WO2013132937A1 - Method for manufacturing thin film transistor and method for manufacturing display device - Google Patents

Method for manufacturing thin film transistor and method for manufacturing display device Download PDF

Info

Publication number
WO2013132937A1
WO2013132937A1 PCT/JP2013/052487 JP2013052487W WO2013132937A1 WO 2013132937 A1 WO2013132937 A1 WO 2013132937A1 JP 2013052487 W JP2013052487 W JP 2013052487W WO 2013132937 A1 WO2013132937 A1 WO 2013132937A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
thin film
film transistor
substrate
surface wave
Prior art date
Application number
PCT/JP2013/052487
Other languages
French (fr)
Japanese (ja)
Inventor
東 和文
智子 上野
Original Assignee
株式会社 島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 島津製作所 filed Critical 株式会社 島津製作所
Publication of WO2013132937A1 publication Critical patent/WO2013132937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials

Definitions

  • the present invention relates to a method for manufacturing a thin film transistor and a method for manufacturing a display device.
  • TFT Thin Film Transistor
  • the performance improvement of a thin film transistor has been an issue due to the demand for further performance improvement.
  • the mobility (mobility) is less than 1 cm / V / s.
  • TFTs using polysilicon are used for higher performance.
  • a TFT using an oxide semiconductor such as amorphous IGZO (InGaZnOx) is being put to practical use as an alternative technique.
  • Patent Document 1 In the case of an oxide semiconductor, there is a problem that it deteriorates in a reducing atmosphere during the process.
  • an iridium-based material is used for the source and drain electrodes in order to avoid deterioration in a reducing atmosphere. This is aimed at preventing the diffusion of reducing atoms, molecules and oxygen.
  • Non-Patent Document 1 discloses a top gate type TFT using amorphous IGZO.
  • a SiO2 film formed by a reactive sputtering method using oxygen is used as a gate insulating film.
  • Patent Document 1 a gate insulating film that covers the oxide semiconductor film is formed before the source / drain electrodes are formed. Therefore, the oxide semiconductor film may be reduced in the step of forming the gate insulating film.
  • the electron mobility between a metal atom and an oxygen atom is important.
  • the oxide semiconductor film is reduced in a reducing atmosphere and the composition changes, there is a problem that the mobility of the TFT deteriorates.
  • Non-Patent Document 1 there is a problem of plasma damage to the base when a gate insulating film is formed over the oxide semiconductor film by a sputtering method.
  • a film formed by sputtering generally has a columnar structure, it is difficult to improve characteristics such as voltage resistance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a thin film transistor capable of obtaining a high-performance oxide semiconductor thin film transistor, and a method for manufacturing a display device using the same.
  • the gate insulating film is formed by the surface wave plasma CVD method, deterioration due to reduction of the oxide semiconductor film can be reduced. Thereby, a high-performance thin film transistor can be obtained.
  • the gate insulating film is formed in a state where the distance between the substrate and the dielectric is 150 mm or more, the concentration of hydrogen radicals in the vicinity of the substrate can be suppressed, so that the oxide semiconductor Reduction of the membrane can be prevented.
  • a microwave propagates through a slot antenna to a dielectric window and becomes a surface wave that forms a standing wave on the surface of the dielectric window. Therefore, reduction of the oxide semiconductor film can be prevented.
  • an IGZO film can be used as the oxide semiconductor film, and a silicon oxide film can be used as the gate insulating film. Furthermore, the above-described method for manufacturing a thin film transistor is suitable for a method for manufacturing a TFT array substrate for a display device.
  • An object of the present invention is to provide a method for manufacturing a thin film transistor capable of obtaining a high-performance oxide semiconductor thin film transistor, and a method for manufacturing a display device using the same.
  • FIG. 5 is a graph showing the emission intensity of hydrogen when the distance between the dielectric window and the substrate is changed in the surface wave plasma CVD apparatus. It is a graph which shows the light emission intensity
  • the thin film transistor according to this embodiment is a thin film transistor using an oxide semiconductor film as an active layer.
  • a cross-sectional structure of this thin film transistor is shown in FIG.
  • the TFT shown in FIG. 1 is, for example, a TFT of a TFT array substrate used in a display device such as a liquid crystal or an organic EL.
  • an insulating film 2 serving as a base of a TFT is formed on the substrate 1.
  • a transparent glass substrate can be used as the substrate 1, and a SiO 2 film can be used as the insulating film 2.
  • the insulating film 2 can be formed by, for example, a plasma CVD method, a sputtering method, or the like, and the film forming method is not particularly limited.
  • source / drain electrodes 3 are formed on the insulating film 2.
  • a metal film such as Mo is formed by sputtering.
  • resist coating, exposure, development, etching, resist removal, and the like are performed, and the metal film is patterned to form the source / drain electrodes 3.
  • the source / drain electrodes 3 may be formed by other materials and methods. Further, in this step, wirings to the source / drain electrodes 3 may be formed.
  • the semiconductor layer 4 is formed on the source / drain electrodes 3.
  • the semiconductor layer 4 is formed of an amorphous oxide film.
  • an ⁇ -IGZO film can be used.
  • an ⁇ -IGZO film is formed by reactive sputtering using an Ar / O 2 mixed gas. Then, resist coating, exposure, development, etching, resist removal, and the like are performed to pattern the ⁇ -IGZO film. Thereby, an island-like semiconductor layer 4 extending from the source electrode 3 to the drain electrode 3 is formed.
  • a gate insulating film 5 is formed so as to cover the semiconductor layer 4.
  • the gate insulating film 5 is formed by forming a SiO 2 film on the entire substrate 1 using a surface wave plasma CVD (Chemical Vapor Deposition) apparatus.
  • a gate insulating film 5 is formed on the entire surface of the substrate 1 using a surface wave plasma CVD method using SiH4 and N2O as source gases.
  • a gate electrode 6 is formed on the gate insulating film 5.
  • an ITO (Indium Tin Oxide) film using a reactive sputtering method using an O2 / Ar mixed gas is formed.
  • the ITO film is patterned by performing resist coating, exposure, development, etching, resist removal, and the like. Thereby, the gate electrode 6 can be formed on the gate insulating film 5.
  • the gate electrode 6 is disposed so as to face the semiconductor layer 4 with the gate insulating film 5 interposed therebetween.
  • a top gate type thin film transistor can be manufactured. For example, when a predetermined gate voltage is supplied to the gate electrode 6, a channel is formed in the semiconductor layer 4. Such thin film transistors are formed in an array on the substrate 1 to manufacture a thin film transistor array substrate.
  • This TFT array substrate can be used as an active matrix substrate for a display device such as liquid crystal or organic EL.
  • the gate insulating film 5 can be formed without reducing or deteriorating the semiconductor layer 4 made of the underlying amorphous IGZO film. Therefore, a high-performance thin film transistor can be manufactured.
  • the composition of the ⁇ -IGZO active layer of the thin film transistor thus obtained was evaluated by fluorescent X-rays, it was confirmed that it was almost the same composition as InGaZnO 4 which was the composition before the formation of the gate insulating film 5 and was not reduced. .
  • FIG. 2 is a front view showing a schematic configuration of the surface wave plasma CVD apparatus.
  • FIG. 3 is a side view showing a schematic configuration of the surface wave plasma CVD apparatus.
  • FIG. 4 is a top view showing a schematic configuration of the surface wave plasma CVD apparatus. 2 to 4 show an example of the device configuration, and dimensions and arrangement of slot antennas are simplified.
  • the surface wave plasma CVD apparatus includes a chamber 11 serving as a reaction chamber.
  • the chamber 11 is provided with an exhaust port 11a.
  • a vacuum pump (not shown) connected to the exhaust port 11a exhausts the chamber 11.
  • gas inlets 14 and 15 are provided on the side wall of the chamber 11.
  • Ar gas is introduced from the gas inlet 14, and SiH 4 gas and N 2 O gas source gases are introduced from the gas inlet 15.
  • the inside of the chamber 11 is controlled to have a predetermined process pressure.
  • the gas introduced into the chamber 11 and the flow rate thereof are not particularly limited.
  • TEOS tetraethoxysilane
  • a stage 17 that can be moved up and down is installed. Then, the substrate 1 on which the semiconductor layer 4 (not shown in FIG. 2) is formed is placed on the stage 17. Note that a heater may be provided on the stage 17 to heat the substrate 1 to an appropriate process temperature.
  • a waveguide 12 through which microwaves propagate is attached above the chamber 11. In the waveguide 12, the microwave propagates from the left side to the right side in FIGS. 2 and 4. The space in the waveguide 12 is at atmospheric pressure.
  • a slot antenna 16 is formed on the upper wall of the chamber 11. The slot antenna 16 is opened in a slit shape, for example. The plurality of slot antennas 16 are arranged in an array. The microwave that has propagated through the waveguide 12 is supplied into the chamber 11 through the slot antenna 16. Furthermore, a dielectric window 13 is installed under the slot antenna 16. The dielectric window 13 is an alumina flat plate, for example, and is provided to separate the space in the waveguide 12 and the space in the chamber 11.
  • the width of the dielectric window 13 is wider than that of the waveguide 12 in a direction (left-right direction in FIG. 3) orthogonal to the microwave traveling direction (left-right direction in FIG. 2). Then, the microwave is introduced into the chamber 11 through the dielectric window 13 and becomes a surface wave that propagates along the surface of the dielectric window 13. More specifically, the microwave propagates through the slot antenna 16 to the dielectric window 13, generates a standing wave on the surface of the dielectric window 13, and becomes a surface wave propagating along the surface of the dielectric window 13. . In the direction orthogonal to the traveling direction of the microwave, the surface wave is formed to be wider than the waveguide 12 on the surface of the dielectric window 13.
  • the number, shape, size, and the like of the slot antenna 16 are not particularly limited.
  • Ar gas introduced from the gas inlet 14 is excited by surface waves along the surface of the dielectric window 13. Thereby, surface wave plasma is generated near the dielectric window 13 of the chamber 11. Thereby, the source gas (SiH 4, N 2 O) introduced from the gas inlet 15 is dissociated, and silicon oxide is deposited on the substrate 1. In this way, the gate insulating film 5 is formed on the semiconductor layer 4 made of the InGaZnO 4 film.
  • the distance (Gap) between the substrate 1 and the dielectric window 13 can be adjusted by moving the stage 17 up and down.
  • the surface wave plasma CVD method a microwave is propagated along the surface of the dielectric window 13 in a surface wave mode. For this reason, plasma exists only in a very thin region near the dielectric window 13 and does not exist in the vicinity of the substrate 1. Thereby, the hydrogen radical concentration in the vicinity of the substrate 1 can be suppressed.
  • the semiconductor layer 4 can be prevented from being reduced by hydrogen radicals. Therefore, deterioration of the semiconductor layer 4 can be prevented, and a high-performance oxide semiconductor thin film transistor can be formed.
  • the gap between the substrate 1 and the dielectric window 13 is preferably 250 mm or less.
  • a TFT having excellent pressure resistance can be manufactured. Further, in the parallel plate type plasma CVD apparatus, plasma is present almost entirely between the parallel plates. Therefore, the hydrogen radical concentration in the vicinity of the substrate 1 is increased, and the semiconductor layer 4 is reduced. Therefore, a high performance thin film transistor can be manufactured by forming the gate insulating film 5 using the surface wave plasma CVD apparatus as in the manufacturing method according to the present embodiment.
  • FIG. 5 shows the measurement results obtained by measuring the emission intensity ratio of H ⁇ with respect to argon, which is a tracer gas, using the actinometry method.
  • FIG. 5 is a graph showing the results of measuring the emission intensity ratio (H ⁇ / Ar) while changing the dielectric window 13, the substrate 1, and the gap. Since the emission intensity ratio is proportional to the hydrogen radical concentration, it can be seen that when the gap is changed from 100 mm to 300 mm, the hydrogen radical concentration rapidly decreases as the gap becomes wider until the gap is near 150 mm. Therefore, the hydrogen radical concentration can be made sufficiently low by setting Gap to 150 mm or more. That is, by setting the gap to 150 mm or more, damage to the substrate 1 due to hydrogen radicals can be reduced.
  • FIGS. 6 and 7 show the measurement results obtained by the actinometry method when the process conditions are changed.
  • FIG. 6 shows the measurement result when the power of the supplied microwave is changed
  • FIG. 7 shows the measurement result when the flow rate of the supplied gas is changed. 6 and 7, the horizontal axis is Gap (mm), and the vertical axis is the emission intensity ratio of H ⁇ to Ar.
  • the process pressure (10 Pa) is the common condition, and the microwave power is changed to 0.7 kW, 1.4 kW, 2.1 kW, and 2.8 kW.
  • the hydrogen radicals decrease as the gap becomes wider.
  • the gap is 150 mm or more, more preferably 200 mm or more
  • the hydrogen radical concentration is sufficiently low. Therefore, damage caused by hydrogen radicals can be reduced by setting the gap to 150 mm or more, more preferably 200 mm or more.
  • the SiH 4 and NH 3 gas flow rates are changed, the hydrogen radical concentration decreases as the gap becomes wider. Therefore, when Gap is 150 mm or more, more preferably 200 mm or more, damage due to hydrogen radicals can be reduced.
  • the gap is set to 150 mm or more, more preferably 200 mm or more.
  • the gap is set to 150 mm or more, more preferably 200 mm or more.
  • an SiO 2 film is formed on the substrate 1 on which amorphous IGZO is formed by surface wave plasma CVD using SiH 4 and N 2 O gas as raw materials.
  • the oxide semiconductor thin film transistor thus obtained has higher mobility than an amorphous silicon semiconductor, and the manufacturing process is less complicated than a polycrystalline silicon semiconductor. Therefore, the oxide semiconductor thin film transistor is suitable for a display device such as a liquid crystal or an organic EL. Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
  • the present invention is applicable to a method for manufacturing a thin film transistor capable of obtaining a high-performance oxide semiconductor thin film transistor, and a method for manufacturing a display device using the same.

Abstract

Provided are a method for manufacturing thin film transistors with which a high efficiency oxide semiconductor thin film transistor can be obtained and a method for manufacturing display devices using the same. The method for manufacturing thin film transistors relating to one aspect of the invention is provided with a step for forming, on a substrate (1), a semiconductor layer (4) which is the oxide semiconductor film, and a step for forming, on the semiconductor layer (4), a gate insulator film (5) using a surface wave plasma CVD method. Further, with the surface wave plasma CVD method, it is preferable to separate the substrate (1) and a dielectric body by a gap of at least 150 mm.

Description

薄膜トランジスタの製造方法、及び表示装置の製造方法Thin film transistor manufacturing method and display device manufacturing method
 本発明は、薄膜トランジスタの製造方法、及び表示装置の製造方法に関する。 The present invention relates to a method for manufacturing a thin film transistor and a method for manufacturing a display device.
 液晶や有機EL等の表示装置では、これまで以上の性能向上の要求から、薄膜トランジスタ(TFT:Thin Film Transistor)の性能向上が課題となっている。非晶質(アモルファス)シリコンを用いたTFTでは、易動度(移動度)が1cm/V/sに満たない。このため、ポリシリコンを用いたTFTが高性能化のために利用されている。しかしながら、ポリシリコンを用いるプロセスは低コスト化が難しいため、これに代わる技術として、非晶質IGZO(InGaZnOx)等の酸化物半導体を用いるTFTが実用化されつつある。 In a display device such as a liquid crystal display or an organic EL display, the performance improvement of a thin film transistor (TFT: Thin Film Transistor) has been an issue due to the demand for further performance improvement. In a TFT using amorphous silicon, the mobility (mobility) is less than 1 cm / V / s. For this reason, TFTs using polysilicon are used for higher performance. However, since it is difficult to reduce the cost of a process using polysilicon, a TFT using an oxide semiconductor such as amorphous IGZO (InGaZnOx) is being put to practical use as an alternative technique.
 酸化物半導体の場合、プロセス中に還元雰囲気化で劣化するという問題がある。例えば、特許文献1では、還元雰囲気化の劣化を避けるために、ソース、ドレイン電極にイリジウム系材料を用いている。こうすることで、還元性の原子、分子、酸素の拡散防止を狙っている。 In the case of an oxide semiconductor, there is a problem that it deteriorates in a reducing atmosphere during the process. For example, in Patent Document 1, an iridium-based material is used for the source and drain electrodes in order to avoid deterioration in a reducing atmosphere. This is aimed at preventing the diffusion of reducing atoms, molecules and oxygen.
 また、非特許文献1には、非晶質IGZOを用いたトップゲート型のTFTが開示されている。非特許文献1では、酸素を用いた反応性スパッタリング法によって形成したSiO2膜をゲート絶縁膜として用いている。 Further, Non-Patent Document 1 discloses a top gate type TFT using amorphous IGZO. In Non-Patent Document 1, a SiO2 film formed by a reactive sputtering method using oxygen is used as a gate insulating film.
特開2010-272663号公報JP 2010-272663 A
 しかしながら、特許文献1では、ソース・ドレイン電極を形成する前に、酸化物半導体膜を覆うゲート絶縁膜を成膜している。従って、ゲート絶縁膜の形成工程で、酸化物半導体膜が還元されてしまうおそれがある。酸化物半導体では、金属原子と酸素原子の間の電子移動度が重要である。例えば、還元雰囲気下で酸化物半導体膜が還元されて、組成が変化してしまうと、TFTの易動度が劣化してしまうという問題がある。また、非特許文献1では、酸化物半導体膜上に、スパッタリング法を用いてゲート絶縁膜を成膜した場合、下地へのプラズマダメージの問題がある。また、スパッタリング法で成膜された膜は、一般的に、柱状構造となるため、耐電圧性等の特性を高くすることが困難である。 However, in Patent Document 1, a gate insulating film that covers the oxide semiconductor film is formed before the source / drain electrodes are formed. Therefore, the oxide semiconductor film may be reduced in the step of forming the gate insulating film. In an oxide semiconductor, the electron mobility between a metal atom and an oxygen atom is important. For example, when the oxide semiconductor film is reduced in a reducing atmosphere and the composition changes, there is a problem that the mobility of the TFT deteriorates. In Non-Patent Document 1, there is a problem of plasma damage to the base when a gate insulating film is formed over the oxide semiconductor film by a sputtering method. In addition, since a film formed by sputtering generally has a columnar structure, it is difficult to improve characteristics such as voltage resistance.
 本発明は、上記の問題点に鑑みてなされたものであり、高性能の酸化物半導体薄膜トランジスタを得ることができる薄膜トランジスタの製造方法、及びそれを用いた表示装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a thin film transistor capable of obtaining a high-performance oxide semiconductor thin film transistor, and a method for manufacturing a display device using the same. And
 本発明の第1の態様に係る薄膜トランジスタの製造方法によれば、表面波プラズマCVD法によって、ゲート絶縁膜を形成しているため、酸化物半導体膜の還元による劣化を低減することができる。これにより、高性能な薄膜トランジスタを得ることができる。 According to the method for manufacturing a thin film transistor according to the first aspect of the present invention, since the gate insulating film is formed by the surface wave plasma CVD method, deterioration due to reduction of the oxide semiconductor film can be reduced. Thereby, a high-performance thin film transistor can be obtained.
 上記の製造方法において、基板と誘電体との距離を150mm以上とした状態で、ゲート絶縁膜を成膜することで、基板の近傍での水素ラジカル濃度を抑制することができるため、酸化物半導体膜の還元を防ぐことができる。 In the above manufacturing method, since the gate insulating film is formed in a state where the distance between the substrate and the dielectric is 150 mm or more, the concentration of hydrogen radicals in the vicinity of the substrate can be suppressed, so that the oxide semiconductor Reduction of the membrane can be prevented.
 上記の製造方法において、前記表面波プラズマCVD法では、スロットアンテナを通して誘電体窓にマイクロ波が伝播し、前記誘電体窓の表面で定在波が形成する表面波となることで、基板の近傍での水素ラジカル濃度を抑制することができるため、酸化物半導体膜の還元を防ぐことができる。 In the manufacturing method described above, in the surface wave plasma CVD method, a microwave propagates through a slot antenna to a dielectric window and becomes a surface wave that forms a standing wave on the surface of the dielectric window. Therefore, reduction of the oxide semiconductor film can be prevented.
 上記の製造方法の好適な実施形態として、酸化物半導体膜としてIGZO膜を用いることができ、ゲート絶縁膜として酸化ケイ素膜を用いることができる。さらに、上記の薄膜トランジスタの製造方法は、表示装置用のTFTアレイ基板の製造方法に好適である。 As a preferred embodiment of the above manufacturing method, an IGZO film can be used as the oxide semiconductor film, and a silicon oxide film can be used as the gate insulating film. Furthermore, the above-described method for manufacturing a thin film transistor is suitable for a method for manufacturing a TFT array substrate for a display device.
 本発明によれば、高性能の酸化物半導体薄膜トランジスタを得ることができる薄膜トランジスタの製造方法、及びそれを用いた表示装置の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a thin film transistor capable of obtaining a high-performance oxide semiconductor thin film transistor, and a method for manufacturing a display device using the same.
本実施の形態に係る薄膜トランジスタの断面構造を示す図である。It is a figure which shows the cross-section of the thin-film transistor which concerns on this Embodiment. ゲート絶縁膜を成膜する表面波プラズマCVD装置の構成を模式的に示す正面図である。It is a front view which shows typically the structure of the surface wave plasma CVD apparatus which forms a gate insulating film. ゲート絶縁膜を成膜する表面波プラズマCVD装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the surface wave plasma CVD apparatus which forms a gate insulating film. ゲート絶縁膜を成膜する表面波プラズマCVD装置の構成を模式的に示す上面図である。It is a top view which shows typically the structure of the surface wave plasma CVD apparatus which forms a gate insulating film. 表面波プラズマCVD装置において、誘電体窓と基板間距離を変化させた時の水素の発光強度を示すグラフである。5 is a graph showing the emission intensity of hydrogen when the distance between the dielectric window and the substrate is changed in the surface wave plasma CVD apparatus. 表面波プラズマCVD装置において、マイクロ波パワーを変えた時の水素の発光強度を示すグラフである。It is a graph which shows the light emission intensity | strength of hydrogen when a microwave power is changed in a surface wave plasma CVD apparatus. 表面波プラズマCVD装置において、ガス流量を変えた時の水素の発光強度を示すグラフである。It is a graph which shows the emitted light intensity of hydrogen when a gas flow rate is changed in a surface wave plasma CVD apparatus.
 本実施の形態に係る薄膜トランジスタは、酸化物半導体膜を活性層として用いた薄膜トランジスタである。この薄膜トランジスタの断面構成を図1に示す。以下、図1を参照して、薄膜トランジスタの製造方法について説明する。図1に示すTFTは、例えば、液晶や有機EL等の表示装置に用いられるTFTアレイ基板のTFTである。 The thin film transistor according to this embodiment is a thin film transistor using an oxide semiconductor film as an active layer. A cross-sectional structure of this thin film transistor is shown in FIG. Hereinafter, a method of manufacturing a thin film transistor will be described with reference to FIG. The TFT shown in FIG. 1 is, for example, a TFT of a TFT array substrate used in a display device such as a liquid crystal or an organic EL.
 まず、基板1の上に、TFTの下地となる絶縁膜2を形成する。基板1としては、例えば、透明なガラス基板を用いることでき、絶縁膜2としては、SiO2膜を用いることができる。絶縁膜2は、例えば、プラズマCVD法、スパッタリング法等で形成することができ、特に成膜法は限定されるものではない。次に、絶縁膜2の上に、ソース・ドレイン電極3を形成する。例えば、スパッタリング法でMo等の金属膜を形成する。そして、レジスト塗布、露光、現像、エッチング、レジスト除去などを行い、金属膜をパターニングすることで、ソース・ドレイン電極3が形成される。もちろん、これ以外の、材料、方法で、ソース・ドレイン電極3を形成してもよい。さらには、この工程で、ソース・ドレイン電極3への配線等を形成してもよい。 First, an insulating film 2 serving as a base of a TFT is formed on the substrate 1. For example, a transparent glass substrate can be used as the substrate 1, and a SiO 2 film can be used as the insulating film 2. The insulating film 2 can be formed by, for example, a plasma CVD method, a sputtering method, or the like, and the film forming method is not particularly limited. Next, source / drain electrodes 3 are formed on the insulating film 2. For example, a metal film such as Mo is formed by sputtering. Then, resist coating, exposure, development, etching, resist removal, and the like are performed, and the metal film is patterned to form the source / drain electrodes 3. Of course, the source / drain electrodes 3 may be formed by other materials and methods. Further, in this step, wirings to the source / drain electrodes 3 may be formed.
 次に、ソース・ドレイン電極3の上に、半導体層4を形成する。半導体層4は、非晶質酸化物膜によって形成され、具体的には、α-IGZO膜を用いることができる。例えば、Ar/O2混合ガスを用いた反応性スパッタリングにより、α-IGZO膜を成膜する。そして、レジスト塗布、露光、現像、エッチング、レジスト除去などを行い、α-IGZO膜をパターニングする。これにより、ソース電極3上からドレイン電極3上に渡って延在する島状の半導体層4が形成される。 Next, the semiconductor layer 4 is formed on the source / drain electrodes 3. The semiconductor layer 4 is formed of an amorphous oxide film. Specifically, an α-IGZO film can be used. For example, an α-IGZO film is formed by reactive sputtering using an Ar / O 2 mixed gas. Then, resist coating, exposure, development, etching, resist removal, and the like are performed to pattern the α-IGZO film. Thereby, an island-like semiconductor layer 4 extending from the source electrode 3 to the drain electrode 3 is formed.
 次に、半導体層4を覆うようにゲート絶縁膜5を形成する。ここでは、表面波プラズマCVD(Chemical Vapor Deposition)装置を用いて基板1の全体にSiO2膜を成膜することで、ゲート絶縁膜5が形成される。SiH4とN2Oを原料ガスとした表面波プラズマCVD法を用いて、基板1全面にゲート絶縁膜5を形成する。そして、ゲート絶縁膜5の上から、ゲート電極6を形成する。例えば、O2/Ar混合ガスを用いた反応性スパッタリング法を用いたITO(Indium Tin Oxide)膜を成膜する。そして、レジスト塗布、露光、現像、エッチング、レジスト除去等を行うことで、ITO膜をパターニングする。これにより、ゲート絶縁膜5上に、ゲート電極6を形成することができる。ゲート電極6は、ゲート絶縁膜5を介して、半導体層4と対向するよう配置される。 Next, a gate insulating film 5 is formed so as to cover the semiconductor layer 4. Here, the gate insulating film 5 is formed by forming a SiO 2 film on the entire substrate 1 using a surface wave plasma CVD (Chemical Vapor Deposition) apparatus. A gate insulating film 5 is formed on the entire surface of the substrate 1 using a surface wave plasma CVD method using SiH4 and N2O as source gases. Then, a gate electrode 6 is formed on the gate insulating film 5. For example, an ITO (Indium Tin Oxide) film using a reactive sputtering method using an O2 / Ar mixed gas is formed. Then, the ITO film is patterned by performing resist coating, exposure, development, etching, resist removal, and the like. Thereby, the gate electrode 6 can be formed on the gate insulating film 5. The gate electrode 6 is disposed so as to face the semiconductor layer 4 with the gate insulating film 5 interposed therebetween.
