WO2013132639A1 - ハイブリッドシステムの制御装置 - Google Patents

ハイブリッドシステムの制御装置 Download PDF

Info

Publication number
WO2013132639A1
WO2013132639A1 PCT/JP2012/056034 JP2012056034W WO2013132639A1 WO 2013132639 A1 WO2013132639 A1 WO 2013132639A1 JP 2012056034 W JP2012056034 W JP 2012056034W WO 2013132639 A1 WO2013132639 A1 WO 2013132639A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
torque
transmission
automatic clutch
Prior art date
Application number
PCT/JP2012/056034
Other languages
English (en)
French (fr)
Inventor
治郎 磯村
弘章 江渕
寛之 柴田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112012005995.6T priority Critical patent/DE112012005995T5/de
Priority to JP2014503386A priority patent/JP5804183B2/ja
Priority to US14/383,390 priority patent/US9682700B2/en
Priority to PCT/JP2012/056034 priority patent/WO2013132639A1/ja
Priority to CN201280071227.4A priority patent/CN104159805B/zh
Publication of WO2013132639A1 publication Critical patent/WO2013132639A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the engine, the motor / generator, the automatic clutch in which the engine rotation shaft is connected to one engagement portion side, the rotation shaft of the motor / generator and the other engagement portion side of the automatic clutch are individually connected.
  • the present invention relates to a control device for a hybrid system having a second transmission having at least one shift stage connected to another rotating element.
  • this type of hybrid system is disclosed in the following Patent Documents 1-3.
  • five shift speeds and a reverse gear are arranged as the first transmission, and five gear ratios different from those of the five shift speeds and the reverse gear of the first transmission as the second transmission.
  • a gear stage and a reverse gear are provided.
  • the first transmission and the second transmission each have a rotating shaft (input shaft) connected to different rotating elements of the differential device, and a common output shaft.
  • EV (electric vehicle) running is performed by controlling the first transmission to a neutral state and transmitting the output of the motor / generator to the drive wheels via the second transmission.
  • a negative motor torque is output to the motor / generator during the EV traveling.
  • the motor / generator outputs a positive motor torque, and this engine torque is transmitted not only to the drive wheels but also to the engine, thereby increasing the engine speed.
  • the motor torque is changed from negative to positive while the first transmission remains in the neutral state in order to increase the engine speed.
  • a reaction force in the backward direction of the vehicle is generated on the output shaft (that is, on the drive wheel side) where the reaction force in the forward direction of the vehicle has been generated, causing a large shock to the vehicle.
  • the motor torque cannot be used to suppress the occurrence of shock.
  • Patent Document 1 described above also discloses a technique for performing EV traveling by shifting the second transmission to the reverse gear and outputting positive motor torque.
  • the reaction force of the motor / generator becomes the torque in the rotational direction for normal rotation of the engine, so that the engine torque can be made smaller than the minimum torque (compression torque) required for engine rotation.
  • the torque in the positive direction is transmitted to the drive wheels without rotating the motor.
  • the positive motor torque is instantaneously increased, so that a reaction force in the vehicle forward direction is generated on the output shaft. For this reason, in this case, since there is no change in the direction of the reaction force generated on the output shaft, the shock generated on the output shaft can be reduced, but the occurrence of the shock may not be suppressed yet. .
  • an object of the present invention is to provide a control device for a hybrid system that can improve the inconveniences of the conventional example and can start the engine during EV traveling while suppressing the occurrence of shock.
  • the present invention provides an engine, a motor / generator, an automatic clutch in which an engine rotation shaft is connected to one engagement portion, the rotation shaft of the motor / generator, and the other of the automatic clutch.
  • the input shaft is connected to the differential device having a plurality of rotating elements that are individually connected to the engaging portion side of the automatic clutch, and the rotating element of the differential device that is the same as the other engaging portion side of the automatic clutch.
  • a hybrid system control device comprising: a first transmission, a second transmission having an input shaft connected to another rotating element of the differential device; and an output shaft connected to a drive wheel side.
  • the first transmission and the second transmission are controlled to shift the torque between the input and output shafts, respectively, and the automatic clutch is released, and the E
  • the engine speed is increased by engaging the automatic clutch during the EV traveling, and a decrease in driving torque that decreases with engagement of the automatic clutch is reduced. It is characterized by being compensated by the output torque of the generator.
  • the shift control and the release control of the automatic clutch are performed, so that a part of the drive torque transmitted from the motor / generator to the drive wheel via the second transmission is It is preferable that a circulating torque transmitted to the differential device is generated via the first transmission, and a part of the circulating torque is transmitted to the engine by the engagement control of the automatic clutch when the engine is started.
  • the automatic clutch is half-engaged when the engine is started.
  • the engine start by the engagement control of the automatic clutch is executed when the engine start rotation speed is equal to or lower than the rotation speed of the other engagement portion of the automatic clutch, When the rotation speed is higher than the number of rotations of the engaging portion, it is desirable to start the engine using a starter motor.
  • the hybrid system control device enables the engine to be started by engaging the automatic clutch during EV traveling. At this time, the motor is used to reduce the decrease in drive torque that is reduced as the automatic clutch is engaged. / Since it is compensated by the output torque of the generator, it is possible to suppress the occurrence of shock when starting the engine.
  • FIG. 1 is a diagram illustrating a configuration of an embodiment of a hybrid system control apparatus according to the present invention and a hybrid system to which the control apparatus is applied.
  • FIG. 2 is a diagram illustrating an example of a specific configuration of the hybrid system according to the embodiment.
  • FIG. 3 is a diagram illustrating a power transmission path during EV traveling according to the embodiment.
  • FIG. 4 is a collinear diagram of the differential during EV traveling in the embodiment.
  • FIG. 5 is a diagram showing the relationship between the rotational speed of the motor / generator and the output torque.
  • FIG. 6 is a diagram illustrating a relationship between the vehicle speed and the driving force of the vehicle in the hybrid system of the embodiment.
  • FIG. 1 is a diagram illustrating a configuration of an embodiment of a hybrid system control apparatus according to the present invention and a hybrid system to which the control apparatus is applied.
  • FIG. 2 is a diagram illustrating an example of a specific configuration of the hybrid system according to the embodiment.
  • FIG. 3 is a diagram
  • FIG. 7 is a diagram illustrating an example of a gear ratio of the first and second transmissions and a gear ratio of the differential gear in the hybrid system of the embodiment.
  • FIG. 8 is a diagram illustrating a calculation result for each gear position regarding the total gear ratio of the power transmission path in the hybrid system of the embodiment.
  • FIG. 9 is a diagram illustrating an example of the number of rotations of the second engagement portion according to the vehicle speed in each hybrid stage according to the embodiment.
  • FIG. 10 is a diagram illustrating a calculation result of the EV maximum vehicle speed for each gear position in the hybrid system of the embodiment.
  • FIG. 11 is a diagram illustrating an intermediate result of target gear stage candidate narrowing during EV traveling in the hybrid system of the embodiment.
  • FIG. 12 is a diagram illustrating calculation results of the EV maximum vehicle speed and the EV maximum driving force in the narrowed candidates.
  • FIG. 13 is a diagram illustrating a power transmission path during engine start control at a high vehicle speed according to the embodiment.
  • FIG. 14 is a diagram illustrating a power transmission path during engine start control at a low vehicle speed according to the embodiment.
  • FIG. 15 is a diagram illustrating a power transmission path in the process of replacing the circulating torque with the engine torque in the embodiment.
  • FIG. 16 is a collinear diagram of the differential after the circulation torque is replaced with the engine torque in the embodiment.
  • FIG. 17 is a diagram illustrating a power transmission path after the circulation torque is replaced with the engine torque in the embodiment.
  • FIG. 18 is a collinear diagram of the differential gear related to engine speed control for shock suppression in the embodiment.
  • FIG. 19 is a diagram illustrating a power transmission path when the engine is running according to the embodiment.
  • FIG. 20 is a diagram illustrating a nomograph of the differential device before the power transmission path is switched according to the embodiment.
  • FIG. 21 is a diagram illustrating a nomograph of the differential device before the power transmission path is switched according to the embodiment.
  • FIG. 22 is a diagram illustrating a configuration of a modified example of the hybrid system control device according to the present invention and the hybrid system to which the control device is applied.
  • FIG. 23 is a diagram illustrating an example of a specific configuration of a hybrid system according to a modification.
  • FIG. 24 is a diagram illustrating a power transmission path during EV traveling according to a modification.
  • FIG. 25 is a collinear diagram of the differential device during EV travel in the modified example.
  • FIG. 26 is a diagram illustrating an example of a gear ratio of a dual clutch transmission and a gear ratio of a differential gear in a hybrid system according to a modification.
  • FIG. 27 is a diagram illustrating an intermediate result of target gear stage candidate narrowing during EV traveling in the hybrid system of the modified example.
  • FIG. 28 is a diagram illustrating calculation results of the EV maximum vehicle speed and the EV maximum driving force in the narrowed candidates.
  • FIG. 29 is a diagram illustrating a power transmission path during engine start control at a high vehicle speed according to a modification.
  • FIG. 30 is a diagram showing a power transmission path at the time of engine start control at a low vehicle speed according to a modification.
  • FIG. 31 is a diagram showing a power transmission path after the circulation torque is replaced with the engine torque in the modification.
  • FIG. 32 is a collinear diagram of the differential after the circulation torque is replaced with the engine torque in the modification.
  • FIG. 33 is a diagram showing a power transmission path at the time of engine speed control for shock suppression in a modified example.
  • FIG. 34 is a diagram illustrating a collinear diagram of the differential gear relating to engine speed control for shock suppression in a modified example.
  • FIG. 35 is a diagram illustrating a power transmission path after switching of the modified example.
  • FIG. 36 is a diagram illustrating another power transmission path after switching of the modified example.
  • FIG. 37 is a diagram illustrating another power transmission path during EV traveling according to a modification.
  • FIG. 38 is another collinear diagram of the differential device during EV travel in the modified example.
  • the hybrid system to which the control device according to the present invention is applied includes an engine, a motor / generator, an automatic clutch in which the engine rotation shaft is connected to one engagement portion, and the other of the rotation shaft and the automatic clutch of the motor / generator.
  • a differential device having a plurality of rotating elements each connected to the engaging portion side individually, and at least one shift stage connected to the rotating element of the same differential device as the other engaging portion side of the automatic clutch.
  • FIG. 1 and 2 indicate a hybrid system of the present embodiment.
  • FIG. 1 simply shows the configuration of the hybrid system 1 of the present embodiment.
  • FIG. 2 shows a specific example of the hybrid system 1 of the present embodiment.
  • the hybrid system 1 includes an engine ENG, a motor / generator MG, an automatic clutch 10, a first transmission 20, a second transmission 30, and a differential device 40.
  • the engine ENG is a mechanical power source such as an internal combustion engine or an external combustion engine that outputs mechanical power (engine torque) from an engine rotation shaft (crankshaft) 51.
  • the operation of the engine ENG is controlled by an electronic control device (hereinafter referred to as “engine ECU (ENGECU)”) 101 for engine control.
  • engine ECU engine ECU
  • the motor / generator MG functions as a motor (electric motor) during powering driving, converts electric energy supplied from a secondary battery (not shown) into mechanical energy, and mechanical power (from the MG rotary shaft 52 ( Motor torque) is output.
  • MG ECU electronice control unit
  • the automatic clutch 10 In the automatic clutch 10, one (engine torque input side) first engaging portion 11 is connected to the engine rotation shaft 51 side, and the other second engaging portion 12 is connected to a first transmission 20 described later.
  • the second engaging portion 12 is connected to the rotating shaft 53 of the first transmission 20 via the carrier C of the differential device 40 (FIG. 2).
  • the automatic clutch 10 is a friction clutch that creates a disengaged state, a fully engaged state, or a semi-engaged state by controlling the gap between the first and second engaging portions 11 and 12.
  • the released state refers to a state where the first and second engaging portions 11 and 12 are not in contact with each other and torque transmission cannot be performed between them.
  • the fully engaged state and the semi-engaged state refer to a state in which the first and second engaging portions 11 and 12 are in contact with each other and torque can be transmitted between them.
  • the completely engaged state is a state in which the first and second engaging portions 11 and 12 are integrally rotated at the same rotational speed.
  • the half-engaged state is a state in which the first and second engaging portions 11 and 12 are rotating while sliding with each other, and the engaged state in the transitional state between the released state and the fully engaged state is shown. Represents.
  • the automatic clutch 10 can transmit the engine torque to the rotating shaft 53 of the first transmission 20 when the automatic clutch 10 is in the fully engaged state or the semi-engaged state. Furthermore, since the MG rotary shaft 52 is also connected to the rotary shaft 53 via the differential device 40, the motor torque during powering drive can also be transmitted.
  • the motor torque is determined by the first, second, or third shift control unit 27-29 (described later) of the first transmission 20 and the first or second shift control units 35, 36 of the second transmission 30. Can be transmitted to the output shaft 55.
  • engine torque and motor torque are output from the output shaft 55, and transmitted to the drive wheel W side through a differential (differential gear) D.
  • the first transmission 20 is an automatic transmission having at least one shift stage.
  • the first transmission 20 is a so-called automatic control in which the engagement or disengagement control of the automatic clutch 10 is executed by an electronic control device 103 for shifting control (hereinafter referred to as “shift ECU (TMECU)”).
  • shift ECU shifting control
  • Type manual transmission Therefore, the first transmission 20 has a configuration similar to that of a general manual transmission (gear pairs corresponding to gears, a gear shift control unit such as a plurality of meshing clutches and a plurality of sleeves).
  • the first transmission 20 illustrated here has a forward shift speed of 1st to 5th speeds and a reverse gear.
  • Drive shafts 21a, 22a, 23a, 24a, 25a for the first to fifth speeds and a reverse drive gear 26a are attached to a rotating shaft 53 serving as an input shaft for engine torque or the like (FIG. 2).
  • the output shaft 55 is provided with driven gears 21b, 22b, 23b, 24b, 25b for the first to fifth speeds and a reverse driven gear 26b.
  • a reverse intermediate gear 26c is interposed between the reverse drive gear 26a and the reverse driven gear 26b.
  • the rotary shaft 53 includes a first shift control unit 27 that selects the first speed or the second speed as the use shift stage, and a second shift control unit 28 that selects the third speed or the fourth speed as the use shift stage. And a third shift control unit 29 that selects the fifth speed or the reverse gear as the use shift stage.
  • the actuator 61 When the shift ECU 103 detects the target shift speed of the first transmission 20, the actuator 61 appropriately moves the sleeve of the first, second, or third shift control unit 27-29 corresponding to the target shift speed to 1--Shifting to the target shift stage by fully engaging or releasing the meshing clutch of the third shift control unit 27-29 according to the target shift stage.
  • the transmission ECU 103 controls the actuator 61 to move the sleeve so as to release the meshing clutches of the first to third transmission control units 27-29, thereby bringing the first transmission 20 into the neutral state.
  • the second transmission 30 is an automatic transmission having at least one shift stage.
  • the second transmission 30 exemplified here has a first to fourth forward speed.
  • Drive shafts 31a, 32a, 33a, and 34a for the first to fourth speeds are attached to a rotation shaft 54 that serves as an input shaft for engine torque or the like (FIG. 2).
  • the first transmission 20 and the second transmission 30 share the output shaft 55.
  • the driven gears 21b, 22b, 23b, and 24b for the first to fourth speeds of the first transmission 20 are used as the driven gears of the drive gears 31a, 32a, 33a, and 34a. .
  • the first to fourth speeds of the illustrated second transmission 30 are set to the same gear ratio as the first to fourth speeds of the first transmission 20, respectively.
  • the rotary shaft 54 includes a first shift control unit 35 that selects the first speed or the second speed as the use shift stage, and a second shift control unit 36 that selects the third speed or the fourth speed as the use shift stage. And are provided.
  • the shift ECU 103 sets the target shift stage of the second transmission 30 when the vehicle starts or the shift operation of the first transmission 20, for example, and the first or second shift control unit 35, 36 according to the target shift stage.
  • the sleeve is appropriately moved by the actuator 62, and the meshing clutches of the first and second shift control units 35 and 36 are completely engaged or released according to the target shift speed to shift to the target shift speed.
  • the transmission ECU 103 controls the actuator 62 and moves the sleeve so as to release the meshing clutches of the first and second transmission control units 35 and 36, thereby bringing the second transmission 30 into a neutral state.
  • the differential device 40 includes a plurality of rotating elements that engage with each other, and a differential operation is performed between the rotating elements.
  • the first rotating element connected to the MG rotating shaft 52, the second engaging portion 12 of the automatic clutch 10, and the rotating shaft 53 of the first transmission 20 are connected.
  • At least a third rotating element coupled to the second rotating element and the rotating shaft of the second transmission 30 is provided.
  • the differential device 40 includes a so-called planetary gear mechanism (FIG. 2).
  • the differential device 40 has a single pinion type planetary gear mechanism, the sun gear S is connected to the MG rotating shaft 52.
  • the carrier C that holds the pinion gear P is connected to the second engagement portion 12 of the automatic clutch 10 and the rotation shaft 53 of the first transmission 20 is connected via a gear pair (gears 71a and 71b). Is done. Further, the rotating shaft 54 of the second transmission 30 is connected to the ring gear R via a gear pair (gears 72a and 72b).
  • the engine torque is controlled by causing the motor / generator MG to handle the reaction force of the engine torque when the vehicle starts, shifts, and EVs travel. This can be transmitted to the drive wheels W via the differential device 40 and the second transmission 30.
  • the hybrid system 1 is provided with an integrated ECU (hereinafter referred to as “HVECU”) 100 that performs overall control of the engine ECU 101, the MGECU 102, and the transmission ECU 103, and constitutes a control device.
  • HVECU integrated ECU
  • the HVECU 100 is based on the SOC (State of Charge) of the secondary battery, the temperature, the accelerator opening, and the like, in the engine travel mode in which the vehicle travels only with the power of the engine ENG, The hybrid driving mode for driving with both powers is selected.
  • SOC State of Charge
  • the motor / generator MG outputs negative motor torque to generate a positive direction (vehicle forward direction) torque on the carrier C (that is, the drive wheel W) of the differential device 40.
  • 3 and 4 show a power transmission path and an alignment chart during the EV traveling, respectively.
  • the positive torque in the carrier C is generated when the torque of the ring gear R is decelerated at the target gear stage of the second transmission 30 and a part thereof is increased at the target gear stage of the first transmission 20. .
  • the torque increased by the first transmission 20 is transmitted to the carrier C.
  • the target gear positions of the first and second transmissions 20 and 30 during the EV traveling will be described.
  • the gear stage (gear ratio) of the first transmission 20 is determined, so that the relationship between the vehicle speed and the rotational speed of the rotary shaft 53 of the first transmission 20, the vehicle speed and the second engagement portion of the automatic clutch 10 are determined.
  • the relationship with twelve revolutions is uniquely determined. Therefore, the target gear position of the first transmission 20 is set to the second engagement portion 12 of the automatic clutch 10 even when traveling at the maximum vehicle speed during EV traveling (hereinafter referred to as “EV maximum vehicle speed”) Vev max .
  • the gear ratio is set so that the number of rotations becomes a predetermined number of rotations or less.
  • the EV maximum vehicle speed Vev max (km / h) can be obtained by the following equation 1.
  • Vev max Nmg max * 2 ⁇ * r * 60 / (G mg ⁇ w * 1000) (1)
  • Nmg max represents the maximum rotational speed of the motor / generator MG (hereinafter referred to as “MG maximum rotational speed”).
  • FIG. 5 shows an example of the relationship between the rotational speed Nmg of the motor / generator MG and the output torque Tmg.
  • R represents the radius of the drive wheel W.
  • G mg ⁇ w is a gear ratio between the motor / generator MG and the drive wheel W, and can be obtained by the following equation 2.
  • “ ⁇ ” represents a gear ratio of the differential device 40 (so-called planetary gear ratio).
  • “G1” represents a gear ratio of a target shift stage (a certain shift stage such as a target shift stage or a use shift stage) in the first transmission 20.
  • “G2” represents a gear ratio of a target shift stage (a certain shift stage such as a target shift stage or a use shift stage) in the second transmission 30.
  • “G diff ” represents the gear ratio of the differential device D.
  • the engine torque is shifted to the first level of the automatic clutch 10 while sliding the automatic clutch 10 in the half-engaged state. Since the torque is transmitted to the second engaging portion 12, the engine torque is not transmitted to the second engaging portion 12 unless the engine speed is higher than the rotational speed of the second engaging portion 12. For this reason, if the rotational speed of the second engaging portion 12 during EV traveling exceeds a predetermined rotational speed, the engine rotational speed must be increased above the rotational speed of the second engaging portion 12 when the engine is started. Therefore, there is a possibility that the passenger of the vehicle may feel the engine ENG rising.
  • the target gear position of the first transmission 20 is set so that the second engagement of the automatic clutch 10 is performed even when traveling at the maximum EV vehicle speed Vev max in order to suppress unnecessary blow-up of the engine ENG when the engine is started during EV traveling.
  • the gear ratio is set so that the rotational speed of the section 12 is equal to or less than a predetermined rotational speed. Therefore, what is necessary is just to set the rotation speed which a passenger does not feel discomfort with the raise (swing up) of an engine rotation speed, for example with the predetermined rotation speed. That is, when the engine ENG is started from the EV maximum vehicle speed Vev max , the target shift speed of the first transmission 20 does not make the driver feel that the engine ENG is blown up by the rotational speed of the second engagement portion 12.
  • the gear ratio is set to a value equal to or lower than a predetermined rotational speed (engine rotational speed).
  • the target gear position of the second transmission 30 is a gear that realizes the respective target values of the EV maximum vehicle speed Vev max and the maximum driving force of the vehicle during EV traveling (hereinafter referred to as “EV maximum driving force”) Fev max .
  • EV maximum driving force the maximum driving force of the vehicle during EV traveling
  • a gear ratio with a ratio G mg-w is set.
  • the target value may be determined as follows.
  • FIG. 6 shows an example of the relationship between the vehicle speed V and the driving force F of the vehicle.
  • the hatched area is the EV traveling area.
  • the maximum driving force during engine running is shown for each gear stage of the first transmission 20.
  • the motor / generator MG is limited in the MG maximum rotation speed Nmg max and the maximum torque (hereinafter referred to as “MG maximum torque”) Tmg max . Therefore, EV maximum vehicle speed Vev max is restricted by its MG maximum rotation speed Nmg max . EV maximum driving force Fev max is restricted by MG maximum torque Tmg max . Further, the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max are determined according to various conditions such as the EV travel range and the capacity of the secondary battery.
  • the EV maximum vehicle speed Vev max becomes lower as the gear ratio G mg-w increases, as is apparent from the equation (1). If the EV maximum vehicle speed Vev max is too low, for example, it is necessary to start the engine ENG immediately after starting the vehicle, and the cost for improving fuel consumption by EV traveling is small. On the other hand, the EV maximum driving force Fev max becomes smaller as the gear ratio G mg-w becomes smaller, as is apparent from Equation 3 below. Even when the EV maximum driving force Fev max is too small, for example, there is a possibility that the engine ENG needs to be started immediately after starting the vehicle due to insufficient torque. Therefore, the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max may be set to target values that are large enough to obtain a desired fuel cost improvement margin.
  • FIG. 7 shows an example of the gear ratios G1 and G2 of the respective shift stages of the first and second transmissions 20 and 30 and an example of the gear ratio G diff of the differential device D.
  • the gear ratios G1 and G2 of the same gear stage of the first transmission 20 and the second transmission 30 are made the same.
  • the gear ratio ⁇ of the differential device 40 is 0.3 and the radius r of the driving wheel W is 0.3 (m).
  • the predetermined rotational speed at which the passenger does not feel discomfort due to the increase in the engine rotational speed is 2000 (rpm).
  • the target gear stage candidates of the first transmission 20 are narrowed down.
  • the target shift speed of the first transmission 20 is such that the rotational speed Nc of the second engagement portion 12 of the automatic clutch 10 is not more than the predetermined rotational speed (2000 rpm) even when traveling at the EV maximum vehicle speed Vev max. Set to the gear ratio.
  • FIG. 9 shows an example of the rotation speed Nc of the second engagement portion 12 according to the vehicle speed V for each gear position of the first transmission 20.
  • the EV maximum vehicle speed Vev max (km / h) at each gear position of the first transmission 20 when the rotational speed Nc is set to a predetermined rotational speed (2000 rpm) or less is known (FIG. 10).
  • the EV maximum vehicle speed Vev max is a vehicle speed when the rotation speed Nc is a predetermined rotation speed (2000 rpm).
  • the rotational speed Nc of the second engaging portion 12 during EV traveling is the same as the engine rotational speed after engine starting (the rotational speed of the first engaging portion 11). It becomes the number of revolutions.
  • EV maximum vehicle speed Vev max is shown in the FIG. 10, a EV maximum vehicle speed Vev max in the first respective gears of the transmission 20 when the engine speed below a predetermined rotational speed (2000 rpm), the engine It can be said that this is the EV maximum vehicle speed Vev max when the engine speed after startup is set to a predetermined speed (2000 rpm).
  • the fourth and fifth speeds are set as target shifts of the first transmission 20. Set as a candidate for the stage.
  • FIG. 11 shows the gear ratio G mg-w for all the combinations.
  • the gear ratio G mg-w is a calculation result using Equation 2.
  • the fourth gear is excluded from the target gear candidates.
  • FIG. 12 shows the EV maximum vehicle speed Vev max (km / h) and the EV maximum driving force Fev max (N) in combination with the remaining first to third gears.
  • a motor / generator MG having an MG maximum rotation speed Nmg max of 10,000 (rpm) and an MG maximum torque Tmg max of 100 (Nm) is used.
  • the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max are calculation results using Expressions 1 and 3, respectively. In this example, based on the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max shown in FIG.
  • the EV maximum vehicle speed Vev max when the gear ratio G mg-w is 12.5 is 91 (km / h) according to FIG. 12, and according to FIGS. 10 and 11, the first transmission 20 is 56 (km / h) at the fourth speed. Therefore, in this case, since the EV maximum vehicle speed Vev max obtained based on FIGS. 10 and 11 is lower, the EV maximum vehicle speed Vev max is 56 (km / h). Further, the EV maximum driving force Fev max in this case is 4150 (Nm) based on FIG.
  • the EV maximum vehicle speed Vev max when the gear ratio G mg-w is 16.4 is 69 (km / h) according to FIG. 12, and according to FIGS. 10 and 11, the first transmission 20 Is 72 (km / h) at the fifth speed. Therefore, in this case, since the EV maximum vehicle speed Vev max obtained based on FIG. 12 is lower, the EV maximum vehicle speed Vev max is 69 (km / h). Further, the EV maximum driving force Fev max in this case is 5450 (Nm) based on FIG.
  • the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max are compared with each other with respect to the two types of gear ratios G mg-w , the EV maximum vehicle speed Vev is greater when the gear ratio G mg-w is 16.4. Both max and EV maximum driving force Fev max are better than when the gear ratio G mg-w is 12.5. For this reason, here, when the gear ratio G mg-w is 16.4, the fifth speed of the first transmission 20 and the second speed of the second transmission 30 are set to the respective target speeds. Set as step.
  • EV traveling is performed at each target gear stage without shifting the first and second transmissions 20 and 30 during EV traveling.
  • the engine ENG is started as follows.
  • the automatic clutch 10 is controlled to a half-engaged state. While sliding the automatic clutch 10, the rotation of the second engagement portion 12 is gradually transmitted to the first engagement portion 11.
  • the engine start speed is a minimum engine speed required for starting the engine ENG. That is, in this case, since the circulating torque as described above is generated during EV traveling, a part of the circulating torque is used to gradually increase the engine speed while sliding the automatic clutch 10.
  • the engine ENG is pushed.
  • FIG. 13 shows a power transmission path when the engine is started during EV traveling.
  • part of the circulating torque in other words, part of the motor torque
  • the torque used to increase the engine speed so that the drive torque transmitted to the drive wheels W is not reduced by the start control of the engine ENG.
  • the motor torque is increased by an amount corresponding to (a decrease in drive torque).
  • the hybrid system 1 can suppress the torque loss in the drive wheels W when starting the engine during EV traveling, so that the engine ENG can be started without causing a shock or deceleration in the vehicle. it can.
  • the hybrid system 1 for example, when the driver performs an acceleration operation by increasing the accelerator pedal, the engine is started during EV traveling.
  • the vehicle has a deceleration. If this occurs, the driver will feel uncomfortable, but this can be avoided.
  • this hybrid system 1 circulating torque is generated during EV traveling, and the rotation of the engine ENG is lifted using a part of the circulating torque, so that torque loss in the drive wheels W can be compensated by motor torque. It is possible to suppress the occurrence of shock and deceleration when starting the engine during EV traveling. Therefore, the hybrid system 1 can start the engine during EV traveling without causing the driver to feel drivability deterioration.
  • the automatic clutch 10 is preferably half-engaged as described above in order to suppress the occurrence of shock as much as possible when starting the engine, but may be completely engaged.
  • the drive torque is kept constant by quickly increasing the motor torque in accordance with the automatic clutch 10, so that the occurrence of shock due to torque loss is suppressed. be able to.
  • FIG. 14 shows a power transmission path when the engine is started during EV traveling in this case.
  • the hybrid system 1 can reduce the power consumption when starting the engine ENG.
  • the automatic clutch 10 In the engine starting at the high vehicle speed described above, after the engine is started, the engine speed exceeds the rotational speed Nc of the second engagement portion 12 of the automatic clutch 10, and the engine torque is transmitted to the second engagement portion 12. It becomes like this.
  • the automatic clutch 10 remains in the half-engaged state until the power transmission path to the drive wheels W is switched from that passing through the second transmission 30 to that passing through the first transmission 20. Keep in control. Further, in starting the engine at the low vehicle speed, the automatic clutch 10 is controlled to a half-engaged state after the engine is started.
  • FIG. 15 shows a power transmission path in the middle of replacement.
  • FIG. 16 shows a collinear diagram after replacement.
  • FIG. 17 shows a power transmission path at that time.
  • the engine ENG speed can be freely changed in this state.
  • the first transmission 20 is shifted from the target shift speed in the EV travel mode to the new target shift speed in the engine travel mode. Accordingly, the first transmission 20 is later shifted from the current neutral state to a new target shift stage.
  • the engine speed is controlled so as to synchronize the rotation speed of the rotary shaft 53 serving as the shaft with the rotation speed of the rotary shaft 55 serving as the output shaft in accordance with the target shift speed of the engine transmission mode of the first transmission 20.
  • the target engine speed at that time may be set based on, for example, the speed Nc of the rotary shaft 53 of the first transmission 20 obtained from FIG.
  • the state before and behind the control of the engine speed is shown by the alignment chart.
  • the engine speed is controlled by controlling the speed of the motor / generator MG.
  • FIG. 19 shows the power transmission path after the switching. At the time of switching, if the motor / generator MG before switching is being regeneratively driven (FIG. 20), the motor / generator MG does not receive the reaction force of the engine torque, thereby driving the drive wheels W.
  • the engine torque is reduced by an amount corresponding to the increased driving torque so that the driving torque remains constant while suppressing the increase.
  • the motor / generator MG before switching is in the power running drive (FIG. 21)
  • the motor / generator MG does not receive the reaction force of the engine torque, contrary to during the regenerative drive, so that the drive wheels
  • the engine torque is increased by an amount corresponding to the decreasing driving torque so that the driving torque remains constant while suppressing the reduction.
  • the hybrid system 1 can suppress the occurrence of vehicle shock when the engine is started during EV traveling.
  • the hybrid system 1 of the above-described embodiment has been exemplified as having the first transmission 20 and the second transmission 30, but the first transmission 20 and the second transmission 30 are so-called dual clutch type shifts. It may be replaced with an odd-numbered stage and an even-numbered stage in a machine (DCT: dual clutch transmission).
  • DCT dual clutch transmission
  • FIG. 22 and FIG. 23 show such a hybrid system 2.
  • FIG. 22 simply shows the configuration of the hybrid system 2 of this modification.
  • FIG. 23 shows a specific example of the hybrid system 2 of the present modification. 22 and 23, the same reference numerals as those of the hybrid system 1 of the embodiment described above denote the same components as those described in the hybrid system 1 unless otherwise specified.
  • the dual clutch transmission 90 of the hybrid system 2 includes an odd-numbered stage group 90A as a first transmission and an even-numbered stage group 90B as a second transmission.
  • the illustrated odd-numbered stage group 90A includes first-speed, third-speed, and fifth-speed forward shift speeds, and a reverse gear.
  • Drive shafts 91a, 93a, and 95a for the first speed, the third speed, and the fifth speed and a reverse drive gear 96a are attached to a rotating shaft 56 that serves as an input shaft for engine torque or the like (FIG. 23).
  • the output shaft 55 is provided with driven gears 91b, 93b, and 95b for the first speed, the third speed, and the fifth speed, and a reverse driven gear 96b.
  • a reverse intermediate gear 96c is interposed between the reverse drive gear 96a and the reverse driven gear 96b.
  • the rotary shaft 56 includes a first shift control unit 97 that selects the first speed or the third speed as the use shift stage, and a second shift control unit 98 that selects the fifth speed or the reverse gear as the use shift stage. And are provided.
  • the shift ECU 103 appropriately moves the sleeves of the first or second shift control units 97 and 98 corresponding to the target shift stage of the odd-numbered stage group 90 ⁇ / b> A with the actuator 63, and sets the first and second shift control units 97 and 98.
  • the meshing clutch is shifted to the target shift stage by completely engaging or disengaging according to the target shift stage.
  • the shift ECU 103 controls the actuator 63 to move the sleeve so as to release the meshing clutches of the first and second shift control units 97 and 98, thereby bringing the odd-numbered stage group 90A into the neutral state.
  • the even-numbered stage group 90B has forward speeds for the second speed and the fourth speed.
  • Drive shafts 92a and 94a for the second speed and the fourth speed are attached to a rotating shaft 57 serving as an input shaft for engine torque or the like (FIG. 23).
  • the output shaft 55 is provided with driven gears 92b and 94b for the second speed and the fourth speed, respectively.
  • the rotary shaft 57 is provided with a third shift control unit 99 that selects the second speed or the fourth speed as the use shift stage.
  • the shift ECU 103 appropriately moves the sleeve of the third shift control unit 99 according to the target shift stage of the even-numbered stage group 90B with the actuator 64, and fully engages the meshing clutch of the third shift control unit 99 according to the target shift stage.
  • the speed change ECU 103 controls the actuator 64 and moves the sleeve so as to release the meshing clutch of the third speed change control unit 99, thereby bringing the even-numbered stage group 90B into the neutral state.
  • the differential device 41 of the hybrid system 2 includes a plurality of rotating elements that engage with each other, and a differential operation is performed between the rotating elements. is there.
  • the illustrated differential device 41 has a double pinion type planetary gear mechanism.
  • the ring gear R is connected to the MG rotating shaft 52.
  • the gear 73 provided on the MG rotating shaft 52 is engaged with the external gear provided on the ring gear R, thereby connecting the ring gear R and the MG rotating shaft 52.
  • the carrier C that holds the pinion gears P1 and P2 is connected to the rotating shaft 56 of the odd-numbered stage group 90A, and the second engagement of the automatic clutch 10 through the first dog clutch 15 and the gear pair (gears 74a and 74b). Connected to the joint 12.
  • the sun gear S is connected to the rotation shaft 57 of the even-numbered stage group 90B via a gear group (gears 75a, 75b, 75c), and the rotation shaft 57, the second dog clutch 16, and a gear pair (gears 76a, 76b). ) To the second engagement portion 12 of the automatic clutch 10.
  • the gear 75a rotates concentrically with the sun gear S.
  • the gear 75b rotates concentrically with the rotating shaft 57.
  • the gear 75c is in mesh with the two gears 75a and 75b.
  • the gear 75 c is a so-called counter gear, and rotates the rotation shaft 57 in the same direction as the rotation shaft 56 by reversing the rotation direction of the sun gear S.
  • the gear 74 b and the gear 76 b are connected to the second engagement portion 12 via the rotation shaft 58.
  • the first dog clutch 15 has one engaging portion attached to the rotating shaft 56 and the other engaging portion attached to the gear 74a.
  • the engaging shafts are engaged with each other to rotate the rotating shaft 56.
  • the second dog clutch 16 has one engaging portion attached to the rotating shaft 57 and the other engaging portion attached to the gear 76a. The second dog clutch 16 is rotated by engaging the engaging portions with each other. Torque transmission between the shaft 57 and the second engagement portion 12 of the automatic clutch 10 is enabled.
  • the automatic clutch 10 when EV traveling is performed, the automatic clutch 10 is disengaged, and both the odd-numbered stage group 90A and the even-numbered stage group 90B, which are the first and second transmissions, are shifted to the target shift stage. Let At this time, the first dog clutch 15 is engaged, while the second dog clutch 16 is released.
  • the motor / generator MG outputs negative motor torque to generate torque in the positive direction (vehicle forward direction) on the drive wheels W. 24 and 25 show power transmission paths and alignment charts during EV traveling when the target gear position of the odd-numbered stage group 90A is higher than the target gear position of the even-numbered stage group 90B.
  • the positive direction torque in the carrier C is reversed by the gear group (gears 75a, 75b, 75c) and the negative direction torque in the sun gear S is decelerated at the target shift stage of the even-numbered stage group 90B, and a part thereof is the odd-numbered stage group. It is generated by increasing the speed at the target gear position of 90A.
  • the torque increased by the odd-numbered stage group 90A is transmitted to the carrier C.
  • power circulation occurs when performing such EV traveling.
  • the torque that returns to the differential device 41 through 90A is referred to as "circulation torque".
  • the target shift speeds of the odd speed group 90A and the even speed group 90B during the EV traveling will be described. Also in the dual clutch transmission 90, during EV traveling, it is desirable not to change the respective target shift speeds, that is, do not shift the odd-numbered speed group 90A and the even-numbered speed group 90B in order to prevent torque loss associated with the speed change. .
  • the method for determining the target gear position is basically the same as in the above-described embodiment. However, in the dual clutch type transmission 90, the determination method is different depending on which of the odd-numbered gear group 90A and the even-numbered gear group 90B is set to the high gear.
  • the target gear speed of the odd-numbered gear group 90A is also used when starting the engine ENG from the EV maximum vehicle speed Vev max .
  • the rotation speed of the second engagement portion 12 of the automatic clutch 10 is set to a gear ratio that is equal to or less than a predetermined rotation speed (engine rotation speed) that does not make the driver feel the engine ENG being blown up.
  • the target gear position of the even-numbered stage group 90B is set to a gear ratio that is a gear ratio G mg-w that realizes the target values of the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max .
  • the target value may be determined in the same manner as in the embodiment. Further, the gear ratio G mg-w in this case can be obtained by the following equation 4.
  • G mg-w G mg-R / 2 * (G even-G odd) * G diff (4)
  • G mg ⁇ R represents a gear ratio between the motor / generator MG and the ring gear R of the differential device 41.
  • G odd represents a gear ratio of a target shift stage (a certain shift stage such as a target shift stage or a use shift stage) in the odd-numbered stage group 90A.
  • G even represents a gear ratio of a target shift stage (a certain shift stage such as a target shift stage or a use shift stage) in the even-numbered stage group 90B.
  • the target gear position of even-numbered stage group 90B is higher gear than the target gear position of odd-numbered stage group 90A
  • the target gear position of even-numbered stage group 90B is used when starting engine ENG from EV maximum vehicle speed Vev max.
  • the rotational speed of the second engagement portion 12 of the automatic clutch 10 is set to a gear ratio that is equal to or lower than a predetermined rotational speed (engine rotational speed) that does not cause the driver to feel the engine ENG rising.
  • the target gear position of the odd-numbered gear group 90A is set to a gear ratio that is a gear ratio G mg-w that realizes the target values of the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max .
  • the gear ratio G mg-w in this case can be obtained by the following equation 5.
  • G mg-w G mg-R / 2 * (G odd-G even) * G diff (5)
  • the gear ratios G odd and G even of each gear stage of the dual clutch transmission 90 are set to be the same as the gear ratio G1 of the gear stage of the first transmission 20 of the embodiment.
  • the gear ratio G diff of the differential device D is also set to the same size as that of the embodiment.
  • the rotational speed Nc of the second engagement portion 12 corresponding to the vehicle speed V for each shift speed of the dual clutch transmission 90 is the second relationship corresponding to the vehicle speed V for each shift speed of the first transmission 20. It becomes the same as the rotation speed Nc of the joint portion 12 (FIG. 9). Accordingly, the EV maximum vehicle speed Vev max for each shift speed obtained here is the same as that shown in the embodiment (FIG. 10).
  • Figure 27 is a gear ratio G mg-w was determined based on the result, the gear ratio G mg-w in combination with the gear position of the odd-group 90A for the fourth speed gear stage of the even-numbered stages group 90B, The gear ratio G mg-w in the combination of the shift speed of the even-numbered stage group 90B to the shift speed of the fifth speed of the odd-numbered stage group 90A is shown.
  • the gear ratio G mg-w is a calculation result using Expression 4 or Expression 5.
  • the combination of the first speed and the second speed and the combination of the second speed and the third speed are both the fourth speed and the fifth speed. Since it is not, remove it from the target gear stage candidates.
  • FIG. 28 shows the EV maximum vehicle speed Vev max (km / h) and the EV maximum driving force Fev max (N) in the combination of the remaining odd-numbered stage group 90A and even-numbered stage group 90B.
  • a motor / generator MG having an MG maximum rotation speed Nmg max of 10,000 (rpm) and an MG maximum torque Tmg max of 100 (Nm) is used.
  • the EV maximum vehicle speed Vev max and the EV maximum driving force Fev max are calculation results using Expressions 1 and 3, respectively. In this example, on the basis of the EV maximum vehicle speed Vev max and EV maximum driving force FEV max shown in the FIG.
  • EV maximum driving force FEV max when the gear ratio G mg-w is 1.8 and 3.6 It is determined that the EV maximum vehicle speed Vev max is too low when the gear ratio G mg-w is 23.4. Accordingly, in this example, when the gear ratio G mg-w is 11.7 (odd speed group 90A: fifth speed gear stage, even speed group 90B: second speed gear stage), the dual clutch transmission 90 Are set as the target shift speeds in the odd-numbered stage group 90A and the even-numbered stage group 90B.
  • the EV maximum vehicle speed Vev max is 72 (km / h) on the low speed side by comparing 72 (km / h) in FIG. 10 with 97 (km / h) in FIG.
  • EV traveling is performed at each target shift speed without shifting both the odd-numbered speed group 90A and the even-numbered speed group 90B of the dual clutch transmission 90 during EV travel.
  • the engine ENG is started as follows.
  • the first dog clutch 15 is engaged, so that the rotation speed Nc of the second engagement portion 12 of the automatic clutch 10 and the rotation shaft 56 of the odd-numbered stage group 90A. Keep the number of rotations synchronized.
  • the engine start control is entered as it is.
  • the engine start control during EV traveling is basically the same as in the above-described embodiment. For this reason, when the engine starting rotational speed is equal to or lower than the rotational speed Nc of the second engaging portion 12 of the automatic clutch 10 during EV traveling (in the case of a high vehicle speed), a part of the circulating torque is used, and the automatic clutch 10 The engine ENG is pushed by gradually increasing the engine speed while sliding in a semi-engaged state.
  • FIG. 29 shows a power transmission path when the engine is started during EV traveling. In that case, since a part of the circulating torque is used to increase the engine speed, the engine speed is increased so that the drive torque transmitted to the drive wheels W is not reduced by the start control of the engine ENG.
  • the motor torque is increased by an amount corresponding to the torque used. Therefore, in this case, the same effect as in the embodiment can be obtained. Therefore, when starting the engine during EV traveling, torque loss in the drive wheels W is suppressed, and a shock or deceleration is generated in the vehicle.
  • the engine ENG can be started without any problems. Therefore, the hybrid system 2 can start the engine during EV traveling without causing the driver to feel drivability deterioration.
  • FIG. 30 shows a power transmission path when the engine is started during EV traveling in this case.
  • the automatic clutch 10 is controlled to a half-engaged state after the engine is started.
  • the engine torque is transmitted to the rotating shaft 56 of the odd-numbered stage group 90A and the carrier C of the differential device 41 via the semi-engaged automatic clutch 10, whereby the circulating torque is replaced with the engine torque. Go.
  • the driving torque of the driving wheels W increases with the decrease of the circulating torque, so that the increase corresponding to the increasing driving torque is suppressed so that the driving torque remains constant while suppressing the increase. Only reduce the motor torque. Therefore, also in this hybrid system 2, the occurrence of vehicle shock can be suppressed.
  • 31 and 32 show the power transmission path and collinear diagram after replacement.
  • the dual clutch transmission 90 is controlled to the target gear position in the engine running mode.
  • the target shift stage may belong to the odd-numbered stage group 90A or may belong to the even-numbered stage group 90B.
  • the even-numbered stage group 90B that is currently maintained as the target gear stage during EV travel, if this target gear stage is the same as the target gear stage in the engine travel mode, the target gear stage during EV travel is the same. Can be set to the target gear position when switching to the engine running mode.
  • the shift stage of even-numbered stage group 90B which is different from the target shift stage during EV travel, becomes the target shift stage of the engine travel mode
  • the engine travel mode is changed once to the shift stage of odd-numbered stage group 90A. May be switched to the true target gear position of the even-numbered gear group 90B.
  • the vehicle when shifting to the odd-numbered stage group 90A is performed, the vehicle is caused by the rotational difference between the input and output shafts (between the rotating shaft 56 and the rotating shaft 55) of the odd-numbered stage group 90A. Shock may occur. Therefore, in this hybrid system 2, in order to suppress the occurrence of vehicle shock, the rotational speed of the rotary shaft 56 as the input shaft is synchronized with the rotational speed of the rotary shaft 55 as the output shaft in accordance with the target gear ratio of the odd-numbered stage group 90A. The engine speed is controlled so that
  • FIG. 35 shows the power transmission path after the switching. At the time of the switching, if the motor / generator MG before the switching is being regeneratively driven, the motor / generator MG does not receive the reaction force of the engine torque, thereby increasing the driving torque of the driving wheels W.
  • the engine torque is reduced by an amount corresponding to the increased driving torque so that the increase is suppressed and the driving torque remains constant.
  • the motor / generator MG before switching is in the power running drive
  • the motor / generator MG does not receive the reaction force of the engine torque, contrary to the regenerative drive, so that the drive torque of the drive wheels W is reduced. Therefore, the engine torque is increased by an amount corresponding to the decreasing driving torque so that the driving torque remains constant while suppressing the decrease.
  • the driving torque can be kept constant even when the power transmission path is switched, and the occurrence of a shock of the vehicle is suppressed.
  • FIG. 36 shows a power transmission path in this case.
  • FIGS. 37 and 38 show power transmission paths and collinear diagrams when the target shift speed of the even-numbered speed group 90B is higher gear.
  • the odd-numbered gear group 90 ⁇ / b> A is described as the first transmission and the even-numbered gear group 90 ⁇ / b> B is described as the second transmission.
  • the odd-numbered gear group 90A may be replaced with a second transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 エンジン(ENG)と、モータ/ジェネレータ(MG)と、エンジン回転軸(51)が第1係合部(11)側に接続される自動クラッチ(10)と、MG回転軸(52)と自動クラッチ(10)の第2係合部(12)側とが各々個別に接続される複数の回転要素を備えた差動装置(40)と、第2係合部(12)側と同じ回転要素に回転軸(53)が接続される第1変速機(20)と、別の回転要素に回転軸(54)が接続される第2変速機(30)と、駆動輪(W)側に接続される出力軸(55)と、を有し、EV走行時には、第1変速機と第2変速機とが夫々に入出力軸間でトルク伝達できるよう変速制御すると共に自動クラッチを解放し、EV走行中にエンジンを始動させる場合、EV走行中に自動クラッチを係合することでエンジン回転数を上昇させ、自動クラッチの係合に伴い減少する駆動トルクの減少分をモータ/ジェネレータの出力トルクで補うこと。

Description

ハイブリッドシステムの制御装置
 本発明は、エンジン、モータ/ジェネレータ、エンジン回転軸が一方の係合部側に接続される自動クラッチ、モータ/ジェネレータの回転軸と自動クラッチの他方の係合部側とが各々個別に接続される複数の回転要素を備えた差動装置、自動クラッチの他方の係合部側と同じ差動装置の回転要素に接続される少なくとも1つの変速段を備えた第1変速機及び差動装置の別の回転要素に接続される少なくとも1つの変速段を備えた第2変速機を有するハイブリッドシステムの制御装置に関する。
 例えば、この種のハイブリッドシステムは、下記の特許文献1-3に開示されている。特許文献1のハイブリッドシステムは、第1変速機として5つの変速段と後退ギヤとが配設され、第2変速機として第1変速機の5つの変速段及び後退ギヤと異なる変速比の5つの変速段及び後退ギヤが配設されたものである。その第1変速機と第2変速機は、夫々に差動装置の異なる回転要素に接続された回転軸(入力軸)と、共通の出力軸と、を有する。このハイブリッドシステムでは、第1変速機をニュートラル状態に制御し、第2変速機を介してモータ/ジェネレータの出力を駆動輪に伝えることでEV(電気自動車)走行を行う。そのEV走行中のモータ/ジェネレータには、負のモータトルクを出力させている。また、そのEV走行からエンジンを始動させる際には、モータ/ジェネレータに正のモータトルクを出力させ、このモータトルクを駆動輪だけでなくエンジンにも伝えることでエンジン回転数を上昇させる。
 特許文献2のハイブリッドシステムは、第1及び第2の変速機としてデュアルクラッチ式変速機の奇数段と偶数段とが各々適用されたものであり、その奇数段の第1入力軸と偶数段の第2入力軸とが差動装置の別々の回転要素に接続されている。尚、そのデュアルクラッチ式変速機においては、第2入力軸に後退ギヤが配設されている。また、特許文献3のハイブリッドシステムは、第1変速機に所謂自動制御式の手動変速機を適用し、第2変速機として高低2つの変速段が配設されたものであり、その手動変速機の入力軸と高低2つの変速段の回転軸とが差動装置の別々の回転要素に接続されている。
特開2005-155508号公報 特開2002-204504号公報 特開2002-262409号公報
 ところで、従来のハイブリッドシステムでは、EV走行中にエンジンを始動させる場合、エンジン回転数を上昇させる為に第1変速機がニュートラル状態のままでモータトルクを負から正に変えるので、EV走行中に車両前進方向の反力が発生していた出力軸(つまり駆動輪側)に車両後退方向の反力が発生し、車両に大きなショックを発生させる虞がある。そして、この従来のハイブリッドシステムでは、そのモータトルクをショックの発生を抑える為に利用できない。
 ここで、上記の特許文献1には、第2変速機を後退ギヤに変速し、正のモータトルクを出力させることでEV走行を行う技術も開示されている。尚、その際には、モータ/ジェネレータの反力がエンジンを正転させる回転方向のトルクになるので、そのトルクをエンジンの回転に必要な最小トルク(圧縮トルク)よりも小さくすることで、エンジンを回転させることなく、駆動輪に正方向のトルクを伝えている。このハイブリッドシステムでは、この様なEV走行の最中にエンジンを始動させる場合、正のモータトルクを瞬間的に増加させるので、出力軸に車両前進方向の反力が発生する。これが為、この場合には、出力軸に発生する反力の方向に変化が無いので、その出力軸に発生するショックを減らすことはできるが、未だショックの発生を抑えることができない可能性がある。
 そこで、本発明は、かかる従来例の有する不都合を改善し、ショックの発生を抑えたEV走行中のエンジン始動が可能なハイブリッドシステムの制御装置を提供することを、その目的とする。
 上記目的を達成する為、本発明は、エンジンと、モータ/ジェネレータと、エンジン回転軸が一方の係合部側に接続される自動クラッチと、前記モータ/ジェネレータの回転軸と前記自動クラッチの他方の係合部側とが各々個別に接続される複数の回転要素を備えた差動装置と、前記自動クラッチの他方の係合部側と同じ前記差動装置の回転要素に入力軸が接続される第1変速機と、前記差動装置の別の回転要素に入力軸が接続される第2変速機と、駆動輪側に接続される出力軸と、を有するハイブリッドシステムの制御装置において、前記モータ/ジェネレータの出力のみを用いるEV走行時には、前記第1変速機と前記第2変速機とが夫々に入出力軸間でトルク伝達できるよう変速制御すると共に、前記自動クラッチを解放し、前記EV走行中に前記エンジンを始動させる場合、前記EV走行中に前記自動クラッチを係合することでエンジン回転数を上昇させ、該自動クラッチの係合に伴い減少する駆動トルクの減少分を前記モータ/ジェネレータの出力トルクで補うことを特徴としている。
 ここで、前記EV走行時には、前記変速制御と前記自動クラッチの解放制御を行うことで、前記モータ/ジェネレータから前記第2変速機を介して前記駆動輪に伝わる駆動トルクの一部であり、前記第1変速機を介して前記差動装置に伝わる循環トルクを発生させ、前記エンジン始動時には、前記自動クラッチの係合制御によって前記循環トルクの一部を前記エンジンに伝えることが望ましい。
 また、前記エンジン始動時の前記自動クラッチは半係合させることが望ましい。
 また、前記自動クラッチの係合制御によるエンジン始動は、エンジン始動回転数が前記自動クラッチにおける他方の係合部の回転数以下の場合に実行し、前記エンジン始動回転数が前記自動クラッチにおける他方の係合部の回転数よりも高回転の場合には、スタータモータを用いて前記エンジンを始動させることが望ましい。
 本発明に係るハイブリッドシステムの制御装置は、EV走行中に自動クラッチを係合することでエンジンの始動が可能になり、その際、自動クラッチの係合に伴い減少する駆動トルクの減少分をモータ/ジェネレータの出力トルクで補うので、エンジン始動時のショックの発生を抑えることができる。
図1は、本発明に係るハイブリッドシステムの制御装置とその適用対象となるハイブリッドシステムについての実施例の構成を示す図である。 図2は、実施例のハイブリッドシステムの具体的な構成の一例を示す図である。 図3は、実施例のEV走行時の動力伝達経路を示す図である。 図4は、実施例におけるEV走行時の差動装置の共線図である。 図5は、モータ/ジェネレータの回転数と出力トルクとの関係を示す図である。 図6は、実施例のハイブリッドシステムにおける車速と車両の駆動力との関係を示す図である。 図7は、実施例のハイブリッドシステムにおける第1及び第2の変速機のギヤ比と差動装置のギヤ比の一例について示す図である。 図8は、実施例のハイブリッドシステムにおける動力伝達経路のトータルギヤ比についての変速段毎の演算結果を示す図である。 図9は、実施例のハイブリッドシステムにおける車速に応じた第2係合部の回転数の一例を変速段毎に示す図である。 図10は、実施例のハイブリッドシステムにおける変速段毎のEV最高車速の演算結果を示す図である。 図11は、実施例のハイブリッドシステムにおけるEV走行時の目標変速段の候補絞り込みの途中結果を示す図である。 図12は、絞り込まれた候補におけるEV最高車速とEV最大駆動力の演算結果を示す図である。 図13は、実施例の高車速時におけるエンジン始動制御時の動力伝達経路を示す図である。 図14は、実施例の低車速時におけるエンジン始動制御時の動力伝達経路を示す図である。 図15は、実施例で循環トルクをエンジントルクに置換する過程の動力伝達経路を示す図である。 図16は、実施例で循環トルクをエンジントルクに置換した後の差動装置の共線図を示す図である。 図17は、実施例で循環トルクをエンジントルクに置換した後の動力伝達経路を示す図である。 図18は、実施例のショック抑制の為のエンジン回転数制御に関する差動装置の共線図を示す図である。 図19は、実施例のエンジン走行時の動力伝達経路を示す図である。 図20は、実施例の動力伝達経路切り替え前の差動装置の共線図を示す図である。 図21は、実施例の動力伝達経路切り替え前の差動装置の共線図を示す図である。 図22は、本発明に係るハイブリッドシステムの制御装置とその適用対象となるハイブリッドシステムについての変形例の構成を示す図である。 図23は、変形例のハイブリッドシステムの具体的な構成の一例を示す図である。 図24は、変形例のEV走行時の動力伝達経路を示す図である。 図25は、変形例におけるEV走行時の差動装置の共線図である。 図26は、変形例のハイブリッドシステムにおけるデュアルクラッチ式変速機のギヤ比と差動装置のギヤ比の一例について示す図である。 図27は、変形例のハイブリッドシステムにおけるEV走行時の目標変速段の候補絞り込みの途中結果を示す図である。 図28は、絞り込まれた候補におけるEV最高車速とEV最大駆動力の演算結果を示す図である。 図29は、変形例の高車速時におけるエンジン始動制御時の動力伝達経路を示す図である。 図30は、変形例の低車速時におけるエンジン始動制御時の動力伝達経路を示す図である。 図31は、変形例で循環トルクをエンジントルクに置換した後の動力伝達経路を示す図である。 図32は、変形例で循環トルクをエンジントルクに置換した後の差動装置の共線図を示す図である。 図33は、変形例のショック抑制の為のエンジン回転数制御時の動力伝達経路を示す図である。 図34は、変形例のショック抑制の為のエンジン回転数制御に関する差動装置の共線図を示す図である。 図35は、変形例の切り替え後の動力伝達経路を示す図である。 図36は、変形例の切り替え後の別の動力伝達経路を示す図である。 図37は、変形例のEV走行時の別の動力伝達経路を示す図である。 図38は、変形例におけるEV走行時の差動装置の別の共線図である。
 以下に、本発明に係るハイブリッドシステムの制御装置の実施例を図面に基づいて詳細に説明する。本発明に係る制御装置の適用対象となるハイブリッドシステムは、エンジン、モータ/ジェネレータ、エンジン回転軸が一方の係合部側に接続される自動クラッチ、モータ/ジェネレータの回転軸と自動クラッチの他方の係合部側とが各々個別に接続される複数の回転要素を備えた差動装置、自動クラッチの他方の係合部側と同じ差動装置の回転要素に接続される少なくとも1つの変速段を備えた第1変速機及び差動装置の別の回転要素に接続される少なくとも1つの変速段を備えた第2変速機を有するものである。尚、この実施例によりこの発明が限定されるものではない。
[実施例]
 本発明に係るハイブリッドシステムの制御装置の実施例を図1から図38に基づいて説明する。
 図1及び図2の符号1は、本実施例のハイブリッドシステムを示す。図1は、本実施例のハイブリッドシステム1の構成について簡易的に示したものである。図2は、本実施例のハイブリッドシステム1の具体的な一例を示したものである。
 このハイブリッドシステム1は、エンジンENG、モータ/ジェネレータMG、自動クラッチ10、第1変速機20、第2変速機30及び差動装置40を備える。
 エンジンENGは、エンジン回転軸(クランクシャフト)51から機械的な動力(エンジントルク)を出力する内燃機関や外燃機関等の機械動力源である。このエンジンENGは、その動作がエンジン制御用の電子制御装置(以下、「エンジンECU(ENGECU)」と云う。)101によって制御される。また、モータ/ジェネレータMGは、力行駆動時にモータ(電動機)として機能して、二次電池(図示略)から供給された電気エネルギを機械エネルギに変換し、MG回転軸52から機械的な動力(モータトルク)を出力する。一方、回生駆動時には、ジェネレータ(発電機)として機能して、差動装置40からMG回転軸52に機械的な動力(モータトルク)が入力された際に機械エネルギを電気エネルギに変換し、これを電力として二次電池に蓄えることができる。このモータ/ジェネレータMGは、モータ/ジェネレータ制御用の電子制御装置(以下、「MGECU」と云う。)102によって制御される。
 自動クラッチ10は、一方(エンジントルク入力側)の第1係合部11がエンジン回転軸51側に接続され、他方の第2係合部12が後述する第1変速機20に接続される。この例示では、第2係合部12が差動装置40のキャリアCを介して第1変速機20の回転軸53に接続されている(図2)。この自動クラッチ10は、第1及び第2の係合部11,12間の隙間が制御されることで、解放状態、完全係合状態又は半係合状態が作り出される摩擦クラッチである。解放状態とは、第1及び第2の係合部11,12が互いに接しておらず、その相互間でトルク伝達が行えない状態のことを云う。一方、完全係合状態と半係合状態は、第1及び第2の係合部11,12が互いに接しており、その相互間でトルク伝達が行える状態のことを云う。その中でも完全係合状態は、第1及び第2の係合部11,12が一体になって同一回転数で回転している状態のことである。半係合状態は、第1及び第2の係合部11,12が互いに滑りながら回転している状態のことであり、解放状態と完全係合状態との間の移行期の係合状態を表している。
 ここで、この自動クラッチ10は、完全係合状態又は半係合状態のときに、エンジントルクを第1変速機20の回転軸53に伝えることができる。更に、その回転軸53には、MG回転軸52も差動装置40を介して連結されているので、力行駆動時のモータトルクも伝えることができる。例えば、そのモータトルクは、第1変速機20の後述する第1、第2又は第3の変速制御部27-29と第2変速機30の第1又は第2の変速制御部35,36とを各々係合させることで、出力軸55に伝えることができる。この第1変速機20においては、その出力軸55からエンジントルクやモータトルクが出力され、差動装置(デファレンシャルギヤ)Dを介して駆動輪W側へと伝達される。
 この第1変速機20は、少なくとも1つの変速段を有する自動変速機である。例えば、この第1変速機20は、自動クラッチ10の係合又は解放の制御が変速制御用の電子制御装置(以下、「変速ECU(TMECU)」と云う。)103によって実行される所謂自動制御式の手動変速機である。従って、この第1変速機20は、一般的な手動変速機と同様の構成(変速段に応じた歯車対、複数の噛合クラッチや複数のスリーブ等の変速制御部)を有する。
 例えば、ここで例示する第1変速機20は、第1-5速の前進用の変速段と後退用ギヤとを有する。エンジントルク等の入力軸となる回転軸53には、第1-5速用の夫々のドライブギヤ21a,22a,23a,24a,25aと後退ドライブギヤ26aとが取り付けられている(図2)。また、出力軸55には、第1-5速用の夫々のドリブンギヤ21b,22b,23b,24b,25bと後退ドリブンギヤ26bとが取り付けられている。また、後退ドライブギヤ26aと後退ドリブンギヤ26bとの間には、後退中間ギヤ26cが介在している。更に、回転軸53には、第1速又は第2速を使用変速段として選択する第1変速制御部27と、第3速又は第4速を使用変速段として選択する第2変速制御部28と、第5速又は後退用ギヤを使用変速段として選択する第3変速制御部29と、が設けられている。
