WO2013128969A1 - Communication apparatus, communication method and recording medium - Google Patents

Communication apparatus, communication method and recording medium Download PDF

Info

Publication number
WO2013128969A1
WO2013128969A1 PCT/JP2013/050939 JP2013050939W WO2013128969A1 WO 2013128969 A1 WO2013128969 A1 WO 2013128969A1 JP 2013050939 W JP2013050939 W JP 2013050939W WO 2013128969 A1 WO2013128969 A1 WO 2013128969A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
unit
digital signal
bandwidth
signal processing
Prior art date
Application number
PCT/JP2013/050939
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 木全
Original Assignee
Necカシオモバイルコミュニケーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necカシオモバイルコミュニケーションズ株式会社 filed Critical Necカシオモバイルコミュニケーションズ株式会社
Publication of WO2013128969A1 publication Critical patent/WO2013128969A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]

Definitions

  • the present invention relates to a communication device, a communication method, and a recording medium.
  • LTE Long Term Evolution
  • WCDMA Wideband Code Division Multiple Access
  • Non-Patent Document 1 a spurious level at the time of transmission is defined in LTE (Non-Patent Document 1).
  • the filter requires a fairly severe attenuation characteristic. For this reason, the insertion loss of the filter increases, and it is necessary to increase the output level of a power amplifier or RFIC (Radio Frequency Integrated Circuit). As a result, power consumption has increased.
  • RFIC Radio Frequency Integrated Circuit
  • the present invention solves the above-described problems, and aims to reduce neighborhood noise while suppressing power consumption in LTE communication.
  • a communication apparatus is: A digital signal processing unit for generating a signal to be transmitted in the LTE system; An RF unit for amplifying the signal generated by the digital signal processing unit, and transmitting the signal amplified by the power amplifier; A power supply for supplying a voltage to the power amplifier; With When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit is higher in voltage supplied by the power supply unit by a predetermined voltage value than a voltage when the bandwidth is less than the predetermined bandwidth It is characterized by raising the voltage.
  • a communication method includes: A communication method executed by a communication device including a digital signal processing unit, an RF unit having a power amplifier, and a power supply unit, The digital signal processing unit generating a signal to be transmitted in LTE; The power amplifier amplifying the signal generated by the digital signal processing unit; The RF unit transmitting the signal amplified by the power amplifier; When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit generates a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by a predetermined voltage value from the power supply unit. Supplying to the power amplifier of the unit, It is characterized by providing.
  • a computer-readable recording medium is provided.
  • An RF unit having a power amplifier for amplifying a signal, and transmitting a signal amplified by the power amplifier;
  • a power supply for supplying a voltage to the power amplifier;
  • a computer used for a communication device comprising: Generating a signal to be transmitted in the LTE system, and outputting the generated signal to the power amplifier; When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, a voltage that is higher by a predetermined voltage value than a voltage when the generated signal is less than the predetermined bandwidth is supplied from the power supply unit to the power amplifier of the RF unit. Steps, A program for executing is recorded.
  • FIG. 2 is a block diagram showing a configuration of a communication apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the example of a spurious prescription
  • FIG. It is a figure which shows the example of a spurious prescription
  • FIG. 6 is a diagram illustrating an example of a correction value table according to Embodiment 2.
  • FIG. FIG. 10 is a diagram illustrating an example of a correction value table according to the third embodiment. It is a block diagram which shows the structure of RF part. It is a figure for demonstrating the transmission signal production
  • 4 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to the first embodiment.
  • 6 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to the second embodiment.
  • 12 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to the third embodiment. It is a figure which shows the example of a transmission frequency table.
  • 10 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to a fourth embodiment.
  • the communication apparatus relates to an LTE mobile phone terminal to which many bands are allocated as described in 5.5 Operating band of Non-Patent Document 1 above.
  • the communication apparatus controls a voltage supplied to a power amplifier (hereinafter referred to as “Power Amplifier”, hereinafter referred to as “PA”) so that interference does not occur at frequencies near the operating band. That is, the communication apparatus according to the present embodiment has the provisions described in Table 6.6.3.2-1 of 6.6.3.2, Spurious Emission Band UE co-existence of Non-Patent Document 1. Control the voltage supplied to the PA to achieve. As a result, this communication apparatus controls the level of the near noise transmitted from the antenna. In the following, the definition of spurious levels, the bandwidth, and the definition of adjacent channel interference, which are background arts, will be described, and then the communication apparatus according to the embodiment will be described.
  • FIG. 2 is a diagram showing an example of a spurious regulation table.
  • the spurious specification table 21a1 shown in FIG. 2 is the transmission frequency and protection described in 6.6.3.2, Spurious Emission Band UE co-existence Table 6.6.3.2-1 of Non-Patent Document 1 above. From the frequency and spurious regulations, the regulations under consideration are excluded, and those with severe conditions as spurious regulations are shown.
  • FIG. 3 is a diagram showing an example of attenuation characteristics on the transmission side of the duplexer. This figure shows attenuation characteristics on the transmission side of a conventional duplexer when Band-1 is a transmission frequency.
  • the attenuation characteristic of the duplexer shown in FIG. 3 is equivalent to the attenuation amount of the conventional product at frequencies corresponding to Band-34 (Band34: 2010-2025 MHz) and PHS band (Personal Handy-phone System: 1884.5-1919.6 MHz).
  • the attenuation is shown.
  • the frequency of the Band-34 or PHS band is in the vicinity of the desired frequency (Band-1: 1920-1980 MHz). It can be seen that the attenuation characteristic is not obtained.
  • the duplexer shown in FIG. 3 has a large insertion loss (InsertionserLoss) on the transmission side as a trade-off because it takes a large amount of attenuation of the Band-34 and PHS band frequencies near the desired frequency.
  • this duplexer has a transmission side insertion loss of about 0.2 to 0.5 dB larger than a conventional duplexer dedicated to WCDMA, that is, a duplexer that does not require Band-34 frequency attenuation.
  • the insertion loss of the filter may be increased.
  • FIG. 4 is a diagram for explaining the bandwidth (hereinafter referred to as “BW”).
  • FIG. 4 is a simplified diagram of the contents described in FIG. 5.6-1 of 5.6 of Non-Patent Document 1.
  • Transmission Bandwidth Configuration is the maximum number of resource blocks that can be transmitted (hereinafter referred to as “Resource ⁇ Block”, described as “RB”).
  • Resource ⁇ Block the maximum number of resource blocks that can be transmitted
  • Transmission Bandwidth indicates a band that is actually transmitted.
  • the transmitted band that is, RB used is 8.
  • RBs # 8 to # 15 are used.
  • RBs are arbitrarily assigned among RBs # 0 to # 24.
  • BW is variable as 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz
  • Transmission Bandwidth Configuration corresponding to each is 6, 15, 25, 50, 75, and 100. That is, RB is 6, 15, 25, 50, 75, and 100 similarly.
  • the adjacent channel leakage power (Adjacent Channel Leakage Ratio) is specified in the Adjacent Channel Leakage Ratio of 6.6.2.3 of Non-Patent Document 1 above. Has been.
  • ACLR is dependent on the linearity of the PA, and the linearity of the PA is generally dependent on the supply voltage to the PA. That is, if the supply voltage to the PA is sufficiently large, the ACLR characteristic becomes small. However, if the supply voltage to the PA is high, the power consumption of the PA increases accordingly.
  • Non-Patent Document 1 (see FIGS. 5 and 6).
  • UTRA ACLR1 Universal Terrestrial Radio Access Access Adjacent Channel Leakage Ratio 1
  • E-UTRA ACLR Evolved Universal Terrestrial Radio Access Adjacent Channel Leakage Ratio
  • UTRA ACLR2 Universal Terrestrial Radio Access Adjacent Channel Leakage Ratio 1
  • UTRA ACLR2 Evolved Universal Terrestrial Radio Access Adjacent Channel Leakage Ratio
  • FIG. 5A is a diagram showing a relationship between transmission power and ACLR
  • FIG. 5B is a diagram showing a relationship between transmission power and supply voltage VCC to PA.
  • FIG. 6 is a diagram showing a power spectrum in Band-1.
  • BW bandwidth
  • FIG. 6 it can be seen that the neighborhood noise increases when the bandwidth (BW) described in FIG. 4 is as large as 20 MHz. Specifically, as shown in FIG. 6, when BW is 20 MHz and BW is 5 MHz, a difference occurs in the noise level of Band-34, and the noise level increases when BW is 20 MHz ( D) shown in FIG.
  • BW bandwidth
  • FIG. 6 it can be seen that the greater the BW, the greater the noise level in the Band-34 reception band. This is due to the fact that the greater the BW, the greater the distortion characteristics ACLR, especially UTRA ACLR2.
  • the voltage supplied to the power amplifier is controlled based on the value of BW.
  • FIG. 1 is a block diagram showing a configuration of a communication apparatus according to Embodiment 1.
  • the communication apparatus according to Embodiment 1 is realized by communication apparatus 1 shown in FIG.
  • the communication device 1 according to Embodiment 1 controls the voltage supplied to the power amplifier based on the bandwidth.
  • the communication device 1 includes a control unit 10, a memory unit 11, an RF (Radio Frequency) unit 12, a digital signal processing unit 13, a power supply unit 14, a battery unit 15, and an antenna 16. And comprising.
  • RF Radio Frequency
  • the control unit 10 includes a CPU (Central Processing Unit) and the like.
  • the control unit 10 controls the memory unit 11, the RF unit 12, the digital signal processing unit 13, and the power supply unit 14.
  • the control unit 10 inputs and outputs data with the memory unit 11, the digital signal processing unit 13, and the power supply unit 14.
  • control unit 10 recognizes a command from the base station in an upper layer of the communication device 1, sets transmission power and transmission frequency based on the command, and controls wireless communication. For example, the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission. When issuing this command, the control unit 10 notifies the digital signal processing unit 13 of the transmission frequency, transmission power, and BW information at the time of transmission.
  • the memory unit 11 includes a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, or the like.
  • the memory unit 11 stores control information and data such as adjustment values for RF transmission and reception.
  • the memory unit 11 stores, for example, a PA-VCC linear interpolation table 11a1.
  • FIG. 7 is a diagram illustrating an example of a PA-VCC linear interpolation table. As shown in FIG. 7, in the PA-VCC linear interpolation table 11a1 stored in the memory unit 11, “transmission power” and “VCC voltage” are associated with each other.
  • the transmission power is a power required when transmitting a signal.
  • the VCC voltage is a voltage supplied to the power amplifier.
  • the maximum transmission power is specified in 6.2.2 of 3GPP TS 36.211, and the minimum transmission power is specified in 6.3.2.
  • the PA-VCC linear interpolation table 11a1 (see FIG. 7) from +24 dBm to 4 dB steps is required.
  • the VCC voltage is stored in advance in the memory unit 11 as design information and control information.
  • FIG. 8A is a diagram showing an example of a correction value table according to the first embodiment.
  • the setting BW is a value serving as a threshold value for determining whether or not to correct the VCC voltage.
  • the VCC correction value is a value added to the obtained VCC voltage when correction is performed.
  • the setting BW and the VCC correction value are stored in advance in the memory unit 11 as design information and control information.
  • the setting BW: 15 MHz and the VCC correction value: 0.2V are stored in the memory unit 11 in association with each other.
  • the memory unit 11 is connected to the control unit 10 as shown in FIG. Data stored in the memory unit 11 is read by the control unit 10 and output from the control unit 10. For example, the PA-VCC linear interpolation table 11 a 1 and the correction value table 11 a 2 stored in the memory unit 11 are read by the control unit 10 and output to the digital signal processing unit 13 via the control unit 10.
  • the RF unit 12 demodulates the radio signal received via the antenna 16, performs AD (Analog-to-Digital) conversion, and sends it to the digital signal processing unit 13. In addition, the RF unit 12 performs DA (Digital-to-Analog) conversion on the signal output from the digital signal processing unit 13 to modulate a radio signal.
  • AD Analog-to-Digital
  • DA Digital-to-Analog
  • FIG. 9 is a block diagram showing the configuration of the RF unit.
  • the RF unit 12 illustrated in FIG. 9 includes an antenna switch 121, a duplexer 122, an isolator 123, a PA 124, an RFIC 125, and an LNA (Low Noise Amplifier) 126.
  • an antenna switch 121 a duplexer 122, an isolator 123, a PA 124, an RFIC 125, and an LNA (Low Noise Amplifier) 126.
  • LNA Low Noise Amplifier
  • the antenna switch 121 switches the antenna 16 according to the control unit 10 or the digital signal processing unit 13.
  • the antenna switch 121 switches from a transmitting antenna to a receiving antenna or from a receiving antenna to a transmitting antenna.
  • the duplexer 122 is a filter that separates a transmission signal and a reception signal and further attenuates a frequency band other than the desired wave.
  • the isolator 123 prevents the amplified signal from flowing backward. That is, the isolator 123 prevents the backflow of the signal output from the PA 124.
  • PA 124 is an amplifier capable of amplifying the transmission number to a desired transmission power.
  • the PA 124 amplifies the power of the transmission signal from the RFIC 125 and outputs the amplified signal to the isolator 123.
  • the PA 124 is connected to the power supply unit 14 (not shown).
  • the VCC voltage is supplied to the PA 124 from the power supply unit 14.
  • the power of the transmission signal is amplified based on the magnitude of the VCC voltage, and as a result, the transmission power of the communication device 1 is controlled.
  • the RFIC 125 includes a signal modulation / demodulation circuit, a transmission / reception gain variable amplifier, a baseband filter, an AD converter, a DA converter, an LVDS (Low Voltage Differential Differential), an amplifier, and a PLL (Phase Lock Loop) synthesizer.
  • the RFIC 125 performs DA (Digital-to-Analog) conversion on the transmission signal generated by the digital signal processing unit 13 and performs frequency conversion. Further, the RFIC 125 performs AD (Analog-to-Digital) conversion on the received signal and outputs it to the digital signal processing unit 13.
  • DA Digital-to-Analog
  • AD Analog-to-Digital
  • the LNA 126 is an amplifier that can amplify a signal while suppressing noise as much as possible.
  • the LNA 126 amplifies the reception signal separated by the duplexer 122.
  • the digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10.
  • the digital signal processing unit 13 encodes the signal sent from the control unit 10. That is, the digital signal processing unit 13 generates a signal to be transmitted by the LTE method.
  • FIG. 10 is a diagram for explaining a transmission signal generation method of the digital signal processing unit.
  • FIG. 10 shows a transmission signal generation method in the frequency domain of an SC-FDMA (Single Carrier-Frequency Division Multiple Access) signal.
  • the digital signal processing unit 13 uses DFT-Spread-OFDM (Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing) as a transmission signal generation method.
  • DFT-Spread-OFDM Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing
  • the digital signal processing unit 13 performs a DFT (Discrete-Fourier-Transformation) process 20 on the information symbol series (signal series).
  • the digital signal processing unit 13 performs subcarrier mapping 21. That is, the digital signal processing unit 13 maps the information symbol A only to the frequency band (in other words, the allocated frequency band) previously designated by the base station, and 0 (indicated by the symbol B) in the other frequency bands. Map.
  • the digital signal processing unit 13 performs an inverse fast Fourier transform (IFFT: Inverse ⁇ ⁇ Fourier Transform) process 22 on all the mapped information symbol sequences.
  • IFFT Inverse ⁇ ⁇ Fourier Transform
  • the digital signal processing unit 13 finally performs CP addition 23. That is, the digital signal processing unit 13 adds a card section called CP (Cyclic Prefix) to the head of each symbol. A transmission signal is generated by these processes.
  • the frequency interval of one subcarrier is 15 kHz, and a collection of 12 subcarriers is defined as one RB.
  • the CP is for removing inter-subcarrier interference caused by symbol interference caused by a delayed wave of an information symbol on the next OFDM (Orthogonal Frequency Division Multiplexing) symbol and the collapse of orthogonality between subcarriers. .
  • OFDM Orthogonal Frequency Division Multiplexing
  • These transmission signal generations determine the transmission band, the number of RBs, and the RB position.
  • the digital signal processing unit 13 determines the value of the voltage supplied to the PA 124 based on the BW information notified from the control unit 10 (hereinafter referred to as “BW information”).
  • BW information the BW information notified from the control unit 10
  • the digital signal processing unit 13 instructs the power supply unit 14 to supply the determined value to the PA 124.
  • the digital signal processing unit 13 refers to the correction value table 11a2 of FIG. 8A stored in the memory unit 11 via the control unit 10.
  • the bandwidth value hereinafter referred to as “transmission BW”
  • the digital signal processing unit 13 further stores the PA-VCC stored in the memory unit 11.
  • the VCC voltage corresponding to the transmission power is read out with reference to the linear interpolation table 11a1 (FIG. 7).
  • the digital signal processing unit 13 instructs the power supply unit 14 to supply the PA 124 with a voltage corresponding to the read VCC voltage.
  • the digital signal processing unit 13 adds the value indicated by the VCC correction value table 11a2 (see FIG. 8A) to the value indicated by the PA-VCC linear interpolation table 11a1 (see FIG. 7).
  • the power supply unit 14 is instructed to supply the voltage to the PA 124.
  • the digital signal processing unit 13 reads out the VCC voltages of +24 dBm and +20 dBm with reference to the PA-VCC linear interpolation table 11a1 (FIG. 7), and obtains the VCC voltage to be supplied to the PA 124. .
  • the power supply unit 14 supplies power to the control unit 10, the memory unit 11, the RF unit 12, and the digital signal processing unit 13 according to control by the control unit 10 or control by the digital signal processing unit 13. Further, the power supply unit 14 supplies a voltage to the PA 124 of the RF unit 12.
  • the battery unit 15 supplies a voltage to the control unit 10, the memory unit 11, the RF unit 12, and the digital signal processing unit 13 via the power supply unit 14.
  • the antenna 16 receives a signal from a base station (not shown) and transmits a signal from the communication device 1 (for example, the antenna 16 transmits a signal output from the RF unit 12).
  • a base station not shown
  • the antenna 16 transmits a signal output from the RF unit 12.
  • MIMO Multiple Input Multiple Output
  • the communication apparatus 1 uses two or more antennas.
  • FIG. 11 is a flowchart showing an example of the operation of setting the PA supply voltage according to the first embodiment.
  • the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the control unit 10 simultaneously notifies the digital signal processing unit 13 of the transmission frequency, transmission power, and BW information at the time of transmission. .
  • the digital signal processing unit 13 determines whether or not the transmission BW indicated by the BW information notified from the control unit 10 is greater than or equal to the set BW (step S101).
  • the VCC correction value (FIG. 8A) is set to the VCC voltage indicated by the PA-VCC linear interpolation table (table 11a1 shown in FIG. 7).
  • the power supply unit 14 is instructed to supply the PA 124 with a voltage obtained by adding the VCC correction value of the correction value table 11a2 shown in FIG.
  • step S101 when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S101; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S103).
  • the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8A) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz). Then, the digital signal processing unit 13 uniformly adds the VCC correction value 0.2V of the correction value table 11a2 (FIG. 8A) to the VCC voltage of the PA-VCC linear interpolation table 11a1 (FIG. 7), thereby reducing the VCC voltage. calculate.
  • the digital signal processing unit 13 determines that the transmission BW (10 MHz) is less than the set BW (15 MHz). For example, when the transmission power is 20 dBm, the digital signal processing unit 13 calculates the VCC voltage to be 3.0V based on the PA-VCC linear interpolation table 11a1, and supplies the power to the PA 124 with 3.0V. Command to supply voltage.
  • the digital signal processing unit 13 performs the processing shown in FIG. 11 every time the BW notified from the control unit 10 changes.
  • the communication device 1 normally controls the PA supply voltage according to the transmission power in order to reduce power consumption.
  • the communication device 1 performs control to increase the supply voltage to the power amplifier only when BW becomes larger than a predetermined value.
  • the communication device 1 according to the present embodiment can prevent deterioration of the UTRA ACLR2 characteristics (the UTRA ACLR2 value increases) that occurs in the power amplifier even when the bandwidth of the LTE transmission signal increases. .
  • the communication device 1 can improve the neighborhood noise.
  • the communication apparatus according to Embodiment 2 is realized by communication apparatus 1 shown in FIG.
  • the communication device 1 according to the second embodiment controls the voltage supplied to the power amplifier based on the BW and the number of RBs.
  • the RF unit 12, the power supply unit 14, the battery unit 15, and the antenna 16 have the same functions as those of the first embodiment.
  • the control unit 10, the memory unit 11, and the digital signal processing unit 13 having different functions will be described.
  • the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission.
  • the control unit 10 notifies the digital signal processing unit 13 of the transmission frequency, transmission power, BW at the time of transmission, and RB information.
  • the memory unit 11 stores a PA-VCC linear interpolation table 11a1 (see FIG. 7) and a correction value table 11a2 (see FIG. 8B).
  • FIG. 8B is a diagram illustrating an example of a correction value table according to the second embodiment.
  • “setting BW”, “setting RB”, and “VCC correction value” are associated with each other.
  • the setting BW and the VCC correction value are the same as those in the first embodiment.
  • the setting RB is a value serving as a threshold value for determining whether or not to correct the VCC voltage.
  • the setting BW, the setting RB, and the VCC correction value are stored in advance in the memory unit 11 as design information and control information.
  • setting BW 15 MHz
  • setting RB 50
  • VCC correction value 0.2 V are stored in the memory unit 11 in association with each other.
  • the digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10.
  • the digital signal processing unit 13 encodes the signal sent from the control unit 10. Further, the digital signal processing unit 13 determines the value of the voltage supplied to the PA 124 based on the BW information and RB information (hereinafter referred to as “RB information”) transmitted from the control unit 10, and the determined value
  • RB information RB information
  • FIG. 12 is a flowchart showing an example of the operation of setting the PA supply voltage according to the second embodiment.
  • the digital signal processing unit 13 determines whether or not the band (transmission BW) indicated in the BW information notified from the control unit 10 is equal to or greater than the set BW (step S201). If the digital signal processing unit 13 determines that the transmission BW is greater than or equal to the set BW (step S201; Yes), next, the number of RBs (transmission RB) indicated in the notified RB information is greater than or equal to the set RB. Is determined (step S202). On the other hand, when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S201; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S204).
  • step S202 when the digital signal processing unit 13 determines that the transmission RB is equal to or higher than the set RB (step S202; Yes), the VCC correction is performed on the VCC voltage indicated by the PA-VCC linear interpolation table (table 11a1 shown in FIG. 7).
  • the power supply unit 14 is instructed to supply a voltage obtained by adding the value (the VCC correction value of the correction value table 11a2 shown in FIG. 8B) to the PA 124 (step S203).
  • step S202 determines that the transmission RB is less than the set RB
  • step S204 when the digital signal processing unit 13 determines that the transmission RB is less than the set RB (step S202; No), the digital signal processing unit 13 performs the process of step S204.
  • the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8B) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz).
  • the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8B) and determines that the transmission RB (40) is less than the set RB (50).
  • the VCC voltage is not corrected. For example, when the transmission power is 20 dBm, the VCC power supply is determined to be 3.0 V based on the PA-VCC linear interpolation table 11a1 (FIG. 7). Then, the digital signal processing unit 13 instructs the power supply unit 14 to supply a voltage of 3.0 V to the PA 124.
  • the digital signal processing unit 13 performs the process shown in FIG. 12 every time BW or RB notified from the control unit 10 changes.
  • step S201 and step S202 may be interchanged.
  • the number of RBs is a factor that increases Band-34 reception band noise and PHS band noise, as with BW.
  • the communication device 1 according to the present embodiment can reduce the level of near noise. it can.
  • the communication apparatus according to the third embodiment is realized by the communication apparatus 1 shown in FIG.
  • the communication device 1 according to Embodiment 3 controls the voltage supplied to the power amplifier based on the BW, the number of RBs, and the transmission power.
  • the RF unit 12, the power supply unit 14, the battery unit 15, and the antenna 16 according to the present embodiment have the same functions as those of the first embodiment.
  • the control unit 10 has the same function as that of the second embodiment.
  • the memory unit 11 and the digital signal processing unit 13 having different functions will be described.
  • the memory unit 11 stores a PA-VCC linear interpolation table 11a1 (see FIG. 7) and a correction value table 11a2 (see FIG. 8C).
  • FIG. 8C is a diagram illustrating an example of a correction value table according to the third embodiment.
  • the correction value table 11a2 (FIG. 8C) stored in the memory unit 11 includes “setting BW”, “setting RB”, “setting transmission power”, “VCC correction value”, Are associated.
  • the setting BW and the VCC correction value are the same as those in the first embodiment.
  • the setting RB is the same as that in the second embodiment.
  • the set transmission power is a value serving as a threshold value for determining whether or not to correct the VCC voltage.
  • the setting BW, the setting RB, the setting transmission power, and the VCC correction value are stored in advance in the memory unit 11 as design information and control information.
  • setting BW: 15 MHz, setting RB: 50, setting transmission power: 20 dBm, and VCC correction value: 0.2 V are stored in the memory unit 11 in association with each other. Further, setting BW: 20 MHz, setting RB: 75, setting transmission power: 18 dBm, and VCC correction value: 0.2 V are stored in the memory unit 11 in association with each other.
  • the digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10.
  • the digital signal processing unit 13 encodes the signal sent from the control unit 10. Further, the digital signal processing unit 13 determines the value of the voltage to be supplied to the PA 124 based on the information of the BW, RB, and transmission power transmitted from the control unit 10, and supplies the determined value of the voltage to the PA 124.
  • the power supply unit 14 is commanded.
  • FIG. 13 is a flowchart showing an example of the operation of setting the PA supply voltage according to the third embodiment.
  • the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, at the same time, the control unit 10 notifies the digital signal processing unit 13 of the transmission frequency, transmission power, BW information at the time of transmission, and RB information. To do.
  • the digital signal processing unit 13 determines whether or not the band (transmission BW) indicated in the BW information notified from the control unit 10 is equal to or greater than the set BW (step S301). If the digital signal processing unit 13 determines that the transmission BW is greater than or equal to the set BW (step S301; Yes), next, the number of RBs (transmission RB) indicated in the notified RB information is greater than or equal to the set RB. Is determined (step S302). On the other hand, when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S301; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S305).
  • step S302 when the digital signal processing unit 13 determines that the transmission RB is greater than or equal to the set RB (step S302; Yes), it next determines whether or not the transmission power is greater than or equal to the set transmission power (step S303). ).
  • the VCC correction value (FIG. 7) is added to the VCC voltage indicated by the PA-VCC linear interpolation table (table 11a1 shown in FIG. 7).
  • the power supply unit 14 is instructed to supply the PA 124 with a voltage obtained by adding the VCC correction value of the correction value table 11a2 shown in 8A to the PA 124 (step S304).
  • step S302 when it is determined in step S302 that the transmission RB is less than the set RB (step S302; No), or in step S303, the digital signal processing unit 13 determines that the transmission power is less than the set transmission power. In the case (step S303; No), the digital signal processing unit 13 performs the process of step S305.
  • the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz).
  • the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission RB (60) is equal to or greater than the set RB (50).
  • the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission power (18 dBm) is less than the set transmission power (20 dBm).
  • the digital signal processing unit 13 performs the processing shown in FIG. 13 every time BW, RB, or transmission power notified from the control unit 10 changes.
  • the order of steps is not limited to the order shown in FIG.
  • the order of steps S301 to S303 may be changed.
  • the communication device 1 since the supply voltage to the power amplifier can be increased when the transmission power of the LTE transmission signal is high, the communication device 1 according to the present embodiment can decrease the level of the nearby noise. it can.
  • the communication device 1 has no problem with respect to the regulation of the near noise level. According to the present embodiment, in such a case, it is not necessary to unnecessarily increase the PA supply voltage, and thus the communication device 1 according to the present embodiment can prevent an increase in power consumption.
  • the communication apparatus according to the fourth embodiment is realized by the communication apparatus 1 shown in FIG.
  • the communication device 1 according to the fourth embodiment controls the voltage supplied to the power amplifier based on the BW, the number of RBs, the transmission power, and the transmission frequency.
  • the RF unit 12, the power supply unit 14, the battery unit 15, and the antenna 16 have the same functions as those of the first embodiment.
  • the control unit 10 has the same function as that of the second embodiment.
  • the memory unit 11 and the digital signal processing unit 13 having different functions will be described.
  • the memory unit 11 stores a PA-VCC linear interpolation table 11a1 (see FIG. 7), a correction value table 11a2 (see FIG. 8C), and a transmission frequency table 11a3 (see FIG. 14).
  • FIG. 14 is a diagram illustrating an example of the transmission frequency table 11a3.
  • the transmission frequency table 11a3 stored in the memory unit 11 is associated with “Band”, “frequency range”, “lower limit set frequency”, and “upper limit set frequency”.
  • Band is a band number associated with the frequency range.
  • the frequency range is an operation band assigned in LTE.
  • the lower limit set frequency is a frequency having a value sufficiently separated from the frequency of the nearby noise on the lower limit side of the desired frequency band, and can be arbitrarily set.
  • the upper limit set frequency is a frequency that is sufficiently away from the frequency of the nearby noise on the upper limit side of the desired frequency band, and can be set arbitrarily.
  • the lower limit set frequency and the upper limit set frequency are stored in advance in the memory unit 11 as design information and control information.
  • the frequency range: 1920-1980 MHz, the lower limit set frequency: 1930 MHz, and the upper limit set frequency: 1970 MHz are associated with each other and stored in the memory unit 11.
  • the digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10.
  • the digital signal processing unit 13 encodes the signal sent from the control unit 10. Further, the digital signal processing unit 13 determines the value of the voltage to be supplied to the PA 124 based on the information on the BW, RB, transmission power, and transmission frequency transmitted from the control unit 10, and the determined voltage value is determined as the PA 124.
  • FIG. 15 is a flowchart showing an example of the operation of setting the PA supply voltage according to the fourth embodiment.
  • the digital signal processing unit 13 determines whether or not the band (transmission BW) indicated in the BW information notified from the control unit 10 is equal to or greater than the set BW (step S401).
  • the digital signal processing unit 13 determines that the transmission BW is equal to or higher than the set BW (step S401; Yes)
  • the value obtained by adding half the value of the BW to the notified transmission frequency is equal to or higher than the upper limit set frequency, or is notified. It is determined whether or not a value obtained by subtracting half the value of BW from the transmitted frequency is equal to or lower than the lower limit setting frequency (step S402).
  • step S401 when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S401; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S406).
  • step S402 the digital signal processing unit 13 has a value obtained by adding half the value of BW to the transmission frequency equal to or higher than the upper limit setting frequency, or a value obtained by subtracting a value equal to the half of BW from the transmission frequency is equal to or lower than the lower limit setting frequency.
  • Step S402; Yes it is determined whether or not the number of RBs (transmission RB) indicated in the next notified RB information is equal to or greater than the set RB (step S403).
  • the digital signal processing unit 13 determines that the value obtained by adding half the value of BW to the transmission frequency is less than the upper limit setting frequency, or the value obtained by subtracting the value of half the BW from the transmission frequency is greater than the lower limit setting frequency.
  • Step S402 No
  • the process proceeds to Step S406.
  • step S403 the digital signal processing unit 13 determines that the transmission RB is greater than or equal to the set RB (step S403; Yes), and determines that the transmission power is greater than or equal to the set transmission power (step S404; Yes).
  • the digital signal processor 13 adds a voltage obtained by adding the VCC correction value (the VCC correction value of the correction value table 11a2 shown in FIG. 8C) to the VCC voltage (table 11a1 shown in FIG. 7) indicated by the PA-VCC linear interpolation table to the PA 124.
  • the power supply unit 14 is commanded to supply (step S405).
  • step S403 determines in step S403 that the transmission RB is less than the set RB (step S403; No), or in step S404, the digital signal processing unit 13 sets the transmission power to set transmission.
  • step S404 determines that the power is less than the power (step S404; No)
  • step S406 the digital signal processing unit 13 performs the process of step S406.
  • the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz).
  • the VCC voltage is not corrected. That is, when the transmission frequency + BW / 2 is less than the upper limit set frequency, or when the transmission frequency ⁇ BW / 2 is greater than the lower limit set frequency, the VCC correction value 0.2V (see FIG. 8C) is not added and the PA ⁇
  • the PA common voltage is set according to the VCC linear interpolation table 11a1 (see FIG. 7) (see step 406).
  • the digital signal processing unit 13 calculates the VCC voltage as 3.0 V based on the PA-VCC linear interpolation table 11a1 (FIG. 7). Then, the digital signal processing unit 13 instructs the power supply unit 14 to supply a voltage of 3.0 V to the PA 124.
  • the digital signal processing unit 13 performs the processing shown in FIG. 15 every time BW, RB, transmission power, or transmission frequency notified from the control unit 10 changes.
  • the order of steps is not limited to the order shown in FIG.
  • the order of steps S401 to S404 may be changed.
  • the communication apparatus 1 which concerns on this Embodiment can reduce a near noise level.
  • the digital signal processing unit 13 reduces the nearby noise. Do not perform control to increase the supply voltage to the power amplifier. For example, when the BW, the number of RBs, and the transmission power are large, but the transmission frequency that affects the nearby noise is not used in the communication apparatus 1, there is no deterioration of the UTRA ACLR2 characteristics. In addition, the communication device 1 has no problem with respect to the level of the nearby noise. According to the present embodiment, in such a case, it is not necessary to increase the supply voltage to the power amplifier unnecessarily, and thus the communication device 1 can prevent an increase in power consumption.
  • the supply voltage is controlled based on the number of BWs and RBs of the LTE transmission signal, the transmission power, and the transmission frequency.
  • the present invention may control the supply voltage based only on BW and transmission power, or may control the supply voltage based only on BW and transmission frequency.
  • the digital signal processing unit 13 can be realized by using a normal computer system regardless of a dedicated system.
  • a computer program for executing the operation of the digital signal processing unit 13 is stored and distributed in a computer-readable recording medium (flexible disk, CD-ROM, DVD-ROM, etc.), and the computer program is distributed to the computer.
  • the communication device 1 that performs the above-described operation may be configured by installing the communication device.
  • the computer program may be stored in a storage device (for example, a disk device) included in a server device on a communication network such as the Internet, and the communication device 1 may be configured by being downloaded by a normal computer system. Good.
  • a storage device for example, a disk device
  • the communication device 1 may be configured by being downloaded by a normal computer system. Good.
  • the functions of the communication device 1 are realized by sharing an OS (operating system) and an application program, or by cooperation between the OS and the application program, only the application program portion is stored in a recording medium or a storage device. May be.
  • a digital signal processing unit for generating a signal to be transmitted in the LTE system;
  • An RF unit for amplifying the signal generated by the digital signal processing unit, and transmitting the signal amplified by the power amplifier;
  • a power supply for supplying a voltage to the power amplifier; With When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit is higher in voltage supplied by the power supply unit by a predetermined voltage value than a voltage when the bandwidth is less than the predetermined bandwidth
  • a communication device characterized by raising the voltage.
  • the digital signal processor is When the bandwidth of the generated signal is greater than or equal to the predetermined bandwidth and the number of resource blocks of the generated signal is greater than or equal to a predetermined number, The communication apparatus according to appendix 1, wherein the voltage supplied by the power supply unit is increased to a voltage that is higher by a predetermined voltage value than a voltage when the power is less than the predetermined bandwidth.
  • the digital signal processor is When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth, and the transmission power for transmitting the generated signal is equal to or greater than a predetermined value, The communication apparatus according to appendix 1 or 2, wherein a voltage supplied by the power supply unit is increased to a voltage that is higher by a predetermined voltage value than a voltage that is less than the predetermined bandwidth.
  • the digital signal processor is When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth, and the transmission frequency of the generated signal is equal to or higher than a predetermined upper limit frequency, or the transmission frequency of the generated signal is equal to or lower than a predetermined lower limit frequency,
  • the communication apparatus according to any one of appendices 1 to 3, wherein a voltage supplied by the power supply unit is raised to a voltage that is higher by a predetermined voltage value than a voltage when the power is less than the predetermined bandwidth.
  • a communication method executed by a communication device including a digital signal processing unit, an RF unit having a power amplifier, and a power supply unit, The digital signal processing unit generating a signal to be transmitted in LTE; The power amplifier amplifying the signal generated by the digital signal processing unit; The RF unit transmitting the signal amplified by the power amplifier; When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit generates a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by a predetermined voltage value from the power supply unit.
  • a communication method characterized by comprising:
  • the digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
  • the communication method according to appendix 5 characterized in that:
  • the digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
  • the digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
  • the communication method according to any one of appendices 5 to 7, characterized in that:
  • An RF unit having a power amplifier for amplifying a signal, and transmitting a signal amplified by the power amplifier; A power supply for supplying a voltage to the power amplifier;
  • a computer used for a communication device comprising: Generating a signal to be transmitted in the LTE system, and outputting the generated signal to the power amplifier; When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, a voltage that is higher by a predetermined voltage value than a voltage when the generated signal is less than the predetermined bandwidth is supplied from the power supply unit to the power amplifier of the RF unit. Steps, A computer-readable recording medium in which a program for executing the program is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

A digital signal processing unit (13) generates signals to be transmitted by means of an LTE system. A RF unit (12) has a power amplifier, which amplifies the signals generated by means of the digital signal processing unit (13), and transmits the signals amplified by means of the power amplifier. A power supply unit (14) supplies a voltage to the power amplifier of the RF unit (12). In the cases where the bandwidth of the signals to be transmitted by the LTE system is a predetermined bandwidth or more, the digital signal processing unit (13) increases the voltage to be supplied by means of the power supply unit (14) to a voltage higher than, by a predetermined voltage value, a voltage supplied when the bandwidth is less than the predetermined bandwidth.

Description

通信装置、通信方法および記録媒体COMMUNICATION DEVICE, COMMUNICATION METHOD, AND RECORDING MEDIUM
 本発明は、通信装置、通信方法および記録媒体に関する。 The present invention relates to a communication device, a communication method, and a recording medium.
 LTE(Long Term Evolution;LTEは登録商標)では、WCDMA(Wideband Code Division Multiple Access)と比べ、数多くの動作帯域(Operating Band)が割り当てられている。そのため、動作帯域同士の間隔が狭く、お互いが干渉し合うという問題が生じる。この干渉により、動作帯域近傍のノイズ(以下、「近傍ノイズ」と記載)が増加することがある。 In LTE (Long Term Evolution; LTE is a registered trademark), a larger number of operating bands (Operating Band) are allocated compared to WCDMA (Wideband Code Division Multiple Access). For this reason, there arises a problem that the interval between the operation bands is narrow and the two interfere with each other. This interference may increase noise in the vicinity of the operating band (hereinafter referred to as “neighboring noise”).
 この干渉を回避するために、LTEにおいては、送信時のスプリアスレベルが規定されている(非特許文献1)。 In order to avoid this interference, a spurious level at the time of transmission is defined in LTE (Non-Patent Document 1).
 しかしながら、スプリアスレベルの規定を達成するためには、フィルタにかなり厳しい減衰特性が要求されることになる。そのため、フィルタの挿入損失が大きくなるので、パワーアンプやRFIC(Radio Frequency Integrated Circuit)の出力レベルを上げる必要が生じていた。その結果、消費電力が多くなっていた。 However, in order to achieve the definition of the spurious level, the filter requires a fairly severe attenuation characteristic. For this reason, the insertion loss of the filter increases, and it is necessary to increase the output level of a power amplifier or RFIC (Radio Frequency Integrated Circuit). As a result, power consumption has increased.
 本発明では、上記のような課題を解決するもので、LTE方式の通信において、消費電力を抑えながら近傍ノイズを低減することを目的とする。 The present invention solves the above-described problems, and aims to reduce neighborhood noise while suppressing power consumption in LTE communication.
 本発明の第1の観点に係る通信装置は、
 LTE方式で送信する信号を生成するデジタル信号処理部と、
 前記デジタル信号処理部により生成された信号を増幅するパワーアンプを有し、前記パワーアンプにより増幅された信号を送信するRF部と、
 前記パワーアンプに電圧を供給する電源部と、
 を備え、
 前記デジタル信号処理部は、前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧に上げる
 ことを特徴とする。
A communication apparatus according to a first aspect of the present invention is:
A digital signal processing unit for generating a signal to be transmitted in the LTE system;
An RF unit for amplifying the signal generated by the digital signal processing unit, and transmitting the signal amplified by the power amplifier;
A power supply for supplying a voltage to the power amplifier;
With
When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit is higher in voltage supplied by the power supply unit by a predetermined voltage value than a voltage when the bandwidth is less than the predetermined bandwidth It is characterized by raising the voltage.
 本発明の第2の観点に係る通信方法は、
 デジタル信号処理部と、パワーアンプを有するRF部と、電源部と、を備える通信装置が実行する通信方法であって、
 前記デジタル信号処理部が、LTE方式で送信する信号を生成するステップと、
 前記パワーアンプが、前記デジタル信号処理部により生成された信号を増幅するステップと、
 前記RF部が、前記パワーアンプにより増幅された信号を送信するステップと、
 前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップと、
 を備える
 ことを特徴とする。
A communication method according to a second aspect of the present invention includes:
A communication method executed by a communication device including a digital signal processing unit, an RF unit having a power amplifier, and a power supply unit,
The digital signal processing unit generating a signal to be transmitted in LTE;
The power amplifier amplifying the signal generated by the digital signal processing unit;
The RF unit transmitting the signal amplified by the power amplifier;
When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit generates a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by a predetermined voltage value from the power supply unit. Supplying to the power amplifier of the unit,
It is characterized by providing.
 本発明の第3の観点に係る、コンピュータ読み取り可能な記録媒体は、
 信号を増幅するパワーアンプを有し、前記パワーアンプにより増幅された信号を送信するRF部と、
 前記パワーアンプに電圧を供給する電源部と、
 を備える通信装置に用いられるコンピュータに、
 LTE方式で送信する信号を生成し、生成された信号を前記パワーアンプに出力するステップと、
 前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップと、
 を実行させるためのプログラムを記録したことを特徴とする。
A computer-readable recording medium according to the third aspect of the present invention is provided.
An RF unit having a power amplifier for amplifying a signal, and transmitting a signal amplified by the power amplifier;
A power supply for supplying a voltage to the power amplifier;
In a computer used for a communication device comprising:
Generating a signal to be transmitted in the LTE system, and outputting the generated signal to the power amplifier;
When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, a voltage that is higher by a predetermined voltage value than a voltage when the generated signal is less than the predetermined bandwidth is supplied from the power supply unit to the power amplifier of the RF unit. Steps,
A program for executing is recorded.
 本発明によれば、LTE方式の通信において、消費電力を抑えながら近傍ノイズを低減することができる。 According to the present invention, it is possible to reduce neighborhood noise while suppressing power consumption in LTE communication.
実施の形態1に係る通信装置の構成を示すブロック図である。2 is a block diagram showing a configuration of a communication apparatus according to Embodiment 1. FIG. スプリアス規定テーブルの例を示す図である。It is a figure which shows the example of a spurious prescription | regulation table. デュプレクサの送信側の減衰特性の例を示す図である。It is a figure which shows the example of the attenuation characteristic of the transmission side of a duplexer. 帯域幅を説明するための図である。It is a figure for demonstrating a bandwidth. 送信パワーとACLRの関係を示す図である。It is a figure which shows the relationship between transmission power and ACLR. 送信パワーと供給電圧の関係を示す図である。It is a figure which shows the relationship between transmission power and a supply voltage. Band-1におけるパワースペクトルを示す図である。It is a figure which shows the power spectrum in Band-1. PA-VCC線形補間テーブルの例を示す図である。It is a figure which shows the example of a PA-VCC linear interpolation table. 実施の形態1に係る補正値テーブルの例を示す図である。It is a figure which shows the example of the correction value table which concerns on Embodiment 1. FIG. 実施の形態2に係る補正値テーブルの例を示す図である。6 is a diagram illustrating an example of a correction value table according to Embodiment 2. FIG. 実施の形態3に係る補正値テーブルの例を示す図である。FIG. 10 is a diagram illustrating an example of a correction value table according to the third embodiment. RF部の構成を示すブロック図である。It is a block diagram which shows the structure of RF part. デジタル信号処理部の送信信号生成手法を説明するための図である。It is a figure for demonstrating the transmission signal production | generation method of a digital signal processing part. 実施の形態1に係るPA供給電圧設定の動作の一例を示すフローチャートである。4 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to the first embodiment. 実施の形態2に係るPA供給電圧設定の動作の一例を示すフローチャートである。6 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to the second embodiment. 実施の形態3に係るPA供給電圧設定の動作の一例を示すフローチャートである。12 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to the third embodiment. 送信周波数テーブルの例を示す図である。It is a figure which shows the example of a transmission frequency table. 実施の形態4に係るPA供給電圧設定の動作の一例を示すフローチャートである。10 is a flowchart illustrating an example of an operation for setting a PA supply voltage according to a fourth embodiment.
 本発明の実施の形態に係る通信装置は、上記非特許文献1の5.5 Operating bandに記載されているように、多くの帯域が割り当てられているLTE携帯電話端末に関する。本実施の形態に係る通信装置は、特に、動作帯域近傍の周波数において干渉が発生しないように、パワーアンプ(Power Amplifier以下、「PA」と記載)に供給する電圧を制御する。つまり、本実施の形態に係る通信装置は、上記非特許文献1の6.6.3.2 Spurious emission band UE co-existenceのTable 6.6.3.2-1に記載されている規定を達成するように、PAに供給する電圧を制御する。その結果、この通信装置は、アンテナから送出される近傍ノイズのレベルを制御する。以下、背景技術であるスプリアスレベルの規定、帯域幅、隣接チャネル干渉の規定について説明し、続いて、実施の形態に係る通信装置について説明する。 The communication apparatus according to the embodiment of the present invention relates to an LTE mobile phone terminal to which many bands are allocated as described in 5.5 Operating band of Non-Patent Document 1 above. The communication apparatus according to the present embodiment controls a voltage supplied to a power amplifier (hereinafter referred to as “Power Amplifier”, hereinafter referred to as “PA”) so that interference does not occur at frequencies near the operating band. That is, the communication apparatus according to the present embodiment has the provisions described in Table 6.6.3.2-1 of 6.6.3.2, Spurious Emission Band UE co-existence of Non-Patent Document 1. Control the voltage supplied to the PA to achieve. As a result, this communication apparatus controls the level of the near noise transmitted from the antenna. In the following, the definition of spurious levels, the bandwidth, and the definition of adjacent channel interference, which are background arts, will be described, and then the communication apparatus according to the embodiment will be described.
 図2はスプリアス規定テーブルの例を示す図である。図2に示すスプリアス規定テーブル21a1は、上記非特許文献1の6.6.3.2 Spurious emission band UE co-existenceのTable 6.6.3.2-1に記載されている送信周波数、保護周波数、及びスプリアス規定の中から、検討中の規定を除外し、スプリアス規定として厳しい条件のものを示す。 FIG. 2 is a diagram showing an example of a spurious regulation table. The spurious specification table 21a1 shown in FIG. 2 is the transmission frequency and protection described in 6.6.3.2, Spurious Emission Band UE co-existence Table 6.6.3.2-1 of Non-Patent Document 1 above. From the frequency and spurious regulations, the regulations under consideration are excluded, and those with severe conditions as spurious regulations are shown.
 図2に示すように、送信周波数と保護周波数との間隔が十分離れていない場合、保護周波数に出力されるノイズをフィルタなどで十分に減衰させることができないため、PAまたはRFICから出力されるノイズが上記スプリアス規定を満たすことは難しい。例えば、一般的なBand-1対応PAでは、Band-34ノイズレベルを-40dBm程度で出力することが確認されているが、このようなPAで-50dBmの規定を達成させるためには、さらにBand-34ノイズレベルを10dB以上、フィルタによって減衰させる必要がある。このように、PA(またはRFIC)から出力されるノイズが上記スプリアス規定を満たすことは非常に難しいのが一般的である。 As shown in FIG. 2, when the interval between the transmission frequency and the protection frequency is not sufficiently separated, the noise output from the PA or RFIC cannot be sufficiently attenuated by a filter or the like. However, it is difficult to satisfy the above spurious regulations. For example, in a general Band-1 compatible PA, it has been confirmed that a Band-34 noise level is output at about −40 dBm, but in order to achieve the regulation of −50 dBm with such a PA, the Band is further increased. The -34 noise level needs to be attenuated by a filter by 10 dB or more. As described above, it is generally very difficult for the noise output from the PA (or RFIC) to satisfy the spurious rule.
 図3は、デュプレクサの送信側の減衰特性の例を示す図である。この図は、従来のデュプレクサの、Band-1を送信周波数とするときの送信側の減衰特性を示している。図3に示すデュプレクサの減衰特性は、Band-34(Band34:2010-2025MHz)およびPHS帯(Personal Handy-phone System:1884.5-1919.6MHz)にあたる周波数で、従来品の減衰量と同等の減衰量を示している。しかし、図3を参照すると、このような減衰量であっても、Band-34またはPHS帯の周波数が希望周波数(Band-1:1920-1980MHz)の近傍であるため、このデュプレクサは、十分な減衰特性が得られていないことが分かる。 FIG. 3 is a diagram showing an example of attenuation characteristics on the transmission side of the duplexer. This figure shows attenuation characteristics on the transmission side of a conventional duplexer when Band-1 is a transmission frequency. The attenuation characteristic of the duplexer shown in FIG. 3 is equivalent to the attenuation amount of the conventional product at frequencies corresponding to Band-34 (Band34: 2010-2025 MHz) and PHS band (Personal Handy-phone System: 1884.5-1919.6 MHz). The attenuation is shown. However, referring to FIG. 3, even with such attenuation, the frequency of the Band-34 or PHS band is in the vicinity of the desired frequency (Band-1: 1920-1980 MHz). It can be seen that the attenuation characteristic is not obtained.
 なお、図3に示すデュプレクサは、希望周波数近傍のBand-34やPHS帯周波数の減衰量を多く取るために、そのトレードオフとして、送信側の挿入損失(Insertion Loss)が大きい。具体的には、このデュプレクサは、従来のWCDMA専用のデュプレクサ、すなわちBand-34の周波数減衰が要求されないデュプレクサと比べて、送信側の挿入損失が0.2~0.5dB程度大きい。このように、従来、上記スプリアス規定を満たすため、フィルタの挿入損失が大きくなることがあった。 The duplexer shown in FIG. 3 has a large insertion loss (InsertionserLoss) on the transmission side as a trade-off because it takes a large amount of attenuation of the Band-34 and PHS band frequencies near the desired frequency. Specifically, this duplexer has a transmission side insertion loss of about 0.2 to 0.5 dB larger than a conventional duplexer dedicated to WCDMA, that is, a duplexer that does not require Band-34 frequency attenuation. Thus, conventionally, in order to satisfy the above-mentioned spurious rule, the insertion loss of the filter may be increased.
 図4は、帯域幅(Bandwidth以下、「BW」と記載)を説明するための図である。図4は、上記非特許文献1の5.6のFigure5.6-1で記載された内容を簡略化した図である。 FIG. 4 is a diagram for explaining the bandwidth (hereinafter referred to as “BW”). FIG. 4 is a simplified diagram of the contents described in FIG. 5.6-1 of 5.6 of Non-Patent Document 1.
 図4において、Transmission Bandwidth Configurationとは、送信可能な最大のリソースブロック数(Resource Block以下、「RB」と記載)である。また、Transmission Bandwidthとは、実際に送信される帯域を示す。 In FIG. 4, Transmission Bandwidth Configuration is the maximum number of resource blocks that can be transmitted (hereinafter referred to as “Resource 、 Block”, described as “RB”). In addition, Transmission Bandwidth indicates a band that is actually transmitted.
 図4は、BW=5MHzで、Transmission Bandwidth Configurationが25、つまり、RBが25であることを示す。また、図4では、送信される帯域、つまり、使用されるRBが8である。25個のRBを0から番号付けした場合、RB#8~#15が使用される。RBは1~25個使用される可能性があり、使用されるRBの連続性は維持される。RBはRB#0~#24の中で任意に割り当てられる。実際には、BWは1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHzと可変であり、それぞれに対応するTransmission Bandwidth Configurationは、6、15、25、50、75、100である。つまり、RBは、同様に、6、15、25、50、75、100である。 FIG. 4 shows that BW = 5 MHz, Transmission Bandwidth Configuration is 25, that is, RB is 25. In FIG. 4, the transmitted band, that is, RB used is 8. When 25 RBs are numbered from 0, RBs # 8 to # 15 are used. There may be 1 to 25 RBs used, and the continuity of the RBs used is maintained. RBs are arbitrarily assigned among RBs # 0 to # 24. Actually, BW is variable as 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and Transmission Bandwidth Configuration corresponding to each is 6, 15, 25, 50, 75, and 100. That is, RB is 6, 15, 25, 50, 75, and 100 similarly.
 隣接チャネル干渉の規定について、上記の非特許文献1の6.6.2.3のAdjacent Channel Leakage Ratioで、歪み特性である隣接チャネル漏洩電力(Adjacent Channel Leakage Ratio 以降「ACLR」と記載)が規定されている。 Regarding the definition of adjacent channel interference, the adjacent channel leakage power (Adjacent Channel Leakage Ratio) is specified in the Adjacent Channel Leakage Ratio of 6.6.2.3 of Non-Patent Document 1 above. Has been.
 ACLRは、PAの線形性に依存性があり、PAの線形性はPAへの供給電圧に依存性があるのが一般的である。つまり、PAへの供給電圧が十分大きければ、ACLR特性は小さくなる。しかし、PAへの供給電圧が高いと、PAの消費電力がその分大きくなる。 ACLR is dependent on the linearity of the PA, and the linearity of the PA is generally dependent on the supply voltage to the PA. That is, if the supply voltage to the PA is sufficiently large, the ACLR characteristic becomes small. However, if the supply voltage to the PA is high, the power consumption of the PA increases accordingly.
 そこで、PAの消費電力を下げるために、上記の非特許文献1のACLR規定を満たす範囲で、PAへの供給電圧VCCを下げる必要がある(図5、6参照)。一般的には、UTRA ACLR1(Universal Terrestrial Radio Access Adjacent Channel Leakage Ratio 1)や、E-UTRA ACLR(Evolved Universal Terrestrial Radio Access Adjacent Channel Leakage Ratio),UTRA ACLR2の値にターゲットを設定し、その値近くになるように、PAへの供給電圧を制御することが行われている。 Therefore, in order to reduce the power consumption of the PA, it is necessary to reduce the supply voltage VCC to the PA within a range that satisfies the ACLR rule of Non-Patent Document 1 (see FIGS. 5 and 6). In general, set the value close to the value of UTRA ACLR1 (Universal Terrestrial Radio Access Access Adjacent Channel Leakage Ratio 1), E-UTRA ACLR (Evolved Universal Terrestrial Radio Access Adjacent Channel Leakage Ratio), and UTRA ACLR2. Thus, the supply voltage to the PA is controlled.
 図5Aは、送信パワーとACLRの関係を示した図であり、図5Bは、送信パワーとPAへの供給電圧VCCの関係を示した図である。これらの図は、BW=5MHz、RB=25の場合の例を示している。図5Aおよび図5Bに示すように、この例では、UTRA ACLR1=-40dBc以下、若しくはE-UTRA ACLR=-40dBc以下、またはUTRA ACLR2=-50dBcになるように、PAへの供給電圧であるVCCを4.0Vから1.0Vまで制御している。 FIG. 5A is a diagram showing a relationship between transmission power and ACLR, and FIG. 5B is a diagram showing a relationship between transmission power and supply voltage VCC to PA. These drawings show examples in the case of BW = 5 MHz and RB = 25. As shown in FIGS. 5A and 5B, in this example, VCC is the supply voltage to the PA so that UTRA ACLR1 = −40 dBc or less, or E-UTRA ACLR = −40 dBc or less, or UTRA ACLR2 = −50 dBc. Is controlled from 4.0V to 1.0V.
 図6は、Band-1におけるパワースペクトルを示す図である。図6は、Band-1で最も周波数が高い領域、すなわち、BW=5MHzでRB最大(RB=25)の場合と、BW=20MHzでRB最大(RB=100)の場合の、パワースペクトルの例も示している。図6を参照すると、図4で説明した帯域幅(BW)が20MHzと大きい場合に近傍ノイズが増加することが分かる。具体的には、図6に示すように、BWが20MHzとBWが5MHzとを比較すると、Band-34のノイズレベルに差が発生し、BWが20MHzの場合にノイズレベルが大きくなっている(図6に示すD)。このように、図6を参照すると、BWが大きい程、Band-34の受信帯のノイズレベルが大きくなることが分かる。これは、BWが大きい程、歪み特性であるACLR、特にUTRA ACLR2が大きくなることに起因している。 FIG. 6 is a diagram showing a power spectrum in Band-1. FIG. 6 shows an example of the power spectrum in the highest frequency region in Band-1, that is, in the case of RB maximum (RB = 25) at BW = 5 MHz and RB maximum (RB = 100) at BW = 20 MHz. It also shows. Referring to FIG. 6, it can be seen that the neighborhood noise increases when the bandwidth (BW) described in FIG. 4 is as large as 20 MHz. Specifically, as shown in FIG. 6, when BW is 20 MHz and BW is 5 MHz, a difference occurs in the noise level of Band-34, and the noise level increases when BW is 20 MHz ( D) shown in FIG. Thus, referring to FIG. 6, it can be seen that the greater the BW, the greater the noise level in the Band-34 reception band. This is due to the fact that the greater the BW, the greater the distortion characteristics ACLR, especially UTRA ACLR2.
 BWが大きい程、UTRA ACLR2の値が大きくなるが、現実的には、ACLRの規定は、希望波の近いところの歪みの規定であるUTRA ACLR1の規定が最も厳しい。図6に示すBW最大の20MHzの場合においても、UTRA ACLR2の値は、上記規定に対して十分余裕があることが普通である。つまり、BWが大きくなっても、歪み特性であるACLR規定として問題は無いが、上記非特許文献1の6.6.3.2 Spurious emission band UE co-existenceで規定されている、Band-34の受信帯のノイズレベルが厳しくなる。これは、Band-1で最も周波数が低い領域での、PHS帯ノイズについても同様である。さらに、BWだけでなく、RB数も、同様にBand-34の受信帯ノイズやPHS帯ノイズを増加させる要因になることが分かっている。さらに、この例は、Band-1の場合だが、図2で示したような、動作帯域に近い周波数にてスプリアス規定されている全てのBandにて発生する問題である。 The larger the BW, the larger the value of UTRA ACLR2, but in reality, the specification of UTRA ACLR1, which is the specification of distortion near the desired wave, is the strictest. Even in the case of the maximum BW of 20 MHz shown in FIG. 6, it is normal that the value of UTRA ACLR2 has a sufficient margin for the above definition. In other words, even if the BW increases, there is no problem as an ACLR rule that is a distortion characteristic, but the Band-34 specified in 6.6.3.2 Spurious emission band UE co-existence of Non-Patent Document 1 above. The noise level of the reception band becomes severe. The same applies to the PHS band noise in the lowest frequency region in Band-1. Furthermore, it has been found that not only BW but also the number of RBs similarly increases the reception band noise and PHS band noise of Band-34. Furthermore, this example is a case of Band-1, but it is a problem that occurs in all Bands that are spuriously defined at a frequency close to the operating band as shown in FIG.
 そこで、本実施の形態では、BWが大きくなるほど大きくなるノイズレベルを改善するため、BWの値に基づいて、パワーアンプに供給する電圧を制御する。 Therefore, in this embodiment, in order to improve the noise level that increases as BW increases, the voltage supplied to the power amplifier is controlled based on the value of BW.
(1.実施の形態1の通信装置の構成)
 図1は、実施の形態1に係る通信装置の構成を示すブロック図である。実施の形態1に係る通信装置は、図1に示す通信装置1により実現される。実施の形態1に係る通信装置1は、帯域幅に基づいてパワーアンプに供給する電圧を制御する。
(1. Configuration of communication apparatus according to Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a communication apparatus according to Embodiment 1. The communication apparatus according to Embodiment 1 is realized by communication apparatus 1 shown in FIG. The communication device 1 according to Embodiment 1 controls the voltage supplied to the power amplifier based on the bandwidth.
 通信装置1は、図1に示すように、制御部10と、メモリ部11と、RF(Radio Frequency)部12と、デジタル信号処理部13と、電源部14と、バッテリ部15と、アンテナ16と、を備える。 As shown in FIG. 1, the communication device 1 includes a control unit 10, a memory unit 11, an RF (Radio Frequency) unit 12, a digital signal processing unit 13, a power supply unit 14, a battery unit 15, and an antenna 16. And comprising.
 制御部10は、CPU(Central Processing Unit)等から構成される。制御部10は、メモリ部11、RF部12、デジタル信号処理部13、および電源部14を制御する。制御部10は、メモリ部11、デジタル信号処理部13、および電源部14との間でデータの入出力を行う。 The control unit 10 includes a CPU (Central Processing Unit) and the like. The control unit 10 controls the memory unit 11, the RF unit 12, the digital signal processing unit 13, and the power supply unit 14. The control unit 10 inputs and outputs data with the memory unit 11, the digital signal processing unit 13, and the power supply unit 14.
 また、制御部10は、基地局からの命令を通信装置1の上位レイヤーで認識し、当該命令に基づいて送信パワーや送信周波数を設定し、無線通信を制御する。例えば、制御部10は、デジタル信号処理部13にLTE送信を開始するよう命令する。この命令をするときに、制御部10は、デジタル信号処理部13に、送信周波数、送信パワー、および送信時のBWの情報を通知する。 Further, the control unit 10 recognizes a command from the base station in an upper layer of the communication device 1, sets transmission power and transmission frequency based on the command, and controls wireless communication. For example, the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission. When issuing this command, the control unit 10 notifies the digital signal processing unit 13 of the transmission frequency, transmission power, and BW information at the time of transmission.
 メモリ部11は、ROM(Read Only Memory)、RAM(Random Access Memory)、またはフラッシュメモリ等から構成される。メモリ部11には、制御情報、RF送信および受信などの調整値などのデータが記憶される。 The memory unit 11 includes a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, or the like. The memory unit 11 stores control information and data such as adjustment values for RF transmission and reception.
 メモリ部11には、例えば、PA-VCC線形補間テーブル11a1が記憶される。図7は、PA-VCC線形補間テーブルの例を示す図である。図7に示すように、メモリ部11に記憶されているPA-VCC線形補間テーブル11a1は、「送信パワー」と「VCC電圧」とが対応づけられている。送信パワーは、信号を送信する際に要するパワーである。VCC電圧は、パワーアンプに供給する電圧である。 The memory unit 11 stores, for example, a PA-VCC linear interpolation table 11a1. FIG. 7 is a diagram illustrating an example of a PA-VCC linear interpolation table. As shown in FIG. 7, in the PA-VCC linear interpolation table 11a1 stored in the memory unit 11, “transmission power” and “VCC voltage” are associated with each other. The transmission power is a power required when transmitting a signal. The VCC voltage is a voltage supplied to the power amplifier.
 LTEの場合、最大送信パワーが3GPP TS36.211の6.2.2に、最小送信パワーが6.3.2に、それぞれ規定されている。例えば、パワークラス3の場合、+23dBm以上~-40dBm以下まで送信する必要がある。したがって、パワークラス3の場合は、+24dBmから4dBステップでのPA-VCC線形補間テーブル11a1(図7参照)が必要である。VCC電圧は、設計情報、制御情報として予めメモリ部11に記憶される。 In the case of LTE, the maximum transmission power is specified in 6.2.2 of 3GPP TS 36.211, and the minimum transmission power is specified in 6.3.2. For example, in the case of power class 3, it is necessary to transmit from +23 dBm to −40 dBm. Therefore, in the case of power class 3, the PA-VCC linear interpolation table 11a1 (see FIG. 7) from +24 dBm to 4 dB steps is required. The VCC voltage is stored in advance in the memory unit 11 as design information and control information.
 また、メモリ部11は、例えば、補正値テーブル11a2が記憶される。図8Aは、実施の形態1に係る補正値テーブルの例を示す図である。図8に示すように、メモリ部11に記憶されている補正値テーブル11a2(図8A)は、「設定BW」と「VCC補正値」とが対応付けられている。設定BWは、VCC電圧を補正するか否かの閾値となる値である。VCC補正値は、補正を行う場合に、求められたVCC電圧に加算する値である。設定BW及びVCC補正値は、設計情報、制御情報として予めメモリ部11に記憶される。 Further, the memory unit 11 stores, for example, a correction value table 11a2. FIG. 8A is a diagram showing an example of a correction value table according to the first embodiment. As shown in FIG. 8, in the correction value table 11a2 (FIG. 8A) stored in the memory unit 11, “setting BW” and “VCC correction value” are associated with each other. The setting BW is a value serving as a threshold value for determining whether or not to correct the VCC voltage. The VCC correction value is a value added to the obtained VCC voltage when correction is performed. The setting BW and the VCC correction value are stored in advance in the memory unit 11 as design information and control information.
 例えば、補正値テーブル11a2(図8A)において、設定BW:15MHzと、VCC補正値:0.2Vとが対応付けてメモリ部11に記憶されている。 For example, in the correction value table 11a2 (FIG. 8A), the setting BW: 15 MHz and the VCC correction value: 0.2V are stored in the memory unit 11 in association with each other.
 メモリ部11は、図1に示すように制御部10と接続されている。メモリ部11に記憶されたデータは、制御部10によって読み出され、制御部10から出力される。例えば、メモリ部11に記憶されたPA-VCC線形補間テーブル11a1、補正値テーブル11a2は、制御部10によって読み出され、制御部10を介してデジタル信号処理部13に出力される。 The memory unit 11 is connected to the control unit 10 as shown in FIG. Data stored in the memory unit 11 is read by the control unit 10 and output from the control unit 10. For example, the PA-VCC linear interpolation table 11 a 1 and the correction value table 11 a 2 stored in the memory unit 11 are read by the control unit 10 and output to the digital signal processing unit 13 via the control unit 10.
 RF部12は、アンテナ16を介して受信した無線信号の復調を行い、A-D(Analog to Digital)変換し、デジタル信号処理部13へ送る。また、RF部12は、デジタル信号処理部13から出力された信号をD-A(Digital to Analog)変換し、無線信号の変調を行う。 The RF unit 12 demodulates the radio signal received via the antenna 16, performs AD (Analog-to-Digital) conversion, and sends it to the digital signal processing unit 13. In addition, the RF unit 12 performs DA (Digital-to-Analog) conversion on the signal output from the digital signal processing unit 13 to modulate a radio signal.
 図9は、RF部の構成を示すブロック図である。図9に示すRF部12は、アンテナスイッチ121と、デュプレクサ122と、アイソレータ123と、PA124と、RFIC125と、LNA(Low Noise Amplifier)126と、から構成される。 FIG. 9 is a block diagram showing the configuration of the RF unit. The RF unit 12 illustrated in FIG. 9 includes an antenna switch 121, a duplexer 122, an isolator 123, a PA 124, an RFIC 125, and an LNA (Low Noise Amplifier) 126.
 アンテナスイッチ121は、制御部10又はデジタル信号処理部13にしたがって、アンテナ16を切り替える。アンテナスイッチ121は、送信用アンテナから受信用アンテナに、または受信用アンテナから送信用アンテナに、切り替える。 The antenna switch 121 switches the antenna 16 according to the control unit 10 or the digital signal processing unit 13. The antenna switch 121 switches from a transmitting antenna to a receiving antenna or from a receiving antenna to a transmitting antenna.
 デュプレクサ122は、送信信号と受信信号とを分離し、さらに希望波以外の周波数帯を減衰させるフィルタである。 The duplexer 122 is a filter that separates a transmission signal and a reception signal and further attenuates a frequency band other than the desired wave.
 アイソレータ123は、増幅された信号を逆流するのを防ぐ。すなわち、アイソレータ123は、PA124から出力される信号の逆流を防ぐ。 The isolator 123 prevents the amplified signal from flowing backward. That is, the isolator 123 prevents the backflow of the signal output from the PA 124.
 PA124は、送信運号を所望の送信電力に増幅可能なアンプである。PA124は、RFIC125からの送信信号の電力を増幅し、増幅した信号をアイソレータ123に出力する。 PA 124 is an amplifier capable of amplifying the transmission number to a desired transmission power. The PA 124 amplifies the power of the transmission signal from the RFIC 125 and outputs the amplified signal to the isolator 123.
 PA124は、電源部14と接続されている(図示しない)。PA124は、電源部14からVCC電圧が供給される。VCC電圧の大きさに基づいて送信信号の電力が増幅され、その結果、通信装置1の送信パワーが制御される。 The PA 124 is connected to the power supply unit 14 (not shown). The VCC voltage is supplied to the PA 124 from the power supply unit 14. The power of the transmission signal is amplified based on the magnitude of the VCC voltage, and as a result, the transmission power of the communication device 1 is controlled.
 RFIC125は、信号の変復調回路、送信・受信用ゲイン可変アンプ、ベースバンドフィルタ、ADコンバータ、DAコンバータ、LVDS(Low Voltage Differential Signaling)、アンプ、及び、PLL(Phase Lock Loop)シンセサイザから構成される。 The RFIC 125 includes a signal modulation / demodulation circuit, a transmission / reception gain variable amplifier, a baseband filter, an AD converter, a DA converter, an LVDS (Low Voltage Differential Differential), an amplifier, and a PLL (Phase Lock Loop) synthesizer.
 RFIC125は、例えば、デジタル信号処理部13が生成した送信信号をD-A(Digital to Analog)変換し、周波数変換を行う。また、RFIC125は、受信信号をA-D(Analog to Digital)変換し、デジタル信号処理部13に出力する。 For example, the RFIC 125 performs DA (Digital-to-Analog) conversion on the transmission signal generated by the digital signal processing unit 13 and performs frequency conversion. Further, the RFIC 125 performs AD (Analog-to-Digital) conversion on the received signal and outputs it to the digital signal processing unit 13.
 LNA126は、ノイズを極力抑えて信号増幅可能なアンプである。LNA126は、デュプレクサ122で分離された受信信号を増幅する。 The LNA 126 is an amplifier that can amplify a signal while suppressing noise as much as possible. The LNA 126 amplifies the reception signal separated by the duplexer 122.
 デジタル信号処理部13は、RF部12から送られた信号に対してデジタル信号処理を行い、制御部10へ送る。また、デジタル信号処理部13は、制御部10から送られた信号を符号化する。すなわち、デジタル信号処理部13は、LTE方式で送信する信号を生成する。 The digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10. The digital signal processing unit 13 encodes the signal sent from the control unit 10. That is, the digital signal processing unit 13 generates a signal to be transmitted by the LTE method.
 図10は、デジタル信号処理部の送信信号生成手法を説明するための図である。図10は、SC-FDMA(Single Carrier-Frequency Division Multiple Access:シングルキャリア周波数分割多重接続)信号の周波数領域での送信信号生成手法を示す。デジタル信号処理部13には、送信信号生成手法として、DFT-Spread-OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)が用いられる。 FIG. 10 is a diagram for explaining a transmission signal generation method of the digital signal processing unit. FIG. 10 shows a transmission signal generation method in the frequency domain of an SC-FDMA (Single Carrier-Frequency Division Multiple Access) signal. The digital signal processing unit 13 uses DFT-Spread-OFDM (Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing) as a transmission signal generation method.
 図10に示すように、デジタル信号処理部13は、情報シンボル系列(信号系列)をDFT(Discrete Fourier Transformation)処理20する。DFT処理20後、デジタル信号処理部13は、サブキャリアマッピング21を行う。すなわち、デジタル信号処理部13は、情報シンボルAを予め基地局に指示された周波数帯域(換言すると割り当てられた周波数帯域)にのみマッピングし、それ以外の周波数帯域に0(シンボルBで示す)をマッピングする。マッピング後、デジタル信号処理部13は、マッピングされた全ての情報シンボル系列に対して、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理22する。デジタル信号処理部13は、最後にCP付加23を行う。すなわち、デジタル信号処理部13は、CP(Cyclic Prefix)と呼ばれるカード区間を各シンボルの先頭に追加する。これらの処理により送信信号が生成される。 As shown in FIG. 10, the digital signal processing unit 13 performs a DFT (Discrete-Fourier-Transformation) process 20 on the information symbol series (signal series). After the DFT processing 20, the digital signal processing unit 13 performs subcarrier mapping 21. That is, the digital signal processing unit 13 maps the information symbol A only to the frequency band (in other words, the allocated frequency band) previously designated by the base station, and 0 (indicated by the symbol B) in the other frequency bands. Map. After the mapping, the digital signal processing unit 13 performs an inverse fast Fourier transform (IFFT: Inverse 全 て Fourier Transform) process 22 on all the mapped information symbol sequences. The digital signal processing unit 13 finally performs CP addition 23. That is, the digital signal processing unit 13 adds a card section called CP (Cyclic Prefix) to the head of each symbol. A transmission signal is generated by these processes.
 ここで、サブキャリアは、3GPP TS36.211の6.2.3のFigure5.2.3-1に記載されるものである。1つのサブキャリアの周波数間隔は15kHzであり、これが12個集まったものを1つのRBとする。 Here, the subcarrier is described in FIG. 5.2.3-1 of 6.2.3 of 3GPP TS36.211. The frequency interval of one subcarrier is 15 kHz, and a collection of 12 subcarriers is defined as one RB.
 また、CPは、情報シンボルの遅延波が次のOFDM(Orthogonal Frequency Division Multiplexing)シンボルに及ぼすシンボル干渉やサブキャリア間の直交性の崩れに起因するサブキャリア間の干渉を除去するためのものである。 The CP is for removing inter-subcarrier interference caused by symbol interference caused by a delayed wave of an information symbol on the next OFDM (Orthogonal Frequency Division Multiplexing) symbol and the collapse of orthogonality between subcarriers. .
 これらの送信信号生成により、送信帯域、RB数およびRBの位置が決められる。 These transmission signal generations determine the transmission band, the number of RBs, and the RB position.
 また、デジタル信号処理部13は、制御部10から通知されるBWの情報(以下、「BW情報」と記載)に基づいてPA124に供給する電圧の値を決定する。デジタル信号処理部13は、電源部14に対して決定した値をPA124に供給するよう命令する。 Also, the digital signal processing unit 13 determines the value of the voltage supplied to the PA 124 based on the BW information notified from the control unit 10 (hereinafter referred to as “BW information”). The digital signal processing unit 13 instructs the power supply unit 14 to supply the determined value to the PA 124.
 例えば、デジタル信号処理部13は、制御部10を介して、メモリ部11に格納されている図8Aの補正値テーブル11a2を参照する。BW情報が示す帯域幅の値(以下、「送信BW」と記載)が設定BW未満の場合(例えば、15MHzの場合)、デジタル信号処理部13は、さらにメモリ部11に格納されたPA-VCC線形補間テーブル11a1(図7)を参照し、送信パワーに応じたVCC電圧を読み出す。デジタル信号処理部13は、電源部14に対して、読み出した値のVCC電圧だけの電圧をPA124に供給するように命令する。一方、送信BWが設定BW以上の場合、デジタル信号処理部13は、PA-VCC線形補間テーブル11a1(図7参照)が示す値にVCC補正値テーブル11a2(図8A参照)が示す値を加算した電圧を、PA124に供給するよう、電源部14に対して命令する。 For example, the digital signal processing unit 13 refers to the correction value table 11a2 of FIG. 8A stored in the memory unit 11 via the control unit 10. When the bandwidth value (hereinafter referred to as “transmission BW”) indicated by the BW information is less than the set BW (for example, in the case of 15 MHz), the digital signal processing unit 13 further stores the PA-VCC stored in the memory unit 11. The VCC voltage corresponding to the transmission power is read out with reference to the linear interpolation table 11a1 (FIG. 7). The digital signal processing unit 13 instructs the power supply unit 14 to supply the PA 124 with a voltage corresponding to the read VCC voltage. On the other hand, when the transmission BW is equal to or greater than the set BW, the digital signal processing unit 13 adds the value indicated by the VCC correction value table 11a2 (see FIG. 8A) to the value indicated by the PA-VCC linear interpolation table 11a1 (see FIG. 7). The power supply unit 14 is instructed to supply the voltage to the PA 124.
 例えば、送信パワーが+23dBmである場合、デジタル信号処理部13は、PA-VCC線形補間テーブル11a1(図7)を参照して、+24dBm及び+20dBmのVCC電圧を読み出し、PA124に供給するVCC電圧を求める。この場合、VCC電圧は、3.0V+(3.5V-3.0V)×3/4=3.375Vと算出される。 For example, when the transmission power is +23 dBm, the digital signal processing unit 13 reads out the VCC voltages of +24 dBm and +20 dBm with reference to the PA-VCC linear interpolation table 11a1 (FIG. 7), and obtains the VCC voltage to be supplied to the PA 124. . In this case, the VCC voltage is calculated as 3.0V + (3.5V−3.0V) × 3/4 = 3.375V.
 電源部14は、制御部10による制御、または、デジタル信号処理部13による制御に従い、制御部10、メモリ部11、RF部12、及びデジタル信号処理部13に電源を供給する。また、電源部14は、RF部12のPA124に電圧を供給する。 The power supply unit 14 supplies power to the control unit 10, the memory unit 11, the RF unit 12, and the digital signal processing unit 13 according to control by the control unit 10 or control by the digital signal processing unit 13. Further, the power supply unit 14 supplies a voltage to the PA 124 of the RF unit 12.
 バッテリ部15は、電源部14を経由して、制御部10、メモリ部11、RF部12、及びデジタル信号処理部13に電圧を供給する。 The battery unit 15 supplies a voltage to the control unit 10, the memory unit 11, the RF unit 12, and the digital signal processing unit 13 via the power supply unit 14.
 アンテナ16は、基地局(図示せず)からの信号を受信し、また、通信装置1からの信号を送信する(例えば、アンテナ16は、RF部12から出力された信号を送信する)。LTEの場合、MIMO(Multiple Input Multiple Output)技術が適用されるため、通信装置1には2本以上のアンテナが用いられる。 The antenna 16 receives a signal from a base station (not shown) and transmits a signal from the communication device 1 (for example, the antenna 16 transmits a signal output from the RF unit 12). In the case of LTE, since MIMO (Multiple Input Multiple Output) technology is applied, the communication apparatus 1 uses two or more antennas.
(2.実施の形態1のデジタル信号処理部の動作)
 以下、本実施の形態に係るデジタル信号処理部13が行う動作について説明する。制御部10が、LTE送信を開始するよう、デジタル信号処理部13に命令すると、図11のフローチャートに示す処理が開始される。
(2. Operation of Digital Signal Processing Unit of Embodiment 1)
Hereinafter, operations performed by the digital signal processing unit 13 according to the present embodiment will be described. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the processing shown in the flowchart of FIG. 11 is started.
 図11は、実施の形態1に係るPA供給電圧設定の動作の一例を示すフローチャートである。制御部10が、デジタル信号処理部13に対してLTE送信を開始するよう命令すると、同時に、制御部10は、送信周波数、送信パワー、および送信時のBW情報をデジタル信号処理部13に通知する。 FIG. 11 is a flowchart showing an example of the operation of setting the PA supply voltage according to the first embodiment. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the control unit 10 simultaneously notifies the digital signal processing unit 13 of the transmission frequency, transmission power, and BW information at the time of transmission. .
 デジタル信号処理部13は、制御部10から通知されたBW情報により示される送信BWが、設定BW以上か否かを判断する(ステップS101)。デジタル信号処理部13は、送信BWが設定BW以上であると判断すると(ステップS101;Yes)、PA-VCC線形補間テーブル(図7に示すテーブル11a1)が示すVCC電圧にVCC補正値(図8Aに示す補正値テーブル11a2のVCC補正値)を加算した電圧を、PA124に供給するよう、電源部14に対して命令する(ステップS102)。一方、デジタル信号処理部13は、送信BWが設定BW未満であると判断すると(ステップS101;No)、PA-VCC線形補間テーブル11a1が示すVCC電圧をPA124に供給するよう電源部14に対して命令する(ステップS103)。 The digital signal processing unit 13 determines whether or not the transmission BW indicated by the BW information notified from the control unit 10 is greater than or equal to the set BW (step S101). When the digital signal processing unit 13 determines that the transmission BW is equal to or greater than the set BW (step S101; Yes), the VCC correction value (FIG. 8A) is set to the VCC voltage indicated by the PA-VCC linear interpolation table (table 11a1 shown in FIG. 7). The power supply unit 14 is instructed to supply the PA 124 with a voltage obtained by adding the VCC correction value of the correction value table 11a2 shown in FIG. On the other hand, when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S101; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S103).
 例えば、送信BWが15MHzであったとする。この場合、デジタル信号処理部13は、補正値テーブル11a2(図8A)を参照して、送信BW(15MHz)が設定BW(15MHz)以上であると判断する。そして、デジタル信号処理部13は、PA-VCC線形補間テーブル11a1(図7)のVCC電圧に一律、補正値テーブル11a2(図8A)のVCC補正値0.2Vを加算することにより、VCC電圧を算出する。 For example, assume that the transmission BW is 15 MHz. In this case, the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8A) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz). Then, the digital signal processing unit 13 uniformly adds the VCC correction value 0.2V of the correction value table 11a2 (FIG. 8A) to the VCC voltage of the PA-VCC linear interpolation table 11a1 (FIG. 7), thereby reducing the VCC voltage. calculate.
 例えば、送信パワーが20dBmの場合、PA-VCC線形補間テーブル11a1(図7)においてVCC電圧は3.0Vである。補正値テーブル11a2(図8A参照)のVCC補正値は0.2Vであるので、デジタル信号処理部13は、PA124に供給する供給電圧が3.2V(=3.0V+0.2V)であると算出する。そして、デジタル信号処理部13は、3.2Vの電圧をPA124に供給するよう、電源部14に対して命令をする。 For example, when the transmission power is 20 dBm, the VCC voltage is 3.0 V in the PA-VCC linear interpolation table 11a1 (FIG. 7). Since the VCC correction value in the correction value table 11a2 (see FIG. 8A) is 0.2V, the digital signal processing unit 13 calculates that the supply voltage supplied to the PA 124 is 3.2V (= 3.0V + 0.2V). To do. Then, the digital signal processing unit 13 instructs the power supply unit 14 to supply a voltage of 3.2 V to the PA 124.
 一方、例えば、送信BWが10MHzであったとする。この場合、デジタル信号処理部13は、送信BW(10MHz)が設定BW(15MHz)未満であると判断する。例えば、送信パワーが20dBmの場合、デジタル信号処理部13は、PA-VCC線形補間テーブル11a1に基づいてVCC電圧を3.0Vであると算出し、電源部14に対してPA124へ3.0Vの電圧を供給する命令をする。 On the other hand, for example, it is assumed that the transmission BW is 10 MHz. In this case, the digital signal processing unit 13 determines that the transmission BW (10 MHz) is less than the set BW (15 MHz). For example, when the transmission power is 20 dBm, the digital signal processing unit 13 calculates the VCC voltage to be 3.0V based on the PA-VCC linear interpolation table 11a1, and supplies the power to the PA 124 with 3.0V. Command to supply voltage.
 デジタル信号処理部13は、図11に示す処理を、制御部10から通知されるBWが変化する毎に実施する。 The digital signal processing unit 13 performs the processing shown in FIG. 11 every time the BW notified from the control unit 10 changes.
 本実施の形態において、通信装置1は、通常、消費電力削減のため、送信パワーに応じたPA供給電圧の制御を実施する。通信装置1は、BWが所定の値より大きくなった場合にのみ、パワーアンプへの供給電圧を上げる制御を実施する。これにより、本実施の形態に係る通信装置1は、LTE送信信号の帯域幅が大きくなっても、パワーアンプで発生するUTRA ACLR2特性の劣化(UTRA ACLR2の値が大きくなる)を防ぐことができる。その結果、通信装置1は近傍ノイズを改善することができる。 In the present embodiment, the communication device 1 normally controls the PA supply voltage according to the transmission power in order to reduce power consumption. The communication device 1 performs control to increase the supply voltage to the power amplifier only when BW becomes larger than a predetermined value. As a result, the communication device 1 according to the present embodiment can prevent deterioration of the UTRA ACLR2 characteristics (the UTRA ACLR2 value increases) that occurs in the power amplifier even when the bandwidth of the LTE transmission signal increases. . As a result, the communication device 1 can improve the neighborhood noise.
(3.実施の形態2の通信装置の構成)
 実施の形態2に係る通信装置は、実施の形態1と同様に、図1に示す通信装置1により実現される。実施の形態2に係る通信装置1は、BW及びRB数に基づいて、パワーアンプに供給する電圧を制御する。
(3. Configuration of communication apparatus of embodiment 2)
The communication apparatus according to Embodiment 2 is realized by communication apparatus 1 shown in FIG. The communication device 1 according to the second embodiment controls the voltage supplied to the power amplifier based on the BW and the number of RBs.
 本実施の形態に係るRF部12、電源部14、バッテリ部15、及びアンテナ16は、実施の形態1のものと同様の機能を有する。以下、異なる機能を有する制御部10、メモリ部11及びデジタル信号処理部13について説明する。 The RF unit 12, the power supply unit 14, the battery unit 15, and the antenna 16 according to the present embodiment have the same functions as those of the first embodiment. Hereinafter, the control unit 10, the memory unit 11, and the digital signal processing unit 13 having different functions will be described.
 制御部10は、デジタル信号処理部13に、LTE送信を開始するよう命令する。この命令をするときに、制御部10は、デジタル信号処理部13に、送信周波数、送信パワー、送信時のBW、及びRBの情報を通知する。 The control unit 10 instructs the digital signal processing unit 13 to start LTE transmission. When giving this command, the control unit 10 notifies the digital signal processing unit 13 of the transmission frequency, transmission power, BW at the time of transmission, and RB information.
 メモリ部11には、PA-VCC線形補間テーブル11a1(図7参照)及び補正値テーブル11a2(図8B参照)が記憶される。 The memory unit 11 stores a PA-VCC linear interpolation table 11a1 (see FIG. 7) and a correction value table 11a2 (see FIG. 8B).
 図8Bは、実施の形態2に係る補正値テーブルの例を示す図である。図8Bに示すように、メモリ部11に記憶されている補正値テーブル11a2は、「設定BW」と、「設定RB」と、「VCC補正値」とが対応付けられている。設定BW及びVCC補正値は、実施の形態1のものと同様である。設定RBは、VCC電圧を補正するか否かの閾値となる値である。設定BW、設定RBおよびVCC補正値は、設計情報、制御情報として、予めメモリ部11に記憶される。 FIG. 8B is a diagram illustrating an example of a correction value table according to the second embodiment. As illustrated in FIG. 8B, in the correction value table 11a2 stored in the memory unit 11, “setting BW”, “setting RB”, and “VCC correction value” are associated with each other. The setting BW and the VCC correction value are the same as those in the first embodiment. The setting RB is a value serving as a threshold value for determining whether or not to correct the VCC voltage. The setting BW, the setting RB, and the VCC correction value are stored in advance in the memory unit 11 as design information and control information.
 例えば、設定BW:15MHzと、設定RB:50と、VCC補正値:0.2Vとが対応付けてメモリ部11に記憶される。 For example, setting BW: 15 MHz, setting RB: 50, and VCC correction value: 0.2 V are stored in the memory unit 11 in association with each other.
 デジタル信号処理部13は、RF部12から送られた信号に対してデジタル信号処理を行い、その信号を制御部10へ送る。また、デジタル信号処理部13は、制御部10から送られた信号を符号化する。また、デジタル信号処理部13は、制御部10から送信されるBW情報及びRBの情報(以下、「RB情報」と記載)に基づいてPA124に供給する電圧の値を決定し、決定した値の電圧をPA124に供給するよう、電源部14に対して命令する。 The digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10. The digital signal processing unit 13 encodes the signal sent from the control unit 10. Further, the digital signal processing unit 13 determines the value of the voltage supplied to the PA 124 based on the BW information and RB information (hereinafter referred to as “RB information”) transmitted from the control unit 10, and the determined value The power supply unit 14 is instructed to supply the voltage to the PA 124.
(4.実施の形態2のデジタル信号処理部の動作)
 以下、本実施の形態に係るデジタル信号処理部13が行う動作について説明する。制御部10が、LTE送信を開始するよう、デジタル信号処理部13に命令すると、図12のフローチャートに示す処理が開始される。
(4. Operation of the digital signal processor of the second embodiment)
Hereinafter, operations performed by the digital signal processing unit 13 according to the present embodiment will be described. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the processing shown in the flowchart of FIG. 12 is started.
 図12は、実施の形態2に係るPA供給電圧設定の動作の一例を示すフローチャートである。制御部10が、デジタル信号処理部13に対してLTE送信を開始するよう命令すると、同時に、制御部10は、送信周波数、送信パワー、送信時のBW情報、及びRB情報をデジタル信号処理部13に通知する。 FIG. 12 is a flowchart showing an example of the operation of setting the PA supply voltage according to the second embodiment. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the control unit 10 simultaneously transmits the transmission frequency, transmission power, BW information at the time of transmission, and RB information to the digital signal processing unit 13. Notify
 デジタル信号処理部13は、制御部10から通知されたBW情報に示される帯域(送信BW)が、設定BW以上か否かを判断する(ステップS201)。デジタル信号処理部13は、送信BWが設定BW以上であると判断すると(ステップS201;Yes)、次に、通知されたRB情報に示されるRBの数(送信RB)が、設定RB以上か否かを判断する(ステップS202)。一方、デジタル信号処理部13は、送信BWが設定BW未満であると判断すると(ステップS201;No)、PA-VCC線形補間テーブル11a1が示すVCC電圧をPA124に供給するよう電源部14に対して命令する(ステップS204)。 The digital signal processing unit 13 determines whether or not the band (transmission BW) indicated in the BW information notified from the control unit 10 is equal to or greater than the set BW (step S201). If the digital signal processing unit 13 determines that the transmission BW is greater than or equal to the set BW (step S201; Yes), next, the number of RBs (transmission RB) indicated in the notified RB information is greater than or equal to the set RB. Is determined (step S202). On the other hand, when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S201; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S204).
 ステップS202において、デジタル信号処理部13は、送信RBが設定RB以上であると判断すると(ステップS202;Yes)、PA-VCC線形補間テーブル(図7に示すテーブル11a1)が示すVCC電圧にVCC補正値(図8Bに示す補正値テーブル11a2のVCC補正値)を加算した電圧をPA124に供給するよう電源部14に対して命令する(ステップS203)。一方、デジタル信号処理部13は、送信RBが設定RB未満であると判断すると(ステップS202;No)、ステップS204の処理を行う。 In step S202, when the digital signal processing unit 13 determines that the transmission RB is equal to or higher than the set RB (step S202; Yes), the VCC correction is performed on the VCC voltage indicated by the PA-VCC linear interpolation table (table 11a1 shown in FIG. 7). The power supply unit 14 is instructed to supply a voltage obtained by adding the value (the VCC correction value of the correction value table 11a2 shown in FIG. 8B) to the PA 124 (step S203). On the other hand, when the digital signal processing unit 13 determines that the transmission RB is less than the set RB (step S202; No), the digital signal processing unit 13 performs the process of step S204.
 例えば、送信BWが15MHz、送信RBが40であったとする。この場合、デジタル信号処理部13は、補正値テーブル11a2(図8B)を参照して、送信BW(15MHz)が設定BW(15MHz)以上であると判断する。次に、デジタル信号処理部13は、補正値テーブル11a2(図8B)を参照して、送信RB(40)が設定RB(50)未満であると判断する。 For example, assume that the transmission BW is 15 MHz and the transmission RB is 40. In this case, the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8B) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz). Next, the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8B) and determines that the transmission RB (40) is less than the set RB (50).
 デジタル信号処理部13により送信RBが設定RB未満であると判断されると、VCC電圧は補正されない。例えば、送信パワーが20dBmの場合、PA-VCC線形補間テーブル11a1(図7)に基づいて、VCC電源は3.0Vと求められる。そして、デジタル信号処理部13は、電源部14に対して、PA124に3.0Vの電圧を供給する命令をする。 When the digital signal processing unit 13 determines that the transmission RB is less than the set RB, the VCC voltage is not corrected. For example, when the transmission power is 20 dBm, the VCC power supply is determined to be 3.0 V based on the PA-VCC linear interpolation table 11a1 (FIG. 7). Then, the digital signal processing unit 13 instructs the power supply unit 14 to supply a voltage of 3.0 V to the PA 124.
 デジタル信号処理部13は、図12に示す処理を、制御部10から通知されるBWやRBが変化する毎に実施する。 The digital signal processing unit 13 performs the process shown in FIG. 12 every time BW or RB notified from the control unit 10 changes.
 なお、上記処理において、ステップの順番は図12に示す順番に限られない。例えば、ステップS201とステップS202とを入れ替えてもよい。 In the above processing, the order of steps is not limited to the order shown in FIG. For example, step S201 and step S202 may be interchanged.
 RBの数は、BWと同様に、Band-34の受信帯ノイズやPHS帯ノイズを増加させる要因になることが分かっている。本実施の形態によれば、LTE送信信号のRB数が多い場合にパワーアンプへの供給電圧を上げることができるので、本実施の形態に係る通信装置1は、近傍ノイズのレベルを下げることができる。 It has been found that the number of RBs is a factor that increases Band-34 reception band noise and PHS band noise, as with BW. According to the present embodiment, when the number of RBs of the LTE transmission signal is large, the supply voltage to the power amplifier can be increased. Therefore, the communication device 1 according to the present embodiment can reduce the level of near noise. it can.
 また、BWが大きくても、RB数が少ない場合、UTRA ACLR2特性の劣化は無く、近傍ノイズレベルも規定に対して問題が無い。本実施の形態によれば、このような場合に、不必要にパワーアンプへの供給電圧を上げずに済むため、通信装置の消費電力の増加を防止することができる。 In addition, even if the BW is large, if the number of RBs is small, there is no deterioration of the UTRA ACLR2 characteristics, and there is no problem with the neighborhood noise level as well. According to the present embodiment, in such a case, it is not necessary to increase the supply voltage to the power amplifier unnecessarily, so that an increase in power consumption of the communication device can be prevented.
(5.実施の形態3の通信装置の構成)
 実施の形態3に係る通信装置は、実施の形態1と同様に、図1に示す通信装置1により実現される。実施の形態3に係る通信装置1は、BW、RB数、及び送信パワーに基づいて、パワーアンプに供給する電圧を制御する。
(5. Configuration of communication apparatus according to Embodiment 3)
The communication apparatus according to the third embodiment is realized by the communication apparatus 1 shown in FIG. The communication device 1 according to Embodiment 3 controls the voltage supplied to the power amplifier based on the BW, the number of RBs, and the transmission power.
 本実施の形態に係るRF部12、電源部14、バッテリ部15、及びアンテナ16は、実施の形態1のものと同様の機能を有する。また、制御部10は実施の形態2のものと同様の機能を有する。以下、異なる機能を有するメモリ部11及びデジタル信号処理部13について説明する。 The RF unit 12, the power supply unit 14, the battery unit 15, and the antenna 16 according to the present embodiment have the same functions as those of the first embodiment. The control unit 10 has the same function as that of the second embodiment. Hereinafter, the memory unit 11 and the digital signal processing unit 13 having different functions will be described.
 メモリ部11には、PA-VCC線形補間テーブル11a1(図7参照)および補正値テーブル11a2(図8C参照)が記憶される。 The memory unit 11 stores a PA-VCC linear interpolation table 11a1 (see FIG. 7) and a correction value table 11a2 (see FIG. 8C).
 図8Cは、実施の形態3に係る補正値テーブルの例を示す図である。図8Cに示すように、メモリ部11に記憶されている補正値テーブル11a2(図8C)は、「設定BW」と、「設定RB」と、「設定送信パワー」と、「VCC補正値」とが対応付けられている。設定BWおよびVCC補正値は、実施の形態1のものと同様である。設定RBは、実施の形態2のものと同様である。設定送信パワーは、VCC電圧を補正するか否かの閾値となる値である。設定BW、設定RB、設定送信パワーおよびVCC補正値は、設計情報、制御情報として、予めメモリ部11に記憶される。 FIG. 8C is a diagram illustrating an example of a correction value table according to the third embodiment. As shown in FIG. 8C, the correction value table 11a2 (FIG. 8C) stored in the memory unit 11 includes “setting BW”, “setting RB”, “setting transmission power”, “VCC correction value”, Are associated. The setting BW and the VCC correction value are the same as those in the first embodiment. The setting RB is the same as that in the second embodiment. The set transmission power is a value serving as a threshold value for determining whether or not to correct the VCC voltage. The setting BW, the setting RB, the setting transmission power, and the VCC correction value are stored in advance in the memory unit 11 as design information and control information.
 例えば、設定BW:15MHzと、設定RB:50と、設定送信パワー:20dBmと、VCC補正値:0.2Vとが対応付けてメモリ部11に記憶されている。また、設定BW:20MHzと、設定RB:75と、設定送信パワー:18dBmと、VCC補正値:0.2Vとが対応付けてメモリ部11に記憶されている。 For example, setting BW: 15 MHz, setting RB: 50, setting transmission power: 20 dBm, and VCC correction value: 0.2 V are stored in the memory unit 11 in association with each other. Further, setting BW: 20 MHz, setting RB: 75, setting transmission power: 18 dBm, and VCC correction value: 0.2 V are stored in the memory unit 11 in association with each other.
 デジタル信号処理部13は、RF部12から送られた信号に対してデジタル信号処理を行い、その信号を制御部10へ送る。また、デジタル信号処理部13は、制御部10から送られた信号を符号化する。また、デジタル信号処理部13は、制御部10から送信されるBW、RB、及び送信パワーの情報に基づいてPA124に供給する電圧の値を決定し、決定した値の電圧をPA124に供給するよう、電源部14に対して命令する。 The digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10. The digital signal processing unit 13 encodes the signal sent from the control unit 10. Further, the digital signal processing unit 13 determines the value of the voltage to be supplied to the PA 124 based on the information of the BW, RB, and transmission power transmitted from the control unit 10, and supplies the determined value of the voltage to the PA 124. The power supply unit 14 is commanded.
(6.実施の形態3のデジタル信号処理部の動作)
 以下、本実施の形態に係るデジタル信号処理部13が行う動作について説明する。制御部10が、LTE送信を開始するよう、デジタル信号処理部13に命令すると、図13のフローチャートに示す処理が開始される。
(6. Operation of Digital Signal Processing Unit of Embodiment 3)
Hereinafter, operations performed by the digital signal processing unit 13 according to the present embodiment will be described. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the processing shown in the flowchart of FIG. 13 is started.
 図13は、実施の形態3に係るPA供給電圧設定の動作の一例を示すフローチャートである。制御部10は、デジタル信号処理部13にLTE送信を開始するよう命令すると、同時に、制御部10は、送信周波数、送信パワー、送信時のBW情報、及びRB情報をデジタル信号処理部13に通知する。 FIG. 13 is a flowchart showing an example of the operation of setting the PA supply voltage according to the third embodiment. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, at the same time, the control unit 10 notifies the digital signal processing unit 13 of the transmission frequency, transmission power, BW information at the time of transmission, and RB information. To do.
 デジタル信号処理部13は、制御部10から通知されたBW情報に示される帯域(送信BW)が、設定BW以上か否かを判断する(ステップS301)。デジタル信号処理部13は、送信BWが設定BW以上であると判断すると(ステップS301;Yes)、次に、通知されたRB情報に示されるRBの数(送信RB)が、設定RB以上か否かを判断する(ステップS302)。一方、デジタル信号処理部13は、送信BWが設定BW未満であると判断すると(ステップS301;No)、PA-VCC線形補間テーブル11a1が示すVCC電圧をPA124に供給するよう電源部14に対して命令する(ステップS305)。 The digital signal processing unit 13 determines whether or not the band (transmission BW) indicated in the BW information notified from the control unit 10 is equal to or greater than the set BW (step S301). If the digital signal processing unit 13 determines that the transmission BW is greater than or equal to the set BW (step S301; Yes), next, the number of RBs (transmission RB) indicated in the notified RB information is greater than or equal to the set RB. Is determined (step S302). On the other hand, when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S301; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S305).
 ステップS302において、デジタル信号処理部13は、送信RBが設定RB以上であると判断すると(ステップS302;Yes)、次に、送信パワーが設定送信パワー以上であるか否かを判断する(ステップS303)。デジタル信号処理部13は、送信パワーが設定送信パワー以上であると判断すると(ステップS303;Yes)、PA-VCC線形補間テーブル(図7に示すテーブル11a1)が示すVCC電圧にVCC補正値(図8Aに示す補正値テーブル11a2のVCC補正値)を加算した電圧を、PA124に供給するよう、電源部14に対して命令する(ステップS304)。 In step S302, when the digital signal processing unit 13 determines that the transmission RB is greater than or equal to the set RB (step S302; Yes), it next determines whether or not the transmission power is greater than or equal to the set transmission power (step S303). ). When the digital signal processing unit 13 determines that the transmission power is equal to or higher than the set transmission power (step S303; Yes), the VCC correction value (FIG. 7) is added to the VCC voltage indicated by the PA-VCC linear interpolation table (table 11a1 shown in FIG. 7). The power supply unit 14 is instructed to supply the PA 124 with a voltage obtained by adding the VCC correction value of the correction value table 11a2 shown in 8A to the PA 124 (step S304).
 一方、ステップS302において、デジタル信号処理部13は、送信RBが設定RB未満であると判断した場合(ステップS302;No)、または、ステップS303において、送信パワーが設定送信パワー未満であると判断した場合(ステップS303;No)、デジタル信号処理部13はステップS305の処理を行う。 On the other hand, when it is determined in step S302 that the transmission RB is less than the set RB (step S302; No), or in step S303, the digital signal processing unit 13 determines that the transmission power is less than the set transmission power. In the case (step S303; No), the digital signal processing unit 13 performs the process of step S305.
 例えば、送信BWが15MHz、送信RBが60、送信パワーが18dBmであったとする。この場合、デジタル信号処理部13は、補正値テーブル11a2(図8C)を参照して、送信BW(15MHz)は設定BW(15MHz)以上であると判断する。次に、デジタル信号処理部13は、補正値テーブル11a2(図8C)を参照して、送信RB(60)が設定RB(50)以上であると判断する。そして、デジタル信号処理部13は、補正値テーブル11a2(図8C)を参照して、送信パワー(18dBm)が設定送信パワー(20dBm)未満であると判断する。 For example, it is assumed that the transmission BW is 15 MHz, the transmission RB is 60, and the transmission power is 18 dBm. In this case, the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz). Next, the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission RB (60) is equal to or greater than the set RB (50). Then, the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission power (18 dBm) is less than the set transmission power (20 dBm).
 デジタル信号処理部13により、送信パワーが設定送信パワー未満であると判断されるとVCC電圧は補正されない。送信パワーは18dBmであるので、デジタル信号処理部13は、PA-VCC線形補間テーブル11a1(図7)に基づいて、VCC電圧を2.75V(=2.5V+(3.0-2.5V)/2)と算出する。そして、デジタル信号処理部13は、2.75Vの電圧をPA124に供給するよう、電源部14に対して命令をする。 When the digital signal processing unit 13 determines that the transmission power is less than the set transmission power, the VCC voltage is not corrected. Since the transmission power is 18 dBm, the digital signal processing unit 13 sets the VCC voltage to 2.75V (= 2.5V + (3.0−2.5V) based on the PA-VCC linear interpolation table 11a1 (FIG. 7). / 2). Then, the digital signal processing unit 13 instructs the power supply unit 14 to supply a voltage of 2.75 V to the PA 124.
 デジタル信号処理部13は、図13に示す処理を、制御部10から通知されるBW、RB、又は送信パワーが変化する毎に実施する。 The digital signal processing unit 13 performs the processing shown in FIG. 13 every time BW, RB, or transmission power notified from the control unit 10 changes.
 なお、上記処理において、ステップの順番は図13に示す順番に限られない。例えば、ステップS301乃至ステップS303は順番を入れ替えてもよい。 In the above processing, the order of steps is not limited to the order shown in FIG. For example, the order of steps S301 to S303 may be changed.
 本実施の形態によれば、LTE送信信号の送信パワーが高い場合にパワーアンプへの供給電圧を上げることができるので、本実施の形態に係る通信装置1は、近傍ノイズのレベルを下げることができる。 According to the present embodiment, since the supply voltage to the power amplifier can be increased when the transmission power of the LTE transmission signal is high, the communication device 1 according to the present embodiment can decrease the level of the nearby noise. it can.
 また、BWやRB数が大きくても、通信装置1の送信パワーが低い場合、UTRA ACLR2特性の劣化は無い。また、この通信装置1は、近傍ノイズレベルも規定に対して問題がない。本実施の形態によれば、このような場合に、不必要にPA供給電圧を上げずに済むため、本実施の形態に係る通信装置1は、消費電力の増加を防止することができる。 Also, even if the number of BWs or RBs is large, there is no deterioration of the UTRA ACLR2 characteristics when the transmission power of the communication device 1 is low. Further, the communication device 1 has no problem with respect to the regulation of the near noise level. According to the present embodiment, in such a case, it is not necessary to unnecessarily increase the PA supply voltage, and thus the communication device 1 according to the present embodiment can prevent an increase in power consumption.
(7.実施の形態4の通信装置の構成)
 実施の形態4に係る通信装置は、実施の形態1と同様に、図1に示す通信装置1により実現される。実施の形態4に係る通信装置1は、BW、RB数、送信パワー、及び送信周波数に基づいて、パワーアンプに供給する電圧を制御する。
(7. Configuration of communication apparatus of embodiment 4)
The communication apparatus according to the fourth embodiment is realized by the communication apparatus 1 shown in FIG. The communication device 1 according to the fourth embodiment controls the voltage supplied to the power amplifier based on the BW, the number of RBs, the transmission power, and the transmission frequency.
 なお、本実施の形態に係るRF部12、電源部14、バッテリ部15、及びアンテナ16は、実施の形態1のものと同様の機能を有する。また、制御部10は実施の形態2のものと同様の機能を有する。以下、異なる機能を有するメモリ部11及びデジタル信号処理部13について説明する。 Note that the RF unit 12, the power supply unit 14, the battery unit 15, and the antenna 16 according to the present embodiment have the same functions as those of the first embodiment. The control unit 10 has the same function as that of the second embodiment. Hereinafter, the memory unit 11 and the digital signal processing unit 13 having different functions will be described.
 メモリ部11には、PA-VCC線形補間テーブル11a1(図7参照)、補正値テーブル11a2(図8C参照)、および送信周波数テーブル11a3(図14参照)が記憶される。 The memory unit 11 stores a PA-VCC linear interpolation table 11a1 (see FIG. 7), a correction value table 11a2 (see FIG. 8C), and a transmission frequency table 11a3 (see FIG. 14).
 図14は、送信周波数テーブル11a3の例を示す図である。図14に示すように、メモリ部11に記憶されている送信周波数テーブル11a3は、「Band」と、「周波数範囲」と、「下限設定周波数」と、「上限設定周波数」とが対応付けられている。Bandは、周波数範囲に対応付けられる帯域番号である。周波数範囲は、LTEにおいて割り当てられる動作帯域である。下限設定周波数は、希望周波数帯の下限側において近傍ノイズの周波数から十分に離れた値の周波数であり、任意に設定することができる周波数である。上限設定周波数は、希望周波数帯の上限側において近傍ノイズの周波数から十分に離れた値の周波数であり、任意に設定することができる周波数である。下限設定周波数及び上限設定周波数は、設計情報、制御情報として、予めメモリ部11に記憶される。 FIG. 14 is a diagram illustrating an example of the transmission frequency table 11a3. As shown in FIG. 14, the transmission frequency table 11a3 stored in the memory unit 11 is associated with “Band”, “frequency range”, “lower limit set frequency”, and “upper limit set frequency”. Yes. Band is a band number associated with the frequency range. The frequency range is an operation band assigned in LTE. The lower limit set frequency is a frequency having a value sufficiently separated from the frequency of the nearby noise on the lower limit side of the desired frequency band, and can be arbitrarily set. The upper limit set frequency is a frequency that is sufficiently away from the frequency of the nearby noise on the upper limit side of the desired frequency band, and can be set arbitrarily. The lower limit set frequency and the upper limit set frequency are stored in advance in the memory unit 11 as design information and control information.
 例えば、周波数範囲:1920-1980MHzと、下限設定周波数:1930MHzと、上限設定周波数:1970MHzとが対応付けられてメモリ部11に記憶される。 For example, the frequency range: 1920-1980 MHz, the lower limit set frequency: 1930 MHz, and the upper limit set frequency: 1970 MHz are associated with each other and stored in the memory unit 11.
 デジタル信号処理部13は、RF部12から送られた信号に対してデジタル信号処理を行い、その信号を制御部10へ送る。また、デジタル信号処理部13は、制御部10から送られた信号を符号化する。また、デジタル信号処理部13は、制御部10から送信されるBW、RB、送信パワー、及び、送信周波数の情報に基づいてPA124に供給する電圧の値を決定し、決定した値の電圧をPA124に供給するよう、電源部14に対して命令する。 The digital signal processing unit 13 performs digital signal processing on the signal sent from the RF unit 12 and sends the signal to the control unit 10. The digital signal processing unit 13 encodes the signal sent from the control unit 10. Further, the digital signal processing unit 13 determines the value of the voltage to be supplied to the PA 124 based on the information on the BW, RB, transmission power, and transmission frequency transmitted from the control unit 10, and the determined voltage value is determined as the PA 124. To the power supply unit 14.
(8.実施の形態4のデジタル信号処理部の動作)
 以下、本実施の形態に係るデジタル信号処理部13が行う動作について説明する。制御部10が、LTE送信を開始するよう、デジタル信号処理部13に命令すると、図15のフローチャートに示す処理が開始される。
(8. Operation of Digital Signal Processing Unit of Embodiment 4)
Hereinafter, operations performed by the digital signal processing unit 13 according to the present embodiment will be described. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the processing shown in the flowchart of FIG. 15 is started.
 図15は、実施の形態4に係るPA供給電圧設定の動作の一例を示すフローチャートである。制御部10が、デジタル信号処理部13に対してLTE送信を開始するよう命令すると、同時に、制御部10は、送信周波数、送信パワー、送信時のBW情報、及びRB情報をデジタル信号処理部13に通知する。 FIG. 15 is a flowchart showing an example of the operation of setting the PA supply voltage according to the fourth embodiment. When the control unit 10 instructs the digital signal processing unit 13 to start LTE transmission, the control unit 10 simultaneously transmits the transmission frequency, transmission power, BW information at the time of transmission, and RB information to the digital signal processing unit 13. Notify
 デジタル信号処理部13は、制御部10から通知されたBW情報に示される帯域(送信BW)が、設定BW以上か否かを判断する(ステップS401)。デジタル信号処理部13は、送信BWが設定BW以上であると判断すると(ステップS401;Yes)、通知された送信周波数にBWの半分の値を足した値が上限設定周波数以上か、あるいは、通知された送信周波数にBWの半分の値を引いた値が下限設定周波数以下か否かを判断する(ステップS402)。一方、デジタル信号処理部13は、送信BWが設定BW未満であると判断すると(ステップS401;No)、PA-VCC線形補間テーブル11a1が示すVCC電圧をPA124に供給するよう電源部14に対して命令する(ステップS406)。 The digital signal processing unit 13 determines whether or not the band (transmission BW) indicated in the BW information notified from the control unit 10 is equal to or greater than the set BW (step S401). When the digital signal processing unit 13 determines that the transmission BW is equal to or higher than the set BW (step S401; Yes), the value obtained by adding half the value of the BW to the notified transmission frequency is equal to or higher than the upper limit set frequency, or is notified. It is determined whether or not a value obtained by subtracting half the value of BW from the transmitted frequency is equal to or lower than the lower limit setting frequency (step S402). On the other hand, when the digital signal processing unit 13 determines that the transmission BW is less than the set BW (step S401; No), the digital signal processing unit 13 instructs the power supply unit 14 to supply the VCC voltage indicated by the PA-VCC linear interpolation table 11a1 to the PA 124. Command (step S406).
 ステップS402において、デジタル信号処理部13は、送信周波数にBWの半分の値を足した値が上限設定周波数以上、あるいは、送信周波数にBWの半分の値を引いた値が下限設定周波数以下であると判断すると(ステップS402;Yes)、次に通知されたRB情報に示されるRBの数(送信RB)が、設定RB以上か否かを判断する(ステップS403)。一方、デジタル信号処理部13は、送信周波数にBWの半分の値を足した値が上限設定周波数未満、あるいは、送信周波数にBWの半分の値を引いた値が下限設定周波数より大きいと判断すると(ステップS402;No)、ステップS406に進む。 In step S402, the digital signal processing unit 13 has a value obtained by adding half the value of BW to the transmission frequency equal to or higher than the upper limit setting frequency, or a value obtained by subtracting a value equal to the half of BW from the transmission frequency is equal to or lower than the lower limit setting frequency. (Step S402; Yes), it is determined whether or not the number of RBs (transmission RB) indicated in the next notified RB information is equal to or greater than the set RB (step S403). On the other hand, when the digital signal processing unit 13 determines that the value obtained by adding half the value of BW to the transmission frequency is less than the upper limit setting frequency, or the value obtained by subtracting the value of half the BW from the transmission frequency is greater than the lower limit setting frequency. (Step S402; No), the process proceeds to Step S406.
 ステップS403において、デジタル信号処理部13は、送信RBが設定RB以上であると判断し(ステップS403;Yes)、かつ送信パワーが設定送信パワー以上であると判断した場合(ステップS404;Yes)、デジタル信号処理部13は、PA-VCC線形補間テーブルが示すVCC電圧(図7に示すテーブル11a1)にVCC補正値(図8Cに示す補正値テーブル11a2のVCC補正値)を加算した電圧をPA124に供給するよう、電源部14に対して命令する(ステップS405)。 In step S403, the digital signal processing unit 13 determines that the transmission RB is greater than or equal to the set RB (step S403; Yes), and determines that the transmission power is greater than or equal to the set transmission power (step S404; Yes). The digital signal processor 13 adds a voltage obtained by adding the VCC correction value (the VCC correction value of the correction value table 11a2 shown in FIG. 8C) to the VCC voltage (table 11a1 shown in FIG. 7) indicated by the PA-VCC linear interpolation table to the PA 124. The power supply unit 14 is commanded to supply (step S405).
 一方、ステップS403において、デジタル信号処理部13が、送信RBが設定RB未満であると判断した場合(ステップS403;No)、又は、ステップS404において、デジタル信号処理部13が、送信パワーが設定送信パワー未満であると判断した場合(ステップS404;No)、デジタル信号処理部13はステップS406の処理を行う。 On the other hand, when the digital signal processing unit 13 determines in step S403 that the transmission RB is less than the set RB (step S403; No), or in step S404, the digital signal processing unit 13 sets the transmission power to set transmission. When it is determined that the power is less than the power (step S404; No), the digital signal processing unit 13 performs the process of step S406.
 例えば、送信BWが15MHz、送信周波数が1960MHz、送信RBが60、送信パワー20dBmであったとする。この場合、デジタル信号処理部13は、補正値テーブル11a2(図8C)を参照して、送信BW(15MHz)は設定BW(15MHz)以上であると判断する。次に、デジタル信号処理部13は、送信周波数テーブル11a3(図14)を参照して、送信周波数+BW/2(1967.5MHz=1960MHz+15MHz/2)が上限設定周波数(1970MHz)未満であり、送信周波数-BW/2(1952.5MHz)が下限設定周波数1930MHzより大きいと判断する。 For example, assume that the transmission BW is 15 MHz, the transmission frequency is 1960 MHz, the transmission RB is 60, and the transmission power is 20 dBm. In this case, the digital signal processing unit 13 refers to the correction value table 11a2 (FIG. 8C) and determines that the transmission BW (15 MHz) is equal to or higher than the set BW (15 MHz). Next, the digital signal processing unit 13 refers to the transmission frequency table 11a3 (FIG. 14), the transmission frequency + BW / 2 (1967.5 MHz = 1960 MHz + 15 MHz / 2) is less than the upper limit setting frequency (1970 MHz), and the transmission frequency -It is determined that BW / 2 (1952.5 MHz) is larger than the lower limit set frequency 1930 MHz.
 通信装置1では、上限設定周波数や下限設定周波数を超えた周波数が使われていないため、近傍ノイズへの影響は少ないと考えられる。よって、VCC電圧は補正されない。すなわち、送信周波数+BW/2が上限設定周波数未満の場合、あるいは、送信周波数-BW/2が下限設定周波数より大きい場合、VCC補正値0.2V(図8C参照)が追加されずに、PA-VCC線形補間テーブル11a1(図7参照)に従いPA共通電圧が設定される(ステップ406参照)。 In the communication apparatus 1, since the frequency exceeding the upper limit setting frequency or the lower limit setting frequency is not used, it is considered that the influence on the near noise is small. Therefore, the VCC voltage is not corrected. That is, when the transmission frequency + BW / 2 is less than the upper limit set frequency, or when the transmission frequency −BW / 2 is greater than the lower limit set frequency, the VCC correction value 0.2V (see FIG. 8C) is not added and the PA− The PA common voltage is set according to the VCC linear interpolation table 11a1 (see FIG. 7) (see step 406).
 送信パワーは20dBmであるので、デジタル信号処理部13は、PA-VCC線形補間テーブル11a1(図7)に基づいて、VCC電圧が3.0Vと算出する。そして、デジタル信号処理部13は、3.0Vの電圧をPA124に供給するよう、電源部14に対して命令をする。 Since the transmission power is 20 dBm, the digital signal processing unit 13 calculates the VCC voltage as 3.0 V based on the PA-VCC linear interpolation table 11a1 (FIG. 7). Then, the digital signal processing unit 13 instructs the power supply unit 14 to supply a voltage of 3.0 V to the PA 124.
 デジタル信号処理部13は、図15に示す処理を、制御部10から通知されるBW、RB、送信パワー、又は送信周波数が変化する毎に実施する。 The digital signal processing unit 13 performs the processing shown in FIG. 15 every time BW, RB, transmission power, or transmission frequency notified from the control unit 10 changes.
 なお、上記処理において、ステップの順番は図15に示す順番に限られない。例えば、ステップS401乃至ステップS404は順番を入れ替えてもよい。 In the above processing, the order of steps is not limited to the order shown in FIG. For example, the order of steps S401 to S404 may be changed.
 本実施の形態によれば、LTE送信信号が、近傍ノイズの周波数近くで送信される場合に、PA供給電圧を上げることができる。このため、本実施の形態に係る通信装置1は、近傍ノイズレベルを下げることができる。 According to the present embodiment, it is possible to increase the PA supply voltage when the LTE transmission signal is transmitted near the frequency of the nearby noise. For this reason, the communication apparatus 1 which concerns on this Embodiment can reduce a near noise level.
 また、LTE送信信号のBWやRB数、送信パワー、送信周波数のいずれか一つでも閾値を下回った場合は、近傍ノイズの影響は少ないため、デジタル信号処理部13は、近傍ノイズ低減のためにパワーアンプへの供給電圧を上げる制御を行わない。例えば、BWやRB数、送信パワーは大きいが、通信装置1で近傍ノイズに影響を与える送信周波数が使われていない場合、UTRA ACLR2特性の劣化は無い。また、この通信装置1は、近傍ノイズのレベルも規定に対し問題が無い。本実施の形態によれば、このような場合に、不必要にパワーアンプへの供給電圧を上げずに済むため、この通信装置1は、消費電力の増加を防止することができる。 In addition, when any one of the LTE transmission signal BW, the number of RBs, the transmission power, and the transmission frequency falls below the threshold, the influence of the nearby noise is small, so the digital signal processing unit 13 reduces the nearby noise. Do not perform control to increase the supply voltage to the power amplifier. For example, when the BW, the number of RBs, and the transmission power are large, but the transmission frequency that affects the nearby noise is not used in the communication apparatus 1, there is no deterioration of the UTRA ACLR2 characteristics. In addition, the communication device 1 has no problem with respect to the level of the nearby noise. According to the present embodiment, in such a case, it is not necessary to increase the supply voltage to the power amplifier unnecessarily, and thus the communication device 1 can prevent an increase in power consumption.
 なお、本発明は、LTE送信信号のBWやRB数、送信パワー、送信周波数に基づいて供給電圧を制御するが、実施の形態に示した組み合わせに限らない。例えば、本発明は、BW及び送信パワーのみに基づいて供給電圧を制御してもよいし、BW及び送信周波数のみに基づいて供給電圧を制御してもよい。 In the present invention, the supply voltage is controlled based on the number of BWs and RBs of the LTE transmission signal, the transmission power, and the transmission frequency. For example, the present invention may control the supply voltage based only on BW and transmission power, or may control the supply voltage based only on BW and transmission frequency.
 デジタル信号処理部13は、専用のシステムによらず、通常のコンピュータシステムを用いて実現することが可能である。たとえば、デジタル信号処理部13の動作を実行させためのコンピュータプログラムを、コンピュータが読み取り可能な記録媒体(フレキシブルディスク、CD-ROM、DVD-ROM等)に格納して配布し、上記コンピュータプログラムをコンピュータにインストールすることにより、上記動作を実行する通信装置1を構成してもよい。 The digital signal processing unit 13 can be realized by using a normal computer system regardless of a dedicated system. For example, a computer program for executing the operation of the digital signal processing unit 13 is stored and distributed in a computer-readable recording medium (flexible disk, CD-ROM, DVD-ROM, etc.), and the computer program is distributed to the computer. The communication device 1 that performs the above-described operation may be configured by installing the communication device.
 また、上記コンピュータプログラムを、インターネット等の通信ネットワーク上のサーバ装置が有する記憶装置(例えば、ディスク装置)に格納しておき、通常のコンピュータシステムがダウンロード等することによって通信装置1を構成してもよい。 Alternatively, the computer program may be stored in a storage device (for example, a disk device) included in a server device on a communication network such as the Internet, and the communication device 1 may be configured by being downloaded by a normal computer system. Good.
 また、通信装置1の機能を、OS(オペレーティングシステム)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合等には、アプリケーションプログラム部分のみを記録媒体や記憶装置に格納してもよい。 Further, when the functions of the communication device 1 are realized by sharing an OS (operating system) and an application program, or by cooperation between the OS and the application program, only the application program portion is stored in a recording medium or a storage device. May be.
 なお、上記コンピュータプログラムを搬送波に重畳し、通信ネットワークを介して配信することも可能である。 Note that it is also possible to superimpose the computer program on a carrier wave and distribute it via a communication network.
 上記の実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments may be described as in the following supplementary notes, but are not limited thereto.
(付記1)      
 LTE方式で送信する信号を生成するデジタル信号処理部と、
 前記デジタル信号処理部により生成された信号を増幅するパワーアンプを有し、前記パワーアンプにより増幅された信号を送信するRF部と、
 前記パワーアンプに電圧を供給する電源部と、
 を備え、
 前記デジタル信号処理部は、前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧に上げる
 ことを特徴とする通信装置。
(Appendix 1)
A digital signal processing unit for generating a signal to be transmitted in the LTE system;
An RF unit for amplifying the signal generated by the digital signal processing unit, and transmitting the signal amplified by the power amplifier;
A power supply for supplying a voltage to the power amplifier;
With
When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit is higher in voltage supplied by the power supply unit by a predetermined voltage value than a voltage when the bandwidth is less than the predetermined bandwidth A communication device characterized by raising the voltage.
(付記2)
 前記デジタル信号処理部は、
 前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
 前記生成した信号のリソースブロック数が所定の数以上の場合、
 前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧に上げる
 ことを特徴とする付記1に記載の通信装置。
(Appendix 2)
The digital signal processor is
When the bandwidth of the generated signal is greater than or equal to the predetermined bandwidth and the number of resource blocks of the generated signal is greater than or equal to a predetermined number,
The communication apparatus according to appendix 1, wherein the voltage supplied by the power supply unit is increased to a voltage that is higher by a predetermined voltage value than a voltage when the power is less than the predetermined bandwidth.
(付記3)      
 前記デジタル信号処理部は、
 前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
 前記生成した信号を送信する送信パワーが所定の値以上の場合、
 前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧に上げる
 ことを特徴とする付記1または2に記載の通信装置。
(Appendix 3)
The digital signal processor is
When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth, and the transmission power for transmitting the generated signal is equal to or greater than a predetermined value,
The communication apparatus according to appendix 1 or 2, wherein a voltage supplied by the power supply unit is increased to a voltage that is higher by a predetermined voltage value than a voltage that is less than the predetermined bandwidth.
(付記4)      
 前記デジタル信号処理部は、
 前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
 前記生成した信号の送信周波数が所定の上限周波数以上、または前記生成した信号の送信周波数が所定の下限周波数以下である場合、
 前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧に上げる
 ことを特徴とする付記1乃至3のいずれかに記載の通信装置。
(Appendix 4)
The digital signal processor is
When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth, and the transmission frequency of the generated signal is equal to or higher than a predetermined upper limit frequency, or the transmission frequency of the generated signal is equal to or lower than a predetermined lower limit frequency,
The communication apparatus according to any one of appendices 1 to 3, wherein a voltage supplied by the power supply unit is raised to a voltage that is higher by a predetermined voltage value than a voltage when the power is less than the predetermined bandwidth.
(付記5)      
 デジタル信号処理部と、パワーアンプを有するRF部と、電源部と、を備える通信装置が実行する通信方法であって、
 前記デジタル信号処理部が、LTE方式で送信する信号を生成するステップと、
 前記パワーアンプが、前記デジタル信号処理部により生成された信号を増幅するステップと、
 前記RF部が、前記パワーアンプにより増幅された信号を送信するステップと、
 前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップと、
 を備える
 ことを特徴とする通信方法。
(Appendix 5)
A communication method executed by a communication device including a digital signal processing unit, an RF unit having a power amplifier, and a power supply unit,
The digital signal processing unit generating a signal to be transmitted in LTE;
The power amplifier amplifying the signal generated by the digital signal processing unit;
The RF unit transmitting the signal amplified by the power amplifier;
When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit generates a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by a predetermined voltage value from the power supply unit. Supplying to the power amplifier of the unit,
A communication method characterized by comprising:
(付記6)
 前記デジタル信号処理部が前記電源部から前記RF部のパワーアンプに供給させるステップは、
 前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
 前記生成した信号のリソースブロック数が所定の数以上の場合に、
 前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップを含む、
 ことを特徴とする付記5に記載の通信方法。
(Appendix 6)
The step of causing the digital signal processing unit to supply the power amplifier of the RF unit from the power supply unit,
When the bandwidth of the generated signal is greater than or equal to the predetermined bandwidth and the number of resource blocks of the generated signal is greater than or equal to a predetermined number,
The digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
The communication method according to appendix 5, characterized in that:
(付記7)
 前記デジタル信号処理部が前記電源部から前記RF部のパワーアンプに供給させるステップは、
 前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
 前記生成した信号を送信する送信パワーが所定の値以上の場合に、
 前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップを含む、
 ことを特徴とする付記5または6に記載の通信方法。
(Appendix 7)
The step of causing the digital signal processing unit to supply the power amplifier of the RF unit from the power supply unit,
When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth and the transmission power for transmitting the generated signal is equal to or greater than a predetermined value,
The digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
The communication method according to appendix 5 or 6, characterized by the above.
(付記8)
 前記デジタル信号処理部が前記電源部から前記RF部のパワーアンプに供給させるステップは、
 前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
 前記生成した信号の送信周波数が所定の上限周波数以上、または前記生成した信号の送信周波数が所定の下限周波数以下である場合に、
 前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップを含む、
 ことを特徴とする付記5乃至7のいずれかに記載の通信方法。
(Appendix 8)
The step of causing the digital signal processing unit to supply the power amplifier of the RF unit from the power supply unit,
When the bandwidth of the generated signal is greater than or equal to the predetermined bandwidth, and the transmission frequency of the generated signal is greater than or equal to a predetermined upper limit frequency, or the transmission frequency of the generated signal is less than or equal to a predetermined lower limit frequency,
The digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
The communication method according to any one of appendices 5 to 7, characterized in that:
(付記9)
 信号を増幅するパワーアンプを有し、前記パワーアンプにより増幅された信号を送信するRF部と、
 前記パワーアンプに電圧を供給する電源部と、
 を備える通信装置に用いられるコンピュータに、
 LTE方式で送信する信号を生成し、生成された信号を前記パワーアンプに出力するステップと、
 前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップと、
 を実行させるためのプログラムを記録した
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 9)
An RF unit having a power amplifier for amplifying a signal, and transmitting a signal amplified by the power amplifier;
A power supply for supplying a voltage to the power amplifier;
In a computer used for a communication device comprising:
Generating a signal to be transmitted in the LTE system, and outputting the generated signal to the power amplifier;
When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, a voltage that is higher by a predetermined voltage value than a voltage when the generated signal is less than the predetermined bandwidth is supplied from the power supply unit to the power amplifier of the RF unit. Steps,
A computer-readable recording medium in which a program for executing the program is recorded.
 本発明は、2012年3月2日に出願された日本国特許出願2012-46953号に基づく。本明細書中に日本国特許出願2012-46953号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 The present invention is based on Japanese Patent Application No. 2012-46953 filed on March 2, 2012. The specification, claims, and entire drawings of Japanese Patent Application No. 2012-46953 are incorporated herein by reference.
1 通信装置
10 制御部
11 メモリ部
12 RF部
121 アンテナスイッチ
122 デュプレクサ
123 アイソレータ
124 PA
125 RFIC
126 LNA
13 デジタル信号処理部
14 電源部
15 バッテリ部
16 アンテナ
DESCRIPTION OF SYMBOLS 1 Communication apparatus 10 Control part 11 Memory part 12 RF part 121 Antenna switch 122 Duplexer 123 Isolator 124 PA
125 RFIC
126 LNA
13 Digital Signal Processing Unit 14 Power Supply Unit 15 Battery Unit 16 Antenna

Claims (9)

  1.  LTE方式で送信する信号を生成するデジタル信号処理部と、
     前記デジタル信号処理部により生成された信号を増幅するパワーアンプを有し、前記パワーアンプにより増幅された信号を送信するRF部と、
     前記パワーアンプに電圧を供給する電源部と、
     を備え、
     前記デジタル信号処理部は、前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧に上げる
     ことを特徴とする通信装置。
    A digital signal processing unit for generating a signal to be transmitted in the LTE system;
    An RF unit for amplifying the signal generated by the digital signal processing unit, and transmitting the signal amplified by the power amplifier;
    A power supply for supplying a voltage to the power amplifier;
    With
    When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit is higher in voltage supplied by the power supply unit by a predetermined voltage value than a voltage when the bandwidth is less than the predetermined bandwidth A communication device characterized by raising the voltage.
  2.  前記デジタル信号処理部は、
     前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
     前記生成した信号のリソースブロック数が所定の数以上の場合、
     前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧に上げる
     ことを特徴とする請求項1に記載の通信装置。
    The digital signal processor is
    When the bandwidth of the generated signal is greater than or equal to the predetermined bandwidth and the number of resource blocks of the generated signal is greater than or equal to a predetermined number,
    The communication apparatus according to claim 1, wherein a voltage supplied by the power supply unit is increased to a voltage that is higher by a predetermined voltage value than a voltage that is less than the predetermined bandwidth.
  3.  前記デジタル信号処理部は、
     前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
     前記生成した信号を送信する送信パワーが所定の値以上の場合、
     前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧に上げる
     ことを特徴とする請求項1または2に記載の通信装置。
    The digital signal processor is
    When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth, and the transmission power for transmitting the generated signal is equal to or greater than a predetermined value,
    The communication apparatus according to claim 1, wherein a voltage supplied by the power supply unit is increased to a voltage that is higher by a predetermined voltage value than a voltage when the power supply unit is less than the predetermined bandwidth.
  4.  前記デジタル信号処理部は、
     前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
     前記生成した信号の送信周波数が所定の上限周波数以上、または前記生成した信号の送信周波数が所定の下限周波数以下である場合、
     前記電源部が供給する電圧を、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧に上げる
     ことを特徴とする請求項1乃至3のいずれか1項に記載の通信装置。
    The digital signal processor is
    When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth, and the transmission frequency of the generated signal is equal to or higher than a predetermined upper limit frequency, or the transmission frequency of the generated signal is equal to or lower than a predetermined lower limit frequency,
    The communication according to any one of claims 1 to 3, wherein the voltage supplied by the power supply unit is increased to a voltage that is higher by a predetermined voltage value than a voltage when the power is less than the predetermined bandwidth. apparatus.
  5.  デジタル信号処理部と、パワーアンプを有するRF部と、電源部と、を備える通信装置が実行する通信方法であって、
     前記デジタル信号処理部が、LTE方式で送信する信号を生成するステップと、
     前記パワーアンプが、前記デジタル信号処理部により生成された信号を増幅するステップと、
     前記RF部が、前記パワーアンプにより増幅された信号を送信するステップと、
     前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップと、
     を備える
     ことを特徴とする通信方法。
    A communication method executed by a communication device including a digital signal processing unit, an RF unit having a power amplifier, and a power supply unit,
    The digital signal processing unit generating a signal to be transmitted in LTE;
    The power amplifier amplifying the signal generated by the digital signal processing unit;
    The RF unit transmitting the signal amplified by the power amplifier;
    When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, the digital signal processing unit generates a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by a predetermined voltage value from the power supply unit. Supplying to the power amplifier of the unit,
    A communication method characterized by comprising:
  6.  前記デジタル信号処理部が前記電源部から前記RF部のパワーアンプに供給させるステップは、
     前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
     前記生成した信号のリソースブロック数が所定の数以上の場合に、
     前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップを含む、
     ことを特徴とする請求項5に記載の通信方法。
    The step of causing the digital signal processing unit to supply the power amplifier of the RF unit from the power supply unit,
    When the bandwidth of the generated signal is greater than or equal to the predetermined bandwidth and the number of resource blocks of the generated signal is greater than or equal to a predetermined number,
    The digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
    The communication method according to claim 5.
  7.  前記デジタル信号処理部が前記電源部から前記RF部のパワーアンプに供給させるステップは、
     前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
     前記生成した信号を送信する送信パワーが所定の値以上の場合に、
     前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップを含む、
     ことを特徴とする請求項5または6に記載の通信方法。
    The step of causing the digital signal processing unit to supply the power amplifier of the RF unit from the power supply unit,
    When the bandwidth of the generated signal is equal to or greater than the predetermined bandwidth and the transmission power for transmitting the generated signal is equal to or greater than a predetermined value,
    The digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
    The communication method according to claim 5 or 6, characterized by the above.
  8.  前記デジタル信号処理部が前記電源部から前記RF部のパワーアンプに供給させるステップは、
     前記生成した信号の帯域幅が前記所定の帯域幅以上、かつ
     前記生成した信号の送信周波数が所定の上限周波数以上、または前記生成した信号の送信周波数が所定の下限周波数以下である場合に、
     前記デジタル信号処理部が、前記所定の帯域幅未満のときの電圧よりも前記所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップを含む、
     ことを特徴とする請求項5乃至7のいずれか1項に記載の通信方法。
    The step of causing the digital signal processing unit to supply the power amplifier of the RF unit from the power supply unit,
    When the bandwidth of the generated signal is greater than or equal to the predetermined bandwidth, and the transmission frequency of the generated signal is greater than or equal to a predetermined upper limit frequency, or the transmission frequency of the generated signal is less than or equal to a predetermined lower limit frequency,
    The digital signal processing unit includes a step of supplying a voltage higher than the voltage when the bandwidth is less than the predetermined bandwidth by the predetermined voltage value from the power supply unit to the power amplifier of the RF unit,
    The communication method according to any one of claims 5 to 7.
  9.  信号を増幅するパワーアンプを有し、前記パワーアンプにより増幅された信号を送信するRF部と、
     前記パワーアンプに電圧を供給する電源部と、
     を備える通信装置に用いられるコンピュータに、
     LTE方式で送信する信号を生成し、生成された信号を前記パワーアンプに出力するステップと、
     前記生成した信号の帯域幅が所定の帯域幅以上の場合、前記所定の帯域幅未満のときの電圧よりも所定の電圧値だけ高い電圧を、前記電源部から前記RF部のパワーアンプに供給させるステップと、
     を実行させるためのプログラムを記録した
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
    An RF unit having a power amplifier for amplifying a signal, and transmitting a signal amplified by the power amplifier;
    A power supply for supplying a voltage to the power amplifier;
    In a computer used for a communication device comprising:
    Generating a signal to be transmitted in the LTE system, and outputting the generated signal to the power amplifier;
    When the bandwidth of the generated signal is equal to or greater than a predetermined bandwidth, a voltage that is higher by a predetermined voltage value than a voltage when the generated signal is less than the predetermined bandwidth is supplied from the power supply unit to the power amplifier of the RF unit. Steps,
    A computer-readable recording medium in which a program for executing the program is recorded.
PCT/JP2013/050939 2012-03-02 2013-01-18 Communication apparatus, communication method and recording medium WO2013128969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-046953 2012-03-02
JP2012046953 2012-03-02

Publications (1)

Publication Number Publication Date
WO2013128969A1 true WO2013128969A1 (en) 2013-09-06

Family

ID=49082178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050939 WO2013128969A1 (en) 2012-03-02 2013-01-18 Communication apparatus, communication method and recording medium

Country Status (1)

Country Link
WO (1) WO2013128969A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056820A (en) * 2016-09-29 2018-04-05 富士通株式会社 Radio communication device and reception sensitivity control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141590A (en) * 2008-12-11 2010-06-24 Nec Corp Transmitter and transmission method
JP2011071834A (en) * 2009-09-28 2011-04-07 Kyocera Corp Radio communication equipment
JP2011250164A (en) * 2010-05-27 2011-12-08 Sumitomo Electric Ind Ltd Amplifier circuit, and radio communication equipment using this

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141590A (en) * 2008-12-11 2010-06-24 Nec Corp Transmitter and transmission method
JP2011071834A (en) * 2009-09-28 2011-04-07 Kyocera Corp Radio communication equipment
JP2011250164A (en) * 2010-05-27 2011-12-08 Sumitomo Electric Ind Ltd Amplifier circuit, and radio communication equipment using this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056820A (en) * 2016-09-29 2018-04-05 富士通株式会社 Radio communication device and reception sensitivity control method
JP7004376B2 (en) 2016-09-29 2022-01-21 Fcnt株式会社 Wireless communication device and reception sensitivity control method

Similar Documents

Publication Publication Date Title
US8305953B2 (en) Narrowband transmissions using a plurality of antennas
EP3334038A2 (en) Discrete levels envelope tracking
EP2727248B1 (en) Method and apparatus for reducing transmitter interference
US20200186307A1 (en) Transmission In A Guard Band Of A RAT
WO2012035438A2 (en) Pa bias optimization for modulation schemes with variable bandwidth
US9431967B2 (en) Dynamic amplifier supply
US20160227549A1 (en) Radio device that has function to reduce peak power of multiplexed signal
US8565342B2 (en) Power amplification apparatus, OFDM modulation apparatus, wireless transmission apparatus, and distortion reduction method for power amplification apparatus
US8179989B2 (en) Transmission apparatus and transmission method
WO2013128969A1 (en) Communication apparatus, communication method and recording medium
WO2014112380A1 (en) Radio terminal apparatus, base station apparatus, and radio communication control method
EP2485447A1 (en) Method to clip a digital signal
US9661632B2 (en) Wireless transmission device, power control method and program
CN110971553A (en) Method performed by user equipment and user equipment
US9755877B2 (en) Peak suppression device and peak suppression method
US20100208638A1 (en) Wireless communication apparatus and transmission control method thereof
JP6442795B2 (en) Wireless communication circuit and wireless communication device
JP2011124840A (en) Radio communication equipment
JP5320026B2 (en) Transmitting apparatus and signal transmitting method
WO2014141335A1 (en) Communication apparatus and peak suppression method thereof
JP4700028B2 (en) Communication device
KR20110001464A (en) Method and apparatus for signal processing for combining multi signals
JP2018019246A (en) Peak suppression circuit and peak suppression method
US20160226693A1 (en) Method and apparatus for application of distortion shaping when using peak-to-average ratio reduction
JP2012094935A (en) Transmitter and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP