WO2013135657A1 - Method for producing synthesis gas in alternating operation between two operating modes - Google Patents

Method for producing synthesis gas in alternating operation between two operating modes Download PDF

Info

Publication number
WO2013135657A1
WO2013135657A1 PCT/EP2013/054943 EP2013054943W WO2013135657A1 WO 2013135657 A1 WO2013135657 A1 WO 2013135657A1 EP 2013054943 W EP2013054943 W EP 2013054943W WO 2013135657 A1 WO2013135657 A1 WO 2013135657A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
group
reaction
threshold value
fluid
Prior art date
Application number
PCT/EP2013/054943
Other languages
German (de)
French (fr)
Inventor
Leslaw Mleczko
Vanessa GEPERT
Alexander Karpenko
Emanuel Kockrick
Albert TULKE
Daniel Gordon Duff
Alexandra GROSSE BÖWING
Daniel Wichmann
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Publication of WO2013135657A1 publication Critical patent/WO2013135657A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00522Controlling the temperature using inert heat absorbing solids outside the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2409Heat exchange aspects
    • B01J2219/2416Additional heat exchange means, e.g. electric resistance heater, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/2428Catalysts coated on the surface of the monolith channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/2402Monolithic-type reactors
    • B01J2219/2425Construction materials
    • B01J2219/2427Catalysts
    • B01J2219/243Catalyst in granular form in the channels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a process for the production of synthesis gas, comprising the steps of providing a flow reactor, setting thresholds, comparing energy prices and / or energy composition with respect to regenerative sources, and a choice between the modes of dry reforming / reverse water gas shift reaction on the one hand and catalytic Partial oxidation on the other hand.
  • synthesis gas is produced by steam reforming of methane. Due to the high heat demand of the reactions involved, they are carried out in externally heated reformer tubes. Characteristic of this method is the limitation by the reaction equilibrium, a heat transport limitation and especially the pressure and temperature limitation of the reformer tubes used (nickel-based steels). Temperature and pressure side results in a limitation to a maximum of 900 ° C at about 20 to 40 bar.
  • An alternative method is autothermal reforming.
  • a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
  • DE 10 2007 022 723 A1 and US 2010/0305221 describe a process for the production and conversion of synthesis gas, which is characterized in that it has a plurality of different operating states which essentially comprise the alternating (i) daytime operation and (ii) nighttime operation where the day-to-day operation (i) mainly comprises dry reforming and steam reforming with the supply of regenerative energy and night operation (ii) mainly the partial oxidation of hydrocarbons and wherein the synthesis gas produced is used to produce value products.
  • US 2007/003478 Al discloses the production of synthesis gas with a combination of steam reforming and oxidation chemistry. The process involves the use of solids to heat the hydrocarbon feed and cool the gaseous product.
  • WO 2007/042279 AI deals with a reformer system with a reformer for the chemical reaction of a hydrocarbon-containing fuel in a hydrogen gas-rich reformate gas, and electric heating means by which the reformer heat energy for producing a reaction temperature required for the feed can be supplied, wherein the reformer system further comprises a capacitor has, which can supply the electric heating means with electric current.
  • WO 2004/071947 A2 / US 2006/0207178 AI relate to a system for the production of hydrogen, comprising a reformer for generating hydrogen from a hydrocarbon fuel, a compressor for compressing the generated hydrogen, a renewable energy source for converting a renewable resource into electrical Energy for driving the compressor and a storage device for storing the hydrogen from the compressor.
  • the object of the present invention is to provide such a method.
  • it has set itself the task of specifying a method for the production of synthesis gas, which is suitable for alternating operation between two different modes of operation.
  • a process for the production of synthesis gas comprising the steps: a) providing a flow reactor, which is arranged to react a fluid comprising reactants, wherein the reactor comprises at least one heating level, which is electrically heated by means of one or more heating elements, and wherein the heating level can be traversed by the fluid and at least one heating element Catalyst is arranged and is heated there; b) setting a threshold value S l for the costs of the electrical energy available for the flow reactor and / or a threshold value S2 for the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor; and c) comparing the costs of the electrical energy available for the flow reactor with the threshold value Sl and / or the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor with the threshold value S2; d) reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, wherein at least carbon monoxide is formed as product, with electrical heating by
  • the first threshold Sl relates to the electricity costs for the reactor, in particular the costs for electrical heating of the reactor by the heating elements in the heating levels. Here it can be determined up to which height the electric heating is still economically reasonable.
  • the second threshold S2 relates to the relative proportion of electrical energy from regenerative sources available to the reactor and, in particular, to the electrical heating of the reactor by the heating elements in the heating levels.
  • the relative proportion is in this case based on the total electrical energy of the electric current available for the flow reactor and can of course vary over time. Examples of regenerative sources from which electrical energy can be obtained are wind, solar, geothermal, wave and hydro.
  • the relative share can be determined by providing information to the energy supplier. For example, stand up If a factory site has its own regenerative energy sources such as solar installations or wind turbines, then this relative energy proportion can also be specified via performance monitoring.
  • the threshold value S 1 can be understood, for example, as a price upper limit
  • the threshold value S2 can be understood as a requirement to use renewable energies to the greatest possible extent.
  • S2 may mean that from a proportion of 5%, 10%, 20% or 30% of electrical energy from renewable sources, the electrical heating of the reactor should take place.
  • the flow reactor is operated so that, for example, run a dry reforming reaction, steam reforming reaction or a reverse water gas shift reaction.
  • the hydrocarbons involved are preferably alkanes, alkenes, alkynes, alkanols, alkenols and / or alkynols.
  • alkanes methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred.
  • Reverse water gas shift reaction C0 2 + H 2 * ⁇ CO + H 2 0 If the target / actual comparison shows that electrical energy is too expensive and / or too much energy from non-renewable sources is needed, Thus, the operating mode of the flow reactor is changed over and a partial oxidation takes place. It is reproduced using the example of methane.
  • the exothermic partial oxidation gives the required thermal energy and continues to produce syngas.
  • production can be continued in the same reactor.
  • the combustion of hydrogen can be used. It is also possible that the combustion of hydrogen in the rWGS reaction by metering of 0 2 in the educt gas (ideally a locally distributed or lateral addition) takes place, as well as possible that hydrogen-rich residual gases (for example, PSA exhaust gas), as they may be incurred in the purification of the synthesis gas, recycled and burned together with O2, which then the process gas is heated.
  • hydrogen-rich residual gases for example, PSA exhaust gas
  • An advantage of the oxidative mode of operation is that soot deposits formed by dry reforming or steam reforming can be removed and thus the catalyst used can be regenerated. Moreover, it is possible to regenerate passivation layers, the heating conductor or other metallic internals in order to increase the service life.
  • endothermic reactions are heated from the outside through the walls of the reaction tubes. Opposite is the autothermal reforming with 02 addition.
  • the endothermic reaction can be efficiently internally supplied with heat via an electrical heating within the reactor (the undesired alternative would be electrical heating via radiation through the reactor wall). This type of reactor operation is particularly economical if the excess supply resulting from the expansion of renewable energy sources can be used cost-effectively.
  • the process according to the invention provides for the DR, SMR, RWGS and POX reactions to proceed in the same reactor.
  • a mixed operation is expressly provided.
  • One of the advantages of this approach is the gradual onset of each other's reaction, for example, by continuously reducing hydrogen supply while increasing the supply of methane, or by continuously increasing hydrogen supply while reducing methane feed.
  • FIG. 1 shows schematically a flow reactor in an expanded representation.
  • the flow reactor comprises a plurality of heating levels seen in the flow direction of the fluid, which are electrically heated by heating elements and wherein the heating levels are flowed through by the fluid, wherein at least one heating element, a catalyst is arranged and is heated there, wherein Furthermore, at least once an intermediate level between two heating levels is arranged and wherein the intermediate level is also traversed by the fluid.
  • the in FIG. 1 schematically shown flow reactor used according to the invention is flowed through by a fluid comprising reactants from top to bottom, as shown by the arrows in the drawing.
  • the fluid may be liquid or gaseous and may be single-phase or multi-phase.
  • the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid.
  • the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which are electrically heated by means of corresponding heating elements 110, 111, 112, 113.
  • the heating levels 100, 101, 102, 103 are flowed through by the fluid in the operation of the reactor and the heating elements 1 10, 11 1, 1 12, 1 13 are contacted by the fluid.
  • At least one heating element 110, 111, 112, 113, a catalyst is arranged and is heated there.
  • the catalyst may be directly or indirectly connected to the heating elements 110, 11 1, 12, 13, so that these heating elements represent the catalyst support or a support for the catalyst support.
  • the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst.
  • Thermistor alloys such as FeCrAl alloys are preferably used for the heating elements 110, 111, 112, 113.
  • electrically conductive Si-based materials particularly preferably SiC.
  • This has the effect of homogenizing the fluid flow.
  • additional catalyst can be present in one or more intermediate levels 200, 20 1, 202 0 of the further insulation elements in the reactor. Then an adiabatic reaction can take place. If necessary, the intermediate levels can act as a flame barrier, especially in the POX reaction.
  • Said at least one intermediate ceramic layer is preferably supported by a ceramic or metallic support frame and / or a ceramic or metallic support plane.
  • a ceramic or metallic support frame and / or a ceramic or metallic support plane When using FeCrAl thermistors, the fact can be exploited that the material forms an AhC protective layer as a result of the effect of temperature in the presence of air / oxygen.
  • This passivation layer can serve as a basecoat of a washcoat, which acts as a catalytically active coating.
  • the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure. It is also possible, when using other thermistor, the formation of other protective layers such as Si-OC systems.
  • the pressure in the reactor can take place via a pressure-resistant steel jacket.
  • suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C.
  • the electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 1 10, 1 1 1, 1 12, 1 13 performed so that the actual electrical connections can be provided in the cold region of the reactor ,
  • the electrical heating is done with direct current or alternating current.
  • heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged, which are constructed in a spiral, meandering, lattice-shaped and / or reticulated.
  • At least one heating element 110, 11 1, 1 12, 1 13 one of the remaining heating elements 1 10, 1 1 1, 1 12, 1 13 different amount and / or type of catalyst is present.
  • the heating elements 110, 111, 112, 113 are arranged so that they can each be electrically heated independently of each other.
  • the individual heating levels can be individually controlled and regulated.
  • In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor. If the individual heating levels 100, 101, 102, 103 differ in power input, catalyst charge and / or type of catalyst, a temperature profile adapted for the respective reaction can be achieved.
  • the (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 21 1, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time an electrical insulation between two heating levels is possible.
  • the material of the content 210, 21 1, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
  • the intermediate plane 200, 201, 202 comprises a one-piece porous solid.
  • the fluid flows through the intermediate plane via the pores of the solid. This is shown in FIG. 1 shown.
  • Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines.
  • one or more of the intermediate levels are voids.
  • the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to ⁇ 100: 1 to each other. Ratios of> 0.1: 1 to ⁇ 10: 1 or 0.5: 1 to ⁇ 5: 1 are even more advantageous.
  • Suitable catalysts may, for example, be selected from the group:
  • A, A 'and A are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb, Bi and / or Cd; and B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb , Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce and / or Zn; and
  • A, A 'and A are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb and / or Cd; and B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu , Ni, Sn, Al, Ga, Sc, Ti, V, Nb,
  • B ' is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt;
  • B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd and / or Zn, and 0 ⁇ w ⁇ 0.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5 and -l ⁇ delta ⁇ 1;
  • Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt;
  • M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu.
  • M is selected from the group: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu , Ag and / or Au; and
  • L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and
  • Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu; and
  • a and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu; and or
  • reaction products includes the catalyst phases present under reaction conditions. Preferred are for:
  • an electric heating of at least one of the heating elements 110, 11 1, 1 12, 113 takes place in the reactor provided. This can, but does not have to be, carried out in advance of the passage of a reactant comprising the fluid through the flow reactor with at least partial reaction of the reactants of the fluid ,
  • the reactor can be modular.
  • a module may include, for example, a heating level, an insulation level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
  • the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power.
  • the reaction temperature in the reactor is at least in places> 700 ° C to ⁇ 1300 ° C. More preferred ranges are> 800 ° C to ⁇ 1200 ° C and> 900 ° C to ⁇ 1100 ° C.
  • the average (mean) contact time of the fluid to a heating element 110, 111, 112, 113 may be, for example,> 0.01 seconds to ⁇ 1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may be, for example > 0.001 seconds to ⁇ 5 seconds.
  • Preferred contact times are> 0.005 to ⁇ 1 second, more preferably> 0.01 to ⁇ 0.9 seconds.
  • the reaction can be carried out at a pressure of> 1 bar to ⁇ 200 bar.
  • the pressure is> 2 bar to ⁇ 50 bar, more preferably> 10 bar to ⁇ 30 bar.
  • f) a desired H 2 / CO ratio in the synthesis gas is determined and g) the reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, at least carbon monoxide being formed as product, with electric heating by one or more heating elements (1 10, 1 1 1, 1 12, 1 13) is carried out when the desired ratio of H 2 / CO is exceeded; and h) the reaction of hydrocarbons with oxygen in the flow reactor, wherein as products at least carbon monoxide and hydrogen are formed, is carried out when the desired ratio of H2 / CO is exceeded; with the following exception: a change from the reaction of carbon dioxide with hydrocarbons, at least carbon monoxide being formed as product, for the reaction of hydrocarbons with oxygen, forming at least carbon monoxide and hydrogen as products, then takes place
  • the H 2 / CO ratio changes from 1: 1 to 2: 1 when changing from CC reforming to POX. Modifications by adding H 2 O or CO 2 to the SMR are also possible. When changing from Dry Reforming to POX, however, the H 2 / CO ratio changes from 1: 1 to 2: 1.
  • the main target product may be CO or H 2 .
  • the characteristic value Sl has fallen below and / or the characteristic value S2 has been exceeded.
  • the endothermic operation that is, steam reforming or dry reforming, wherein in addition to CO2 as Cl source is used, which is reflected in a saving of methane, preferred.
  • dry reforming two moles of CO and two moles of H2 are obtained per mole of methane.
  • the educt ratio of CO2 / CH4 is> 1.25.
  • the CO2 present in the product gas is separated off in subsequent process steps and returned to the reactor.
  • the mode of operation is changed over from the endothermic operation to the exothermic operation.
  • methane is fed with 02 to the reactor.
  • CO2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached.
  • the CO 2 separated off in the succeeding steps can be temporarily stored in order to be used as reactant at the start of the endothermic reaction.
  • the reactant streams or the throughput of methane and oxygen are adjusted so that a constant amount of CO or H2 amount is available for subsequent processes.
  • the target product is CO.
  • the characteristic value S l has fallen below and / or the characteristic value S2 has been exceeded.
  • endothermic operation that is, performance of the rWGS reaction using CO2 as the Cl source, is preferred.
  • one mole of CO and one mole of water will be present per mole of CO2.
  • the educt ratio of H2 / CO2 is> 1.25.
  • the CO2 present in the product gas is separated off in subsequent process steps and returned to the reactor.
  • the characteristic value Sl is exceeded and / or the characteristic value S2 is undershot, the mode of operation is changed over from the endothermic operation to the exothermic operation.
  • methane is fed with O 2 to the reactor.
  • CO2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached.
  • Part of the hydrogen produced during POX operation can be cached and used to operate the rWGS reaction.
  • the electrical heating elements can be used in the region of the reactor inlet for the starting process.
  • a rapid heating of the reactant stream is possible, which reduces coking when carrying out the endothermic reforming reactions and, when carrying out the POX, allows a locally defined ignition of the reaction and thus enables safe reactor operation.

Abstract

The method comprises the steps of providing a flow reactor, which is designed to react a fluid comprising reactants, defining a threshold value S1 for the costs of the electrical energy available for the flow reactor and/or a threshold value S2 for the relative share of electrical energy from renewable sources of the electrical energy available for the flow reactor; and comparing the costs of the electrical energy available for the flow reactor with the threshold value S1 and/or the relative share of electrical energy from renewable sources of the electrical energy available for the flow reactor with the threshold value S2. Dry reforming reactions or RWGS reactions occur if the threshold value S1 is not reached and/or the threshold value S2 is exceeded. Catalytic partial oxidations occur if the threshold value S1 is exceeded and/or the threshold value is not reached.

Description

Verfahren für die Synthesegasherstellung im Wechselbetrieb zwischen zwei Betriebsarten  Process for synthesis gas production in alternating operation between two operating modes
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Synthesegas, umfassend die Schritte des Bereitstellen eines Strömungsreaktors, Festlegen von Schwellwerten, Vergleichen von Energiepreisen und/oder Energiezusammensetzung bezüglich regenerativer Quellen sowie Auswahl zwischen den Betriebsweisen Dry Reforming/umgekehrte Wassergas-Shift-Reaktion einerseits und katalytischer Partialoxidation andererseits. The present invention relates to a process for the production of synthesis gas, comprising the steps of providing a flow reactor, setting thresholds, comparing energy prices and / or energy composition with respect to regenerative sources, and a choice between the modes of dry reforming / reverse water gas shift reaction on the one hand and catalytic Partial oxidation on the other hand.
Bedingt durch den verstärkten Ausbau regenerativer Energien entsteht ein fluktuierendes Energieangebot im Stromnetz. In Phasen günstiger Strompreise ergibt sich für den Betrieb von Reaktoren zur Durchführung endothermer Reaktionen, bevorzugt für die Herstellung von Synthesegas, die Möglichkeit eines wirtschaftlichen und ökonomisch sinnvollen Betriebs unter Ausnutzung der regenerativen Energien, wenn diese elektrisch beheizt werden. Due to the increased expansion of renewable energies, a fluctuating supply of energy in the power grid is created. In phases of favorable electricity prices results for the operation of reactors for carrying out endothermic reactions, preferably for the production of synthesis gas, the possibility of an economical and economically meaningful operation taking advantage of renewable energies when they are electrically heated.
In Phasen, in welchen keine regenerativ erzeugte elektrische Energie verfügbar ist, muss dann eine andere Form der Energieversorgung der endothermen Reaktionen gewählt werden. In phases in which no regeneratively generated electrical energy is available, then another form of energy supply of the endothermic reactions must be selected.
Konventionell erfolgt die Herstellung von Synthesegas mittels der Dampfreformierung von Methan. Aufgrund des hohen Wärmebedarfs der beteiligten Reaktionen erfolgt deren Durchführung in von außen beheizten Reformerröhren. Charakteristisch für dieses Verfahren ist die Limitierung durch das Reaktionsgleichgewicht, eine Wärmetransportlimitierung und vor allem die Druck- und Temperaturlimitierung der eingesetzten Reformerröhren (nickelbasierte Stähle). Temperatur- und druckseitig resultiert daraus eine Limitierung auf maximal 900 °C bei ca. 20 bis 40 bar. Conventionally, synthesis gas is produced by steam reforming of methane. Due to the high heat demand of the reactions involved, they are carried out in externally heated reformer tubes. Characteristic of this method is the limitation by the reaction equilibrium, a heat transport limitation and especially the pressure and temperature limitation of the reformer tubes used (nickel-based steels). Temperature and pressure side results in a limitation to a maximum of 900 ° C at about 20 to 40 bar.
Ein alternatives Verfahren ist die autotherme Reformierung. Hierbei wird ein Teil des Brennstoffs durch Zugabe von Sauerstoff innerhalb des Reformers verbrannt, so dass das Reaktionsgas aufgeheizt wird und die ablaufenden endothermen Reaktionen mit Wärme versorgt werden. An alternative method is autothermal reforming. In this case, a portion of the fuel is burned by the addition of oxygen within the reformer, so that the reaction gas is heated and the expiring endothermic reactions are supplied with heat.
Im Stand der Technik sind einige Vorschläge für eine interne Heizung von chemischen Reaktoren bekannt geworden. So beschreiben beispielsweise Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879 die Simulation und experimentelle Analyse eines co-axialen, zylindrischen Methan-Dampfreformers unter Verwendung eines elektrisch beheizten Alumit- Katalysators (EHAC). Some proposals for internal heating of chemical reactors have become known in the art. For example, Zhang et al., International Journal of Hydrogen Energy 2007, 32, 3870-3879 describe the simulation and experimental analysis of a coaxial, cylindrical methane steam reformer using an electrically heated alumite catalyst (EHAC).
Hinsichtlich eines Wechselbetrieb es beschreiben DE 10 2007 022 723 AI beziehungsweise US 2010/0305221 ein Verfahren zur Herstellung und Umsetzung von Synthesegas, das dadurch gekennzeichnet ist, dass es mehrere unterschiedliche Betriebszustände aufweist, die im Wesentlichen aus dem im Wechsel zueinander stehenden (i) Tagesbetrieb und (ii) Nachtbetrieb bestehen, wobei der Tagesbetrieb (i) hauptsächlich die trockene Reformierung und das Steamreforming unter der Zuführung von regenerativer Energie und der Nachtbetrieb (ii) hauptsächlich die partielle Oxidation von Kohlenwasserstoffen umfasst und wobei das hergestellte Synthesegas zur Herstellung von Wertprodukten verwendet wird. US 2007/003478 AI offenbart die Herstellung von Synthesegas mit einer Kombination von Dampfreformierungs- und Oxidationschemie. Das Verfahren beinhaltet die Verwendung von Feststoffen, um den Kohlenwasserstoff-Feed aufzuheizen und das gasförmige Produkt abzukühlen. Gemäß dieser Veröffentlichung kann Wärme dadurch konserviert werden, dass der Gasfluss von Feed- und Produktgasen intervallmäßig umgekehrt wird. WO 2007/042279 AI beschäftigt sich mit einem Reformersystem mit einem Reformer zum chemischen Umsetzen eines kohlenwasserstoffhaltigen Kraftstoffes in ein wasserstoffgasreiches Reformatgas, sowie elektrischen Heizmitteln, mittels welchen dem Reformer Wärmeenergie zum Herstellen einer für die Umsetzung erforderlichen Reaktionstemperatur zuführbar ist, wobei das Reformersystem weiterhin einen Kondensator aufweist, der die elektrischen Heizmittel mit elektrischem Strom versorgen kann. With regard to alternating operation, DE 10 2007 022 723 A1 and US 2010/0305221 describe a process for the production and conversion of synthesis gas, which is characterized in that it has a plurality of different operating states which essentially comprise the alternating (i) daytime operation and (ii) nighttime operation where the day-to-day operation (i) mainly comprises dry reforming and steam reforming with the supply of regenerative energy and night operation (ii) mainly the partial oxidation of hydrocarbons and wherein the synthesis gas produced is used to produce value products. US 2007/003478 Al discloses the production of synthesis gas with a combination of steam reforming and oxidation chemistry. The process involves the use of solids to heat the hydrocarbon feed and cool the gaseous product. According to this publication, heat can be conserved by reversing the gas flow of feed and product gases at intervals. WO 2007/042279 AI deals with a reformer system with a reformer for the chemical reaction of a hydrocarbon-containing fuel in a hydrogen gas-rich reformate gas, and electric heating means by which the reformer heat energy for producing a reaction temperature required for the feed can be supplied, wherein the reformer system further comprises a capacitor has, which can supply the electric heating means with electric current.
WO 2004/071947 A2/ US 2006/0207178 AI betreffen ein System zur Herstellung von Wasserstoff, umfassend einen Reformer zur Generierung von Wasserstoff aus einem Kohlenwasserstoff-Treibstoff, einen Kompressor zur Komprimierung des erzeugten Wasserstoffs, eine erneuerbare Energiequelle zur Umwandlung einer erneuerbaren Ressource in elektrische Energie zum Antrieb des Kompressors und eine Speichervorrichtung zur Speicherung des Wasserstoffs von dem Kompressor. WO 2004/071947 A2 / US 2006/0207178 AI relate to a system for the production of hydrogen, comprising a reformer for generating hydrogen from a hydrocarbon fuel, a compressor for compressing the generated hydrogen, a renewable energy source for converting a renewable resource into electrical Energy for driving the compressor and a storage device for storing the hydrogen from the compressor.
Aus dem zuvor Gesagten wird deutlich, dass eine ökonomisch sinnvolle Herstellung von Synthesegas unter Ausnutzung von regenerativen Energiequellen gewisse Anforderungen an die Verfahrensdurchführung und den hierin eingesetzten Reaktor stellen. Einerseits muss eine effiziente elektrische Beheizung des Reaktors, das heißt eine effiziente Wärmeversorgung der endothermen Reaktion realisiert werden. Andererseits sollte für Phasen, in denen keine regenerativ erzeugte Energie nutzbar ist, die Möglichkeit zur anderweitigen Beheizung des Reaktors vorliegen. From what has been said above, it becomes clear that an economically sensible production of synthesis gas by utilizing regenerative energy sources places certain demands on the process procedure and the reactor used therein. On the one hand, an efficient electrical heating of the reactor, that is an efficient heat supply of the endothermic reaction must be realized. On the other hand, should be available for phases in which no regenerative energy is available, the possibility of otherwise heating the reactor.
Die vorliegende Erfindung hat sich die Aufgabe gestellt, ein solches Verfahren bereitzustellen. Insbesondere hat sie sich die Aufgabe gestellt, ein Verfahren zur Herstellung von Synthesegas anzugeben, welches für einen Wechselbetrieb zwischen zwei verschiedenen Betriebsweisen geeignet ist. The object of the present invention is to provide such a method. In particular, it has set itself the task of specifying a method for the production of synthesis gas, which is suitable for alternating operation between two different modes of operation.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Synthesegas, umfassend die Schritte: a) Bereitstellen eines Strömungsreaktors, welcher zur Reaktion eines Reaktanden umfassenden Fluids eingerichtet ist, wobei der Reaktor mindestens eine Heizebene umfasst, welche mittels eines oder mehrerer Heizelemente elektrisch beheizt wird, und wobei die Heizebene von dem Fluid durchströmbar ist und wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist; b) Festlegen eines Schwellwertes S l für die Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines Schwellwertes S2 für den relativen Anteil von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie; und c) Vergleichen der Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert Sl und/oder des relativen Anteils von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S2; d) Reaktion von Kohlendioxid mit Kohlenwasserstoffen, Wasser und/oder Wasserstoff in dem Strömungsreaktor, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, unter elektrischer Beheizung durch ein oder mehrere Heizelemente, wenn der Schwellwert Sl unterschritten und/oder der Schwellwert S2 überschritten werden; und e) Reaktion von Kohlenwasserstoffen mit Sauerstoff in dem Strömungsreaktor, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, wenn der Schwellwert Sl überschritten und/oder der Schwellwert S2 unterschritten werden. This object is achieved according to the invention by a process for the production of synthesis gas, comprising the steps: a) providing a flow reactor, which is arranged to react a fluid comprising reactants, wherein the reactor comprises at least one heating level, which is electrically heated by means of one or more heating elements, and wherein the heating level can be traversed by the fluid and at least one heating element Catalyst is arranged and is heated there; b) setting a threshold value S l for the costs of the electrical energy available for the flow reactor and / or a threshold value S2 for the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor; and c) comparing the costs of the electrical energy available for the flow reactor with the threshold value Sl and / or the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor with the threshold value S2; d) reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, wherein at least carbon monoxide is formed as product, with electrical heating by one or more heating elements, when the threshold value Sl falls below and / or the threshold value S2 are exceeded; and e) reaction of hydrocarbons with oxygen in the flow reactor, wherein at least carbon monoxide and hydrogen are formed as products when the threshold value S1 is exceeded and / or the threshold value S2 is exceeded.
Im erfindungsgemäßen Verfahren zum hybriden Betrieb einer Synthesegasherstellung wird anhand von einem oder mehreren Schwellwerten entschieden, welche Betriebsart gewählt werden soll. Der erste Schwellwert Sl betrifft die Elektrizitätskosten für den Reaktor, im Speziellen die Kosten für eine elektrische Beheizung des Reaktors durch die Heizelemente in den Heizebenen. Hier kann festgelegt werden, bis zu welcher Höhe die elektrische Beheizung noch wirtschaftlich sinnvoll ist. In the method according to the invention for the hybrid operation of a synthesis gas production, it is decided on the basis of one or more threshold values which mode of operation is to be selected. The first threshold Sl relates to the electricity costs for the reactor, in particular the costs for electrical heating of the reactor by the heating elements in the heating levels. Here it can be determined up to which height the electric heating is still economically reasonable.
Der zweite Schwellwert S2 betrifft den relativen Anteil von elektrischer Energie aus regenerativen Quellen, die für den Reaktor und auch wieder im Speziellen für die elektrische Beheizung des Reaktors durch die Heizelemente in den Heizebenen zur Verfügung steht. Der relative Anteil ist hierbei bezogen auf die gesamte elektrische Energie der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und kann selbstverständlich im zeitlichen Verlauf schwanken. Beispiele für regenerative Quellen, aus denen elektrische Energie gewonnen werden kann, sind Windenergie, Solarenergie, geothermale Energie, Wellenenergie und Wasserkraft. Der relative Anteil kann durch Auskünfte beim Energieversorger bestimmt werden. Stehen beispielsweise auf einem Werksge lände eigene regenerative Energieque llen wie S o laranlag en o der Windenergieanlagen, so kann über eine Leistungsüberwachung auch dieser relative Energieanteil angegeben werden. The second threshold S2 relates to the relative proportion of electrical energy from regenerative sources available to the reactor and, in particular, to the electrical heating of the reactor by the heating elements in the heating levels. The relative proportion is in this case based on the total electrical energy of the electric current available for the flow reactor and can of course vary over time. Examples of regenerative sources from which electrical energy can be obtained are wind, solar, geothermal, wave and hydro. The relative share can be determined by providing information to the energy supplier. For example, stand up If a factory site has its own regenerative energy sources such as solar installations or wind turbines, then this relative energy proportion can also be specified via performance monitoring.
So wie sich der Schwellwert S l beispielsweise als Preisobergrenze verstehen lässt, kann der Schwellwert S2 als Vorgabe aufgefasst werden, im größtmöglichen vertretbaren Umfang erneuerbare Energien zu nutzen. Beispielsweise kann S2 lauten, dass ab einem Anteil von 5%, 10%, 20% oder 30% von elektrischer Energie aus erneuerbaren Quellen die elektrische Beheizung des Reaktors erfolgen soll. Just as the threshold value S 1 can be understood, for example, as a price upper limit, the threshold value S2 can be understood as a requirement to use renewable energies to the greatest possible extent. For example, S2 may mean that from a proportion of 5%, 10%, 20% or 30% of electrical energy from renewable sources, the electrical heating of the reactor should take place.
Ein Vergleich der Soll- Werte mit den Ist-Werten im Verfahren kann nun zu dem Ergebnis gelangen, dass elektrische Energie preisgünstig vorhanden ist und/oder genug elektrische Energie aus erneuerbaren Quellen zur Verfügung steht. Dann wird der Strömungsreaktor so betrieben, dass beispielsweise eine Dry Reforming-Reaktion, Steam Reforming-Reaktion oder eine umgekehrte Wassergas-Shift-Reaktion ablaufen. Die beteiligten Kohlenwasserstoffe sind vorzugsweise Alkane, Alkene, Alkine, Alkanole, Alkenole und/oder Alkinole. Unter den Alkanen ist Methan besonders geeignet, unter den Alkanolen sind Methanol und/oder Ethanol bevorzugt. A comparison of the target values with the actual values in the method can now reach the conclusion that electrical energy is available at low cost and / or enough electrical energy is available from renewable sources. Then, the flow reactor is operated so that, for example, run a dry reforming reaction, steam reforming reaction or a reverse water gas shift reaction. The hydrocarbons involved are preferably alkanes, alkenes, alkynes, alkanols, alkenols and / or alkynols. Among the alkanes, methane is particularly suitable, among the alkanols methanol and / or ethanol are preferred.
Diese Reaktionen sind nachfolgend beispielhaft wiedergegeben: Dry Reforming von Methan (DR): CH4 + C02 ^ 2 CO + 2 H2 Steam Reforming von Methan (SMR): CH4 + H20 ^3 H2 + CO These reactions are reproduced hereinafter by way of example: Dry reforming of methane (DR): CH 4 + C0 2 ^ 2 CO + 2 H 2 Steam reforming of methane (SMR): CH 4 + H 2 0 → 3 H 2 + CO
Umgekehrte Wassergas-Shift-Reaktion (RWGS): C02 + H2 *± CO + H20 Ergibt der Soll/Ist- Vergleich, dass elektrische Energie zu teuer ist und/oder zuviel Energie aus nicht-regenerativen Quellen eingesetzt werden müsste, s o wird die B etrieb s art de s Strömungsreaktors umgestellt und eine Partialoxidation findet statt. Sie wird am Beispiel von Methan wiedergegeben. Reverse water gas shift reaction (RWGS): C0 2 + H 2 * ± CO + H 2 0 If the target / actual comparison shows that electrical energy is too expensive and / or too much energy from non-renewable sources is needed, Thus, the operating mode of the flow reactor is changed over and a partial oxidation takes place. It is reproduced using the example of methane.
Partialoxidation von Methan (POX): CH4 + 1/2 02 -> CO + 2 H2 Durch die exotherme Partialoxidation wird die benötigte thermische Energie gewonnen und weiterhin Synthesegas produziert. So kann beispielsweise nachts oder während windstiller Tagesabschnitte die Produktion im gleichen Reaktor weiter fortgeführt werden. Partial oxidation of methane (POX): CH 4 + 1/2 0 2 -> CO + 2 H 2 The exothermic partial oxidation gives the required thermal energy and continues to produce syngas. Thus, for example, at night or during windless daytime sections, production can be continued in the same reactor.
Weiterhin kann als alternative oder zusätzliche Beheizungsmethode die Verbrennung von Wasserstoff eingesetzt werden. Es ist sowohl möglich, dass die Verbrennung von Wasserstoff bei der rWGS-Reaktion durch Zudosierung von 02 in das Eduktgas (idealerweise eine örtlich verteilte oder seitliche Zudosierung) erfolgt, als auch möglich, dass wasserstoffreiche Restgase (zum Beispiel PSA-Abgas), wie sie bei der Aufreinigung des Synthesegases anfallen können, zurückgeführt und zusammen mit O2 verbrannt werden, wodurch dann das Prozessgas aufgeheizt wird. Ein Vorteil der oxidativen Fahrweise ist, dass durch Dry Reforming oder Steam Reforming gebildete Rußablagerungen entfernt werden können und so der eingesetzte Katalysator regeneriert werden kann. Überdies ist es möglich Passivierungsschichten, der Heizleiter oder anderer metallischer Einbauten, zu regenerieren, um die Standzeit zu erhöhen. Furthermore, as an alternative or additional heating method, the combustion of hydrogen can be used. It is also possible that the combustion of hydrogen in the rWGS reaction by metering of 0 2 in the educt gas (ideally a locally distributed or lateral addition) takes place, as well as possible that hydrogen-rich residual gases (for example, PSA exhaust gas), as they may be incurred in the purification of the synthesis gas, recycled and burned together with O2, which then the process gas is heated. An advantage of the oxidative mode of operation is that soot deposits formed by dry reforming or steam reforming can be removed and thus the catalyst used can be regenerated. Moreover, it is possible to regenerate passivation layers, the heating conductor or other metallic internals in order to increase the service life.
In der Regel werden endotherme Reaktionen von außen durch die Wände der Reaktionsröhren beheizt. Dem gegenüber steht die autotherme Reformierung mit 02-Zugabe. Im hier beschriebenen Reaktorbetrieb kann über eine elektrische Beheizung innerhalb des Reaktors (die unerwünschte Alternative wäre elektrische Beheizung via Strahlung durch die Reaktorwand) die endotherme Reaktion effizient intern mit Wärme versorgt werden. Diese Art des Reaktorbetriebs wird insbesondere dann wirtschaftlich, wenn das aus dem Ausbau der regenerativen Energiequellen resultierende Überangebot kostengünstig genutzt werden kann. In general, endothermic reactions are heated from the outside through the walls of the reaction tubes. Opposite is the autothermal reforming with 02 addition. In the reactor operation described here, the endothermic reaction can be efficiently internally supplied with heat via an electrical heating within the reactor (the undesired alternative would be electrical heating via radiation through the reactor wall). This type of reactor operation is particularly economical if the excess supply resulting from the expansion of renewable energy sources can be used cost-effectively.
Das erfindungsgemäße Verfahren sieht vor, die DR-, SMR-, RWGS- und POX-Reaktionen in demselben Reaktor ablaufen zu lassen. Ein Mischbetrieb ist ausdrücklich vorgesehen. Einer der Vorteile dieser Möglichkeit ist das allmähliche Anfahren der jeweils anderen Reaktion, zum Beispiel durch kontinuierliches Reduzieren der Wasserstoffzufuhr bei gleichzeitiger Erhöhung der Methanzufuhr oder durch kontinuierliches Erhöhen der Wasserstoffzufuhr bei gleichzeitiger Verringerung der Methanzufuhr. The process according to the invention provides for the DR, SMR, RWGS and POX reactions to proceed in the same reactor. A mixed operation is expressly provided. One of the advantages of this approach is the gradual onset of each other's reaction, for example, by continuously reducing hydrogen supply while increasing the supply of methane, or by continuously increasing hydrogen supply while reducing methane feed.
Die vorliegende Erfindung einschließlich bevorzugter Ausführungsformen wird in Verbindung mit der nachfolgenden Zeichnung weiter erläutert, ohne hierauf beschränkt zu sein. Die Aus führungs formen können beliebig miteinander kombiniert werden, sofern sich nicht eindeutig das Gegenteil aus dem Kontext ergibt. The present invention including preferred embodiments will be further explained in connection with the following drawings without being limited thereto. The forms of execution can be combined with each other as long as the opposite of the context is not clear.
FIG. 1 zeigt schematisch einen Strömungsreaktor in expandierter Darstellung. FIG. 1 shows schematically a flow reactor in an expanded representation.
In einer Ausführungsform des erfindungsgemäßen Verfahrens umfasst der Strömungsreaktor eine in Strömungsrichtung des Fluids gesehene Mehrzahl von Heizebenen, welche mittels Heizelementen elektrisch beheizt werden und wobei die Heizebenen von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement ein Katalysator angeordnet ist und dort beheizbar ist, wobei weiterhin mindestens einmal eine Zwischenebene zwischen zwei Heizebenen angeordnet ist und wobei die Zwischenebene ebenfalls von dem Fluid durchströmbar ist. Der in FIG. 1 schematisch gezeigte erfindungsgemäß einzusetzende Strömungsreaktor wird von einem Reaktanden umfassenden Fluid von oben nach unten durchströmt, wie durch die Pfeile in der Zeichnung dargestellt. Das Fluid kann flüssig oder gasförmig sein und einphasig oder mehrphasig aufgebaut sein. Vorzugsweise, auch angesichts der möglichen Reaktionstemperaturen, ist das Fluid gasförmig. Es ist sowohl denkbar, dass das Fluid ausschließlich Reaktanden und Reaktionsprodukte enthält, aber auch, dass zusätzlich inerte Komponenten wie Inertgase im Fluid vorliegen. In one embodiment of the method according to the invention the flow reactor comprises a plurality of heating levels seen in the flow direction of the fluid, which are electrically heated by heating elements and wherein the heating levels are flowed through by the fluid, wherein at least one heating element, a catalyst is arranged and is heated there, wherein Furthermore, at least once an intermediate level between two heating levels is arranged and wherein the intermediate level is also traversed by the fluid. The in FIG. 1 schematically shown flow reactor used according to the invention is flowed through by a fluid comprising reactants from top to bottom, as shown by the arrows in the drawing. The fluid may be liquid or gaseous and may be single-phase or multi-phase. Preferably, also in view of the possible reaction temperatures, the fluid is gaseous. It is conceivable that the fluid contains only reactants and reaction products, but also that additionally inert components such as inert gases are present in the fluid.
In Strömungsrichtung des Fluids gesehen weist der Reaktor eine Mehrzahl von (im vorliegenden Fall vier) Heizebenen 100, 101, 102, 103 auf, welche mittels entsprechender Heizelemente 110, 111, 112, 113 elektrisch beheizt werden. Die Heizebenen 100, 101, 102, 103 werden im Betrieb des Reaktors von dem Fluid durchströmt und die Heizelemente 1 10, 11 1 , 1 12, 1 13 werden von dem Fluid kontaktiert. As seen in the direction of flow of the fluid, the reactor has a plurality of (four in the present case) heating levels 100, 101, 102, 103, which are electrically heated by means of corresponding heating elements 110, 111, 112, 113. The heating levels 100, 101, 102, 103 are flowed through by the fluid in the operation of the reactor and the heating elements 1 10, 11 1, 1 12, 1 13 are contacted by the fluid.
An mindestens einem Heizelement 110, 111, 112, 113 ist ein Katalysator angeordnet und ist dort beheizbar. Der Katalysator kann direkt oder indirekt mit den Heizelementen 110, 1 1 1 , 1 12, 1 13 verbunden sein, so dass diese Heizelemente den Katalysatorträger oder einen Träger für den Katalysatorträger darstellen. At least one heating element 110, 111, 112, 113, a catalyst is arranged and is heated there. The catalyst may be directly or indirectly connected to the heating elements 110, 11 1, 12, 13, so that these heating elements represent the catalyst support or a support for the catalyst support.
In dem Reaktor erfolgt somit die Wärmeversorgung der Reaktion elektrisch und wird nicht von Außen mittels Strahlung durch die Wandungen des Reaktors eingebracht, sondern direkt in das Innere des Reaktionsraumes. Es wird eine direkte elektrische Beheizung des Katalysators realisiert. Für die Heizelemente 110, 111, 112, 113 kommen bevorzugt Heißleiterlegierungen wie FeCrAl- Legierungen zum Einsatz. Alternativ zu metallischen Werkstoffen können zudem auch elektrisch leitfähige Si-basierte Materialien, besonders bevorzugt SiC, eingesetzt werden. In the reactor, therefore, the heat supply of the reaction takes place electrically and is not introduced from the outside by means of radiation through the walls of the reactor, but directly into the interior of the reaction space. It is realized a direct electrical heating of the catalyst. Thermistor alloys such as FeCrAl alloys are preferably used for the heating elements 110, 111, 112, 113. In addition to metallic materials, it is also possible to use electrically conductive Si-based materials, particularly preferably SiC.
Im Reaktor ist weiterhin mindestens einmal eine vorzugsweise keramische Zwischenebene 200, 201, 202 zwischen zwei Heizebenen 100, 101, 102, 103 angeordnet, wobei die Zwischenebene(n) 200, 201, 202 ebenfalls im Betrieb des Reaktors vom dem Fluid durchströmt werden. Dieses hat den Effekt einer Homogenisierung der Fluidströmung Es ist auch möglich, dass zusätzlicher Katalysator in einer oder mehreren Zwischenebenen 200 , 20 1 , 202 o der weiteren Isolationselementen im Reaktor vorhanden ist. Dann kann eine adiabatische Reaktion ablaufen. Die Zwischenebenen können bei Bedarf insbesondere bei der POX-Reaktion als Flammsperre fungieren. In the reactor at least once more preferably a ceramic intermediate level 200, 201, 202 between two heating levels 100, 101, 102, 103, wherein the intermediate level (s) 200, 201, 202 are also traversed by the fluid in the operation of the reactor. This has the effect of homogenizing the fluid flow. It is also possible for additional catalyst to be present in one or more intermediate levels 200, 20 1, 202 0 of the further insulation elements in the reactor. Then an adiabatic reaction can take place. If necessary, the intermediate levels can act as a flame barrier, especially in the POX reaction.
Die genannte mindestens eine keramische Zwischenebene wird vorzugsweise von einem keramischen oder metallischen Traggerüst und/oder einer keramischen oder metallischen Tragebene getragen. Bei der Verwendung von FeCrAl-Heißleitern kann die Tatsache ausgenutzt werden, dass das Material durch Temperatureinwirkung in Gegenwart von Luft/Sauerstoff eine AhC -Schutzschicht ausbildet. Diese Passivierungsschicht kann als Grundschicht eines Washcoats dienen, welcher als katalytisch aktive Beschichtung fungiert. Damit ist die direkte Widerstandsbeheizung des Katalysators beziehungsweise die Wärmeversorgung der Reaktion direkt über die katalytische Struktur realisiert. Es ist auch, bei Verwendung anderer Heißleiter, die Bildung anderer Schutzschichten wie beispielsweise von Si-O-C-Systemen möglich. Said at least one intermediate ceramic layer is preferably supported by a ceramic or metallic support frame and / or a ceramic or metallic support plane. When using FeCrAl thermistors, the fact can be exploited that the material forms an AhC protective layer as a result of the effect of temperature in the presence of air / oxygen. This passivation layer can serve as a basecoat of a washcoat, which acts as a catalytically active coating. Thus, the direct resistance heating of the catalyst or the heat supply of the reaction is realized directly through the catalytic structure. It is also possible, when using other thermistor, the formation of other protective layers such as Si-OC systems.
Die Druckaufnahme im Reaktor kann über einen druckfesten Stahlmantel erfolgen. Unter Verwendung geeigneter keramischer Isolationsmaterialien kann erreicht werden, dass der drucktragende Stahl Temperaturen von weniger als 200 °C und, wo notwendig, auch weniger als 60 °C ausgesetzt wird. Durch entsprechende Vorrichtungen kann dafür gesorgt werden, dass bei Taupunktsunterschreitung keine Auskondensation von Wasser am Stahlmantel erfolgt. The pressure in the reactor can take place via a pressure-resistant steel jacket. Using suitable ceramic insulation materials it can be achieved that the pressure-bearing steel is exposed to temperatures of less than 200 ° C and, if necessary, less than 60 ° C. By means of appropriate devices, it can be ensured that, when the dew point is undershot, there is no condensation of water on the steel jacket.
Die elektrischen Anschlüsse sind in FIG. 1 nur sehr schematisch dargestellt. Sie können im kalten Bereich des Reaktors innerhalb einer Isolierung zu den Enden des Reaktors geführt oder seitlich aus den Heizelementen 1 10, 1 1 1 , 1 12, 1 13 durchgeführt werden, so dass die eigentlichen elektrischen Anschlüsse im kalten Bereich des Reaktors vorgesehen sein können. Die elektrische Beheizung erfolgt mit Gleichstrom oder Wechselstrom. The electrical connections are shown in FIG. 1 only shown very schematically. They can be performed in the cold area of the reactor within an insulation to the ends of the reactor or laterally from the heating elements 1 10, 1 1 1, 1 12, 1 13 performed so that the actual electrical connections can be provided in the cold region of the reactor , The electrical heating is done with direct current or alternating current.
Durch geeignete Formgebung kann eine Oberflächenvergrößerung erreicht werden. Es ist möglich, dass in den Heizebenen 100, 101 , 102, 103 Heizelemente 1 10, 1 1 1 , 1 12, 1 13 angeordnet sind, welche spiralförmig, mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. By appropriate shaping an increase in surface area can be achieved. It is possible that in the heating levels 100, 101, 102, 103 heating elements 1 10, 1 1 1, 1 12, 1 13 are arranged, which are constructed in a spiral, meandering, lattice-shaped and / or reticulated.
Es ist weiterhin möglich, dass an zumindest einem Heizelement 110, 11 1, 1 12, 1 13 eine von den übrigen Heizelementen 1 10, 1 1 1 , 1 12, 1 13 verschiedene Menge und/oder Art des Katalysators vorliegt. Vorzugsweise sind die Heizelemente 110, 111, 112, 113 so eingerichtet, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. Im Endergebnis können die einzelnen Heizebenen einzeln gesteuert und geregelt werden. Im Reaktoreintrittsbereich kann nach Bedarf auch auf einen Katalysator in den Heizebenen verzichtet werden, so dass ausschließlich die Aufheizung und keine Reaktion im Eintrittsbereich erfolgt. Dieses ist insbesondere im Hinblick auf das Anfahren des Reaktors von Vorteil. Wenn sich die einzelnen Heizebenen 100, 101, 102, 103 in Leistungseintrag, Katalysatorbeladung und/oder Katalysatorart unterscheiden, kann ein für die jeweilige Reaktion angepasstes Temperaturprofil erreicht werden. In Hinblick auf die Anwendung für endotherme Gleichgewichtsreaktionen ist dieses beispielsweise ein Temperaturprofil, das die höchsten Temperaturen und damit den höchsten Umsatz am Reaktoraustritt erreicht. Die (beispielsweise keramischen) Zwischenebenen 200, 201, 202 respektive ihr Inhalt 210, 21 1, 212 umfassen ein gegenüber den Reaktionsbedingungen beständiges Material, beispielsweise einen keramischen Schaum. Sie dienen zur mechanischen Abstützung der Heizebenen 100, 101, 102, 103 sowie zur Durchmischung und Verteilung des Gasstroms. Gleichzeitig ist so eine elektrische Isolierung zwischen zwei Heizebenen möglich. Es ist bevorzugt, dass das Material des Inhalts 210, 21 1, 212 einer Zwischenebene 200, 201, 202 Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. It is also possible that at least one heating element 110, 11 1, 1 12, 1 13 one of the remaining heating elements 1 10, 1 1 1, 1 12, 1 13 different amount and / or type of catalyst is present. Preferably, the heating elements 110, 111, 112, 113 are arranged so that they can each be electrically heated independently of each other. As a result, the individual heating levels can be individually controlled and regulated. In the reactor inlet area can be dispensed with a catalyst in the heating levels as needed, so that only the heating and no reaction takes place in the inlet area. This is particularly advantageous in terms of starting the reactor. If the individual heating levels 100, 101, 102, 103 differ in power input, catalyst charge and / or type of catalyst, a temperature profile adapted for the respective reaction can be achieved. With regard to the application for endothermic equilibrium reactions, this is, for example, a temperature profile which achieves the highest temperatures and thus the highest conversion at the reactor outlet. The (for example ceramic) intermediate levels 200, 201, 202 or their contents 210, 21 1, 212 comprise a material resistant to the reaction conditions, for example a ceramic foam. They serve for mechanical support of the heating levels 100, 101, 102, 103 and for mixing and distribution of the gas stream. At the same time an electrical insulation between two heating levels is possible. It is preferred that the material of the content 210, 21 1, 212 of an intermediate level 200, 201, 202 comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Die Zwischenebene 200, 201 , 202 kann beispielsweise eine lose Schüttung von Festkörpern umfassen. Diese Festkörper selbst können porös oder massiv sein, so dass das Fluid durch Lücken zwischen den Festkörpern hindurchströmt. Es ist bevorzugt, dass das Material der Festkörper Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. Ein Beispiel hierfür ist SiC. Ferner bevorzugt ist Cordierit. The intermediate level 200, 201, 202 may include, for example, a loose bed of solids. These solids themselves may be porous or solid, so that the fluid flows through gaps between the solids. It is preferred that the material of the solid bodies comprises oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or zirconium. An example of this is SiC. Further preferred is cordierite.
Es ist ebenfalls möglich, dass die Zwischenebene 200, 201 , 202 einen einstückigen porösen Festkörper umfasst. In diesem Fall durchströmt das Fluid die Zwischenebene über die Poren des Festkörpers. Dieses ist in FIG. 1 dargestellt. Bevorzugt sind Wabenmonolithe, wie sie beispielsweise bei der Abgasreinigung von Verbrennungsmotoren eingesetzt werden. It is also possible that the intermediate plane 200, 201, 202 comprises a one-piece porous solid. In this case, the fluid flows through the intermediate plane via the pores of the solid. This is shown in FIG. 1 shown. Preference is given to honeycomb monoliths, as used for example in the exhaust gas purification of internal combustion engines.
Eine weitere denkbare Möglichkeit ist, dass eine oder mehrere der Zwischenebenen Leerräume sind. Hinsichtlich der baulichen Abmessungen ist bevorzugt, dass die durchschnittliche Länge einer Heizebene 100, 101, 102, 103 in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene 200, 201 , 202 in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100: 1 zueinander stehen. Noch vorteilhafter sind Verhältnisse von > 0,1 : 1 bis < 10: 1 oder 0,5:1 bis < 5: 1. Geeignete Katalysatoren können beispielsweise ausgewählt sein aus der Gruppe: Another conceivable possibility is that one or more of the intermediate levels are voids. With regard to the structural dimensions, it is preferred that the average length of a heating level 100, 101, 102, 103 is viewed in the direction of flow of the fluid and the average length of an intermediate level 200, 201, 202 in the direction of flow of the fluid is in a ratio of> 0.01: 1 to <100: 1 to each other. Ratios of> 0.1: 1 to <10: 1 or 0.5: 1 to <5: 1 are even more advantageous. Suitable catalysts may, for example, be selected from the group:
(I) ein Mischmetalloxid der A(i.w-X)A' wA"xB( i.y.z)B'yB"z03-deita wobei hier gilt: (I) a mixed metal oxide of A (i. W - X) A 'w A "x B (i y, z..) B' y B" z 03-Deita which applies here:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl , Lu, Ni, Co, Pb, Bi und/oder Cd; und B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce und/oder Zn; und A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb, Bi and / or Cd; and B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb , Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; (II) ein Mischmetalloxid der Formel A (i-w-x)A wA"xB(i.y.z)B'yB"z03-deita wobei hier gilt: 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1; (II) a mixed metal oxide of the formula A (i- w - x ) A w A " x B (i, y z ) B ' y B" z 03-deita where:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl , Lu, Ni, Co, Pb und/oder Cd; und B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb,A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb and / or Cd; and B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu , Ni, Sn, Al, Ga, Sc, Ti, V, Nb,
Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir und/oder Pt; und Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir and / or Pt; and
B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/oder Pt; und B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt; and
B" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd und/oder Zn; und 0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -l < delta < 1 ; B "is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd and / or Zn, and 0 <w <0.5, 0 <x <0.5, 0 <y <0.5, 0 <z <0.5 and -l < delta <1;
(III) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; wobei hier gilt: (III) a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and
M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu. M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu.
(IV) ein Mischmetalloxid der Formel LOx(M(y/z)Al(2-y/z)03)z; wobei hier gilt: L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In,(IV) a mixed metal oxide of the formula LO x (M ( y / z ) Al (2-y / z) 03) z ; where L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In,
Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und M ist ausgewählt aus der Gruppe: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; und Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and M is selected from the group: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu , Ag and / or Au; and
1 < x < 2; 0 < y < 12; und 4 < z < 9; 1 <x <2; 0 <y <12; and 4 <z <9;
(V) ein Mischmetalloxid der Formel LO(Al203)z; wobei hier gilt: (V) a mixed metal oxide of the formula LO (Al 2 O 3) z ; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, TI, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and
4 < z < 9; 4 <z <9;
(VI) ein oxidischer Katalysator, der Ni und Ru umfasst. (VII) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; wobei hier gilt: (VI) an oxide catalyst comprising Ni and Ru. (VII) a metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier comprises a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of metals A and / or B is; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; und Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu; and
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; und/oder A and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu; and or
Reaktionsprodukte von (I), (II), (III), (IV), (V), (VI) und/oder (VII) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. Reaction products of (I), (II), (III), (IV), (V), (VI) and / or (VII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C.
Der Begriff "Reaktionsprodukte" schließt die unter Reaktionsbedingungen vorliegenden Katalysatorphasen mit ein. Bevorzugt sind für: The term "reaction products" includes the catalyst phases present under reaction conditions. Preferred are for:
(I) LaNiÜ3 und/oder LaNio,7-o,9Feo,i-o,303 (insbesondere LaNio,8Feo,203) (II) LaNio,9-o,99Ruo,oi-o,i03 und/oder LaNio,9-o,99Rho,oi-o,i03 (insbesondere LaNio,95Ruo,os03 und/oder LaNio,95Rho,os03). (I) LaNiÜ3 and / or LaNio, 7-o, 9Feo, io, 303 (in particular LaNio, 8Feo, 203) (II) LaNio, 9-o, 99Ruo, oi-o, i03 and / or LaNio, 9-o, 99Rho, oi-o, i03 (especially LaNio, 95Ruo, os03 and / or LaNio, 95Rho, os03).
(III) Pt-Rh auf Ce-Zr-Al-Oxid, Pt-Ru und/oder Rh-Ru auf Ce-Zr-Al-Oxid (III) Pt-Rh on Ce-Zr-Al oxide, Pt-Ru and / or Rh-Ru on Ce-Zr-Al oxide
(IV) BaNiAlnOig, C a N i A I11O19, BaNio,975Ruo,o25AlnOi9,
Figure imgf000013_0001
(IV) BaNiAlnOig, C a N i A I11O19, BaNio, 975Ruo, o25AlnOi9,
Figure imgf000013_0001
BaNi0,92Ruo,o8AlnOi9, BaNi0,84Pto,i6AlnOi9 und/oder BaRuo,o5Aln,950i9 BaNi 0 , 92Ruo, o8AlnOi9, BaNi 0 , 84Pto, i6AlnOi9 and / or BaRuo, o5Aln, 950i9
(V) BaAli20i9, SrAli20i9 und/oder CaAli20i9 (V) BaAli 2 0i9, SrAli 2 0i 9 and / or CaAli 2 0i 9
(VI) Ni und Ru auf Ce-Zr-Al-Oxid, auf einem Oxid aus der Klasse der Perowskite und/oder auf einem Oxid aus der Klasse der Hexaaluminate (VI) Ni and Ru on Ce-Zr-Al oxide, on an oxide of the class of perovskites and / or on an oxide of the class of hexaaluminates
(VII) Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu auf Mo2C und/oder WC. (VII) Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho , He, Tm, Yb, and / or Lu on Mo 2 C and / or WC.
Im erfindungsgemäßen Verfahren erfolgt im bereitgestellten Reaktor ein elektrisches Beheizen wenigstens eines der Heizelemente 110, 11 1, 1 12, 113. Dieses kann, muss aber nicht zeitlich vor dem Durchströmen eines Reaktanden umfassenden Fluids durch den Strömungsreaktor unter zumindest teilweiser Reaktion der Reaktanden des Fluids erfolgen. Der Reaktor kann modular aufgebaut sein. Ein Modul kann beispielsweise eine Heizebene, eine Isolationsebene, die elektrische Kontaktierung und die entsprechenden weiteren Isolationsmaterialien und Wärmedämmstoffe enthalten. In the process according to the invention, an electric heating of at least one of the heating elements 110, 11 1, 1 12, 113 takes place in the reactor provided. This can, but does not have to be, carried out in advance of the passage of a reactant comprising the fluid through the flow reactor with at least partial reaction of the reactants of the fluid , The reactor can be modular. A module may include, for example, a heating level, an insulation level, the electrical contact and the corresponding further insulation materials and thermal insulation materials.
Wie bereits im Zusammenhang mit dem Reaktor erwähnt ist es vorteilhaft, wenn die einzelnen Heizelemente 110, 111, 112, 113 mit einer jeweils unterschiedlichen Heizleistung betrieben werden. As already mentioned in connection with the reactor, it is advantageous if the individual heating elements 110, 111, 112, 113 are operated with a respective different heating power.
Hinsichtlich der Temperatur ist bevorzugt, dass die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. Mehr bevorzugte Bereiche sind > 800 °C bis < 1200 °C und > 900 °C bis < 1100 °C. With regard to the temperature, it is preferred that the reaction temperature in the reactor is at least in places> 700 ° C to <1300 ° C. More preferred ranges are> 800 ° C to <1200 ° C and> 900 ° C to <1100 ° C.
Die durchschnittliche (mittlere) Kontaktzeit des Fluids zu einem Heizelement 110, 111, 112, 113 kann beispielsweise > 0,01 Sekunden bis < 1 Sekunde betragen und/oder die durchschnittliche Kontaktzeit des Fluids zu einer Zwischenebene 110, 111, 112, 113 kann beispielsweise > 0,001 Sekunden bis < 5 Sekunden betragen. Bevorzugte Kontaktzeiten sind > 0,005 bis < 1 Sekunden, mehr bevorzugt > 0,01 bis < 0,9 Sekunden. The average (mean) contact time of the fluid to a heating element 110, 111, 112, 113 may be, for example,> 0.01 seconds to <1 second and / or the average contact time of the fluid to an intermediate level 110, 111, 112, 113 may be, for example > 0.001 seconds to <5 seconds. Preferred contact times are> 0.005 to <1 second, more preferably> 0.01 to <0.9 seconds.
Die Reaktion kann bei einem Druck von > 1 bar bis < 200 bar durchgeführt werden. Vorzugsweise beträgt der Druck > 2 bar bis < 50 bar, mehr bevorzugt > 10 bar bis < 30 bar. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird: f) ein gewünschtes H2/CO-Verhältnisses im Synthesegas festgelegt und g) die Reaktion von Kohlendioxid mit Kohlenwasserstoffen, Wasser und/oder Wasserstoff im Strömungsreaktor, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, unter elektrischer Beheizung durch ein oder mehrere Heizelemente (1 10, 1 1 1 , 1 12, 1 13) dann durchgeführt wird, wenn das gewünschte Verhältnis von H2/CO unterschritten ist; und h) die Reaktion von Kohlenwasserstoffen mit Sauerstoff im Strömungsreaktor, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, dann durchgeführt wird, wenn das gewünschte Verhältnis von H2/CO überschritten ist; wobei folgende Ausnahme gilt: ein Wechsel von der Reaktion von Kohlendioxid mit Kohlenwasserstoffen, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, zur Reaktion von Kohlenwasserstoffen mit Sauerstoff, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, findet dann statt, wenn das gewünschte Verhältnis von H2/CO unterschritten wird und umgekehrt. Im konkreten Beispielfall ändert sich das H2/CO-Verhältnis beim Wechsel von CC -Reformierung auf POX von 1 :1 auf 2:1. Modifikationen durch die Zugabe von H2O oder CO2 beim SMR sind zudem möglich. Beim Wechsel von Dry Reforming auf POX ändert sich dagegen das H2/CO- Verhältnis von 1 : 1 auf 2:1. The reaction can be carried out at a pressure of> 1 bar to <200 bar. Preferably, the pressure is> 2 bar to <50 bar, more preferably> 10 bar to <30 bar. In a further embodiment of the process according to the invention, f) a desired H 2 / CO ratio in the synthesis gas is determined and g) the reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, at least carbon monoxide being formed as product, with electric heating by one or more heating elements (1 10, 1 1 1, 1 12, 1 13) is carried out when the desired ratio of H 2 / CO is exceeded; and h) the reaction of hydrocarbons with oxygen in the flow reactor, wherein as products at least carbon monoxide and hydrogen are formed, is carried out when the desired ratio of H2 / CO is exceeded; with the following exception: a change from the reaction of carbon dioxide with hydrocarbons, at least carbon monoxide being formed as product, for the reaction of hydrocarbons with oxygen, forming at least carbon monoxide and hydrogen as products, then takes place when the desired ratio of H2 / CO falls below and vice versa. In the concrete example case, the H 2 / CO ratio changes from 1: 1 to 2: 1 when changing from CC reforming to POX. Modifications by adding H 2 O or CO 2 to the SMR are also possible. When changing from Dry Reforming to POX, however, the H 2 / CO ratio changes from 1: 1 to 2: 1.
In einer weiteren Ausführungsform kann das Hauptzielprodukt CO oder H2 sein. Der Kennwert Sl ist unterschritten und/oder der Kennwert S2 ist überschritten. In Folge dessen ist der endotherme Betrieb, das heißt Steam Reforming oder Dry Reforming, wobei bei zusätzlich CO2 als Cl -Quelle verwendet wird, was sich in einer Einsparung von Methan niederschlägt, bevorzugt. Als Ergebnis des Dry Reformings werden pro Mol Methan zwei Mol CO und zwei Mol H2 erhalten. Das Eduktverhältnis von CO2/CH4 ist > 1,25. Das im Produktgas vorhandene CO2 wird in nachfolgenden Prozessschritten abgetrennt und in den Reaktor rückgeführt. Sobald der Kennwert S l überschritten und/oder der Kennwert S2 unterschritten wird, wird die Fahrweise vom endothermen Betrieb auf den exothermen Betrieb umgestellt. Hierbei wird Methan mit 02 dem Reaktor zugeführt. CO2 kann währende der Umschaltphase weiter zudosiert werden und als eine Art Inertkomponente eingesetzt werden bis die POX-Reaktion stabilisiert ist und ein neuer stationärer Zustand erreicht wird. Das in den Nachfolgeschritten abgetrennte CO2 kann zwischengespeichert um beim Anfahren der endothermen Reaktion als Edukt eingesetzt werden. Beim Wechsel der Fahrweise auf partielle Oxidation werden die Eduktströme bzw. der Durchsatz von Methan und Sauerstoff derart angepasst, dass ein konstante CO-Menge oder H2-Menge für Folgeprozesse zur Verfügung steht. In einer weiteren bevorzugten Ausführungsform ist das Zielprodukt CO. Der Kennwert S l ist unterschritten und/oder der Kennwert S2 ist überschritten. In Folge dessen ist der endotherme Betrieb, das heißt die Durchführung der rWGS -Reaktion, wobei CO2 als Cl-Quelle verwendet wird, bevorzugt. Als Ergebnis der rWGS-Reaktion werden pro Mol CO2 ein Mol CO und ein Mol Wasser enthalten. Das Eduktverhältnis von H2/CO2 ist > 1,25. Das im Produktgas vorhandene CO2 wird in nachfolgenden Prozessschritten abgetrennt und in den Reaktor rückgeführt. Sobald der Kennwert Sl überschritten und/oder der Kennwert S2 unterschritten wird, wird die Fahrweise vom endothermen Betrieb auf den exothermen Betrieb umgestellt. Hierbei wird Methan mit O2 dem Reaktor zugeführt. CO2 kann währende der Umschaltphase weiter zudosiert werden und als eine Art Inertkomponente eingesetzt werden bis die POX-Reaktion stabilisiert ist und ein neuer stationärer Zustand erreicht wird. Ein Teil des während des POX-Betriebs hergestellten Wasserstoffs kann zwischengespeichert und für den Betrieb der rWGS-Reaktion eingesetzt werden. Beim Wechsel der Fahrweise auf partielle Oxidation werden die Eduktströme bzw. der Durchsatz von Methan und Sauerstoff derart angepasst, dass ein konstante CO-Menge für Folgeprozesse zur Verfügung steht. In a further embodiment, the main target product may be CO or H 2 . The characteristic value Sl has fallen below and / or the characteristic value S2 has been exceeded. As a result, the endothermic operation, that is, steam reforming or dry reforming, wherein in addition to CO2 as Cl source is used, which is reflected in a saving of methane, preferred. As a result of dry reforming, two moles of CO and two moles of H2 are obtained per mole of methane. The educt ratio of CO2 / CH4 is> 1.25. The CO2 present in the product gas is separated off in subsequent process steps and returned to the reactor. As soon as the characteristic value S 1 is exceeded and / or the characteristic value S2 is undershot, the mode of operation is changed over from the endothermic operation to the exothermic operation. Here, methane is fed with 02 to the reactor. CO2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached. The CO 2 separated off in the succeeding steps can be temporarily stored in order to be used as reactant at the start of the endothermic reaction. When changing the procedure to partial oxidation, the reactant streams or the throughput of methane and oxygen are adjusted so that a constant amount of CO or H2 amount is available for subsequent processes. In a further preferred embodiment, the target product is CO. The characteristic value S l has fallen below and / or the characteristic value S2 has been exceeded. As a result, endothermic operation, that is, performance of the rWGS reaction using CO2 as the Cl source, is preferred. As a result of the rWGS reaction, one mole of CO and one mole of water will be present per mole of CO2. The educt ratio of H2 / CO2 is> 1.25. The CO2 present in the product gas is separated off in subsequent process steps and returned to the reactor. As soon as the characteristic value Sl is exceeded and / or the characteristic value S2 is undershot, the mode of operation is changed over from the endothermic operation to the exothermic operation. Here, methane is fed with O 2 to the reactor. CO2 can be further added during the switching phase and used as a kind of inert component until the POX reaction is stabilized and a new stationary state is reached. Part of the hydrogen produced during POX operation can be cached and used to operate the rWGS reaction. When changing the mode of operation to partial oxidation, the reactant streams or the throughput of methane and oxygen are adjusted in such a way that a constant amount of CO is available for subsequent processes.
In einer weiteren Ausführungsform des Verfahrens kann flexibel auf den Methanpreis reagiert werden. Dieser wird dann mit dem jeweils vorhandenen Strompreis abgeglichen. Hierbei wird die Einsparung von Methan bei der Durchführung der elektrisch beheizten C02-Reformierung, welche CO2 als Cl-Quelle verwendet, gegen die Kosten für die elektrische Beheizung abgewogen. In einer weiteren Ausführungsform erfolgt die Umschaltung auf die exotherm Fahrweise um auf Russbildung während des endothermen Betriebs zu reagieren. Der Betrieb mit O2 kann zudem dazu verwendet werden, um Passivierungsschichten innerhalb des Reaktors zu regenerieren. In a further embodiment of the method, it is possible to respond flexibly to the methane price. This is then compared with the current electricity price. Here, the saving of methane in carrying out the electrically heated C0 2 reforming, which uses CO2 as Cl source, is weighed against the cost of electric heating. In a further embodiment, the switching to the exothermic mode of operation takes place in order to react on soot formation during the endothermic operation. Operation with O 2 can also be used to regenerate passivation layers within the reactor.
Neben dem exothermen Betrieb zur Bereitstellung eines Synthesegases können die elektrischen Heizelemente im Bereich des Reaktoreintritts für den Anfahrvorgang eingesetzt werden. Somit ist ein rasches Aufheizen des Eduktstroms möglich, was bei der Durchführung der endothermen Reformierreaktionen die Verkokung verringert und bei der Durchführung der POX ein örtlich definiertes Zünden der Reaktion ermöglicht und damit einen sicheren Reaktorbetrieb ermöglicht. In addition to the exothermic operation for providing a synthesis gas, the electrical heating elements can be used in the region of the reactor inlet for the starting process. Thus, a rapid heating of the reactant stream is possible, which reduces coking when carrying out the endothermic reforming reactions and, when carrying out the POX, allows a locally defined ignition of the reaction and thus enables safe reactor operation.

Claims

Verfahren zur Herstellung von Synthesegas, umfassend die Schritte: a) Bereitstellen eines Strömungsreaktors, welcher zur Reaktion eines Reaktanden umfassenden Fluids eingerichtet ist, wobei der Reaktor mindestens eine Heizebene (100, 101, 102, 103) umfasst, welche mittels eines oder mehrerer Heizelemente (110, Process for the production of synthesis gas, comprising the steps of: a) providing a flow reactor which is adapted to react a fluid comprising reactants, wherein the reactor comprises at least one heating level (100, 101, 102, 103) which is heated by means of one or more heating elements ( 110
111, 112, 113) elektrisch beheizt wird, wobei die Heizebene (100, 101, 102, 103) von dem Fluid durchströmbar ist und wobei an mindestens einem Heizelement (110, 11 1,111, 112, 113) is electrically heated, wherein the heating level (100, 101, 102, 103) can be traversed by the fluid and wherein at least one heating element (110, 11 1,
112, 113) ein Katalysator angeordnet ist und dort beheizbar ist; b) Festlegen eines Schwellwertes Sl für die Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie und/oder eines Schwellwertes S2 für den relativen Anteil von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie; und c) Vergleichen der Kosten der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert Sl und/oder des relativen Anteils von elektrischer Energie aus regenerativen Quellen der für den Strömungsreaktor zur Verfügung stehenden elektrischen Energie mit dem Schwellwert S2; d) Reaktion von Kohlendioxid mit Kohlenwasserstoffen, Wasser und/oder Wasserstoff in dem Strömungsreaktor, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, unter elektrischer Beheizung durch ein oder mehrere Heizelemente (1 10, 1 1 1 , 1 12, 113), wenn der Schwellwert S l unterschritten und/oder der Schwellwert S2 überschritten werden; und e) Reaktion von Kohlenwasserstoffen mit Sauerstoff in dem Strömungsreaktor, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, wenn der Schwellwert Sl überschritten und/oder der Schwellwert S2 unterschritten werden. 112, 113) a catalyst is arranged and can be heated there; b) setting a threshold value Sl for the costs of the electrical energy available for the flow reactor and / or a threshold value S2 for the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor; and c) comparing the costs of the electrical energy available for the flow reactor with the threshold value Sl and / or the relative proportion of electrical energy from regenerative sources of the electrical energy available for the flow reactor with the threshold value S2; d) reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, wherein at least carbon monoxide is formed as product, under electrical heating by one or more heating elements (1 10, 1 1 1, 1 12, 113), when the threshold value S l falls below and / or the threshold S2 are exceeded; and e) reaction of hydrocarbons with oxygen in the flow reactor, wherein at least carbon monoxide and hydrogen are formed as products when the threshold value S1 is exceeded and / or the threshold value S2 is exceeded.
Verfahren gemäß Anspruch 1, wobei der Strömungsreaktor eine in Strömungsrichtung des Fluids gesehen eine Mehrzahl von Heizebenen (100, 101, 102, 103) umfasst, welche mittels Heizelementen (110, 111, 112, 113) elektrisch beheizt werden und wobei die Heizebenen (100, 101, 102, 103) von dem Fluid durchströmbar sind, wobei an mindestens einem Heizelement (100, 101, 102, 103) ein Katalysator angeordnet ist und dort beheizbar ist, wobei weiterhin mindestens einmal eine keramische Zwischenebene (200, 201 , 202) zwischen zwei Heizebenen (100, 101, 102, 103) angeordnet ist und wobei die Zwischenebene (200, 201, 202) ebenfalls von dem Fluid durchströmbar ist. The method according to claim 1, wherein the flow reactor comprises a plurality of heating levels (100, 101, 102, 103) viewed in the direction of flow of the fluid, which are electrically heated by means of heating elements (110, 111, 112, 113) and wherein the heating levels (100 , 101, 102, 103) can be flowed through by the fluid, wherein a catalyst is arranged on at least one heating element (100, 101, 102, 103) and is heatable there, wherein furthermore at least once a ceramic intermediate level (200, 201, 202) is arranged between two heating levels (100, 101, 102, 103) and wherein the intermediate level (200, 201, 202) can also be traversed by the fluid.
3. Verfahren gemäß Anspruch 2, wobei in den Heizebenen (100, 101 , 102, 103) Heizelemente (1 10, 1 1 1 , 1 12, 1 13) angeordnet sind, welche spiralförmig, mäanderförmig, gitterförmig und/oder netzförmig aufgebaut sind. 3. The method according to claim 2, wherein in the heating levels (100, 101, 102, 103) heating elements (1 10, 1 1 1, 1 12, 1 13) are arranged, which are spirally, meandering, grid-shaped and / or net-shaped ,
4. Verfahren gemäß Anspruch 2 oder 3, wobei an zumindest einem Heizelement (1 10, 1 1 1 , 1 12, 1 13) eine von den übrigen Heizelementen (1 10, 1 1 1 , 1 12, 113) verschiedene Menge und/oder Art des Katalysators vorliegt. 4. The method according to claim 2 or 3, wherein at least one heating element (1 10, 1 1 1, 1 12, 1 13) one of the other heating elements (1 10, 1 1 1, 1 12, 113) different amount and / or type of catalyst is present.
5. Verfahren gemäß einem der Ansprüche 2 bis 4, wobei die Heizelemente (110, 111, 112, 113) so eingerichtet sind, dass sie jeweils unabhängig voneinander elektrisch beheizt werden können. 6. Verfahren gemäß einem der Ansprüche 2 bis 5, wobei das Material des Inhalts (210, 211, 212) einer Zwischenebene (200, 201 , 202) Oxide, Carbide, Nitride, Phosphide und/oder Boride von Aluminium, Silizium und/oder Zirkonium umfasst. 5. The method according to any one of claims 2 to 4, wherein the heating elements (110, 111, 112, 113) are arranged so that they can each be electrically heated independently. 6. The method according to any one of claims 2 to 5, wherein the material of the content (210, 211, 212) of an intermediate level (200, 201, 202) oxides, carbides, nitrides, phosphides and / or borides of aluminum, silicon and / or Zirconium includes.
7. Verfahren gemäß einem der Ansprüche 2 bis 6, wobei die Zwischenebene (200, 201, 202) eine lose Schüttung von Festkörpern umfasst. 8. Verfahren gemäß einem der Ansprüche 2 bis 6, wobei die Zwischenebene (200, 201, 202) einen einstückigen porösen Festkörper umfasst. 7. The method according to any one of claims 2 to 6, wherein the intermediate level (200, 201, 202) comprises a loose bed of solids. 8. The method according to any one of claims 2 to 6, wherein the intermediate plane (200, 201, 202) comprises a one-piece porous solid.
9. Verfahren gemäß einem der Ansprüche 2 bis 8, wobei die durchschnittliche Länge einer Heizebene (100, 101 , 102, 103) in Strömungsrichtung des Fluids gesehen und die durchschnittliche Länge einer Zwischenebene (200, 201 , 202) in Strömungsrichtung des Fluids gesehen in einem Verhältnis von > 0,01 : 1 bis < 100:1 zueinander stehen. 9. The method according to any one of claims 2 to 8, wherein the average length of a heating plane (100, 101, 102, 103) seen in the flow direction of the fluid and the average length of an intermediate level (200, 201, 202) in the flow direction of the fluid seen in a ratio of> 0.01: 1 to <100: 1 to each other.
10. Verfahren gemäß einem der Ansprüche 2 bis 9, wobei der Katalysator ausgewählt ist aus der Gruppe bestehend aus: 10. A process according to any one of claims 2 to 9, wherein the catalyst is selected from the group consisting of:
(I) ein Mischmetalloxid der A(i.w-X)A' wA"xB( i.y.z)B'yB"z03-deita wobei hier gilt: (I) a mixed metal oxide of A (i. W - X) A 'w A "x B (i y, z..) B' y B" z 03-Deita which applies here:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl , Lu, Ni, Co, Pb, Bi und/oder Cd; und A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Pm, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Tl, Lu, Ni, Co, Pb, Bi and / or Cd; and
B, B' und B" sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce und/oder Zn; und 0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; B, B 'and B "are independently selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb , Hf, Zr, Tb, W, Gd, Yb, Mg, Li, Na, K, Ce and / or Zn; and 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1;
(II) ein Mischmetalloxid der Formel A (i-w-x)A wA"xB(i.y.z)B'yB"z03-deita wobei hier gilt: (II) a mixed metal oxide of the formula A (i- w - x ) A w A " x B (i, y z ) B ' y B" z 03-deita where:
A, A' und A" sind unabhängig voneinander ausgewählt aus der Gruppe: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,A, A 'and A "are independently selected from the group: Mg, Ca, Sr, Ba, Li, Na, K, Rb, Cs, Sn, Sc, Y, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb,
Tl , Lu, Ni, Co, Pb und/oder Cd; und Tl, Lu, Ni, Co, Pb and / or Cd; and
B ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir und/oder Pt; und B' ist ausgewählt aus der Gruppe: Re, Ru, Rh, Pd, Os, Ir und/oder Pt; und B is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W , Gd, Yb, Mg, Cd, Zn, Re, Ru, Rh, Pd, Os, Ir and / or Pt; and B 'is selected from the group: Re, Ru, Rh, Pd, Os, Ir and / or Pt; and
B" ist ausgewählt aus der Gruppe: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, AI, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd und/oder Zn; und B "is selected from the group: Cr, Mn, Fe, Bi, Cd, Co, Cu, Ni, Sn, Al, Ga, Sc, Ti, V, Nb, Ta, Mo, Pb, Hf, Zr, Tb, W, Gd, Yb, Mg, Cd and / or Zn; and
0 < w < 0,5; 0 < x < 0,5; 0 < y < 0,5; 0 < z < 0,5 und -1 < delta < 1 ; 0 <w <0.5; 0 <x <0.5; 0 <y <0.5; 0 <z <0.5 and -1 <delta <1;
(III) eine Mischung von wenigstens zwei verschiedenen Metallen Ml und M2 auf einem Träger, welcher ein mit einem Metall M3 dotiertes Oxid von AI, Ce und/oder Zr umfasst; wobei hier gilt: (III) a mixture of at least two different metals Ml and M2 on a support comprising an oxide of Al, Ce and / or Zr doped with a metal M3; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Re, Ru, Rh, Ir, Os, Pd und/oder Pt; und M3 ist ausgewählt aus der Gruppe: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,Ml and M2 are independently selected from the group: Re, Ru, Rh, Ir, Os, Pd and / or Pt; and M3 is selected from the group: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb und/oder Lu; Tm, Yb and / or Lu;
(IV) ein Mischmetalloxid der Formel LOx(M(y/z)Al(2-y/z)03)z; wobei hier gilt: (IV) a mixed metal oxide of the formula LO x (M ( y / z ) Al (2-y / z) 03) z ; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Pd, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and
M ist ausgewählt aus der Gruppe: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu, Ag und/oder Au; und 1 < x < 2; 0 < y < 12; und 4 < z < 9; M is selected from the group: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Zn, Cu , Ag and / or Au; and 1 <x <2; 0 <y <12; and 4 <z <9;
(V) ein Mischmetalloxid der Formel LO(Al203)z; wobei hier gilt: (V) a mixed metal oxide of the formula LO (Al 2 O 3) z ; where:
L ist ausgewählt aus der Gruppe: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu; und L is selected from the group: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Sn, Pb, Mn, In, Tl, La, Ce, Pr, Nd, Sm, Eu, Gd , Tb, Dy, Ho, Er, Tm, Yb and / or Lu; and
4 < z < 9; 4 <z <9;
(VI) ein oxidischer Katalysator, der Ni und Ru umfasst. (VI) an oxide catalyst comprising Ni and Ru.
(VII) ein Metall Ml und/oder wenigstens zwei verschiedene Metalle Ml und M2 auf und/oder in einem Träger, wobei der Träger ein Carbid, Oxycarbid, Carbonitrid, Nitrid, Borid, Silicid, Germanid und/oder Selenid der Metalle A und/oder B ist; wobei hier gilt: (VII) a metal Ml and / or at least two different metals Ml and M2 on and / or in a carrier, wherein the carrier comprises a carbide, oxycarbide, carbonitride, nitride, boride, silicide, germanide and / or selenide of metals A and / or B is; where:
Ml und M2 sind unabhängig voneinander ausgewählt aus der Gruppe: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu; und Ml and M2 are independently selected from the group: Cr, Mn, Fe, Co, Ni, Re, Ru, Rh, Ir, Os, Pd, Pt, Zn, Cu, La, Ce, Pr, Nd, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu; and
A und B sind unabhängig voneinander ausgewählt aus der Gruppe: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, und/oder Lu. und/oder A and B are independently selected from the group: Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W, La, Ce , Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and / or Lu. and or
Reaktionsprodukte von (I), (II), (III), (IV), (V), (VI) und/oder (VII) in Gegenwart von Kohlendioxid, Wasserstoff, Kohlenmonoxid und/oder Wasser bei einer Temperatur von > 700 °C. Reaction products of (I), (II), (III), (IV), (V), (VI) and / or (VII) in the presence of carbon dioxide, hydrogen, carbon monoxide and / or water at a temperature of> 700 ° C.
Verfahren gemäß einem der Ansprüche 2 bis 10, wobei die einzelnen Heizelemente (110, 111, 112, 113) mit einer jeweils unterschiedlichen Heizleistung betrieben werden. Method according to one of claims 2 to 10, wherein the individual heating elements (110, 111, 112, 113) are operated with a respective different heating power.
Verfahren gemäß einem der Ansprüche 2 bis 11, wobei die Reaktionstemperatur im Reaktor wenigstens stellenweise > 700 °C bis < 1300 °C beträgt. Method according to one of claims 2 to 11, wherein the reaction temperature in the reactor at least in places> 700 ° C to <1300 ° C.
Verfahren gemäß einem der Ansprüche 2 bis 12, wobei die durchschnittliche Kontaktzeit des Fluids zu einem Heizelement (110, 111, 112, 113) > 0,001 Sekunden bis < 1 Sekunde beträgt und/oder die durchschnittliche Kontaktzeit des Fluids zu einer Zwischenebene (110, 1 11 , 112, 113) > 0,001 Sekunden bis < 5 Sekunden beträgt. A method according to any one of claims 2 to 12, wherein the average contact time of the fluid to a heating element (110, 111, 112, 113) is> 0.001 second to <1 second and / or the average contact time of the fluid to an intermediate level (110, 11, 112, 113) is> 0.001 seconds to <5 seconds.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, wobei die gewählte Reaktion bei einem Druck von > 1 bar bis < 200 bar durchgeführt wird. 15. Verfahren gemäß einem der Ansprüche 1 bis 14, wobei weiterhin f) ein gewünschtes FF/CO-Verhältnis im Synthesegas festgelegt wird und g) die Reaktion von Kohlendioxid mit Kohlenwasserstoffen, Wasser und/oder Wasserstoff im Strömungsreaktor, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, unter elektrischer Beheizung durch ein oder mehrere Heizelemente (1 10, 1 1 1 , 1 12, 1 13) dann durchgeführt wird, wenn das gewünschte Verhältnis von14. The method according to any one of claims 1 to 13, wherein the selected reaction is carried out at a pressure of> 1 bar to <200 bar. 15. The method according to any one of claims 1 to 14, wherein further f) a desired FF / CO ratio is set in the synthesis gas and g) the reaction of carbon dioxide with hydrocarbons, water and / or hydrogen in the flow reactor, wherein at least carbon monoxide is formed as a product is carried out under electric heating by one or more heating elements (1 10, 1 1 1, 1 12, 1 13) then, if the desired ratio of
FF/CO unterschritten ist; und h) die Reaktion von Kohlenwasserstoffen mit Sauerstoff im Strömungsreaktor, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, dann durchgeführt wird, wenn das gewünschte Verhältnis von FF/CO überschritten ist; wobei folgende Ausnahme gilt: ein Wechsel von der Reaktion von Kohlendioxid mitFF / CO has fallen below; and h) the reaction of hydrocarbons with oxygen in the flow reactor, forming as products at least carbon monoxide and hydrogen, then carried out when the desired ratio of FF / CO is exceeded; with the following exception: a change from the reaction of carbon dioxide with
Kohlenwasserstoffen, wobei als Produkt mindestens Kohlenmonoxid gebildet wird, zur Reaktion von Kohlenwasserstoffen mit Sauerstoff, wobei als Produkte mindestens Kohlenmonoxid und Wasserstoff gebildet werden, findet dann statt, wenn das gewünschte Verhältnis von FF/CO unterschritten wird und umgekehrt. Hydrocarbons, wherein at least carbon monoxide is formed as a product for the reaction of hydrocarbons with oxygen, wherein as products at least carbon monoxide and hydrogen are formed, then takes place when the desired ratio of FF / CO is exceeded and vice versa.
PCT/EP2013/054943 2012-03-13 2013-03-12 Method for producing synthesis gas in alternating operation between two operating modes WO2013135657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012203915.5 2012-03-13
DE102012203915 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013135657A1 true WO2013135657A1 (en) 2013-09-19

Family

ID=47844364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054943 WO2013135657A1 (en) 2012-03-13 2013-03-12 Method for producing synthesis gas in alternating operation between two operating modes

Country Status (1)

Country Link
WO (1) WO2013135657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089184A1 (en) * 2021-11-22 2023-05-25 Catagen Limited Fluid processing system for renewable energy power supplies

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913357A1 (en) * 1997-10-28 1999-05-06 Ngk Insulators, Ltd. Reformer and method for operation thereof
DE10023410A1 (en) * 2000-05-12 2001-11-15 Linde Gas Ag Production of carbon monoxide- and hydrogen-containing treatment gas comprises forming treatment gas for catalytically converting hydrocarbon gas in catalyst retort to which heat can be fed and varied over its length
US20020110507A1 (en) * 2001-02-13 2002-08-15 Grieve Malcolm James Method and apparatus for preheating of a fuel cell micro-reformer
WO2004071947A2 (en) 2003-02-06 2004-08-26 Ztek Corporation Renewable energy operated hydrogen reforming system
DE10317197A1 (en) * 2003-04-15 2004-11-04 Degussa Ag Electrically heated reactor and method for carrying out gas reactions at high temperature using this reactor
US20070003478A1 (en) 2005-06-29 2007-01-04 Becker Christopher L Synthesis gas production and use
WO2007042279A1 (en) 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system comprising electrical heating devices
DE102007022723A1 (en) 2007-05-11 2008-11-13 Basf Se Process for the production of synthesis gas
WO2009065559A1 (en) * 2007-11-23 2009-05-28 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913357A1 (en) * 1997-10-28 1999-05-06 Ngk Insulators, Ltd. Reformer and method for operation thereof
DE10023410A1 (en) * 2000-05-12 2001-11-15 Linde Gas Ag Production of carbon monoxide- and hydrogen-containing treatment gas comprises forming treatment gas for catalytically converting hydrocarbon gas in catalyst retort to which heat can be fed and varied over its length
US20020110507A1 (en) * 2001-02-13 2002-08-15 Grieve Malcolm James Method and apparatus for preheating of a fuel cell micro-reformer
WO2004071947A2 (en) 2003-02-06 2004-08-26 Ztek Corporation Renewable energy operated hydrogen reforming system
US20060207178A1 (en) 2003-02-06 2006-09-21 Ztek Corporation Renewable energy operated hydrogen reforming system
DE10317197A1 (en) * 2003-04-15 2004-11-04 Degussa Ag Electrically heated reactor and method for carrying out gas reactions at high temperature using this reactor
US20070003478A1 (en) 2005-06-29 2007-01-04 Becker Christopher L Synthesis gas production and use
WO2007042279A1 (en) 2005-10-13 2007-04-19 Bayerische Motoren Werke Aktiengesellschaft Reformer system comprising electrical heating devices
DE102007022723A1 (en) 2007-05-11 2008-11-13 Basf Se Process for the production of synthesis gas
US20100305221A1 (en) 2007-05-11 2010-12-02 Basf Se Method for producing synthesis gas
WO2009065559A1 (en) * 2007-11-23 2009-05-28 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ET AL., INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 32, 2007, pages 3870 - 3879

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089184A1 (en) * 2021-11-22 2023-05-25 Catagen Limited Fluid processing system for renewable energy power supplies

Similar Documents

Publication Publication Date Title
WO2013135705A1 (en) Method for producing co and/or h2 in an alternating operation between two operating modes
DE69908242T2 (en) reformer
Shoynkhorova et al. Highly dispersed Rh-, Pt-, Ru/Ce0. 75Zr0. 25O2–δ catalysts prepared by sorption-hydrolytic deposition for diesel fuel reforming to syngas
Meloni et al. Ultracompact methane steam reforming reactor based on microwaves susceptible structured catalysts for distributed hydrogen production
WO2013135667A1 (en) Method for producing synthesis gas
Larimi et al. Renewable hydrogen production by ethylene glycol steam reforming over Al2O3 supported Ni-Pt bimetallic nano-catalysts
Yu et al. On-board production of hydrogen for fuel cells over Cu/ZnO/Al2O3 catalyst coating in a micro-channel reactor
CN104220161A (en) Catalytic structures for auto thermal steam reforming (ATR) of hydrocarbons
WO2004024324A1 (en) Multi-layer catalyst for the autothermal steam reforming of hydrocarbons and a method for using said catalyst
DE10142999B4 (en) Highly efficient, compact reformer unit for hydrogen production from gaseous hydrocarbons in the small power range
Villegas et al. A combined thermodynamic/experimental study for the optimisation of hydrogen production by catalytic reforming of isooctane
Sadykov et al. Syngas generation from hydrocarbons and oxygenates with structured catalysts
EP4048630A1 (en) Method for producing highly pure hydrogen by coupling pyrolysis of hydrocarbons with electrochemical hydrogen separation
WO2013135660A1 (en) Axial flow reactor having heating planes and intermediate planes
WO2013135668A1 (en) Chemical reactor system, comprising an axial flow reactor with heating levels and intermediate levels
WO2013135673A1 (en) Method for reducing carbon dioxide at high temperatures on catalysts especially carbide supported catalysts
DE112004000518T5 (en) High performance fuel conditioning system Fuel cell power plant
WO2013135664A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts on oxidic substrates doped with aluminum, cerium, and/or zirconium
WO2013135657A1 (en) Method for producing synthesis gas in alternating operation between two operating modes
Galletti et al. CO methanation as alternative refinement process for CO abatement in H2-rich gas for PEM applications
DE10109983A1 (en) Hydrogen-rich synthesis gas production for use in vehicle fuel cells is effected on an electrically-conductive heated surface, especially of a metal alloy or silicon ceramic, to overcome cold-start and cold spot problems
Rogozhnikov et al. Structured catalysts for the conversion of liquefied petroleum gas to hydrogen-rich gas and for anode off-gas afterburning
WO2013135662A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts
WO2013135666A1 (en) Axial flow reactor based on an fe-cr-al alloy
WO2013135663A1 (en) Method for reducing carbon dioxide at high temperatures on mixed metal oxide catalysts comprising noble metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13708471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13708471

Country of ref document: EP

Kind code of ref document: A1