 このようにすることで、トップゲート型の薄膜トランジスタを製造することができる。例えば、ゲート電極6に所定のゲート電圧を供給すると、半導体層4にチャネルが形成される。このような薄膜トランジスタを基板1上にアレイ状に形成して、薄膜トランジスタアレイ基板を製造する。このTFTアレイ基板を液晶や有機EL等の表示装置のアクティブマトリクス基板として用いることができる。 In this way, a top gate type thin film transistor can be manufactured. For example, when a predetermined gate voltage is supplied to the gate electrode 6, a channel is formed in the semiconductor layer 4. Such thin film transistors are formed in an array on the substrate 1 to manufacture a thin film transistor array substrate. This TFT array substrate can be used as an active matrix substrate for a display device such as liquid crystal or organic EL.
 本実施の形態では、表面波プラズマCVD法を用いているため、下地の非晶質IGZO膜から成る半導体層4を還元・劣化させることなく、ゲート絶縁膜5を形成することができる。よって、高性能の薄膜トランジスタを製造することができる。こうして得られた薄膜トランジスタのα-IGZO活性層の組成を蛍光X線により評価したところ、ゲート絶縁膜5の形成前の組成であるInGaZnO4とほぼ同じ組成であり、還元されていないことが確認できた。 In this embodiment, since the surface wave plasma CVD method is used, the gate insulating film 5 can be formed without reducing or deteriorating the semiconductor layer 4 made of the underlying amorphous IGZO film. Therefore, a high-performance thin film transistor can be manufactured. When the composition of the α-IGZO active layer of the thin film transistor thus obtained was evaluated by fluorescent X-rays, it was confirmed that it was almost the same composition as InGaZnO 4 which was the composition before the formation of the gate insulating film 5 and was not reduced. .
 次に、ゲート絶縁膜5の成膜方法について、詳細に説明する。本実施の形態では、表面波プラズマCVD法を用いて、ゲート絶縁膜5を成膜している。この表面波プラズマCVD装置について、図2~図4を用いて説明する。図2は、表面波プラズマCVD装置の概略構成を示す正面図である。図3は、表面波プラズマCVD装置の概略構成を示す側面図である。図4は、表面波プラズマCVD装置の概略構成を示す上面図である。なお、図2~図4は、装置構成の一例であり、寸法やスロットアンテナの配置などは簡略化されている。 Next, a method for forming the gate insulating film 5 will be described in detail. In this embodiment, the gate insulating film 5 is formed using a surface wave plasma CVD method. This surface wave plasma CVD apparatus will be described with reference to FIGS. FIG. 2 is a front view showing a schematic configuration of the surface wave plasma CVD apparatus. FIG. 3 is a side view showing a schematic configuration of the surface wave plasma CVD apparatus. FIG. 4 is a top view showing a schematic configuration of the surface wave plasma CVD apparatus. 2 to 4 show an example of the device configuration, and dimensions and arrangement of slot antennas are simplified.
 表面波プラズマCVD装置には、反応室となるチャンバー11を備えている。チャンバー11には、排気口11aが設けられている。そして、排気口11aに接続された真空ポンプ(不図示)が、チャンバー11を排気している。さらに、チャンバー11の側壁には、ガス導入口14、15が設けられている。ガス導入口14からはArガスが導入され、ガス導入口15からは、SiH4ガス、及びN2Oガスの原料ガスが導入される。ガス導入口14、15から導入されるガスを、排気口11aから排気することで、チャンバー11内が所定のプロセス圧力になるように制御される。もちろん、チャンバー11内に導入されるガス、及びその流量については、特に限定されるものではない。例えば、テトラエトキシシラン(TEOS)を原料ガスとして用いてもよい。 The surface wave plasma CVD apparatus includes a chamber 11 serving as a reaction chamber. The chamber 11 is provided with an exhaust port 11a. A vacuum pump (not shown) connected to the exhaust port 11a exhausts the chamber 11. Further, gas inlets 14 and 15 are provided on the side wall of the chamber 11. Ar gas is introduced from the gas inlet 14, and SiH 4 gas and N 2 O gas source gases are introduced from the gas inlet 15. By exhausting the gas introduced from the gas inlets 14 and 15 from the exhaust port 11a, the inside of the chamber 11 is controlled to have a predetermined process pressure. Of course, the gas introduced into the chamber 11 and the flow rate thereof are not particularly limited. For example, tetraethoxysilane (TEOS) may be used as the source gas.
 チャンバー11内には、昇降可能なステージ17が設置されている。そして、ステージ17上に、半導体層4(図2では図示せず)が形成された基板1を載置する。なお、ステージ17にヒータを設け、基板1を適切なプロセス温度に加熱してもよい。チャンバー11の上方には、マイクロ波が伝播する導波管12が取り付けられている。導波管12において、マイクロ波は、図2、及び図4において、左側から右側に伝播する。導波管12内の空間は、大気圧となっている。チャンバー11の上壁には、スロットアンテナ16が形成されている。スロットアンテナ16は、例えば、スリット状に開口している。そして、複数のスロットアンテナ16はアレイ状にされている。このスロットアンテナ16を介して、導波管12を伝播してきたマイクロ波がチャンバー11内に供給される。さらに、スロットアンテナ16の下には、誘電体窓13が設置されている。誘電体窓13は、例えば、アルミナの平板であり、導波管12内の空間とチャンバー11内の空間とを隔てるために設けられている。 In the chamber 11, a stage 17 that can be moved up and down is installed. Then, the substrate 1 on which the semiconductor layer 4 (not shown in FIG. 2) is formed is placed on the stage 17. Note that a heater may be provided on the stage 17 to heat the substrate 1 to an appropriate process temperature. A waveguide 12 through which microwaves propagate is attached above the chamber 11. In the waveguide 12, the microwave propagates from the left side to the right side in FIGS. 2 and 4. The space in the waveguide 12 is at atmospheric pressure. A slot antenna 16 is formed on the upper wall of the chamber 11. The slot antenna 16 is opened in a slit shape, for example. The plurality of slot antennas 16 are arranged in an array. The microwave that has propagated through the waveguide 12 is supplied into the chamber 11 through the slot antenna 16. Furthermore, a dielectric window 13 is installed under the slot antenna 16. The dielectric window 13 is an alumina flat plate, for example, and is provided to separate the space in the waveguide 12 and the space in the chamber 11.
 マイクロ波の進行方向(図2の左右方向)と直交する方向(図3の左右方向)において、誘電体窓13の幅は、導波管12よりも広くなっている。そして、マイクロ波は、誘電体窓13を介してチャンバー11に導入され、誘電体窓13の表面に沿って伝播する表面波となる。より具体的には、スロットアンテナ16を通して誘電体窓13にマイクロ波が伝播し、誘電体窓13の表面で定在波を生じて、誘電体窓13の表面に沿って伝播する表面波となる。マイクロ波の進行方向と直交する方向において、誘電体窓13の表面では、表面波が導波管12よりも広がって形成される。なお、スロットアンテナ16の数、形状、大きさ等については特に限定されるものではない。 The width of the dielectric window 13 is wider than that of the waveguide 12 in a direction (left-right direction in FIG. 3) orthogonal to the microwave traveling direction (left-right direction in FIG. 2). Then, the microwave is introduced into the chamber 11 through the dielectric window 13 and becomes a surface wave that propagates along the surface of the dielectric window 13. More specifically, the microwave propagates through the slot antenna 16 to the dielectric window 13, generates a standing wave on the surface of the dielectric window 13, and becomes a surface wave propagating along the surface of the dielectric window 13. . In the direction orthogonal to the traveling direction of the microwave, the surface wave is formed to be wider than the waveguide 12 on the surface of the dielectric window 13. The number, shape, size, and the like of the slot antenna 16 are not particularly limited.
