WO2013132116A1 - High transmittance glass, method for producing same and photovoltaic applications thereof - Google Patents

High transmittance glass, method for producing same and photovoltaic applications thereof Download PDF

Info

Publication number
WO2013132116A1
WO2013132116A1 PCT/ES2013/000044 ES2013000044W WO2013132116A1 WO 2013132116 A1 WO2013132116 A1 WO 2013132116A1 ES 2013000044 W ES2013000044 W ES 2013000044W WO 2013132116 A1 WO2013132116 A1 WO 2013132116A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
additives
transmittance
solarization
photovoltaic
Prior art date
Application number
PCT/ES2013/000044
Other languages
Spanish (es)
French (fr)
Inventor
Susana GÓMEZ SALCES
Fernando RODRIGUEZ GONZÁLEZ
Rafael Valiente Barroso
José Antonio BARREDA ARGÜESO
Original Assignee
Universidad De Cantabria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Cantabria filed Critical Universidad De Cantabria
Publication of WO2013132116A1 publication Critical patent/WO2013132116A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to new glasses with compositions comprising additives that simultaneously provide radiation protection and improve the photovoltaic performance of solar cells in which they find application as well as their method of production. These new glasses can be used both in the solar energy production and building sectors.
  • High transmittance glasses are usually used to protect devices located in places subject to various environmental conditions.
  • the photovoltaic panels for the production of electrical energy use it as a protective shield in order to prolong its useful life.
  • the use of these glasses has several drawbacks related to their aging by prolonged irradiation (solarization) and the loss of radiation energy caused by reflection.
  • the most commonly used commercial photovoltaic panels today consist of amorphous, polycrystalline or monocrystalline silicon cells in increasing order of efficiency Photovoltaic, as well as other alternatives based on CdTe and CulnGaSe 2 (CIGS) type compositions.
  • the photovoltaic cell presents its maximum performance to solar radiation with wavelengths between 400 nm and 1100 nm for crystalline silicon, between 400 - 730 nm for amorphous silicon and in an intermediate range for the other semiconductors. Therefore, solutions that improve photovoltaic performance must be aimed at increasing the optical transmittance of the glass in this spectral range.
  • the main problem presented by the incorporation of pigments or additives in the glass to increase the photovoltaic performance of solar cells is the transformation that they can undergo during the synthesis of the glass.
  • Additives or pigments that are efficient outside the glass are transformed by incorporating them into the glass causing the opposite effect to the one sought: decrease in the optical quality of the glass with decrease in transmittance, loss of luminescence, degradation by solarization, etc.
  • the selection of additives is critical and must meet the objectives sought.
  • the surface treatments of glass are an alternative that is currently being explored for the incorporation of pigments and thereby avoid the deterioration caused by the severe thermal treatments that take place during the glass manufacturing process.
  • the solution proposed by the present invention is based on the fact that the inventors have surprisingly discovered that the incorporation of certain additives based on optically active oxides in high-transmittance sodium-calcium glasses allows to obtain glasses with a new composition that achieves a simultaneous improvement of the properties mentioned above, resulting in a glass with very good characteristics in particular for its use in photovoltaic applications.
  • FIG. 1 Incident energy of the solar spectrum at sea level in Wm "2 nm " 1 and response curve (relative efficiency, e r ) of crystalline silicon expressed in%.
  • FIG. 2 Scheme of the solarization experiment performed on samples M1, M2, M3 and M4.
  • FIG. 3 Comparison of the transmittance spectra of the glasses M0, M1, M2, M3 and M4.
  • FIG. 4 Transmittance spectra after 48 hours of solarization in samples M1, M2, M3 and M4.
  • FIG. 5 Emission spectrum exciting at 360 nm of the M3 sample before and after solarization.
  • FIG. 6 Emission and excitation spectra of the M4 sample.
  • the axis of abscissa of Figures 1, 3, 4, 5 and 6 represents the wavelength expressed in nanometers.
  • the invention relates to a new high-transmittance sodium-calcium type glass to which additives based on oxides of optically active elements in crystalline powder or as nanoparticles are incorporated.
  • glass of the sodium-calcium type consists mainly of silica, and sodium and calcium carbonates. They are glass of reduced cost, colorless and is generally used in the windows of buildings.
  • the term high transmittance refers to a glass that transmits approximately 91-92% of the incident light in the spectral range of transparency 275-1170 nm. That is to say, it does not absorb or reflect the light that reaches it but mostly transmits it.
  • the glasses of the present invention are high transmittance but unlike other glasses also high transmittance described for example in US 2010/0108914 and US 2006/0205583, do not contain boron, which makes it more deserving to achieve high transmittance and greatly reduces production costs.
  • the new high transmittance calcium sodium glass hereinafter the glass of the present invention, has the following chemical composition: (all% are expressed by weight in relation to the total weight of the composition unless expressly mentioned contrary):
  • This particular composition ensures that the glass of the invention has remarkable improvements with respect to commercial glasses; provide greater optical transmittance in the visible infrared region of the spectrum of photovoltaic interest, absorb ultraviolet radiation with high resistance against the effects of solarization and efficiently transform ultraviolet and infrared absorbed light through energy transfer and luminescence processes, in light of high photovoltaic performance
  • the additives used Ce0 2 and Bi 2 0 3 cause the glass of the invention to absorb ultraviolet radiation in the range 270-350 nm and 270-300 nm, respectively.
  • the absorbed radiation is emitted in the form of 400 nm light from which one part is transmitted in the glass and another part is transferred to other additives selected from the group formed by Eu 2 0 3 , Pr 6 On, Yb 2 0 3 , Er 2 0 3 and AI 2 0 3 : Cr 2 0 3 (Al 2 0 3 : Cr 3+ ) and mixtures thereof.
  • the energy transferred to these latter additives is emitted in the spectral region 550-700 nm providing radiation that improves the photovoltaic performance of solar cells incorporating the glass of the invention.
  • the glass of the invention has the following composition:
  • the invention relates to a process for the preparation of the glass of the invention.
  • the incorporation of additives to the high transmittance glass is carried out by a process comprising a heat treatment.
  • Said heat treatment varies depending on the starting material for obtaining the glass that can be (i) raw material or (ii) recycled glass.
  • the raw material in the context of the present invention should be understood as the material used for the manufacture of glass from the beginning, which comprises silica sand (Si0 2 ), sodium carbonate (Na 2 C0 3 ) and limestone (CaC0 3 ) In addition to other chemical compounds that differentiate the types of glass (the raw material in this application is called M0).
  • the process of obtaining the glass of the invention when starting from raw material comprises the steps of:
  • the process of obtaining the glass of the invention from recycled glass comprises the steps of:
  • the additives selected in each case are mixed in a diluted and homogeneous way with the raw material or with the recycled glass. These are introduced as a powder or as nanoparticles.
  • the material melts, and remains in that molten state for a time between 3 - 6 hours if it is raw material or between 12 - 15 hours if it is part of recycled glass.
  • the term "powder” refers to a material obtained by milling or in a standard reactive process in which the powder particle has an average size between 1 ⁇ and 0.5 mm.
  • the nanoparticles are they refer to a material of average size less than 200 nm and typically between 2-100 nm.
  • the use of nanoparticle additives has the advantage of minimizing the processes of light scattering and thereby loss of dispersion-transmitted solar energy.
  • the temperature of the heat treatment should be around 1500 ° C, while if the starting material is recycled material, the temperature is advantageously lower, around 1000 -1100 ° C. These temperatures guarantee a homogeneous incorporation of the additive with an optical quality comparable to that of glass without additives.
  • optically activated glasses according to the present invention with the defined concentrations of the selected additives provide new physical-chemical properties to the glass that allow to minimize the effects of solarization, increase the transmittance in the visible range of the solar spectrum and transform low UV radiation into energy efficient for solar cells.
  • the invention relates to the use of the glass of the present invention in photovoltaic panels, in particular, as an energy converter device.
  • the aforementioned properties increase the performance, efficiency and durability of photovoltaic panels, with respect to the use of commercial high transmittance glass.
  • the glass decreases the heating that occurs in the photovoltaic panel to be directly exposed to solar radiation.
  • the spectra obtained from transmittance are shown in FIG. 3 for samples MO, M1, M2, M3 and M4 in the range 200-1200 nm. An improvement in the transmittance values of samples M1, M2, M3 and M4 with respect to that of glass without M0 additives can be observed in them.
  • the sample thicknesses were: 0.10 cm for M0, 0.08 cm for M1, M2 and M3 and 0.09 cm for M4.
  • the inventors have surprisingly observed in all samples that the incorporated amounts of Ce0 2 , Bi 2 0 3 , Pr 6 On and Eu 2 0 3 allow a very good dilution of the additives without substantially modifying the refractive index of the glass. It also highlights the fact that the concentrations of Ce0 2 and Bi 2 0 3 used provide a significant increase in the transmittance in the 400-1100 nm region (FIG. 3) according to the relative composition of the two additives mentioned, with respect to glass M0 reference. In this spectral region, the silicon photovoltaic cell has maximum efficiency. The formation of Ce 3+ and Bi 3+ in the glass increases the absorption in the UV region by moving towards greater wavelengths with the concentration of Ce0 2 . The thicknesses of the samples used are 0.10 cm for M0, 0.08 cm for M1, M2 and M3 and 0.09 cm for M4.
  • the effects of additives on optical transmittance after solarization are shown in the spectra of FIG. 4.
  • the thicknesses of the test samples were: 0.10 cm for MO, 0.08 cm for M1, M2 and M3 and 0.09 cm for M4.
  • compositions of the M1, M2, M3 and M4 glasses provide optical transmittances at 500 and 800 nm higher than the M0 glass before solarization. This increase is mainly due to the incorporation of the oxides Ce0 2 and Bi 2 0 3 . After the solarization process, the transmittance values in the region around 800 nm are not substantially modified. In the most unfavorable case the reduction in transmittance is less than 0.5%.
  • FIG. 5 shows the luminescence of the M3 glass before and after solarization.
  • the emission spectra consist of luminescent bands from Ce 3+ and Bi 3+ with the maximum intensity at 400 nm, and different bands due to Eu 3+ with the most intense emissions at 550 and 720 nm. After the 48-hour solarization process, the Ce 3+ and Bi 3+ emissions at 400 nm decrease significantly. On the contrary, the luminescence due to Eu 3+ is not affected by solarization.
  • FIG. 6 shows the emission and excitation spectra of the M4 glass. They show the existence of energy transfer processes from Bi 3+ to Eu 3+ and Pr 3+, thereby transforming the light absorbed in the ultraviolet into luminescence in the optimal spectral regions for photovoltaic performance.
  • the excitation of the Bi 3+ ion at 300 nm produces luminescence whose emission spectra have a characteristic 400 nm band of the Bi 3+ , as well as emissions from the Eu 3+ and Pr 3+ ions between 550 and 720 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention describes a glass that has the following composition (percentages are expressed in % by weight in relation to the total weight of the composition): 60 - 80 % SiO2; 10 - 20 % Na2O; 5 - 15 % CaO; 0.01 % Al2O3; 0.01 - 1 % SO3; 0.01 - 5 % MgO; 0.01 - 5 % Bi2O3 and/or CeO2 and 0.01 - 6 % of one or several selected additives of the group formed by Eu2O3, Pr6O11, Yb2O3, Er2O3 and AI2O3:Cr2O3. The present invention also describes a method for obtaining same from raw material or recycled glass and the application thereof in photovoltaic panels.

