WO2013128762A1 - Reactor, converter, and power conversion apparatus - Google Patents

Reactor, converter, and power conversion apparatus Download PDF

Info

Publication number
WO2013128762A1
WO2013128762A1 PCT/JP2012/083073 JP2012083073W WO2013128762A1 WO 2013128762 A1 WO2013128762 A1 WO 2013128762A1 JP 2012083073 W JP2012083073 W JP 2012083073W WO 2013128762 A1 WO2013128762 A1 WO 2013128762A1
Authority
WO
WIPO (PCT)
Prior art keywords
core portion
resin
magnetic
reactor
coil
Prior art date
Application number
PCT/JP2012/083073
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 稲葉
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Publication of WO2013128762A1 publication Critical patent/WO2013128762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields

Definitions

  • the present invention relates to a reactor used as a component of a power conversion device such as an in-vehicle DC-DC converter mounted on a vehicle such as a hybrid vehicle, a converter including the reactor, and a power conversion device including the converter. is there.
  • the present invention relates to a reactor that is excellent in manufacturability and easily suppresses magnetic saturation.
  • Patent Document 1 discloses a coil having a pair of coil elements as a reactor used in a converter mounted on a vehicle such as a hybrid vehicle, and an annular magnetic core that constitutes a closed magnetic circuit. What is provided is disclosed.
  • This magnetic core includes a coil arrangement part (inner core part) arranged in each coil element and an exposed part (outer core part) arranged so as to sandwich the inner core part between both ends of the coil.
  • the inner core portion may be combined with a gap member made of a nonmagnetic material such as alumina in order to adjust the inductance of the reactor.
  • an inner core part is comprised by interposing a gap member between the several core pieces of a compacting body. The gap member is integrated with each core piece by an adhesive, for example.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a reactor excellent in manufacturability. Moreover, the other objective of this invention is to provide a converter provided with this reactor, and a power converter device provided with this converter.
  • the reactor of the present invention includes a coil and a magnetic core that is disposed inside and outside the coil to form a closed magnetic circuit.
  • the magnetic core has a composite core portion made of a composite material including magnetic powder and resin, and a gap member. And this gap member is united with the said composite core part by the said resin, It is characterized by the above-mentioned.
  • the magnetic core is composed of the composite material, and the gap member is integrated with the resin contained in the composite material, so that the gap member is combined with the composite core portion as the composite core portion is manufactured.
  • productivity of the reactor can be improved.
  • the magnetic core having the gap member it is easy to suppress magnetic saturation even when a large current is applied to the coil.
  • the magnetic core may have an inner core portion disposed inside the coil.
  • this inner core part is comprised with the said composite core part.
  • the “inner core portion disposed inside the coil” in the reactor of the present invention means an inner core portion at least partially disposed inside the coil.
  • the case where the central portion of the inner core portion is disposed inside the coil and the vicinity of the end portion of the inner core portion is located outside the coil is also included in the “inner core portion disposed inside the coil”.
  • the composite core part may be formed by curing a resin of a composite material including a magnetic powder and a liquid resin.
  • the gap member can be integrated when the liquid resin is cured, and the integration of the composite core portion and the gap member can be easily realized.
  • the cured liquid resin is easy to ensure high bonding strength with the gap member.
  • the composite core part includes millable silicone rubber as the resin.
  • the gap member can be integrated when the millable silicone rubber is cured, and the composite core portion and the gap member can be easily integrated.
  • the millable silicone rubber has an appropriate elasticity even after curing, the composite material can absorb the vibration of the reactor and reduce the noise caused by the vibration.
  • due to its elasticity even if there is a difference in thermal expansion coefficient between the magnetic powder or the gap member and the rubber, it is possible to prevent the composite material from cracking or peeling from the gap member due to the deformation of the rubber. .
  • a millable silicone rubber has high heat resistance and hardly deteriorates even at high temperatures.
  • the inner core portion includes an integral composite core portion that is continuous in the coil axis direction, and gap members that are disposed on both end faces of the composite core portion.
  • the inner core portion by configuring the inner core portion with a series of composite core portions, it is not necessary to join a plurality of core pieces, and a reactor can be manufactured with high productivity.
  • the gap member by providing gap members on both end faces of the composite core portion, the gap member can be placed in a good balance, and before the resin of the composite material is cured, the composite material that forms the composite core portion and the gap member can also be mutually arranged. Easy to do.
  • the content of the magnetic powder in the composite material is 30 volume% or more and 75 volume% or less.
  • the magnetic properties such as saturation magnetic flux density can be easily ensured because the content of the magnetic powder is 30% by volume or more.
  • the content of the magnetic powder is 75% by volume or less, it can be easily mixed with a resin (eg, liquid epoxy resin or millable silicone rubber), and the productivity can be improved.
  • a more preferable content of the magnetic powder is 40 volume% or more and 65 volume% or less.
  • the resin content in the composite material is preferably 25% by volume or more and 70% by volume or less, more preferably 35% by volume or more and 60% by volume or less.
  • At least a part of the magnetic core other than the inner core part is formed of a powder compact.
  • the compacted body generally has a higher relative magnetic permeability than a composite core portion made of a composite material of magnetic powder and resin.
  • the inner core portion is composed of a composite core portion, and the inner core portion is formed at both end portions. If the outer core portion disposed outside the coil is formed of a compacted body, leakage of magnetic flux can be easily suppressed.
  • an inner core part is comprised with a composite core part, and locations other than the said inner core part among the said magnetic cores are comprised with the composite material containing magnetic powder and resin.
  • all of the magnetic core including the inner core portion is composed of a composite material, and the magnetic properties of the entire magnetic core and the magnetic properties of each portion of the magnetic core are adjusted by adjusting the type and content of the magnetic powder. Can be changed.
  • the converter of the present invention includes the above-described reactor of the present invention.
  • the converter includes a switching element, a drive circuit that controls the operation of the switching element, and a reactor that smoothes the switching operation, and converts the input voltage by the operation of the switching element.
  • the power conversion device of the present invention includes the above-described converter of the present invention.
  • Examples of the power converter include a converter that converts an input voltage and an inverter that is connected to the converter and converts DC and AC to each other, and a load is driven by the power converted by the inverter. It is done.
  • the converter of the present invention and the power converter of the present invention are less likely to be magnetically saturated, and are provided with the highly manufacturable reactor of the present invention. it can.
  • the gap member spacer
  • the gap member is abbreviated as “gap” in order to simplify the description.
  • the reactor of the present invention has high manufacturability as the reactor itself has excellent manufacturability of the magnetic core.
  • FIG. 1 is a schematic perspective view of a reactor according to a first embodiment.
  • 1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. It is a schematic circuit diagram which shows an example of the light power converter of this invention provided with the converter of this invention.
  • the reactor 1 includes a combination 10 of a coil 2 including a pair of coil elements 2A and 2B and a magnetic core 3 disposed inside and outside the coil 2 to form a closed magnetic path.
  • the magnetic core 3 includes an inner core portion 31 disposed inside the coil elements 2A and 2B, and an outer core portion 32 exposed from the coil elements 2A and 2B.
  • the reactor 1 is characterized in that the inner core portion 31 is composed of a composite core portion 31m and a gap (gap member) 31g, and the composite core portion 31m is formed of a composite material of magnetic powder and resin.
  • the composite core portion 31m and the gap 31g are integrated with resin.
  • the coil 2 includes a pair of coil elements 2A and 2B and a connecting portion 2r that connects both the coil elements 2A and 2B.
  • the coil elements 2A and 2B are formed in a hollow cylindrical shape with the same number of turns and the same winding direction, and are arranged side by side so that the axial directions are parallel to each other.
  • the connecting portion 2r is a U-shaped bent portion that connects the coil elements 2A and 2B on the other end side of the coil 2 (the right side in FIG. 1).
  • This coil 2 may be formed by spirally winding a single winding 2w having no joint as in this example, or each coil element 2A, 2B may be formed by separate windings, The ends of the windings of the coil elements 2A and 2B may be joined by soldering or crimping.
  • a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor such as a flat wire or a round wire made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used.
  • the conductor is made of a copper rectangular wire
  • the insulation coating is made of a coated rectangular wire made of enamel (typically polyamideimide), and each coil element 2A, 2B is edgewise wound around this covered rectangular wire. This is an edgewise coil.
  • the end face shape of each of the coil elements 2A and 2B is a shape obtained by rounding the rectangular corners, the end face shape can be changed as appropriate, such as a circular shape.
  • Both end portions 2a and 2b of the coil 2 are extended from the turn forming portion and connected to a terminal member (not shown).
  • An external device such as a power source for supplying power is connected to the coil 2 through this terminal member.
  • the magnetic core 3 is formed in an annular shape by combining a pair of inner core portions 31 and 31 disposed inside the coil elements 2A and 2B and a pair of outer core portions 32 and 32 exposed from the coil 2. The When the coil 2 is excited, a closed magnetic path is formed in the magnetic core 3.
  • the inner core portion 31 includes a composite core portion 31m made of a composite material including magnetic powder and resin, and a gap 31g.
  • magnetic powder examples include iron group metals such as Fe, Co, and Ni (for example, pure iron composed of Fe and inevitable impurities), and iron alloys mainly composed of Fe (for example, Fe-Si alloys, Fe-Ni). Iron-based materials such as Fe-Al alloys, Fe-Al alloys, Fe-Co alloys, Fe-Cr alloys, Fe-Si-Al alloys), and soft magnetic materials such as rare earth metals and ferrite. Also, a mixed powder of these magnetic powders may be used. Furthermore, a coating powder having an insulating coating such as a phosphate coating on the outer periphery of these soft magnetic powders may be used.
  • the average particle diameter of the magnetic powder is 1 ⁇ m or more and 1000 ⁇ m or less, particularly 10 ⁇ m or more and 500 ⁇ m or less.
  • the magnetic powder may contain a plurality of types of powders having different average particle sizes.
  • a saturation magnetic flux density is high and a low-loss reactor is easily obtained.
  • the magnetic powder in the composite core portion 31m and the powder used as the raw material of the composite material are substantially the same size (maintained), and when the magnetic powder satisfying the above range is used as the raw material, the average particle size is used. High fluidity and easy to uniformly disperse the magnetic powder in the composite material.
  • the content of the magnetic powder in the composite material is desirably 30% by volume or more and 75% by volume or less in terms of volume ratio when the composite material is 100%.
  • the magnetic powder is 30% by volume or more, it is easy to ensure magnetic characteristics such as the saturation magnetic flux density of the entire magnetic core 3.
  • the magnetic powder is 75% by volume or less, mixing with the resin is easy.
  • the magnetic characteristics of the composite core portion 31m can be adjusted by adjusting the composition of the magnetic powder, the content in the composite material, and the like.
  • a more preferable content of the magnetic powder is 40 volume% or more and 65 volume% or less.
  • the saturation magnetic flux density can be easily increased to 0.6 T or more by setting the content of the magnetic powder to 30 volume% or more, and to 40 volume% or more. It becomes easy to make saturation magnetic flux density 0.8T or more.
  • the content of the magnetic powder is 65% by volume or less, the mixture of the magnetic powder and the resin is more easily flowable, and the productivity is further improved.
  • a coating powder having an insulating coating on the surface of particles made of an iron-based material (pure iron) having an average particle size of 75 ⁇ m or less is used, and the content of the magnetic powder in the composite material is 45% by volume. Yes.
  • thermosetting resins such as epoxy resins, phenol resins, silicone resins, and urethane resins can be suitably used.
  • a thermosetting resin the composite material is filled in a molding die and heated to thermally cure the resin.
  • a liquid epoxy resin is used before curing.
  • a normal temperature curable resin or a low temperature curable resin can be used as the resin.
  • the composite material filled in the molding die is allowed to stand at a room temperature to a relatively low temperature to cure the resin.
  • thermoplastic resins such as polyphenylene sulfide (PPS) resin, polyimide resin, and fluororesin can be used as the resin.
  • PPS polyphenylene sulfide
  • BMC Bulk molding compound
  • the inner core portion 31 contains a relatively large amount of the above-mentioned resin, which is generally a nonmagnetic material, the saturation magnetic flux density is lower than that of a green compact using the same magnetic powder, and the relative permeability is high. Tends to be low.
  • the relative magnetic permeability of the composite core portion 31m can be changed by adjusting the content and material of the magnetic powder contained in the composite core portion 31m.
  • the relative magnetic permeability of the composite core portion 31m is preferably 5 or more and 50 or less, more preferably 5 or more and 35 or less, and particularly preferably 10 or more and 30 or less.
  • the saturation magnetic flux density of the composite core portion 31m is preferably 0.6T or more, more preferably 0.8T or more, and particularly preferably 1.0T or more.
  • the gap 31g is a member that is arranged between the core pieces and adjusts the inductance, and a material having a lower relative permeability than that of the composite core portion 31m can be used as a constituent material thereof.
  • Typical constituent materials include nonmagnetic materials such as alumina, glass epoxy resin, and unsaturated polyester.
  • a magnetic material having a small relative permeability can be used as a constituent material of the gap 31g.
  • magnetic powder Fe powder, Fe-Si powder, Sendust (Fe-Si-Al alloy) powder, ferrite powder, etc.
  • non-magnetic resin unsaturated polyester, phenol resin, epoxy resin, polyester, polyphenylene
  • PPS sulfide
  • the relative permeability of the constituent material of the gap 31g is preferably greater than 1 and less than 10, more preferably greater than 1 and less than 2, and particularly preferably between 1.1 and 1.4. This is because the smaller the relative magnetic permeability of the constituent material of the gap 31g, the thinner the gap 31g.
  • the number and thickness of the gaps 31g provided in the inner core portion 31 can be appropriately selected so that the reactor 1 has a desired inductance. Further, the position of the gap 31g in the inner core portion 31 can also be selected as appropriate. In this example, the gap 31g made of two alumina plates is integrated with each end face of one composite core portion 31m. However, a gap may be formed in the middle of the inner core portion. Furthermore, the shape of the composite core portion 31m and the shape of the gap 31g can be selected as appropriate. Here, the gap 31g has a rectangular plate shape corresponding to the shape of the composite core portion 31m.
  • the composite material is mixed with a filler, typically at least one nonmagnetic material powder selected from silicon nitride, alumina, aluminum nitride, boron nitride, and silicon carbide. May be.
  • a filler having excellent thermal conductivity such as ceramics can contribute to improvement of heat dissipation.
  • the content of the filler is 100% by mass of the composite material, 0.2% by mass or more, further 0.3% by mass or more, and particularly 0.5% by mass or more, it is easy to obtain a heat dissipation improvement effect, 20% by mass or less
  • the content is 15% by mass or less, particularly 10% by mass or less, a decrease in the ratio of magnetic powder or resin can be suppressed.
  • the filler is finer than the magnetic powder, it is easy to interpose between the magnetic particles, and it is easy to suppress a decrease in the proportion of the magnetic powder due to the inclusion of the filler.
  • the outer core portion 32 constitutes a portion other than the inner core portion 31 in the magnetic core 3.
  • a pair of parallel inner core portions 31 are sandwiched, and the outer core portion 32 is configured by a core piece disposed outside the coil 2 so as to connect the end faces of the inner core portion 31.
  • the outer core portion 32 is a trapezoidal block piece when seen in a plan view.
  • the shape of the outer core portion 32 when viewed in a plan view may be a semi-dome shape in addition to the trapezoid.
  • the upper surface of the outer core portion 32 of this example is flush with the upper surface of the inner core portion 31, but the lower surface protrudes below the lower surface of the inner core portion 31. That is, the lower surface of the outer core portion 32 and the lower surface of the coil 2 constitute a surface on the installation target side of the reactor 1. Since the reactor 1 is attached to an installation target such as a cooling base, not only the coil 2 but also the outer core portion 32 forms a surface on the installation target side, so that heat dissipation is excellent. Further, the upper surface of the outer core portion 32 may be protruded from the upper surface of the inner core portion 31.
  • the outer core portion 32 can be composed of a compacted body obtained by compression-molding magnetic powder, or a laminated steel plate obtained by insulating and laminating a plurality of electromagnetic steel plates. Usually, a compacting body and a laminated steel plate have a higher relative magnetic permeability than a molded and hardened body using a composite material. In this example, the outer core portion 32 is formed of a compacted body. If the outer core portion 32 is a green compact, the relative permeability of the inner core portion 31 is smaller than the relative permeability of the outer core portion 32, so that the magnetic flux hardly leaks to the outside.
  • a magnetic powder used in the composite material or a coating powder obtained by forming an insulating coating on the magnetic powder can be suitably used.
  • this insulating film a film made of silicone resin or phosphate can be used. If a powder compact is formed using magnetic powder having an insulating coating, the particles of the magnetic powder can be insulated from each other, and a low-loss magnetic core 3 can be constructed.
  • a resin powder serving as a binder is mixed with the magnetic powder, the mixed powder material is molded, and then a predetermined heat treatment is performed on the compact.
  • a non-thermoplastic resin can be used as the binder.
  • the insulator 5 that insulates between the coil 2 and the magnetic core 3 is interposed between the coil 2 and the magnetic core 3.
  • the insulator 5 includes a peripheral wall portion (not shown) that secures insulation between the inner core portion 31 and the coil 2, and a frame plate portion 52 that secures insulation between the end surfaces of the coil elements 2A and 2B and the outer core portion 32.
  • the peripheral wall portion has a cylindrical shape that surrounds the outer periphery of the inner core portion 31, a semi-cylindrical shape that divides the cylindrical body into two portions, and a pair of [types that are covered on the upper surface side and the lower surface side of the inner core portion 31. A piece etc. are mentioned.
  • As the frame plate portion 52 a B-shaped flat plate member having a pair of openings (through holes) into which the respective inner core portions 31 can be inserted can be suitably used.
  • Insulator 5 can be made of an insulating material such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, or liquid crystal polymer (LCP).
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • PBT polybutylene terephthalate
  • LCP liquid crystal polymer
  • the reactor 1 may include a case (not shown), and a combination 10 of the coil 2 and the magnetic core 3 may be housed in the case.
  • the case has a function of protecting the combined body 10 that is a stored item, and can be used as a heat dissipation path. Therefore, a material having excellent thermal conductivity, preferably a material having higher thermal conductivity than magnetic powder such as iron, for example, a metal such as aluminum, aluminum alloy, magnesium, magnesium alloy can be suitably used as the case material.
  • Aluminum, magnesium, and their alloys are lightweight, which contributes to reducing the weight of the reactor. Further, since aluminum, magnesium, and alloys thereof are nonmagnetic materials and conductive materials, leakage magnetic fluxes to the outside of the case can be effectively prevented.
  • the case can be easily manufactured by casting, cutting, plastic working, or the like.
  • the case 1 includes a bottom plate portion on which the combination is placed, and a peripheral wall portion surrounding the combination placed on the bottom plate portion, and the bottom plate portion
  • the peripheral wall is an independent member.
  • both the bottom plate portion and the peripheral wall portion are made of metal or resin
  • the bottom plate portion is made of metal
  • the peripheral wall portion is made of resin
  • the bottom plate portion is made of resin
  • the peripheral wall portion is made of metal.
  • the bottom plate part of the case is attached to a cooling base or the like on which a reactor is installed.
  • a bonding layer is provided between the combined body 10 and the inner bottom surface of the case (that is, the lower surfaces of the coil elements 2A and 2B and the lower surface of the outer core portion 32), and the combined body 10 and the inner bottom surface of the case are bonded. It is preferable to make it.
  • the bonding layer include an insulating sheet for ensuring insulation between the coil 2 and the bottom surface in the case and an adhesive sheet for bonding the assembly 10 on the insulating sheet.
  • the insulating sheet is attached to the inner bottom surface of the case with an adhesive or the like.
  • both sides of the adhesive sheet are sticky and soft, and the assembly 10 having a complicated uneven shape is firmly adhered to the insulating sheet.
  • the insulating sheet has an excellent thermal conductivity so that the heat generated in the coil 2 can be effectively transferred to the bottom surface inside the case in addition to the predetermined withstand voltage characteristics.
  • the thermal conductivity is 0.1 W / m ⁇ K or more, preferably 0.15 W / m ⁇ K or more, more preferably 0.5 W / m ⁇ K or more, further preferably 1 W / m ⁇ K or more, and particularly preferably 2.0. W / m ⁇ K or more.
  • the thickness of the insulating sheet can be appropriately selected so as to satisfy the insulating characteristics required between the bottom surface of the case and the assembly 10.
  • the thickness of the insulating sheet varies depending on the material used for the insulating sheet, but it is sufficient that the thickness is approximately 10 ⁇ m or more.
  • the adhesive sheet is required to have an insulation characteristic that can sufficiently insulate between the coil 2 and the bottom surface of the case, and a heat resistance that does not soften against the maximum temperature when the reactor 1 is used.
  • thermosetting resins such as epoxy resins, silicone resins, and unsaturated polyesters
  • thermoplastic insulating resins such as polyphenylene sulfide (PPS) resins and liquid crystal polymers (LCP)
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymers
  • the thermal conductivity of the adhesive sheet is preferably at least 0.1 W / m ⁇ K, more preferably at least 0.15 W / m ⁇ K, even more preferably at least 0.5 W / m ⁇ K, particularly preferably at least 1 W / m ⁇ K. K or more, most preferably 2.0 W / m ⁇ K or more.
  • sealing resin When a case is used, it is preferable that a sealing resin (not shown) is filled between the case and the combined body 10 as necessary, and cured. The assembly can be protected electrically and mechanically by the sealing resin.
  • Specific examples of the sealing resin include epoxy resin, urethane resin, and silicone resin.
  • the resin containing the filler having excellent insulating properties and thermal conductivity described above is used as the sealing resin, the insulating properties and heat dissipation properties can be further improved.
  • the coil 2 may be molded in advance with an inner resin portion (not shown) and the coil 2 may be formed as a coil molded body. With such a coil molded body, the coil 2 does not expand and contract, the coil 2 can be easily handled, and the productivity of the reactor 1 can be improved.
  • a thermosetting resin such as an epoxy resin, a silicone resin, or an unsaturated polyester, or a thermoplastic insulating resin such as a polyphenylene sulfide (PPS) resin or a liquid crystal polymer (LCP) can be suitably used.
  • At least a part of the outer periphery of the combined body 10 may be covered with an outer resin portion (not shown).
  • the assembly 10 can be protected electrically and mechanically by the outer resin portion.
  • the same resin as the inner resin part can be suitably used.
  • the outer resin portion it is preferable for heat dissipation that the bottom surface side of the reactor installed on the cooling base is not covered with the outer resin portion and the coil 2 and the outer core portion 32 are exposed.
  • Reactor 1 having the above-described configuration has applications where current-carrying conditions are, for example, maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle It can be suitably used as a component part of a vehicle-mounted power conversion device such as a hybrid vehicle.
  • DC maximum current
  • the reactor described above is manufactured by preparing the coil 2, the inner core portion 31, and the outer core portion 32 and combining them.
  • the manufacturing method of the inner core portion 31 will be mainly described below.
  • the inner core portion 31 (core member) manufacturing method includes a preparation step of preparing a composite material of magnetic powder and resin, a gap arrangement step of arranging a gap 31g at a predetermined position in the mold, and an arrangement of the gap 31g.
  • the above-mentioned magnetic powder and uncured resin are prepared and mixed to form a composite material. At that time, the magnetic powder and the resin are mixed uniformly. If necessary, mix the filler.
  • the gap 31g is positioned at a predetermined position of the mold filled with the composite material.
  • a pair of gaps 31g are arranged so as to face both end portions of a rectangular parallelepiped cavity in the mold.
  • the composite material is filled in the mold in which the gap 31g is disposed, and the resin is cured to produce the composite core portion 31m.
  • This molding can typically be formed by injection molding or cast molding.
  • injection molding magnetic powder and fluid resin (liquid resin) are mixed, and this mixture (slurry mixture) is poured into a mold having a predetermined shape under a predetermined pressure. Then, the resin is cured.
  • the resin used generally has a viscosity.
  • cast molding a mixture similar to that of injection molding is obtained, and then the mixture is injected into a mold without applying pressure to be molded and cured. By such resin curing, the gap 31g is integrated with the composite core portion 31m.
  • the molded body When the resin is cured, the molded body is removed from the mold, and the molded body is used as the inner core portion 31.
  • the inner core portion 31 is manufactured, the inner core portion 31 is disposed in each coil element of the coil 2 prepared in advance, and the outer core portion 32 is attached to the end surface of the inner core portion 31 with an adhesive or the like. Attach and form the union 10.
  • the obtained combination 10 is housed in a case or provided with an outer resin part as necessary.
  • the inner core portion 31 is made of a composite material, and when the resin contained in the composite material is cured, the gap 31g is also integrated, so that the gap 31g is produced along with the manufacture of the composite core portion 31m. Can be fixed at an appropriate position, and the productivity of the reactor can be improved.
  • the magnetic core 3 having the gap 31g can be configured, and the reactor 1 which is difficult to be magnetically saturated can be easily constructed.
  • ⁇ Constitution ⁇ Millable silicone rubber is a rubber (polymer) having elasticity with an elongation of 100% or more after curing, and has a Young's modulus of about 0.1 to 50 MPa at room temperature (25 ° C.). By satisfying this range, it is possible to obtain a vibration absorption effect and a crack prevention effect while maintaining the shape as a composite material.
  • the resin used for the conventional composite material has a Young's modulus after curing of about 3.0 to 30 GPa in the case of epoxy resin, and about 0.1 to 50 MPa in the case of silicone resin.
  • the cured millable silicone rubber is mainly composed of a linear polymer having a polymerization degree of 3000 to 10000, while the conventional cured silicone resin is mainly composed of a linear polymer having a polymerization degree of 100 to 2000. .
  • the composite material is obtained by blending magnetic powder and millable silicone rubber before curing and kneading. Moreover, in order to bridge
  • vulcanizing agent for example, a peroxide vulcanizing agent can be used.
  • the curing temperature is usually 150 to 200 ° C., and the curing time is usually 5 to 60 minutes.
  • Low molecular weight siloxane is known to cause contact failure, and if low molecular weight siloxane remains in the composite material, low molecular weight siloxane is generated from the composite material, and the electronic components placed around the reactor May cause a contact failure. Therefore, by reducing the amount of low molecular siloxane in the composite material, it is possible to suppress the generation of low molecular siloxane and avoid problems such as contact failure. Moreover, crosslinking can be promoted by heat treatment, and the strength can be further increased.
  • the relative magnetic permeability of the composite core part using millable silicone rubber can be changed by adjusting the content and material of the magnetic powder contained in the composite core part.
  • the relative magnetic permeability of the composite core part is preferably 5 or more and 50 or less, more preferably 5 or more and 35 or less, and particularly preferably 10 or more and 30 or less.
  • the saturation magnetic flux density of the composite core part is preferably 0.6T or more, more preferably 0.8T or more, and particularly preferably 1.0T or more.
  • the precursor of the composite core portion 31m may be formed by filling the composite material into a mold. This precursor is not cured with millable silicone rubber.
  • compression molding, injection molding, transfer molding, extrusion molding or the like can be used.
  • the precursor is later disposed in a mold in which the gap 31g is disposed at a predetermined position and is cured, whereby the gap 31g is integrated to form the inner core portion 31.
  • the inner core portion 31 after the millable silicone rubber is cured it may be maintained for 30 minutes or more and 4 hours or less while being heated to 150 ° C. or higher and 220 ° C. or lower.
  • the heating temperature By setting the heating temperature to 150 ° C. or more and the holding time to 30 minutes or more, an effect of reducing low molecular siloxane remaining in the composite material can be easily obtained. Moreover, unnecessary heating can be suppressed by setting the heating temperature to 220 ° C. or lower.
  • the holding time is preferably 4 hours or less.
  • the resin of the composite material is a millable silicone rubber, it has low fluidity before curing, and has a higher viscosity than the liquid resin used in the past, and the magnetic powder and the resin (rubber) are combined. After kneading, the magnetic powder is unlikely to settle, and the state in which the magnetic powder is uniformly dispersed in the composite material can be maintained. Therefore, it is easy to realize an inductance as designed.
  • the inner core part in which the composite core part and the gap are integrated can be configured, the productivity of the reactor is excellent.
  • the resin in the composite material is rubber and has elasticity and is soft even after being cured, the composite material can absorb vibrations and reduce noise due to vibrations. Even if a difference in thermal expansion coefficient occurs between the resin and the resin, the composite material can be prevented from cracking due to deformation. Furthermore, if it is a millable silicone rubber, it has high heat resistance and hardly deteriorates even at high temperatures.
  • Embodiment 3 in which the outer core part is composed of a composite material including magnetic powder and resin will be described.
  • the reactor of this invention is the same as that of Embodiment 1 and 2 except the point from which the material of an outer core part differs. The following description will focus on differences from the first and second embodiments.
  • the material of the outer core portion is, for example, a composite material (molded and cured body) similar to that of the inner core portion of Embodiment 1, or magnetic powder and millable silicone rubber similar to those of the inner core portion of Embodiment 2. It can be a composite material comprising.
  • the material of the outer core part may be a composite material different from the inner core part.
  • changing content of the magnetic powder contained in a composite material is mentioned.
  • changing the material of the magnetic powder contained in a composite material is mentioned.
  • the relative permeability of the outer core portion can be adjusted by changing the content and material of the magnetic powder contained in the composite material.
  • the outer core portion can have a higher relative permeability than the inner core portion, and the content of magnetic powder than the inner core portion.
  • the outer core portion having a lower relative permeability than the inner core portion can be obtained.
  • a magnetic powder having a relative permeability higher than that of the inner core portion an outer core portion having a higher relative permeability than the inner core portion can be obtained, and a magnetic property having a lower relative permeability than that of the inner core portion.
  • an outer core portion having a lower relative permeability than the inner core portion can be obtained.
  • the relative magnetic permeability of the composite material constituting the outer core portion is preferably 5 or more and 50 or less, more preferably 5 or more and 35 or less, and further preferably 10 or more and 30 or less.
  • the saturation magnetic flux density of the composite material is preferably 0.6 T or more, more preferably 0.8 T or more, and particularly preferably 1.0 T or more.
  • the relative magnetic permeability of the entire magnetic core is preferably 10 or more and 50 or less, and particularly preferably 10 or more and 35 or less.
  • Embodiment 4 Next, a reactor according to Embodiment 4 including a so-called pot core type magnetic core will be described (not shown). In this example as well, differences from the first to third embodiments will be mainly described.
  • the reactor includes one coil, an inner core portion disposed inside the coil, an outer core portion disposed on the outer periphery of the coil, and a connecting core portion that connects between the end surfaces of the inner core portion and the outer core portion.
  • a pot core type reactor is disclosed in, for example, Japanese Unexamined Patent Publication No. 2009-33051.
  • the end face shape of the coil is circular, and the round bar-shaped inner core portion disposed in the coil is configured using the same composite material as in the first and second embodiments.
  • the round core-shaped inner core portion includes a composite core portion made of a composite material including magnetic powder and resin, and a gap integrated with the composite material resin on both end faces of the composite core portion.
  • the outer peripheral core portion is a hollow cylindrical body that houses a coil, and the connecting core portion is a disc body having substantially the same diameter as the outer peripheral core portion.
  • the composite core portion and the gap can be integrated in the production process of the inner core portion, and a reactor excellent in manufacturability can be easily constructed.
  • Embodiment 5 The reactors of Embodiments 1 to 4 according to the present invention described above can be used, for example, as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including this converter.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power converter 1100 connected to the main battery 1210, and power supplied from the main battery 1210 as shown in FIG.
  • the motor (load) 1220 is provided.
  • the motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration.
  • vehicle 1200 includes an engine in addition to motor 1220.
  • FIG. 2 although an inlet is shown as a charging location of the vehicle 1200, a form provided with a plug may be sufficient.
  • the power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current.
  • the converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running and supplies power to the inverter 1120.
  • converter 1110 steps down a DC voltage (input voltage) output from motor 1220 via inverter 1120 to a DC voltage suitable for main battery 1210 during regeneration, and charges main battery 1210.
  • the inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running and supplies power to the motor 1220. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L.
  • the converter 1110 repeats ON / OFF (switching operation) to change the input voltage. Conversion (step-up / step-down in this case) is performed.
  • a power device such as an FET or an IGBT is used.
  • the reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that tends to prevent the change of the current to flow through the circuit.
  • the reactors of the first to fourth embodiments are provided. By including the reactor 1 capable of reducing noise caused by vibration, the power conversion device 1100 and the converter 1110 are excellent in quietness.
  • Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 as a power source for auxiliary devices 1240, and main battery 1210.
  • Auxiliary power supply converter 1160 for converting high voltage to low voltage is provided.
  • the converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some converters 1150 for power feeding devices perform DC-DC conversion.
  • the reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as the reactors of the first to third embodiments, and a reactor whose size and shape are appropriately changed can be used.
  • the reactors of the first to fourth embodiments can be used for a converter that converts input power, that is, a converter that only performs step-up or a converter that performs only step-down.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
  • the composition of the composite material such as the content of magnetic powder and resin
  • the material and particle size of the magnetic powder can be appropriately changed.
  • the reactor of the present invention can be used for components of power conversion devices such as DC-DC converters and air conditioner converters mounted on vehicles such as hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • power conversion devices such as DC-DC converters and air conditioner converters mounted on vehicles such as hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • Reactor 10 Combination 2 Coil 2A, 2B Coil element 2a, 2b End 2r Coupling 2w Winding 3 Magnetic core 31 Inner core 31m Composite core 31g Gap (gap member) 32 Outer core 5 Insulator 52 Frame plate 1100 Power converter 1110 Converter 1111 Switching element 1112 Drive circuit L Reactor 1120 Inverter 1150 Power supply converter 1160 Auxiliary power converter 1200 Vehicle 1210 Main battery 1220 Motor 1230 Sub battery 1240 Auxiliary Class 1250 wheels

Abstract

This reactor is provided with a coil (2), and a magnetic core (3), which is disposed inside and outside of the coil (2), and which forms a closed magnetic circuit. The magnetic core (3) has a gap member (31g), and a composite core section (31m), which is composed of a composite material containing a magnetic powder and a resin. The gap member (31g) is integrated with the composite core section (31m) using the resin. When the composite core section (31m) is manufactured, the gap member (31g) and the composite core section (31m) can be integrated with each other at the same time by integrating the gap member (31g) using the resin contained in the composite material.

Description

リアクトル、コンバータ、及び電力変換装置Reactor, converter, and power converter
 本発明は、ハイブリッド自動車などの車両に搭載される車載用DC-DCコンバータといった電力変換装置の構成部品などに利用されるリアクトル、このリアクトルを備えるコンバータ、及びこのコンバータを備える電力変換装置に関するものである。特に、製造性に優れ、磁気飽和を抑制し易いリアクトルに関するものである。 The present invention relates to a reactor used as a component of a power conversion device such as an in-vehicle DC-DC converter mounted on a vehicle such as a hybrid vehicle, a converter including the reactor, and a power conversion device including the converter. is there. In particular, the present invention relates to a reactor that is excellent in manufacturability and easily suppresses magnetic saturation.
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。例えば、特許文献1は、ハイブリッド自動車などの車両に載置されるコンバータに利用されるリアクトルとして、一対のコイル素子を有するコイルと、コイルが配置され、閉磁路を構成する環状の磁性コアとを備えるものを開示している。 Reactor is one of the circuit components that perform voltage step-up and step-down operations. For example, Patent Document 1 discloses a coil having a pair of coil elements as a reactor used in a converter mounted on a vehicle such as a hybrid vehicle, and an annular magnetic core that constitutes a closed magnetic circuit. What is provided is disclosed.
 この磁性コアは、各コイル素子内に配置されるコイル配置部(内側コア部)と、コイルの両端に内側コア部を挟むように配置される露出部(外側コア部)とを備える。そのうち、内側コア部は、リアクトルのインダクタンスを調整するため、アルミナなどの非磁性材料からなるギャップ部材が組み合わされることがある。例えば、圧粉成形体の複数のコア片の間にギャップ部材を介在して内側コア部を構成する。このギャップ部材は、例えば接着剤により各コア片と一体にされる。 This magnetic core includes a coil arrangement part (inner core part) arranged in each coil element and an exposed part (outer core part) arranged so as to sandwich the inner core part between both ends of the coil. Among them, the inner core portion may be combined with a gap member made of a nonmagnetic material such as alumina in order to adjust the inductance of the reactor. For example, an inner core part is comprised by interposing a gap member between the several core pieces of a compacting body. The gap member is integrated with each core piece by an adhesive, for example.
特開2009-33055号公報(図6)JP 2009-33055 A (FIG. 6)
 しかし、上記のリアクトルでは、その製造性に改善の余地がある。上記の技術では、圧粉成形体のコア片を作製する工程とは別に、このコア片とギャップ部材とを接着剤により貼り合わせる工程が必要になる。そのため、磁性コア部にギャップ部材を有するリアクトルにおいて、より高い製造性のリアクトルが求められている。 However, there is room for improvement in the manufacturability of the above reactor. In the above technique, a step of bonding the core piece and the gap member with an adhesive is required in addition to the step of producing the core piece of the green compact. Therefore, a reactor having higher manufacturability is required for a reactor having a gap member in the magnetic core portion.
 本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、製造性に優れるリアクトルを提供することにある。また、本発明の他の目的は、このリアクトルを備えるコンバータ、このコンバータを備える電力変換装置を提供することにある。 The present invention has been made in view of the above circumstances, and one of its purposes is to provide a reactor excellent in manufacturability. Moreover, the other objective of this invention is to provide a converter provided with this reactor, and a power converter device provided with this converter.
 本発明のリアクトルは、コイルと、コイルの内外に配置されて閉磁路を形成する磁性コアとを備える。このリアクトルにおいて、磁性コアは、磁性粉末と樹脂とを含む複合材料からなる複合コア部と、ギャップ部材とを有する。そして、このギャップ部材は上記樹脂により上記複合コア部と一体にされていることを特徴とする。 The reactor of the present invention includes a coil and a magnetic core that is disposed inside and outside the coil to form a closed magnetic circuit. In this reactor, the magnetic core has a composite core portion made of a composite material including magnetic powder and resin, and a gap member. And this gap member is united with the said composite core part by the said resin, It is characterized by the above-mentioned.
 この構成によれば、磁性コアの少なくとも一部を複合材料で構成し、その複合材料に含まれる樹脂でギャップ部材を一体化することにより、複合コア部の作製に伴ってギャップ部材を複合コア部と一体化することができ、リアクトルの製造性を高めることができる。また、ギャップ部材を有する磁性コアとすることで、特に大電流がコイルに通電された場合でも、磁気飽和を抑制し易い。 According to this configuration, at least a part of the magnetic core is composed of the composite material, and the gap member is integrated with the resin contained in the composite material, so that the gap member is combined with the composite core portion as the composite core portion is manufactured. And the productivity of the reactor can be improved. In addition, by using the magnetic core having the gap member, it is easy to suppress magnetic saturation even when a large current is applied to the coil.
 本発明のリアクトルの一形態として、上記磁性コアは、コイルの内側に配置される内側コア部を有する形態が挙げられる。その場合、この内側コア部を上記複合コア部で構成することが挙げられる。本発明のリアクトルにおける「コイルの内側に配置される内側コア部」とは、少なくとも一部がコイルの内部に配置されている内側コア部を意味する。例えば、内側コア部の中央部分がコイルの内部に配置され、内側コア部の端部付近がコイルの外側に位置するような場合も「コイルの内側に配置される内側コア部」に含まれる。 As an embodiment of the reactor of the present invention, the magnetic core may have an inner core portion disposed inside the coil. In that case, it is mentioned that this inner core part is comprised with the said composite core part. The “inner core portion disposed inside the coil” in the reactor of the present invention means an inner core portion at least partially disposed inside the coil. For example, the case where the central portion of the inner core portion is disposed inside the coil and the vicinity of the end portion of the inner core portion is located outside the coil is also included in the “inner core portion disposed inside the coil”.
 この構成によれば、内側コア部を複合コア部で構成することにより、内側コア部の製造性を改善することができる。それにより、リアクトルの製造性を高めることができる。 According to this configuration, it is possible to improve the manufacturability of the inner core portion by configuring the inner core portion with a composite core portion. Thereby, the manufacturability of the reactor can be increased.
 本発明のリアクトルの一形態として、上記複合コア部は、磁性粉末と液状樹脂とを含む複合材料の樹脂を硬化させて形成されてなることが挙げられる。 As one form of the reactor of the present invention, the composite core part may be formed by curing a resin of a composite material including a magnetic powder and a liquid resin.
 この構成によれば、液状樹脂が硬化する際にギャップ部材を一体化することができ、複合コア部とギャップ部材の一体化を容易に実現できる。硬化した液状樹脂は、ギャップ部材と高い接合強度を確保し易い。 According to this configuration, the gap member can be integrated when the liquid resin is cured, and the integration of the composite core portion and the gap member can be easily realized. The cured liquid resin is easy to ensure high bonding strength with the gap member.
 本発明のリアクトルの一形態として、上記複合コア部は、上記樹脂として、ミラブル型シリコーンゴムを含むことが挙げられる。 As one form of the reactor of the present invention, the composite core part includes millable silicone rubber as the resin.
 この構成によれば、ミラブル型シリコーンゴムが硬化する際にギャップ部材を一体化することができ、複合コア部とギャップ部材の一体化を容易に実現できる。また、ミラブル型シリコーンゴムは、硬化後においても適度な弾性を有するため、複合材料がリアクトルの振動を吸収して、振動による騒音を低減することができる。加えて、その弾性により、磁性粉末やギャップ部材とゴムとの間で熱膨張係数差が生じても、ゴムが変形することにより、複合材料にクラックやギャップ部材との剥離が生じることを防止できる。特に、ミラブル型シリコーンゴムであれば、耐熱性が高く、高温でも劣化し難い。 According to this configuration, the gap member can be integrated when the millable silicone rubber is cured, and the composite core portion and the gap member can be easily integrated. In addition, since the millable silicone rubber has an appropriate elasticity even after curing, the composite material can absorb the vibration of the reactor and reduce the noise caused by the vibration. In addition, due to its elasticity, even if there is a difference in thermal expansion coefficient between the magnetic powder or the gap member and the rubber, it is possible to prevent the composite material from cracking or peeling from the gap member due to the deformation of the rubber. . In particular, a millable silicone rubber has high heat resistance and hardly deteriorates even at high temperatures.
 本発明のリアクトルの一形態として、上記内側コア部は、コイル軸方向に連続する一体の複合コア部と、この複合コア部の両端面に配置されるギャップ部材とを備えることが挙げられる。 As one form of the reactor of the present invention, the inner core portion includes an integral composite core portion that is continuous in the coil axis direction, and gap members that are disposed on both end faces of the composite core portion.
 この構成によれば、内側コア部を一連の複合コア部で構成することにより、複数のコア片を接合したりする必要がなく、高い製造性にてリアクトルを製造できる。また、複合コア部の両端面にギャップ部材を備えることで、ギャップ部材の配置バランスがよく、かつ複合材料の樹脂の硬化前において、複合コア部になる複合材料とギャップ部材との相互の配置も容易にできる。 According to this configuration, by configuring the inner core portion with a series of composite core portions, it is not necessary to join a plurality of core pieces, and a reactor can be manufactured with high productivity. In addition, by providing gap members on both end faces of the composite core portion, the gap member can be placed in a good balance, and before the resin of the composite material is cured, the composite material that forms the composite core portion and the gap member can also be mutually arranged. Easy to do.
 本発明のリアクトルの一形態として、複合材料中の磁性粉末の含有量が、30体積%以上75体積%以下であることが挙げられる。 As one form of the reactor of the present invention, the content of the magnetic powder in the composite material is 30 volume% or more and 75 volume% or less.
 複合材料を100%とするとき、磁性粉末の含有量が30体積%以上であることで、飽和磁束密度などの磁気特性を確保し易い。一方、磁性粉末の含有量が75体積%以下であることで、樹脂(例、液状のエポキシ樹脂やミラブル型シリコーンゴム)との混合が行い易く、製造性を高めることができ、また、磁性粉末を均一に分散させ易い。より好ましい磁性粉末の含有量は、40体積%以上65体積%以下である。複合材料中の樹脂の含有量は、25体積%以上70体積%以下が好ましく、より好ましくは35体積%以上60体積%以下である。 When the composite material is 100%, the magnetic properties such as saturation magnetic flux density can be easily ensured because the content of the magnetic powder is 30% by volume or more. On the other hand, when the content of the magnetic powder is 75% by volume or less, it can be easily mixed with a resin (eg, liquid epoxy resin or millable silicone rubber), and the productivity can be improved. Are easily dispersed uniformly. A more preferable content of the magnetic powder is 40 volume% or more and 65 volume% or less. The resin content in the composite material is preferably 25% by volume or more and 70% by volume or less, more preferably 35% by volume or more and 60% by volume or less.
 本発明のリアクトルの一形態として、上記磁性コアのうち、上記内側コア部以外の箇所の少なくとも一部が圧粉成形体で構成されていることが挙げられる。 As one form of the reactor of the present invention, it is mentioned that at least a part of the magnetic core other than the inner core part is formed of a powder compact.
 この構成によれば、内側コア部以外の少なくとも一部を圧粉成形体で構成することで、磁束の漏れを抑制し易い。圧粉成形体は、一般に、磁性粉末と樹脂との複合材料からなる複合コア部に比べて比透磁率が高く、特に、内側コア部を複合コア部で構成し、この内側コア部を両端部から挟んでコイルの外側に配置される外側コア部を圧粉成形体で構成すれば、磁束の漏れを抑制し易い。 According to this configuration, it is easy to suppress the leakage of magnetic flux by configuring at least a part other than the inner core portion with the green compact. The compacted body generally has a higher relative magnetic permeability than a composite core portion made of a composite material of magnetic powder and resin. In particular, the inner core portion is composed of a composite core portion, and the inner core portion is formed at both end portions. If the outer core portion disposed outside the coil is formed of a compacted body, leakage of magnetic flux can be easily suppressed.
 本発明のリアクトルの一形態として、内側コア部が複合コア部で構成され、さらに上記磁性コアのうち上記内側コア部以外の箇所が、磁性粉末と樹脂とを含む複合材料で構成されていることが挙げられる。 As one form of the reactor of this invention, an inner core part is comprised with a composite core part, and locations other than the said inner core part among the said magnetic cores are comprised with the composite material containing magnetic powder and resin. Is mentioned.
 この構成によれば、内側コア部を含む磁性コアの全てが複合材料で構成され、磁性コア全体の磁気特性や、磁性コアの各部の磁気特性を磁性粉末の種類や含有量を調整することで変化させることができる。 According to this configuration, all of the magnetic core including the inner core portion is composed of a composite material, and the magnetic properties of the entire magnetic core and the magnetic properties of each portion of the magnetic core are adjusted by adjusting the type and content of the magnetic powder. Can be changed.
 本発明のコンバータは、上記した本発明のリアクトルを備える。コンバータとしては、スイッチング素子と、上記スイッチング素子の動作を制御する駆動回路と、スイッチング動作を平滑にするリアクトルとを備え、上記スイッチング素子の動作により、入力電圧を変換する形態が挙げられる。 The converter of the present invention includes the above-described reactor of the present invention. The converter includes a switching element, a drive circuit that controls the operation of the switching element, and a reactor that smoothes the switching operation, and converts the input voltage by the operation of the switching element.
 本発明の電力変換装置は、上記した本発明のコンバータを備える。電力変換装置としては、入力電圧を変換するコンバータと、上記コンバータに接続されて、直流と交流とを相互に変換するインバータとを備え、このインバータで変換された電力により負荷を駆動する形態が挙げられる。 The power conversion device of the present invention includes the above-described converter of the present invention. Examples of the power converter include a converter that converts an input voltage and an inverter that is connected to the converter and converts DC and AC to each other, and a load is driven by the power converted by the inverter. It is done.
 本発明コンバータや本発明電力変換装置は、磁気飽和し難く、製造性の高い本発明のリアクトルを備えることで、このリアクトルの特徴を備えるコンバータや電力変換装置として、車載部品などに利用することができる。
 なお、本明細書の実施形態においては、記載の簡略化を図るため、ギャップ部材(スペーサー)のことを「ギャップ」と略記する。
The converter of the present invention and the power converter of the present invention are less likely to be magnetically saturated, and are provided with the highly manufacturable reactor of the present invention. it can.
In the embodiments of the present specification, the gap member (spacer) is abbreviated as “gap” in order to simplify the description.
 本発明のリアクトルは、磁性コアの製造性に優れることに伴い、リアクトル自体も高い製造性を備える。 The reactor of the present invention has high manufacturability as the reactor itself has excellent manufacturability of the magnetic core.
実施形態1に係るリアクトルの概略斜視図である。1 is a schematic perspective view of a reactor according to a first embodiment. ハイブリッド自動車の電源系統を模式的に示す概略構成図である。1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. 本発明のコンバータを備える本発の明電力変換装置の一例を示す概略回路図である。It is a schematic circuit diagram which shows an example of the light power converter of this invention provided with the converter of this invention.
 以下、図を参照して、本発明の実施形態を説明する。各図において、同一部材には同一符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, the same reference numerals are assigned to the same members.
 [実施形態1]
 〔リアクトルの概要〕
 図1を参照して、実施形態1に係るリアクトル1を説明する。このリアクトル1は、一対のコイル素子2A,2Bを備えるコイル2と、コイル2の内外に配置されて閉磁路を形成する磁性コア3との組合体10を備える。磁性コア3は、各コイル素子2A,2Bの内側に配置される内側コア部31と、各コイル素子2A,2Bから露出される外側コア部32とを備える。このリアクトル1の特徴とするところは、内側コア部31が複合コア部31mとギャップ(ギャップ部材)31gとで構成され、その複合コア部31mが磁性粉末と樹脂の複合材料で形成されて、その樹脂により複合コア部31mとギャップ31gとが一体化されていることにある。以下、このリアクトル1の各構成を詳細に説明する。
[Embodiment 1]
[Outline of the reactor]
With reference to FIG. 1, the reactor 1 which concerns on Embodiment 1 is demonstrated. The reactor 1 includes a combination 10 of a coil 2 including a pair of coil elements 2A and 2B and a magnetic core 3 disposed inside and outside the coil 2 to form a closed magnetic path. The magnetic core 3 includes an inner core portion 31 disposed inside the coil elements 2A and 2B, and an outer core portion 32 exposed from the coil elements 2A and 2B. The reactor 1 is characterized in that the inner core portion 31 is composed of a composite core portion 31m and a gap (gap member) 31g, and the composite core portion 31m is formed of a composite material of magnetic powder and resin. The composite core portion 31m and the gap 31g are integrated with resin. Hereinafter, each configuration of the reactor 1 will be described in detail.
 〔コイル〕
 コイル2は、一対のコイル素子2A,2Bと、両コイル素子2A,2Bを連結する連結部2rとを備える。各コイル素子2A,2Bは、互いに同一の巻数、同一の巻回方向で中空筒状に形成され、各軸方向が平行するように横並びに並列されている。また、連結部2rは、コイル2の他端側(図1において紙面右側)において両コイル素子2A,2Bを繋ぐU字状に屈曲された部分である。このコイル2は、本例のように、接合部の無い一本の巻線2wを螺旋状に巻回して形成しても良いし、各コイル素子2A,2Bを別々の巻線により作製し、各コイル素子2A,2Bの巻線の端部同士を半田付けや圧着などにより接合することで形成しても良い。
〔coil〕
The coil 2 includes a pair of coil elements 2A and 2B and a connecting portion 2r that connects both the coil elements 2A and 2B. The coil elements 2A and 2B are formed in a hollow cylindrical shape with the same number of turns and the same winding direction, and are arranged side by side so that the axial directions are parallel to each other. The connecting portion 2r is a U-shaped bent portion that connects the coil elements 2A and 2B on the other end side of the coil 2 (the right side in FIG. 1). This coil 2 may be formed by spirally winding a single winding 2w having no joint as in this example, or each coil element 2A, 2B may be formed by separate windings, The ends of the windings of the coil elements 2A and 2B may be joined by soldering or crimping.
 コイル2は、銅やアルミニウム、その合金といった導電性材料からなる平角線や丸線などの導体の外周に、絶縁性材料からなる絶縁被覆を備える被覆線を好適に利用できる。本例では、導体が銅製の平角線からなり、絶縁被覆がエナメル(代表的にはポリアミドイミド)からなる被覆平角線を利用し、各コイル素子2A,2Bは、この被覆平角線をエッジワイズ巻きにしたエッジワイズコイルである。また、各コイル素子2A,2Bの端面形状を長方形の角部を丸めた形状としているが、端面形状は、円形状など適宜変更することができる。 As the coil 2, a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor such as a flat wire or a round wire made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used. In this example, the conductor is made of a copper rectangular wire, and the insulation coating is made of a coated rectangular wire made of enamel (typically polyamideimide), and each coil element 2A, 2B is edgewise wound around this covered rectangular wire. This is an edgewise coil. Further, although the end face shape of each of the coil elements 2A and 2B is a shape obtained by rounding the rectangular corners, the end face shape can be changed as appropriate, such as a circular shape.
 コイル2の両端部2a,2bは、ターン形成部分から引き延ばされて、図示しない端子部材に接続されている。この端子部材を介して、コイル2に電力供給を行なう電源などの外部装置(図示せず)が接続される。 Both end portions 2a and 2b of the coil 2 are extended from the turn forming portion and connected to a terminal member (not shown). An external device (not shown) such as a power source for supplying power is connected to the coil 2 through this terminal member.
 〔磁性コア〕
 磁性コア3は、各コイル素子2A,2Bの内部に配置される一対の内側コア部31,31と、コイル2から露出されている一対の外側コア部32,32とを組み合わせて環状に形成される。コイル2を励磁した際、この磁性コア3に閉磁路が形成される。
[Magnetic core]
The magnetic core 3 is formed in an annular shape by combining a pair of inner core portions 31 and 31 disposed inside the coil elements 2A and 2B and a pair of outer core portions 32 and 32 exposed from the coil 2. The When the coil 2 is excited, a closed magnetic path is formed in the magnetic core 3.
  {内側コア部}
 内側コア部31は、磁性粉末と樹脂とを含む複合材料からなる複合コア部31mと、ギャップ31gとを有する。
{Inner core}
The inner core portion 31 includes a composite core portion 31m made of a composite material including magnetic powder and resin, and a gap 31g.
   (磁性粉末)
 磁性粉末の材質としては、Fe,Co,Niなどの鉄族金属(例えば、Fe及び不可避的不純物からなる純鉄)、Feを主成分とする鉄合金(例えばFe-Si系合金,Fe-Ni系合金,Fe-Al系合金,Fe-Co系合金,Fe-Cr系合金,Fe-Si-Al系合金など)といった鉄基材料、希土類金属、フェライトなどの軟磁性材料が挙げられる。また、これらの磁性粉末の混合粉末を用いてもよい。さらにこれら軟磁性粉末の外周にリン酸塩被膜などの絶縁被膜を備える被覆粉末を用いても良い。
(Magnetic powder)
Examples of magnetic powder materials include iron group metals such as Fe, Co, and Ni (for example, pure iron composed of Fe and inevitable impurities), and iron alloys mainly composed of Fe (for example, Fe-Si alloys, Fe-Ni). Iron-based materials such as Fe-Al alloys, Fe-Al alloys, Fe-Co alloys, Fe-Cr alloys, Fe-Si-Al alloys), and soft magnetic materials such as rare earth metals and ferrite. Also, a mixed powder of these magnetic powders may be used. Furthermore, a coating powder having an insulating coating such as a phosphate coating on the outer periphery of these soft magnetic powders may be used.
 磁性粉末の平均粒径は、1μm以上1000μm以下、特に10μm以上500μm以下が挙げられる。磁性粉末は、平均粒径が異なる複数種の粉末を含んでいてもよい。微細な粉末と粗大な粉末とを混合した磁性粉末を複合材料の原料に用いた場合、飽和磁束密度が高く、低損失なリアクトルが得られ易い。複合コア部31mにおける磁性粉末と複合材料の原料に用いる粉末とは、その大きさが実質的に同じであり(維持されており)、平均粒径が上記範囲を満たす磁性粉末を原料に用いると、流動性が高く、複合材料中に磁性粉末を均一に分散させ易い。 The average particle diameter of the magnetic powder is 1 μm or more and 1000 μm or less, particularly 10 μm or more and 500 μm or less. The magnetic powder may contain a plurality of types of powders having different average particle sizes. When a magnetic powder in which fine powder and coarse powder are mixed is used as a raw material for a composite material, a saturation magnetic flux density is high and a low-loss reactor is easily obtained. The magnetic powder in the composite core portion 31m and the powder used as the raw material of the composite material are substantially the same size (maintained), and when the magnetic powder satisfying the above range is used as the raw material, the average particle size is used. High fluidity and easy to uniformly disperse the magnetic powder in the composite material.
 磁性粉末の複合材料に占める含有量は、複合材料を100%とするとき、体積割合で30体積%以上75体積%以下が望ましい。磁性粉末が30体積%以上であることで、磁性コア3全体の飽和磁束密度といった磁気特性を確保し易い。磁性粉末が75体積%以下であると、樹脂との混合が行い易い。磁性粉末の組成や複合材料中の含有量などを調整することで、複合コア部31mの磁気特性を調整できる。より好ましい磁性粉末の含有量は、40体積%以上65体積%以下である。特に磁性粉末が鉄あるいはFe-Si合金のような材料であれば、磁性粉末の含有量を30体積%以上とすることで飽和磁束密度を0.6T以上にしやすくなり、40体積%以上とすることで飽和磁束密度を0.8T以上にしやすくなる。また、磁性体粉末の含有量を65体積%以下とすることで、磁性粉末などと樹脂との混合物がさらに流動し易くなり、さらに製造性に優れる。本例では、磁性粉末として、平均粒径75μm以下の鉄基材料(純鉄)からなる粒子の表面に絶縁被覆を備える被覆粉末を用い、複合材料中の磁性粉末の含有量を45体積%としている。 The content of the magnetic powder in the composite material is desirably 30% by volume or more and 75% by volume or less in terms of volume ratio when the composite material is 100%. When the magnetic powder is 30% by volume or more, it is easy to ensure magnetic characteristics such as the saturation magnetic flux density of the entire magnetic core 3. When the magnetic powder is 75% by volume or less, mixing with the resin is easy. The magnetic characteristics of the composite core portion 31m can be adjusted by adjusting the composition of the magnetic powder, the content in the composite material, and the like. A more preferable content of the magnetic powder is 40 volume% or more and 65 volume% or less. In particular, if the magnetic powder is a material such as iron or Fe-Si alloy, the saturation magnetic flux density can be easily increased to 0.6 T or more by setting the content of the magnetic powder to 30 volume% or more, and to 40 volume% or more. It becomes easy to make saturation magnetic flux density 0.8T or more. In addition, when the content of the magnetic powder is 65% by volume or less, the mixture of the magnetic powder and the resin is more easily flowable, and the productivity is further improved. In this example, as the magnetic powder, a coating powder having an insulating coating on the surface of particles made of an iron-based material (pure iron) having an average particle size of 75 μm or less is used, and the content of the magnetic powder in the composite material is 45% by volume. Yes.
   (樹脂)
 複合コア部31mを構成する樹脂は、リアクトル1の磁性コア3として利用できる耐熱性を備える各種樹脂(ゴムを含む)が利用できる。具体的には、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂などの熱硬化性樹脂が好適に利用できる。熱硬化性樹脂を用いた場合、複合材料を成形用金型に充填し、加熱して樹脂を熱硬化する。本例では、硬化前には液状のエポキシ樹脂を用いている。或いは、樹脂には、常温硬化性樹脂、或いは低温硬化性樹脂を用いることができる。この場合、成形用金型に充填した複合材料を常温~比較的低温に放置して樹脂を硬化する。さらに、樹脂には、ポリフェニレンスルフィド(PPS)樹脂、ポリイミド樹脂、フッ素樹脂などの熱可塑性樹脂も利用できる。その他、BMC(Bulk molding compound)なども樹脂として利用できる。
(resin)
As the resin constituting the composite core portion 31m, various resins (including rubber) having heat resistance that can be used as the magnetic core 3 of the reactor 1 can be used. Specifically, thermosetting resins such as epoxy resins, phenol resins, silicone resins, and urethane resins can be suitably used. When a thermosetting resin is used, the composite material is filled in a molding die and heated to thermally cure the resin. In this example, a liquid epoxy resin is used before curing. Alternatively, a normal temperature curable resin or a low temperature curable resin can be used as the resin. In this case, the composite material filled in the molding die is allowed to stand at a room temperature to a relatively low temperature to cure the resin. Furthermore, thermoplastic resins such as polyphenylene sulfide (PPS) resin, polyimide resin, and fluororesin can be used as the resin. In addition, BMC (Bulk molding compound) can also be used as a resin.
 内側コア部31(複合コア部31m)は、一般に非磁性材料である上記の樹脂を比較的多く含むため、同じ磁性粉末を用いた圧粉成形体よりも飽和磁束密度が低く、かつ比透磁率も低くなり易い。複合コア部31mの比透磁率は、複合コア部31mに含まれる磁性粉末の含有量や材質を調整することで変えられる。複合コア部31mの比透磁率は、5以上50以下が好ましく、5以上35以下がさらに好ましく、10以上30以下が特に好ましい。複合コア部31mの飽和磁束密度は、0.6T以上が好ましく、0.8T以上がさらに好ましく、1.0T以上が特に好ましい。 Since the inner core portion 31 (composite core portion 31m) contains a relatively large amount of the above-mentioned resin, which is generally a nonmagnetic material, the saturation magnetic flux density is lower than that of a green compact using the same magnetic powder, and the relative permeability is high. Tends to be low. The relative magnetic permeability of the composite core portion 31m can be changed by adjusting the content and material of the magnetic powder contained in the composite core portion 31m. The relative magnetic permeability of the composite core portion 31m is preferably 5 or more and 50 or less, more preferably 5 or more and 35 or less, and particularly preferably 10 or more and 30 or less. The saturation magnetic flux density of the composite core portion 31m is preferably 0.6T or more, more preferably 0.8T or more, and particularly preferably 1.0T or more.
   (ギャップ)
 ギャップ31gは、コア片間に配置されて、インダクタンスを調整するための部材であり、その構成材料には、複合コア部31mよりも比透磁率が低い材料を利用できる。代表的な構成材料は、アルミナやガラスエポキシ樹脂、不飽和ポリエステルなどの非磁性材料が挙げられる。
(gap)
The gap 31g is a member that is arranged between the core pieces and adjusts the inductance, and a material having a lower relative permeability than that of the composite core portion 31m can be used as a constituent material thereof. Typical constituent materials include nonmagnetic materials such as alumina, glass epoxy resin, and unsaturated polyester.
 或いは、ギャップ31gの構成材料として、比透磁率の小さい磁性材料も利用できる。具体的には、磁性粉末(Fe粉末、Fe-Si粉末、センダスト(Fe-Si-Al合金)粉末、フェライト粉末など)と、非磁性樹脂(不飽和ポリエステル、フェノール樹脂、エポキシ樹脂、ポリエステル、ポリフェニレンスルファイド(PPS)樹脂など)からなる樹脂粉末との混合材料を用いても良い。その場合、この混合材料を板状に成形してギャップ31gとすることができる。上記混合材料における磁性粉末の含有量を調整することで、ギャップ31gの構成材料の比透磁率を調整することができる。この場合、ギャップ31gの構成材料の比透磁率は1超10以下とすることが好ましく、さらに好ましくは1超2以下で、特に好ましくは1.1以上1.4以下である。ギャップ31gの構成材料の比透磁率は、小さい方がギャップ31gの厚さを薄くすることができるためである。 Alternatively, a magnetic material having a small relative permeability can be used as a constituent material of the gap 31g. Specifically, magnetic powder (Fe powder, Fe-Si powder, Sendust (Fe-Si-Al alloy) powder, ferrite powder, etc.) and non-magnetic resin (unsaturated polyester, phenol resin, epoxy resin, polyester, polyphenylene) A mixed material with a resin powder made of sulfide (PPS) resin or the like may be used. In this case, the mixed material can be formed into a plate shape to form a gap 31g. By adjusting the content of the magnetic powder in the mixed material, the relative permeability of the constituent material of the gap 31g can be adjusted. In this case, the relative permeability of the constituent material of the gap 31g is preferably greater than 1 and less than 10, more preferably greater than 1 and less than 2, and particularly preferably between 1.1 and 1.4. This is because the smaller the relative magnetic permeability of the constituent material of the gap 31g, the thinner the gap 31g.
 内側コア部31に設けるギャップ31gの数と厚みは、リアクトル1が所望のインダクタンスとなるように適宜選択することができる。また、内側コア部31におけるギャップ31gの位置も適宜選択できる。本例では、2枚のアルミナ板からなるギャップ31gを一つの複合コア部31mの各端面に一体化しているが、内側コア部の途中にギャップが形成されていても良い。さらに、複合コア部31mの形状やギャップ31gの形状も適宜選択することができる。ここでは、ギャップ31gは、複合コア部31mの形状に対応させて矩形板状としている。 The number and thickness of the gaps 31g provided in the inner core portion 31 can be appropriately selected so that the reactor 1 has a desired inductance. Further, the position of the gap 31g in the inner core portion 31 can also be selected as appropriate. In this example, the gap 31g made of two alumina plates is integrated with each end face of one composite core portion 31m. However, a gap may be formed in the middle of the inner core portion. Furthermore, the shape of the composite core portion 31m and the shape of the gap 31g can be selected as appropriate. Here, the gap 31g has a rectangular plate shape corresponding to the shape of the composite core portion 31m.
   (フィラー)
 複合材料には、磁性粉末及び樹脂に加えてフィラー、代表的には、窒化珪素、アルミナ、窒化アルミニウム、窒化ほう素、及び炭化珪素から選択される少なくとも1種の非磁性材料の粉末を混合してもよい。セラミックスなどの熱伝導性に優れるフィラーを混合することで、放熱性の向上に寄与することができる。フィラーの含有量は、複合材料を100質量%とするとき、0.2質量%以上、更に0.3質量%以上、特に0.5質量%以上とすると、放熱性の向上効果を得易く、20質量%以下、更に15質量%以下、特に10質量%以下とすると、磁性粉末や樹脂の割合の低下を抑制できる。フィラーは、磁性粉末よりも微粒にすると磁性粒子間に介在させ易く、当該フィラーの含有による磁性粉末の割合の低下を抑制し易い。
(Filler)
In addition to magnetic powder and resin, the composite material is mixed with a filler, typically at least one nonmagnetic material powder selected from silicon nitride, alumina, aluminum nitride, boron nitride, and silicon carbide. May be. Mixing a filler having excellent thermal conductivity such as ceramics can contribute to improvement of heat dissipation. When the content of the filler is 100% by mass of the composite material, 0.2% by mass or more, further 0.3% by mass or more, and particularly 0.5% by mass or more, it is easy to obtain a heat dissipation improvement effect, 20% by mass or less When the content is 15% by mass or less, particularly 10% by mass or less, a decrease in the ratio of magnetic powder or resin can be suppressed. When the filler is finer than the magnetic powder, it is easy to interpose between the magnetic particles, and it is easy to suppress a decrease in the proportion of the magnetic powder due to the inclusion of the filler.
  {外側コア部}
 一方、外側コア部32は、磁性コア3のうち、内側コア部31以外の箇所を構成する。本例では、並列された一対の内側コア部31を挟み込み、当該内側コア部31の各端面をつなぐようにコイル2の外側に配置されるコア片で外側コア部32を構成している。より具体的には、外側コア部32は、平面視した際に、台形状のブロック片である。この平面視した際の外側コア部32の形状は、台形以外に半ドーム状などであっても良い。
{Outer core part}
On the other hand, the outer core portion 32 constitutes a portion other than the inner core portion 31 in the magnetic core 3. In this example, a pair of parallel inner core portions 31 are sandwiched, and the outer core portion 32 is configured by a core piece disposed outside the coil 2 so as to connect the end faces of the inner core portion 31. More specifically, the outer core portion 32 is a trapezoidal block piece when seen in a plan view. The shape of the outer core portion 32 when viewed in a plan view may be a semi-dome shape in addition to the trapezoid.
 本例の外側コア部32は、その上面が内側コア部31の上面と面一になっているが、下面は内側コア部31の下面よりも下方に突出している。つまり、外側コア部32の下面もコイル2の下面と共に、リアクトル1の設置対象側の面を構成する。リアクトル1は、冷却ベースなどの設置対象に取り付けられるため、コイル2だけでなく、外側コア部32も設置対象側の面を構成することで、放熱性に優れる。さらに、外側コア部32の上面を内側コア部31の上面から突出させても良い。 The upper surface of the outer core portion 32 of this example is flush with the upper surface of the inner core portion 31, but the lower surface protrudes below the lower surface of the inner core portion 31. That is, the lower surface of the outer core portion 32 and the lower surface of the coil 2 constitute a surface on the installation target side of the reactor 1. Since the reactor 1 is attached to an installation target such as a cooling base, not only the coil 2 but also the outer core portion 32 forms a surface on the installation target side, so that heat dissipation is excellent. Further, the upper surface of the outer core portion 32 may be protruded from the upper surface of the inner core portion 31.
 この外側コア部32は、磁性粉末を圧縮成形した圧粉成形体、又は複数の電磁鋼板を絶縁して積層した積層鋼板などで構成することができる。通常、圧粉成形体や積層鋼板は、複合材料を用いた成形硬化体よりも高い比透磁率を有する。本例では、圧粉成形体で外側コア部32を構成している。外側コア部32を圧粉成形体とすれば、内側コア部31の比透磁率が外側コア部32の比透磁率より小さくなるため、磁束が外部に漏れ難い。 The outer core portion 32 can be composed of a compacted body obtained by compression-molding magnetic powder, or a laminated steel plate obtained by insulating and laminating a plurality of electromagnetic steel plates. Usually, a compacting body and a laminated steel plate have a higher relative magnetic permeability than a molded and hardened body using a composite material. In this example, the outer core portion 32 is formed of a compacted body. If the outer core portion 32 is a green compact, the relative permeability of the inner core portion 31 is smaller than the relative permeability of the outer core portion 32, so that the magnetic flux hardly leaks to the outside.
 圧粉成形体を構成する磁性粉末には、上記複合材料で用いる磁性粉末や、この磁性粉末に絶縁被覆を形成した被覆粉末が好適に利用できる。この絶縁被膜には、シリコーン樹脂やリン酸塩などの被膜が利用できる。絶縁被膜を有する磁性粉末を用いて圧粉成形体を構成すれば、磁性粉末の粒子同士を絶縁することができ、低損失な磁性コア3を構築することができる。このような磁性粉末を用いて圧粉成形体を作製するには、例えば、磁性粉末にバインダとなる樹脂粉末を混合し、その混合粉末材料を成形後、成形体に所定の熱処理を施す。バインダには、熱可塑性樹脂の他、非熱可塑性樹脂を利用することができる。 As the magnetic powder constituting the green compact, a magnetic powder used in the composite material or a coating powder obtained by forming an insulating coating on the magnetic powder can be suitably used. As this insulating film, a film made of silicone resin or phosphate can be used. If a powder compact is formed using magnetic powder having an insulating coating, the particles of the magnetic powder can be insulated from each other, and a low-loss magnetic core 3 can be constructed. In order to produce a green compact using such a magnetic powder, for example, a resin powder serving as a binder is mixed with the magnetic powder, the mixed powder material is molded, and then a predetermined heat treatment is performed on the compact. In addition to the thermoplastic resin, a non-thermoplastic resin can be used as the binder.
 〔インシュレータ〕
 コイル2と磁性コア3との間には、両者の間を絶縁するインシュレータ5が介在されている。インシュレータ5は、内側コア部31とコイル2との絶縁を確保する周壁部(図示略)と、各コイル素子2A,2Bの端面と外側コア部32との絶縁を確保する枠板部52とを備える。周壁部は、内側コア部31の外周を取り囲む筒状のものや、この筒状体を2分割した半円筒状のものや、内側コア部31の上面側と下面側に被せられる一対の[型片などが挙げられる。枠板部52には、各内側コア部31がそれぞれ挿通可能な一対の開口部(貫通孔)を有するB字状の平板部材が好適に利用できる。
[Insulator]
An insulator 5 that insulates between the coil 2 and the magnetic core 3 is interposed between the coil 2 and the magnetic core 3. The insulator 5 includes a peripheral wall portion (not shown) that secures insulation between the inner core portion 31 and the coil 2, and a frame plate portion 52 that secures insulation between the end surfaces of the coil elements 2A and 2B and the outer core portion 32. Prepare. The peripheral wall portion has a cylindrical shape that surrounds the outer periphery of the inner core portion 31, a semi-cylindrical shape that divides the cylindrical body into two portions, and a pair of [types that are covered on the upper surface side and the lower surface side of the inner core portion 31. A piece etc. are mentioned. As the frame plate portion 52, a B-shaped flat plate member having a pair of openings (through holes) into which the respective inner core portions 31 can be inserted can be suitably used.
 インシュレータ5の構成材料には、ポリフェニレンスルフィド(PPS)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、液晶ポリマー(LCP)などの絶縁性材料が利用できる。インシュレータ5の形成には、射出成形などの成形方法が好適に利用できる。 Insulator 5 can be made of an insulating material such as polyphenylene sulfide (PPS) resin, polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, or liquid crystal polymer (LCP). For forming the insulator 5, a molding method such as injection molding can be suitably used.
 〔ケース〕
 リアクトル1は、図示しないケースを備え、コイル2と磁性コア3との組合体10がケースに収納された形態としてもよい。ケースは、収納物である組合体10を保護する機能を有する他、放熱経路として利用することができる。そのため、ケースの材料には、熱伝導性に優れる材料、好ましくは鉄などの磁性粉末よりも熱伝導率が高い材料、例えば、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金といった金属を好適に利用できる。アルミニウムやマグネシウム、その合金は、軽量であることから、リアクトルの軽量化に寄与する。また、アルミニウムやマグネシウム、その合金は、非磁性材料かつ導電性材料であることから、ケース外部への漏れ磁束も効果的に防止できる。金属から構成される場合、ケースは、鋳造や切削加工、塑性加工などにより、容易に製造できる。
〔Case〕
The reactor 1 may include a case (not shown), and a combination 10 of the coil 2 and the magnetic core 3 may be housed in the case. The case has a function of protecting the combined body 10 that is a stored item, and can be used as a heat dissipation path. Therefore, a material having excellent thermal conductivity, preferably a material having higher thermal conductivity than magnetic powder such as iron, for example, a metal such as aluminum, aluminum alloy, magnesium, magnesium alloy can be suitably used as the case material. Aluminum, magnesium, and their alloys are lightweight, which contributes to reducing the weight of the reactor. Further, since aluminum, magnesium, and alloys thereof are nonmagnetic materials and conductive materials, leakage magnetic fluxes to the outside of the case can be effectively prevented. When made of metal, the case can be easily manufactured by casting, cutting, plastic working, or the like.
 特に、特開2011-243943号公報に示されるように、ケース1は、組合体が載置される底板部と、底板部に載置された組合体を取り囲む周壁部とを備え、底板部と周壁部とが独立した部材であることが好ましい。その場合、底板部と周壁部の双方を金属又は樹脂で構成することの他、底板部を金属とし、周壁部を樹脂としたり、逆に底板部を樹脂とし、周壁部を金属とすることが挙げられる。通常、ケースの底板部がリアクトルの設置対象である冷却ベースなどに取り付けられる。 In particular, as shown in Japanese Patent Application Laid-Open No. 2011-243943, the case 1 includes a bottom plate portion on which the combination is placed, and a peripheral wall portion surrounding the combination placed on the bottom plate portion, and the bottom plate portion It is preferable that the peripheral wall is an independent member. In that case, both the bottom plate portion and the peripheral wall portion are made of metal or resin, the bottom plate portion is made of metal, the peripheral wall portion is made of resin, and conversely, the bottom plate portion is made of resin and the peripheral wall portion is made of metal. Can be mentioned. Usually, the bottom plate part of the case is attached to a cooling base or the like on which a reactor is installed.
 〔接合層〕
 ケースを用いた場合、組合体10とケースの内底面(即ち、コイル素子2A,2Bの下面、および外側コア部32の下面)の間に接合層を設け、組合体10とケース内底面と接合させることが好ましい。
(Junction layer)
When the case is used, a bonding layer is provided between the combined body 10 and the inner bottom surface of the case (that is, the lower surfaces of the coil elements 2A and 2B and the lower surface of the outer core portion 32), and the combined body 10 and the inner bottom surface of the case are bonded. It is preferable to make it.
 接合層の具体例としては、コイル2とケース内底面との絶縁を確保するための絶縁シートと、その絶縁シート上に組合体10を接着するための接着シートとを備えるものが挙げられる。絶縁シートは接着剤などでケースの内底面に貼り付けられる。一方、接着シートは、その両面が粘着質で柔らかく、複雑な凹凸形状を有する組合体10を絶縁シートに強固に密着させる。 Specific examples of the bonding layer include an insulating sheet for ensuring insulation between the coil 2 and the bottom surface in the case and an adhesive sheet for bonding the assembly 10 on the insulating sheet. The insulating sheet is attached to the inner bottom surface of the case with an adhesive or the like. On the other hand, both sides of the adhesive sheet are sticky and soft, and the assembly 10 having a complicated uneven shape is firmly adhered to the insulating sheet.
 絶縁シートには所定の耐電圧特性の他、コイル2で発生した熱を効果的にケース内底面に伝達できるように、優れた熱伝導性を有することが好ましい。例えば、熱伝導率は、0.1W/m・K以上、好ましくは0.15W/m・K以上、より好ましくは0.5W/m・K以上、さらに好ましくは1W/m・K以上、特に好ましくは2.0W/m・K以上である。 It is preferable that the insulating sheet has an excellent thermal conductivity so that the heat generated in the coil 2 can be effectively transferred to the bottom surface inside the case in addition to the predetermined withstand voltage characteristics. For example, the thermal conductivity is 0.1 W / m · K or more, preferably 0.15 W / m · K or more, more preferably 0.5 W / m · K or more, further preferably 1 W / m · K or more, and particularly preferably 2.0. W / m · K or more.
 上記絶縁シートの厚さは、ケース内底面と組合体10との間に要求される絶縁特性を満たすように、適宜選択することができる。この絶縁シートの厚さは、絶縁シートの材質に何を用いるかによって変化するが、概ね10μm以上とすれば十分である。例えば、絶縁シートの熱伝導率が高ければ(例えば、エポキシ樹脂の絶縁シート=0.7W/m・K)、絶縁シートは厚め(例えば、100~300μm)として良いが、熱伝導率が低ければ(例えば、ポリイミド樹脂の絶縁シート=0.16W/m・K)、コイル2とケース内底面との間で絶縁を確保できる範囲で、絶縁シートを薄くする(例えば、10~50μm)。 The thickness of the insulating sheet can be appropriately selected so as to satisfy the insulating characteristics required between the bottom surface of the case and the assembly 10. The thickness of the insulating sheet varies depending on the material used for the insulating sheet, but it is sufficient that the thickness is approximately 10 μm or more. For example, if the thermal conductivity of the insulating sheet is high (eg, epoxy resin insulating sheet = 0.7 W / m · K), the insulating sheet may be thicker (eg, 100 to 300 μm), but if the thermal conductivity is low ( For example, a polyimide resin insulation sheet = 0.16 W / m · K), and the insulation sheet is thinned (for example, 10 to 50 μm) within a range where insulation can be secured between the coil 2 and the bottom surface of the case.
 一方、接着シートには、コイル2とケース内底面との間を十分に絶縁可能な程度の絶縁特性と、リアクトル1の使用時における最高到達温度に対して軟化しない程度の耐熱性が求められる。例えば、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、液晶ポリマー(LCP)などの熱可塑性の絶縁性樹脂が接着シートに好適に利用できる。この絶縁性樹脂には、上述したフィラーが含有されていても良い。それにより、接着シートの絶縁性および放熱性を向上させることができる。接着シートの熱伝導率は、0.1W/m・K以上とすることが好ましく、より好ましくは0.15W/m・K以上、さらに好ましくは0.5W/m・K以上、特に好ましくは1W/m・K以上、最も好ましくは2.0W/m・K以上である。 On the other hand, the adhesive sheet is required to have an insulation characteristic that can sufficiently insulate between the coil 2 and the bottom surface of the case, and a heat resistance that does not soften against the maximum temperature when the reactor 1 is used. For example, thermosetting resins such as epoxy resins, silicone resins, and unsaturated polyesters, and thermoplastic insulating resins such as polyphenylene sulfide (PPS) resins and liquid crystal polymers (LCP) can be suitably used for the adhesive sheet. This insulating resin may contain the filler described above. Thereby, the insulation and heat dissipation of an adhesive sheet can be improved. The thermal conductivity of the adhesive sheet is preferably at least 0.1 W / m · K, more preferably at least 0.15 W / m · K, even more preferably at least 0.5 W / m · K, particularly preferably at least 1 W / m · K. K or more, most preferably 2.0 W / m · K or more.
 〔封止樹脂〕
 ケースを用いた場合、ケースと組合体10との間には、必要に応じて封止樹脂(図示略)を充填し、硬化させることが好ましい。封止樹脂により、組合体を電気的・機械的に保護することができる。封止樹脂の具体的材質としては、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂などが挙げられる。上述した絶縁性及び熱伝導性に優れるフィラーを含有する樹脂を封止樹脂に利用すると、絶縁性及び放熱性を更に高められる。
[Sealing resin]
When a case is used, it is preferable that a sealing resin (not shown) is filled between the case and the combined body 10 as necessary, and cured. The assembly can be protected electrically and mechanically by the sealing resin. Specific examples of the sealing resin include epoxy resin, urethane resin, and silicone resin. When the resin containing the filler having excellent insulating properties and thermal conductivity described above is used as the sealing resin, the insulating properties and heat dissipation properties can be further improved.
 〔内側樹脂部〕
 その他、コイル2を予め内側樹脂部(図示略)でモールドし、コイル2を保形したコイル成形体としておいても良い。このようなコイル成形体とすれば、コイル2が伸縮することもなく、コイル2のハンドリングが容易に行え、リアクトル1の製造性の向上に資することができる。内側樹脂部には、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルなどの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、液晶ポリマー(LCP)などの熱可塑性の絶縁性樹脂が好適に利用できる。
[Inside resin part]
In addition, the coil 2 may be molded in advance with an inner resin portion (not shown) and the coil 2 may be formed as a coil molded body. With such a coil molded body, the coil 2 does not expand and contract, the coil 2 can be easily handled, and the productivity of the reactor 1 can be improved. For the inner resin portion, a thermosetting resin such as an epoxy resin, a silicone resin, or an unsaturated polyester, or a thermoplastic insulating resin such as a polyphenylene sulfide (PPS) resin or a liquid crystal polymer (LCP) can be suitably used.
 〔外側樹脂部〕
 上記ケースと封止樹脂を用いる代わりに、組合体10の外周の少なくとも一部を外側樹脂部(図示略)で覆っても良い。外側樹脂部により組合体10を電気的・機械的に保護することができる。外側樹脂部には、内側樹脂部と同様の樹脂が好適に利用できる。外側樹脂部を用いる場合、冷却ベースに設置されるリアクトルの底面側は外側樹脂部で覆わず、コイル2や外側コア部32を露出させることが放熱上好ましい。
[Outside resin part]
Instead of using the case and the sealing resin, at least a part of the outer periphery of the combined body 10 may be covered with an outer resin portion (not shown). The assembly 10 can be protected electrically and mechanically by the outer resin portion. For the outer resin part, the same resin as the inner resin part can be suitably used. When the outer resin portion is used, it is preferable for heat dissipation that the bottom surface side of the reactor installed on the cooling base is not covered with the outer resin portion and the coil 2 and the outer core portion 32 are exposed.
 〔用途〕
 上記構成を備えるリアクトル1は、通電条件が、例えば、最大電流(直流):100A~1000A程度、平均電圧:100V~1000V程度、使用周波数:5kHz~100kHz程度である用途、代表的には電気自動車やハイブリッド自動車などの車載用電力変換装置の構成部品に好適に利用することができる。
[Use]
Reactor 1 having the above-described configuration has applications where current-carrying conditions are, for example, maximum current (DC): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle It can be suitably used as a component part of a vehicle-mounted power conversion device such as a hybrid vehicle.
 〔リアクトルの製造方法〕
 上記のリアクトルは、コイル2、内側コア部31及び外側コア部32を用意し、それらを組み合わせることで製造されるが、そのうち、主として内側コア部31の製造方法を以下に説明する。この内側コア部31(コア部材)の製造方法は、磁性粉末と樹脂との複合材料を用意する準備工程と、成形型内の所定位置にギャップ31gを配置するギャップ配置工程と、ギャップ31gの配された成形型内に上記複合材料を充填し、硬化させる成形工程と、得られた成形体を成形型内から抜き出す脱型工程とを備える。
[Reactor manufacturing method]
The reactor described above is manufactured by preparing the coil 2, the inner core portion 31, and the outer core portion 32 and combining them. Of these, the manufacturing method of the inner core portion 31 will be mainly described below. The inner core portion 31 (core member) manufacturing method includes a preparation step of preparing a composite material of magnetic powder and resin, a gap arrangement step of arranging a gap 31g at a predetermined position in the mold, and an arrangement of the gap 31g. A molding step of filling and curing the composite material in the molded mold, and a demolding step of extracting the obtained molded body from the molding die.
 まず、上述した磁性粉末と硬化前の樹脂とを用意し、これらを混合して複合材料とする。その際、磁性粉末と樹脂とが均一に混合されるようにする。必要に応じて、フィラーも合わせて混合する。 First, the above-mentioned magnetic powder and uncured resin are prepared and mixed to form a composite material. At that time, the magnetic powder and the resin are mixed uniformly. If necessary, mix the filler.
 一方、この複合材料が充填される成形型の所定位置に、ギャップ31gを位置決めしておく。本例では、成形型における直方体状のキャビティの両端部に対向するように一対のギャップ31gを配置しておく。ギャップ31gが配置された成形型内に上記複合材料を充填し、樹脂を硬化させて複合コア部31mを作製する。 On the other hand, the gap 31g is positioned at a predetermined position of the mold filled with the composite material. In this example, a pair of gaps 31g are arranged so as to face both end portions of a rectangular parallelepiped cavity in the mold. The composite material is filled in the mold in which the gap 31g is disposed, and the resin is cured to produce the composite core portion 31m.
 この成形は、代表的には、射出成形、注型成形により形成できる。射出成形は、磁性粉末と流動性のある状態の樹脂(液状の樹脂)とを混合し、この混合物(スラリー状混合物)を、所定の圧力をかけて、所定の形状の成形型に流し込んで成形した後、上記樹脂を硬化する。なお、使用する樹脂は一般に粘性を有している。注型成形は、射出成形と同様の混合物を得た後、この混合物を、圧力をかけることなく成形型に注入して成形・硬化する。このような樹脂の硬化により、ギャップ31gは複合コア部31mと一体化される。 This molding can typically be formed by injection molding or cast molding. In injection molding, magnetic powder and fluid resin (liquid resin) are mixed, and this mixture (slurry mixture) is poured into a mold having a predetermined shape under a predetermined pressure. Then, the resin is cured. The resin used generally has a viscosity. In cast molding, a mixture similar to that of injection molding is obtained, and then the mixture is injected into a mold without applying pressure to be molded and cured. By such resin curing, the gap 31g is integrated with the composite core portion 31m.
 樹脂が硬化したら、成形型から成形体を脱型し、その成形体を内側コア部31とする。 When the resin is cured, the molded body is removed from the mold, and the molded body is used as the inner core portion 31.
 内側コア部31が作製できたら、予め用意しておいたコイル2の各コイル素子内に内側コア部31を配置し、さらに、これら内側コア部31の端面に外側コア部32を接着剤などで取り付けて、組合体10を構成する。 After the inner core portion 31 is manufactured, the inner core portion 31 is disposed in each coil element of the coil 2 prepared in advance, and the outer core portion 32 is attached to the end surface of the inner core portion 31 with an adhesive or the like. Attach and form the union 10.
 得られた組合体10には、必要に応じて、ケースに収納したり、外側樹脂部を施したりする。 The obtained combination 10 is housed in a case or provided with an outer resin part as necessary.
 〔作用効果〕
 上記のリアクトルによれば、内側コア部31を複合材料で構成し、その複合材料に含まれる樹脂を硬化する際にギャップ31gも一体化させることで、複合コア部31mの製造に伴ってギャップ31gも適正位置に固定することができ、リアクトルの製造性を改善することができる。
[Function and effect]
According to the reactor described above, the inner core portion 31 is made of a composite material, and when the resin contained in the composite material is cured, the gap 31g is also integrated, so that the gap 31g is produced along with the manufacture of the composite core portion 31m. Can be fixed at an appropriate position, and the productivity of the reactor can be improved.
 また、上記の内側コア部31を用いれば、ギャップ31gを有する磁性コア3を構成でき、磁気飽和し難いリアクトル1を容易に構築できる。 Further, if the inner core portion 31 is used, the magnetic core 3 having the gap 31g can be configured, and the reactor 1 which is difficult to be magnetically saturated can be easily constructed.
 [実施形態2]
 次に、内側コア部を構成する樹脂をミラブル型シリコーンゴムとした実施形態2を説明する。本例のリアクトルは、複合材料に含まれる樹脂が異なる点を除き、他の構成は実施形態1と同様である。以下の説明は、実施形態1との相違点を中心に行う。
[Embodiment 2]
Next, a second embodiment in which the resin constituting the inner core portion is a millable silicone rubber will be described. The reactor of this example is the same as that of the first embodiment except that the resin contained in the composite material is different. The following description will focus on the differences from the first embodiment.
 〔構成〕
 ミラブル型シリコーンゴムは、硬化後の伸び率100%以上の弾性を有するゴム(高分子ポリマー)であり、室温(25℃)でのヤング率が0.1~50MPa程度である。この範囲を満たすことで、複合材料としての形状を保持しながら、振動吸収効果やクラック防止効果が得られる。これに対し、従来の複合材料に用いられている樹脂は、硬化後のヤング率が、エポキシ樹脂の場合、3.0~30GPa程度であり、シリコーン樹脂の場合、0.1~50MPa程度である。また、硬化後のミラブル型シリコーンゴムは、重合度3000~10000の線状ポリマーを主成分とし、他方、従来の硬化後のシリコーン樹脂は、重合度100~2000の線状ポリマーを主成分とする。
〔Constitution〕
Millable silicone rubber is a rubber (polymer) having elasticity with an elongation of 100% or more after curing, and has a Young's modulus of about 0.1 to 50 MPa at room temperature (25 ° C.). By satisfying this range, it is possible to obtain a vibration absorption effect and a crack prevention effect while maintaining the shape as a composite material. On the other hand, the resin used for the conventional composite material has a Young's modulus after curing of about 3.0 to 30 GPa in the case of epoxy resin, and about 0.1 to 50 MPa in the case of silicone resin. The cured millable silicone rubber is mainly composed of a linear polymer having a polymerization degree of 3000 to 10000, while the conventional cured silicone resin is mainly composed of a linear polymer having a polymerization degree of 100 to 2000. .
 複合材料は、磁性粉末と硬化前のミラブル型シリコーンゴムとを配合し、混練することにより得られる。また、鎖状高分子間を架橋して弾性や強度を向上させるために、硬化剤(加硫剤)を添加し、加熱することにより硬化させる。加硫剤としては、例えばパーオキサイド系の加硫剤を用いることができる。硬化温度は、通常、150~200℃、硬化時間は、通常、5~60分間である。ただし、加硫剤を添加した場合は、硬化後に低分子シロキサンがゴム成分内に残留することから、低分子シロキサンを除去するために、硬化後に熱処理を施すことが好ましい。低分子シロキサンは、接点障害の原因となることが知られており、複合材料に低分子シロキサンが残留していると、複合材料から低分子シロキサンが発生し、リアクトルの周囲に配置された電子部品などに接点障害などを生じさせる虞がある。そこで、複合材料の低分子シロキサン量を低減することで、低分子シロキサンの発生を抑制し、接点障害などの不具合を回避することができる。また、熱処理により、架橋を促進させることができ、強度をより高めることができる。 The composite material is obtained by blending magnetic powder and millable silicone rubber before curing and kneading. Moreover, in order to bridge | crosslink between chain polymers and to improve elasticity and intensity | strength, it hardens | cures by adding a hardening | curing agent (vulcanizing agent) and heating. As the vulcanizing agent, for example, a peroxide vulcanizing agent can be used. The curing temperature is usually 150 to 200 ° C., and the curing time is usually 5 to 60 minutes. However, when a vulcanizing agent is added, since low molecular siloxane remains in the rubber component after curing, it is preferable to perform heat treatment after curing in order to remove the low molecular siloxane. Low molecular weight siloxane is known to cause contact failure, and if low molecular weight siloxane remains in the composite material, low molecular weight siloxane is generated from the composite material, and the electronic components placed around the reactor May cause a contact failure. Therefore, by reducing the amount of low molecular siloxane in the composite material, it is possible to suppress the generation of low molecular siloxane and avoid problems such as contact failure. Moreover, crosslinking can be promoted by heat treatment, and the strength can be further increased.
 ミラブル型シリコーンゴムを用いた複合コア部の比透磁率は、複合コア部に含まれる磁性粉末の含有量や材質を調整することで変えられる。複合コア部の比透磁率は、5以上50以下が好ましく、5以上35以下がさらに好ましく、10以上30以下が特に好ましい。複合コア部の飽和磁束密度は0.6T以上が好ましく、0.8T以上がさらに好ましく、1.0T以上が特に好ましい。 The relative magnetic permeability of the composite core part using millable silicone rubber can be changed by adjusting the content and material of the magnetic powder contained in the composite core part. The relative magnetic permeability of the composite core part is preferably 5 or more and 50 or less, more preferably 5 or more and 35 or less, and particularly preferably 10 or more and 30 or less. The saturation magnetic flux density of the composite core part is preferably 0.6T or more, more preferably 0.8T or more, and particularly preferably 1.0T or more.
 〔製造方法〕
 本例の複合材料を用いて内側コア部31を成形するには、例えば、成形型の所定の位置にギャップ31gを配置した状態で、磁性粉末とミラブル型シリコーンゴムとを混合した複合材料を充填し、上記ゴムを硬化させることでギャップ31gが一体化された内側コア部31を構成する。
〔Production method〕
To mold the inner core portion 31 using the composite material of this example, for example, with a gap 31g disposed at a predetermined position of the mold, a composite material mixed with magnetic powder and millable silicone rubber is filled. And the inner core part 31 with which the gap 31g was integrated is comprised by hardening | curing the said rubber | gum.
 或いは、複合材料を成形型に充填して複合コア部31mの前駆体を成形しておいてもよい。この前駆体は、ミラブル型シリコーンゴムが硬化されていない。その成形方法には、コンプレッション成形、インジェクション成形、トランスファー成形や、押出成形なども利用することができる。上記前駆体は、後にギャップ31gが所定位置に配置された成形型内に配置され、硬化されることでギャップ31gが一体化されて内側コア部31を構成する。 Alternatively, the precursor of the composite core portion 31m may be formed by filling the composite material into a mold. This precursor is not cured with millable silicone rubber. For the molding method, compression molding, injection molding, transfer molding, extrusion molding or the like can be used. The precursor is later disposed in a mold in which the gap 31g is disposed at a predetermined position and is cured, whereby the gap 31g is integrated to form the inner core portion 31.
 ミラブル型シリコーンゴムの硬化後の内側コア部31に対して、熱処理を施すことが好ましい。例えば、150℃以上220℃以下に加熱した状態で30分以上4時間以下に保持することが挙げられる。加熱温度を150℃以上及び保持時間を30分以上とすることで、複合材料に残存する低分子シロキサンを低減する効果が得られ易い。また、加熱温度を220℃以下とすることで、不必要な加熱を抑制できる。一方、製造効率の観点から、保持時間は4時間以下とすることが好ましい。 It is preferable to heat-treat the inner core portion 31 after the millable silicone rubber is cured. For example, it may be maintained for 30 minutes or more and 4 hours or less while being heated to 150 ° C. or higher and 220 ° C. or lower. By setting the heating temperature to 150 ° C. or more and the holding time to 30 minutes or more, an effect of reducing low molecular siloxane remaining in the composite material can be easily obtained. Moreover, unnecessary heating can be suppressed by setting the heating temperature to 220 ° C. or lower. On the other hand, from the viewpoint of production efficiency, the holding time is preferably 4 hours or less.
 〔作用効果〕
 複合材料の樹脂がミラブル型シリコーンゴムであるため、硬化前では流動性が低く、従来用いられていた液状樹脂に比較して高い粘性を有しており、磁性粉末と上記樹脂(ゴム)とを混練した後に磁性粉末が沈降などし難く、複合材料中に磁性粉末を均一に分散させた状態を維持することができる。よって、設計値通りのインダクタンスを実現し易い。勿論、複合コア部とギャップとが一体化された内側コア部を構成できるため、リアクトルの製造性に優れる。また、複合材料における樹脂がゴムであり、硬化後であっても弾性を有し、軟らかいため、複合材料が振動を吸収して、振動による騒音を低減することができると共に、磁性粉末やギャップと樹脂との間で熱膨張係数差が生じても、樹脂が変形することにより、複合材料にクラックが生じることを防止できる。さらに、ミラブル型シリコーンゴムであれば、耐熱性が高く、高温でも劣化し難い。
[Function and effect]
Since the resin of the composite material is a millable silicone rubber, it has low fluidity before curing, and has a higher viscosity than the liquid resin used in the past, and the magnetic powder and the resin (rubber) are combined. After kneading, the magnetic powder is unlikely to settle, and the state in which the magnetic powder is uniformly dispersed in the composite material can be maintained. Therefore, it is easy to realize an inductance as designed. Of course, since the inner core part in which the composite core part and the gap are integrated can be configured, the productivity of the reactor is excellent. In addition, since the resin in the composite material is rubber and has elasticity and is soft even after being cured, the composite material can absorb vibrations and reduce noise due to vibrations. Even if a difference in thermal expansion coefficient occurs between the resin and the resin, the composite material can be prevented from cracking due to deformation. Furthermore, if it is a millable silicone rubber, it has high heat resistance and hardly deteriorates even at high temperatures.
 [実施形態3]
 次に、外側コア部を磁性粉末と樹脂とを含む複合材料で構成した実施形態3を説明する。本発明のリアクトルは、外側コア部の材質が異なる点を除き、他の構成は実施形態1や2と同様である。以下の説明は、実施形態1や2との相違点を中心に説明する。
[Embodiment 3]
Next, Embodiment 3 in which the outer core part is composed of a composite material including magnetic powder and resin will be described. The reactor of this invention is the same as that of Embodiment 1 and 2 except the point from which the material of an outer core part differs. The following description will focus on differences from the first and second embodiments.
 〔構成〕
 外側コア部の材質は、例えば、実施形態1の内側コア部と同様の複合材料(成形硬化体)とすることや、実施形態2の内側コア部と同様の磁性粉末とミラブル型シリコーンゴムとを含む複合材料とすることができる。
〔Constitution〕
The material of the outer core portion is, for example, a composite material (molded and cured body) similar to that of the inner core portion of Embodiment 1, or magnetic powder and millable silicone rubber similar to those of the inner core portion of Embodiment 2. It can be a composite material comprising.
 外側コア部の材質は、内側コア部と異なる複合材料とすることもできる。例えば、磁性粉末の材質を両コア部で同じとする場合、複合材料に含まれる磁性粉末の含有量を変更することが挙げられる。また、磁性粉末の含有量を両コア部で同じとする場合、複合材料に含まれる磁性粉末の材質を変更することが挙げられる。このように、複合材料に含まれる磁性粉末の含有量や材質を変更することで、外側コア部の比透磁率を調整できる。具体的には、前者の場合、内側コア部よりも磁性粉末の含有量を高めることで、内側コア部よりも比透磁率の高い外側コア部とでき、内側コア部よりも磁性粉末の含有量を減らすことで、内側コア部よりも比透磁率の低い外側コア部とできる。一方、後者の場合、内側コア部よりも比透磁率の高い磁性粉末を用いることで、内側コア部よりも比透磁率の高い外側コア部とでき、内側コア部よりも比透磁率の低い磁性粉末を用いることで、内側コア部よりも比透磁率の低い外側コア部とできる。 The material of the outer core part may be a composite material different from the inner core part. For example, when making the material of magnetic powder the same in both core parts, changing content of the magnetic powder contained in a composite material is mentioned. Moreover, when making content of magnetic powder the same in both core parts, changing the material of the magnetic powder contained in a composite material is mentioned. Thus, the relative permeability of the outer core portion can be adjusted by changing the content and material of the magnetic powder contained in the composite material. Specifically, in the former case, by increasing the content of magnetic powder than the inner core portion, the outer core portion can have a higher relative permeability than the inner core portion, and the content of magnetic powder than the inner core portion. By reducing the value, the outer core portion having a lower relative permeability than the inner core portion can be obtained. On the other hand, in the latter case, by using a magnetic powder having a relative permeability higher than that of the inner core portion, an outer core portion having a higher relative permeability than the inner core portion can be obtained, and a magnetic property having a lower relative permeability than that of the inner core portion. By using the powder, an outer core portion having a lower relative permeability than the inner core portion can be obtained.
 外側コア部を構成する複合材料の比透磁率は、5以上50以下が好ましく、5以上35以下がさらに好ましく、10以上30以下がさらに好ましい。複合材料の飽和磁束密度は、0.6T以上が好ましく、0.8T以上がさらに好ましく、1.0T以上が特に好ましい。そして、磁性コア全体の比透磁率は10以上50以下とすることが好ましく、10以上35以下が特に好ましい。 The relative magnetic permeability of the composite material constituting the outer core portion is preferably 5 or more and 50 or less, more preferably 5 or more and 35 or less, and further preferably 10 or more and 30 or less. The saturation magnetic flux density of the composite material is preferably 0.6 T or more, more preferably 0.8 T or more, and particularly preferably 1.0 T or more. The relative magnetic permeability of the entire magnetic core is preferably 10 or more and 50 or less, and particularly preferably 10 or more and 35 or less.
 [実施形態4]
 次に、いわゆるポットコアタイプの磁性コアを備える実施形態4に係るリアクトルを説明する(図示略)。本例においても、実施形態1~3との相違点を中心に説明する。
[Embodiment 4]
Next, a reactor according to Embodiment 4 including a so-called pot core type magnetic core will be described (not shown). In this example as well, differences from the first to third embodiments will be mainly described.
 〔構成〕
 このリアクトルは、一つのコイルと、コイルの内側に配置される内側コア部と、コイルの外周に配置される外周コア部と、内側コア部と外周コア部の端面間をつなぐ連結コア部とを備える。このようなポットコアタイプのリアクトルは、例えば、特開2009-33051号公報に示されている。
〔Constitution〕
The reactor includes one coil, an inner core portion disposed inside the coil, an outer core portion disposed on the outer periphery of the coil, and a connecting core portion that connects between the end surfaces of the inner core portion and the outer core portion. Prepare. Such a pot core type reactor is disclosed in, for example, Japanese Unexamined Patent Publication No. 2009-33051.
 本例では、コイルの端面形状を円形とし、このコイル内に配置される丸棒状の内側コア部を実施形態1や2と同様の複合材料を用いて構成する。つまり、丸棒状の内側コア部は、磁性粉末と樹脂とを含む複合材料で構成された複合コア部と、その複合コア部の両端面に複合材料の樹脂で一体化されたギャップとを備える。一方、外周コア部は、コイルを収納する中空円筒体であり、連結コア部は、外周コア部とほぼ同径の円盤体である。これら外周コア部と連結コア部は、圧粉成形体で構成されている。 In this example, the end face shape of the coil is circular, and the round bar-shaped inner core portion disposed in the coil is configured using the same composite material as in the first and second embodiments. In other words, the round core-shaped inner core portion includes a composite core portion made of a composite material including magnetic powder and resin, and a gap integrated with the composite material resin on both end faces of the composite core portion. On the other hand, the outer peripheral core portion is a hollow cylindrical body that houses a coil, and the connecting core portion is a disc body having substantially the same diameter as the outer peripheral core portion. These outer periphery core part and connection core part are comprised with the compacting body.
 〔作用効果〕
 本例のポットコアタイプのリアクトルにおいても、内側コア部の作製過程で複合コア部とギャップとを一体化させることができ、製造性に優れたリアクトルを容易に構築できる。
[Function and effect]
Also in the pot core type reactor of this example, the composite core portion and the gap can be integrated in the production process of the inner core portion, and a reactor excellent in manufacturability can be easily constructed.
 [実施形態5]
 上記した本発明に係る実施形態1~4のリアクトルは、例えば、車両などに搭載されるコンバータの構成部品や、このコンバータを備える電力変換装置の構成部品に利用することができる。
[Embodiment 5]
The reactors of Embodiments 1 to 4 according to the present invention described above can be used, for example, as a component part of a converter mounted on a vehicle or the like, or a component part of a power conversion device including this converter.
 例えば、ハイブリッド自動車や電気自動車といった車両1200は、図2に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ(負荷)1220とを備える。モータ1220は、代表的には、3相交流モータであり、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジンを備える。なお、図2では、車両1200の充電箇所としてインレットを示すが、プラグを備える形態であってもよい。 For example, a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power converter 1100 connected to the main battery 1210, and power supplied from the main battery 1210 as shown in FIG. The motor (load) 1220 is provided. The motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration. In the case of a hybrid vehicle, vehicle 1200 includes an engine in addition to motor 1220. In addition, in FIG. 2, although an inlet is shown as a charging location of the vehicle 1200, a form provided with a plug may be sufficient.
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V~300V程度のメインバッテリ1210の直流電圧(入力電圧)を400V~700V程度にまで昇圧して、インバータ1120に給電する。また、コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される直流電圧(入力電圧)をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。 The power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current. The converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running and supplies power to the inverter 1120. In addition, converter 1110 steps down a DC voltage (input voltage) output from motor 1220 via inverter 1120 to a DC voltage suitable for main battery 1210 during regeneration, and charges main battery 1210. The inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running and supplies power to the motor 1220. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
 コンバータ1110は、図3に示すように、複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトルLとを備え、ON/OFFの繰り返し(スイッチング動作)により入力電圧の変換(ここでは昇降圧)を行う。スイッチング素子1111には、FET、IGBTなどのパワーデバイスが利用される。リアクトルLは、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。このリアクトルLとして、上記実施形態1~4のリアクトルを備える。振動による騒音を低減することが可能なリアクトル1を備えることで、電力変換装置1100やコンバータ1110は静粛性に優れる。 As shown in FIG. 3, the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L. The converter 1110 repeats ON / OFF (switching operation) to change the input voltage. Conversion (step-up / step-down in this case) is performed. For the switching element 1111, a power device such as an FET or an IGBT is used. The reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that tends to prevent the change of the current to flow through the circuit. As the reactor L, the reactors of the first to fourth embodiments are provided. By including the reactor 1 capable of reducing noise caused by vibration, the power conversion device 1100 and the converter 1110 are excellent in quietness.
 なお、車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を備える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150の中には、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、上記実施形態1~3のリアクトルなどと同様の構成を備え、適宜、大きさや形状などを変更したリアクトルを利用することができる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、上記実施形態1~4のリアクトルなどを利用することもできる。 Vehicle 1200 is connected to converter 1110, power supply converter 1150 connected to main battery 1210, sub-battery 1230 as a power source for auxiliary devices 1240, and main battery 1210. Auxiliary power supply converter 1160 for converting high voltage to low voltage is provided. The converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some converters 1150 for power feeding devices perform DC-DC conversion. The reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as the reactors of the first to third embodiments, and a reactor whose size and shape are appropriately changed can be used. In addition, the reactors of the first to fourth embodiments can be used for a converter that converts input power, that is, a converter that only performs step-up or a converter that performs only step-down.
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱することなく、適宜変更することが可能である。例えば、複合材料の配合(磁性粉末及び樹脂の含有量など)、磁性粉末の材質や粒径、コイル及び磁性コアの形状やサイズなどを適宜変更することができる。 It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the composition of the composite material (such as the content of magnetic powder and resin), the material and particle size of the magnetic powder, and the shape and size of the coil and magnetic core can be appropriately changed.
 本発明のリアクトルは、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車といった車両に搭載されるDC-DCコンバータや空調機のコンバータといった電力変換装置の構成部品に利用することができる。 The reactor of the present invention can be used for components of power conversion devices such as DC-DC converters and air conditioner converters mounted on vehicles such as hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and fuel cell vehicles.
 1 リアクトル
 10 組合体
  2 コイル 2A、2B コイル素子 2a、2b 端部 2r 連結部 2w 巻線
  3 磁性コア
   31 内側コア部 31m 複合コア部 31g ギャップ(ギャップ部材)
   32 外側コア部
  5 インシュレータ 52 枠板部
 1100 電力変換装置 1110 コンバータ 1111 スイッチング素子
 1112 駆動回路 L リアクトル 1120 インバータ
 1150 給電装置用コンバータ 1160 補機電源用コンバータ
 1200 車両 1210 メインバッテリ 1220 モータ 1230 サブバッテリ
 1240 補機類 1250 車輪
1 Reactor 10 Combination 2 Coil 2A, 2B Coil element 2a, 2b End 2r Coupling 2w Winding 3 Magnetic core 31 Inner core 31m Composite core 31g Gap (gap member)
32 Outer core 5 Insulator 52 Frame plate 1100 Power converter 1110 Converter 1111 Switching element 1112 Drive circuit L Reactor 1120 Inverter 1150 Power supply converter 1160 Auxiliary power converter 1200 Vehicle 1210 Main battery 1220 Motor 1230 Sub battery 1240 Auxiliary Class 1250 wheels

Claims (10)

  1.  コイルと、コイルの内外に配置されて閉磁路を形成する磁性コアとを備えるリアクトルであって、
     前記磁性コアは、
      磁性粉末と樹脂とを含む複合材料からなる複合コア部と、
      ギャップ部材とを有し、
     このギャップ部材は前記樹脂により前記複合コア部と一体にされているリアクトル。
    A reactor comprising a coil and a magnetic core disposed inside and outside the coil to form a closed magnetic path,
    The magnetic core is
    A composite core portion made of a composite material including magnetic powder and resin;
    A gap member,
    The gap member is a reactor integrated with the composite core portion by the resin.
  2.  前記磁性コアは、コイルの内側に配置される内側コア部を有し、
     この内側コア部を前記複合コア部で構成してなる請求項1に記載のリアクトル。
    The magnetic core has an inner core portion disposed inside the coil,
    The reactor according to claim 1, wherein the inner core portion is configured by the composite core portion.
  3.  前記複合コア部は、磁性粉末と液状樹脂とを含む複合材料の樹脂を硬化させて形成されてなる請求項1又は2に記載のリアクトル。 The reactor according to claim 1 or 2, wherein the composite core part is formed by curing a resin of a composite material including magnetic powder and liquid resin.
  4.  前記複合コア部は、前記樹脂として、ミラブル型シリコーンゴムを含む請求項1又は2に記載のリアクトル。 The reactor according to claim 1 or 2, wherein the composite core portion includes millable silicone rubber as the resin.
  5.  前記内側コア部は、
      コイル軸方向に連続する一体の複合コア部と、
      この複合コア部の両端面に配置されるギャップ部材とを備える請求項2~4のいずれか一項に記載のリアクトル。
    The inner core portion is
    An integral composite core portion continuous in the coil axial direction;
    The reactor according to any one of claims 2 to 4, further comprising a gap member disposed on both end faces of the composite core portion.
  6.  前記複合材料中の前記磁性粉末の含有量が、30体積%以上75体積%以下である請求項1~5のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 1 to 5, wherein the content of the magnetic powder in the composite material is 30% by volume or more and 75% by volume or less.
  7.  前記磁性コアのうち、前記内側コア部以外の箇所の少なくとも一部が圧粉成形体で構成されている請求項2~6のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 2 to 6, wherein at least a part of the magnetic core other than the inner core portion is formed of a green compact.
  8.  前記磁性コアのうち、前記内側コア部以外の箇所が、磁性粉末と樹脂とを含む複合材料で構成されている請求項2~6のいずれか一項に記載のリアクトル。 The reactor according to any one of claims 2 to 6, wherein a portion other than the inner core portion of the magnetic core is made of a composite material containing magnetic powder and resin.
  9.  請求項1~8のいずれか一項に記載のリアクトルを備えるコンバータ。 A converter comprising the reactor according to any one of claims 1 to 8.
  10.  請求項9に記載のコンバータを備える電力変換装置。 A power conversion device comprising the converter according to claim 9.
PCT/JP2012/083073 2012-03-02 2012-12-20 Reactor, converter, and power conversion apparatus WO2013128762A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-047098 2012-03-02
JP2012047098 2012-03-02
JP2012-253689 2012-11-19
JP2012253689A JP6070928B2 (en) 2012-03-02 2012-11-19 Reactor, converter, and power converter

Publications (1)

Publication Number Publication Date
WO2013128762A1 true WO2013128762A1 (en) 2013-09-06

Family

ID=49081981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083073 WO2013128762A1 (en) 2012-03-02 2012-12-20 Reactor, converter, and power conversion apparatus

Country Status (2)

Country Link
JP (1) JP6070928B2 (en)
WO (1) WO2013128762A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750288B2 (en) * 2016-04-15 2020-09-02 株式会社オートネットワーク技術研究所 Relay device
JP6621056B2 (en) * 2016-06-10 2019-12-18 株式会社オートネットワーク技術研究所 Reactor and manufacturing method of reactor
WO2017213196A1 (en) * 2016-06-10 2017-12-14 株式会社オートネットワーク技術研究所 Reactor and method for manufacturing reactor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117978A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Spacer and core of reactor, and reactor
JP2009032917A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Manufacturing method of dust core, and manufacturing method of reactor core
JP2009224759A (en) * 2008-02-18 2009-10-01 Daido Steel Co Ltd Bond magnet for direct current reactor and direct current reactor
JP2011071485A (en) * 2009-07-31 2011-04-07 Sumitomo Electric Ind Ltd Reactor, and reactor-use components
JP2011165977A (en) * 2010-02-10 2011-08-25 Sumitomo Electric Ind Ltd Reactor
JP2011181747A (en) * 2010-03-02 2011-09-15 Denso Corp Reactor
JP2012146753A (en) * 2011-01-07 2012-08-02 Denso Corp Resin molding reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117978A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Spacer and core of reactor, and reactor
JP2009032917A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Manufacturing method of dust core, and manufacturing method of reactor core
JP2009224759A (en) * 2008-02-18 2009-10-01 Daido Steel Co Ltd Bond magnet for direct current reactor and direct current reactor
JP2011071485A (en) * 2009-07-31 2011-04-07 Sumitomo Electric Ind Ltd Reactor, and reactor-use components
JP2011165977A (en) * 2010-02-10 2011-08-25 Sumitomo Electric Ind Ltd Reactor
JP2011181747A (en) * 2010-03-02 2011-09-15 Denso Corp Reactor
JP2012146753A (en) * 2011-01-07 2012-08-02 Denso Corp Resin molding reactor

Also Published As

Publication number Publication date
JP2013211515A (en) 2013-10-10
JP6070928B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6176516B2 (en) Reactor, converter, and power converter
JP4947503B1 (en) Reactor, converter, and power converter
JP2009033051A (en) Core for reactor
JP6065609B2 (en) Reactor, converter, and power converter
JP5983942B2 (en) Reactor, converter, and power converter
WO2012008328A1 (en) Reactor
JP4952963B1 (en) Reactor, converter, and power converter
JP6034012B2 (en) Reactor manufacturing method
JP6229319B2 (en) Reactor, reactor core piece, converter, and power converter
JP6024886B2 (en) Reactor, converter, and power converter
JP6048652B2 (en) Reactor, converter, and power converter
WO2013118524A1 (en) Reactor, converter, and power conversion device, and core material for reactor
JP6070928B2 (en) Reactor, converter, and power converter
JP2013179186A (en) Reactor, component for reactor, converter, and power conversion device
JP5945906B2 (en) Reactor storage structure and power conversion device
WO2013168538A1 (en) Reactor, converter, electric power conversion device, and manufacturing method for resin core piece
WO2014073380A1 (en) Reactor, converter, power conversion apparatus, and reactor manufacturing method
JP5305118B2 (en) Reactor and boost converter
WO2013118528A1 (en) Reactor, converter, and power conversion device, and core material for reactor
JP6686928B2 (en) Magnetic circuit component and manufacturing method thereof
JP5195891B2 (en) Reactor core, reactor, and reactor manufacturing method
WO2014112480A1 (en) Core member, inductor, converter, and power-conversion device
CN116940999A (en) Reactor, converter, power conversion device, and method for manufacturing reactor
JP2013219148A (en) Reactor, manufacturing method of reactor, converter, and electronic power conversion apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869989

Country of ref document: EP

Kind code of ref document: A1