 ガス導入口14から導入されたArガスが、誘電体窓13の表面に沿った表面波によって励起される。これにより、チャンバー11の誘電体窓13の近傍には、表面波プラズマが生成される。これにより、ガス導入口15から導入された原料ガス(SiH4、N2O)が解離され、酸化ケイ素が基板1に堆積される。このようにして、InGaZnO4膜からなる半導体層4上にゲート絶縁膜5が成膜される。なお、ステージ17を昇降することで、基板1と誘電体窓13との距離(Gap)が調整可能になっている。 Ar gas introduced from the gas inlet 14 is excited by surface waves along the surface of the dielectric window 13. Thereby, surface wave plasma is generated near the dielectric window 13 of the chamber 11. Thereby, the source gas (SiH 4, N 2 O) introduced from the gas inlet 15 is dissociated, and silicon oxide is deposited on the substrate 1. In this way, the gate insulating film 5 is formed on the semiconductor layer 4 made of the InGaZnO 4 film. The distance (Gap) between the substrate 1 and the dielectric window 13 can be adjusted by moving the stage 17 up and down.
 半導体層4を劣化させることなく、プラズマCVD法を用いて、ゲート絶縁膜5を形成するためには、ゲート絶縁膜5の形成プロセスの際に、基板1の近傍での水素ラジカルを大幅に削減することが重要である。本件出願の発明者らは表面波プラズマCVD装置を用いた絶縁膜形成を行ってきた結果、基板1を誘電体窓13から150mm以上離しても、十分な電子密度の条件下で、高速成膜が可能であることを確認している。さらに、発明者らは、水素ラジカルの寿命は、シランが分解されて生じる前駆体(SiHx)よりも短く、誘電体窓13から基板1を離すことで、水素ラジカル濃度の低い環境下で成膜できることを見出している。 In order to form the gate insulating film 5 using the plasma CVD method without deteriorating the semiconductor layer 4, hydrogen radicals in the vicinity of the substrate 1 are greatly reduced during the formation process of the gate insulating film 5. It is important to. The inventors of the present application have formed an insulating film using a surface wave plasma CVD apparatus. As a result, even if the substrate 1 is separated from the dielectric window 13 by 150 mm or more, high-speed film formation is performed under conditions of sufficient electron density. Confirm that it is possible. Furthermore, the inventors have a life of hydrogen radicals shorter than that of a precursor (SiHx) generated by decomposition of silane, and the substrate 1 is separated from the dielectric window 13 to form a film in an environment with a low hydrogen radical concentration. I find out what I can do.
 表面波プラズマCVD法では、マイクロ波が誘電体窓13の表面に沿って伝播する表面波モードとなる。このため、プラズマが誘電体窓13の付近のごく薄い領域にのみ存在し、基板1の近傍には存在しなくなる。これにより、基板1の近傍における水素ラジカル濃度を抑制することができる。水素ラジカルによって半導体層4が還元されるのを防ぐことができる。よって、半導体層4の劣化を防ぐことができ、高性能な酸化物半導体薄膜トランジスタを形成することができる。また、成膜速度の低下を防ぐために、基板1と誘電体窓13との間のGapを250mm以下とすることが好ましい。 In the surface wave plasma CVD method, a microwave is propagated along the surface of the dielectric window 13 in a surface wave mode. For this reason, plasma exists only in a very thin region near the dielectric window 13 and does not exist in the vicinity of the substrate 1. Thereby, the hydrogen radical concentration in the vicinity of the substrate 1 can be suppressed. The semiconductor layer 4 can be prevented from being reduced by hydrogen radicals. Therefore, deterioration of the semiconductor layer 4 can be prevented, and a high-performance oxide semiconductor thin film transistor can be formed. In order to prevent the film formation rate from decreasing, the gap between the substrate 1 and the dielectric window 13 is preferably 250 mm or less.
 ゲート絶縁膜5の形成に、スパッタリング法を用いていないため、耐圧性の優れたTFTを製造することができる。また、平行平板型のプラズマCVD装置では、平行平板間のほぼ全体にプラズマが存在してしまう。従って、基板1の近傍での水素ラジカル濃度が高くなり、半導体層4が還元されてしまう。よって、本実施形態にかかる製造方法のように、表面波プラズマCVD装置を用いて、ゲート絶縁膜5を成膜することで、高性能の薄膜トランジスタを製造することができる。 Since the sputtering method is not used for forming the gate insulating film 5, a TFT having excellent pressure resistance can be manufactured. Further, in the parallel plate type plasma CVD apparatus, plasma is present almost entirely between the parallel plates. Therefore, the hydrogen radical concentration in the vicinity of the substrate 1 is increased, and the semiconductor layer 4 is reduced. Therefore, a high performance thin film transistor can be manufactured by forming the gate insulating film 5 using the surface wave plasma CVD apparatus as in the manufacturing method according to the present embodiment.
 アクチノメトリ法を用いて、トレーサガスであるアルゴンに対するHαの発光強度比を測定した測定結果を図5に示す。図5は、誘電体窓13と基板1とGapを変えて、発光強度比(Hα/Ar)を測定した結果を示すグラフである。この発光強度比と水素ラジカル濃度は比例することから、Gapを100mmから300mmに変えた場合、Gapが150mm付近までは、Gapが広くなるにつれて急激に水素ラジカル濃度が減少することが分かる。従って、Gapを150mm以上にすることで、水素ラジカル濃度が十分に低い状態とすることができる。すなわち、Gapを150mm以上にすることで、水素ラジカルによる基板1へのダメージを軽減することができる。 FIG. 5 shows the measurement results obtained by measuring the emission intensity ratio of Hα with respect to argon, which is a tracer gas, using the actinometry method. FIG. 5 is a graph showing the results of measuring the emission intensity ratio (Hα / Ar) while changing the dielectric window 13, the substrate 1, and the gap. Since the emission intensity ratio is proportional to the hydrogen radical concentration, it can be seen that when the gap is changed from 100 mm to 300 mm, the hydrogen radical concentration rapidly decreases as the gap becomes wider until the gap is near 150 mm. Therefore, the hydrogen radical concentration can be made sufficiently low by setting Gap to 150 mm or more. That is, by setting the gap to 150 mm or more, damage to the substrate 1 due to hydrogen radicals can be reduced.
 さらに、本件出願の発明者は、種々の実験を行い、基板1へのダメージの観点から、Gapを150mm以上とすることが好ましく、さらに200mm以上とより好ましいことを見出した。本件出願の発明者が行った実験例について、以下に説明する。図6、7にプロセス条件を変えた時のアクチノメトリ法による測定結果を示す。図6は、供給するマイクロ波のパワーを変えた時の測定結果を示しており、図7は、供給するガスの流量を変えた時の測定結果を示している。図6、7において、横軸は、Gap(mm)であり、縦軸は、Arに対するHαの発光強度比である。 Furthermore, the inventor of the present application has conducted various experiments and found that the gap is preferably 150 mm or more and more preferably 200 mm or more from the viewpoint of damage to the substrate 1. Experimental examples conducted by the inventors of the present application will be described below. FIGS. 6 and 7 show the measurement results obtained by the actinometry method when the process conditions are changed. FIG. 6 shows the measurement result when the power of the supplied microwave is changed, and FIG. 7 shows the measurement result when the flow rate of the supplied gas is changed. 6 and 7, the horizontal axis is Gap (mm), and the vertical axis is the emission intensity ratio of Hα to Ar.
 図6では、SiH4のガス流量(35sccm=5.91×10‐3Pa・m3/sec)、NH3のガス流量(250sccm=4.22×10‐1Pa・m3/sec)、Arのガス流量(175sccm=2.962×10‐1Pa・m3/sec)、プロセス圧力(10Pa)を共通の条件として、マイクロ波パワーを0.7kW,1.4kW、2.1kW、2.8kWと変えている。図6に示すように、マイクロ波パワーを変えていったとしても、Gapが広くなるほど、水素ラジカルが減少していく。そして、Gapを150mm以上、さらに好ましくは200mm以上とすると、水素ラジカル濃度が十分に低くなる。よって、Gapを、150mm以上、より好ましくは200mm以上とすることで、水素ラジカルによるダメージを軽減することができる。 In FIG. 6, the gas flow rate of SiH4 (35 sccm = 5.91 × 10 −3 Pa · m 3 / sec), the gas flow rate of NH 3 (250 sccm = 4.22 × 10 −1 Pa · m 3 / sec), the gas flow rate of Ar (175 sccm). = 2.962 × 10 −1 Pa · m 3 / sec), the process pressure (10 Pa) is the common condition, and the microwave power is changed to 0.7 kW, 1.4 kW, 2.1 kW, and 2.8 kW. As shown in FIG. 6, even when the microwave power is changed, the hydrogen radicals decrease as the gap becomes wider. When the gap is 150 mm or more, more preferably 200 mm or more, the hydrogen radical concentration is sufficiently low. Therefore, damage caused by hydrogen radicals can be reduced by setting the gap to 150 mm or more, more preferably 200 mm or more.
 図7では、Arのガス流量(175sccm=2.96×10‐1Pa・m3/sec)、プロセス圧力(10Pa)、マイクロ波パワーを1.4kWと共通の条件として、SiH4のガス流量とNH3のガス流量条件を変えていった時の測定結果を示している。具体的には、ガス流量の基準stdをSiH4:35sccm=5.91×10‐3Pa・m3/sec、NH3:250sccm=4.22×10‐1Pa・m3/secとして、SiH4、及びNH3のガス流量を条件2(Si:70sccm=1.18×10‐2Pa・m3/sec、NH3:500sccm=8.44×10‐1Pa・m3/sec)、条件3(Si:140sccm=2.36×10‐2Pa・m3/sec、NH3:1000sccm=1.69Pa・m3/sec)、条件4(Si:280sccm=4.73×10‐2Pa・m3/sec、NH3:2000sccm=3.38Pa・m3/sec)と変えている。このように、SiH4、及びNH3ガス流量を変えていったとしても、Gapが広くなるほど、水素ラジカル濃度が減少していく。よって、Gapが150mm以上、より好ましくは200mm以上とすることで、水素ラジカルによるダメージを軽減することができる。 In FIG. 7, assuming that the Ar gas flow rate (175 sccm = 2.96 × 10 −1 Pa · m 3 / sec), the process pressure (10 Pa), and the microwave power are 1.4 kW, the gas flow rate of SiH 4 and NH 3 are the same. The measurement result when changing the gas flow rate condition is shown. Specifically, the gas flow rate standard std is SiH4: 35 sccm = 5.91 × 10 −3 Pa · m 3 / sec, NH 3: 250 sccm = 4.22 × 10 −1 Pa · m 3 / sec, and SiH 4 and NH 3 gas. The flow rate is condition 2 (Si: 70 sccm = 1.18 × 10 −2 Pa · m 3 / sec, NH 3: 500 sccm = 8.44 × 10 −1 Pa · m 3 / sec), condition 3 (Si: 140 sccm = 2.36 × 10 −2 Pa · m 3 / sec, NH 3: 1000 sccm = 1.69 Pa · m 3 / sec, Condition 4 (Si: 280 sccm = 4.73 × 10 −2 Pa · m 3 / sec, NH 3: 2000 sccm = 3.38 Pa · m 3 / sec) ). Thus, even if the SiH 4 and NH 3 gas flow rates are changed, the hydrogen radical concentration decreases as the gap becomes wider. Therefore, when Gap is 150 mm or more, more preferably 200 mm or more, damage due to hydrogen radicals can be reduced.
 このようにガス流量やマイクロ波パワーによらず、Gapを150mm以上、より好ましくは200mm以上とすることで、水素ラジカルによる基板1へのダメージを軽減することができる。また、本件出願の発明者は、その他の種々の実験を行った結果、装置構成やプロセス条件によって、表面波プラズマの状態に大きな違いはなく、Gapを150mm以上、より好ましくは200mm以上とすることで、水素ラジカルによる基板1へのダメージを軽減することができることを見出した。このようにすることで、特性の優れた酸化物半導体薄膜トランジスタを製造することができる。 Thus, regardless of the gas flow rate or the microwave power, by setting the gap to 150 mm or more, more preferably 200 mm or more, damage to the substrate 1 due to hydrogen radicals can be reduced. In addition, as a result of conducting various other experiments, the inventors of the present application have no significant difference in the state of surface wave plasma depending on the apparatus configuration and process conditions, and the gap is set to 150 mm or more, more preferably 200 mm or more. Thus, it was found that damage to the substrate 1 by hydrogen radicals can be reduced. Thus, an oxide semiconductor thin film transistor with excellent characteristics can be manufactured.
 上記したように、非晶質IGZOを形成した基板1の上に、SiH4、N2Oガスを原料とする表面波プラズマCVD法でSiO2膜を形成する。この際に、誘電体窓13から基板1までの距離が150mm以上となるGap位置で、成膜することが望ましい。こうすることで、水素ラジカルによって、IGZO膜が還元されるのを防ぐことができる。よって、高性能の酸化物半導体薄膜トランジスタを得ることができる。こうして得られた酸化物半導体薄膜トランジスタはアモルファスシリコン半導体に比べて易動度が高く、また製造工程が多結晶シリコン半導体に比べて複雑でないため、液晶や有機EL等の表示装置に好適である。尚、本発明は上記実施の形態に限られるものではなく、趣旨を逸脱しない範囲で適宜変更することが可能なものである。 As described above, an SiO 2 film is formed on the substrate 1 on which amorphous IGZO is formed by surface wave plasma CVD using SiH 4 and N 2 O gas as raw materials. At this time, it is desirable to form a film at a gap position where the distance from the dielectric window 13 to the substrate 1 is 150 mm or more. By doing so, it is possible to prevent the IGZO film from being reduced by hydrogen radicals. Therefore, a high-performance oxide semiconductor thin film transistor can be obtained. The oxide semiconductor thin film transistor thus obtained has higher mobility than an amorphous silicon semiconductor, and the manufacturing process is less complicated than a polycrystalline silicon semiconductor. Therefore, the oxide semiconductor thin film transistor is suitable for a display device such as a liquid crystal or an organic EL. Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.
 本発明は、高性能の酸化物半導体薄膜トランジスタを得ることができる薄膜トランジスタの製造方法、及びそれを用いた表示装置の製造方法に利用可能である。 The present invention is applicable to a method for manufacturing a thin film transistor capable of obtaining a high-performance oxide semiconductor thin film transistor, and a method for manufacturing a display device using the same.
 1 基板
 2 絶縁膜
 3 ソース・ドレイン電極
 4 半導体層
 5 ゲート絶縁膜
 6 ゲート電極
 11 チャンバー
 11a 排気口
 12 導波管
 13 誘電体窓
 14 ガス導入口
 15 ガス導入口
 16 スロットアンテナ
 17 ステージ
DESCRIPTION OF SYMBOLS 1 Substrate 2 Insulating film 3 Source / drain electrode 4 Semiconductor layer 5 Gate insulating film 6 Gate electrode 11 Chamber 11a Exhaust port 12 Waveguide 13 Dielectric window 14 Gas inlet 15 Gas inlet 16 Slot antenna 17 Stage

Claims (6)

  1.  基板上に、酸化物半導体膜を形成するステップと、
     前記酸化物半導体膜の上に、表面波プラズマCVD法を用いて、ゲート絶縁膜を形成するステップと、を備えた薄膜トランジスタの製造方法。
    Forming an oxide semiconductor film over the substrate;
    Forming a gate insulating film on the oxide semiconductor film by using a surface wave plasma CVD method.
  2.  前記表面波プラズマCVD法では、基板と誘電体との距離を150mm以上とした状態で、ゲート絶縁膜を成膜していることを特徴とする請求項1に記載の薄膜トランジスタの製造方法。 2. The method of manufacturing a thin film transistor according to claim 1, wherein in the surface wave plasma CVD method, the gate insulating film is formed in a state where the distance between the substrate and the dielectric is 150 mm or more.
  3.  前記表面波プラズマCVD法では、スロットアンテナを通して誘電体窓にマイクロ波が伝播し、前記誘電体窓の表面で定在波が形成する表面波となることを特徴とする請求項1、又は2に記載の薄膜トランジスタの製造方法。 3. The surface wave plasma CVD method according to claim 1, wherein a microwave propagates to a dielectric window through a slot antenna to form a surface wave that forms a standing wave on the surface of the dielectric window. The manufacturing method of the thin-film transistor of description.
  4.  前記ゲート絶縁膜が、酸化ケイ素膜であることを特徴とする請求項1~3のいずれか1項に記載の薄膜トランジスタの製造方法。 The method of manufacturing a thin film transistor according to any one of claims 1 to 3, wherein the gate insulating film is a silicon oxide film.
  5.  前記酸化物半導体膜が、IGZO膜であることを特徴とする請求項1~4のいずれか1項に記載の薄膜トランジスタの製造方法。 The method for manufacturing a thin film transistor according to any one of claims 1 to 4, wherein the oxide semiconductor film is an IGZO film.
  6.  請求項1~5のいずれか1項に記載の薄膜トランジスタの製造方法を用いて、前記薄膜トランジスタをアレイ状に形成するステップを有する表示装置の製造方法。 A method for manufacturing a display device comprising a step of forming the thin film transistors in an array using the method for manufacturing thin film transistors according to any one of claims 1 to 5.
PCT/JP2013/052487 2012-03-08 2013-02-04 Method for manufacturing thin film transistor and method for manufacturing display device WO2013132937A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012051981A JP2013187407A (en) 2012-03-08 2012-03-08 Thin film transistor manufacturing method and display device manufacturing method
JP2012-051981 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013132937A1 true WO2013132937A1 (en) 2013-09-12