Description

VIDRIOS DE ALTA TRANSMITANCIA, PROCEDIMIENTO DE OBTENCIÓN Y APLICACIONES FOTOVOLTAICAS GLASSES OF HIGH TRANSMITTANCE, PROCEDURE OF OBTAINING AND PHOTOVOLTAIC APPLICATIONS
CAMPO DE LA TÉCNICA FIELD OF THE TECHNIQUE
La presente invención se refiere a nuevos vidrios con composiciones que comprenden aditivos que proporcionan simultáneamente protección a la radiación y mejoran el rendimiento fotovoltaico de células solares en las que encuentran aplicación así como a su procedimiento de obtención. Estos nuevos vidrios pueden ser utilizados tanto en los sectores de producción de energía solar como de la edificación. The present invention relates to new glasses with compositions comprising additives that simultaneously provide radiation protection and improve the photovoltaic performance of solar cells in which they find application as well as their method of production. These new glasses can be used both in the solar energy production and building sectors.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Los vidrios de alta transmitancia son habitualmente utilizados como protección de dispositivos emplazados en lugares sujetos a condiciones ambientales diversas. Los paneles fotovoltaicos de producción de energía eléctrica lo utilizan como escudo protector con objeto de prolongar su vida útil. El uso de estos vidrios presenta varios inconvenientes relativos a su envejecimiento por irradiación prolongada (solarización) y a la pérdida de energía de radiación incidente por reflexión.  High transmittance glasses are usually used to protect devices located in places subject to various environmental conditions. The photovoltaic panels for the production of electrical energy use it as a protective shield in order to prolong its useful life. The use of these glasses has several drawbacks related to their aging by prolonged irradiation (solarization) and the loss of radiation energy caused by reflection.
En la actualidad no existen soluciones que mitigando los efectos de solarización, incrementen la transmisividad óptica y permitan la conversión energética de la radiación ultravioleta e infrarroja en luz visible de forma integrada en un mismo vidrio. At present there are no solutions that mitigate the effects of solarization, increase optical transmissivity and allow the energy conversion of ultraviolet and infrared radiation into visible light integrated in the same glass.
La búsqueda de soluciones a estos problemas se ha abordado modificando la composición de los vidrios con aditivos absorbentes de radiación ultravioleta para minimizar el efecto de la solarización (US 2010-0108914). Sin embargo, estas soluciones normalmente acarrean una disminución de la transmitancia óptica que va en detrimento del rendimiento fotovoltaico de las células solares. Otra estrategia seguida para aumentar la eficiencia fotovoltaica es el uso de pigmentos luminiscentes incorporados en la superficie del vidrio (CN201773856) o directamente incorporados en materiales vitrocerámicos (CN101618945), capaces de absorber la radiación ultravioleta o infrarroja y transformarla por diversos mecanismos de conversión de fotones de baja energía en fotones de alta energía {upconversion) o viceversa, un fotón de alta energía en fotones de menor energía (downconversion) y luminiscencia directa en radiación visible apta para producir energía fotovoltaica. The search for solutions to these problems has been addressed by modifying the composition of the glass with additives absorbing ultraviolet radiation to minimize the effect of solarization (US 2010-0108914). However, these solutions usually result in a decrease in optical transmittance that is detrimental to the photovoltaic performance of solar cells. Another strategy followed to increase photovoltaic efficiency is the use of luminescent pigments incorporated in the glass surface (CN201773856) or directly incorporated in glass ceramic materials (CN101618945), capable of absorbing ultraviolet or infrared radiation and transforming it by various photon conversion mechanisms low energy in high energy photons {upconversion) or vice versa, a high energy photon in lower energy photons (downconversion) and direct luminescence in visible radiation suitable for producing photovoltaic energy.
Los paneles fotovoltaicos comerciales más utilizados hoy en día están constituidos por células de silicio amorfo, policristalino o monocristalino en orden creciente de eficiencia fotovoltaica, así como otras alternativas basadas en composiciones tipo CdTe y CulnGaSe2 (CIGS). La célula fotovoltaica presenta su máximo rendimiento a la radiación solar con longitudes de onda comprendidas entre 400 nm y 1100 nm para el silicio cristalino, entre 400 - 730 nm para el silicio amorfo y en un rango intermedio para los otros semiconductores. Por ello, las soluciones que mejoren el rendimiento fotovoltaico se han de encaminar a aumentar la transmitancia óptica del vidrio en este rango espectral. The most commonly used commercial photovoltaic panels today consist of amorphous, polycrystalline or monocrystalline silicon cells in increasing order of efficiency Photovoltaic, as well as other alternatives based on CdTe and CulnGaSe 2 (CIGS) type compositions. The photovoltaic cell presents its maximum performance to solar radiation with wavelengths between 400 nm and 1100 nm for crystalline silicon, between 400 - 730 nm for amorphous silicon and in an intermediate range for the other semiconductors. Therefore, solutions that improve photovoltaic performance must be aimed at increasing the optical transmittance of the glass in this spectral range.
El principal problema que presenta la incorporación de pigmentos o aditivos en el vidrio para aumentar el rendimiento fotovoltaico de las células solares es la transformación que éstos pueden experimentar durante la síntesis del vidrio. Aditivos o pigmentos que son eficientes fuera del vidrio se transforman al incorporarlos en éste provocando el efecto contrario al buscado: disminución de la calidad óptica del vidrio con disminución de la transmitancia, pérdida de luminiscencia, degradación por solarización, etc. La selección de aditivos es crítica y debe responder a los objetivos buscados. Los tratamientos superficiales del vidrio son una alternativa que se está explorando en la actualidad para la incorporación de pigmentos y evitar con ello el deterioro que acarrean los tratamientos térmicos severos que tienen lugar durante el proceso de fabricación de vidrios. The main problem presented by the incorporation of pigments or additives in the glass to increase the photovoltaic performance of solar cells is the transformation that they can undergo during the synthesis of the glass. Additives or pigments that are efficient outside the glass are transformed by incorporating them into the glass causing the opposite effect to the one sought: decrease in the optical quality of the glass with decrease in transmittance, loss of luminescence, degradation by solarization, etc. The selection of additives is critical and must meet the objectives sought. The surface treatments of glass are an alternative that is currently being explored for the incorporation of pigments and thereby avoid the deterioration caused by the severe thermal treatments that take place during the glass manufacturing process.
Aunque se conocen algunas soluciones para incorporar aditivos directamente en vidrios con alto contenido en B203 al objeto de mitigar los efectos de solarización (US 2010/0108914; US 2006/0205583), el problema asociado a la incorporación en vidrios sódico-cálcicos de alta transmitancia óptica sin contenido en boro que tienen un interés industrial y comercial persiste. Although some solutions are known to incorporate additives directly in glasses with a high content of B 2 0 3 in order to mitigate the effects of solarization (US 2010/0108914; US 2006/0205583), the problem associated with the incorporation in sodium-calcium glasses High optical transmittance without boron content that have an industrial and commercial interest persists.
