WO2013128898A1 - Compressor control device for cooler - Google Patents

Compressor control device for cooler Download PDF

Info

Publication number
WO2013128898A1
WO2013128898A1 PCT/JP2013/001129 JP2013001129W WO2013128898A1 WO 2013128898 A1 WO2013128898 A1 WO 2013128898A1 JP 2013001129 W JP2013001129 W JP 2013001129W WO 2013128898 A1 WO2013128898 A1 WO 2013128898A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
period
control device
temperature
operation cycle
Prior art date
Application number
PCT/JP2013/001129
Other languages
French (fr)
Japanese (ja)
Inventor
菅原 晃
Original Assignee
ダイヤモンド電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイヤモンド電機株式会社 filed Critical ダイヤモンド電機株式会社
Publication of WO2013128898A1 publication Critical patent/WO2013128898A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Definitions

  • the present invention relates to steady operation control of a cooling device, and is particularly suitable for use in a compressor control device for a cooler that employs an inverter control system.
  • inverter technology has been introduced to control the motor of a compressor as an effort to reduce power consumption.
  • the heat pump device can be driven at an optimal rotation speed according to the temperature condition of the cooling target.
  • control with high energy consumption efficiency is required, so the rotation speed of the compressor motor is set to a relatively low rotation (for example, 50 Hz, 4-pole motor) In the case of a compressor, 1500 rpm).
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-171140 (Patent Document 1) describes control during steady operation. As shown in FIG. 6A, the control in the steady operation sets the rotation speed of the compressor motor to 39 Hz. When the upper limit value T1 is reached, the compressor motor is operated at the set rotation speed, and when the lower limit value T2 is reached. Stop the compressor motor. As described above, the control in the steady operation is performed by appropriately repeating the operation / stop of the compressor motor so that the temperature to be controlled (in the case of the refrigeration apparatus, the internal temperature) ranges from the upper limit value T1 to the lower limit value T2. Thus, the hysteresis is changed to converge the control target temperature to the target temperature T0.
  • one cycle formed by hysteresis fluctuation is called an operation cycle Dt
  • a period during which the compressor motor is stopped is called a stop period Dx
  • a period during which the compressor motor is operated is called an operation period Dy. (See FIG. 6A).
  • the cooling device it is advantageous to lower the set rotation speed and set the operation period Dy longer from the viewpoint of power consumption, but the operation period Dy is set shorter from the viewpoint of preventing condensation from freezing (defrost effect).
  • the operation period Dy is set shorter from the viewpoint of preventing condensation from freezing (defrost effect).
  • the temperature to be controlled is substantially equal between the stop period Dx and the operation period Dy for the operation cycle Dt in order to achieve both technical circumstances. It is.
  • the ideal operation cycle Dt described above is formed only in a scene where the cooling capacity determined by the set rotational speed and the heat load to be cooled are balanced.
  • the rotation speed of the compressor motor is set appropriately, but the total heat load including the new heat load is set to the set rotation.
  • the equilibrium state between the period Dx and the period Dy in the operation cycle Dt is lost.
  • the thermal load to be controlled is changed during the balance between the thermal load and the set rotational speed. It shows the situation where the balance begins to collapse.
  • the temperature waveform Wr indicates the transition of temperature (solid line portion), and in this waveform, the part corresponding to the stop period Dx is called the waveform Wx, and the part corresponding to the operation period Dy is called the waveform Wy. .
  • the dotted line part in each figure is a temporary waveform when balance is continuing.
  • FIG. 7A is shown for convenience and is the same as the state shown in FIG.
  • (B) of FIG. 6 is an operation cycle when a predetermined heat load is removed at time t2.
  • the temperature waveform Wr increases the gradient of the waveform Wy, and decreases the ratio of the operation period Dy to the operation cycle Dt.
  • a scene where the slope of the waveform Wy is remarkably large means that the motor rotational speed is excessively set with respect to the heat load. In such a situation, the set rotational speed should be reduced to reduce power consumption. Moreover, there is a risk of overshooting at the lower limit T2.
  • FIG. 6 shows an operation cycle when a predetermined heat load is added at time t2.
  • the temperature waveform Wr has a smaller gradient of the waveform Wy, and the ratio of the operation period Dy to the operation cycle Dt increases.
  • a scene where the slope of the waveform Wy is remarkably small means that the rotation speed of the compressor motor is insufficient with respect to the heat load. In such a situation, unless the set rotational speed is increased and the operation period Dy is not shortened, the cooling operation cannot be converged, so that a reduction in power consumption cannot be expected.
  • FIG. 7 shows an operation cycle when a predetermined heat load is added at time t0.
  • the slope of the waveform Wy becomes small, it is necessary to increase the set rotational speed and avoid redundant operation of the compressor, as in the case of FIG.
  • the operation stop period Dx is shortened, and the ratio of the stop period Dx to the operation cycle Dt is reduced.
  • the operation period Dy is also required to be shortened.
  • (C) of FIG. 7 shows an operation cycle when a predetermined heat load is removed at time t0.
  • control for setting the set rotational speed lower than the present is required in order to balance the waveforms Wx and Wy.
  • An object of the present invention is to provide a compressor control device for a cooler that can continuously balance both periods of a stop operation and a driving operation that are repeatedly performed.
  • the present invention has the following configuration of a compressor control device for a cooler. That is, in the compressor control device for a cooler that generates an output signal that defines the rotation speed and start / stop operation of the compressor motor and controls the operation cycle of the internal temperature accompanying the hysteresis fluctuation, the first operation cycle is calculated. Based on a period calculation process, a second period calculation process for calculating a temperature decrease period in the operation cycle, a ratio calculation process for calculating a ratio of the temperature decrease period to the operation cycle, and a calculated value of the ratio A signal shaping process for shaping the output signal is executed.
  • the compressor control device for a cooler may be configured as follows. That is, in the compressor control device for a cooler that generates an output signal that defines the rotation speed of the compressor motor and the start / stop operation and controls the operation cycle of the internal temperature accompanying the hysteresis fluctuation, the temperature increase period of the operation cycle is determined. A first period calculation process to calculate; a second period calculation process to calculate a temperature decrease period in the operation cycle; a ratio calculation process to calculate a ratio of the temperature decrease period to the temperature increase period; and the ratio And signal shaping processing for shaping the output signal based on the calculated value.
  • the ratio is calculated from a preset reference ratio.
  • the ratio is calculated from a preset reference ratio.
  • the reference ratio is set to a ratio at which a temperature decrease period and a temperature increase period constituting the operation cycle substantially coincide with each other when a change in heat load does not occur.
  • a process of specifying command rotational speed information corresponding to the calculation result of the ratio and a process of shaping the output signal based on the command rotational speed information are executed. good.
  • the compressor control device for a chiller by using the operation ratio as a calculation parameter for the set rotation speed, the control for appropriately distributing the stop period and the operation period is realized. For this reason, oversetting or undersetting of the set rotation speed is avoided, and an increase in power consumption in steady operation can be suppressed by maintaining an equilibrium state in the operation cycle.
  • the compressor control device for the cooler avoids a decrease in the defrost effect during the stop period due to the balance action between the stop period and the operation period, and also suppresses overshoot near the lower limit temperature in the hysteresis control. Is possible.
  • FIG. 1 is a diagram illustrating a functional configuration of a general cooling device.
  • FIG. 2 is a diagram illustrating a change in the operation cycle according to the embodiment.
  • FIG. 3 is a diagram showing map information for specifying the command rotational speed information.
  • FIG. 4 is a diagram illustrating an example of a ratio calculation method.
  • FIG. 5 is a diagram illustrating another example of the ratio calculation method.
  • FIG. 6 is a diagram (No. 1) showing an operation cycle when the heat load is changed.
  • FIG. 7 is a diagram (No. 2) showing an operation cycle when the heat load is changed.
  • FIG. 1 shows a catalyst circuit (refrigeration circuit) of a general cooling device.
  • the cooling device means a refrigeration apparatus / refrigeration apparatus having a storage, and may be configured by only one of the refrigeration apparatus and the refrigeration apparatus, and includes both of these devices. There may be.
  • the cooling device having such a meaning is referred to as a refrigeration device and will be described below.
  • the catalyst circuit formed in the refrigeration apparatus 10 is provided with a compressor 11 for a cooler, a condenser 13, a capillary tube 15, and an evaporator 16, and each is connected in a loop by a refrigerant tube 18. .
  • a refrigerant is sealed in the tube, and this refrigerant circulates in the refrigerant circuit in response to the compressor 11 for the cooler.
  • the refrigeration apparatus 10 is appropriately provided with a drive circuit 12 and blower fans 14 and 17. These are electrically connected to the compressor control device 19 for the chiller and controlled by a signal given from the compressor control device 19 for the chiller.
  • the compressor control device 19 for the cooler is simply referred to as a control device 19.
  • the drive circuit 12 is an inverter circuit composed of a plurality of power transistors, and is controlled by a PWM signal.
  • the inverter circuit generates a three-phase alternating current according to the frequency of the PWM signal and controls the rotation speed of a compressor motor (not shown) built in the compressor for the cooler.
  • This PWM signal is one form of the output signal in the claims, and defines each operation of the compressor motor. More specifically, in the PWM signal, a pulse portion that is pulse width modulated to express a sine waveform defines the operation of the motor. Further, a pulse portion in which DUTY is a constant value defines the stop operation of the motor. Further, the frequency represented by the pulse modulation defines the command rotational speed of the motor.
  • the compressor motor is controlled by the PWM signal described above, and drives, stops, and adjusts the rotational speed of the compressor impeller for the cooler.
  • the impeller that has started driving feeds refrigerant from the input side (low pressure) to the output side (high pressure), and acts on the refrigerant circuit in which the refrigerant is sealed. That is, this impeller increases or decreases the refrigerant circulation amount [qmr] according to the rotational speed of the control motor.
  • the blower fan 14 reduces the temperature of the refrigerant that has been increased in pressure and temperature by the compressor 11 for the cooler.
  • the blower fan 17 plays a role of promoting heat exchange between the amount of heat in the cabinet and the amount of heat of the refrigerant.
  • These blower fans 14 and 17 incorporate a drive circuit and a fan motor, and the rotational speed of the fan motor is controlled by a command signal from the control device 19.
  • the refrigerator 10 is provided with a thermometer 20 in its storage room.
  • the in-compartment thermometer 20 measures the temperature in the storage, converts the measurement result into an electrical signal, and outputs it.
  • the control device 19 is connected to the internal thermometer 20 through a signal line, and the measurement result of the internal temperature is input as an electrical signal.
  • the state of the heat load is determined based on the information on the internal temperature.
  • the heat load is not limited to the amount of heat of the stored item in the store, but includes a concept including the amount of heat leak from the store.
  • “thermal load” in the claims is not limited to this definition.
  • the control device 19 controls the compressor motor by generating the aforementioned PWM signal and outputting it to the drive circuit 12. Moreover, the control apparatus 19 which concerns on this Embodiment produces
  • the control device 19 includes a hardware resource such as a CPU, a memory circuit, an AD conversion circuit, and a clock circuit, and a software resource such as a control program and map information stored in the memory circuit. The control device 19 cooperates with these hardware resources and software resources to construct a functional device by information processing that is performed.
  • the control device 19 switches between the process of setting the upper limit value T1 and the lower limit value T2 near the target temperature T0, the process of setting / changing the rotation speed of the compressor motor in the operation operation, and the operation operation and stop operation of the compressor motor.
  • the function of controlling the internal temperature (changing the hysteresis) within the range of the upper limit value T1 to the lower limit value T2 and the like are appropriately constructed. The functions constructed by the control device 19 will be described in detail later.
  • the refrigerant circulating through the refrigerant circuit is charged into the compressor 11 for the cooler in a gas phase state, is heated to high pressure and high temperature when passing through the compressor 11 for cooler, and passes through the condenser 13. This is cooled to a liquid phase state. Thereafter, the refrigerant in the liquid phase is decompressed by the capillary tube 15, and the evaporator 16 absorbs (cools) the internal temperature by vaporizing the refrigerant. Such refrigerant is re-introduced into the compressor 11 for the cooler in a gas phase state, and the cooling cycle is repeated.
  • the cooling rate in the warehouse is adjusted according to the refrigerant circulation amount [qmr]. That is, the cooling rate in the cabinet is controlled by the rotation speed of the control motor for the compressor, in other words, it is controlled by the PWM signal generated by the control device 19.
  • a portion corresponding to the stop period Dx is referred to as a waveform Wx
  • a portion corresponding to the operation period Dy is referred to as a waveform Wy.
  • Wx1, Wx2, etc. are also written as Wx1, Wx2, etc. according to the cycle of the operation cycle.
  • the waveform Wx and the waveform Wy correspond to the operation cycle Dt.
  • the waveforms Wy1, Wy2a, and Wy2b are shown by dotted lines.
  • the waveform Wy1 is an ideal control waveform for the waveform Wx1, and the operation period corresponding to the waveform Wy1 coincides with Dx1.
  • the waveform Wy2a is a waveform corresponding to the case where the present invention is not applied and the rotation speed is not changed even if the thermal load fluctuates.
  • Dt2a (time t0 to t4 ') indicates an operation cycle in the case of tracing the waveform Wy2a.
  • the waveform Wy2b is an ideal waveform for the stop period Dx2, and the operation period corresponding to the waveform Wy2b matches Dx2.
  • Dt2b (time t0 to t4 ′′) indicates an operation cycle that follows the waveform Wy2a.
  • FIG. 2 shows the transition of the internal temperature when a heat load is added at time te. As shown in the figure, since the heat load increased at time te, the waveform gradient during the operation period Dy1 becomes slow, and the waveform during the subsequent stop period Dx2 becomes steep.
  • the operation cycle Dt1 is calculated (first period calculation process).
  • an operation period Dy1 temperature decrease period
  • the operation interval Dy is obtained by integrating the sample intervals based on the number of samples in between. Can be calculated.
  • the operation cycle Dt can be calculated by performing integration processing from the arrival time of the lower limit value T2 to the next lower limit value arrival time as described above.
  • the control device 19 sets the waveform of the PWM signal based on the calculated value of the operation ratio Rt, and outputs the PWM signal to the drive circuit 12 (signal shaping process).
  • the control device 19 stores a program defining the above-described processes in the memory circuit, activates these processes as necessary, and sets a new parameter called the operation ratio Rt as the rotational speed of the compressor motor. Set based on.
  • the control device 19 implements control for appropriately allocating the stop period Dx and the operation period Dy by using the operation ratio Rt as a calculation parameter for the set rotational speed.
  • a preset reference ratio Rs is read into the CPU data register, and the reference ratio Rs and the operation ratio Rt are compared. If the value of the operation ratio Rt is larger than the reference ratio Rs, the setting is performed. A PWM signal for increasing the rotational speed is formed. That is, when the operation ratio Rt is larger than the reference value, the control device 19 sets the frequency expressed in the PWM signal high and increases the rotation speed of the compressor motor.
  • the reference ratio Rs is assumed to be 50%.
  • the signal shaping process sets the PWM signal to increase the set rotational speed on the assumption that the value of the operation ratio Rt is larger than the reference ratio Rs.
  • the method of determining the set rotational speed may be increased every tens of Hz, or the rotational speed may be specified based on the map information.
  • the signal shaping process outputs the set PWM signal, so that the set rotation speed of the compressor motor is increased.
  • the temperature waveform Wr in the operation cycle Dt2 is made closer to the waveform Wy2b than the waveform Wy2a, so that the bias in the distribution between the stop period Dx2 and the operation period Dy2 is suppressed.
  • control device 19 suppresses the increase in the operation rate Rt by increasing the set rotation speed, and sufficiently exhibits the defrost effect, if the operation period is made redundant unless the set rotation speed is increased. It becomes possible to make it. In addition, since the redundancy of the operation period Dy2 is avoided, it also contributes to a reduction in power consumption.
  • a PWM signal for reducing the set rotational speed is formed. That is, when the operation ratio Rt is smaller than the reference value, the control device 19 sets the frequency expressed in the PWM signal to be low, and reduces the rotation speed of the compressor motor.
  • the reference ratio Rs is 50% as described above.
  • (B) in FIG. 2 shows the internal temperature when the heat load is removed at time te.
  • the operation ratio Rt in the operation cycle Dt1 is less than 50%.
  • the signal shaping process sets the PWM signal that reduces the set rotational speed on the assumption that the value of the operation ratio Rt is smaller than the reference ratio Rs.
  • the signal shaping process outputs the set PWM signal, so that the set rotation speed of the compressor motor is reduced.
  • the temperature waveform Wr in the operation cycle Dt2 is closer to the waveform Wy2b than the waveform Wy2a, so that the operation period Dy2 is not extremely shortened compared to the stop period Dx2.
  • control device 19 works to make the gradient of the temperature waveform Wr slow by controlling the decrease in the set rotational speed, where the temperature waveform Wr has been sharply decreased unless the set rotational speed is increased. Therefore, the overshoot at the lower limit temperature T2 can be suppressed. In addition, excessive setting of the motor speed can be avoided, which contributes to a reduction in power consumption.
  • the control device 19 adjusts the operation cycle Dt by controlling the operation period Dy, and as a result, appropriately controls the operation ratio Rt. Then, the control operation is continuously performed for each of the operation cycles Dt1, Dt2, Dt3,... To balance the stop period Dx and the operation period Dy within a certain range and maintain this balanced state. It becomes possible.
  • the reference ratio Rs is set to 50%, but is not limited to this.
  • the purpose of this reference ratio Rs is to distribute the stop period Dx and the operation period Dy evenly. If the reference ratio Rs is set within a range of about 30% to 70%, the effect of the present control device 19 is exhibited. It is thought.
  • the reference ratio Rs is preferably such that when the thermal load does not vary, the stop period Dx and the operation period Dy are substantially matched to balance both periods. As a result, conflicting events such as power consumption, defrost effect, and overshoot phenomenon can be solved together.
  • the reference ratio Rs may be changed according to conditions. For example, under the condition where the operation cycle Dt is short, it is possible to perform control such as ensuring the defrost effect by setting the reference ratio Rt low.
  • the control device 19 since the stop period Dx and the operation period Dy are balanced within a certain range, it is possible to avoid oversetting or undersetting of the set rotational speed. . Thereby, in the said control apparatus 19, the increase in power consumption can be suppressed, the defrost effect in a stop period can be maintained, and the overshoot near the lower limit value can be suppressed.
  • the operation ratio Rt is calculated by Equation 1, but the present invention is not limited to this.
  • the stop period Dx temperature increase period
  • the operation period Dy for the stop period Dx may be calculated (see Formula 2).
  • Rt (Dy / Dx) * 100 Formula 2
  • FIG. 3 shows an example of a method for setting the motor rotation speed.
  • the set rotational speed is determined based on the map information.
  • map information is created based on the results of experiments performed in advance.
  • FIGS. 3 (a) to 3 (c) are experiments in which the heat load is appropriately changed in order to collect the experimental data.
  • Fig. 3 (a) shows an experimental scene with a low heat load.
  • exDt points out the driving
  • FIG. 3 shows an experimental scene when the heat load is increased somewhat.
  • the operation period Dy was longer than the ideal state, and the operation ratio Rt was calculated to be 58%.
  • the set rotational speed ⁇ c should be set to 1500 rpm (dotted line portion) in order to set the operation ratio Rt to 50%.
  • FIG. 3 shows an experimental scene when the heat load is further increased.
  • the operation period Dy was further increased, and the operation ratio Rt was calculated to be 63%.
  • the set rotational speed ⁇ c should be set to 1800 rpm (dotted line portion) in order to set the operation ratio Rt to 50%.
  • the heat load was sequentially increased, and the sampling of the experiment data was continued for the operation ratio Rt and the set rotational speed ⁇ c as in the above-described experiment.
  • map information is created in the memory circuit so that the set rotational speed ⁇ c can be specified in accordance with the calculation result of the operation ratio Rt ((d) in FIG. 3).
  • the set rotational speed is set to 1200 rpm by referring to this map information, and thereby, in the next operation cycle Dt. It becomes possible to control the operation ratio Rt to around 50%.
  • ⁇ c in the map information is information for instructing a specific rotation speed, and will be referred to as command rotation speed information.
  • the operation ratio Rt is defined within a predetermined range.
  • the range of the operation ratio may be set based on experimental results.
  • each of the operation ratios Rt indicating the boundary corresponds to a reference ratio in the claims.
  • the command rotational speed information ⁇ c is identified using the map information, and the output signal is shaped based on the command rotational speed information ⁇ c. For this reason, in the control device 19, since the most suitable rotation speed that brings the operation ratio close to 50% is selected as the set rotation speed, the waveform of the operation cycle Dt is instantaneously controlled to the ideal state.
  • the operation ratio Rt when the operation ratio Rt is calculated, the operation ratio Rt is calculated from parameters corresponding to one operation cycle Dt.
  • the calculation process of the operation ratio Rt is not limited to this form.
  • hysteresis control of the internal temperature proceeds as follows: first operation cycle D1 ⁇ second operation cycle D2 ⁇ third operation cycle D3 ⁇ D4 ⁇ D5 ⁇ . Then, in response to the end of the first operation cycle Dt1, the control device 19 calculates the operation ratio Rt1 (ratio calculation processing) and stores the calculation result in the memory circuit. Similarly, the calculation result of the operation ratio Rt2 is stored in the memory circuit according to the end of the second operation cycle Dt2, and the calculation result of the operation ratio Rt is also stored for the subsequent cycles according to the end of the operation cycle Dt. Are sequentially stored in the memory circuit.
  • the control device 19 reads the data for the past two cycles into the data register of the CPU, and uses Rt1, Rt2, and Rt3 to calculate the average value Rtav for the operation ratio Rt. Let it be calculated. Then, the processing is continued with the average value Rtav related to the operation ratio Rt as the operation ratio Dt3 with respect to the operation cycle Dt3. In this process, as the operation cycle progresses, it is possible to sequentially calculate the operation ratio Rt at the subsequent stage by sequentially shifting the data for calculating the average value Rtav. By adopting such a statistical calculation method for the operation ratio Rt3, the influence of accidental noise is mitigated, and the reliability of the acquired data is improved. In addition, the statistical calculation method is not limited to the average value, and an intermediate value, a weighted average, or the like may be employed.
  • the mean value calculation method of FIG. 4 only one sample data regarding the operation ratio can be acquired without waiting for the end of one operation cycle Dt. For example, three sample data for calculating the operation ratio Rt cannot be acquired unless the operation cycle Dt for three cycles is waited.
  • the average value calculation method (statistical value calculation method) shown in FIG. 5 shows a method for effectively acquiring a large number of sample data for calculating the operation ratio Rt.
  • three sample data of Rt1, Rtm, and Rt2 can be acquired by the first operation cycle Dt1 and the second operation cycle Dt2 that appears immediately after the first operation cycle Dt1.
  • the number of operation cycles Dt is n
  • the number of sample data that can be acquired is 2n + 1, and it is possible to efficiently acquire the sample data of the operation ratio.
  • the sample data (Rt1, Rtm) is used when calculating the operation ratio Rt2, and a statistical calculation method such as an arithmetic average or a weighted average is applied to perform a correction operation related to the operation ratio Rt2.
  • the first operation cycle is the first operation cycle Dt1
  • the most recent operation cycle is the second operation cycle Dt2. It is said. Then, another operation cycle Dtk appears between the first operation cycle Dt1 and the second operation cycle Dt2.
  • a waveform corresponding to the operation period Dy1 (first waveform) and a waveform of the stop period corresponding to the subsequent operation cycle Dtk are combined, and this is used as the intermediate operation cycle Dtm1.
  • the operation ratio Rtm1 corresponding to the cycle Dtm1 is calculated.
  • the waveform of the operation period corresponding to the operation cycle Dtk and the waveform (second waveform) corresponding to the stop period Dx2 are combined, and this is defined as the intermediate operation cycle Dtm2 in the cycle Dtm2.
  • the corresponding operation ratio Rtm2 is calculated.
  • the operation ratio Rt2 for the operation cycle Dt2 is corrected using the operation ratio (Rt1, Rtm1,..., Rtm2), and the subsequent signal shaping process is executed.
  • the result value calculated by the statistical calculation method is used as the operation ratio, and this is reflected in the setting speed selection process.
  • the statistical calculation may be stopped and the sampled data may be processed as the operation ratio value.
  • the control device 19 can quickly set the rotation speed of the compressor motor to high rotation so that the amount of heat is instantaneously reduced even when a high heat load is input into the warehouse. Become.
  • control device 19 may gradually increase the target temperature of the internal temperature within a certain range to reduce the power consumption. At this time, the difference between the upper limit temperature and the lower limit temperature may be gradually decreased, and the upper limit temperature may be controlled to be fixed to a constant value.
  • the present invention is useful for steady operation control of a cooling device, and is particularly useful for a compressor control device for a cooler that employs an inverter control system.
  • Cooling device 11 Cooling device compressor, 19 Cooling device compressor control device, Dt operation cycle, Dx 1st period, Dy 2nd period, Rt ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A control device (19) is a device for switching between an operating action and a stopping action of a compressor motor to implement hysteresis control of an internal temperature within a range from an upper limit (T1) to a lower limit (T2), and the control device (19) executes a first time period calculation process for calculating an operation cycle (Dt1) at a time (t0), a second time period calculation process for calculating a temperature reduction time period, a ratio calculation process for calculating an operation percentage (Ry) of an operation time period (Dy) relative to an operation cycle (Dt), and a signal formation process for forming a PWM signal on the basis of the calculated value of the operation percentage (Ry).

