the second region 203b of the first finger portion 203 are set to 45 ⁇ m
  • the minimum width W3 of the first region 203a of the first finger portion 203 is set to 80 ⁇ m
  • the first The maximum width W4 of the region 203a was 90 ⁇ m.
  • the output (%) of the solar cell 1 was calculated by changing the ratio of the length L1 of the second finger portion to the total length L of the fingers 20a to 20d.
  • the length L3 of the first region 203a was fixed at 2.36 mm
  • the length L1 of the second finger portion was changed in the range of 0 to 18 mm.
  • FIG. 6 shows the calculation result.
  • L1 / L is an output characteristic diagram when the horizontal axis is L1 / L and the vertical axis is the output (%) of the solar cell 1. Examining this output characteristic diagram, it can be seen that when L1 / L is made larger than 50%, the output is greatly reduced. On the other hand, when L1 / L is 50% or less, the output is stable at 99.9% or more in the entire range. From this, it can be seen that L1 / L may be 0.5 or less, that is, L1 may be 50% or less of L in order to obtain a stable high output.
  • FIG. 8 is a plan view on the light-receiving surface side of a solar cell 1 a which is a first modification of the solar cell 1.
  • the solar cell 1 a has a curved line width at the first finger portion 203.
  • the “curve” includes a state in which the number of regions such as the first region 203a and the second region 203b in the solar cell 1 is increased and the outer shape of the first finger portion 203 is approximated to a curve.
  • the rate of change of the cross-sectional area S of the fingers 20a to 20d increases as it approaches the bus bars 19a and 19b. For this reason, since the change in the cross-sectional area S of the fingers 20a to 20d can be approximated to a quadratic function, the power loss can be further reduced as in the solar cell 1. Similarly to the solar cell 1, the line width is prevented from being rubbed by the second finger portion 204, thereby effectively reducing the light-shielding loss and making the fingers 20a to 20d easier to form and improving the workability. ing.
  • FIG. 9 is a plan view of the light receiving surface side of a solar cell 1 b which is a second modification of the solar cell 1.
  • solar cell 1 b has bus bars 19 a and 19 b having a zigzag shape.
  • the rate of change of the cross-sectional area S of the fingers 20a to 20d increases as the bus bars 19a and 19b are approached.
  • the power loss can be further reduced as in the solar cell 1.
  • the line width is prevented from being rubbed by the second finger portion 204, thereby effectively reducing the light-shielding loss and making the fingers 20a to 20d easier to form and improving the workability. ing.
  • FIG. 10 is a cross-sectional view of a photoelectric conversion unit 2a which is a modification of the photoelectric conversion unit 2.
  • the photoelectric conversion unit 2a includes a p-type polycrystalline silicon substrate 241, an n-type diffusion layer 231 formed on the front side of the p-type polycrystalline silicon substrate, and an aluminum formed on the back surface of the p-type polycrystalline silicon substrate 241.
  • the photoelectric conversion unit 18 may have any other shape as long as it has a function of converting sunlight into electricity.
  • FIG. 11 is a plan view of a modification of the collector electrode on the back surface side of the photoelectric conversion unit 2.
  • a metal film 251 covering substantially the entire surface of the transparent conductive film 17 may be formed instead of the fingers 22a to 22d.

Abstract

A solar cell (1) is provided with a photoelectric conversion unit (2), and a collecting electrode (4), which is provided on the main surface of the photoelectric conversion unit (2). The collecting electrode (4) includes bus bars (19a, 19b), and fingers (20a-20d) that intersect the bus bars (19a, 19b), and each of the fingers (20a-20d) has a first finger portion (203), which extends with the line width thereof reduced toward the side away from the bus bar (19a, 19b) side, and a second finger portion (204), which continuously extends from the first finger portion (203), while maintaining the line width of a boundary portion (202) between the first finger portion (203) and the second finger portion. The length of the second finger portion (204) is shorter than that of the first finger portion (203).

Description

太陽電池Solar cell
 本発明は、太陽電池に関する。 The present invention relates to a solar cell.
 特許文献1には、基板上に設けられたバスバーとフィンガーとからなる集電極を備えた太陽電池が開示されている。フィンガーは、第一端と第二端を有している。第一端は、フィンガーのうち、バスバーと連結している部分である。第二端は、フィンガーのうち、バスバーから最も離れた部分である。フィンガーは、第一端から第二端に向けて単調に幅が細くなるように構成されている。 Patent Document 1 discloses a solar cell including a collector electrode composed of a bus bar and fingers provided on a substrate. The finger has a first end and a second end. The first end is a portion of the finger that is connected to the bus bar. The second end is the part of the finger that is farthest from the bus bar. The fingers are configured so that the width decreases monotonously from the first end toward the second end.
実用新案登録第3154145号Utility Model Registration No. 3154145
 フィンガーで集電される電流はバスバーに近づくにつれて大きくなる。前述のフィンガーは、電流とフィンガーの抵抗とによる電力ロスを十分に低減させるように最適化されていない。 The current collected by the fingers increases as it approaches the bus bar. The aforementioned fingers are not optimized to sufficiently reduce power loss due to current and finger resistance.
 本発明に係る太陽電池は、光電変換部と、光電変換部の主面上に設けられる集電極と、を備え、集電極は、バスバーと、バスバーと交わるフィンガーと、を含み、フィンガーは、バスバー側から離れるにつれて線幅が細くなるように延設された第1フィンガー部と、第1フィンガー部との境界部の線幅を維持したまま、第1フィンガー部から連続的に延設された第2フィンガー部と、を有し、第2フィンガー部は、第1フィンガー部の長さよりも短い。 A solar cell according to the present invention includes a photoelectric conversion unit and a collector electrode provided on a main surface of the photoelectric conversion unit, and the collector electrode includes a bus bar and a finger that intersects with the bus bar. The first finger portion extended so that the line width becomes narrower with increasing distance from the side, and the first finger portion continuously extending from the first finger portion while maintaining the line width at the boundary between the first finger portion and the first finger portion. 2 finger parts, and the 2nd finger part is shorter than the length of the 1st finger part.
 本発明によれば、太陽電池の出力を向上させることができる。 According to the present invention, the output of the solar cell can be improved.
実施形態に係る太陽電池の受光面側の平面図である。It is a top view by the side of the light-receiving surface of the solar cell which concerns on embodiment. 実施形態に係る太陽電池の裏面側の平面図である。It is a top view of the back surface side of the solar cell which concerns on embodiment. 図1及び図2におけるA-A線断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIGS. 1 and 2. 図1におけるB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 実施形態に係る太陽電池を製造する際に用いられるスクリーン版を示す図である。It is a figure which shows the screen plate used when manufacturing the solar cell which concerns on embodiment. 実施形態に係る太陽電池のフィンガーの拡大図である。It is an enlarged view of the finger of the solar cell concerning an embodiment. 実施形態に係る太陽電池において、横軸をL1/Lとし、縦軸を太陽電池の出力(%)とした場合の出力特性図である。In the solar cell which concerns on embodiment, it is an output characteristic figure when a horizontal axis is set to L1 / L and a vertical axis | shaft is made into the output (%) of a solar cell. 実施形態に係る太陽電池の第1変形例の受光面側の平面図である。It is a top view by the side of the light-receiving surface of the 1st modification of the solar cell which concerns on embodiment. 実施形態に係る太陽電池の第2変形例の受光面側の平面図である。It is a top view by the side of the light-receiving surface of the 2nd modification of the solar cell which concerns on embodiment. 実施形態に係る太陽電池の光電変換部の変形例の断面図である。It is sectional drawing of the modification of the photoelectric conversion part of the solar cell which concerns on embodiment. 実施形態に係る太陽電池の裏面側にある集電極の変形例の平面図である。It is a top view of the modification of the collector electrode in the back surface side of the solar cell which concerns on embodiment.
 以下に図面を用いて、実施の形態を詳細に説明する。同様の要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the drawings. Similar elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、太陽電池1の受光面側の平面図である。図2は、太陽電池1の裏面側の平面図である。図3は、図1及び図2におけるA-A線断面図である。以下、「受光面」とは、太陽光の光が主に入射される側の主面を意味する。これに対して、「裏面」とは、受光面と反対側の主面を意味する。 FIG. 1 is a plan view of the light-receiving surface side of the solar cell 1. FIG. 2 is a plan view of the back surface side of the solar cell 1. FIG. 3 is a cross-sectional view taken along line AA in FIGS. Hereinafter, the “light-receiving surface” means a main surface on the side on which sunlight is mainly incident. On the other hand, the “back surface” means a main surface opposite to the light receiving surface.
 太陽電池1は、光電変換部2と、光電変換部2の受光面上に設けられた集電極4と、光電変換部2の裏面上に設けられた集電極6とを備える。ここで、層、膜、領域等の部分が他の部分の「上に」あるという場合は、直接積層されている場合だけではなく、その間に別の部分がある場合も含む。 The solar cell 1 includes a photoelectric conversion unit 2, a collector electrode 4 provided on the light receiving surface of the photoelectric conversion unit 2, and a collector electrode 6 provided on the back surface of the photoelectric conversion unit 2. Here, the case where a part such as a layer, a film, or a region is “on” another part includes not only a case where the part is directly stacked, but also a case where another part exists between them.
 光電変換部2は、受光面側から、透明導電膜11と、p型非晶質シリコン膜12と、i型非晶質シリコン膜13と、n型単結晶シリコン基板14と、i型非晶質シリコン膜15と、n型非晶質シリコン膜16と、透明導電膜17とを備える。n型単結晶シリコン基板14は、光を受けてキャリアを生成する発電層である。発電層は、n型単結晶シリコン基板14に限定されない。例えば、発電層は、n型又はp型のいずれの導電型でもよい。また、発電層は、結晶系半導体基板、多結晶シリコン基板、砒化ガリウム(GaAs)基板、インジウム燐(InP)基板のいずれかであってよい。i型非晶質シリコン膜13は、n型単結晶シリコン基板14の受光面上に形成される。i型非晶質シリコン膜13は、真性なアモルファスシリコン膜である。p型非晶質シリコン膜12は、i型非晶質シリコン膜13上に形成される。p型非晶質シリコン膜12は、p型不純物がドープされたアモルファスシリコン膜である。透明導電膜11は、p型非晶質シリコン膜12上に形成される。透明導電膜11は、例えば、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、及び酸化チタン(TiO2)等の金属酸化物のうちの少なくとも1つを含む。i型非晶質シリコン膜15は、n型単結晶シリコン基板14の裏面上に形成される。i型非晶質シリコン膜15は、真性なアモルファスシリコン膜である。n型非晶質シリコン膜16は、i型非晶質シリコン膜15上に形成される。n型非晶質シリコン膜16は、n型不純物がドープされたアモルファスシリコン膜である。透明導電膜17は、n型非晶質シリコン膜16上に形成される。透明導電膜17は、透明導電膜11と同様の材料を含む。 The photoelectric conversion unit 2 includes a transparent conductive film 11, a p-type amorphous silicon film 12, an i-type amorphous silicon film 13, an n-type single crystal silicon substrate 14, and an i-type amorphous material from the light receiving surface side. A silicon film 15, an n-type amorphous silicon film 16, and a transparent conductive film 17. The n-type single crystal silicon substrate 14 is a power generation layer that receives light and generates carriers. The power generation layer is not limited to the n-type single crystal silicon substrate 14. For example, the power generation layer may be either n-type or p-type conductivity type. The power generation layer may be any of a crystalline semiconductor substrate, a polycrystalline silicon substrate, a gallium arsenide (GaAs) substrate, and an indium phosphide (InP) substrate. The i-type amorphous silicon film 13 is formed on the light-receiving surface of the n-type single crystal silicon substrate 14. The i-type amorphous silicon film 13 is an intrinsic amorphous silicon film. The p-type amorphous silicon film 12 is formed on the i-type amorphous silicon film 13. The p-type amorphous silicon film 12 is an amorphous silicon film doped with p-type impurities. The transparent conductive film 11 is formed on the p-type amorphous silicon film 12. The transparent conductive film 11 includes at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ). . The i-type amorphous silicon film 15 is formed on the back surface of the n-type single crystal silicon substrate 14. The i-type amorphous silicon film 15 is an intrinsic amorphous silicon film. The n-type amorphous silicon film 16 is formed on the i-type amorphous silicon film 15. The n-type amorphous silicon film 16 is an amorphous silicon film doped with n-type impurities. The transparent conductive film 17 is formed on the n-type amorphous silicon film 16. The transparent conductive film 17 includes the same material as that of the transparent conductive film 11.
