WO2013132993A1 - 素子の製造方法 - Google Patents

素子の製造方法 Download PDF

Info

Publication number
WO2013132993A1
WO2013132993A1 PCT/JP2013/053813 JP2013053813W WO2013132993A1 WO 2013132993 A1 WO2013132993 A1 WO 2013132993A1 JP 2013053813 W JP2013053813 W JP 2013053813W WO 2013132993 A1 WO2013132993 A1 WO 2013132993A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist film
layer
concavo
convex structure
silicon
Prior art date
Application number
PCT/JP2013/053813
Other languages
English (en)
French (fr)
Inventor
隆一郎 上村
大和 長田
行雄 鹿嶋
西原 浩巳
田代 貴晴
貴史 大川
Original Assignee
株式会社 アルバック
丸文 株式会社
東芝機械 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アルバック, 丸文 株式会社, 東芝機械 株式会社 filed Critical 株式会社 アルバック
Priority to US14/115,073 priority Critical patent/US8921135B2/en
Priority to CN201380001542.4A priority patent/CN103597619B/zh
Priority to KR1020137029628A priority patent/KR101354516B1/ko
Priority to JP2013549085A priority patent/JP5456946B1/ja
Priority to DE112013000281.7T priority patent/DE112013000281B4/de
Publication of WO2013132993A1 publication Critical patent/WO2013132993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a method for manufacturing an element having a fine concavo-convex structure.
  • the photonic crystal structure for example, when the inner diameter of the concave portion is reduced, the wavelength range in which the light extraction efficiency is increased can be reduced.
  • the photonic crystal structure is formed by lithography, in order to improve the light extraction efficiency, the inner diameter of the concave portion and the diameter of the convex portion are optimized and the aspect ratio is increased because of the resolution limit due to the exposure wavelength. The formation of the concavo-convex structure was difficult.
  • a method of forming a fine concavo-convex structure by using nanoimprint for transferring a master having a fine concavo-convex structure to a resist has also been proposed.
  • the method using nanoimprint since dry etching is performed through a resist film to which the concavo-convex structure is transferred, it is possible to form a fine concavo-convex structure of, for example, several tens of nm or less. Further, since it can be formed by a simple process of pressing the original plate, there is an effect that the manufacturing cost can be reduced as compared with the case where the fine uneven structure is formed by photolithography.
  • the resist film may adhere to the original plate, or the shape of the concave portion or convex portion after the original plate is released may be defective.
  • the depth of the concave portion of the original and the height of the convex portion are limited. For this reason, it was difficult to form a fine concavo-convex structure with a high aspect ratio using only the nanoimprint process.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a device manufacturing method capable of forming a fine concavo-convex structure having a high aspect ratio.
  • a method of manufacturing an element having a concavo-convex structure a step of forming an organic resist film on a concavo-convex structure forming layer that is a target for forming the concavo-convex structure, and a silicon-containing resist film on the organic resist film.
  • a step of patterning the silicon-containing resist film by a nanoimprint process a step of oxidizing the silicon-containing resist film with oxygen-containing plasma to form a silicon oxide film, and the silicon oxide film as an etching mask
  • the step of dry etching the organic resist film the step of dry etching the concavo-convex structure forming layer through the silicon oxide film and the organic resist film as an etching mask, the silicon oxide film and the And a step of removing the organic resist film.
  • a silicon-containing resist film is laminated on the organic resist film, the silicon-containing resist film is patterned by a nanoimprint process, and the organic resist film is dry-etched.
  • a layer resist was formed.
  • the film thickness is limited in order to ensure releasability, but by forming a two-layer resist using dry etching, the resist film thickness can be reduced. Can be bigger. Therefore, a high aspect ratio recess can be formed in the concavo-convex structure forming layer via the two-layer resist.
  • the resist film made of silicon oxide is formed on the upper layer of the two-layer resist, the selectivity of the concavo-convex structure forming layer with respect to the resist film can be improved.
  • the remaining layer of the recess formed by nanoimprinting is removed with plasma containing oxygen and fluorine.
  • the gist is to perform the process.
  • the concavo-convex structure forming layer is protected from plasma by the organic resist film. That is, when a single layer resist is formed by nanoimprinting, the concavo-convex structure forming layer is exposed to plasma in the step of removing the remaining layer, but by forming two resist layers, the concavo-convex structure forming layer is exposed to plasma. Less chances of being played. For this reason, the change in characteristics due to the exposure of the concavo-convex structure forming layer to plasma can be suppressed.
  • the concavo-convex structure forming layer is made of a group III nitride semiconductor, and the concavo-convex structure forming layer is etched with chlorine-containing plasma.
  • the gist is made of a group III nitride semiconductor, and the concavo-convex structure forming layer is etched with chlorine-containing plasma.
  • the concavo-convex structure forming layer made of the group III nitride semiconductor layer is etched by the chlorine-containing plasma, the selectivity to the silicon oxide film can be improved.
  • the concavo-convex structure forming layer is made of sapphire, and the concavo-convex structure forming layer is etched with chlorine-containing plasma.
  • the concavo-convex structure forming layer made of sapphire is etched by the chlorine-containing plasma, the selectivity with respect to the silicon oxide film can be improved.
  • the concavo-convex structure forming layer includes a plurality of layers, and the concavo-convex structure formation layer is etched with chlorine-containing plasma. To do.
  • a fine concavo-convex structure having a high aspect ratio can be formed across a plurality of layers.
  • FIG. 3 is a schematic diagram illustrating an example of a light-emitting element having the same stacked body. It is the model which shows 2nd Embodiment which actualized the manufacturing method of the element of this invention as a manufacturing method of a light emitting element, Comprising: (a) is the formation process of an organic resist film, (b) is formation of a silicon containing resist film. Step (c) shows the nanoimprint step.
  • the device manufacturing method of the present invention is embodied as a light emitting device manufacturing method will be described with reference to FIGS.
  • the light emitting element is embodied in an LED.
  • a stacked body 10 constituting an LED includes a substrate 11, a buffer layer 12, an n-type semiconductor layer 13, an MQW layer 14 having a multiple quantum well structure (MQW), and a p-type semiconductor layer. 15.
  • MQW multiple quantum well structure
  • the substrate 11 only needs to be a substrate on which the buffer layer 12, the n-type semiconductor layer 13, and the like can be epitaxially grown, and silicon carbide, silicon, or the like can be used in addition to the sapphire substrate.
  • the n-type semiconductor layer 13, the MQW layer 14, and the p-type semiconductor layer 15 are made of a group III nitride semiconductor containing at least one group III element such as AlN, GaN, InN, AlGaN, AlInN, GaInN, and AlGaInN.