Family

ID=49116422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052487 WO2013132937A1 (en) 2012-03-08 2013-02-04 Method for manufacturing thin film transistor and method for manufacturing display device

Country Status (2)

Country Link
JP (1) JP2013187407A (en)
WO (1) WO2013132937A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870491B1 (en) * 2014-03-11 2018-06-22 도쿄엘렉트론가부시키가이샤 Plasma processing appratus, substrate processing system, fabrication method of thin film transistor, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173372A (en) * 2004-12-16 2006-06-29 Shimadzu Corp Plasma source, surface wave excitation plasma cvd device equipped therewith and depositing method
JP2010272663A (en) * 2009-05-21 2010-12-02 Sony Corp Thin film transistor, display device, and electronic apparatus
JP2011119719A (en) * 2009-11-06 2011-06-16 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2011231357A (en) * 2010-04-26 2011-11-17 Shimadzu Corp Gas barrier thin film, and organic device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173372A (en) * 2004-12-16 2006-06-29 Shimadzu Corp Plasma source, surface wave excitation plasma cvd device equipped therewith and depositing method
JP2010272663A (en) * 2009-05-21 2010-12-02 Sony Corp Thin film transistor, display device, and electronic apparatus
JP2011119719A (en) * 2009-11-06 2011-06-16 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2011231357A (en) * 2010-04-26 2011-11-17 Shimadzu Corp Gas barrier thin film, and organic device using the same

Also Published As

Publication number Publication date
JP2013187407A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US7842586B2 (en) Plasma CVD apparatus, method for manufacturing microcrystalline semiconductor layer, and method for manufacturing thin film transistor
US7754294B2 (en) Method of improving the uniformity of PECVD-deposited thin films
JP5542277B2 (en) Method for manufacturing microcrystalline semiconductor film and thin film transistor
JP5530860B2 (en) Method for manufacturing semiconductor device
US8951894B2 (en) Plasma treatment apparatus, method for forming film, and method for manufacturing thin film transistor
JP5216446B2 (en) Plasma CVD apparatus and display device manufacturing method
CN102157564B (en) Preparation method of top gate metal oxide thin film transistor (TFT)
US20170162678A1 (en) Multilayer passivation or etch stop tft
TWI747910B (en) Film formation method and TFT manufacturing method
CN105189813A (en) Multi-layer amorphous silicon structure with improved poly-silicon quality after excimer laser anneal
WO2015116245A1 (en) Gas confiner assembly for eliminating shadow frame
WO2011040279A1 (en) Semiconductor device and method for manufacturing same
WO2013132937A1 (en) Method for manufacturing thin film transistor and method for manufacturing display device
CN110867491A (en) Composite crystal form metal oxide thin film transistor with vertical structure and manufacturing method thereof
CN105572990B (en) Array substrate and its manufacturing method, liquid crystal display panel
JP2005252012A (en) Deposited film forming method, forming method of semiconductor element, semiconductor device and display device
WO2020257314A1 (en) Method of forming inductively coupled high density plasma films for thin film transistor structures
US11380801B2 (en) Process to reduce plasma induced damage
WO2018192056A1 (en) Active switch array substrate, manufacturing method and used display panel
US20090146264A1 (en) Thin film transistor on soda lime glass with barrier layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757594

Country of ref document: EP

Kind code of ref document: A1