 集電極4は、透明導電膜11上に形成される。集電極4は、導電材料であって、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)及びクロム(Cr)等の金属や、これらの金属のうちの一種類以上を含む合金によって構成することができる。集電極4は、バスバー19a,19bと、フィンガー20a~20dとを含む。バスバー19a,19bは、光電変換部2において生成されたキャリアを取り出すために設けられる。フィンガー20a~20dにおいて集電されたキャリアをできるだけ均等に集電するように、バスバー19a,19bは、所定の間隔をあけて平行に配置される。例えば、バスバー19aは光電変換部2の主面を二分した場合の左半分の中心に配置され、バスバー19bは、右半分の中心に配置される。バスバー19a,19bの幅は、1mmとされる。フィンガー20a~20dは、光電変換部2において生成されたキャリアを収集するために設けられる。フィンガー20a~20dは、バスバー19a,19bと交わって電気的に接続されるように配置される。フィンガー20a~20dは、光電変換部2の面内からまんべんなく集電が行われるように、それぞれ所定の間隔をあけて平行に配置される。例えば、バスバー19a,19bの短手方向に沿って並んだフィンガー20a~20dを1組とすると、n組のフィンガー20a~20dが光電変換部2の主面の領域を(n+1)等分するように配置される。複数のフィンガー20aは、例えば、2mmの間隔で互いに並列に配列される。集電極6は、集電極4と同一の構成であってもよいし、幅、材料または形状など一部において異なる構成を含んでもよい。 The collecting electrode 4 is formed on the transparent conductive film 11. The collector electrode 4 is a conductive material, for example, a metal such as silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), nickel (Ni) and chromium (Cr), or these metals. It can comprise with the alloy containing 1 or more types of these. The collector electrode 4 includes bus bars 19a and 19b and fingers 20a to 20d. The bus bars 19a and 19b are provided to take out the carriers generated in the photoelectric conversion unit 2. The bus bars 19a and 19b are arranged in parallel with a predetermined interval so as to collect the current collected by the fingers 20a to 20d as evenly as possible. For example, the bus bar 19a is arranged at the center of the left half when the main surface of the photoelectric conversion unit 2 is divided into two, and the bus bar 19b is arranged at the center of the right half. The width of the bus bars 19a and 19b is 1 mm. The fingers 20a to 20d are provided to collect carriers generated in the photoelectric conversion unit 2. The fingers 20a to 20d are arranged so as to cross the bus bars 19a and 19b and be electrically connected. The fingers 20a to 20d are arranged in parallel at predetermined intervals so that current can be collected evenly from the surface of the photoelectric conversion unit 2. For example, if the fingers 20a to 20d arranged along the short direction of the bus bars 19a and 19b are set as one set, the n sets of fingers 20a to 20d divide the area of the main surface of the photoelectric conversion unit 2 into (n + 1) equal parts. Placed in. The plurality of fingers 20a are arranged in parallel with each other at an interval of 2 mm, for example. The collector electrode 6 may have the same configuration as that of the collector electrode 4, or may include a configuration that is partially different in terms of width, material, or shape.
 ここで、図1を参照して、フィンガー20aの平面形状について詳述する。フィンガー20aは、その延設方向に沿って線幅が変化し、第1フィンガー部203と第2フィンガー部204とを含む。ここでいう線幅とは、フィンガー20a~20dを平面上から見たときのフィンガー20a~20dの短手方向の長さを意味する。第1フィンガー部203は、多段階に分かれて線幅の変化率が変わり、バスバー19a側から離れるにつれて線幅が徐々に細くなるように延設される。第1フィンガー部203は、端部201においてバスバー19aに接続される。端部201は、第1フィンガー部203の中で最も幅が広い部分である。境界部202は、第1フィンガー部203において最も幅が狭い部分である。端部201からの距離Xと、距離Xにおける第1フィンガー部203の線幅Yと、を用いて第1フィンガー部203の延設方向に沿った距離Xの単位変化量当たりの線幅Yの変化ΔYの割合を変化率ΔY/ΔXとして表すことができる。第1フィンガー部203は、多段階の変化率で線幅Yが細くなり、ΔY1/ΔX1の変化率で線幅Yが小さくなる第1領域203aと、ΔY2/ΔX2の変化率で線幅Yが小さくなる第2領域203bとを有する。すなわち、第1フィンガー部203は、端部201から変化率ΔY1/ΔX1で線幅が細くなり、途中で変化率ΔY1/ΔX1とは異なる変化率である変化率ΔY2/ΔX2で線幅が細くなる。変化率ΔY2/ΔX2は、変化率ΔY1/ΔX1より小さい。換言すれば、第1フィンガー部203は、バスバー19a側に近づくにつれて線幅の変化率が大きくなっていく。第2フィンガー部204は、第1フィンガー部203との境界部202から連続して、その線幅を第1フィンガー部203の境界部202の線幅に維持したままフィンガー20aの長手方向に延設される。すなわち、端部201からの距離X3、距離X3における第2フィンガー部204の線幅Y3である場合、第2フィンガー部204の延設方向に沿った距離X3の単位変化量当たりの線幅の変化ΔY3の割合を示す変化率ΔY3/ΔX3は0である。第1フィンガー部203の境界部202及び第2フィンガー部204の線幅は、スクリーン印刷をした際に印刷擦れが生じないような擦れ防止線幅以上とする。ここでいう印刷擦れとは、フィンガー20aが形成する際に一部が欠落してしまう等の印刷不具合である。図1から分かるように、フィンガー20aの第2フィンガー部204の長さは、フィンガー20aの第1フィンガー部203の長さよりも短い。なお、フィンガー20aと同様に、フィンガー20b、20cおよび20dも、端部201、境界部202を含んだ第1フィンガー部203と、第2フィンガー部204を含んでいる。さらに、フィンガー20b,20cは、フィンガー20bの第2フィンガー部204とフィンガー20cの第2フィンガー部204とが接続された接続部205を含んでいる。接続部205からバスバー19aに向かって延びるフィンガー20bの長さと、接続部205からバスバー19bに向かって延びるフィンガー20cの長さとは、同じである。フィンガー20dは、フィンガー20aと同様に、端部201,境界部202を含んだ第1フィンガー部203と、第2フィンガー部204を含み、フィンガー20aと反対方向に延びている。 Here, the planar shape of the finger 20a will be described in detail with reference to FIG. The finger 20 a has a line width that changes along its extending direction, and includes a first finger portion 203 and a second finger portion 204. The line width here means the length in the short direction of the fingers 20a to 20d when the fingers 20a to 20d are viewed from above. The first finger portion 203 is divided into multiple stages so that the change rate of the line width changes, and is extended so that the line width gradually decreases as the distance from the bus bar 19a side increases. The first finger 203 is connected to the bus bar 19a at the end 201. The end part 201 is the widest part in the first finger part 203. The boundary portion 202 is a portion having the narrowest width in the first finger portion 203. Using the distance X from the end 201 and the line width Y of the first finger part 203 at the distance X, the line width Y per unit change amount of the distance X along the extending direction of the first finger part 203 The ratio of change ΔY can be expressed as change rate ΔY / ΔX. The first finger portion 203 has a first region 203a in which the line width Y is reduced at a multi-stage change rate and the line width Y is reduced at a change rate of ΔY 1 / ΔX 1, and a change rate of ΔY 2 / ΔX 2. A second region 203b in which the line width Y is reduced. That is, the first finger portion 203 has a line width that becomes narrower from the end 201 at a change rate ΔY 1 / ΔX 1, and a change rate ΔY 2 / ΔX 2 that is a change rate different from the change rate ΔY 1 / ΔX 1 on the way. The line width becomes narrower. The change rate ΔY 2 / ΔX 2 is smaller than the change rate ΔY 1 / ΔX 1 . In other words, the rate of change in line width of the first finger portion 203 increases as it approaches the bus bar 19a side. The second finger portion 204 extends continuously from the boundary portion 202 with the first finger portion 203 and extends in the longitudinal direction of the finger 20a while maintaining the line width at the line width of the boundary portion 202 of the first finger portion 203. Is done. That is, the distance X 3 from the end portion 201, a distance when the X 3 is a line width Y 3 of the second finger portions 204, per unit change amount of the distance X 3 along the extending direction of the second finger portion 204 the rate of change [Delta] Y 3 / [Delta] X 3 showing the rate of change [Delta] Y 3 line width is zero. The line widths of the boundary part 202 and the second finger part 204 of the first finger part 203 are not less than a rubbing prevention line width that does not cause printing rubbing when screen printing is performed. The printing rubbing referred to here is a printing defect such as a part missing when the finger 20a is formed. As can be seen from FIG. 1, the length of the second finger portion 204 of the finger 20a is shorter than the length of the first finger portion 203 of the finger 20a. Similarly to the finger 20a, the fingers 20b, 20c, and 20d also include a first finger portion 203 including an end portion 201 and a boundary portion 202, and a second finger portion 204. Furthermore, the fingers 20b and 20c include a connecting portion 205 to which the second finger portion 204 of the finger 20b and the second finger portion 204 of the finger 20c are connected. The length of the finger 20b extending from the connecting portion 205 toward the bus bar 19a is the same as the length of the finger 20c extending from the connecting portion 205 toward the bus bar 19b. Similarly to the finger 20a, the finger 20d includes a first finger portion 203 including an end portion 201 and a boundary portion 202, and a second finger portion 204, and extends in a direction opposite to the finger 20a.