 変速ECU103は、第1変速機20の目標変速段を検知すると、その目標変速段に応じた第1、第2又は第3の変速制御部27-29のスリーブをアクチュエータ61で適宜動かして、第1-第3の変速制御部27-29の噛合クラッチを目標変速段に応じて完全係合又は解放させることで目標変速段へと変速させる。また、この変速ECU103は、アクチュエータ61を制御し、第1-第3の変速制御部27-29の噛合クラッチを解放させるようにスリーブを動かすことで、第1変速機20をニュートラル状態にする。
 第2変速機30は、少なくとも1つの変速段を有する自動変速機である。例えば、ここで例示する第2変速機30は、第1-4速の前進用の変速段を有する。エンジントルク等の入力軸となる回転軸54には、第1-4速用の夫々のドライブギヤ31a,32a,33a,34aが取り付けられている(図2)。ここで、この例示では、第1変速機20と第2変速機30とで出力軸55を共用している。そして、この第2変速機30では、第1変速機20の第1-4速用の夫々のドリブンギヤ21b,22b,23b,24bをドライブギヤ31a,32a,33a,34aのドリブンギヤとして利用している。従って、この例示の第2変速機30の第1-4速は、夫々に第1変速機20の第1-4速と同じギヤ比に設定している。更に、回転軸54には、第1速又は第2速を使用変速段として選択する第1変速制御部35と、第3速又は第4速を使用変速段として選択する第2変速制御部36と、が設けられている。
 変速ECU103は、例えば車両発進時又は第1変速機20の変速動作時に第2変速機30の目標変速段を設定し、その目標変速段に応じた第1又は第2の変速制御部35,36のスリーブをアクチュエータ62で適宜動かして、第1及び第2の変速制御部35,36の噛合クラッチを目標変速段に応じて完全係合又は解放させることで目標変速段へと変速させる。また、この変速ECU103は、アクチュエータ62を制御し、第1及び第2の変速制御部35,36の噛合クラッチを解放させるようにスリーブを動かすことで、第2変速機30をニュートラル状態にする。
 差動装置40は、互いに係合しあう複数の回転要素を備え、夫々の回転要素の間で差動動作が行われるものである。このハイブリッドシステム1の差動装置40においては、MG回転軸52に連結された第1回転要素、自動クラッチ10の第2係合部12と第1変速機20の回転軸53とに連結された第2回転要素及び第2変速機30の回転軸54に連結された第3回転要素を少なくとも備える。具体例を挙げるとすれば、この差動装置40は、所謂遊星歯車機構を備えたものである(図2)。例えば、この差動装置40がシングルピニオン式の遊星歯車機構を有する場合には、サンギヤSがMG回転軸52に接続される。また、ピニオンギヤPを保持するキャリアCには、自動クラッチ10の第2係合部12が接続され、且つ、第1変速機20の回転軸53が歯車対(歯車71a,71b)を介して接続される。また、リングギヤRには、第2変速機30の回転軸54が歯車対(歯車72a,72b)を介して接続される。
 このハイブリッドシステム1は、以上示した構成を有しているので、車両発進時や変速時、EV走行時等において、エンジントルクの反力をモータ/ジェネレータMGに受け持たせることで、エンジントルクを差動装置40と第2変速機30とを介して駆動輪Wに伝えることができる。
 このハイブリッドシステム1においては、エンジンECU101、MGECU102及び変速ECU103を統括制御する統合ECU(以下、「HVECU」という。)100が設けられており、これらによって制御装置が構成される。
 HVECU100は、二次電池のSOC(State of Charge)や温度、アクセル開度等に基づいて、エンジンENGの動力だけで走行させるエンジン走行モード、モータ/ジェネレータMGの動力だけで走行させるEV走行モード又は双方の動力で走行させるハイブリッド走行モードの選択を行う。
 例えば、このハイブリッドシステム1では、EV走行を行う際に、自動クラッチ10を解放させると共に、第1及び第2の変速機20,30を両方とも目標変速段に変速させる。そして、このハイブリッドシステム1では、モータ/ジェネレータMGに負のモータトルクを出力させることで差動装置40のキャリアC(つまり駆動輪W)に正方向(車両前進方向)のトルクを発生させる。図3及び図4には、各々このEV走行中の動力伝達経路と共線図を示す。そのキャリアCにおける正方向のトルクは、リングギヤRのトルクが第2変速機30の目標変速段で減速され、その一部が第1変速機20の目標変速段で増速されることにより発生する。その第1変速機20で増速されたトルクは、キャリアCに伝わる。このハイブリッドシステム1においては、この様なEV走行を行う際に動力循環が発生している。以下、その様な駆動輪Wに伝わらずに第1変速機20で増速されて差動装置40に戻るトルク、つまり第2変速機30から出力されたトルクの一部であって、第1変速機20を経て差動装置40に戻るトルクのことを「循環トルク」と云う。
 ここで、そのEV走行中の第1及び第2の変速機20,30の目標変速段について説明する。尚、EV走行中は、変速に伴うトルク抜けを防ぐ為に、夫々の目標変速段を変えない、つまり第1及び第2の変速機20,30を変速させないことが望ましい。
 夫々の目標変速段を決めるに当たっては、以下の点を考慮する。
 先ず、第1変速機20の目標変速段を決める際に考慮すべき点について説明する。EV走行時には、第1変速機20の変速段(ギヤ比)が決まることにより、車速と第1変速機20の回転軸53の回転数との関係、車速と自動クラッチ10の第2係合部12の回転数との関係が一意に決まる。これが為、第1変速機20の目標変速段は、EV走行時の最高車速(以下、「EV最高車速」と云う。)Vevmaxで走行する際にも自動クラッチ10の第2係合部12の回転数が所定回転数以下になるギヤ比のものに設定する。
 EV最高車速Vevmax(km/h)は、下記の式1で求めることができる。
 Vevmax=Nmgmax*2π*r*60/(Gmg-w*1000)  …  (1)
 「Nmgmax」は、モータ/ジェネレータMGの最高回転数(以下、「MG最高回転数」と云う。)を表す。図5には、モータ/ジェネレータMGの回転数Nmgと出力トルクTmgとの関係について一例を示している。また、「r」は、駆動輪Wの半径を表す。また、「Gmg-w」は、モータ/ジェネレータMGと駆動輪Wとの間におけるギヤ比であり、下記の式2で求めることができる。
 Gmg-w={1/ρ*G2-(1+ρ)/ρ*G1}*Gdiff  ……  (2)
 「ρ」は、差動装置40のギヤ比(所謂プラネタリギヤ比)を表す。「G1」は、第1変速機20における対象変速段(目標変速段や使用変速段等の或る変速段)のギヤ比を表す。「G2」は、第2変速機30における対象変速段(目標変速段や使用変速段等の或る変速段)のギヤ比を表す。「Gdiff」は、差動装置Dのギヤ比を表す。
 ここで、EV走行中のエンジン始動時には、後述する様に上記の循環トルクをエンジントルクへと置き換えるが、その際に自動クラッチ10を半係合状態で滑らせながらエンジントルクを自動クラッチ10の第2係合部12に伝えるので、エンジン回転数が第2係合部12の回転数よりも高回転でなければ、エンジントルクが第2係合部12に伝わらない。これが為、EV走行中の第2係合部12の回転数が所定回転数を超えていると、エンジン始動時には、エンジン回転数を第2係合部12の回転数よりも上昇させなければならず、車両の搭乗者がエンジンENGの吹け上がりを感じてしまう虞がある。従って、第1変速機20の目標変速段は、EV走行中のエンジン始動時にエンジンENGの無用な吹け上がりを抑える為、EV最高車速Vevmaxで走行する際にも自動クラッチ10の第2係合部12の回転数が所定回転数以下になるギヤ比のものに設定する。故に、その所定回転数とは、例えばエンジン回転数の上昇(吹け上がり)に搭乗者が違和感を覚えない回転数を設定すればよい。つまり、第1変速機20の目標変速段は、EV最高車速VevmaxからエンジンENGを始動させる際にも、その第2係合部12の回転数がエンジンENGの吹け上がりを運転者に感じさせない所定回転数(エンジン回転数)以下になるギヤ比のものに設定する。
 次に、第2変速機30の目標変速段を決める際に考慮すべき点について説明する。第2変速機30の目標変速段は、EV最高車速VevmaxやEV走行時の車両の最大駆動力(以下、「EV最大駆動力」と云う。)Fevmaxの夫々の目標値を実現させるギヤ比Gmg-wとなるギヤ比のものを設定する。その目標値については、下記の様にして決めればよい。
 図6には、車速Vと車両の駆動力Fとの関係について一例を示している。この図6では、ハッチングを施した領域がEV走行領域となる。また、この図6には、エンジン走行時の最大駆動力を第1変速機20の変速段毎に記している。
 モータ/ジェネレータMGは、図5に示す様に、MG最高回転数Nmgmaxや最大トルク(以下、「MG最大トルク」と云う。)Tmgmaxに制約がある。これが為、EV最高車速Vevmaxは、そのMG最高回転数Nmgmaxによって制約を受ける。また、EV最大駆動力Fevmaxは、MG最大トルクTmgmaxによって制約を受ける。更に、そのEV最高車速VevmaxやEV最大駆動力Fevmaxは、例えばEV走行の航続距離や二次電池の容量等の様々な条件に応じて決まるものである。
 ここで、EV最高車速Vevmaxは、式1から明らかなように、ギヤ比Gmg-wが大きくなるほど低くなる。そして、EV最高車速Vevmaxが低すぎた場合には、例えば車両発進後、直ぐにエンジンENGを始動させる必要があり、EV走行による燃費の向上代が小さい。一方、EV最大駆動力Fevmaxは、下記の式3から明らかなように、ギヤ比Gmg-wが小さくなるほど小さくなる。そして、EV最大駆動力Fevmaxが小さすぎた場合にも、例えば車両発進後、直ぐにトルク不足によりエンジンENGを始動させる必要に迫られる可能性があるので、EV走行による燃費の向上代が小さい。従って、EV最高車速VevmaxとEV最大駆動力Fevmaxは、所望の燃費の向上代が得られる大きさの目標値を夫々に設定すればよい。
 Fevmax=Tmgmax*Gmg-w/r  ……  (3)
 以下、具体例を挙げてEV走行中の第1及び第2の変速機20,30の目標変速段について説明する。尚、ここで例示するギヤ比等の数値は、その説明をする上で便宜上設定したものである。
 図7には、第1及び第2の変速機20,30の夫々の変速段のギヤ比G1,G2の一例と差動装置Dのギヤ比Gdiffの一例とを示す。ここでは、第1変速機20と第2変速機30の夫々の同一変速段のギヤ比G1,G2を同じ大きさにしている。また、差動装置40のギヤ比ρ=0.3、駆動輪Wの半径r=0.3(m)と仮定する。また、ここでは、エンジン回転数の上昇に搭乗者が違和感を覚えない所定回転数を2000(rpm)とする。尚、図8には、第1変速機20を伝わる動力伝達経路のトータルギヤ比(=G1*Gdiff)と第2変速機30を伝わる動力伝達経路のトータルギヤ比(=G2*Gdiff)とを変速段毎に示す。
 先ず、第1変速機20の目標変速段の候補を絞り込む。前述したように、第1変速機20の目標変速段は、EV最高車速Vevmaxで走行する際にも自動クラッチ10の第2係合部12の回転数Ncが所定回転数(2000rpm)以下になるギヤ比のものに設定する。図9には、車速Vに応じた第2係合部12の回転数Ncの一例を第1変速機20の変速段毎に示す。この図9に依れば、回転数Ncを所定回転数(2000rpm)以下にする際の第1変速機20の各変速段におけるEV最高車速Vevmax(km/h)が判る(図10)。そのEV最高車速Vevmaxは、回転数Ncが所定回転数(2000rpm)のときの車速である。
 ここで、EV走行中にエンジン始動を行う場合には、EV走行中の第2係合部12の回転数Ncがエンジン始動後のエンジン回転数(第1係合部11の回転数)と同一回転数になる。これが為、その図10に示すEV最高車速Vevmaxは、エンジン回転数を所定回転数(2000rpm)以下にする際の第1変速機20の各変速段におけるEV最高車速Vevmaxであって、エンジン始動後のエンジン回転数を所定回転数(2000rpm)にするときのEV最高車速Vevmaxであると云える。この例示では、この図10に示すEV最高車速Vevmaxに基づいて、第1-3速のEV最高車速Vevmaxが低すぎると判断し、第4及び5速を第1変速機20の目標変速段の候補として定める。
 続いて、その第1変速機20の目標変速段の候補である第4及び5速の変速段と第2変速機30の第1-4速の変速段との夫々の組み合わせについて考える。図11は、その全ての組み合わせにおけるギヤ比Gmg-wについて示す。そのギヤ比Gmg-wは、式2を用いた演算結果である。この例示では、第2変速機30が第4速の変速段のときに負のギヤ比Gmg-wになるので、この第4速の変速段を目標変速段の候補から外す。
 図12は、残りの第1-3速の変速段との組み合わせにおけるEV最高車速Vevmax(km/h)とEV最大駆動力Fevmax(N)とを示す。ここでは、MG最高回転数Nmgmaxが10000(rpm)で且つMG最大トルクTmgmaxが100(Nm)のモータ/ジェネレータMGを用いる。そのEV最高車速VevmaxとEV最大駆動力Fevmaxは、各々式1と式3を用いた演算結果である。この例示では、その図12に示すEV最高車速VevmaxとEV最大駆動力Fevmaxとに基づいて、ギヤ比Gmg-wが2.0と5.9の場合にEV最大駆動力Fevmaxが低すぎると判断し、ギヤ比Gmg-wが35.0と38.9の場合にEV最高車速Vevmaxが低すぎると判断する。従って、この例示では、ギヤ比Gmg-wが12.5の場合(第1変速機20:第4速の変速段、第2変速機30:第2速の変速段)と、16.4の場合(第1変速機20:第5速の変速段、第2変速機30:第2速の変速段)と、が第1及び第2の変速機20,30の夫々の目標変速段の候補として絞り込まれる。
 ギヤ比Gmg-wが12.5の場合のEV最高車速Vevmaxは、図12に依れば91(km/h)となり、図10及び図11に依れば第1変速機20が第4速の変速段のときの56(km/h)となる。従って、この場合には、図10及び図11に基づき得られたEV最高車速Vevmaxの方が低速なので、EV最高車速Vevmaxが56(km/h)になる。また、この場合のEV最大駆動力Fevmaxは、図12に基づいて4150(Nm)になる。
 一方、ギヤ比Gmg-wが16.4の場合のEV最高車速Vevmaxは、図12に依れば69(km/h)となり、図10及び図11に依れば第1変速機20が第5速の変速段のときの72(km/h)となる。従って、この場合には、図12に基づき得られたEV最高車速Vevmaxの方が低速なので、EV最高車速Vevmaxが69(km/h)になる。また、この場合のEV最大駆動力Fevmaxは、図12に基づいて5450(Nm)になる。
 ここで、その2種類のギヤ比Gmg-wに関してEV最高車速VevmaxとEV最大駆動力Fevmaxを互いに比較すると、ギヤ比Gmg-wが16.4の場合の方がEV最高車速VevmaxとEV最大駆動力Fevmax共にギヤ比Gmg-wが12.5の場合よりも良い値を示している。これが為、ここでは、ギヤ比Gmg-wが16.4の場合の第1変速機20の第5速の変速段と第2変速機30の第2速の変速段とを夫々の目標変速段として設定する。
 このハイブリッドシステム1においては、EV走行中に第1及び第2の変速機20,30を変速させることなく、その夫々の目標変速段でEV走行を行う。そして、このハイブリッドシステム1では、アクセル開度変化等に応じてエンジン始動要求が為された場合、次の様にしてエンジンENGを始動させる。
 先ず、エンジン始動回転数がEV走行中の自動クラッチ10の第2係合部12の回転数Nc以下の場合(高車速の場合)には、自動クラッチ10を半係合状態に制御し、この自動クラッチ10を滑らせながら第2係合部12の回転を第1係合部11に徐々に伝えていく。エンジン始動回転数とは、エンジンENGの始動に必要な最小エンジン回転数のことである。つまり、この場合には、上記の如き循環トルクをEV走行中に発生させているので、その循環トルクの一部を利用し、自動クラッチ10を滑らせながらエンジン回転数を徐々に上昇させることで、エンジンENGの押しがけを行う。図13には、このEV走行中のエンジン始動時における動力伝達経路を示す。
 その際には、エンジン回転数を上昇させる為に、循環トルクの一部、換言するならばモータトルクの一部が使われる。これが為、このハイブリッドシステム1においては、EV走行中のエンジン始動の際に、駆動輪Wに伝達される駆動トルクがエンジンENGの始動制御によって減少しないように、エンジン回転数の上昇に使われるトルク(つまり駆動トルクの減少分)に相当する分だけモータトルクを増加させる。これにより、このハイブリッドシステム1は、EV走行中のエンジン始動の際に、駆動輪Wにおけるトルク抜けを抑えることができるので、車両にショックや減速度を発生させることなくエンジンENGを始動させることができる。そして、このハイブリッドシステム1は、例えば運転者がアクセル増し踏みによる加速操作を行った際にEV走行中のエンジン始動を実行するので、自ら加速操作を行っているにも拘わらず車両に減速度が発生してしまうと、運転者に違和感を覚えさせるが、これを回避できる。つまり、このハイブリッドシステム1では、EV走行中に循環トルクを発生させ、その循環トルクの一部を利用してエンジンENGの回転を持ち上げるので、駆動輪Wにおけるトルク抜けをモータトルクで補うことができ、EV走行中のエンジン始動の際にショックや減速度の発生を抑えることができる。従って、このハイブリッドシステム1は、運転者にドライバビリティの悪化を感じさせることのないEV走行中のエンジン始動が可能になる。
 尚、自動クラッチ10は、そのエンジン始動に際して、ショックの発生を可能な限り抑える為に上記の如く半係合させることが好ましいが、完全係合させてもよい。このハイブリッドシステム1においては、自動クラッチ10を素早く完全係合させたとしても、これに合わせてモータトルクを素早く増加させることで駆動トルクが一定に保たれるので、トルク抜けによるショックの発生を抑えることができる。
 ここで、このエンジン始動の際には、エンジンENGが始動することによって当該エンジンENGでトルク変動が発生し、これが駆動輪Wに伝わって駆動輪Wの駆動トルクを変動させる虞がある。これが為、このハイブリッドシステム1においては、その駆動輪Wの駆動トルクの変動をモータトルクの増減によって相殺させ、車両にショックが発生することを防ぐことが望ましい。
 これに対して、エンジン始動回転数がEV走行中の自動クラッチ10の第2係合部12の回転数Ncよりも高回転の場合(上記の高車速時よりも低車速の場合)には、エンジンENGの押しがけができないので、スタータモータ81を用いてエンジンENGを始動させる。この場合には、自動クラッチ10が解放状態のままでエンジンENGを始動させるので、エンジントルクが駆動輪Wに伝わらず、エンジン始動に伴う車両のショックの発生を抑えることができる。図14には、この場合のEV走行中のエンジン始動時における動力伝達経路を示す。
 この様に、このハイブリッドシステム1においては、押しがけのできない低車速時を除いて、エンジン回転数の持ち上げの為に電力を使用しない。従って、このハイブリッドシステム1は、エンジンENGを始動させる際の電力消費量を減らすことができる。
 上記の高車速時のエンジン始動においては、エンジン始動後、エンジン回転数が自動クラッチ10の第2係合部12の回転数Ncを上回り、その第2係合部12にエンジントルクが伝達されるようになる。この例示のエンジン始動制御では、駆動輪Wへの動力伝達経路が第2変速機30を経るものから第1変速機20を経るものへと切り替わるまで、自動クラッチ10を半係合状態のままに制御しておく。また、上記の低車速時のエンジン始動においては、エンジン始動後、自動クラッチ10を半係合状態に制御する。
 このハイブリッドシステム1においては、エンジン始動形態がどちらであっても、半係合状態の自動クラッチ10を介してエンジントルクが第1変速機20の回転軸53及び差動装置40のキャリアCに伝わることで、循環トルクがエンジントルクに置き換わっていく。その際、このハイブリッドシステム1では、その循環トルクの減少と共に駆動輪Wの駆動トルクが増加するので、その増加を抑えて駆動トルクが一定のままであるように、増加する駆動トルクに相当する分だけモータトルクを減少させる。従って、このハイブリッドシステム1は、車両のショックの発生を抑えることができる。図15には、置き換え途中の動力伝達経路を示す。また、図16には、置き換え後の共線図を示す。
 そのエンジントルクへの置き換えが進むにつれて、循環トルクは、徐々に減少していき、何れ零になる。このハイブリッドシステム1では、循環トルクが零になった場合、第1変速機20をニュートラル状態に制御する。その際、駆動輪Wの駆動トルクは、一定のまま変化しない。図17には、その際の動力伝達経路を示す。
 ハイブリッドシステム1では、この状態においてエンジンENGの回転数を自由に変えることができる。ここで、この例示では、第1変速機20をEV走行モードの目標変速段からエンジン走行モードでの新たな目標変速段へと変速させる。従って、その第1変速機20は、後で現状のニュートラル状態から新たな目標変速段に変速させられる。これが為、このハイブリッドシステム1においては、その変速時における第1変速機20の入出力軸間(回転軸53と回転軸55との間)の回転差による車両のショックの発生を抑えるべく、入力軸たる回転軸53の回転数を第1変速機20のエンジン走行モードの目標変速段に応じて出力軸たる回転軸55の回転数に同期させるようにエンジン回転数の制御を行う。尚、その際の目標エンジン回転数は、例えば図9から得られる第1変速機20の回転軸53の回転数Ncに基づいて設定すればよい。図18には、そのエンジン回転数の制御前後における状態を共線図で示している。この共線図からも判る様に、そのエンジン回転数の制御は、モータ/ジェネレータMGの回転数を制御することによって行う。
 このハイブリッドシステム1では、その回転数の同期制御を終えた後、第1変速機20を新たな目標変速段に変速させると共に自動クラッチ10を完全係合させ、更にモータ/ジェネレータMGにエンジントルクの反力を受け持たせないようにすることで、第2変速機30を経る駆動輪Wへの動力伝達経路から第1変速機20を経る動力伝達経路へと切り替える。図19には、その切り替え後の動力伝達経路を示す。その切り替えの際には、切り替え前のモータ/ジェネレータMGが回生駆動中であるならば(図20)、このモータ/ジェネレータMGがエンジントルクの反力を受け持たなくなることで、駆動輪Wの駆動トルクの増加を招いてしまうので、その増加を抑えて駆動トルクが一定のままであるように、増加する駆動トルクに相当する分だけエンジントルクを減少させる。一方、切り替え前のモータ/ジェネレータMGが力行駆動中の場合には(図21)、回生駆動中とは逆に、このモータ/ジェネレータMGがエンジントルクの反力を受け持たなくなることで、駆動輪Wの駆動トルクの減少を招いてしまうので、その減少を抑えて駆動トルクが一定のままであるように、減少する駆動トルクに相当する分だけエンジントルクを増加させる。この様に、このハイブリッドシステム1では、動力伝達経路の切り替えの際にも駆動トルクを一定に保つことができるので、車両のショックの発生が抑制される。
 以上示した様に、このハイブリッドシステム1は、EV走行中のエンジン始動時に車両のショックの発生を抑えることができる。
[変形例]
 ところで、前述した実施例のハイブリッドシステム1は、第1変速機20と第2変速機30とを有するものとして例示したが、その第1変速機20と第2変速機30を所謂デュアルクラッチ式変速機(DCT:デュアルクラッチトランスミッション)における奇数段と偶数段に置き換えてもよい。
 図22及び図23には、その様なハイブリッドシステム2を示している。図22は、本変形例のハイブリッドシステム2の構成について簡易的に示したものである。図23は、本変形例のハイブリッドシステム2の具体的な一例を示したものである。その図22及び図23において前述した実施例のハイブリッドシステム1と同じ符号を付したものは、以下で特に言及しない限り、そのハイブリッドシステム1で説明したものと同じものを示している。
 このハイブリッドシステム2のデュアルクラッチ式変速機90は、第1変速機としての奇数段群90Aと、第2変速機としての偶数段群90Bと、を備える。この例示の奇数段群90Aは、第1速、第3速及び第5速の前進用の変速段と、後退用ギヤと、を有する。エンジントルク等の入力軸となる回転軸56には、第1速、第3速及び第5速用の夫々のドライブギヤ91a,93a,95aと後退ドライブギヤ96aとが取り付けられている(図23)。また、出力軸55には、第1速、第3速及び第5速用の夫々のドリブンギヤ91b,93b,95bと後退ドリブンギヤ96bとが取り付けられている。また、後退ドライブギヤ96aと後退ドリブンギヤ96bとの間には、後退中間ギヤ96cが介在している。更に、回転軸56には、第1速又は第3速を使用変速段として選択する第1変速制御部97と、第5速又は後退用ギヤを使用変速段として選択する第2変速制御部98と、が設けられている。
 変速ECU103は、奇数段群90Aの目標変速段に応じた第1又は第2の変速制御部97,98のスリーブをアクチュエータ63で適宜動かして、第1及び第2の変速制御部97,98の噛合クラッチを目標変速段に応じて完全係合又は解放させることで目標変速段へと変速させる。また、この変速ECU103は、アクチュエータ63を制御し、第1及び第2の変速制御部97,98の噛合クラッチを解放させるようにスリーブを動かすことで、奇数段群90Aをニュートラル状態にする。
 一方、偶数段群90Bは、第2速及び第4速の前進用の変速段を有する。エンジントルク等の入力軸となる回転軸57には、第2速及び第4速用の夫々のドライブギヤ92a,94aが取り付けられている(図23)。また、出力軸55には、第2速及び第4速用の夫々のドリブンギヤ92b,94bが取り付けられている。更に、回転軸57には、第2速又は第4速を使用変速段として選択する第3変速制御部99が設けられている。
 変速ECU103は、偶数段群90Bの目標変速段に応じた第3変速制御部99のスリーブをアクチュエータ64で適宜動かして、第3変速制御部99の噛合クラッチを目標変速段に応じて完全係合させることで目標変速段へと変速させる。また、この変速ECU103は、アクチュエータ64を制御し、第3変速制御部99の噛合クラッチを解放させるようにスリーブを動かすことで、偶数段群90Bをニュートラル状態にする。
 このハイブリッドシステム2の差動装置41は、実施例の差動装置40と同じように、互いに係合しあう複数の回転要素を備え、夫々の回転要素の間で差動動作が行われるものである。この例示の差動装置41は、ダブルピニオン式の遊星歯車機構を有するものである。
 この例示では、リングギヤRがMG回転軸52に連結される。ここでは、MG回転軸52に設けた歯車73をリングギヤRに設けた外歯歯車に噛み合わせることで、リングギヤRとMG回転軸52とを連結している。また、ピニオンギヤP1,P2を保持するキャリアCは、奇数段群90Aの回転軸56に接続されると共に、第1ドグクラッチ15と歯車対(歯車74a,74b)を介して自動クラッチ10の第2係合部12に接続される。また、サンギヤSは、歯車群(歯車75a,75b,75c)を介して偶数段群90Bの回転軸57に接続されると共に、その回転軸57と第2ドグクラッチ16と歯車対(歯車76a,76b)を介して自動クラッチ10の第2係合部12に接続される。
 ここで、その歯車75aは、サンギヤSと同心上で一体になって回転する。歯車75bは、回転軸57と同心上で一体になって回転する。歯車75cは、その2つの歯車75a,75bと噛み合い状態にある。この歯車75cは、所謂カウンタギヤであり、サンギヤSの回転方向に対して逆転することで、回転軸57を回転軸56と同一方向に回転させるものである。また、歯車74bと歯車76bは、回転軸58を介して第2係合部12に接続されている。
 第1ドグクラッチ15は、一方の係合部が回転軸56に取り付けられ、他方の係合部が歯車74aに取り付けられたものであり、夫々の係合部を互いに係合させることで回転軸56と自動クラッチ10の第2係合部12との間のトルク伝達を可能にする。また、第2ドグクラッチ16は、一方の係合部が回転軸57に取り付けられ、他方の係合部が歯車76aに取り付けられたものであり、夫々の係合部を互いに係合させることで回転軸57と自動クラッチ10の第2係合部12との間のトルク伝達を可能にする。
 このハイブリッドシステム2においても、EV走行を行う際には、自動クラッチ10を解放させると共に、第1及び第2の変速機である奇数段群90Aと偶数段群90Bを両方とも目標変速段に変速させる。また、その際には、第1ドグクラッチ15を係合させる一方、第2ドグクラッチ16を解放させている。そして、このハイブリッドシステム2においても、モータ/ジェネレータMGに負のモータトルクを出力させることで駆動輪Wに正方向(車両前進方向)のトルクを発生させる。図24及び図25には、奇数段群90Aの目標変速段が偶数段群90Bの目標変速段よりもハイギヤの場合のEV走行中の動力伝達経路と共線図を示す。キャリアCにおける正方向のトルクは、サンギヤSにおける負方向のトルクが歯車群(歯車75a,75b,75c)で反転して偶数段群90Bの目標変速段で減速され、その一部が奇数段群90Aの目標変速段で増速されることにより発生する。その奇数段群90Aで増速されたトルクは、キャリアCに伝わる。このハイブリッドシステム2においても、この様なEV走行を行う際には、動力循環が発生している。ここでも、その様な駆動輪Wに伝わらずに奇数段群90Aで増速されて差動装置41に戻るトルク、つまり偶数段群90Bから出力されたトルクの一部であって、奇数段群90Aを経て差動装置41に戻るトルクのことを「循環トルク」と云う。
 ここで、そのEV走行中の奇数段群90Aと偶数段群90Bの目標変速段について説明する。このデュアルクラッチ式変速機90においても、EV走行中は、変速に伴うトルク抜けを防ぐ為に、夫々の目標変速段を変えない、つまり奇数段群90Aと偶数段群90Bを変速させないことが望ましい。
 その目標変速段の決め方は、基本的に前述した実施例の場合と同じである。但し、このデュアルクラッチ式変速機90においては、奇数段群90Aと偶数段群90Bの夫々の目標変速段の内、どちらがハイギヤに設定されるのかに応じて決め方が異なる。
 奇数段群90Aの目標変速段の方が偶数段群90Bの目標変速段よりもハイギヤの場合、奇数段群90Aの目標変速段は、EV最高車速VevmaxからエンジンENGを始動させる際にも、自動クラッチ10の第2係合部12の回転数がエンジンENGの吹け上がりを運転者に感じさせない所定回転数(エンジン回転数)以下になるギヤ比のものに設定する。そして、偶数段群90Bの目標変速段は、EV最高車速VevmaxやEV最大駆動力Fevmaxの夫々の目標値を実現させるギヤ比Gmg-wとなるギヤ比のものを設定する。その目標値については、実施例と同じ様に決めればよい。また、この場合のギヤ比Gmg-wは、下記の式4で求めることができる。
 Gmg-w=Gmg-R/2*(G偶-G奇)*Gdiff  ……  (4)
 「Gmg-R」は、モータ/ジェネレータMGと差動装置41のリングギヤRとの間におけるギヤ比を表す。「G奇」は、奇数段群90Aにおける対象変速段(目標変速段や使用変速段等の或る変速段)のギヤ比を表す。「G偶」は、偶数段群90Bにおける対象変速段(目標変速段や使用変速段等の或る変速段)のギヤ比を表す。
 一方、偶数段群90Bの目標変速段の方が奇数段群90Aの目標変速段よりもハイギヤの場合、偶数段群90Bの目標変速段は、EV最高車速VevmaxからエンジンENGを始動させる際にも、自動クラッチ10の第2係合部12の回転数がエンジンENGの吹け上がりを運転者に感じさせない所定回転数(エンジン回転数)以下になるギヤ比のものに設定する。そして、奇数段群90Aの目標変速段は、EV最高車速VevmaxやEV最大駆動力Fevmaxの夫々の目標値を実現させるギヤ比Gmg-wとなるギヤ比のものを設定する。この場合のギヤ比Gmg-wは、下記の式5で求めることができる。
 Gmg-w=Gmg-R/2*(G奇-G偶)*Gdiff  ……  (5)
 以下、具体例を挙げてEV走行中の奇数段群90Aと偶数段群90Bの夫々の目標変速段について説明する。尚、ここで例示するギヤ比等の数値は、その説明をする上で便宜上設定したものである。
 図26には、デュアルクラッチ式変速機90の変速段のギヤ比G奇,G偶と差動装置Dのギヤ比Gdiffの一例とを示す。また、差動装置41のギヤ比ρ=0.5、駆動輪Wの半径r=0.3(m)、ギヤ比Gmg-R=4と仮定する。また、ここでも、エンジン回転数の上昇に搭乗者が違和感を覚えない所定回転数を2000(rpm)とする。
 先ず、自動クラッチ10の第2係合部12の回転数Ncを所定回転数(2000rpm)以下にする際の奇数段群90Aと偶数段群90Bの各変速段におけるEV最高車速Vevmax(km/h)を求める。ここでは、デュアルクラッチ式変速機90の各変速段のギヤ比G奇,G偶を実施例の第1変速機20の変速段のギヤ比G1と同じものに設定している。また、差動装置Dのギヤ比Gdiffについても実施例のものと同じ大きさにしている。これが為、デュアルクラッチ式変速機90の変速段毎の車速Vに応じた第2係合部12の回転数Ncについては、第1変速機20の変速段毎の車速Vに応じた第2係合部12の回転数Ncと同じになる(図9)。従って、ここで求める変速段毎のEV最高車速Vevmaxは、実施例で示したものと同じ車速になる(図10)。
 この例示においても、その図10に示すEV最高車速Vevmaxに基づいて、第1-3速のEV最高車速Vevmaxは、低すぎると判断する。従って、デュアルクラッチ式変速機90の目標変速段の候補は、偶数段群90Bの第4速の変速段と奇数段群90Aの第5速の変速段とに絞られる。図27は、その結果に基づき求めたギヤ比Gmg-wであり、偶数段群90Bの第4速の変速段に対する奇数段群90Aの変速段との組み合わせにおけるギヤ比Gmg-wと、奇数段群90Aの第5速の変速段に対する偶数段群90Bの変速段との組み合わせにおけるギヤ比Gmg-wと、を示したものである。そのギヤ比Gmg-wは、式4又は式5を用いた演算結果である。
 その図27において、第1速及び第2速の変速段の組み合わせと第2速及び第3速の変速段の組み合わせは、その何れにも第4速又は第5速の変速段が存在していないので、目標変速段の候補から外す。
 図28は、残りの奇数段群90Aと偶数段群90Bの変速段の組み合わせにおけるEV最高車速Vevmax(km/h)とEV最大駆動力Fevmax(N)とを示したものである。ここでも、MG最高回転数Nmgmaxが10000(rpm)で且つMG最大トルクTmgmaxが100(Nm)のモータ/ジェネレータMGを用いる。そのEV最高車速VevmaxとEV最大駆動力Fevmaxは、各々式1と式3を用いた演算結果である。この例示では、その図28に示すEV最高車速VevmaxとEV最大駆動力Fevmaxとに基づいて、ギヤ比Gmg-wが1.8と3.6の場合にEV最大駆動力Fevmaxが低すぎると判断し、ギヤ比Gmg-wが23.4の場合にEV最高車速Vevmaxが低すぎると判断する。従って、この例示では、ギヤ比Gmg-wが11.7の場合(奇数段群90A:第5速の変速段、偶数段群90B:第2速の変速段)をデュアルクラッチ式変速機90の奇数段群90Aと偶数段群90Bにおける各々の目標変速段として設定する。尚、EV最高車速Vevmaxについては、図10の72(km/h)と図28の97(km/h)との比較により、低速側の72(km/h)となる。
 このハイブリッドシステム2においては、EV走行中にデュアルクラッチ式変速機90の奇数段群90Aと偶数段群90Bを共に変速させることなく、その夫々の目標変速段でEV走行を行う。そして、このハイブリッドシステム2では、アクセル開度変化等に応じてエンジン始動要求が為された場合、次の様にしてエンジンENGを始動させる。
 先ず、このハイブリッドシステム2では、エンジンENGを始動させる前に、第1ドグクラッチ15を係合させることで、自動クラッチ10の第2係合部12の回転数Ncと奇数段群90Aの回転軸56の回転数を同期させておく。但し、この例示では、EV走行中に既に第1ドグクラッチ15を係合させているので、このままエンジン始動制御に入る。
 そのEV走行中のエンジン始動制御は、基本的に前述した実施例の場合と同じである。これが為、エンジン始動回転数がEV走行中の自動クラッチ10の第2係合部12の回転数Nc以下の場合(高車速の場合)には、循環トルクの一部を利用し、自動クラッチ10を半係合状態に制御して滑らせながらエンジン回転数を徐々に上昇させることで、エンジンENGの押しがけを行う。図29には、このEV走行中のエンジン始動時における動力伝達経路を示す。その際には、エンジン回転数を上昇させる為に循環トルクの一部が使われるので、駆動輪Wに伝達される駆動トルクがエンジンENGの始動制御によって減少しないように、エンジン回転数の上昇に使われるトルクに相当する分だけモータトルクを増加させる。従って、この場合には、実施例のときと同様の効果を得ることができるので、EV走行中のエンジン始動の際に、駆動輪Wにおけるトルク抜けを抑え、車両にショックや減速度を発生させることなくエンジンENGを始動させることができる。故に、このハイブリッドシステム2は、運転者にドライバビリティの悪化を感じさせることのないEV走行中のエンジン始動が可能になる。
 また、このハイブリッドシステム2のエンジン始動の際にも、エンジンENGが始動することによって当該エンジンENGでトルク変動が発生し、これが駆動輪Wに伝わって駆動輪Wの駆動トルクを変動させる虞がある。これが為、このハイブリッドシステム2においても、その駆動輪Wの駆動トルクの変動をモータトルクの増減によって相殺させ、車両にショックが発生することを防ぐことが望ましい。
 これに対して、エンジン始動回転数がEV走行中の自動クラッチ10の第2係合部12の回転数Ncよりも高回転の場合(上記の高車速時よりも低車速の場合)には、エンジンENGの押しがけができないので、自動クラッチ10を解放状態にしたまま、スタータモータ81を用いてエンジンENGを始動させる。従って、この場合には、エンジントルクが駆動輪Wに伝わらず、エンジン始動に伴う車両のショックの発生を抑えることができる。図30には、この場合のEV走行中のエンジン始動時における動力伝達経路を示す。この場合には、エンジン始動後、自動クラッチ10を半係合状態に制御する。
 このハイブリッドシステム2においては、半係合状態の自動クラッチ10を介してエンジントルクが奇数段群90Aの回転軸56及び差動装置41のキャリアCに伝わることで、循環トルクがエンジントルクに置き換わっていく。その際、このハイブリッドシステム2では、その循環トルクの減少と共に駆動輪Wの駆動トルクが増加するので、その増加を抑えて駆動トルクが一定のままであるように、増加する駆動トルクに相当する分だけモータトルクを減少させる。従って、このハイブリッドシステム2においても、車両のショックの発生を抑えることができる。図31及び図32には、置き換え後の動力伝達経路と共線図を示す。
 このハイブリッドシステム2では、循環トルクが零になった場合、奇数段群90Aをニュートラル状態に制御する。そして、このハイブリッドシステム2においては、この状態でエンジンENGの回転数を自由に変えることができる。図33及び図34には、そのエンジン回転数制御時の動力伝達経路と共線図を示す。
 この例示では、デュアルクラッチ式変速機90をエンジン走行モードでの目標変速段に制御する。その目標変速段は、奇数段群90Aに属するものであっても、偶数段群90Bに属するものであってもよい。但し、現時点でEV走行時の目標変速段のまま保持されている偶数段群90Bについては、この目標変速段がエンジン走行モードの目標変速段と同じであれば、そのEV走行時の目標変速段をエンジン走行モードへと切り替える際の目標変速段に設定可能である。一方、EV走行時の目標変速段とは別の偶数段群90Bの変速段がエンジン走行モードの目標変速段になる場合には、一度奇数段群90Aの変速段に変速してからエンジン走行モードにおける偶数段群90Bの真の目標変速段に切り替えればよい。
 ここで、このハイブリッドシステム2においては、奇数段群90Aへの変速が行われる場合、この奇数段群90Aの入出力軸間(回転軸56と回転軸55との間)の回転差によって車両にショックが発生する可能性がある。これが為、このハイブリッドシステム2では、車両のショックの発生を抑えるべく、入力軸たる回転軸56の回転数を奇数段群90Aの目標変速比に応じて出力軸たる回転軸55の回転数に同期させるようにエンジン回転数の制御を行う。
 このハイブリッドシステム2では、その回転数の同期制御を終えた後、奇数段群90Aをエンジン走行モードの目標変速段に変速させると共に自動クラッチ10を完全係合させ、更にモータ/ジェネレータMGにエンジントルクの反力を受け持たせないようにすることで、偶数段群90Bを経る駆動輪Wへの動力伝達経路から奇数段群90Aを経る動力伝達経路へと切り替える。図35には、その切り替え後の動力伝達経路を示す。その切り替えの際には、切り替え前のモータ/ジェネレータMGが回生駆動中であるならば、このモータ/ジェネレータMGがエンジントルクの反力を受け持たなくなることで、駆動輪Wの駆動トルクの増加を招いてしまうので、その増加を抑えて駆動トルクが一定のままであるように、増加する駆動トルクに相当する分だけエンジントルクを減少させる。一方、切り替え前のモータ/ジェネレータMGが力行駆動中の場合には、回生駆動中とは逆に、このモータ/ジェネレータMGがエンジントルクの反力を受け持たなくなることで、駆動輪Wの駆動トルクの減少を招いてしまうので、その減少を抑えて駆動トルクが一定のままであるように、減少する駆動トルクに相当する分だけエンジントルクを増加させる。この様に、このハイブリッドシステム2では、動力伝達経路の切り替えの際にも駆動トルクを一定に保つことができ、車両のショックの発生が抑制される。
 一方、EV走行時の偶数段群90Bの目標変速段のままエンジン走行モードに移る場合には、車両にショックが発生しないので、奇数段群90Aへの変速を行うときの様なエンジン回転数の制御を必要としない。これが為、この場合には、自動クラッチ10を完全係合させると共に第2ドグクラッチ16も係合させ、更にモータ/ジェネレータMGにエンジントルクの反力を受け持たせないようにすることで、第1ドグクラッチ15を経て奇数段群90Aに伝わる駆動輪Wへの動力伝達経路から第2ドグクラッチ16を経て偶数段群90Bに伝わる動力伝達経路へと切り替える。その際、モータ/ジェネレータMGは、回転数が零であり、力行駆動も回生駆動も行っていない。従って、この場合には、モータ/ジェネレータMGがエンジントルクの反力を受け持たなくなっても、駆動輪Wの駆動トルクが変動しないので、その変動を相殺させるエンジントルクの増減制御を行う必要がない。図36は、この場合の動力伝達経路を示している。
 以上示したハイブリッドシステム2においては、奇数段群90Aの目標変速段が偶数段群90Bの目標変速段よりもハイギヤの場合のEV走行を例に挙げて説明した。しかし、EV走行は、その逆、つまり偶数段群90Bの目標変速段が奇数段群90Aの目標変速段よりもハイギヤの場合にも実行可能である。尚、これについては、上述した説明において、第1ドグクラッチ15及び奇数段群90Aの側と第2ドグクラッチ16及び偶数段群90Bの側とを入れ替えて考えればよいだけであり、上述した例示と同様の効果を得ることができる。また、このEV走行中にエンジンENGを始動させる場合についても同様である。この為、ここでの説明は省略する。尚、図37及び図38には、偶数段群90Bの目標変速段の方がハイギヤになっているときの動力伝達経路と共線図を示す。
 また、ハイブリッドシステム2においては奇数段群90Aを第1変速機、偶数段群90Bを第2変速機として説明したが、本システムのデュアルクラッチ式変速機90は、偶数段群90Bを第1変速機、奇数段群90Aを第2変速機に置き換えてもよい。
 更に、前述した実施例や変形例においてはEV走行中のエンジン始動(つまりEV走行モードからエンジン走行モードへの切り替え)について説明したが、エンジン走行モードからEV走行モードへと切り替える場合には、その実施例や変形例で説明したものの逆の手順で行えばよい。
 1,2 ハイブリッドシステム
 10 自動クラッチ
 11 第1係合部
 12 第2係合部
 15 第1ドグクラッチ
 16 第2ドグクラッチ
 20 第1変速機
 30 第2変速機
 40,41 差動装置
 51 エンジン回転軸
 52 MG回転軸
 53 回転軸(入力軸)
 54 回転軸(入力軸)
 55 回転軸(出力軸)
 56 回転軸(入力軸)
 57 回転軸(入力軸)
 81 スタータモータ
 90 デュアルクラッチ式変速機
 90A 奇数段群
 90B 偶数段群
 100 HVECU
 101 エンジンECU(ENGECU)
 102 MGECU
 103 変速ECU(TMECU)
 ENG エンジン
 MG モータ/ジェネレータ
 W 駆動輪

Claims (4)

  1.  エンジンと、モータ/ジェネレータと、エンジン回転軸が一方の係合部側に接続される自動クラッチと、前記モータ/ジェネレータの回転軸と前記自動クラッチの他方の係合部側とが各々個別に接続される複数の回転要素を備えた差動装置と、前記自動クラッチの他方の係合部側と同じ前記差動装置の回転要素に入力軸が接続される第1変速機と、前記差動装置の別の回転要素に入力軸が接続される第2変速機と、駆動輪側に接続される出力軸と、を有するハイブリッドシステムの制御装置において、
     前記モータ/ジェネレータの出力のみを用いるEV走行時には、前記第1変速機と前記第2変速機とが夫々に入出力軸間でトルク伝達できるよう変速制御すると共に、前記自動クラッチを解放し、
     前記EV走行中に前記エンジンを始動させる場合、前記EV走行中に前記自動クラッチを係合することでエンジン回転数を上昇させ、該自動クラッチの係合に伴い減少する駆動トルクの減少分を前記モータ/ジェネレータの出力トルクで補うことを特徴としたハイブリッドシステムの制御装置。
  2.  前記EV走行時には、前記変速制御と前記自動クラッチの解放制御を行うことで、前記モータ/ジェネレータから前記第2変速機を介して前記駆動輪に伝わる駆動トルクの一部であり、前記第1変速機を介して前記差動装置に伝わる循環トルクを発生させ、
     前記エンジン始動時には、前記自動クラッチの係合制御によって前記循環トルクの一部を前記エンジンに伝える請求項1記載のハイブリッドシステムの制御装置。
  3.  前記エンジン始動時の前記自動クラッチは半係合させる請求項1又は2に記載のハイブリッドシステムの制御装置。
  4.  前記自動クラッチの係合制御によるエンジン始動は、エンジン始動回転数が前記自動クラッチにおける他方の係合部の回転数以下の場合に実行し、
     前記エンジン始動回転数が前記自動クラッチにおける他方の係合部の回転数よりも高回転の場合には、スタータモータを用いて前記エンジンを始動させる請求項1,2又は3に記載のハイブリッドシステムの制御装置。
PCT/JP2012/056034 2012-03-08 2012-03-08 ハイブリッドシステムの制御装置 WO2013132639A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112012005995.6T DE112012005995T5 (de) 2012-03-08 2012-03-08 Steuervorrichtung eines Hybridsystems
JP2014503386A JP5804183B2 (ja) 2012-03-08 2012-03-08 ハイブリッドシステムの制御装置
US14/383,390 US9682700B2 (en) 2012-03-08 2012-03-08 Hybrid system control device
PCT/JP2012/056034 WO2013132639A1 (ja) 2012-03-08 2012-03-08 ハイブリッドシステムの制御装置
CN201280071227.4A CN104159805B (zh) 2012-03-08 2012-03-08 混合动力***的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056034 WO2013132639A1 (ja) 2012-03-08 2012-03-08 ハイブリッドシステムの制御装置

Publications (1)

Publication Number Publication Date
WO2013132639A1 true WO2013132639A1 (ja) 2013-09-12

Family

ID=49116153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056034 WO2013132639A1 (ja) 2012-03-08 2012-03-08 ハイブリッドシステムの制御装置

Country Status (5)

Country Link
US (1) US9682700B2 (ja)
JP (1) JP5804183B2 (ja)
CN (1) CN104159805B (ja)
DE (1) DE112012005995T5 (ja)
WO (1) WO2013132639A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063258A (ja) * 2013-09-26 2015-04-09 トヨタ自動車株式会社 車両の制御装置
DE102022108876A1 (de) 2021-04-28 2022-11-03 Subaru Corporation Fahrzeugantriebsvorrichtung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167653A1 (ja) * 2013-04-09 2014-10-16 トヨタ自動車株式会社 車両用変速機及び制御装置
EP3094891B1 (en) * 2014-01-15 2020-10-07 Audi AG Method for operating an electric or hybrid vehicle with shiftable transmission and electric or hybrid vehicle
KR101588790B1 (ko) * 2014-07-29 2016-01-26 현대자동차 주식회사 하이브리드 차량의 변속 제어 장치
KR101724913B1 (ko) * 2015-10-01 2017-04-10 현대자동차주식회사 듀얼클러치식 하이브리드차량의 변속 제어방법 및 그 제어시스템
US10525817B2 (en) * 2018-05-21 2020-01-07 Earl E. Irwin Supplemental transmission assembly
CN110509760B (zh) * 2019-09-20 2021-06-22 段志辉 混合动力车辆用动力驱动***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107763A (ja) * 1999-10-08 2001-04-17 Toyota Motor Corp 複数の原動機を備えた車両の制御装置
JP2005155508A (ja) * 2003-11-27 2005-06-16 Hitachi Ltd 自動車、及びその制御装置、並びにその駆動力伝達装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3647399B2 (ja) 2000-09-14 2005-05-11 株式会社日立製作所 車両用動力伝達システムおよびそれを搭載した自動車
JP3638876B2 (ja) * 2001-03-01 2005-04-13 株式会社日立製作所 車両の駆動装置及び車両
JP4205878B2 (ja) * 2001-08-31 2009-01-07 本田技研工業株式会社 ハイブリッド型車両の動力伝達装置及びその制御方法
JP2008137619A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 車両用駆動装置の制御装置
DE102006059591A1 (de) * 2006-12-16 2008-06-19 Zf Friedrichshafen Ag Hybridantriebsstrang eines Kraftfahrzeugs
JP4274268B2 (ja) * 2007-06-19 2009-06-03 トヨタ自動車株式会社 動力伝達装置
JP4466685B2 (ja) * 2007-06-19 2010-05-26 トヨタ自動車株式会社 車両用動力伝達装置
JP4572956B2 (ja) * 2008-06-03 2010-11-04 トヨタ自動車株式会社 車両の駆動装置
JP5498706B2 (ja) * 2009-02-04 2014-05-21 アイシン・エーアイ株式会社 ハイブリッド式動力伝達装置
DE102009010065A1 (de) * 2009-02-21 2010-08-26 Daimler Ag Hybridantriebsvorrichtung
DE102010030569A1 (de) * 2010-06-28 2011-12-29 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs und Verfahren zu dessen Steuerung
DE102010061824B4 (de) * 2010-11-24 2023-08-24 Zf Friedrichshafen Ag Antriebsstrang und Verfahren zum Betreiben desselben

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107763A (ja) * 1999-10-08 2001-04-17 Toyota Motor Corp 複数の原動機を備えた車両の制御装置
JP2005155508A (ja) * 2003-11-27 2005-06-16 Hitachi Ltd 自動車、及びその制御装置、並びにその駆動力伝達装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015063258A (ja) * 2013-09-26 2015-04-09 トヨタ自動車株式会社 車両の制御装置
DE102022108876A1 (de) 2021-04-28 2022-11-03 Subaru Corporation Fahrzeugantriebsvorrichtung
US12005782B2 (en) 2021-04-28 2024-06-11 Subaru Corporation Vehicle driving device

Also Published As

Publication number Publication date
US9682700B2 (en) 2017-06-20
US20150031503A1 (en) 2015-01-29
CN104159805B (zh) 2017-05-17
JPWO2013132639A1 (ja) 2015-07-30
DE112012005995T5 (de) 2014-11-27
CN104159805A (zh) 2014-11-19
JP5804183B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5804183B2 (ja) ハイブリッドシステムの制御装置
JP6183409B2 (ja) ハイブリッド車両
JP4229205B1 (ja) ハイブリッド駆動装置の制御装置
US20100173746A1 (en) Power transmission unit
US9487205B2 (en) Controller of hybrid system
US10906528B2 (en) Vehicle control unit
JP5867589B2 (ja) 車両用駆動装置
JP3823960B2 (ja) 車両の変速装置
JP5997452B2 (ja) ハイブリッド車両の駆動装置
WO2022158523A1 (ja) 車両用駆動装置の制御装置
JP2017088069A (ja) ハイブリッド車両の駆動力制御装置
JP2015112958A (ja) ハイブリッド車両
JP2004210116A (ja) ハイブリッド車両の駆動装置
JP5929641B2 (ja) ハイブリッド車両用駆動装置
JP5130799B2 (ja) ハイブリッド車両の駆動制御装置
JP5379554B2 (ja) 車両の動力伝達制御装置
JP2014108775A (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP7091981B2 (ja) ハイブリッド車両の制御装置
JP2011073574A (ja) ハイブリッド電気自動車の変速制御装置
JP5575520B2 (ja) ハイブリッド車両の動力制御装置
JP2013035404A (ja) ハイブリッド車両及びその制御方法
JP6040885B2 (ja) ハイブリッド車両の動力伝達装置
JP6052092B2 (ja) ハイブリッド車両用駆動装置
CN109843685B (zh) 用于执行蠕动充电运行的方法和用于其的混合动力传动系
JP2023080705A (ja) 車両用駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14383390

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005995

Country of ref document: DE

Ref document number: 1120120059956

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870748

Country of ref document: EP

Kind code of ref document: A1