A la vista de lo expuesto sigue existiendo por un lado la necesidad de proporcionar nuevos vidrios sódico-cálcicos que mejoren simultáneamente tres propiedades importantes como a) minimizar los efectos de solarización, b) aumentar la transmitancia en el rango visible, y c) absorber la radiación ultravioleta transformándola en radiación visible a través de distintos mecanismos de transferencia de energía y emisión luminiscente, aumentando la eficiencia energética (transmitancia energética según normas ISO9050:2003) para uso fotovoltaico, y por el otro de proporcionar nuevos procedimientos de obtención de los mismos. La solución propuesta por la presente invención se basa en que los inventores han descubierto sorprendentemente que la incorporación de determinados aditivos a base de óxidos ópticamente activos en vidrios sódico-cálcicos de alta transmitancia permite obtener vidrios con una nueva composición que consigue una mejora simultánea de las propiedades anteriormente mencionadas, resultando un vidrio con muy buenas características en particular de cara a su uso en aplicaciones fotovoltaicas. In view of the above, there is still a need to provide new sodium-calcium glasses that simultaneously improve three important properties such as a) minimize the effects of solarization, b) increase the transmittance in the visible range, and c) absorb radiation ultraviolet transforming it into visible radiation through different mechanisms of energy transfer and luminescent emission, increasing energy efficiency (energy transmittance according to ISO9050: 2003 standards) for photovoltaic use, and on the other to provide new procedures for obtaining them. The solution proposed by the present invention is based on the fact that the inventors have surprisingly discovered that the incorporation of certain additives based on optically active oxides in high-transmittance sodium-calcium glasses allows to obtain glasses with a new composition that achieves a simultaneous improvement of the properties mentioned above, resulting in a glass with very good characteristics in particular for its use in photovoltaic applications.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
FIG. 1 Energía incidente del espectro solar a nivel del mar en Wm"2nm"1 y curva de respuesta (eficiencia relativa, er) del silicio cristalino expresado en %. FIG. 1 Incident energy of the solar spectrum at sea level in Wm "2 nm " 1 and response curve (relative efficiency, e r ) of crystalline silicon expressed in%.
FIG. 2 Esquema del experimento de solarización realizado en las muestras M1 , M2, M3 y M4.  FIG. 2 Scheme of the solarization experiment performed on samples M1, M2, M3 and M4.
FIG. 3 Comparación de los espectros de transmitancia de los vidrios M0, M1 , M2, M3 y M4.  FIG. 3 Comparison of the transmittance spectra of the glasses M0, M1, M2, M3 and M4.
FIG. 4 Espectros de transmitancia tras 48 horas de solarización en las muestras M1 , M2, M3 y M4. FIG. 4 Transmittance spectra after 48 hours of solarization in samples M1, M2, M3 and M4.
FIG. 5 Espectro de emisión excitando a 360 nm de la muestra M3 antes y después de la solarización.  FIG. 5 Emission spectrum exciting at 360 nm of the M3 sample before and after solarization.
FIG. 6 Espectros de emisión y excitación de la muestra M4.  FIG. 6 Emission and excitation spectra of the M4 sample.
El eje de abcisas de las figuras 1 , 3, 4, 5 y 6 representa la longitud de onda expresada en nanómetros. The axis of abscissa of Figures 1, 3, 4, 5 and 6 represents the wavelength expressed in nanometers.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
En un primer aspecto la invención se relaciona con un nuevo vidrio tipo sódico-cálcico de alta transmitancia al que se incorporan aditivos a base de óxidos de elementos ópticamente activos en polvo cristalino o como nanopartículas. In a first aspect, the invention relates to a new high-transmittance sodium-calcium type glass to which additives based on oxides of optically active elements in crystalline powder or as nanoparticles are incorporated.
En general los vidrios del tipo sódico-cálcicos están formados principalmente por sílice, y carbonatos de sodio y calcio. Son vidrios de coste reducido, incoloro y se emplea generalmente en las ventanas de los edificios. In general, glass of the sodium-calcium type consists mainly of silica, and sodium and calcium carbonates. They are glass of reduced cost, colorless and is generally used in the windows of buildings.
En el sentido de la presente invención el término de alta transmitancia, se refiere a que es un vidrio que transmite aproximadamente un 91-92% de la luz incidente en el rango espectral de transparencia 275-1170 nm. Es decir, no absorbe o refleja la luz que le llega sino que mayoritariamente la transmite. Los vidrios de la presente invención son de alta transmitancia pero a diferencia de otros vidrios también de alta transmitancia descritos por ejemplo en US 2010/0108914 y US 2006/0205583, no contienen boro, lo que hace más meritorio lograr altas transmitancias y reduce considerablemente los costes de producción. In the sense of the present invention the term high transmittance refers to a glass that transmits approximately 91-92% of the incident light in the spectral range of transparency 275-1170 nm. That is to say, it does not absorb or reflect the light that reaches it but mostly transmits it. The glasses of the present invention are high transmittance but unlike other glasses also high transmittance described for example in US 2010/0108914 and US 2006/0205583, do not contain boron, which makes it more deserving to achieve high transmittance and greatly reduces production costs.
El nuevo vidrio de tipo sódico cálcico de alta transmitancia, en adelante el vidrio de la presente invención, presenta la siguiente composición química: (todos los % están expresados en peso en relación al peso total de la composición a no ser que se mencione expresamente lo contrario): The new high transmittance calcium sodium glass, hereinafter the glass of the present invention, has the following chemical composition: (all% are expressed by weight in relation to the total weight of the composition unless expressly mentioned contrary):
60 - 80 % de Si02 60 - 80% of Si0 2
10 - 20 % de Na20 10 - 20% of Na 2 0
5 - 15 % de CaO  5 - 15% CaO
0,01 - 5 % de Al203 0.01 - 5% of Al 2 0 3
0,01 - 1 % de S03 0.01 - 1% of S0 3
0,01 - 5 % de MgO  0.01-5% MgO
0,01 - 5 % de Bi203 y/o Ce02 y 0.01 - 5% of Bi 2 0 3 and / or Ce0 2 and
0,01 - 6 % de uno ó más aditivos seleccionados del grupo formado por Eu203, PreOn, Yb203, Er203 y Al203:Cr203. 0.01 - 6% of one or more additives selected from the group consisting of Eu 2 0 3 , Pr e On, Yb 2 0 3 , Er 2 0 3 and Al20 3 : Cr 2 03.
Esta composición particular consigue que el vidrio de la invención presente mejoras destacables con respecto a los vidrios comerciales; proporcione mayor transmitancia óptica en la región visible infrarroja del espectro de interés fotovoltaico, absorba la radiación ultravioleta con una alta resistencia frente a los efectos de solarización y transforme eficientemente la luz absorbida ultravioleta e infrarroja mediante procesos de transferencia de energía y luminiscencia, en luz de alto rendimiento fotovoltaico. This particular composition ensures that the glass of the invention has remarkable improvements with respect to commercial glasses; provide greater optical transmittance in the visible infrared region of the spectrum of photovoltaic interest, absorb ultraviolet radiation with high resistance against the effects of solarization and efficiently transform ultraviolet and infrared absorbed light through energy transfer and luminescence processes, in light of high photovoltaic performance
En una realización particular presentan la ventaja adicional de que pueden obtenerse a partir de vidrio reciclado. In a particular embodiment they have the additional advantage that they can be obtained from recycled glass.
Los aditivos empleados Ce02 y Bi203 hacen que el vidrio de la invención absorba radiación ultravioleta en el intervalo 270 - 350 nm y 270 - 300 nm, respectivamente. La radiación absorbida se emite en forma de luz de 400 nm de la que una parte se transmite en el vidrio y otra parte se transfiere a otros aditivos seleccionados del grupo formado por Eu203, Pr6On, Yb203, Er203 y AI203:Cr203 (Al203: Cr3+) y sus mezclas. La energía transferida a estos últimos aditivos se emite en la región espectral 550 - 700 nm proporcionando una radiación que mejora el rendimiento fotovoltaico de las células solares que incorporan el vidrio de la invención. Algunos ejemplos de composiciones de vidrio según la invención y sus propiedades ventajosas se muestran en la Tabla 1 (ver ejemplos) y se ilustran en las figuras. The additives used Ce0 2 and Bi 2 0 3 cause the glass of the invention to absorb ultraviolet radiation in the range 270-350 nm and 270-300 nm, respectively. The absorbed radiation is emitted in the form of 400 nm light from which one part is transmitted in the glass and another part is transferred to other additives selected from the group formed by Eu 2 0 3 , Pr 6 On, Yb 2 0 3 , Er 2 0 3 and AI 2 0 3 : Cr 2 0 3 (Al 2 0 3 : Cr 3+ ) and mixtures thereof. The energy transferred to these latter additives is emitted in the spectral region 550-700 nm providing radiation that improves the photovoltaic performance of solar cells incorporating the glass of the invention. Some examples of glass compositions according to the invention and their advantageous properties are shown in Table 1 (see examples) and are illustrated in the figures.
En una realización preferente el vidrio de la invención presenta la siguiente composición: In a preferred embodiment, the glass of the invention has the following composition:
65 - 75 % de Si02 65 - 75% of Si0 2
12 - 17 % de Na20 12-17% of Na 2 0
7 - 14 % de CaO  7 - 14% CaO
0,1 - 1 % de AI203 0.1 - 1% AI 2 0 3
0,1 - 0,5 % de S03 0.1 - 0.5% of S0 3
0,05 - 4 % de MgO  0.05-4% MgO
0,01 - 1 ,5 % de Ce02 0.01 - 1.5% of Ce0 2
0,01 - 1 ,5 % de Bi203 0.01 - 1.5% of Bi 2 0 3
0,01 - 1 ,5 % de Eu203 0.01 - 1, 5% of Eu 2 0 3
0,01 - 0,2 % de PreOn, Los inventores han observado que se consigue una muy buena combinación de las características anteriormente citadas: 1 ) un aumento de la transmisión óptica en la región 420 nm - 1200 nm; 2) mayor resistencia a la solarización; y 3) un aumento del rendimiento fotoluminiscente en la región óptima de trabajo de la célula solar proveniente de la luz ultravioleta absorbida, para composiciones de vidrio en las que la relación de concentraciones de Ce02 : Bi203 es de 2:1 dentro de los rangos anteriormente definidos. Una realización preferente se considera la composición M3 de la Tabla 1 que presenta más particularmente un 1 ,0% Ce02 y 0,5% Bi203. 0.01 - 0.2% of Pr e On, The inventors have observed that a very good combination of the aforementioned characteristics is achieved: 1) an increase in optical transmission in the region 420 nm - 1200 nm; 2) greater resistance to solarization; and 3) an increase in photoluminescent performance in the optimal working region of the solar cell from absorbed ultraviolet light, for glass compositions in which the concentration ratio of Ce0 2 : Bi 2 0 3 is 2: 1 within of the previously defined ranges. A preferred embodiment is considered the composition M3 of Table 1 which presents more particularly 1.0% Ce0 2 and 0.5% Bi 2 0 3 .
En otro aspecto la invención se relaciona con un procedimiento para la preparación del vidrio de la invención. In another aspect the invention relates to a process for the preparation of the glass of the invention.
La incorporación de aditivos al vidrio de alta transmitancia se lleva a cabo mediante un procedimiento que comprende un tratamiento térmico. Dicho tratamiento térmico varía dependiendo del material de partida para la obtención del vidrio que puede ser (i) materia prima o (ii) vidrio reciclado. Por materia prima ha de entenderse en el contexto de la presente invención la materia utilizada para la fabricación del vidrio desde el origen, que comprende arena de sílice (Si02), carbonato de sodio (Na2C03) y caliza (CaC03) además de otros compuestos químicos que hacen diferenciar los tipos de vidrios (la materia prima en la presente solicitud se denomina como M0). The incorporation of additives to the high transmittance glass is carried out by a process comprising a heat treatment. Said heat treatment varies depending on the starting material for obtaining the glass that can be (i) raw material or (ii) recycled glass. The raw material in the context of the present invention should be understood as the material used for the manufacture of glass from the beginning, which comprises silica sand (Si0 2 ), sodium carbonate (Na 2 C0 3 ) and limestone (CaC0 3 ) In addition to other chemical compounds that differentiate the types of glass (the raw material in this application is called M0).
Por vidrio reciclado, ha de entenderse vidrio roto o defectuoso sódico-cálcico puro obtenido durante el proceso de enfriamiento que pasa a formar parte de la nueva hornada, reduciendo así considerablemente la temperatura de fusión. By recycled glass, broken or defective pure sodium-calcium glass obtained during the cooling process that becomes part of the new batch, thus reducing the melting temperature considerably.
El procedimiento de obtención del vidrio de la invención cuando se parte de materia prima comprende las etapas de: The process of obtaining the glass of the invention when starting from raw material comprises the steps of:
- adicionar los aditivos ópticamente activos.  - add optically active additives.
- fundir la materia prima con aditivos por tratamiento térmico a temperatura en torno a 1500 °C.  - melt the raw material with additives by heat treatment at a temperature around 1500 ° C.
mantener la temperatura y  keep the temperature and
- enfriamiento.  - cooling
El procedimiento de obtención del vidrio de la invención a partir de vidrio reciclado comprende las etapas de: The process of obtaining the glass of the invention from recycled glass comprises the steps of:
molienda del vidrio reciclado hasta dejarlo en forma de polvo.  grinding of the recycled glass until it is left in powder form.
- adicionar los aditivos ópticamente activos.  - add optically active additives.
- fundir el polvo con los aditivos por tratamiento térmico a temperaturas entre 1000 y 1100 °C.  - melt the powder with the additives by heat treatment at temperatures between 1000 and 1100 ° C.
- mantener la temperatura y  - keep the temperature and
- enfriamiento.  - cooling
Los aditivos seleccionados en cada caso, se mezclan de forma diluida y homogénea bien con la materia prima o con el vidrio reciclado. Estos se introducen en forma de polvo o como nanopartículas. El material se funde, y se mantiene en ese estado fundido por un tiempo entre 3 - 6 horas si se parte de materia prima o entre 12 - 15 horas si se parte de vidrio reciclado. The additives selected in each case are mixed in a diluted and homogeneous way with the raw material or with the recycled glass. These are introduced as a powder or as nanoparticles. The material melts, and remains in that molten state for a time between 3 - 6 hours if it is raw material or between 12 - 15 hours if it is part of recycled glass.
En el contexto de la invención el término polvo, se refiere a un material obtenido mediante molienda o en un proceso reactivo estándar en el que la partícula de polvo tiene un tamaño medio comprendido entre 1 μητι y 0,5 mm. Las nanopartículas, se refieren a un material de tamaño medio inferior a 200 nm y típicamente comprendido entre 2-100 nm. Además de poseer propiedades diferentes que el material en polvo de la misma composición, el empleo de aditivos en forma de nanopartículas tiene la ventaja de minimizar los procesos de dispersión de luz y con ello de pérdidas de energía solar transmitida por dispersión. In the context of the invention the term "powder" refers to a material obtained by milling or in a standard reactive process in which the powder particle has an average size between 1 μητι and 0.5 mm. The nanoparticles, are they refer to a material of average size less than 200 nm and typically between 2-100 nm. In addition to having different properties than the powder material of the same composition, the use of nanoparticle additives has the advantage of minimizing the processes of light scattering and thereby loss of dispersion-transmitted solar energy.
En el caso particular del aditivo AI203:Cr3+, su introducción en forma de nanopartículas, en lugar de polvo de mayor tamaño, tiene la ventaja, cuando se parte de vidrio reciclado y el tratamiento térmico no supera los 1000°C, de mantener las características luminiscentes del producto AI203:Cr3+, sin que afecte a la transmisión de luz por el vidrio (efectos dispersivos); es decir, interesa que se diluya en el vidrio de la invención como nanopartículas preservando su composición inicial. En los casos de los restantes aditivos, no se presenta esta ventaja, ya que el resto de los aditivos se descomponen y diluyen en el vidrio de la invención. In the particular case of the additive AI 2 0 3 : Cr 3+ , its introduction in the form of nanoparticles, instead of larger dust, has the advantage, when starting from recycled glass and the heat treatment does not exceed 1000 ° C , to maintain the luminescent characteristics of the AI 2 0 3 : Cr 3+ product , without affecting the transmission of light through the glass (dispersive effects); that is, it is of interest that it be diluted in the glass of the invention as nanoparticles while preserving its initial composition. In the cases of the remaining additives, this advantage is not presented, since the rest of the additives decompose and dilute in the glass of the invention.
En el procedimiento de la invención si el material de partida es materia prima, la temperatura del tratamiento térmico debe ser en torno a 1500 °C, mientras que si el material de partida es material reciclado, la temperatura es ventajosamente inferior, en torno a 1000-1100°C. Estas temperaturas garantizan una incorporación homogénea del aditivo con una calidad óptica comparable a la del vidrio sin aditivos. In the process of the invention if the starting material is raw material, the temperature of the heat treatment should be around 1500 ° C, while if the starting material is recycled material, the temperature is advantageously lower, around 1000 -1100 ° C. These temperatures guarantee a homogeneous incorporation of the additive with an optical quality comparable to that of glass without additives.
Los resultados experimentales que se muestran en los ejemplos ponen de manifiesto que los vidrios activados ópticamente según la presente invención con las concentraciones definidas de los aditivos seleccionados, proporcionan nuevas propiedades físico-químicas al vidrio que permiten minimizar los efectos de la solarización, aumentar la transmitancia en el rango visible del espectro solar y tranformar radicación UV poco eficiente en energía eficiente para las células solares. The experimental results shown in the examples show that the optically activated glasses according to the present invention with the defined concentrations of the selected additives provide new physical-chemical properties to the glass that allow to minimize the effects of solarization, increase the transmittance in the visible range of the solar spectrum and transform low UV radiation into energy efficient for solar cells.
Dadas las propiedades del vidrio de la invención de alta transmitancia y conversión espectral que se describen en la presente solicitud, resulta muy apropiado como elemento activo en la producción de energía eléctrica fotovoltaica en espacios abiertos con un óptimo aprovechamiento del espectro solar que aumenta la eficiencia final de un panel fotovoltaico. Por ello en otro aspecto adicional, la invención se refiere al uso del vidrio de la presente invención en paneles fotovoltaicos, en particular, como dispositivo conversor de energía. Las propiedades anteriomente mencionadas aumentan el rendimiento, la eficiencia y la durabilidad de los paneles fotovoltaicos, con respecto al empleo de vidrios comerciales de alta transmitancia. Además el vidrio disminuye el calentamiento que se produce en el panel fotovoltaico el estar expuesto directamente a la radiación solar. A continuación, para una mejor comprensión de la presente invención, sin que deban ser interpretados como limitaciones del alcance de la misma, se exponen los siguientes ejemplos. Given the properties of the glass of the invention of high transmittance and spectral conversion described in the present application, it is very appropriate as an active element in the production of photovoltaic electrical energy in open spaces with an optimal use of the solar spectrum that increases the final efficiency of a photovoltaic panel. Therefore, in a further aspect, the invention relates to the use of the glass of the present invention in photovoltaic panels, in particular, as an energy converter device. The aforementioned properties increase the performance, efficiency and durability of photovoltaic panels, with respect to the use of commercial high transmittance glass. In addition the glass decreases the heating that occurs in the photovoltaic panel to be directly exposed to solar radiation. Next, for a better understanding of the present invention, without being construed as limitations on the scope thereof, the following examples are set forth.
EJEMPLOS EXAMPLES
Ejemplo 1 Example 1
Se han preparado los siguientes vidrios M1 - M4 con las composiciones mostradas en la siguiente Tabla 1.  The following M1-M4 glasses have been prepared with the compositions shown in the following Table 1.
Tabla 1  Table 1
ELEMENTOS M1 M2 M3 M4  ELEMENTS M1 M2 M3 M4
Si02 69,8 69,8 69,8 69,8Si0 2 69.8 69.8 69.8 69.8
Na20 13,8 13,8 13,8 13,8Na 2 0 13.8 13.8 13.8 13.8
CaO 9,8 9,8 9,8 9,8 o CaO 9.8 9.8 9.8 9.8 or
Έ Al203 0,6 0,6 0,6 0,6 Έ Al 2 0 3 0.6 0.6 0.6 0.6
S03 0,2 0,2 0,2 0,2 S0 3 0.2 0.2 0.2 0.2
MgO 3,8 3,8 3,8 3,8 MgO 3.8 3.8 3.8 3.8
Ce02 0,5 0,75 1 ,0 Ce0 2 0.5 0.75 1, 0
Bi203 1 ,0 0,75 0,5 1 ,0 o Bi 2 0 3 1, 0 0.75 0.5 1, 0 or
o Eu203 0,5 0,5 0,5 1 ,0or Eu 2 0 3 0.5 0.5 0.5 1, 0
> Yb203 > Yb 2 0 3
Q  Q
< Er203 <Er 2 0 3
Pr6On 0,1 Pr 6 On 0.1
AI203:Cr203 Estos vidrios se han sometido a diversos ensayos como se expone a continuación y sus propiedades se han comparado con las de un vidrio sin aditivos (M0). Este vidrio puro se produce comercialmente con las denominaciones Albarino y Diamant® (Saint Gobain), son vidrios templados, extraclaros, con bajo contenido en sales de hierro que se emplean habitualmente en módulos fotovoltaicos y de alta transmitancia. AI 2 0 3 : Cr 2 0 3 These glasses have undergone various tests as set out below and their properties have been compared with those of a glass without additives (M0). This pure glass is produced commercially with the designations Albarino and Diamant® (Saint Gobain), are tempered, extra-clear glass, with a low content of iron salts that are commonly used in photovoltaic and high transmittance modules.
Transmitancia Transmittance
Los espectros obtenidos de transmitancia se muestran en la FIG. 3 para las muestras MO, M1 , M2, M3 y M4 en el rango 200-1200 nm. En ellos puede observarse una mejora en los valores de la transmitancia de las muestras M1 , M2, M3 y M4 con respecto a la del vidrio sin aditivos M0. Los espesores de las muestras fueron: 0,10 cm para M0, de 0,08 cm para M1 , M2 y M3 y de 0,09 cm para M4. The spectra obtained from transmittance are shown in FIG. 3 for samples MO, M1, M2, M3 and M4 in the range 200-1200 nm. An improvement in the transmittance values of samples M1, M2, M3 and M4 with respect to that of glass without M0 additives can be observed in them. The sample thicknesses were: 0.10 cm for M0, 0.08 cm for M1, M2 and M3 and 0.09 cm for M4.
Los inventores han observado sorprendentemente en todas las muestras que las cantidades incorporadas de Ce02, Bi203, Pr6On y Eu203 permiten una muy buena dilución de los aditivos sin modificar sustancialmente el índice de refracción del vidrio. Destaca asimismo el hecho de que las concentraciones de Ce02 y Bi203 utilizadas proporcionan un aumento sensible de la transmitancia en la región 400 -1100 nm (FIG. 3) según la composición relativa de los dos aditivos mencionados, con respecto al vidrio M0 de referencia. En esta región espectral, la célula fotovoltaica de silicio presenta la máxima eficiencia. La formación de Ce3+ y Bi3+ en el vidrio aumenta la absorción en la región UV desplazándose hacia mayores longitudes de onda con la concentración de Ce02. Los espesores de las muestras utilizados son de 0,10 cm para M0, 0,08 cm para M1 , M2 y M3 y 0,09 cm para M4. The inventors have surprisingly observed in all samples that the incorporated amounts of Ce0 2 , Bi 2 0 3 , Pr 6 On and Eu 2 0 3 allow a very good dilution of the additives without substantially modifying the refractive index of the glass. It also highlights the fact that the concentrations of Ce0 2 and Bi 2 0 3 used provide a significant increase in the transmittance in the 400-1100 nm region (FIG. 3) according to the relative composition of the two additives mentioned, with respect to glass M0 reference. In this spectral region, the silicon photovoltaic cell has maximum efficiency. The formation of Ce 3+ and Bi 3+ in the glass increases the absorption in the UV region by moving towards greater wavelengths with the concentration of Ce0 2 . The thicknesses of the samples used are 0.10 cm for M0, 0.08 cm for M1, M2 and M3 and 0.09 cm for M4.
Solarización Solarization
Para el experimento de solarización se utilizó una lámpara Ultra-Vitalux de OSRAM de 300W y la placa calefactora que permite mantener la temperatura durante todo el experimento. Los círculos del esquema de la FIG. 2 representan la disposición de los vidrios durante el proceso de solarización. Los efectos de solarización en el vidrio se han cuantificado espectroscópicamente tras ser sometido a un proceso de irradiación ultravioleta prolongado con la lámpara de acuerdo con el esquema de la FIG. 2. Para simular los efectos de la radiación solar, la distancia entre la lámpara y el vidrio fue de 16,3 cm, de acuerdo con la norma EN ISO 12543-4:1998. Los vidrios M1 , M2, M3 y M4 fueron sometidos a diferentes dosis de irradiación durante un periodo de 48 horas. Transmitancia antes v después de la solarización For the solarization experiment, a 300W OSRAM Ultra-Vitalux lamp and the heating plate were used to maintain the temperature throughout the experiment. The circles of the scheme of FIG. 2 represent the arrangement of the glasses during the solarization process. The effects of solarization on the glass have been quantified spectroscopically after being subjected to a prolonged ultraviolet irradiation process with the lamp according to the scheme of FIG. 2. To simulate the effects of solar radiation, the distance between the lamp and the glass was 16.3 cm, in accordance with EN ISO 12543-4: 1998. The M1, M2, M3 and M4 glasses were subjected to different irradiation doses over a period of 48 hours. Transmittance before and after solarization
Los efectos de los aditivos sobre la transmitancia óptica después de la solarización se muestran en los espectros de la FIG. 4. Los espesores de las muestras de los ensayos fueron: 0,10 cm para MO, de 0,08 cm para M1 , M2 y M3 y de 0,09 cm para M4.  The effects of additives on optical transmittance after solarization are shown in the spectra of FIG. 4. The thicknesses of the test samples were: 0.10 cm for MO, 0.08 cm for M1, M2 and M3 and 0.09 cm for M4.
Los valores de la transmitancia óptica a 500 y 800 nm, y de la longitud de onda para la cual la transmitancia se reduce al 50 % en los diferentes vidrios, se recogen en la siguiente Tabla 2 para su comparación. The values of the optical transmittance at 500 and 800 nm, and the wavelength for which the transmittance is reduced to 50% in the different glasses, are collected in the following Table 2 for comparison.
Tabla 2 Table 2
M0 M1 M2 M3 M4  M0 M1 M2 M3 M4
Transmitancia (%) a 500 nm  Transmittance (%) at 500 nm
Antes de la  Before the
91 91 91 91 91 exposición  91 91 91 91 91 exhibition
Después de la  After the
88 91 90 90 exposición  88 91 90 90 exposure
Transmitancia (%) a 800 nm  Transmittance (%) at 800 nm
Antes de la  Before the
90 91 92 92 91 exposición  90 91 92 92 91 exposure
Después de la  After the
91 92 92 91 exposición  91 92 92 91 exposure
Longitud de onda correspondiente al 50 % de transmitancia (nm) Wavelength corresponding to 50% transmittance (nm)
Antes de la Before the
302 349 353 355 313 exposición  302 349 353 355 313 exhibition
Después de la  After the
357 359 362 316 exposición  357 359 362 316 exhibition
Las composiciones de los vidrios M1 , M2, M3 y M4 proporcionan transmitancias ópticas a 500 y 800 nm superiores al vidrio M0 antes de la solarización. Este aumento es debido fundamentalmente a la incorporación de los óxidos Ce02 y Bi203. Tras el proceso de solarización, los valores de la transmitancia en la región en torno a 800 nm no se modifican sustancialmente. En el caso más desfavorable la reducción de la transmitancia es inferior al 0.5%. The compositions of the M1, M2, M3 and M4 glasses provide optical transmittances at 500 and 800 nm higher than the M0 glass before solarization. This increase is mainly due to the incorporation of the oxides Ce0 2 and Bi 2 0 3 . After the solarization process, the transmittance values in the region around 800 nm are not substantially modified. In the most unfavorable case the reduction in transmittance is less than 0.5%.
La longitud de onda correspondiente a una transmitancia del 50 % se desplaza hacia mayores longitudes de onda debido a la incorporación de iones Ce3+ y el Bi3+ con una fuerte absorción en la región ultravioleta. La combinación de variación de la transmitancia y desplazamiento de la longitud de onda tras la solarización indican que la muestra M3 es la más eficiente de las muestras. Luminiscencia antes y después de la solarización The wavelength corresponding to a transmittance of 50% shifts towards longer wavelengths due to the incorporation of Ce 3+ and Bi 3+ ions with a strong absorption in the ultraviolet region. The combination of transmittance variation and wavelength shift after solarization indicates that the M3 sample is the most efficient of the samples. Luminescence before and after solarization
La FIG. 5 muestra la luminiscencia del vidrio M3 antes y después de la solarización. Los espectros de emisión consisten en bandas luminiscentes provenientes del Ce3+ y Bi3+ con la máxima intensidad a 400 nm, y diferentes bandas debidas al Eu3+ con las emisiones más intensas en 550 y 720 nm. Tras el proceso de solarización de 48 horas, las emisiones del Ce3+ y Bi3+ en 400 nm disminuyen significativamente. Por el contrario, la luminiscencia debida al Eu3+ no se ve afectada por la solarización. FIG. 5 shows the luminescence of the M3 glass before and after solarization. The emission spectra consist of luminescent bands from Ce 3+ and Bi 3+ with the maximum intensity at 400 nm, and different bands due to Eu 3+ with the most intense emissions at 550 and 720 nm. After the 48-hour solarization process, the Ce 3+ and Bi 3+ emissions at 400 nm decrease significantly. On the contrary, the luminescence due to Eu 3+ is not affected by solarization.
Espectros de emisión v excitación Emission and excitation spectra
La FIG. 6 muestra los espectros de emisión y excitación del vidrio M4. En ellos se pone de manifiesto la existencia de procesos de transferencia de energía del Bi3+ al Eu3+ y Pr3+ consiguiendo con ello transformar la luz absorbida en el ultravioleta en luminiscencia en las regiones espectrales óptimas para el rendimiento fotovoltaico. La excitación del ion Bi3+ en 300 nm produce luminiscencia cuyos espectros de emisión presentan una banda en 400 nm característica del Bi3+, así como emisiones provenientes de los iones Eu3+ y del Pr3+ entre 550 y 720 nm. Es importante destacar que estas emisiones se producen a través de un proceso de transferencia de energía desde el Bi3+ al Eu3+ lo que supone un desplazamiento efectivo de la emisión desde la región de 400 nm a las regiones de 550 y 720 nm, que son más eficientes para uso fotovoltaico. FIG. 6 shows the emission and excitation spectra of the M4 glass. They show the existence of energy transfer processes from Bi 3+ to Eu 3+ and Pr 3+, thereby transforming the light absorbed in the ultraviolet into luminescence in the optimal spectral regions for photovoltaic performance. The excitation of the Bi 3+ ion at 300 nm produces luminescence whose emission spectra have a characteristic 400 nm band of the Bi 3+ , as well as emissions from the Eu 3+ and Pr 3+ ions between 550 and 720 nm. It is important to note that these emissions are produced through a process of energy transfer from Bi 3+ to Eu 3+ , which implies an effective shift of the emission from the 400 nm region to the 550 and 720 nm regions, which are more efficient for photovoltaic use.