 続いて、図4を参照して、フィンガー20aの断面形状について詳述する。図4は、図1のB-B線断面図であり、フィンガー20aの断面図を示している。第1フィンガー部203の厚みは、線幅が大きい端部201で最も厚く、境界部202に向けて連続的に薄くなり、境界部202で最も薄くなる。端部201からの距離Xと、距離Xにおける第1フィンガー部203の厚みZと、を用いて第1フィンガー部203の延設方向に沿った距離Xの単位変化量当たりの厚みZの変化ΔZの割合を変化率ΔZ/ΔXとして表すことができる。第1フィンガー部203は、多段階の変化率で厚みZが薄くなり、ΔZ1/ΔX1の変化率で厚みZが小さくなる第1領域203aと、ΔZ2/ΔX2の変化率で厚みZが小さくなる第2領域203bとを有する。すなわち、第1フィンガー部203は、端部201から変化率ΔZ1/ΔX1で厚みが薄くなり、途中で変化率ΔZ1/ΔX1とは異なる変化率である変化率ΔZ2/ΔX2で厚みが薄くなる。変化率Z2/ΔX2は、変化率ΔZ1/ΔX1より小さい。換言すれば、第1フィンガー部203は、バスバー19a側に近づくにつれて厚みの変化率が大きくなっていく。また、第2フィンガー部204は、第1フィンガー部203との境界部202から連続して、その厚みを第1フィンガー部203の境界部202の厚みに維持したままフィンガー20aの長手方向に延設される。すなわち、端部201からの距離X3、距離X3における第2フィンガー部204の厚みZ3である場合、第2フィンガー部204の延設方向に沿った距離X3の単位変化量当たりの厚みの変化ΔZ3の割合を示す変化率ΔZ3/ΔX3は0である。第2フィンガー部204の厚みは、予め定められた最小厚み以上とする。 Then, with reference to FIG. 4, the cross-sectional shape of the finger 20a is explained in full detail. 4 is a cross-sectional view taken along the line BB of FIG. 1 and shows a cross-sectional view of the finger 20a. The thickness of the first finger portion 203 is thickest at the end portion 201 having a large line width, continuously thins toward the boundary portion 202, and thinnest at the boundary portion 202. The change ΔZ of the thickness Z per unit change amount of the distance X along the extending direction of the first finger portion 203 using the distance X from the end portion 201 and the thickness Z of the first finger portion 203 at the distance X. Can be expressed as a change rate ΔZ / ΔX. The first finger portion 203 has a first region 203a in which the thickness Z is reduced at a multistage change rate, and the thickness Z is reduced at a change rate of ΔZ 1 / ΔX 1 , and a thickness Z at a change rate of ΔZ 2 / ΔX 2. And a second region 203b that becomes smaller. That is, the first finger 203, thickness becomes thin in the rate of change [Delta] Z 1 / [Delta] X 1 from the end portion 201, on the way for a change rate [Delta] Z 1 / [Delta] X 1 is different from the rate of change and the rate of change [Delta] Z 2 / [Delta] X 2 The thickness is reduced. The rate of change Z 2 / ΔX 2 is smaller than the rate of change ΔZ 1 / ΔX 1 . In other words, the rate of change in thickness of the first finger portion 203 increases as it approaches the bus bar 19a side. The second finger portion 204 extends continuously from the boundary portion 202 with the first finger portion 203 and extends in the longitudinal direction of the finger 20a while maintaining the thickness of the boundary portion 202 of the first finger portion 203. Is done. That is, the distance X 3 from the end portion 201, when the distance X 3 is the thickness Z 3 of the second finger portion 204, the thickness of the unit change amount per distance X 3 along the extending direction of the second finger portion 204 The change rate ΔZ 3 / ΔX 3 indicating the ratio of the change ΔZ 3 is zero. The thickness of the 2nd finger part 204 shall be more than predetermined minimum thickness.
 複数のフィンガー22a~22dは、複数のフィンガー20a~20dに比べて間隔が狭く設定されている。例えば、複数のフィンガー22a~22dは、1mmの間隔で互いに並列に配列される。フィンガー22a~22dは、フィンガー20a~20dと同様にその延設方向に沿って線幅が変化し、第1フィンガー部223と第2フィンガー部224とを含む。フィンガー22a~22dは、上述したように、複数のフィンガー20a~20dに比べて間隔が狭く設定されているため、1本のフィンガー22a~22d当たりに集電されるキャリアの数は少なくなる。したがって、フィンガー22a~22dの線幅は、フィンガー20a~20dの線幅に比べて細くすることができるため、最も細い線幅の第2フィンガー部224のフィンガー22a~22dの長さが長く設定されている。すなわち、図1及び図2から分かるように、フィンガー20a~20dの第2フィンガー部204の長さとフィンガー22a~22dの第2フィンガー部224の長さを比較すると、フィンガー20a~20dの第2フィンガー部204の長さは、フィンガー22a~22dの第2フィンガー部224の長さに比べて短い。 The intervals between the plurality of fingers 22a to 22d are set narrower than the plurality of fingers 20a to 20d. For example, the plurality of fingers 22a to 22d are arranged in parallel with each other at an interval of 1 mm. Like the fingers 20a to 20d, the fingers 22a to 22d change in line width along the extending direction, and include a first finger portion 223 and a second finger portion 224. As described above, since the intervals between the fingers 22a to 22d are set narrower than the plurality of fingers 20a to 20d, the number of carriers collected per one finger 22a to 22d is reduced. Accordingly, since the line width of the fingers 22a to 22d can be made thinner than the line width of the fingers 20a to 20d, the length of the fingers 22a to 22d of the second finger portion 224 having the narrowest line width is set to be long. ing. That is, as can be seen from FIGS. 1 and 2, when the lengths of the second finger portions 204 of the fingers 20a to 20d are compared with the lengths of the second finger portions 224 of the fingers 22a to 22d, the second fingers of the fingers 20a to 20d are compared. The length of the portion 204 is shorter than the length of the second finger portion 224 of the fingers 22a to 22d.
 太陽電池1の製造方法について説明する。CVD法及びスパッタリング法等を用いて、光電変換部2を生成する。その後、スクリーン版20を用いたスクリーン印刷法によって、光電変換部2の透明導電膜11,17上に、それぞれ集電極4,6を形成する。 A method for manufacturing the solar cell 1 will be described. The photoelectric conversion part 2 is produced | generated using CVD method, sputtering method, etc. Thereafter, collector electrodes 4 and 6 are respectively formed on the transparent conductive films 11 and 17 of the photoelectric conversion unit 2 by a screen printing method using the screen plate 20.
 ここで、図5を参照して、集電極4を構成するバスバー19a,19b及びフィンガー20a~20dの形成方法について具体的に説明する。なお、集電極6の形成方法は、集電極4と同様の手順であるため詳細な説明は省略する。図5は、スクリーン版20を示す図である。スクリーン版20は、バスバー19a,19b及びフィンガー20a~20dの形状に対応する開口部190a,190b及び開口部200a~200dを有する。このスクリーン版20を用いて、開口部190a,190b,200a~200dにバスバー19a,19b及びフィンガー20a~20dの構成材である導電性ペーストをスキージによって充填し、光電変換部2の受光面上に導電性ペーストを印刷する。具体的には、開口部190a,190b,200a~200dが形成されたスクリーン版20上に導電性ペーストを載せ、印刷方向Dに沿ってスキージを動かすことにより開口部190a,190b,200a~200dに導電性ペーストを充填する。スクリーン版20のうちスキージが通り過ぎた部分が受光面から離れるときに、開口部190a,190b,200a~200dから導電性ペーストが残存されて受光面上に印刷され、バスバー19a,19b及びフィンガー20a~20dが形成される。 Here, with reference to FIG. 5, a method for forming the bus bars 19a and 19b and the fingers 20a to 20d constituting the collector electrode 4 will be described in detail. In addition, since the formation method of the collector electrode 6 is the same procedure as the collector electrode 4, detailed description is abbreviate | omitted. FIG. 5 is a diagram showing the screen plate 20. The screen plate 20 has openings 190a and 190b and openings 200a to 200d corresponding to the shapes of the bus bars 19a and 19b and the fingers 20a to 20d. Using this screen plate 20, the openings 190a, 190b, 200a to 200d are filled with a conductive paste, which is a constituent material of the bus bars 19a and 19b and the fingers 20a to 20d, with a squeegee, and the photoelectric conversion unit 2 has a light receiving surface. Print the conductive paste. Specifically, a conductive paste is placed on the screen plate 20 in which the openings 190a, 190b, 200a to 200d are formed, and the squeegee is moved along the printing direction D to move the openings 190a, 190b, 200a to 200d. Fill with conductive paste. When the portion of the screen plate 20 where the squeegee has passed leaves the light receiving surface, the conductive paste remains from the openings 190a, 190b, 200a to 200d and is printed on the light receiving surface, and the bus bars 19a and 19b and the fingers 20a to 20a. 20d is formed.
 フィンガー20aの断面積Sについて詳述する。断面積Sは、図1のC-C線に沿った断面の面積を意味する。スクリーン版20の厚みは、一定になるように設計されている。したがって、フィンガー20aの断面積Sは、開口部200aに充填される導電性ペーストの断面積によって決まり、開口幅と導電性ペーストの充填厚さとの積で表される。ここで、スクリーン版20の開口部200aは、フィンガー20aの形状に合わせて、バスバー19aに対応する開口部190aに近づくにつれて開口幅の変化率が大きくなる。したがって、フィンガー20aの断面積Sは、バスバー19aに近づくにつれてスクリーン版20の開口部200aの幅の変化率に合わせて大きくなる。具体的には、第1フィンガー部203において、端部201からの距離Xと、距離Xにおける第1フィンガー部203の断面積Sと、を用いて第1フィンガー部203の延設方向に沿った距離Xの単位変化量当たりの断面積Sの変化ΔSの割合を変化率ΔS/ΔXとして表すことができる。第1フィンガー部203は、多段階の変化率で断面積Sが大きくなり、ΔS1/ΔX1の変化率で断面積Sが大きくなる第1領域203aと、ΔS2/ΔX2の変化率で断面積Sが大きくなる第2領域203bとを有する。変化率ΔS2/ΔX2は、変化率ΔS1/ΔX1より小さい。換言すれば、第1フィンガー部203の断面積Sは、直線的な変化率ΔS/ΔXを一回以上変えながら、バスバー19aに近づくにつれて大きくなっている。また、直線的な変化率ΔS/ΔXを増やすことで、第1フィンガー部203の断面積Sの変化を、後述するような理想的な二次関数に近づくようにすることができる。なお、このように直線的な変化率ΔS/ΔXを増やすことで理想的な二次関数に近づけることが可能であるとともに、第1フィンガー部203の外形が曲線であるような後述する太陽電池1aに比べて容易に形成することができる。 The cross-sectional area S of the finger 20a will be described in detail. The cross-sectional area S means the area of a cross section along the line CC in FIG. The thickness of the screen plate 20 is designed to be constant. Therefore, the cross-sectional area S of the finger 20a is determined by the cross-sectional area of the conductive paste filled in the opening 200a, and is represented by the product of the opening width and the filling thickness of the conductive paste. Here, the change rate of the opening width of the opening 200a of the screen plate 20 increases as the opening 200a approaches the opening 190a corresponding to the bus bar 19a in accordance with the shape of the finger 20a. Therefore, the cross-sectional area S of the finger 20a increases in accordance with the change rate of the width of the opening 200a of the screen plate 20 as it approaches the bus bar 19a. Specifically, in the first finger part 203, the distance X from the end part 201 and the cross-sectional area S of the first finger part 203 at the distance X are used along the extending direction of the first finger part 203. The ratio of the change ΔS of the cross-sectional area S per unit change amount of the distance X can be expressed as a change rate ΔS / ΔX. The first finger 203 has a first area 203a in which the cross-sectional area S increases at a multistage change rate, the cross-sectional area S increases at a change rate of ΔS 1 / ΔX 1, and a change rate of ΔS 2 / ΔX 2. A second region 203b in which the cross-sectional area S increases. The change rate ΔS 2 / ΔX 2 is smaller than the change rate ΔS 1 / ΔX 1 . In other words, the cross-sectional area S of the 1st finger part 203 is large as it approaches the bus-bar 19a, changing linear change rate (DELTA) S / (DELTA) X once or more. Further, by increasing the linear change rate ΔS / ΔX, the change in the cross-sectional area S of the first finger portion 203 can be made to approach an ideal quadratic function as described later. In addition, it is possible to approximate an ideal quadratic function by increasing the linear change rate ΔS / ΔX as described above, and a solar cell 1a described later in which the outer shape of the first finger portion 203 is a curve. It can be formed more easily than
 続いて、太陽電池1の作用について説明する。太陽電池1の受光面側では、遮光ロス及び電力ロスを抑制するようにフィンガー20a~20dの線幅が設計される。遮光ロスとは、太陽光が集電極4によって遮られることで、光電変換部2まで到達しない光の損失を示す。電力ロスとは、キャリアが電流として集電極4を流れた際に生ずる電力の損失を示す。フィンガー20a~20dによって集電されたキャリアがバスバー19a,19bに収集される際に生じる電力ロスPは、I2R(I:フィンガー20a~20dを流れる電流値、R:フィンガー20a~20dの抵抗値)の関係式により定まる。フィンガー20a~20dの抵抗値Rは、ρ×L/S(ρ:フィンガー20a~20dの電気抵抗率、L:フィンガー20a~20dの長さ、S:フィンガー20a~20dの断面積)の関係式により定める。ここで、フィンガー20a~20dでは、バスバー19a,19b側に近づくと取り込まれる電流量が直線的に増加する。このため、フィンガー20a~20dでは流れる電流量に応じ電力ロスPが小さくなるように、フィンガー20a~20dの断面積Sが大きくされる。電力ロスPは、電流値Iの二次関数である。電流値Iの大きさは直線的にバスバー19a,19b側に近づくにつれて大きくなる。したがって、電力ロスPを最小とするために適した形状は、フィンガー20a~20dの断面積Sが、先端部分において0であり、バスバー19a,19b側に近づくにつれて二次関数的に大きくなる形状である。本実施の形態では、上述したように、第2フィンガー部204の長さは、第1フィンガー部203の長さより短いため、線幅が一定(擦れ防止線幅)の領域が短い。そして、フィンガー20a~20dの断面積Sの変化率は、バスバー19a,19bに近づくにつれて大きくなる。このため、従来の直線的な断面積の変化に比べて、フィンガー20a~20dの断面積Sの増加を理想的な二次関数に近づけることができる。特に、集電される電流がより大きくなるバスバー19a,19bに近い第1フィンガー部203において、フィンガー20a~20dの断面積Sの変化を二次関数に近づけることができる。これにより、より電力ロスを低減することができる。さらに、本実施の形態では、フィンガー20a~20dの境界部202に向かって線幅を減少させることによって遮光ロスを低減させることができる。このとき、第2フィンガー部204における線幅を擦れ防止線幅とすることで実効的な遮光ロスの低減と共に、フィンガー20a~20dをより形成し易くし、加工性を向上させている。 Then, the effect | action of the solar cell 1 is demonstrated. On the light-receiving surface side of the solar cell 1, the line widths of the fingers 20a to 20d are designed so as to suppress the light shielding loss and the power loss. The light blocking loss indicates a loss of light that does not reach the photoelectric conversion unit 2 because sunlight is blocked by the collector electrode 4. The power loss indicates a power loss that occurs when carriers flow through the collector electrode 4 as a current. The power loss P generated when the carriers collected by the fingers 20a to 20d are collected by the bus bars 19a and 19b is I 2 R (I: current value flowing through the fingers 20a to 20d, R: resistance of the fingers 20a to 20d) Value). The resistance value R of the fingers 20a to 20d is a relational expression of ρ × L / S (ρ: electrical resistivity of the fingers 20a to 20d, L: length of the fingers 20a to 20d, S: cross-sectional area of the fingers 20a to 20d) Determined by Here, in the fingers 20a to 20d, the amount of current taken increases linearly when approaching the bus bars 19a and 19b. For this reason, the cross-sectional areas S of the fingers 20a to 20d are increased so that the power loss P decreases according to the amount of current flowing in the fingers 20a to 20d. The power loss P is a quadratic function of the current value I. The magnitude of the current value I increases linearly toward the bus bars 19a, 19b. Therefore, a shape suitable for minimizing the power loss P is a shape in which the cross-sectional area S of the fingers 20a to 20d is 0 at the tip portion and increases in a quadratic function as it approaches the bus bars 19a and 19b. is there. In the present embodiment, as described above, since the length of the second finger portion 204 is shorter than the length of the first finger portion 203, the region where the line width is constant (rubbing prevention line width) is short. The rate of change of the cross-sectional area S of the fingers 20a to 20d increases as the bus bars 19a and 19b are approached. For this reason, the increase in the cross-sectional area S of the fingers 20a to 20d can be made closer to an ideal quadratic function as compared to the conventional linear cross-sectional area change. In particular, in the first finger portion 203 close to the bus bars 19a and 19b where the collected current becomes larger, the change in the cross-sectional area S of the fingers 20a to 20d can be made close to a quadratic function. Thereby, electric power loss can be reduced more. Further, in the present embodiment, the light shielding loss can be reduced by reducing the line width toward the boundary portion 202 of the fingers 20a to 20d. At this time, by setting the line width in the second finger portion 204 to be a rubbing prevention line width, the effective light-shielding loss is reduced, the fingers 20a to 20d are more easily formed, and workability is improved.
 フィンガー20a~20dの全体の長さに対する第2フィンガー部204の長さの比率について好ましい値について検討を行った。その検討結果について図6及び図7を参照して説明する。この検討にあたっては、フィンガー20a~20dの電気抵抗率ρを8μΩ・cmとし、スクリーン印刷の積層数Nstackを1とし、透明導電層11のシート抵抗RTCOを50Ωとし、フィンガー20a~20dの全体の長さLを2.036cmとした。また、第2フィンガー部204の最小幅W1及び第1フィンガー部203の第2領域203bの最小幅W2を45μmとし、第1フィンガー部203の第1領域203aの最小幅W3を80μmとし、第1領域203aの最大幅W4を90μmとした。このような条件のもとで、フィンガー20a~20dの全体の長さLに対する第2フィンガー部の長さL1の比率を変えて、太陽電池1の出力(%)を計算した。なお、この計算においては、第1領域203aの長さL3を2.36mmで固定して、第2フィンガー部の長さL1を0~18mmの範囲で変化させた。図6は、その計算結果を示す。図6は、横軸をL1/Lとし、縦軸を太陽電池1の出力(%)とした場合の出力特性図である。この出力特性図を検討すると、L1/Lを50%より大きくすると、出力が大きく低下することがわかる。一方、L1/Lを50%以下とすると、全ての範囲で出力が99.9%以上と安定していることがわかる。このことから、安定した高出力を得るためには、L1/Lが0.5以下、すなわち、L1がLの50%以下の長さであればよいことがわかる。なお、上記ρ、Nstack、RTCO、L、W1~W4を上述した値以外の値に変更し、L1/Lの値が0%~100%となるようにL1の値を変化させた場合も同様の出力特性図が得られると推定される。 A preferable value was examined for the ratio of the length of the second finger portion 204 to the total length of the fingers 20a to 20d. The examination result will be described with reference to FIGS. In this examination, the electrical resistivity ρ of the fingers 20a to 20d is set to 8 μΩ · cm, the number N stack of screen printings is set to 1, the sheet resistance R TCO of the transparent conductive layer 11 is set to 50Ω, and the fingers 20a to 20d The length L was 2.036 cm. Further, the minimum width W1 of the second finger portion 204 and the minimum width W2 of the second region 203b of the first finger portion 203 are set to 45 μm, the minimum width W3 of the first region 203a of the first finger portion 203 is set to 80 μm, and the first The maximum width W4 of the region 203a was 90 μm. Under such conditions, the output (%) of the solar cell 1 was calculated by changing the ratio of the length L1 of the second finger portion to the total length L of the fingers 20a to 20d. In this calculation, the length L3 of the first region 203a was fixed at 2.36 mm, and the length L1 of the second finger portion was changed in the range of 0 to 18 mm. FIG. 6 shows the calculation result. FIG. 6 is an output characteristic diagram when the horizontal axis is L1 / L and the vertical axis is the output (%) of the solar cell 1. Examining this output characteristic diagram, it can be seen that when L1 / L is made larger than 50%, the output is greatly reduced. On the other hand, when L1 / L is 50% or less, the output is stable at 99.9% or more in the entire range. From this, it can be seen that L1 / L may be 0.5 or less, that is, L1 may be 50% or less of L in order to obtain a stable high output. When ρ, N stack , R TCO , L, W1 to W4 are changed to values other than those described above, and the value of L1 is changed so that the value of L1 / L becomes 0% to 100% It is estimated that a similar output characteristic diagram is obtained.