  • the n-type semiconductor layer 13 is made of n-type GaN doped with Si or Ge.
  • a fine concavo-convex structure AS is formed on the surface of the n-type semiconductor layer 13. That is, in the present embodiment, the n-type semiconductor layer 13 corresponds to the concavo-convex structure forming layer.
  • the fine concavo-convex structure AS has a periodic structure having a length of about a wavelength obtained by dividing the wavelength for improving the extraction efficiency of the light emitting element by the refractive index of the material constituting the n-type semiconductor layer 13.
  • the radius R of the concave portion or convex portion optimized as a photonic crystal periodic structure and the structural cycle a have a relationship of 0.3 ⁇ R / a ⁇ 0.4, and the aspect at that time The ratio is greater than 1.
  • the fine concavo-convex structure AS suppresses the propagation of light in the main surface direction of the n-type semiconductor layer 13 and makes the light emission direction perpendicular to the main surface of the n-type semiconductor layer 13. Extraction efficiency is improved.
  • an organic resist material such as a novolac resin is applied on the n-type semiconductor layer 13 by a spin coater or the like to form an organic resist film 20.
  • a silicon-containing resist material is applied on the organic resist film 20 by a spin coater or the like to form a silicon-containing resist film 30.
  • the silicon-containing resist film 30 is adjusted to a thickness that can ensure good releasability of the original plate in consideration of the viscosity of the material, and the film thickness is smaller than that of the organic resist film 20.
  • the pattern of the fine relief structure AS is transferred to the silicon-containing resist film 30 by nanoimprint.
  • the original plate N is made of a substrate such as quartz, and a fine structure is formed on the surface thereof by an electron beam or the like.
  • the pattern transfer film 30a to which the pattern of the original N is transferred is formed.
  • the depth of the concave portion and the height of the convex portion of the original N are long enough to suppress the shape defects of the concave portion 30H and the convex portion of the pattern transfer film 30a.
  • the verticality of 30H can be improved. In this state, the remaining layer 30d is present at the bottom of the recess 30H constituting the pattern transfer film 30a.
  • the precursor on which the pattern transfer film 30a has been formed is carried into a dry etching apparatus.
  • a dry etching apparatus a known apparatus such as an apparatus having an inductively coupled plasma source or an apparatus having a capacitively coupled plasma source can be appropriately used.
  • the dry etching apparatus used at this time is provided with a gas supply system for supplying an oxygen-containing gas and a fluorine-containing gas.
  • plasma of oxygen-containing gas and fluorine-containing gas is generated and the remaining layer 30d is removed. That is, as shown in FIG. 3A, the surface of the convex portion of the pattern transfer film 30a is etched and the remaining layer 30d is etched, and the organic resist film 20 is formed between the convex portion and the convex portion. Exposed.
  • the resist has a single layer structure
  • the underlying n-type semiconductor layer 13 is exposed to plasma containing oxygen and fluorine.
  • the n-type semiconductor layer 13 is not exposed to plasma during the removal process of the remaining layer 30d, and the n-type semiconductor layer 13 It is possible to suppress changes in the characteristics.
  • the precursor from which the remaining layer 30d has been removed is carried into a dry etching apparatus equipped with a gas supply system for supplying an oxygen-containing gas, and the pattern transfer with the remaining layer 30d removed as shown in FIG.
  • the film 30a is exposed to oxygen-containing plasma to form a silicon oxide film 30c.
  • the precursor is carried into a dry etching apparatus equipped with a gas supply system for supplying a dilution gas such as oxygen gas and argon. Then, oxygen-containing plasma is generated by the plasma source, and the organic resist film 20 is dry-etched through the pattern transfer film 30a. As a result, as shown in FIG. 3C, a pattern forming film 20a patterned along the silicon oxide film 30c is formed, and the two-layer resist 40 is formed by the silicon oxide film 30c and the pattern forming film 20a.
  • the concave portion of the silicon oxide film 30c has high verticality
  • the concave portion formed in the organic resist film 20 also has high verticality.
  • the precursor is carried into a dry etching apparatus equipped with a gas supply system that supplies a chlorine-containing gas. Then, the plasma source is driven to generate chlorine-containing plasma, and as shown in FIG. 3D, the n-type semiconductor layer 13 is dry-etched to form the recess H1.
  • a chlorine-containing gas Cl 2 , BCl 3 or the like is used.
  • the two-layer resist 40 is thicker than when a resist film is formed only from silicon oxide.
  • the depth of the recess that can be formed by dry etching depends on the thickness of the resist film as well as the selectivity with respect to the resist film. Therefore, the n-type semiconductor layer 13 is made of a material having a low selectivity with respect to the resist film.
  • a recess having a high aspect ratio can be formed. Furthermore, since the recesses of the two-layer resist 40 have high verticality, the verticality of the recesses formed in the n-type semiconductor layer 13 can also be improved.
  • the selectivity of GaN to the mask can be increased.
  • the aspect ratio of the recess H1 can be increased by etching with a gas capable of obtaining a high selectivity while using the two-layer resist 40 having a large film thickness.
  • the precursor by which the n-type semiconductor layer 13 was patterned is carried in to the dry etching apparatus provided with the gas supply system which supplies oxygen-containing gas and fluorine-containing gas, and pattern The formation film 20a and the silicon oxide film 30c are removed.
  • the gas supply system which supplies oxygen-containing gas and fluorine-containing gas
  • the formation film 20a and the silicon oxide film 30c are removed.
  • a fine concavo-convex structure AS composed of concave portions H1 and convex portions formed at substantially the same pitch is formed in the n-type semiconductor layer 13.
  • the MQW layer 14 and the p-type semiconductor layer 15 are epitaxially grown on the n-type semiconductor layer 13 by the MOCVD method or the like to form the stacked body 10.
  • the light emitting element 50 includes the above-described stacked body 10, the p-type pad electrode 17, the n-type pad electrode 18, and the insulating layer 19 stacked on the light emission side. These layers are formed by the MOCVD method or the like.
  • the n-type pad electrode 18 is formed on the upper surface of the n-type semiconductor layer 13 exposed by removing the MQW layer 14, the p-type semiconductor layer 15, and the transparent electrode layer 16.
  • a p-type pad electrode 17 is formed on the upper surface of the transparent electrode layer 16.
  • the insulating layer 19 is made of silicon oxide or the like, and is formed on a part of the transparent electrode layer 16 and a part of the exposed n-type semiconductor layer 13.
  • the silicon-containing resist film 30 is laminated on the organic resist film 20, and the silicon-containing resist film 30 is patterned by a nanoimprint process. Then, the organic resist film 20 was dry-etched to form the two-layer resist 40.
  • the resist film thickness can be increased. Accordingly, a high aspect ratio recess H1 can be formed in the n-type semiconductor layer 13 via the two-layer resist 40.
  • the resist film (30c) made of silicon oxide is formed on the upper layer of the two-layer resist 40, the selection ratio of the n-type semiconductor layer 13 to the resist film can be improved.
  • the remaining layer 30d formed by the nanoimprint process is removed by plasma containing oxygen and fluorine.
  • the n-type semiconductor layer 13 is exposed to the plasma in the step of removing the remaining layer 30d.
  • the n-type semiconductor layer 13 is organic. By being protected by the resist film 20, it is not exposed to the plasma. For this reason, the change of the characteristic by the n-type semiconductor layer 13 being exposed to plasma can be suppressed.
  • the selectivity with respect to the two-layer resist 40 can be further improved.
  • the fine relief structure AS is formed on the substrate 11 made of sapphire. That is, in the present embodiment, the substrate 11 corresponds to the concavo-convex structure forming layer.
  • a two-layer resist 40 is formed on the surface of the substrate 11. The process of manufacturing the two-layer resist 40 is the same as that of the first embodiment, and the process of forming the organic resist film 20 on the substrate 11, the process of forming the silicon-containing resist film 30, the process of performing the nanoimprint process, the remaining layer A step of removing silicon, a step of oxidizing the silicon-containing resist film 30, and a step of dry etching the organic resist film.
  • the substrate 11 When the two-layer resist 40 is formed on the substrate 11, the substrate 11 is carried into a dry etching apparatus equipped with a gas supply system for supplying a chlorine-containing gas, and the substrate 11 is dry-etched as shown in FIG. Thus, the recess H2 is formed. For this reason, even if it is sapphire in which the selection ratio to the resist film tends to be smaller than that of the III-V group semiconductor compound, the aspect ratio of the recess H2 can be increased by using the two-layer resist 40 having a large film thickness. it can.
  • the precursor on which the substrate 11 is patterned is carried into an etching apparatus having a gas supply system for supplying an oxygen-containing gas and a fluorine-containing gas, and the pattern forming film 20a and The silicon oxide film 30c is removed.
  • the fine concavo-convex structure AS composed of the concave portions H2 and the convex portions formed at substantially the same pitch is formed on the substrate 11.
  • the buffer layer 12 When the fine concavo-convex structure AS is thus formed on the substrate 11, the buffer layer 12, the n-type semiconductor layer 13, the MQW layer 14, and the p-type semiconductor layer 15 are formed on the substrate 11 by the MOCVD method or the like. Form.
  • the configuration of the light emitting element 50 is the same as that of the first embodiment, but as shown in FIG. 6, the fine concavo-convex structure AS is formed on the substrate 11 made of sapphire. For this reason, the propagation of light in the main surface direction of the substrate 11 is suppressed, and the light extraction efficiency is improved by making the light emission direction perpendicular to the main surface of the substrate 11.
  • the substrate 11 made of sapphire is etched by the chlorine-containing plasma through the two-layer resist 40. For this reason, even if the sapphire has a smaller selection ratio than the group III-V nitride semiconductor, the concave portion H2 having a high aspect ratio can be formed. Moreover, the selectivity with respect to a resist film can be improved by using chlorine containing gas.
  • the fine concavo-convex structure AS is formed on the n-type semiconductor layer 13 or the substrate 11, but the fine concavo-convex structure AS may be formed on the transparent electrode layer 16 as shown in FIG.
  • a two-layer resist 40 is formed on the transparent electrode layer 16, and the transparent electrode layer 16 is dry-etched through the two-layer resist 40.
  • the transparent electrode layer 16 corresponds to a concavo-convex structure forming layer.
  • the fine concavo-convex structure AS is formed in the n-type semiconductor layer 13 and the substrate 11, but may be formed in another layer.
  • the micro concavo-convex structure AS is formed by the method described above.
  • the micro concavo-convex structure AS is formed by taking out from the apparatus and using the method described above. Form.
  • the fine relief structure AS may be formed not only in one layer but also in a plurality of layers.
  • the fine relief structure AS that reaches the n-type semiconductor layer 13 from the p-type semiconductor layer 15 via the MQW layer 14, the n-type semiconductor layer 13, the MQW layer 14, and the p-type semiconductor layer 15 are formed using a film forming apparatus.
  • the recesses constituting the fine relief structure AS are deepened to the n-type semiconductor layer 13, the MQW layer 14, and the p-type semiconductor layer 15 by the method described above. That is, in this structure, the concavo-convex structure forming layer is composed of a plurality of layers (13, 14, 15).
  • the recesses H1 and H2 having a high aspect ratio are formed using the manufacturing method of the present invention.
  • the manufacturing method of the present invention is used to form the recesses H1 and H2 having a relatively small aspect ratio. It may be used. That is, the thickness of the two-layer resist 40 is ensured by reducing the thickness of the silicon-containing resist film 30 to such an extent that the concavo-convex shape of the transferred pattern is satisfactory, and increasing the thickness of the organic resist film 20 correspondingly. Even in this case, it is possible to improve the perpendicularity of the concave portions constituting the fine concavo-convex structure AS and form a concavo-convex structure having a high aspect ratio.
  • the light-emitting element that is one mode of the element of the present invention is a transmissive light-emitting element, but may be embodied as a reflective light-emitting element.
  • a reflective layer made of silver or the like and an insulating layer are provided on the back surface of the substrate 11 opposite to the surface on which the buffer layer 12 is formed, and light emitted from the MQW layer is reflected by the reflective layer.
  • the light may be reflected toward the insulating layer that is the light extraction surface.
  • the device manufacturing method of the present invention is embodied as a light emitting device manufacturing method.
  • the element manufacturing method of the present invention is not limited to this, and can be applied to a method for manufacturing a semiconductor element such as a silicon device including a silicon through electrode (TSV), and in particular, is applied to a process of forming a silicon through electrode. be able to.
  • TSV silicon through electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Led Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 凹凸構造を備えた素子の製造方法において、微細凹凸構造(AS)を形成する対象となるn型半導体層(13)に有機レジスト膜(20)を形成する工程と、有機レジスト膜の上にシリコン含有レジスト膜を形成する工程と、シリコン含有レジスト膜をナノインプリントによりパターニングする工程と、シリコン含有レジスト膜を酸素含有プラズマで酸化して酸化シリコン膜(30c)を形成する工程と、エッチングマスクとしての酸化シリコン膜(30c)を介して、有機レジスト膜(20)をドライエッチングする工程と、エッチングマスクとしての酸化シリコン膜(30c)及び有機レジスト膜(20a)を介して、n型半導体層(13)をドライエッチングする工程と、酸化シリコン膜(30c)及び有機レジスト膜(20a)を除去する工程とを有する。

Description

素子の製造方法
 本発明は、微細な凹凸構造を備えた素子の製造方法に関する。
 発光ダイオードやレーザーダイオード等の発光素子の光取り出し効率を高めるために、該素子内に、ナノオーダーの微細凹凸構造である、いわゆるフォトニック結晶を形成する方法がある(例えば、特許文献1参照)。この方法では、微細凹凸構造を構成する細孔を、第1窒化物半導体層に形成するために、該窒化物半導体層に、酸化シリコンからなるエッチングマスクを積層する工程と、該エッチングマスクを介して第1窒化物半導体層にフォトリソグラフィにより孔を形成する工程を有している。
特開2011-35078号公報
 一方、フォトニック結晶構造では、例えば凹部の内径が小さくなると光取り出し効率が高められる波長域を小さくすることができる。しかし、リソグラフィによりフォトニック結晶構造を形成する際、光取り出し効率を向上するために、凹部の内径や凸部の径を最適化し且つアスペクト比を大きくする場合には、露光波長による解像度限界のため、該凹凸構造の形成は困難であった。
 従って、微細凹凸構造が形成された原版をレジストに転写するナノインプリントを用いて、微細凹凸構造を形成する方法も提案されている。ナノインプリントを用いた方法では、凹凸構造が転写されたレジスト膜を介してドライエッチングを行うため、例えば数十nm以下の微細凹凸構造を形成することも可能である。また、原版を押し付けるという簡単なプロセスで形成できるため、フォトリソグラフィにより微細凹凸構造を形成する場合に比べ、製造コストを低減できるといった効果もある。
 しかし、ナノインプリントプロセスでは、凹凸構造を転写した層に対する原版の離型性を確保しなければならない。即ち、高アスペクト比の微細凹凸構造を形成するために、原版の凹部の深さを大きくすると、レジスト膜が原版に付着したり、原版を離した後の凹部や凸部の形状不良が生じるため、原版の凹部の深さや凸部の高さには制約がある。このため、ナノインプリントプロセスのみを用いて、高アスペクト比の微細凹凸構造を形成することが困難であった。
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、高アスペクト比を有する微細凹凸構造を形成することができる素子の製造方法を提供することにある。
 第1の態様は、凹凸構造を備えた素子の製造方法において、凹凸構造を形成する対象となる凹凸構造形成層に有機レジスト膜を形成する工程と、前記有機レジスト膜の上にシリコン含有レジスト膜を形成する工程と、前記シリコン含有レジスト膜をナノインプリントプロセスによりパターニングする工程と、前記シリコン含有レジスト膜を酸素含有プラズマで酸化して酸化シリコン膜を形成する工程と、エッチングマスクとしての前記酸化シリコン膜を介して、前記有機レジスト膜をドライエッチングする工程と、エッチングマスクとしての前記酸化シリコン膜及び前記有機レジスト膜を介して、前記凹凸構造形成層をドライエッチングする工程と、前記酸化シリコン膜及び前記有機レジスト膜を除去する工程とを有することを要旨とする。
 第1の態様によれば、上記凹凸構造を形成する際に、有機レジスト膜にシリコン含有レジスト膜を積層するとともに、シリコン含有レジスト膜をナノインプリントプロセスによりパターニングし、有機レジスト膜をドライエッチングして2層レジストを形成するようにした。ナノインプリントプロセスを用いて単層のレジストを形成する場合、離型性を確保するためにその膜厚に制約があるが、ドライエッチングを用いて2層レジストを形成することにより、レジストの膜厚を大きくすることができる。従って、この2層レジストを介して凹凸構造形成層に高アスペクト比の凹部を形成することができる。さらに、2層レジストの上層に、酸化シリコンからなるレジスト膜を形成するので、レジスト膜に対する凹凸構造形成層の選択比を向上することができる。
 第2の態様は、第1の態様の素子の製造方法において、前記有機レジスト膜をドライエッチングする工程の前に、ナノインプリントにより形成された凹部の残存層を酸素及びフッ素を含有するプラズマで除去する工程を行うことを要旨とする。
 第2の態様によれば、有機レジスト膜をドライエッチングする前に、シリコン含有レジスト膜の残存層を除去するので、凹凸構造形成層は、有機レジスト膜によってプラズマから保護される。即ち、ナノインプリントにより単層のレジストを形成する場合、残存層を除去する工程で、凹凸構造形成層はプラズマに曝されるが、レジストを2層にすることで、凹凸構造形成層がプラズマに曝される機会を少なくすることができる。このため、凹凸構造形成層がプラズマに曝されることによる特性の変化を抑制することができる。
 第3の態様は、第1又は第2の態様の素子の製造方法において、前記凹凸構造形成層は、III族窒化物半導体からなり、前記凹凸構造形成層を、塩素含有プラズマによりエッチングすることを要旨とする。
 第3の態様によれば、III族窒化物半導体層からなる凹凸構造形成層を塩素含有プラズマによりエッチングするので、酸化シリコン膜に対する選択比を向上することができる。
 第4の態様は、第1又は第2の態様の素子の製造方法において、前記凹凸構造形成層は、サファイアからなり、前記凹凸構造形成層を、塩素含有プラズマによりエッチングすることを要旨とする。
 第4の態様によれば、サファイアからなる凹凸構造形成層を塩素含有プラズマによりエッチングするので、酸化シリコン膜に対する選択比を向上することができる。
 第5の態様は、第1又は第2の態様の素子の製造方法において、前記凹凸構造形成層は、複数の層からなり、前記凹凸構造形成層を、塩素含有プラズマによりエッチングすることを要旨とする。
 第5の態様によれば、複数の層にわたって高アスペクト比を有する微細凹凸構造を形成することができる。
本発明にかかる素子の一実施形態である発光素子について、同発光素子を構成する積層体の断面図。 本発明の素子の製造方法を発光素子の製造方法として具体化した第1実施形態を示す模式図であって、(a)は有機レジスト膜の形成工程、(b)はシリコン含有レジスト膜の形成工程、(c)はナノインプリント工程を示す。 (a)は残存層の除去工程、(b)はシリコン含有レジスト膜の酸化工程、(c)は有機レジスト膜のパターニング工程、(d)は凹凸構造形成層であるGaN層のドライエッチング工程、(e)はレジスト除去工程を示す。 同積層体を有する発光素子の一例を示す模式図。 本発明の素子の製造方法を発光素子の製造方法として具体化した第2実施形態を示す模式図であって、(a)は有機レジスト膜の形成工程、(b)はシリコン含有レジスト膜の形成工程、(c)はナノインプリント工程を示す。 第2実施形態により形成された発光素子の一例を示す模式図。 本発明の製造方法により形成された素子の別例を示す模式図。
 (第1実施形態)
 以下、本発明の素子の製造方法を発光素子の製造方法として具体化した一実施形態を図1~図4にしたがって説明する。本実施形態では、発光素子をLEDに具体化している。
 図1に示すように、LEDを構成する積層体10は、基板11と、バッファ層12と、n型半導体層13と、多重量子井戸構造(MQW)を有するMQW層14と、p型半導体層15とを備える。
 基板11は、バッファ層12やn型半導体層13等がエピタキシャル成長できる基板であればよく、サファイア基板の他、炭化ケイ素、シリコン等を用いることができる。
 n型半導体層13、MQW層14及びp型半導体層15は、例えばAlN、GaN、InN、AlGaN、AlInN、GaInN、AlGaInN等、少なくとも1種類のIII族元素を含むIII族窒化物半導体からなる。本実施形態では、n型半導体層13は、SiやGeをドープしたn型GaNからなる。
 このn型半導体層13の表面には、微細凹凸構造ASが形成されている。すなわち、本実施形態では、n型半導体層13が凹凸構造形成層に相当する。この微細凹凸構造ASは、発光素子の取り出し効率を高める波長を、n型半導体層13を構成する材料の屈折率で除算した長さ程度の周期構造を有する。具体的には、特にフォトニック結晶周期構造として最適化された凹部または凸部の半径Rとその構造周期aは、0.3<R/a<0.4の関係にあり、その際のアスペクト比は1を超える。そしてこの微細凹凸構造ASにより、n型半導体層13の主面方向における光の伝播が抑制され、光の射出方向がn型半導体層13の主面に対し垂直な方向とされることで光の取り出し効率が向上する。
 次に、半導体発光素子の製造方法について図2に従って説明する。図2(a)に示すように、まずn型半導体層13の上に、ノボラック樹脂等の有機レジスト材料をスピンコーター等により塗布し、有機レジスト膜20を形成する。
 有機レジスト膜20を形成すると、図2(b)に示すように、有機レジスト膜20の上にシリコン含有レジスト材料をスピンコーター等により塗布し、シリコン含有レジスト膜30を形成する。シリコン含有レジスト膜30は、材料の粘度等を考慮して、原版の離型性を良好に確保できる厚さに調整され、有機レジスト膜20よりも、その膜厚が小さくなっている。
 さらに、図2(c)に示すように、ナノインプリントにより、シリコン含有レジスト膜30に微細凹凸構造ASのパターンを転写する。原版Nは、石英等の基板からなり、その表面には電子ビーム等により微細構造が形成されている。この原版Nを、シリコン含有レジスト膜30に垂直に押し付けることにより、原版Nのパターンが転写されたパターン転写膜30aが形成される。この際、原版Nの凹部の深さ及び凸部の高さは、パターン転写膜30aの凹部30H及び凸部の形状不良が抑制できるような長さになっているため、パターン転写膜30aの凹部30Hの垂直性を向上できる。尚、このときの状態では、パターン転写膜30aを構成する凹部30Hの底部に、残存層30dが存在する。
 次に、パターン転写膜30aが形成された前駆体を、ドライエッチング装置へ搬入する。ドライエッチング装置は、誘導結合型プラズマ源を有する装置、容量結合型プラズマ源を有する装置等、公知の装置を適宜用いることができる。またこのとき用いられるドライエッチング装置は、酸素含有ガス及びフッ素含有ガスを供給するガス供給系を備えている。ドライエッチング装置に前駆体を搬入し、所定の条件に基づいてプラズマ源を駆動すると、酸素含有ガス及びフッ素含有ガスのプラズマが生成されて、残存層30dが除去される。すなわち、図3(a)に示すように、パターン転写膜30aの凸部の表面がエッチングされるとともに、残存層30dがエッチングされ、その凸部と凸部との間から、有機レジスト膜20が露出される。
 このとき、単層構造を有するレジストであれば、残存層30dを除去した際に、その下層のn型半導体層13が酸素及びフッ素を含有するプラズマに曝されてしまう。一方、本実施形態のように有機レジスト膜20にシリコン含有レジスト膜30を積層することにより、残存層30dの除去工程の際にn型半導体層13がプラズマに曝されず、n型半導体層13の特性の変化を抑制することができる。
 次に、残存層30dを除去した前駆体を、酸素含有ガスを供給するガス供給系を備えたドライエッチング装置に搬入し、図3(b)に示すように、残存層30dを除去したパターン転写膜30aを、酸素含有プラズマに曝して、酸化シリコン膜30cを形成する。
 このように酸化シリコン膜30cが前駆体に形成されると、その前駆体を、酸素ガス及びアルゴン等の希釈ガスを供給するガス供給系を備えたドライエッチング装置に搬入する。そして、プラズマ源により酸素含有プラズマを生成して、パターン転写膜30aを介して有機レジスト膜20をドライエッチングする。その結果、図3(c)に示すように、酸化シリコン膜30cに沿ってパターニングされたパターン形成膜20aが形成され、これらの酸化シリコン膜30c及びパターン形成膜20aにより2層レジスト40が形成される。酸化シリコン膜30cの凹部は高い垂直性を有しているため、有機レジスト膜20に形成される凹部も高い垂直性を有している。
 2層レジスト40が前駆体に形成されると、その前駆体を、塩素含有ガスを供給するガス供給系を備えたドライエッチング装置に搬入する。そして、プラズマ源を駆動して、塩素含有プラズマを生成し、図3(d)に示すように、n型半導体層13をドライエッチングして、凹部H1を形成する。塩素含有ガスとしては、Cl、BCl等が用いられる。
 また、2層レジスト40は、酸化シリコンのみからレジスト膜を形成する場合に比べ、厚くなる。ドライエッチングにより形成可能な凹部の深さは、レジスト膜に対する選択比の他、レジスト膜の厚みにもよるため、n型半導体層13が、レジスト膜に対する選択比が低い材料からなる場合であっても、アスペクト比の高い凹部を形成することができる。さらに、2層レジスト40の凹部は高い垂直性を有しているため、n型半導体層13に形成される凹部の垂直性も向上できる。
 さらに塩素含有ガスをエッチングガスとして用いた場合、マスクに対するGaNの選択比を高くすることができる。このため、膜厚の大きい2層レジスト40を用いつつ、高い選択比が得られるガスによりエッチングすることにより、凹部H1のアスペクト比を高めることができる。
 そして、図3(e)に示すように、n型半導体層13がパターニングされた前駆体を、酸素含有ガス及びフッ素含有ガスを供給するガス供給系を備えたドライエッチング装置に搬入して、パターン形成膜20a及び酸化シリコン膜30cを除去する。その結果、n型半導体層13に、ほぼ同一のピッチで形成された凹部H1と凸部とからなる微細凹凸構造ASが形成される。
 このようにn型半導体層13に微細凹凸構造ASを形成すると、そのn型半導体層13にMQW層14、p型半導体層15をMOCVD法等によりエピタキシャル成長させて、積層体10を形成する。
 この積層体を備えた発光素子の一例について説明する。図4に示すように、発光素子50は、上述した積層体10と、p型パッド電極17と、n型パッド電極18と、光射出側に積層された絶縁層19とを備える。これらの層は、MOCVD法等により形成される。
 n型パッド電極18は、MQW層14、p型半導体層15及び透明電極層16を除去することにより露出されたn型半導体層13の上面に形成されている。また、透明電極層16の上面には、p型パッド電極17が形成されている。絶縁層19は、酸化シリコン等からなり、透明電極層16の一部と露出されたn型半導体層13の一部とに形成されている。
 第1実施形態によれば、以下のような効果を得ることができる。
 (1)第1実施形態では、n型半導体層13に微細凹凸構造ASを形成する際に、有機レジスト膜20にシリコン含有レジスト膜30を積層するとともに、シリコン含有レジスト膜30をナノインプリントプロセスによりパターニングし、有機レジスト膜20をドライエッチングして2層レジスト40を形成するようにした。ナノインプロセスを用いて単層のレジストを形成する場合、原版の離型性を確保するためにレジストの膜厚に制約があるが、ドライエッチングを用いて2層レジスト40を形成することにより、レジストの膜厚を大きくすることができる。従って、この2層レジスト40を介してn型半導体層13に高アスペクト比の凹部H1を形成することができる。さらに、2層レジスト40の上層に、酸化シリコンからなるレジスト膜(30c)を形成するので、レジスト膜に対するn型半導体層13の選択比を向上することができる。
 (2)第1実施形態では、有機レジスト膜20をドライエッチングする工程の前に、ナノインプリントプロセスにより形成された残存層30dを、酸素とフッ素とを含有するプラズマにより除去した。n型半導体層13に単層のレジストを積層する場合、残存層30dの除去工程ではn型半導体層13は上記プラズマに曝されるが、上述した方法の場合、n型半導体層13は、有機レジスト膜20に保護されることによって該プラズマに曝されない。このため、n型半導体層13がプラズマに曝されることによる特性の変化を抑制することができる。
 (3)第1実施形態では、III族窒化物半導体層からなるn型半導体層13を、塩素含有プラズマによりエッチングするので、2層レジスト40に対する選択比をさらに向上することができる。
 (第2実施形態)
 次に、本発明の素子の製造方法を発光素子の製造方法として具体化した第2実施形態を図5及び図6にしたがって説明する。なお、第2実施形態は、第1実施形態の微細凹凸構造ASの形成対象とその製造方法を変更したのみの構成であるため、同様の部分についてはその詳細な説明を省略する。
 本実施形態では、微細凹凸構造ASをサファイアからなる基板11に形成する。すなわち、本実施形態では、基板11が凹凸構造形成層に相当する。まず図5(a)に示すように、基板11の表面に2層レジスト40を形成する。2層レジスト40を製造する工程は、第1実施形態と同様であって、基板11に有機レジスト膜20を形成する工程、シリコン含有レジスト膜30を形成する工程、ナノインプリントプロセスを行う工程、残存層を除去する工程、シリコン含有レジスト膜30を酸化する工程、有機レジスト膜をドライエッチングする工程を有する。
 2層レジスト40を基板11に形成すると、該基板11を、塩素含有ガスを供給するガス供給系を備えたドライエッチング装置に搬入し、図5(b)に示すように、基板11をドライエッチングして凹部H2を形成する。このため、III-V族半導体化合物よりも、レジスト膜に対する選択比が小さい傾向にあるサファイアであっても、膜厚の大きい2層レジスト40を用いることで、凹部H2のアスペクト比を高めることができる。
 そして、図5(c)に示すように、基板11がパターニングされた前駆体を、酸素含有ガス及びフッ素含有ガスを供給するガス供給系を備えたエッチング装置に搬入して、パターン形成膜20a及び酸化シリコン膜30cを除去する。その結果、基板11に、ほぼ同一のピッチで形成された凹部H2と凸部とからなる微細凹凸構造ASが形成される。
 このように基板11に微細凹凸構造ASを形成すると、その基板11に、バッファ層12、n型半導体層13、MQW層14、p型半導体層15をMOCVD法等により形成して、積層体10を形成する。
 この積層体を備えた発光素子の一例について説明する。発光素子50の構成は、第1実施形態と同様であるが、図6に示すように、サファイアからなる基板11に微細凹凸構造ASが形成されている。このため、基板11の主面方向における光の伝播が抑制され、光の射出方向が基板11の主面に対し垂直な方向とされることで光の取り出し効率が向上される。
 従って、第2実施形態によれば、第1実施形態に記載の効果に加えて以下の効果を得ることができる。
 (4)第2実施形態では、サファイアからなる基板11を、2層レジスト40を介して塩素含有プラズマによりエッチングするようにした。このため、III-V族窒化物半導体よりも選択比が小さいサファイアであっても、高アスペクト比の凹部H2を形成することができる。また、塩素含有ガスを用いることにより、レジスト膜に対する選択比を向上することができる。
 尚、上記各実施形態は以下のように変更してもよい。
 ・上記各実施形態では、n型半導体層13又は基板11に微細凹凸構造ASを形成したが、図7に示すように透明電極層16に微細凹凸構造ASを形成してもよい。この場合には、第1実施形態と同様に、透明電極層16に2層レジスト40を形成し、該2層レジスト40を介して透明電極層16をドライエッチングする。図7の実施形態では、透明電極層16が凹凸構造形成層に相当する。
 ・上記各実施形態では、n型半導体層13及び基板11に微細凹凸構造ASを形成したが、他の層に形成してもよい。例えば、微細凹凸構造ASをMQW層14に形成する場合は、MQW層14を成膜装置を用いて形成した後、該装置から一旦取出し、上述した方法で微細凹凸構造ASを形成する。また、微細凹凸構造ASをp型半導体層15に形成する場合には、p型半導体層15を成膜装置を用いて形成した後、該装置から一旦取出し、上述した方法で微細凹凸構造ASを形成する。また、微細凹凸構造ASは、一層だけでなく、複数の層に形成してもよい。例えば、p型半導体層15からMQW層14を経てn型半導体層13に到達する微細凹凸構造ASを形成する場合、n型半導体層13、MQW層14及びp型半導体層15を成膜装置を用いて形成した後、微細凹凸構造ASを構成する凹部を、上述した方法により、n型半導体層13、MQW層14及びp型半導体層15まで深堀する。すなわち、この構造では、凹凸構造形成層が複数の層(13,14,15)からなる。
 ・上記各実施形態では、本発明の製造方法を用いて、高アスペクト比の凹部H1,H2を形成したが、アスペクト比が比較的小さい凹部H1,H2を形成するために本発明の製造方法を用いてもよい。即ち、シリコン含有レジスト膜30の厚さを、転写したパターンの凹凸形状が良好となる程度に薄くし、その分有機レジスト膜20を厚くすることで、2層レジスト40の厚さを確保する。このようにしても、微細凹凸構造ASを構成する凹部の垂直性を向上し、高アスペクト比の凹凸構造を形成することができる。
 ・上記各実施形態では、本発明の素子の一形態である発光素子を、透過型の発光素子としたが、反射型の発光素子に具体化してもよい。例えば、基板11のうちバッファ層12が形成された面に対して反対側となる裏面に、銀等からなる反射層と、絶縁層とを設け、MQW層から射出された光を、反射層によって、光取り出し面である絶縁層側へ反射するようにしてもよい。
 ・上記各実施形態では、本発明の素子の製造方法を発光素子の製造方法として具体化した。これに限らず、本発明の素子の製造方法は、シリコン貫通電極(TSV)を備えるシリコンデバイス等の半導体素子の製造方法に適用することができ、特に、シリコン貫通電極を形成する工程に適用することができる。

Claims (5)

  1.  凹凸構造を備えた素子の製造方法において、
     凹凸構造を形成する対象となる凹凸構造形成層に有機レジスト膜を形成する工程と、
     前記有機レジスト膜の上にシリコン含有レジスト膜を形成する工程と、
     前記シリコン含有レジスト膜をナノインプリントによりパターニングする工程と、
     前記シリコン含有レジスト膜を酸素含有プラズマで酸化して酸化シリコン膜を形成する工程と、
     エッチングマスクとしての前記酸化シリコン膜を介して、前記有機レジスト膜をドライエッチングする工程と、
     エッチングマスクとしての前記酸化シリコン膜及び前記有機レジスト膜を介して、前記凹凸構造形成層をドライエッチングする工程と、
     前記酸化シリコン膜及び前記有機レジスト膜を除去する工程とを有することを特徴とする素子の製造方法。
  2.  前記有機レジスト膜をドライエッチングする工程の前に、ナノインプリントにより形成された凹部の残存層を酸素及びフッ素を含有するプラズマで除去する工程を行う請求項1に記載の素子の製造方法。
  3.  前記凹凸構造形成層は、III族窒化物半導体からなり、
     前記凹凸構造形成層を、塩素含有プラズマによりエッチングする請求項1又は2に記載の素子の製造方法。
  4.  前記凹凸構造形成層は、サファイアからなり、
     前記凹凸構造形成層を、塩素含有プラズマによりエッチングする請求項1又は2に記載の素子の製造方法。
  5.  前記凹凸構造形成層は、複数の層からなり、
     前記凹凸構造形成層を、塩素含有プラズマによりエッチングする請求項1又は2に記載の素子の製造方法。
PCT/JP2013/053813 2012-03-07 2013-02-18 素子の製造方法 WO2013132993A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/115,073 US8921135B2 (en) 2012-03-07 2013-02-18 Method for manufacturing device
CN201380001542.4A CN103597619B (zh) 2012-03-07 2013-02-18 制造装置的方法
KR1020137029628A KR101354516B1 (ko) 2012-03-07 2013-02-18 장치의 제조 방법
JP2013549085A JP5456946B1 (ja) 2012-03-07 2013-02-18 素子の製造方法
DE112013000281.7T DE112013000281B4 (de) 2012-03-07 2013-02-18 Verfahren zur Herstellung einer Vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012050199 2012-03-07
JP2012-050199 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013132993A1 true WO2013132993A1 (ja) 2013-09-12

Family

ID=49116477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053813 WO2013132993A1 (ja) 2012-03-07 2013-02-18 素子の製造方法

Country Status (7)

Country Link
US (1) US8921135B2 (ja)
JP (1) JP5456946B1 (ja)
KR (1) KR101354516B1 (ja)
CN (1) CN103597619B (ja)
DE (1) DE112013000281B4 (ja)
TW (1) TWI515920B (ja)
WO (1) WO2013132993A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349918B2 (en) 2011-07-12 2016-05-24 Marubun Corporation Light emitting element and method for manufacturing same
CN105655451A (zh) * 2014-11-13 2016-06-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种刻蚀用掩膜组及应用其的衬底刻蚀方法
WO2016093257A1 (ja) * 2014-12-09 2016-06-16 丸文株式会社 発光素子及びその製造方法
WO2016113935A1 (ja) * 2015-01-16 2016-07-21 丸文株式会社 深紫外led及びその製造方法
JPWO2015147134A1 (ja) * 2014-03-26 2017-04-13 Jxエネルギー株式会社 エピタキシャル成長用基板の製造方法、それより得られるエピタキシャル成長用基板及びその基板を用いた発光素子
US9806229B2 (en) 2014-03-06 2017-10-31 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US9929311B2 (en) 2013-07-17 2018-03-27 Marubun Corporation Semiconductor light emitting element and method for producing the same
US10056526B2 (en) 2016-03-30 2018-08-21 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10680134B2 (en) 2015-09-03 2020-06-09 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US11309454B2 (en) 2018-01-26 2022-04-19 Marubun Corporation Deep ultraviolet LED and method for producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104969367B (zh) 2013-02-11 2019-04-16 亮锐控股有限公司 发光器件和用于制造发光器件的方法
JP2016178234A (ja) * 2015-03-20 2016-10-06 株式会社東芝 半導体受光デバイス
KR20180058125A (ko) 2016-11-23 2018-05-31 에스케이하이닉스 주식회사 임프린트 공정을 이용한 패턴 형성 방법
CN108493305B (zh) * 2018-03-22 2019-08-02 潍坊星泰克微电子材料有限公司 一种图形化蓝宝石衬底的制备方法
CN111599674B (zh) * 2020-05-28 2023-11-14 北京北方华创微电子装备有限公司 复合衬底的刻蚀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284970A (ja) * 2009-06-09 2010-12-24 Qinghua Univ ナノインプリント用レジスト及びナノインプリントの方法
JP2011138586A (ja) * 2009-12-28 2011-07-14 Wd Media Singapore Pte Ltd 磁気記録媒体及びその製造方法
WO2011122605A1 (ja) * 2010-03-30 2011-10-06 Hoya株式会社 インプリント用離型層付きモールド及びインプリント用離型層付きモールドの製造方法、コピーモールドの製造方法
JP2011211083A (ja) * 2010-03-30 2011-10-20 Hoya Corp マスクブランクス、パターン形成方法及びモールドの製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226290A (ja) * 2000-11-29 2002-08-14 Japan Fine Ceramics Center ダイヤモンド加工体の製造方法、及び、ダイヤモンド加工体
US7122482B2 (en) * 2003-10-27 2006-10-17 Molecular Imprints, Inc. Methods for fabricating patterned features utilizing imprint lithography
JP4250570B2 (ja) * 2004-06-30 2009-04-08 キヤノン株式会社 近接場露光方法及びこれを用いた素子の製造方法
US7736954B2 (en) * 2005-08-26 2010-06-15 Sematech, Inc. Methods for nanoscale feature imprint molding
JP4774937B2 (ja) 2005-11-10 2011-09-21 大日本印刷株式会社 テンプレートの製造方法
CN1800984A (zh) * 2005-12-27 2006-07-12 国家纳米技术产业化基地 一种负型纳米压印方法
US7998651B2 (en) * 2006-05-15 2011-08-16 Asml Netherlands B.V. Imprint lithography
JP4997550B2 (ja) * 2007-02-27 2012-08-08 独立行政法人理化学研究所 微細パターン形成方法
JP5144127B2 (ja) * 2007-05-23 2013-02-13 キヤノン株式会社 ナノインプリント用のモールドの製造方法
JP5205866B2 (ja) * 2007-08-23 2013-06-05 住友電気工業株式会社 モールドの形成方法、回折格子の形成方法、および分布帰還型半導体レーザの製造方法
US7891636B2 (en) * 2007-08-27 2011-02-22 3M Innovative Properties Company Silicone mold and use thereof
US20110020753A1 (en) * 2009-07-27 2011-01-27 International Business Machines Corporation Method for reversing tone of patterns on integrated circuit and patterning sub-lithography trenches
JP4647020B2 (ja) 2009-07-30 2011-03-09 キヤノン株式会社 窒化物半導体の微細構造の製造方法
US20130084352A1 (en) 2010-03-30 2013-04-04 Hoya Corporation Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold
JP5644192B2 (ja) * 2010-06-09 2014-12-24 住友電気工業株式会社 積層樹脂膜の形成方法及び半導体デバイスの製造方法
CN102157642A (zh) 2011-03-23 2011-08-17 华中科技大学 一种基于纳米压印的高出光效率led的制备方法
CN102760798B (zh) * 2011-04-29 2015-03-11 清华大学 一种发光二极管的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284970A (ja) * 2009-06-09 2010-12-24 Qinghua Univ ナノインプリント用レジスト及びナノインプリントの方法
JP2011138586A (ja) * 2009-12-28 2011-07-14 Wd Media Singapore Pte Ltd 磁気記録媒体及びその製造方法
WO2011122605A1 (ja) * 2010-03-30 2011-10-06 Hoya株式会社 インプリント用離型層付きモールド及びインプリント用離型層付きモールドの製造方法、コピーモールドの製造方法
JP2011211083A (ja) * 2010-03-30 2011-10-20 Hoya Corp マスクブランクス、パターン形成方法及びモールドの製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349918B2 (en) 2011-07-12 2016-05-24 Marubun Corporation Light emitting element and method for manufacturing same
US9929311B2 (en) 2013-07-17 2018-03-27 Marubun Corporation Semiconductor light emitting element and method for producing the same
US9806229B2 (en) 2014-03-06 2017-10-31 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
JPWO2015147134A1 (ja) * 2014-03-26 2017-04-13 Jxエネルギー株式会社 エピタキシャル成長用基板の製造方法、それより得られるエピタキシャル成長用基板及びその基板を用いた発光素子
CN105655451A (zh) * 2014-11-13 2016-06-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种刻蚀用掩膜组及应用其的衬底刻蚀方法
CN105655451B (zh) * 2014-11-13 2018-07-06 北京北方华创微电子装备有限公司 一种刻蚀用掩膜组及应用其的衬底刻蚀方法
WO2016093257A1 (ja) * 2014-12-09 2016-06-16 丸文株式会社 発光素子及びその製造方法
WO2016113935A1 (ja) * 2015-01-16 2016-07-21 丸文株式会社 深紫外led及びその製造方法
JP5999800B1 (ja) * 2015-01-16 2016-09-28 丸文株式会社 深紫外led及びその製造方法
TWI608631B (zh) * 2015-01-16 2017-12-11 丸文股份有限公司 Deep ultraviolet LED and its manufacturing method
US9929317B2 (en) 2015-01-16 2018-03-27 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10680134B2 (en) 2015-09-03 2020-06-09 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10950751B2 (en) 2015-09-03 2021-03-16 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US10056526B2 (en) 2016-03-30 2018-08-21 Marubun Corporation Deep ultraviolet LED and method for manufacturing the same
US11309454B2 (en) 2018-01-26 2022-04-19 Marubun Corporation Deep ultraviolet LED and method for producing the same

Also Published As

Publication number Publication date
US8921135B2 (en) 2014-12-30
KR101354516B1 (ko) 2014-01-23
DE112013000281T5 (de) 2014-08-21
CN103597619A (zh) 2014-02-19
TWI515920B (zh) 2016-01-01
CN103597619B (zh) 2015-10-14
TW201342661A (zh) 2013-10-16
US20140057377A1 (en) 2014-02-27
JPWO2013132993A1 (ja) 2015-07-30
KR20130130090A (ko) 2013-11-29
DE112013000281B4 (de) 2016-06-09
JP5456946B1 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5456946B1 (ja) 素子の製造方法
KR102208684B1 (ko) 반도체 발광 소자 및 그 제조 방법
TWI518776B (zh) Etching method
JP5643920B1 (ja) Led素子及びその製造方法
TWI611595B (zh) Led元件
JP2007311784A (ja) 多重パターン構造を有する半導体発光素子
US20170358712A1 (en) Deep ultraviolet led and method for manufacturing the same
JP2009054882A (ja) 発光装置の製造方法
TWI441353B (zh) 發光二極體的製備方法
JP5092740B2 (ja) 半導体素子の製造方法
JP5673900B2 (ja) ナノインプリントモールドの製造方法
JP5794963B2 (ja) 発光ダイオード
TW201316550A (zh) 發光二極體
TW201712890A (zh) 發光元件的製造方法
TWI501422B (zh) 發光二極體的製備方法
WO2018025805A1 (ja) 半導体発光素子及びその製造方法
KR20130046402A (ko) 반도체 발광소자 및 그 제조방법
JP5722082B2 (ja) 窒化物半導体レーザ装置の製造方法
JP2009004630A (ja) 半導体レーザ素子の製造方法
JP2013055104A (ja) 発光ダイオード用基板の製造方法、発光ダイオードの製造方法及びモールドの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013549085

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14115073

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137029628

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013000281

Country of ref document: DE

Ref document number: 1120130002817

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758290

Country of ref document: EP

Kind code of ref document: A1