Description

冷却機用コンプレッサ制御装置Compressor control device for cooling machine
 本発明は、冷却装置の定常運転制御に関し、特に、インバータ制御方式を採用した冷却機用コンプレッサ制御装置に用いて好適のものである。 The present invention relates to steady operation control of a cooling device, and is particularly suitable for use in a compressor control device for a cooler that employs an inverter control system.
 近年、ヒートポンプを用いた冷却技術では、消費電力の低減に関する取組として、コンプレッサのモータ制御にインバータ技術が導入されている。インバータ制御方式では、モータ回転数を適宜に制御できるので、冷却対象の温度状況に応じて最適な回転数でヒートポンプ装置を駆動させることが可能となる。 In recent years, in cooling technology using a heat pump, inverter technology has been introduced to control the motor of a compressor as an effort to reduce power consumption. In the inverter control method, since the motor rotation speed can be controlled appropriately, the heat pump device can be driven at an optimal rotation speed according to the temperature condition of the cooling target.
 特に、冷却装置で行われる定常運転では、エネルギー消費効率(COP値)の高い制御が要求される為、コンプレッサモータの回転数が比較的低回転に設定される(例えば、50Hz,4極モータのコンプレッサの場合、1500rpm)。 In particular, in steady operation performed by the cooling device, control with high energy consumption efficiency (COP value) is required, so the rotation speed of the compressor motor is set to a relatively low rotation (for example, 50 Hz, 4-pole motor) In the case of a compressor, 1500 rpm).
 例えば、特開2000-171140号公報(特許文献1)では、定常運転時における制御が説明されている。定常運転での制御は、図6の(a)に示す如く、コンプレッサモータの回転数を39Hzに設定し、上限値T1に達するとコンプレッサモータを設定回転数で運転させ、下限値T2に達するとコンプレッサモータを停止させる。このように、定常運転での制御は、コンプレッサモータの運転・停止を適宜に繰返すことで、制御対象温度(冷凍装置の場合、庫内温度を指す。)を上限値T1~下限値T2の範囲でヒステリシス変動させ、当該制御対象温度を目標温度T0へ収斂させている。 For example, Japanese Patent Laid-Open No. 2000-171140 (Patent Document 1) describes control during steady operation. As shown in FIG. 6A, the control in the steady operation sets the rotation speed of the compressor motor to 39 Hz. When the upper limit value T1 is reached, the compressor motor is operated at the set rotation speed, and when the lower limit value T2 is reached. Stop the compressor motor. As described above, the control in the steady operation is performed by appropriately repeating the operation / stop of the compressor motor so that the temperature to be controlled (in the case of the refrigeration apparatus, the internal temperature) ranges from the upper limit value T1 to the lower limit value T2. Thus, the hysteresis is changed to converge the control target temperature to the target temperature T0.
 尚、制御対象温度について、ヒステリシス変動によって形成される1周期を運転サイクルDtと呼び、コンプレッサモータを停止させている期間を停止期間Dx,コンプレッサモータを運転させている期間を運転期間Dyと呼ぶこととする(図6の(a)参照)。 Regarding the temperature to be controlled, one cycle formed by hysteresis fluctuation is called an operation cycle Dt, a period during which the compressor motor is stopped is called a stop period Dx, and a period during which the compressor motor is operated is called an operation period Dy. (See FIG. 6A).
 冷却装置では、電力消費の視点によれば設定回転数を下げ運転期間Dyを長く設定した方が有利な反面、エバポレータの結露凍結防止(デフロスト効果)の視点によれば運転期間Dyを短く設定すべき要求がある。このため、図6の(a)に示す如く、制御対象温度は、双方の技術的事情を両立させる為、運転サイクルDtについて停止期間Dxと運転期間Dyとが略一致しているのが理想的である。 In the cooling device, it is advantageous to lower the set rotation speed and set the operation period Dy longer from the viewpoint of power consumption, but the operation period Dy is set shorter from the viewpoint of preventing condensation from freezing (defrost effect). There is a demand to be. Therefore, as shown in FIG. 6 (a), it is ideal that the temperature to be controlled is substantially equal between the stop period Dx and the operation period Dy for the operation cycle Dt in order to achieve both technical circumstances. It is.
特開2000-171140号公報JP 2000-171140 A
 しかし、従来技術によれば、設定回転数によって定まる冷却能力と冷却対象の熱負荷がバランスした場面に限り、上述した理想的な運転サイクルDtが形成されるに過ぎない。従来技術にあっては、このバランスされた状態に新たな熱負荷が加えられると、適宜にコンプレッサモータの回転数が設定されることとなるが、新たな熱負荷を含む全熱負荷が設定回転数にバランスしない限り、運転サイクルDtにおける期間Dxと期間Dyとの平衡状態が崩れることとなる。 However, according to the prior art, the ideal operation cycle Dt described above is formed only in a scene where the cooling capacity determined by the set rotational speed and the heat load to be cooled are balanced. In the prior art, when a new heat load is applied to this balanced state, the rotation speed of the compressor motor is set appropriately, but the total heat load including the new heat load is set to the set rotation. Unless balanced in number, the equilibrium state between the period Dx and the period Dy in the operation cycle Dt is lost.
 以下説明する図6の(b),図6の(c),図7の(b),図7の(c)は、熱負荷と設定回転数とのバランス中に制御対象の熱負荷を変更させ、其のバランスが崩れ始める局面を示している。尚、温度波形Wrは、温度の推移を示すものであり(実線部)、この波形のうち、停止期間Dxに対応する部位を波形Wxと呼び,運転期間Dyに対応する部位を波形Wyと呼ぶ。また、各図中の点線部は、バランスが継続していた場合の仮の波形である。また、図7の(a)は、便宜的に図示されたもので、図6の(a)で示される状態と同じである。 6 (b), 6 (c), 7 (b), and 7 (c) described below, the thermal load to be controlled is changed during the balance between the thermal load and the set rotational speed. It shows the situation where the balance begins to collapse. The temperature waveform Wr indicates the transition of temperature (solid line portion), and in this waveform, the part corresponding to the stop period Dx is called the waveform Wx, and the part corresponding to the operation period Dy is called the waveform Wy. . Moreover, the dotted line part in each figure is a temporary waveform when balance is continuing. Further, FIG. 7A is shown for convenience and is the same as the state shown in FIG.
 図6の(b)は、時刻t2で所定の熱負荷を取去った場合の運転サイクルである。この場合、温度波形Wrは、波形Wyの勾配が大きくなり、運転サイクルDtに対する運転期間Dyの割合を少なくさせる。波形Wyの勾配が著しく大きい場面は、熱負荷に対してモータ回転数が過剰設定されている状態を意味する。このような場面では、設定回転数を低下させ、消費電力を抑制させるべきである。また、下限値T2でのオーバーシュートを招く惧れがある。 (B) of FIG. 6 is an operation cycle when a predetermined heat load is removed at time t2. In this case, the temperature waveform Wr increases the gradient of the waveform Wy, and decreases the ratio of the operation period Dy to the operation cycle Dt. A scene where the slope of the waveform Wy is remarkably large means that the motor rotational speed is excessively set with respect to the heat load. In such a situation, the set rotational speed should be reduced to reduce power consumption. Moreover, there is a risk of overshooting at the lower limit T2.
 また、図6の(c)は、時刻t2で所定の熱負荷を追加した場合の運転サイクルである。この場合、温度波形Wrは、波形Wyの勾配が小さくなり、運転サイクルDtに対する運転期間Dyの割合が増加する。波形Wyの勾配が著しく小さい場面は、熱負荷に対してコンプレッサモータの回転数が不十分である状態を意味する。このような場面では、設定回転数を上昇させ運転期間Dyを短縮させなければ、冷却動作を収斂できないので、消費電力の低下を見込めない。 (C) of FIG. 6 shows an operation cycle when a predetermined heat load is added at time t2. In this case, the temperature waveform Wr has a smaller gradient of the waveform Wy, and the ratio of the operation period Dy to the operation cycle Dt increases. A scene where the slope of the waveform Wy is remarkably small means that the rotation speed of the compressor motor is insufficient with respect to the heat load. In such a situation, unless the set rotational speed is increased and the operation period Dy is not shortened, the cooling operation cannot be converged, so that a reduction in power consumption cannot be expected.
 また、図7の(b)は、時刻t0で所定の熱負荷を追加した場合の運転サイクルである。この場合、波形Wyの勾配が小さくなるところ、図6の(c)での場面と同様に、設定回転数を上昇させコンプレッサの冗長運転を回避させなければならない。加えて、図7の(b)の場合、波形Wxの勾配が大きくなる為、運転停止期間Dxが短くなり、運転サイクルDtに対する停止期間Dxの割合を少なくさせる。かかる場面では、停止期間Dxでのデフロスト効果が減退するので、やはり、運転期間Dyの短縮が求められる。 Further, (b) of FIG. 7 shows an operation cycle when a predetermined heat load is added at time t0. In this case, when the slope of the waveform Wy becomes small, it is necessary to increase the set rotational speed and avoid redundant operation of the compressor, as in the case of FIG. In addition, in the case of FIG. 7B, since the slope of the waveform Wx is increased, the operation stop period Dx is shortened, and the ratio of the stop period Dx to the operation cycle Dt is reduced. In such a scene, since the defrost effect in the stop period Dx is reduced, the operation period Dy is also required to be shortened.
 また、図7の(c)は、時刻t0で所定の熱負荷を取去った場合の運転サイクルである。この場合、波形Wxの勾配が小さくなること、波形Wyの勾配が大きくなることから、波形Wx及びWyをバランスさせるため、設定回転数を今より低く設定させる制御が要求される。 (C) of FIG. 7 shows an operation cycle when a predetermined heat load is removed at time t0. In this case, since the gradient of the waveform Wx is reduced and the gradient of the waveform Wy is increased, control for setting the set rotational speed lower than the present is required in order to balance the waveforms Wx and Wy.
 しかし、従来技術に係る定常運転制御では、運転サイクルDt(又は、停止期間Dx)に占める運転期間Dyといった視点で省電力化の検討が行われていない為、運転期間Dx及び停止期間Dyのバランス状態が偶発的に形成されることはあっても、其のバランス状態は熱負荷の変動に伴って崩されてしまう。 However, in the steady operation control according to the prior art, since the power saving is not considered from the viewpoint of the operation period Dy occupying the operation cycle Dt (or the stop period Dx), the balance between the operation period Dx and the stop period Dy is not performed. Even if the state is accidentally formed, the balance state is destroyed as the heat load fluctuates.
 本発明は、繰返し実施される停止動作及び運転動作の双方の期間を持続的にバランスさせ得る冷却機用コンプレッサ制御装置の提供を目的とするものである。 An object of the present invention is to provide a compressor control device for a cooler that can continuously balance both periods of a stop operation and a driving operation that are repeatedly performed.
 上記課題を解決するため、本発明では次のような冷却機用コンプレッサ制御装置の構成とする。即ち、コンプレッサモータの回転数及び始動停止動作を規定した出力信号を生成し、ヒステリシス変動に伴う庫内温度の運転サイクルを制御させる冷却機用コンプレッサ制御装置において、前記運転サイクルを算出する第1の期間算出処理と、前記運転サイクルのうち温度減少期間を算出する第2の期間算出処理と、前記運転サイクルに対する前記温度減少期間の割合を算出する比率算出処理と、前記割合の算出値に基づいて前記出力信号を成形させる信号成形処理とを実行させることとする。 In order to solve the above problems, the present invention has the following configuration of a compressor control device for a cooler. That is, in the compressor control device for a cooler that generates an output signal that defines the rotation speed and start / stop operation of the compressor motor and controls the operation cycle of the internal temperature accompanying the hysteresis fluctuation, the first operation cycle is calculated. Based on a period calculation process, a second period calculation process for calculating a temperature decrease period in the operation cycle, a ratio calculation process for calculating a ratio of the temperature decrease period to the operation cycle, and a calculated value of the ratio A signal shaping process for shaping the output signal is executed.
 また、本発明では次のような冷却機用コンプレッサ制御装置の構成としても良い。即ち、コンプレッサモータの回転数及び始動停止動作を規定した出力信号を生成し、ヒステリシス変動に伴う庫内温度の運転サイクルを制御させる冷却機用コンプレッサ制御装置において、前記運転サイクルのうち温度増加期間を算出する第1の期間算出処理と、前記運転サイクルのうち温度減少期間を算出する第2の期間算出処理と、前記温度増加期間に対する前記温度減少期間の割合を算出する比率算出処理と、前記割合の算出値に基づいて前記出力信号を成形させる信号成形処理とを実行させることとする。 In the present invention, the compressor control device for a cooler may be configured as follows. That is, in the compressor control device for a cooler that generates an output signal that defines the rotation speed of the compressor motor and the start / stop operation and controls the operation cycle of the internal temperature accompanying the hysteresis fluctuation, the temperature increase period of the operation cycle is determined. A first period calculation process to calculate; a second period calculation process to calculate a temperature decrease period in the operation cycle; a ratio calculation process to calculate a ratio of the temperature decrease period to the temperature increase period; and the ratio And signal shaping processing for shaping the output signal based on the calculated value.
 好ましくは、前記信号成形処理は、予め設定された基準割合よりも前記割合の算出値が高い場合、前記回転数を上昇させる出力信号を成形させ、予め設定された基準割合よりも前記割合の算出値が低い場合、前記回転数を低下させる出力信号を成形させると良い。 Preferably, in the signal shaping process, when the calculated value of the ratio is higher than a preset reference ratio, an output signal for increasing the number of revolutions is formed, and the ratio is calculated from a preset reference ratio. When the value is low, it is preferable to form an output signal that reduces the rotational speed.
 好ましくは、前記基準割合は、熱負荷の変動が生じない場合に、前記運転サイクルを構成する温度減少期間と温度増加期間とが略一致する割合に設定されていると良い。 Preferably, the reference ratio is set to a ratio at which a temperature decrease period and a temperature increase period constituting the operation cycle substantially coincide with each other when a change in heat load does not occur.
 更に好ましくは、前記信号成形処理では、前記割合の算出結果に対応させて指令回転数情報を特定する処理と、前記指令回転数情報に基づいて前記出力信号を成形させる処理と、を実行させると良い。 More preferably, in the signal shaping process, a process of specifying command rotational speed information corresponding to the calculation result of the ratio and a process of shaping the output signal based on the command rotational speed information are executed. good.
 本発明に係る冷却機用コンプレッサ制御装置によると、運転割合を設定回転数の算定パラメータとして利用することで、停止期間と運転期間とを適宜に配分させる制御を実現させる。このため、設定回転数の過剰設定又は過小設定を回避させることとなり、運転サイクルでの平衡状態を保つことで、定常運転における消費電力の増加を抑制させることが可能となる。 According to the compressor control device for a chiller according to the present invention, by using the operation ratio as a calculation parameter for the set rotation speed, the control for appropriately distributing the stop period and the operation period is realized. For this reason, oversetting or undersetting of the set rotation speed is avoided, and an increase in power consumption in steady operation can be suppressed by maintaining an equilibrium state in the operation cycle.
 また、当該冷却機用コンプレッサ制御装置は、停止期間と運転期間とのバランス作用に伴って、停止期間におけるデフロスト効果の低下を免れ、併せて、ヒステリシス制御における下限温度近傍でのオーバーシュートを抑えることが可能となる。 In addition, the compressor control device for the cooler avoids a decrease in the defrost effect during the stop period due to the balance action between the stop period and the operation period, and also suppresses overshoot near the lower limit temperature in the hysteresis control. Is possible.
図1は、一般的な冷却装置の機能構成を示す図である。FIG. 1 is a diagram illustrating a functional configuration of a general cooling device. 図2は、実施の形態に係る運転サイクルの変化を示す図である。FIG. 2 is a diagram illustrating a change in the operation cycle according to the embodiment. 図3は、指令回転数情報を特定させるマップ情報を示す図である。FIG. 3 is a diagram showing map information for specifying the command rotational speed information. 図4は、割合の算出方法の一例を示す図である。FIG. 4 is a diagram illustrating an example of a ratio calculation method. 図5は、割合の算出方法の他の例を示す図である。FIG. 5 is a diagram illustrating another example of the ratio calculation method. 図6は、熱負荷を変化させた場合の運転サイクルを示す図(其の1)である。FIG. 6 is a diagram (No. 1) showing an operation cycle when the heat load is changed. 図7は、熱負荷を変化させた場合の運転サイクルを示す図(其の2)である。FIG. 7 is a diagram (No. 2) showing an operation cycle when the heat load is changed.
 以下、本発明に係る実施の形態につき図面を参照して具体的に説明する。図1は、一般的な冷却装置の触媒回路(冷凍回路)が示されている。ここで冷却装置とは、貯蔵庫を具備する冷凍装置・冷蔵装置を意味するものであり、冷凍装置及び冷蔵装置のうち何れか一方のみの構成であっても良く、これら双方の機器を含む構成であっても良い。便宜として、かかる意味を持つ冷却装置を冷凍装置と呼び換えて以下説明を行う。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a catalyst circuit (refrigeration circuit) of a general cooling device. Here, the cooling device means a refrigeration apparatus / refrigeration apparatus having a storage, and may be configured by only one of the refrigeration apparatus and the refrigeration apparatus, and includes both of these devices. There may be. For convenience, the cooling device having such a meaning is referred to as a refrigeration device and will be described below.
 図示の如く、冷凍装置10に形成される触媒回路には、冷却機用コンプレッサ11,凝縮器13,キャピラリーチューブ15,蒸発器16が設けられ、各々が冷媒チューブ18によってループ状に接続されている。チューブ内には冷媒が封入されており、この冷媒は、冷却機用コンプレッサ11に応動して冷媒回路を循環する。 As shown in the figure, the catalyst circuit formed in the refrigeration apparatus 10 is provided with a compressor 11 for a cooler, a condenser 13, a capillary tube 15, and an evaporator 16, and each is connected in a loop by a refrigerant tube 18. . A refrigerant is sealed in the tube, and this refrigerant circulates in the refrigerant circuit in response to the compressor 11 for the cooler.
 更に、冷凍装置10には、ドライブ回路12と送風ファン14及び17が適宜に配備されている。これらは、冷却機用コンプレッサ制御装置19へ電気的に接続され、冷却機用コンプレッサ制御装置19から与えられた信号によって制御される。以下、冷却機用コンプレッサ制御装置19を、単に制御装置19と呼ぶこととする。 Furthermore, the refrigeration apparatus 10 is appropriately provided with a drive circuit 12 and blower fans 14 and 17. These are electrically connected to the compressor control device 19 for the chiller and controlled by a signal given from the compressor control device 19 for the chiller. Hereinafter, the compressor control device 19 for the cooler is simply referred to as a control device 19.
 ドライブ回路12は、複数のパワートランジスタから成るインバータ回路であって、PWM信号によって制御される。当該インバータ回路は、PWM信号の周波数に応じて三相交流電流を生成し、冷却機用コンプレッサへ内蔵されるコンプレッサモータ(図示なし)の回転数を制御する。このPWM信号は、請求の範囲における出力信号の一形態であって、コンプレッサモータの各運転を規定するものである。具体的に説明すると、PWM信号は、サイン波形を表現するためにパルス幅変調させているパルス部分が当該モータの運転動作を規定している。また、DUTYが一定値とされているパルス部分が当該モータの停止動作を規定している。また、パルス変調の表現する周波数が当該モータの指令回転数を規定することとなる。 The drive circuit 12 is an inverter circuit composed of a plurality of power transistors, and is controlled by a PWM signal. The inverter circuit generates a three-phase alternating current according to the frequency of the PWM signal and controls the rotation speed of a compressor motor (not shown) built in the compressor for the cooler. This PWM signal is one form of the output signal in the claims, and defines each operation of the compressor motor. More specifically, in the PWM signal, a pulse portion that is pulse width modulated to express a sine waveform defines the operation of the motor. Further, a pulse portion in which DUTY is a constant value defines the stop operation of the motor. Further, the frequency represented by the pulse modulation defines the command rotational speed of the motor.
 コンプレッサモータは、上述したPWM信号によって制御され、冷却機用コンプレッサの羽根車を駆動・停止・回転数調整させる。そして、駆動開始した羽根車は、冷媒を入力側(低圧)から出力側(高圧)へと送り込み、冷媒が封入された冷媒回路へ作用する。即ち、この羽根車は、制御モータの回転数に応じて冷媒循環量〔qmr〕を増減させることとなる。 The compressor motor is controlled by the PWM signal described above, and drives, stops, and adjusts the rotational speed of the compressor impeller for the cooler. The impeller that has started driving feeds refrigerant from the input side (low pressure) to the output side (high pressure), and acts on the refrigerant circuit in which the refrigerant is sealed. That is, this impeller increases or decreases the refrigerant circulation amount [qmr] according to the rotational speed of the control motor.
 送風ファン14は、冷却機用コンプレッサ11によって高圧高温化された冷媒温度を低下させる。また、送風ファン17は、庫内の熱量と冷媒の熱量との熱交換を促す役割を担う。これらの送風ファン14,17は、ドライブ回路及びファンモータが内蔵されており、制御装置19からの指令信号によってファンモータの回転数が各々制御される。 The blower fan 14 reduces the temperature of the refrigerant that has been increased in pressure and temperature by the compressor 11 for the cooler. The blower fan 17 plays a role of promoting heat exchange between the amount of heat in the cabinet and the amount of heat of the refrigerant. These blower fans 14 and 17 incorporate a drive circuit and a fan motor, and the rotational speed of the fan motor is controlled by a command signal from the control device 19.
 更に、冷凍装置10は、其の貯蔵室に庫内温度計20が設けられている。庫内温度計20は、貯蔵庫内の温度を計測し、計測結果を電気信号に変換し出力する。制御装置19は、信号ラインを介して庫内温度計20に接続されており、庫内温度の計測結果が電気信号として入力される。制御装置19では、庫内温度の情報に基づいて、熱負荷の状態を判別する。本実施の形態の場合、熱負荷とは、庫内の貯蔵物の熱量に限らず、庫内からの熱リーク量等を含む概念とする。但し、請求の範囲における「熱負荷」とは、この定義に限定されるものではない。 Furthermore, the refrigerator 10 is provided with a thermometer 20 in its storage room. The in-compartment thermometer 20 measures the temperature in the storage, converts the measurement result into an electrical signal, and outputs it. The control device 19 is connected to the internal thermometer 20 through a signal line, and the measurement result of the internal temperature is input as an electrical signal. In the control device 19, the state of the heat load is determined based on the information on the internal temperature. In the case of the present embodiment, the heat load is not limited to the amount of heat of the stored item in the store, but includes a concept including the amount of heat leak from the store. However, “thermal load” in the claims is not limited to this definition.
 制御装置19は、上述したPWM信号を生成し、これをドライブ回路12へ出力することで、コンプレッサモータを制御する。また、本実施の形態に係る制御装置19は、送風ファン用の指令信号を生成出力し、送風ファン14,17を各々制御する。かかる制御装置19は、CPU,メモリ回路,AD変換回路,クロック回路等のハードウェア資源と、メモリ回路等に格納された制御プログラム及びマップ情報といったソフトウェア資源とから成る装置である。そして、制御装置19は、これらハードウェア資源とソフトウェア資源とが協働し、実施される情報処理によって機能的装置を構築させる。 The control device 19 controls the compressor motor by generating the aforementioned PWM signal and outputting it to the drive circuit 12. Moreover, the control apparatus 19 which concerns on this Embodiment produces | generates and outputs the command signal for ventilation fans, and controls the ventilation fans 14 and 17, respectively. The control device 19 includes a hardware resource such as a CPU, a memory circuit, an AD conversion circuit, and a clock circuit, and a software resource such as a control program and map information stored in the memory circuit. The control device 19 cooperates with these hardware resources and software resources to construct a functional device by information processing that is performed.
 こうして、制御装置19では、目標温度T0の近傍に上限値T1及び下限値T2を設定する処理、運転動作におけるコンプレッサモータの回転数を設定・変更する処理、コンプレッサモータの運転動作及び停止動作を切換えて上限値T1~下限値T2の範囲で庫内温度を制御させる(ヒステリシス変動させる)処理、等を適宜に機能構築させることとなる。尚、制御装置19で構築される機能については、追って詳述することとする。 Thus, the control device 19 switches between the process of setting the upper limit value T1 and the lower limit value T2 near the target temperature T0, the process of setting / changing the rotation speed of the compressor motor in the operation operation, and the operation operation and stop operation of the compressor motor. Thus, the function of controlling the internal temperature (changing the hysteresis) within the range of the upper limit value T1 to the lower limit value T2 and the like are appropriately constructed. The functions constructed by the control device 19 will be described in detail later.
 上述の如く、冷媒回路において、これを循環する冷媒は、気相状態で冷却機用コンプレッサ11へ投入され、冷却機用コンプレッサ11を通過する際に高圧高温化され、凝縮器13を通過する際にこれが冷却され液相状態となる。その後、液相状態の冷媒は、キャピラリーチューブ15で減圧され、蒸発器16では、其の冷媒が気化されることで、庫内温度を吸収(冷却)する。かかる冷媒は、気相の状態で冷却機用コンプレッサ11へ再投入され、冷却サイクルが繰り返されることとなる。ヒートポンプ式の冷却サイクルでは、冷媒循環量〔qmr〕に応じて庫内の冷却速度が調整される。即ち、庫内の冷却速度は、コンプレッサ用の制御モータの回転数によって制御されることとなり、言換えると、制御装置19の生成するPWM信号によって制御されることを意味する。 As described above, in the refrigerant circuit, the refrigerant circulating through the refrigerant circuit is charged into the compressor 11 for the cooler in a gas phase state, is heated to high pressure and high temperature when passing through the compressor 11 for cooler, and passes through the condenser 13. This is cooled to a liquid phase state. Thereafter, the refrigerant in the liquid phase is decompressed by the capillary tube 15, and the evaporator 16 absorbs (cools) the internal temperature by vaporizing the refrigerant. Such refrigerant is re-introduced into the compressor 11 for the cooler in a gas phase state, and the cooling cycle is repeated. In the heat pump type cooling cycle, the cooling rate in the warehouse is adjusted according to the refrigerant circulation amount [qmr]. That is, the cooling rate in the cabinet is controlled by the rotation speed of the control motor for the compressor, in other words, it is controlled by the PWM signal generated by the control device 19.
 図2及び図3は、冷凍装置によって制御される庫内温度の推移が示されている。庫内温度を示す温度波形Wr(実線部)について、ヒステリシス変動される1周期を運転サイクルDtと呼び、コンプレッサモータを停止させている期間を停止期間Dx,コンプレッサモータを運転させている期間を運転期間Dyと呼ぶこととする。例えば、第1周期に対応する運転サイクルをDt1と記し、これに対応して、停止期間Dx1,運転期間Dy1と記す。同様に、第2周期については、各々、Dt2,Dx2,Dy2と記す。また、温度波形Wrのうち、停止期間Dxに対応する部位を波形Wxと呼び,運転期間Dyに対応する部位を波形Wyと呼ぶ。これらも、運転サイクルの周期に応じて、Wx1,Wx2等と記すこととする。このように、波形Wx及び波形Wyは、運転サイクルDtに対応するものである。 2 and 3 show the transition of the internal temperature controlled by the refrigeration apparatus. For the temperature waveform Wr (solid line portion) indicating the internal temperature, one cycle in which hysteresis is varied is called an operation cycle Dt, a period during which the compressor motor is stopped is a stop period Dx, and a period during which the compressor motor is operated is operated. This is referred to as a period Dy. For example, an operation cycle corresponding to the first cycle is denoted as Dt1, and correspondingly, it is denoted as a stop period Dx1 and an operation period Dy1. Similarly, the second period is denoted as Dt2, Dx2, Dy2, respectively. Further, in the temperature waveform Wr, a portion corresponding to the stop period Dx is referred to as a waveform Wx, and a portion corresponding to the operation period Dy is referred to as a waveform Wy. These are also written as Wx1, Wx2, etc. according to the cycle of the operation cycle. Thus, the waveform Wx and the waveform Wy correspond to the operation cycle Dt.
 また、図2は、波形Wy1,Wy2a,Wy2bが点線で各々示されている。このうち、波形Wy1は、波形Wx1に対する制御上の理想的な波形であり、当該波形Wy1に相当する運転期間はDx1に一致する。また、波形Wy2aは、本発明を適用させず、熱負荷が変動しても回転数を変更させなかった場合に相当する波形である。Dt2a(時刻t0~t4’)は、波形Wy2aを辿る場合の運転サイクルを指す。また、波形Wy2bは、停止期間Dx2に対する理想的な波形で、当該波形Wy2bに相当する運転期間はDx2に一致する。Dt2b(時刻t0~t4”)は、波形Wy2aを辿る運転サイクルを指す。 In FIG. 2, the waveforms Wy1, Wy2a, and Wy2b are shown by dotted lines. Among these, the waveform Wy1 is an ideal control waveform for the waveform Wx1, and the operation period corresponding to the waveform Wy1 coincides with Dx1. The waveform Wy2a is a waveform corresponding to the case where the present invention is not applied and the rotation speed is not changed even if the thermal load fluctuates. Dt2a (time t0 to t4 ') indicates an operation cycle in the case of tracing the waveform Wy2a. The waveform Wy2b is an ideal waveform for the stop period Dx2, and the operation period corresponding to the waveform Wy2b matches Dx2. Dt2b (time t0 to t4 ″) indicates an operation cycle that follows the waveform Wy2a.
 図2の(a)は、時刻teで熱負荷が追加された場合における、庫内温度の推移が示されている。図示の如く、時刻teで熱負荷が増加したので、運転期間Dy1での波形の勾配が緩慢となり、後の停止期間Dx2での波形が急勾配となる。 (A) in FIG. 2 shows the transition of the internal temperature when a heat load is added at time te. As shown in the figure, since the heat load increased at time te, the waveform gradient during the operation period Dy1 becomes slow, and the waveform during the subsequent stop period Dx2 becomes steep.
 本実施の形態に係る制御装置19では、時刻t0が到来すると、運転サイクルDt1を算出する(第1の期間算出処理)。同時に、運転期間Dy1(温度減少期間)を算出する(第2の期間算出処理)。これらの期間算出処理は、上限値T1の到達時刻を起算点とし、下限値T2の到達時刻を到達点とすれば、其の間のサンプル回数に基づきサンプル間隔を積算させることで、運転期間Dyを算出できる。同様に、下限値T2の到達時刻から次回の下限値到達時刻までを上述の如く積算処理させることで、運転サイクルDtを算出できる。 In the control device 19 according to the present embodiment, when the time t0 arrives, the operation cycle Dt1 is calculated (first period calculation process). At the same time, an operation period Dy1 (temperature decrease period) is calculated (second period calculation process). In these period calculation processes, if the arrival time of the upper limit value T1 is a starting point and the arrival time of the lower limit value T2 is an arrival point, the operation interval Dy is obtained by integrating the sample intervals based on the number of samples in between. Can be calculated. Similarly, the operation cycle Dt can be calculated by performing integration processing from the arrival time of the lower limit value T2 to the next lower limit value arrival time as described above.
 かかる期間計算が完了すると、運転サイクルDtに対する運転期間Dyの割合を算出させる(比率算出処理)。以下、この割合を、運転割合Rtと呼ぶこととする。本実施の形態によると、時刻t0の経過直後では、比率算出処理が実行されることで、以下の演算を実施させる。
Rt=(Dy1/Dt1)*100 ・・・式1
When this period calculation is completed, the ratio of the operation period Dy to the operation cycle Dt is calculated (ratio calculation process). Hereinafter, this ratio is referred to as an operation ratio Rt. According to the present embodiment, immediately after the elapse of time t0, the following calculation is performed by executing the ratio calculation process.
Rt = (Dy1 / Dt1) * 100 Formula 1
 その後、制御装置19は、運転割合Rtの算出値に基づいてPWM信号の波形を設定し、当該PWM信号をドライブ回路12へ出力させる(信号成形処理)。このように、制御装置19は、上述の各処理を規定したプログラムをメモリ回路へ格納させておき、必要に応じてこれらの処理を起動させ、コンプレッサモータの回転数を運転割合Rtという新たなパラメータに基づいて設定する。制御装置19は、運転割合Rtを設定回転数の算定パラメータとして利用することで、停止期間Dxと運転期間Dyとを適宜に配分させる制御を実現させる。 Thereafter, the control device 19 sets the waveform of the PWM signal based on the calculated value of the operation ratio Rt, and outputs the PWM signal to the drive circuit 12 (signal shaping process). In this way, the control device 19 stores a program defining the above-described processes in the memory circuit, activates these processes as necessary, and sets a new parameter called the operation ratio Rt as the rotational speed of the compressor motor. Set based on. The control device 19 implements control for appropriately allocating the stop period Dx and the operation period Dy by using the operation ratio Rt as a calculation parameter for the set rotational speed.
 図2及び図3では、信号成形処理について、更に好適な動作が示されている。信号成形処理では、予め設定された基準割合RsをCPUのデータレジスタへ読み出し、基準割合Rsと運転割合Rtとの大小比較を実施し、基準割合Rsよりも運転割合Rtの値が大きい場合、設定回転数を上昇させるPWM信号を成形させる。即ち、制御装置19は、運転割合Rtが基準値より大きいと、PWM信号に表現される周波数を高く設定し、コンプレッサモータの回転数を上昇させる。尚、基準割合Rsは50%とされていることとする。 2 and 3 show a more preferable operation for the signal shaping process. In the signal shaping process, a preset reference ratio Rs is read into the CPU data register, and the reference ratio Rs and the operation ratio Rt are compared. If the value of the operation ratio Rt is larger than the reference ratio Rs, the setting is performed. A PWM signal for increasing the rotational speed is formed. That is, when the operation ratio Rt is larger than the reference value, the control device 19 sets the frequency expressed in the PWM signal high and increases the rotation speed of the compressor motor. The reference ratio Rs is assumed to be 50%.
 図2の(a)を参照すると、時刻teで熱負荷が追加された為、運転サイクルDt1における運転割合Rtは50%を超えている。この場合、信号成形処理は、基準割合Rsよりも運転割合Rtの値が大きいとして、設定回転数を上昇させるPWM信号の設定を行う。設定回転数の決め方は、数十Hz毎上昇させるようにしても良く、マップ情報に基づいて其の回転数を特定できるようにしても良い。そして、停止運転Dx2での庫内温度が上限値T1へ到達すると、信号成形処理は、設定されたPWM信号を出力させるので、コンプレッサモータの設定回転数を上昇させることとなる。これにより、運転サイクルDt2での温度波形Wrは、波形Wy2aよりも波形Wy2bに近づけられる為、停止期間Dx2と運転期間Dy2との配分について偏りが抑えられる。 Referring to (a) of FIG. 2, since the heat load was added at time te, the operation ratio Rt in the operation cycle Dt1 exceeds 50%. In this case, the signal shaping process sets the PWM signal to increase the set rotational speed on the assumption that the value of the operation ratio Rt is larger than the reference ratio Rs. The method of determining the set rotational speed may be increased every tens of Hz, or the rotational speed may be specified based on the map information. When the internal temperature in the stop operation Dx2 reaches the upper limit value T1, the signal shaping process outputs the set PWM signal, so that the set rotation speed of the compressor motor is increased. As a result, the temperature waveform Wr in the operation cycle Dt2 is made closer to the waveform Wy2b than the waveform Wy2a, so that the bias in the distribution between the stop period Dx2 and the operation period Dy2 is suppressed.
 このように、制御装置19は、設定回転数を上昇させていなければ運転期間が冗長化されていたところを、設定回転数の上昇制御によって運転割合Rtの上昇を抑え、デフロスト効果を十分に発揮させることが可能となる。また、運転期間Dy2の冗長化を免れるので、消費電力の低下にも資することとなる。 As described above, the control device 19 suppresses the increase in the operation rate Rt by increasing the set rotation speed, and sufficiently exhibits the defrost effect, if the operation period is made redundant unless the set rotation speed is increased. It becomes possible to make it. In addition, since the redundancy of the operation period Dy2 is avoided, it also contributes to a reduction in power consumption.
 また、信号成形処理は、基準割合Rsよりも運転割合Rtの値が小さい場合、設定回転数を低下させるPWM信号を成形させる。即ち、制御装置19は、運転割合Rtが基準値より小さいと、PWM信号に表現される周波数を低く設定し、コンプレッサモータの回転数を低下させる。尚、基準割合Rsは、上述同様に50%とされている。 In the signal shaping process, when the value of the operation ratio Rt is smaller than the reference ratio Rs, a PWM signal for reducing the set rotational speed is formed. That is, when the operation ratio Rt is smaller than the reference value, the control device 19 sets the frequency expressed in the PWM signal to be low, and reduces the rotation speed of the compressor motor. The reference ratio Rs is 50% as described above.
 図2の(b)は、時刻teで熱負荷が取除かれた場合の庫内温度が示されている。この為、運転サイクルDt1における運転割合Rtは50%を下回る。この場合、信号成形処理は、基準割合Rsよりも運転割合Rtの値が小さいとして、設定回転数を低下させるPWM信号の設定を行う。そして、停止運転Dx2での庫内温度が上限値T1へ到達すると、信号成形処理は、設定されたPWM信号を出力させるので、コンプレッサモータの設定回転数を低下させることとなる。これにより、運転サイクルDt2での温度波形Wrは、波形Wy2aよりも波形Wy2bに近づけられる為、運転期間Dy2が停止期間Dx2に比べて極端に短くなることはない。 (B) in FIG. 2 shows the internal temperature when the heat load is removed at time te. For this reason, the operation ratio Rt in the operation cycle Dt1 is less than 50%. In this case, the signal shaping process sets the PWM signal that reduces the set rotational speed on the assumption that the value of the operation ratio Rt is smaller than the reference ratio Rs. When the internal temperature in the stop operation Dx2 reaches the upper limit value T1, the signal shaping process outputs the set PWM signal, so that the set rotation speed of the compressor motor is reduced. As a result, the temperature waveform Wr in the operation cycle Dt2 is closer to the waveform Wy2b than the waveform Wy2a, so that the operation period Dy2 is not extremely shortened compared to the stop period Dx2.
 このように、制御装置19は、設定回転数を上昇させていなければ温度波形Wrが急峻に低下されていたところを、設定回転数の低下制御によって温度波形Wrの勾配を緩慢にさせる作用が働くので、下限温度T2におけるオーバーシュートを抑制できる。また、モータ回転数の過剰設定も回避できる為、消費電力の低下にも資することとなる。 In this way, the control device 19 works to make the gradient of the temperature waveform Wr slow by controlling the decrease in the set rotational speed, where the temperature waveform Wr has been sharply decreased unless the set rotational speed is increased. Therefore, the overshoot at the lower limit temperature T2 can be suppressed. In addition, excessive setting of the motor speed can be avoided, which contributes to a reduction in power consumption.
 上述の如く、本実施の形態に係る制御装置19は、運転期間Dyを制御させることで、運転サイクルDtを調整し、結果として、運転割合Rtを適宜に制御させている。そして、かかる制御動作を各運転サイクルDt1,Dt2,Dt3,・・・,について連続的に実施させることで、停止期間Dxと運転期間Dyとを一定の範囲でバランスさせ、このバランス状態を持続させることが可能となる。 As described above, the control device 19 according to the present embodiment adjusts the operation cycle Dt by controlling the operation period Dy, and as a result, appropriately controls the operation ratio Rt. Then, the control operation is continuously performed for each of the operation cycles Dt1, Dt2, Dt3,... To balance the stop period Dx and the operation period Dy within a certain range and maintain this balanced state. It becomes possible.
 本実施の形態にあっては、基準割合Rsが50%とされているが、これに限定されるものではない。この基準割合Rsは、停止期間Dxと運転期間Dyとを偏りなく配分させることを目的とするところ、約30%~70%の範囲に設定されていれば、本制御装置19の効果が奏されると考えられる。但し、基準割合Rsは、熱負荷の変動が生じない場合、停止期間Dxと運転期間Dyとを略一致させ、双方の期間をバランスさせるのが好ましい。これにより、消費電力やデフロスト効果・オーバーシュート現象といった、相反する事象を一括して解決することが可能となる。 In the present embodiment, the reference ratio Rs is set to 50%, but is not limited to this. The purpose of this reference ratio Rs is to distribute the stop period Dx and the operation period Dy evenly. If the reference ratio Rs is set within a range of about 30% to 70%, the effect of the present control device 19 is exhibited. It is thought. However, the reference ratio Rs is preferably such that when the thermal load does not vary, the stop period Dx and the operation period Dy are substantially matched to balance both periods. As a result, conflicting events such as power consumption, defrost effect, and overshoot phenomenon can be solved together.
 また、基準割合Rsは、条件に応じて変動するようにしても良い。例えば、運転サイクルDtが短い条件では基準割合Rtを低く設定させることで、デフロスト効果を確保するといった制御が可能となる。 Further, the reference ratio Rs may be changed according to conditions. For example, under the condition where the operation cycle Dt is short, it is possible to perform control such as ensuring the defrost effect by setting the reference ratio Rt low.
 上述の如く、本実施の形態に係る制御装置19によると、停止期間Dxと運転期間Dyとを一定の範囲でバランスさせる為、設定回転数の過剰設定又は過小設定を回避させることが可能となる。これにより、当該制御装置19では、消費電力の増加を抑え、停止期間におけるデフロスト効果の維持、下限値近傍でのオーバーシュートの抑制を可能とする。 As described above, according to the control device 19 according to the present embodiment, since the stop period Dx and the operation period Dy are balanced within a certain range, it is possible to avoid oversetting or undersetting of the set rotational speed. . Thereby, in the said control apparatus 19, the increase in power consumption can be suppressed, the defrost effect in a stop period can be maintained, and the overshoot near the lower limit value can be suppressed.
 尚、本実施の形態にあっては、運転割合Rtを式1によって算出しているが、これに限定されるものではない。例えば、停止期間Dx(温度増加期間)を算出し、この停止期間Dxに対する運転期間Dyを算出するようにしても良い(式2参照)。
Rt=(Dy/Dx)*100 ・・・式2
この場合、基準割合Rsを75%~100%程度に設定することで、上述した効果が奏されることとなる。
In the present embodiment, the operation ratio Rt is calculated by Equation 1, but the present invention is not limited to this. For example, the stop period Dx (temperature increase period) may be calculated, and the operation period Dy for the stop period Dx may be calculated (see Formula 2).
Rt = (Dy / Dx) * 100 Formula 2
In this case, by setting the reference ratio Rs to about 75% to 100%, the above-described effect can be obtained.
 図3では、モータ回転数の設定方法の一例が示されている。同図では、設定回転数がマップ情報に基づいて決定される。かかるマップ情報は、予め実施された実験結果に基づいて作成される。図3の(a)~(c)は、この実験データを収集するために、熱負荷を適宜に変更させて実験が行われたものである。 FIG. 3 shows an example of a method for setting the motor rotation speed. In the figure, the set rotational speed is determined based on the map information. Such map information is created based on the results of experiments performed in advance. FIGS. 3 (a) to 3 (c) are experiments in which the heat load is appropriately changed in order to collect the experimental data.
 図3の(a)は、低い熱負荷での実験場面が示されている。この場面において、基準設定回転数「ωb=1500rpm(実線部)」にて実験を行うと、運転期間Dyが理想状態より短縮され、運転割合Rtが40%と算出された。その後、同じ熱負荷で設定回転数を変更させたところ、運転割合Rtを50%とさせるには、設定回転数ωcを1200rpm(点線部)に設定させると良いことが判明した。尚、exDtは、運転割合Rtを50%に一致させる理想場面(平衡状態)での運転サイクルを指す。 Fig. 3 (a) shows an experimental scene with a low heat load. In this scene, when the experiment was performed at the reference set rotational speed “ωb = 1500 rpm (solid line portion)”, the operation period Dy was shortened from the ideal state, and the operation ratio Rt was calculated to be 40%. Thereafter, when the set rotational speed was changed with the same thermal load, it was found that the set rotational speed ωc should be set to 1200 rpm (dotted line portion) in order to set the operation ratio Rt to 50%. In addition, exDt points out the driving | running cycle in the ideal scene (equilibrium state) which makes driving | running ratio Rt correspond to 50%.
 図3の(b)は、熱負荷を幾分増加させた際の実験場面が示されている。この場面において、基準設定回転数「ωb=1500rpm(実線部)」にて実験を行うと、運転期間Dyが理想状態より長くなり、運転割合Rtが58%と算出された。その後、同じ熱負荷で設定回転数を変更させたところ、運転割合Rtを50%とさせるには、設定回転数ωcを1500rpm(点線部)に設定させると良いことが判明した。 (B) in FIG. 3 shows an experimental scene when the heat load is increased somewhat. In this scene, when the experiment was performed at the reference set rotational speed “ωb = 1500 rpm (solid line portion)”, the operation period Dy was longer than the ideal state, and the operation ratio Rt was calculated to be 58%. Thereafter, when the set rotational speed was changed with the same thermal load, it was found that the set rotational speed ωc should be set to 1500 rpm (dotted line portion) in order to set the operation ratio Rt to 50%.
 図3の(c)は、熱負荷を更に増加させた際の実験場面が示されている。この場面において、基準設定回転数「ωb=1500rpm(実線部)」にて実験を行うと、運転期間Dyが更に長くなり、運転割合Rtが63%と算出された。その後、同じ熱負荷で設定回転数を変更させたところ、運転割合Rtを50%とさせるには、設定回転数ωcを1800rpm(点線部)に設定させると良いことが判明した。以下、熱負荷を順次増加させ、上述の実験と同様、運転割合Rtと設定回転数ωcとについて、実験データのサンプリングを続けた。 (C) of FIG. 3 shows an experimental scene when the heat load is further increased. In this scene, when the experiment was performed at the reference set rotational speed “ωb = 1500 rpm (solid line portion)”, the operation period Dy was further increased, and the operation ratio Rt was calculated to be 63%. Thereafter, when the set rotational speed was changed with the same thermal load, it was found that the set rotational speed ωc should be set to 1800 rpm (dotted line portion) in order to set the operation ratio Rt to 50%. Thereafter, the heat load was sequentially increased, and the sampling of the experiment data was continued for the operation ratio Rt and the set rotational speed ωc as in the above-described experiment.
 かかる実験データの取得後、運転割合Rtの算出結果に対応させて設定回転数ωcを特定できるよう、メモリ回路にマップ情報を作成させる(図3の(d))。これにより、例えば、信号成形処理で「Rt=58%」との算出結果を得た場合、このマップ情報を参照することで設定回転数を1200rpmに設定し、これにより、次回の運転サイクルDtで運転割合Rtを50%近傍に制御させることが可能となる。以下、マップ情報におけるωcは、特定の回転数を指令する情報であるところ、指令回転数情報と呼ぶこととする。 After obtaining the experimental data, map information is created in the memory circuit so that the set rotational speed ωc can be specified in accordance with the calculation result of the operation ratio Rt ((d) in FIG. 3). Thereby, for example, when the calculation result of “Rt = 58%” is obtained in the signal shaping process, the set rotational speed is set to 1200 rpm by referring to this map information, and thereby, in the next operation cycle Dt. It becomes possible to control the operation ratio Rt to around 50%. Hereinafter, ωc in the map information is information for instructing a specific rotation speed, and will be referred to as command rotation speed information.
 尚、図3の(d)では、運転割合Rtが所定の範囲で規定されている。かかる運転割合の範囲は、実験結果に基づいて境界を設定すると良い。図3の(d)の場合、其の境界を示す運転割合Rtの各々が、請求の範囲の基準割合に相当する。 In FIG. 3D, the operation ratio Rt is defined within a predetermined range. The range of the operation ratio may be set based on experimental results. In the case of FIG. 3D, each of the operation ratios Rt indicating the boundary corresponds to a reference ratio in the claims.
 かかる設定回転数の特定方法によると、信号成形処理では、マップ情報を用いて指令回転数情報ωcを特定させ、当該指令回転数情報ωcに基づいて出力信号を成形させることとなる。このため、制御装置19では、設定回転数は運転割合を50%に近づける最も好適な回転数が選択される為、運転サイクルDtの波形が瞬時に理想状態へ制御されることとなる。 According to the method for specifying the set rotational speed, in the signal shaping process, the command rotational speed information ωc is identified using the map information, and the output signal is shaped based on the command rotational speed information ωc. For this reason, in the control device 19, since the most suitable rotation speed that brings the operation ratio close to 50% is selected as the set rotation speed, the waveform of the operation cycle Dt is instantaneously controlled to the ideal state.
 上述した実施の形態では、運転割合Rtを演算させる際、一つの運転サイクルDtに対応するパラメータから運転割合Rtを算出していた。しかし、運転割合Rtの演算処理は、かかる形態に限られるものではない。 In the embodiment described above, when the operation ratio Rt is calculated, the operation ratio Rt is calculated from parameters corresponding to one operation cycle Dt. However, the calculation process of the operation ratio Rt is not limited to this form.
 一例を紹介すると、図4に示す如く、第1運転サイクルD1→第2運転サイクルD2→第3運転サイクルD3→D4→D5→・・・,と庫内温度のヒステリシス制御が進められるとする。そして、第1運転サイクルDt1の終了に応じて、制御装置19では、運転割合Rt1を演算させ(比率演算処理)、其の算出結果をメモリ回路へ格納させる。同様に、第2運転サイクルDt2の終了に応じて、運転割合Rt2の算出結果をメモリ回路へ保存し、其れ以降のサイクルについても、運転サイクルDtの終了に応じて、運転割合Rtの算出結果をメモリ回路へ順次保存させる。 As an example, as shown in FIG. 4, it is assumed that hysteresis control of the internal temperature proceeds as follows: first operation cycle D1 → second operation cycle D2 → third operation cycle D3 → D4 → D5 →. Then, in response to the end of the first operation cycle Dt1, the control device 19 calculates the operation ratio Rt1 (ratio calculation processing) and stores the calculation result in the memory circuit. Similarly, the calculation result of the operation ratio Rt2 is stored in the memory circuit according to the end of the second operation cycle Dt2, and the calculation result of the operation ratio Rt is also stored for the subsequent cycles according to the end of the operation cycle Dt. Are sequentially stored in the memory circuit.
 ここで、運転割合Rt3の演算が終了すると、制御装置19では、過去2サイクル分のデータをCPUのデータレジスタに読み出し、Rt1,Rt2,及び,Rt3を用いて運転割合Rtについての平均値Rtavを算出させる。そして、運転割合Rtに係る平均値Rtavを、運転サイクルDt3に対する運転割合Dt3として処理を続ける。かかる処理では、運転サイクルが進むにつれ、平均値Rtavを算出するデータを順次シフトさせることで、後段の運転割合Rtを順次算出することが可能となる。運転割合Rt3は、このような統計的演算手法を採用することで、偶発的に生じたノイズの影響が緩和され、取得されたデータの信頼性が向上する。また、かかる統計的演算手法は、平均値に限らず、中間値、加重平均等を採用しても良い。 Here, when the calculation of the operation ratio Rt3 is completed, the control device 19 reads the data for the past two cycles into the data register of the CPU, and uses Rt1, Rt2, and Rt3 to calculate the average value Rtav for the operation ratio Rt. Let it be calculated. Then, the processing is continued with the average value Rtav related to the operation ratio Rt as the operation ratio Dt3 with respect to the operation cycle Dt3. In this process, as the operation cycle progresses, it is possible to sequentially calculate the operation ratio Rt at the subsequent stage by sequentially shifting the data for calculating the average value Rtav. By adopting such a statistical calculation method for the operation ratio Rt3, the influence of accidental noise is mitigated, and the reliability of the acquired data is improved. In addition, the statistical calculation method is not limited to the average value, and an intermediate value, a weighted average, or the like may be employed.
 尚、図4の平均値算出方法では、一つの運転サイクルDtの終了を待たなければ、運転割合についてのサンプルデータを一つしか取得できない。例えば、3サイクル分の運転サイクルDtを待たなければ、運転割合Rtを算出するためのサンプルデータを3点取得することができない。これを改善するため、図5に示す平均値算出方法(統計値算出方法)では、運転割合Rtを算出するためのサンプルデータを、効果的に数多く取得する方法が示されている。 In the mean value calculation method of FIG. 4, only one sample data regarding the operation ratio can be acquired without waiting for the end of one operation cycle Dt. For example, three sample data for calculating the operation ratio Rt cannot be acquired unless the operation cycle Dt for three cycles is waited. In order to improve this, the average value calculation method (statistical value calculation method) shown in FIG. 5 shows a method for effectively acquiring a large number of sample data for calculating the operation ratio Rt.
 先ず、第1の運転サイクルDt1では、当該サイクルの終了(時刻t4)を待って、Dt1及びDy1を算出し、これらのパラメータに基づいて運転割合Rt1を算出する(第1の比率算出処理)。 First, in the first operating cycle Dt1, after waiting for the end of the cycle (time t4), Dt1 and Dy1 are calculated, and an operating ratio Rt1 is calculated based on these parameters (first ratio calculating process).
 第1の比率演算処理が完了し時刻t6に到達すると、運転サイクルDt2における停止期間Dx2が終了する。そこで、時刻6では、運転サイクルDt2の観察途中であるにも関わらず、運転サイクルDt1の運転期間の波形(第1波形)と運転サイクルDt2の停止期間の波形(第2波形)とを合成させることにより、新たな運転サイクル、即ち、中間運転サイクルDtm(合成運転サイクル)が形成されることとなる。そして、時刻t6の到来によって中間比率演算処理(第3の比率演算処理)を実行させ、中間運転サイクルDtmについて運転期間の割合Rtmを算出させる(式3参照)。
 Rtm=(Dy1/Dx2)*100 ・・・式3
When the first ratio calculation process is completed and time t6 is reached, the stop period Dx2 in the operation cycle Dt2 ends. Therefore, at time 6, the waveform of the operation period of the operation cycle Dt 1 (first waveform) and the waveform of the stop period of the operation cycle Dt 2 (second waveform) are combined even though the operation cycle Dt 2 is being observed. Thus, a new operation cycle, that is, an intermediate operation cycle Dtm (synthesis operation cycle) is formed. Then, the intermediate ratio calculation process (third ratio calculation process) is executed upon arrival of time t6, and the operation period ratio Rtm is calculated for the intermediate operation cycle Dtm (see Expression 3).
Rtm = (Dy1 / Dx2) * 100 Formula 3
 その後、時刻t8に達すると、Dt2及びDy2を算出し、これらのパラメータに基づいて運転割合Rt2を算出する(第2の比率算出処理)。 Thereafter, when time t8 is reached, Dt2 and Dy2 are calculated, and an operation ratio Rt2 is calculated based on these parameters (second ratio calculation process).
 このように、図5に示されるデータサンプル方法によると、第1の運転サイクルDt1とその直後に現れる第2の運転サイクルDt2によって、Rt1,Rtm,Rt2の3つのサンプルデータが取得できることとなる。かかるデータサンプル方法によれば、運転サイクルDtがn個の場合、取得可能なサンプルデータが2n+1個となり、運転割合のサンプルデータを効率良く取得することが可能となる。 Thus, according to the data sampling method shown in FIG. 5, three sample data of Rt1, Rtm, and Rt2 can be acquired by the first operation cycle Dt1 and the second operation cycle Dt2 that appears immediately after the first operation cycle Dt1. According to this data sampling method, when the number of operation cycles Dt is n, the number of sample data that can be acquired is 2n + 1, and it is possible to efficiently acquire the sample data of the operation ratio.
 そして、サンプルデータ(Rt1,Rtm)は、運転割合Rt2を算出させる際に用いられ、相加平均又は加重平均といった統計的演算手法が適用され、運転割合Rt2に係る補正演算が行われる。 The sample data (Rt1, Rtm) is used when calculating the operation ratio Rt2, and a statistical calculation method such as an arithmetic average or a weighted average is applied to perform a correction operation related to the operation ratio Rt2.
 図5に示される運転割合Rt2の算出処理によると、限られた運転サイクルの中から多数のサンプルデータ(運転割合)を取得できるので、信頼性を損なうことなく応答性の高い制御が実現される。このため、制御装置19では、熱負荷に応じて適切な設定温度が選択されることとなり、温度制御に係るオーバーシュートや応答遅れといった不具合を回避できる。 According to the calculation processing of the operation ratio Rt2 shown in FIG. 5, since a large number of sample data (operation ratio) can be acquired from a limited operation cycle, highly responsive control is realized without impairing reliability. . For this reason, in the control device 19, an appropriate set temperature is selected according to the thermal load, and problems such as overshoot and response delay related to temperature control can be avoided.
 尚、運転割合のデータサンプル方法は、3つ以上の運転サイクルに基づいてサンプルデータを取得する場合、先頭の運転サイクルが第1の運転サイクルDt1となり、直近の運転サイクルが第2の運転サイクルDt2とされる。そして、第1の運転サイクルDt1と第2の運転サイクルDt2との間には、他の運転サイクルDtkが現れることとなる。 In the data sampling method of the operation ratio, when sample data is acquired based on three or more operation cycles, the first operation cycle is the first operation cycle Dt1, and the most recent operation cycle is the second operation cycle Dt2. It is said. Then, another operation cycle Dtk appears between the first operation cycle Dt1 and the second operation cycle Dt2.
 この場合、或る中間比率算出処理では、運転期間Dy1に対応する波形(第1波形)と後続の運転サイクルDtkに対応する停止期間の波形とを合成させ、これを中間運転サイクルDtm1として、当該サイクルDtm1に対応する運転比率Rtm1を算出させる。一方、別の中間比率算出処理では、運転サイクルDtkに対応する運転期間の波形と停止期間Dx2に対応する波形(第2波形)とを合成させ、これを中間運転サイクルDtm2として、当該サイクルDtm2に対応する運転比率Rtm2を算出させる。 In this case, in a certain intermediate ratio calculation process, a waveform corresponding to the operation period Dy1 (first waveform) and a waveform of the stop period corresponding to the subsequent operation cycle Dtk are combined, and this is used as the intermediate operation cycle Dtm1. The operation ratio Rtm1 corresponding to the cycle Dtm1 is calculated. On the other hand, in another intermediate ratio calculation process, the waveform of the operation period corresponding to the operation cycle Dtk and the waveform (second waveform) corresponding to the stop period Dx2 are combined, and this is defined as the intermediate operation cycle Dtm2 in the cycle Dtm2. The corresponding operation ratio Rtm2 is calculated.
 そして、制御装置19では、運転比率(Rt1,Rtm1,・・・,Rtm2)を用いて、運転サイクルDt2についての運転比率Rt2を補正処理させ、後の信号成形処理を実行させることとなる。 In the control device 19, the operation ratio Rt2 for the operation cycle Dt2 is corrected using the operation ratio (Rt1, Rtm1,..., Rtm2), and the subsequent signal shaping process is executed.
 上述の如く、図5の運転比率の算出方法によれば、統計的演算方法によって算出された結果値を運転比率として、これを設定回転数の選定処理に反映させている。しかし、運転比率に係るサンプルデータに顕著な変動が発生した場合、統計的演算を止め、其のサンプルしたデータを運転比率の値とする処理を行ってもよい。このような処理を設けることで、制御装置19は、高熱の熱負荷が庫内へ投入されても、この熱量を瞬時に低下させるよう、コンプレッサモータの回転数を逸早く高回転に設定できるようになる。 As described above, according to the operation ratio calculation method of FIG. 5, the result value calculated by the statistical calculation method is used as the operation ratio, and this is reflected in the setting speed selection process. However, when significant fluctuation occurs in the sample data related to the operation ratio, the statistical calculation may be stopped and the sampled data may be processed as the operation ratio value. By providing such processing, the control device 19 can quickly set the rotation speed of the compressor motor to high rotation so that the amount of heat is instantaneously reduced even when a high heat load is input into the warehouse. Become.
 この他、制御装置19では、熱負荷の変動が検出されない場合、庫内温度の目標温度を一定の範囲で徐々に上げ、消費電力を低減するようにしても良い。このとき、上限温度と下限温度との差を徐々に減少させても良く、上限温度については一定値に固定させる制御を行っても良い。 In addition, when the fluctuation of the thermal load is not detected, the control device 19 may gradually increase the target temperature of the internal temperature within a certain range to reduce the power consumption. At this time, the difference between the upper limit temperature and the lower limit temperature may be gradually decreased, and the upper limit temperature may be controlled to be fixed to a constant value.
 本発明は、冷却装置の定常運転制御に有用であり、特に、インバータ制御方式を採用した冷却機用コンプレッサ制御装置にとって有用である。 The present invention is useful for steady operation control of a cooling device, and is particularly useful for a compressor control device for a cooler that employs an inverter control system.
 10 冷却装置, 11 冷却機用コンプレッサ, 19 冷却機用コンプレッサ制御装置, Dt 運転サイクル, Dx 第1の期間, Dy 第2の期間, Rt 割合。 10 Cooling device, 11 Cooling device compressor, 19 Cooling device compressor control device, Dt operation cycle, Dx 1st period, Dy 2nd period, Rt ratio.

Claims (5)

  1.  コンプレッサモータの回転数及び始動停止動作を規定した出力信号を生成し、ヒステリシス変動に伴う庫内温度の運転サイクルを制御させる冷却機用コンプレッサ制御装置において、
     前記運転サイクルを算出する第1の期間算出処理と、前記運転サイクルのうち温度減少期間を算出する第2の期間算出処理と、前記運転サイクルに対する前記温度減少期間の割合を算出する比率算出処理と、前記割合の算出値に基づいて前記出力信号を成形させる信号成形処理と、を実行させることを特徴とする冷却機用コンプレッサ制御装置。
    In the compressor control device for a cooler that generates an output signal that defines the rotation speed and start / stop operation of the compressor motor, and controls the operation cycle of the internal temperature accompanying the hysteresis fluctuation,
    A first period calculating process for calculating the operating cycle; a second period calculating process for calculating a temperature decreasing period in the operating cycle; and a ratio calculating process for calculating a ratio of the temperature decreasing period to the operating cycle; And a signal shaping process for shaping the output signal based on the calculated value of the ratio.
  2.  コンプレッサモータの回転数及び始動停止動作を規定した出力信号を生成し、ヒステリシス変動に伴う庫内温度の運転サイクルを制御させる冷却機用コンプレッサ制御装置において、
     前記運転サイクルのうち温度増加期間を算出する第1の期間算出処理と、前記運転サイクルのうち温度減少期間を算出する第2の期間算出処理と、前記温度増加期間に対する前記温度減少期間の割合を算出する比率算出処理と、前記割合の算出値に基づいて前記出力信号を成形させる信号成形処理と、を実行させることを特徴とする冷却機用コンプレッサ制御装置。
    In the compressor control device for a cooler that generates an output signal that defines the rotation speed and start / stop operation of the compressor motor, and controls the operation cycle of the internal temperature accompanying the hysteresis fluctuation,
    A first period calculation process for calculating a temperature increase period in the operation cycle; a second period calculation process for calculating a temperature decrease period in the operation cycle; and a ratio of the temperature decrease period to the temperature increase period. A compressor control device for a cooler, which executes a ratio calculation process to be calculated and a signal shaping process for shaping the output signal based on the calculated value of the ratio.
  3.  前記信号成形処理は、予め設定された基準割合よりも前記割合の算出値が高い場合、前記回転数を上昇させる出力信号を成形させ、予め設定された基準割合よりも前記割合の算出値が低い場合、前記回転数を低下させる出力信号を成形させる、ことを特徴とする請求項1又は請求項2に記載の冷却機用コンプレッサ制御装置。 In the signal shaping process, when the calculated value of the ratio is higher than a preset reference ratio, the output signal for increasing the rotation speed is formed, and the calculated value of the ratio is lower than the preset reference ratio. 3. The compressor control device for a cooler according to claim 1, wherein an output signal for reducing the rotation speed is formed.
  4.  前記基準割合は、熱負荷の変動が生じない場合に、前記運転サイクルを構成する温度減少期間と温度増加期間とが略一致する割合に設定されている、ことを特徴とする請求項3に記載の冷却機用コンプレッサ制御装置。 The said reference | standard ratio is set to the ratio which the temperature reduction period and temperature increase period which comprise the said operation cycle substantially correspond, when the fluctuation | variation of a thermal load does not arise. Compressor control device for coolers.
  5.  前記信号成形処理では、前記割合の算出結果に対応させて指令回転数情報を特定する処理と、前記指令回転数情報に基づいて前記出力信号を成形させる処理と、を実行させることを特徴とする請求項1乃至請求項4の何れか一項に記載の冷却機用コンプレッサ制御装置。 In the signal shaping process, a process of specifying command rotational speed information corresponding to the calculation result of the ratio and a process of shaping the output signal based on the command rotational speed information are executed. The compressor control device for a cooler according to any one of claims 1 to 4.
PCT/JP2013/001129 2012-03-01 2013-02-26 Compressor control device for cooler WO2013128898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-045714 2012-03-01
JP2012045714A JP5956781B2 (en) 2012-03-01 2012-03-01 Cooling compressor control device

Publications (1)

Publication Number Publication Date
WO2013128898A1 true WO2013128898A1 (en) 2013-09-06

Family

ID=49082111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001129 WO2013128898A1 (en) 2012-03-01 2013-02-26 Compressor control device for cooler

Country Status (2)

Country Link
JP (1) JP5956781B2 (en)
WO (1) WO2013128898A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657105A1 (en) * 2018-11-26 2020-05-27 LG Electronics Inc. Refrigerator and method for controlling the same
WO2022047558A1 (en) * 2020-09-01 2022-03-10 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda. Method for automatic setting of refrigeration capacity control parameters in an inverter or controller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180873A (en) * 1985-02-05 1986-08-13 三洋電機株式会社 Controller for refrigerator, etc.
JP2000356447A (en) * 1999-06-14 2000-12-26 Matsushita Refrig Co Ltd Inverter for refrigerating system
JP2001074354A (en) * 1999-09-01 2001-03-23 Toshiba Corp Refrigerator
JP2002013858A (en) * 2000-06-29 2002-01-18 Fuji Electric Co Ltd Controller and control method for inverter compressor
JP2006138534A (en) * 2004-11-11 2006-06-01 Hoshizaki Electric Co Ltd Cooling storage box
JP2007071520A (en) * 2005-09-09 2007-03-22 Hoshizaki Electric Co Ltd Cooling storage box, and control method for its compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185394A (en) * 1996-12-26 1998-07-14 Matsushita Refrig Co Ltd Freezer refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180873A (en) * 1985-02-05 1986-08-13 三洋電機株式会社 Controller for refrigerator, etc.
JP2000356447A (en) * 1999-06-14 2000-12-26 Matsushita Refrig Co Ltd Inverter for refrigerating system
JP2001074354A (en) * 1999-09-01 2001-03-23 Toshiba Corp Refrigerator
JP2002013858A (en) * 2000-06-29 2002-01-18 Fuji Electric Co Ltd Controller and control method for inverter compressor
JP2006138534A (en) * 2004-11-11 2006-06-01 Hoshizaki Electric Co Ltd Cooling storage box
JP2007071520A (en) * 2005-09-09 2007-03-22 Hoshizaki Electric Co Ltd Cooling storage box, and control method for its compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657105A1 (en) * 2018-11-26 2020-05-27 LG Electronics Inc. Refrigerator and method for controlling the same
US11226145B2 (en) 2018-11-26 2022-01-18 Lg Electronics Inc. Refrigerator and method for controlling a compressor based on temperature of storage compartment
WO2022047558A1 (en) * 2020-09-01 2022-03-10 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda. Method for automatic setting of refrigeration capacity control parameters in an inverter or controller

Also Published As

Publication number Publication date
JP5956781B2 (en) 2016-07-27
JP2013181702A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP6165470B2 (en) Motor control device, heat pump system and air conditioner
JP5805317B2 (en) Heat pump device, air conditioner and refrigerator
CN103326664B (en) Control device of electric motor and utilize its motor drive, compressor, refrigerating plant, air regulator and method of motor control
JP5856182B2 (en) Method for controlling a compressor with a double suction function for a cooling system
JPWO2016051456A1 (en) Winding switching motor driving apparatus, winding switching motor driving control method, and refrigeration air conditioning equipment using them
US9739512B2 (en) Control system for thermoelectric devices
WO2013128898A1 (en) Compressor control device for cooler
JP2013113534A (en) Heat pump system
JP5985212B2 (en) Cooling compressor control device
JPWO2013128946A1 (en) Electric compressor control method, control device, and refrigerator
JP2016021785A (en) Motor control device and freezing and air conditioning device
JP6301784B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
WO2013111579A1 (en) Compressor control device for cooling device
JP4563825B2 (en) Refrigerator operation method and equipment comprising the refrigerator
JP6486224B2 (en) Two-phase induction motor control device and heat pump device
JP2013217543A (en) Cooling compressor control device
AU2021417065B2 (en) Power conversion device, motor driving device, and refrigeration-cycle application device
JP2006313023A (en) Air conditioner
JP2016001931A (en) Inverter controller
JP2015169400A (en) Refrigerator compressor motor control system
KR20140145231A (en) Cooling apparatus and controlling method thereof
JP6093606B2 (en) Motor drive device
JP6714169B2 (en) Compressor drive device, heat pump device, air conditioner and refrigerator
KR100850673B1 (en) Refrigerator and operating method for same
JP6917201B2 (en) Power converter and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755363

Country of ref document: EP

Kind code of ref document: A1