 図8は、太陽電池1の第1変形例である太陽電池1aの受光面側の平面図である。太陽電池1と異なり、太陽電池1aは、第1フィンガー部203において、曲線的に線幅が細くなっている。ここで、「曲線」とは、太陽電池1における第1領域203a、第2領域203bといった領域数を増やして、第1フィンガー部203の外形を曲線に近似させた状態も含む。 FIG. 8 is a plan view on the light-receiving surface side of a solar cell 1 a which is a first modification of the solar cell 1. Unlike the solar cell 1, the solar cell 1 a has a curved line width at the first finger portion 203. Here, the “curve” includes a state in which the number of regions such as the first region 203a and the second region 203b in the solar cell 1 is increased and the outer shape of the first finger portion 203 is approximated to a curve.
 太陽電池1aにおいても、フィンガー20a~20dの断面積Sの変化率は、バスバー19a,19bに近づくにつれて大きくなる。このため、フィンガー20a~20dの断面積Sの変化を二次関数に近づけることができるため、太陽電池1と同様に、より電力ロスを低減することができる。また、太陽電池1と同様に、第2フィンガー部204で線幅を擦れ防止線幅することで実効的な遮光ロスの低減と共に、フィンガー20a~20dをより形成し易くし、加工性を向上させている。 Also in the solar cell 1a, the rate of change of the cross-sectional area S of the fingers 20a to 20d increases as it approaches the bus bars 19a and 19b. For this reason, since the change in the cross-sectional area S of the fingers 20a to 20d can be approximated to a quadratic function, the power loss can be further reduced as in the solar cell 1. Similarly to the solar cell 1, the line width is prevented from being rubbed by the second finger portion 204, thereby effectively reducing the light-shielding loss and making the fingers 20a to 20d easier to form and improving the workability. ing.
 図9は、太陽電池1の第2変形例である太陽電池1bの受光面側の平面図である。太陽電池1と異なり、太陽電池1bは、バスバー19a,19bの形状がジグザグ状である。太陽電池1bにおいても、フィンガー20a~20dの断面積Sの変化率は、バスバー19a,19bに近づくにつれて大きくなる。このため、フィンガー20a~20dの断面積Sの変化を二次関数に近づけることができるため、太陽電池1と同様に、より電力ロスを低減することができる。また、太陽電池1と同様に、第2フィンガー部204で線幅を擦れ防止線幅することで実効的な遮光ロスの低減と共に、フィンガー20a~20dをより形成し易くし、加工性を向上させている。 FIG. 9 is a plan view of the light receiving surface side of a solar cell 1 b which is a second modification of the solar cell 1. Unlike solar cell 1, solar cell 1 b has bus bars 19 a and 19 b having a zigzag shape. Also in the solar cell 1b, the rate of change of the cross-sectional area S of the fingers 20a to 20d increases as the bus bars 19a and 19b are approached. For this reason, since the change in the cross-sectional area S of the fingers 20a to 20d can be approximated to a quadratic function, the power loss can be further reduced as in the solar cell 1. Similarly to the solar cell 1, the line width is prevented from being rubbed by the second finger portion 204, thereby effectively reducing the light-shielding loss and making the fingers 20a to 20d easier to form and improving the workability. ing.
 図10は、光電変換部2の変形例である光電変換部2aの断面図である。光電変換部2aは、p型多結晶シリコン基板241と、p型多結晶シリコン基板の表面側に形成されたn型拡散層231と、p型多結晶シリコン基板241の裏面上に形成されたアルミニウム金属膜251とを備える。このように、光電変換部18は、太陽光を電気に変換する機能を有すれば、他のいかなる形状であってもよい。 FIG. 10 is a cross-sectional view of a photoelectric conversion unit 2a which is a modification of the photoelectric conversion unit 2. The photoelectric conversion unit 2a includes a p-type polycrystalline silicon substrate 241, an n-type diffusion layer 231 formed on the front side of the p-type polycrystalline silicon substrate, and an aluminum formed on the back surface of the p-type polycrystalline silicon substrate 241. A metal film 251. Thus, the photoelectric conversion unit 18 may have any other shape as long as it has a function of converting sunlight into electricity.
 図11は、光電変換部2の裏面側の集電極の変形例の平面図である。光電変換部2の裏面側においては、フィンガー22a~22dの代わりに、透明導電膜17の形成領域の略全面を覆う金属膜251が形成されてもよい。 FIG. 11 is a plan view of a modification of the collector electrode on the back surface side of the photoelectric conversion unit 2. On the back surface side of the photoelectric conversion unit 2, a metal film 251 covering substantially the entire surface of the transparent conductive film 17 may be formed instead of the fingers 22a to 22d.
 1,1a,1b 太陽電池、2 光電変換部、4,6 集電極、10 太陽電池、11,17 透明導電膜、12 p型非晶質シリコン膜、13 i型非晶質シリコン膜、14 n型単結晶シリコン基板、15 i型非晶質シリコン膜、16 n型非晶質シリコン膜、17 透明導電膜、19a,19b バスバー、20 スクリーン版、20a,20b,20c,20d フィンガー、190a,190b、200a,200b,200c,200d 開口部、201 端部,202 境界部、203 第1フィンガー部、203a 第1領域、203b 第2領域、204 第2フィンガー部、205 接続部、221,222 端部、223 第1フィンガー部、224 第2フィンガー部。 1, 1a, 1b solar cell, 2 photoelectric conversion part, 4, 6 collector electrode, 10 solar cell, 11, 17 transparent conductive film, 12 p-type amorphous silicon film, 13 i-type amorphous silicon film, 14 n Type single crystal silicon substrate, 15 i-type amorphous silicon film, 16 n-type amorphous silicon film, 17 transparent conductive film, 19a, 19b bus bar, 20 screen version, 20a, 20b, 20c, 20d finger, 190a, 190b , 200a, 200b, 200c, 200d opening, 201 end, 202 boundary, 203 first finger portion, 203a first region, 203b second region, 204 second finger portion, 205 connecting portion, 221, 222 end 223, first finger part, 224, second finger part.