Claims

REIVINDICACIONES
1. Un vidrio que presenta la siguiente composición (porcentajes expresados en % en peso respecto al peso total de la composición): 1. A glass having the following composition (percentages expressed in% by weight with respect to the total weight of the composition):
60-80 % de Si02 60-80% of Si0 2
10 -20% de Na20 10-20% of Na 2 0
5- 15% de CaO  5- 15% CaO
0,01 - 5 % de Al203 0.01 - 5% of Al 2 0 3
0,01 - 1 % de S03 0.01 - 1% of S0 3
0,01 - 5 % de MgO  0.01-5% MgO
0,01 - 5 % de Bi203 y/o Ce02 y 0.01 - 5% of Bi 2 0 3 and / or Ce0 2 and
0,01 - 6 % de uno ó más aditivos seleccionados del grupo formado por Eu203, PreOii, Yb203, Er203 y AI203:Cr203. 2. Un vidrio según la reivindicación 1 que presenta la siguiente composición: 0.01 - 6% of one or more additives selected from the group consisting of Eu 2 0 3 , Pr e Oii, Yb 2 0 3 , Er 2 0 3 and AI 2 0 3 : Cr 2 0 3 . 2. A glass according to claim 1 having the following composition:
65 - 75 % de Si02 65 - 75% of Si0 2
12 -17% de Na20 12 -17% of Na 2 0
7 - 14 % de CaO  7 - 14% CaO
0,1 -1 %de Al203 0.1 -1% of Al 2 0 3
0,1 -0,5%deSO3 0.1 -0.5% of SO 3
0,05 - 4 % de MgO  0.05-4% MgO
0,01 - 1 ,5 % de Ce02 0.01 - 1.5% of Ce0 2
0,01 -1,5% de Bi203 0.01 -1.5% of Bi 2 0 3
0,01 - 1 ,5 % de Eu203 0.01 - 1, 5% of Eu 2 0 3
0,01 -0,2 %dePr6On, 0.01 -0.2% of Pr 6 On,
3. Un vidrio según la reivindicación 1 o 2, que presenta una relación de concentraciones de Ce02 : Bi203 de 2: 1. 3. A glass according to claim 1 or 2, having a concentration ratio of Ce0 2 : Bi 2 0 3 of 2: 1.
4. Un vidrio con una composición M1 , M2, M3 o M4: ELEMENTOS M1 M2 M3 M4 4. A glass with a composition M1, M2, M3 or M4: ELEMENTS M1 M2 M3 M4
Si02 69,8 69,8 69.8 69,8Si0 2 69.8 69.8 69.8 69.8
Na20 13,8 13,8 13.8 13,8Na 2 0 13.8 13.8 13.8 13.8
CaO 9,8 9,8 9.8 9,8 CaO 9.8 9.8 9.8 9.8
O  OR
:≥ Al203 0,6 0,6 0.6 0,6 : ≥ Al 2 0 3 0.6 0.6 0.6 0.6
so3 0,2 0,2 0.2 0,2so 3 0.2 0.2 0.2 0.2
MgO 3,8 3,8 3.8 3,8MgO 3.8 3.8 3.8 3.8
Ce02 0,5 0,75 1.0Ce0 2 0.5 0.75 1.0
203 1 ,0 0,75 0.5 1 ,0
Figure imgf000014_0001
2 0 3 1, 0 0.75 0.5 1, 0
Figure imgf000014_0001
Pr6On 0,1 AI203:Cr203 Pr 6 On 0.1 AI 2 0 3 : Cr 2 0 3
5. Procedimiento para la obtención de un vidrio según una cualquiera de las reivindicaciones anteriores a partir de materia prima que comprende las siguientes etapas: 5. Method for obtaining a glass according to any one of the preceding claims from raw material comprising the following steps:
adicionar los aditivos ópticamente activos.  add optically active additives.
- fundir la materia prima con aditivos por tratamiento térmico a temperatura en torno a 1500 °C.  - melt the raw material with additives by heat treatment at a temperature around 1500 ° C.
mantener la temperatura y  keep the temperature and
- enfriamiento.  - cooling
6. Procedimiento de obtención del vidrio según una cualquiera de las reivindicaciones anteriores a partir de vidrio reciclado que comprende las siguientes etapas: 6. Method of obtaining the glass according to any one of the preceding claims from recycled glass comprising the following steps:
- molienda del vidrio reciclado hasta dejarlo en forma de polvo.  - grinding of recycled glass until it is in powder form.
- adicionar los aditivos ópticamente activos.  - add optically active additives.
- fundir el polvo con los aditivos por tratamiento térmico a temperaturas entre 1000 y 1100 °C.  - melt the powder with the additives by heat treatment at temperatures between 1000 and 1100 ° C.
mantener la temperatura y  keep the temperature and
- enfriamiento.  - cooling
7. Procedimiento según la reivindicación 5 o 6 en el que el aditivo se añade en forma de polvo. 7. A process according to claim 5 or 6 wherein the additive is added as a powder.
8. Procedimiento según la reivindicación 5 o 6 en el que el aditivo se añade en forma de nanopartículas. 8. The method according to claim 5 or 6 wherein the additive is added in the form of nanoparticles.
9. Uso del vidrio según una cualquiera de las reivindicaciones como dispositivo conversor de energía en paneles fotovoltaicos. 9. Use of glass according to any one of the claims as an energy converter device in photovoltaic panels.
PCT/ES2013/000044 2012-03-07 2013-02-19 High transmittance glass, method for producing same and photovoltaic applications thereof WO2013132116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201200258A ES2381948B2 (en) 2012-03-07 2012-03-07 High transmittance glass, obtaining procedure and photovoltaic applications
ESP201200258 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013132116A1 true WO2013132116A1 (en) 2013-09-12

Family

ID=46082593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000044 WO2013132116A1 (en) 2012-03-07 2013-02-19 High transmittance glass, method for producing same and photovoltaic applications thereof

Country Status (2)

Country Link
ES (1) ES2381948B2 (en)
WO (1) WO2013132116A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2553163A (en) * 2017-01-20 2018-02-28 Johnson Matthey Plc Composition and device
CN111491905A (en) * 2017-10-13 2020-08-04 阿德莱德大学 Method for controlling the formation of metal nanoparticles in glass and products thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023081A2 (en) * 2004-07-29 2006-03-02 3M Innovative Properties Company Ceramics, and methods of making and using the same
WO2006025935A1 (en) * 2004-08-30 2006-03-09 Goodrich Corporation Inorganic matrix compositions and composites incorporating the matrix composition
WO2008024647A1 (en) * 2006-08-21 2008-02-28 3M Innovative Properties Company Method of making inorganic, metal oxide spheres using microstructured molds
WO2010118209A1 (en) * 2009-04-09 2010-10-14 E. I. Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
WO2011091961A1 (en) * 2010-01-29 2011-08-04 Schott Ag Photovoltaic cell having a substrate glass made of aluminosilicate glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023081A2 (en) * 2004-07-29 2006-03-02 3M Innovative Properties Company Ceramics, and methods of making and using the same
WO2006025935A1 (en) * 2004-08-30 2006-03-09 Goodrich Corporation Inorganic matrix compositions and composites incorporating the matrix composition
WO2008024647A1 (en) * 2006-08-21 2008-02-28 3M Innovative Properties Company Method of making inorganic, metal oxide spheres using microstructured molds
WO2010118209A1 (en) * 2009-04-09 2010-10-14 E. I. Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
WO2011091961A1 (en) * 2010-01-29 2011-08-04 Schott Ag Photovoltaic cell having a substrate glass made of aluminosilicate glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2553163A (en) * 2017-01-20 2018-02-28 Johnson Matthey Plc Composition and device
CN111491905A (en) * 2017-10-13 2020-08-04 阿德莱德大学 Method for controlling the formation of metal nanoparticles in glass and products thereof

Also Published As

Publication number Publication date
ES2381948B2 (en) 2012-09-18
ES2381948A1 (en) 2012-06-04

Similar Documents

Publication Publication Date Title
JP4087113B2 (en) High transmission plate glass and manufacturing method thereof
Zou et al. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY (WO 4) 2 nanocrystals
KR101828097B1 (en) Glass-ceramic with bulk scattering properties and methods of making them
JP5935445B2 (en) UV infrared absorbing glass
BR122020004049B1 (en) method of making glass in a float process
Malchukova et al. Tunable luminescence from Ce-doped aluminoborosilicate glasses
Teng et al. Highly transparent cerium doped glasses with full‐band UV‐shielding capacity
KR101889931B1 (en) Solar Cells Having a Wavelength Converting Glass and a Preparation Method Thereof
Liu et al. Novel divalent europium doped MgAlON transparent ceramic for shortwave ultraviolet erasable windows
KR102018648B1 (en) Ultraviolet transmiting and visible-light absorbing glass and ultraviolet transmiting and visible-light absorbing filter
WO2013132116A1 (en) High transmittance glass, method for producing same and photovoltaic applications thereof
WO2021128656A1 (en) Ultraviolet band high-transmittance and anti-radiation optical glass and preparation method therefor
CN114988707A (en) Lead-free halide nanocrystalline dispersion glass and application thereof
Masai et al. Photoluminescence of ns2-type center-containing zinc borate glasses
JP3465642B2 (en) Light-colored high-transmission glass and method for producing the same
WO2017094869A1 (en) Glass
Kaewjaeng et al. Influence of trivalent praseodymium ion on SiO2–B2O3–Al2O3–BaO–CaO–Sb2O3–Na2O–Pr2O3 glasses for X-Rays shielding and luminescence materials
Xiao et al. Effects of Ce3+ ions on physicochemical and optical properties of Gd2O3-Ga2O3-Al2O3-SiO2-Na2O glass
Marzouk et al. Luminescent, semiconducting, thermal, and structural performance of Ho 3+-doped lithium borate glasses with CaF 2 or MgF 2
He et al. A novel Ce3+/Tb3+ codoped phosphate glass as down-shifting materials for enhancing efficiency of solar cells
Sun et al. Alkaline-earth oxide network modifier on optical properties of Ce3+-activated borogermanate glasses
Dymnikov et al. The structure of luminescence centers of neodymium in glasses and transparent glass-ceramics of the Li2O-Al2O3-SiO2 system
WO2019045024A1 (en) Glass plate
Hou et al. Effects of the replacing content of ZnBr2 on the properties of ZnO–B2O3–SiO2: Mn2+ glass-ceramics
Kolobkova et al. Specific features of the formation of oxyfluoride glass-ceramics in the SiO 2-PbF 2-CdF 2-ZnF 2-Al 2 O 3-Er (Eu, Yb) F 3 system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757014

Country of ref document: EP

Kind code of ref document: A1