Claims (3)

  1.  光電変換部と、
     前記光電変換部の主面上に設けられる集電極と、を備え、
     前記集電極は、
     バスバーと、
     前記バスバーと交わるフィンガーと、を含み、
     前記フィンガーは、
     前記バスバー側から離れるにつれて線幅が細くなるように延設された第1フィンガー部と、
     前記第1フィンガー部との境界部の線幅を維持したまま、前記第1フィンガー部から連続的に延設された第2フィンガー部と、
     を有し、
     前記第2フィンガー部は、前記第1フィンガー部の長さよりも短い、太陽電池。
    A photoelectric conversion unit;
    A collector electrode provided on the main surface of the photoelectric conversion unit,
    The collector electrode is
    A bus bar,
    Including fingers that cross the bus bar,
    The fingers are
    A first finger portion extending so that the line width becomes narrower as the distance from the bus bar side increases;
    While maintaining the line width of the boundary with the first finger part, the second finger part continuously extended from the first finger part,
    Have
    The solar cell, wherein the second finger part is shorter than the length of the first finger part.
  2.  請求項1に記載の太陽電池において、
     前記主面は、受光面と裏面とを含み、
     前記受光面上に設けられる前記フィンガーの前記第2フィンガー部は、前記裏面上に設けられる前記フィンガーの前記第2フィンガー部の長さよりも短い、太陽電池。
    The solar cell according to claim 1,
    The main surface includes a light receiving surface and a back surface,
    The solar cell, wherein the second finger portion of the finger provided on the light receiving surface is shorter than a length of the second finger portion of the finger provided on the back surface.
  3.  請求項1に記載の太陽電池において、
     前記第1フィンガー部は、多段階に分かれて線幅の変化率が変わる、太陽電池。
    The solar cell according to claim 1,
    The first finger part is a solar cell in which the change rate of the line width is changed in multiple stages.
PCT/JP2012/056390 2012-03-13 2012-03-13 Solar cell WO2013136436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056390 WO2013136436A1 (en) 2012-03-13 2012-03-13 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056390 WO2013136436A1 (en) 2012-03-13 2012-03-13 Solar cell

Publications (1)

Publication Number Publication Date
WO2013136436A1 true WO2013136436A1 (en) 2013-09-19

Family

ID=49160406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056390 WO2013136436A1 (en) 2012-03-13 2012-03-13 Solar cell

Country Status (1)

Country Link
WO (1) WO2013136436A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172823A1 (en) * 2014-05-14 2015-11-19 Applied Materials Italia S.R.L. Solar cell device and method for producing a solar cell device
JPWO2017119036A1 (en) * 2016-01-05 2018-10-04 パナソニックIpマネジメント株式会社 Solar cell module
US20210399151A1 (en) * 2018-07-24 2021-12-23 Zhejiang Aiko Solar Energy Technology Co., Ltd. Positive electrode of crystalline silicon solar cell having gate rupture prevention function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653531A (en) * 1992-07-29 1994-02-25 Sharp Corp Photoelectric converter and fabrication thereof
JPH06283736A (en) * 1993-03-29 1994-10-07 Sharp Corp Solar cell
JP3154145U (en) * 2009-02-11 2009-10-08 新日光能源科技股▼分▲有限公司 Electrode structure
WO2011013814A2 (en) * 2009-07-30 2011-02-03 三洋電機株式会社 Solar cell module
JP2011108985A (en) * 2009-11-20 2011-06-02 Sanyo Electric Co Ltd Solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653531A (en) * 1992-07-29 1994-02-25 Sharp Corp Photoelectric converter and fabrication thereof
JPH06283736A (en) * 1993-03-29 1994-10-07 Sharp Corp Solar cell
JP3154145U (en) * 2009-02-11 2009-10-08 新日光能源科技股▼分▲有限公司 Electrode structure
WO2011013814A2 (en) * 2009-07-30 2011-02-03 三洋電機株式会社 Solar cell module
JP2011108985A (en) * 2009-11-20 2011-06-02 Sanyo Electric Co Ltd Solar cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172823A1 (en) * 2014-05-14 2015-11-19 Applied Materials Italia S.R.L. Solar cell device and method for producing a solar cell device
JPWO2017119036A1 (en) * 2016-01-05 2018-10-04 パナソニックIpマネジメント株式会社 Solar cell module
US20210399151A1 (en) * 2018-07-24 2021-12-23 Zhejiang Aiko Solar Energy Technology Co., Ltd. Positive electrode of crystalline silicon solar cell having gate rupture prevention function
US11817511B2 (en) * 2018-07-24 2023-11-14 Zhejiang Aiko Solar Energy Technology Co., Ltd. Positive electrode of crystalline silicon solar cell having gate rupture prevention function

Similar Documents

Publication Publication Date Title
EP2388827B1 (en) Solar cell module
EP2489076B1 (en) Device comprising electrical contacts and its production process
EP2439780A2 (en) Photovoltaic cell
EP2219226A2 (en) Electrode structure and solar cell comprising the same
JP5727772B2 (en) Solar cell
US9123861B2 (en) Solar battery, manufacturing method thereof, and solar battery module
EP2600414A1 (en) Process for production of solar cell, and solar cell
CN106784041A (en) A kind of silicon based hetero-junction solar cell and preparation method thereof
WO2012057243A1 (en) Solar cell and solar cell module
EP2963691B1 (en) Solar cell
JP5995204B2 (en) Photoelectric conversion element
JP5935050B2 (en) Solar cell and manufacturing method thereof
WO2013136436A1 (en) Solar cell
JP5554409B2 (en) Photoelectric conversion device
EP2850661B1 (en) Hetero-contact solar cell and method for the production thereof
US20180062002A1 (en) Solar cell
KR20190063908A (en) Carrier selective solar cell and mehtod of fabricating thereof
JP6706779B2 (en) Solar cells and solar cell modules
WO2013136433A1 (en) Solar cell
JP2014029934A (en) Solar battery element and solar battery module comprising auxiliary bus bar electrode
WO2012105153A1 (en) Photoelectric conversion element
WO2022199883A9 (en) Method for manufacturing solar cell, solar module, and power generation system
JP2019133985A (en) Photovoltaic cell and method for manufacturing the same
WO2013027591A1 (en) Solar cell and solar cell module
JP5935047B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP