WO2013128566A1 - Solar cell and method for manufacturing same - Google Patents

Solar cell and method for manufacturing same Download PDF

Info

Publication number
WO2013128566A1
WO2013128566A1 PCT/JP2012/054917 JP2012054917W WO2013128566A1 WO 2013128566 A1 WO2013128566 A1 WO 2013128566A1 JP 2012054917 W JP2012054917 W JP 2012054917W WO 2013128566 A1 WO2013128566 A1 WO 2013128566A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
electrode
coating layer
metal layer
Prior art date
Application number
PCT/JP2012/054917
Other languages
French (fr)
Japanese (ja)
Inventor
平 茂治
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/054917 priority Critical patent/WO2013128566A1/en
Publication of WO2013128566A1 publication Critical patent/WO2013128566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a manufacturing method thereof.
  • solar cells that can convert sunlight into electrical energy have been used as an alternative energy source for petroleum.
  • Examples of solar cells include single crystal solar cells, polycrystalline solar cells, amorphous solar cells, and the like, or combinations thereof.
  • FIG. 4 shows an example of the back surface configuration of the solar cell 100.
  • the transparent electrode layer 12, the back metal layer 14, and the coating layer 16 made of a transparent conductive film are formed on the back surface of the photovoltaic layer 10, and the electrode 18 is further provided on the coating layer 16. Yes.
  • the electrode 18 is electrically connected to the back metal layer 14 through the coating layer 16.
  • the interface between the back surface metal layer 14 and the coating layer 16 and the interface between the coating layer 16 and the electrode 18 exist, and the contact resistance increases as compared with the case where the back surface metal layer 14 and the electrode 18 are in direct contact. There's a problem.
  • the resistance of the coating layer 16 itself is high, the resistance value between the back surface metal layer 14 and the electrode 18 is also high. These cause a reduction in the fill factor FF of the solar cell 100 and the power generation efficiency.
  • One aspect of the present invention includes a photovoltaic layer, a back surface metal layer that covers the back surface of the photovoltaic layer, a conductive coating layer that covers a portion of the back surface metal layer, and a coating layer. And a conductive electrode that is in direct contact with the back metal layer.
  • One aspect of the present invention includes a first step of forming a back metal layer on the photovoltaic layer and a second step of forming a conductive coating layer so as to cover a part of the back metal layer. And a third step of forming a conductive electrode so as to be in direct contact with the back surface metal layer without passing through the coating layer.
  • the reliability of solar cells and solar cell modules can be improved.
  • the solar cell 200 in the first embodiment includes a substrate 30, an i-type amorphous layer 32i, a p-type amorphous layer 32p, a transparent conductive layer 34, an i-type amorphous material.
  • the material layer 36i includes an n-type amorphous layer 36n, a transparent conductive layer 38, a back metal layer 39, a first coating layer 40, a second coating layer 42, a first electrode 44, and a second electrode 46. .
  • the substrate 30, the i-type amorphous layer 32i, the p-type amorphous layer 32p, the i-type amorphous layer 36i, and the n-type amorphous layer 36n constitute the photovoltaic layer 201.
  • the solar cell module 300 includes a solar cell 200, a tab 47, filling layers 48 and 50, and sealing bodies 52 and 54.
  • the structure of the solar cell 200 will be described while showing a method for manufacturing the solar cell 200.
  • the substrate 30 is a wafer-like plate made of a crystalline semiconductor material.
  • the substrate 30 can be a substrate made of an n-type or p-type conductive crystalline semiconductor.
  • the substrate 30 absorbs the incident light and generates a carrier pair of electrons and holes by a photoelectric conversion effect.
  • a substrate made of n-type single crystal silicon is used as the substrate 30 will be described.
  • the substrate 30 is first subjected to pretreatment such as cleaning.
  • pretreatment such as cleaning
  • an uneven structure called a texture structure is formed on at least the light receiving surface of the substrate 30.
  • the i-type amorphous layer 32 i is laminated on one main surface of the substrate 30.
  • the i-type amorphous layer 32i is an intrinsic amorphous silicon semiconductor layer.
  • the i-type amorphous layer 32i may contain hydrogen.
  • the p-type amorphous layer 32p is stacked on the i-type amorphous layer 32i.
  • the p-type amorphous layer 32p is a p-type amorphous silicon semiconductor layer.
  • the p-type amorphous layer 32p may contain hydrogen.
  • the i-type amorphous layer 32 i is inserted between the p-type amorphous layer 32 p and the substrate 30 in order to improve the junction characteristics between the p-type amorphous layer 32 p and the substrate 30. For this reason, the i-type amorphous layer 32i has a thickness that does not substantially contribute to power generation, for example, 0.1 nm to 25 nm, preferably 1 nm to 10 nm.
  • the i-type amorphous layer 32i and the p-type amorphous layer 32p can be formed by a CVD method such as a chemical vapor deposition method or a film forming method such as a sputtering method.
  • the i-type amorphous layer 36 i is laminated on the other main surface of the substrate 30.
  • the i-type amorphous layer 36i is an intrinsic amorphous silicon semiconductor layer.
  • the i-type amorphous layer 36i may contain hydrogen.
  • the n-type amorphous layer 36n is stacked on the i-type amorphous layer 36i.
  • the n-type amorphous layer 36n is an n-type amorphous silicon semiconductor layer.
  • the n-type amorphous layer 36n may contain hydrogen.
  • the i-type amorphous layer 36i is inserted between the n-type amorphous layer 36n and the substrate 30 in order to improve the bonding characteristics between the n-type amorphous layer 36n and the substrate 30.
  • the i-type amorphous layer 36i has a thickness that does not substantially contribute to power generation, for example, 0.1 nm to 25 nm, preferably 1 nm to 10 nm, similarly to the i-type amorphous layer 32i.
  • the thickness is as follows.
  • the i-type amorphous layer 36i and the n-type amorphous layer 36n can be formed by a film forming method such as a CVD method or a sputtering method.
  • the transparent conductive layer 34 is formed on the p-type amorphous layer 32p.
  • the transparent conductive layer 38 is formed on the n-type amorphous layer 36n.
  • the transparent conductive layers 34 and 38 include, for example, at least one metal oxide such as indium oxide, zinc oxide, tin oxide, or titanium oxide, and these metal oxides include tin, zinc, tungsten, A dopant such as antimony, titanium, cerium, or gallium may be doped.
  • the transparent conductive layers 34 and 38 can be formed by a film forming method such as an evaporation method, a CVD method, or a sputtering method. The film thicknesses of the transparent conductive layers 34 and 38 can be appropriately adjusted according to the refractive index of the transparent conductive layers 34 and 38.
  • the back metal layer 39 is a conductive layer on the transparent conductive layer 38.
  • the back surface metal layer 39 is provided over substantially the entire back surface so that the power generated in the solar cell 200 can be collected evenly on the back surface side.
  • the back metal layer 39 is preferably a highly reflective and conductive metal layer, and preferably contains at least one of silver (Ag), copper (Cu), and aluminum (Al) as a main component.
  • the first coating layer 40 is disposed on the transparent conductive layer 34, and the second coating layer 42 is disposed on the back metal layer 39.
  • the first coating layer 40 and the second coating layer 42 include, for example, at least one metal oxide such as indium oxide, zinc oxide, tin oxide, or titanium oxide. Further, a dopant such as zinc, tungsten, antimony, titanium, cerium, or gallium may be doped.
  • the first coating layer 40 and the second coating layer 42 can be formed by a film forming method such as an evaporation method, a CVD method, or a sputtering method.
  • the first coating layer 40 and the second coating layer 42 may have a single layer structure or a multilayer structure of a plurality of layers.
  • the first electrode 44 is a conductive layer on the transparent conductive layer 34.
  • the first electrode 44 preferably has a comb-like structure including a plurality of fingers and electrodes connecting the fingers so that the power generated by the solar cell 200 can be collected evenly from the surface.
  • the first electrode 44 is preferably a highly conductive metal layer, and preferably contains at least one of silver (Ag), copper (Cu), and aluminum (Al) as a main component.
  • the second electrode 46 is a current collecting electrode for collecting electric power generated in the solar cell 200 from the back surface.
  • the second electrode 46 is preferably a linear or zigzag planar shape.
  • the second electrode 46 is preferably a highly conductive metal layer, and preferably contains at least one of silver (Ag), copper (Cu), and aluminum (Al) as a main component.
  • the second electrode 46 is embedded in the opening A of the second coating layer 42.
  • the film thickness of the second electrode 46 is made larger than the film thickness of the second coating layer 42 in the vicinity thereof.
  • the thickness of the second electrode 46 is preferably 100 nm or more.
  • the second electrode 46 and the second coating layer 42 are preferably the same.
  • the opening A can be formed by applying photolithography, a metal mask or the like to the second coating layer 42. That is, a mask is disposed on the back metal layer 39 so as to cover the portion of the opening A before the second coating layer 42 is formed, and then the second coating layer 42 is formed. Then, by removing the mask after the second coating layer 42 is formed, the second coating layer 42 having the opening A where the back surface metal layer 39 is exposed can be formed.
  • the opening A may be formed by etching after the second coating layer 42 is formed on the entire surface of the back metal layer 39. Also in this case, photolithography, a metal mask, or the like can be applied. Further, after the second coating layer 42 is formed, the opening A may be formed by laser ablation.
  • the second electrode 46 can be formed by a screen printing method or an offset printing method. After forming the opening A in the second coating layer 42, the second electrode 46 is formed using a screen mask or an offset mask patterned in accordance with the pattern of the opening A. The second electrode 46 is formed so as to be in direct contact with the back surface metal layer 39. The film thickness of the second electrode 46 can be adjusted by conditions such as the mask thickness and the viscosity of the conductive ink. A part of the second electrode 46 may cover the second coating layer 42.
  • the structures of the second coating layer 42 and the second electrode 46 can be confirmed by cross-sectional observation using an electron microscope.
  • the relative arrangement of the second coating layer 42 and the second electrode 46 and the film thickness relationship can be identified using the cross-section SEM and the cross-section TEM.
  • the solar cells 200 are connected to each other by tabs 47.
  • the plurality of solar cells 200 are connected in series by electrically connecting the first electrode 44 on the surface of the solar cell 200 and the electrode of the second electrode 46 on the back surface of the adjacent solar cell 200 by the tab 47. be able to.
  • the plurality of solar cells 200 are connected in parallel. can do.
  • the front and back surfaces of the solar cell 200 are sealed with sealing bodies 52 and 54 to form a solar cell module 300.
  • Filling layers 48 and 50 are disposed on the first coating layer 40, the second coating layer 42, the first electrode 44, and the second electrode 46, respectively, and sealed by pressing the sealing bodies 52 and 54 under heating.
  • the filling layers 48 and 50 are preferably made of a resin such as EVA or PVB.
  • the sealing body on the surface (light receiving surface) side of the solar cell 200 is preferably a light-transmitting glass plate or resin sheet.
  • the sealing body on the back surface side of the solar cell 200 can use a light-shielding member such as a resin film formed by sandwiching a metal foil in addition to a light-transmitting glass plate or resin sheet.
  • the back metal layer 39 and the second electrode 46 are in direct contact with each other, and the contact resistance between the back metal layer 39 and the second electrode 46 can be reduced.
  • the curve factor FF can be improved and the power generation efficiency can be increased while improving long-term reliability.
  • the second electrode 46 is disposed on the back metal layer 39, and the second electrode 46 covers the back metal layer 39 and the second electrode 46.
  • a coating layer 42 is provided.
  • the second electrode 46 patterned on the back metal layer 39 is formed by a screen printing method or an offset printing method. Thereafter, the second coating layer 42 is formed on substantially the entire back surface where the back metal layer 39 and the second electrode 46 are formed.
  • the tab 47 When the solar cells 200 are connected to each other by the tab 47, the tab 47 is pressed against the second electrode 46 from the second coating layer 42 on the back surface of the solar cell 200. As a result, as shown in FIG. 2, at least a part of the tab 47 directly contacts the second electrode 46 through the second coating layer 42.
  • the contact resistance between the back surface metal layer 39 and the second electrode 46 can be reduced.
  • the curve factor FF can be improved and the power generation efficiency can be increased while improving long-term reliability.
  • the scope of application of the present invention is not limited to the above embodiment.
  • the present invention can be applied to a crystalline solar cell formed by thermal diffusion.
  • the base of the electrode, the back metal layer, and the coating layer is a crystalline semiconductor layer.
  • the scope of application of the present invention is not limited to crystalline solar cells, and any solar cells having electrodes can be similarly applied to other types of solar cells such as a thin film type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The solar cell (200) is provided with: a photovoltaic layer (201); a back surface metal layer (39) covering the back surface of the photovoltaic layer (201); a conductive second coating layer (42) covering a portion of the back surface metal layer (39); and a conductive second electrode (46) in direct contact with the back surface metal layer (39), without the second coating layer (42) intervening therebetween.

Description

太陽電池及びその製造方法Solar cell and manufacturing method thereof
 本発明は、太陽電池及びその製造方法に関する。 The present invention relates to a solar cell and a manufacturing method thereof.
 近年、太陽光を電気エネルギーに変換することができる太陽電池が石油代替エネルギー源として使用されている。太陽電池には、単結晶型太陽電池、多結晶型太陽電池、アモルファス型太陽電池等、又はこれらを組み合わせたものが挙げられる。 In recent years, solar cells that can convert sunlight into electrical energy have been used as an alternative energy source for petroleum. Examples of solar cells include single crystal solar cells, polycrystalline solar cells, amorphous solar cells, and the like, or combinations thereof.
 図4は、太陽電池100の裏面構成の例を示す。太陽電池100では、光起電力層10の裏面に透明電極層12、裏面金属層14、透明導電膜からなるコーティング層16を形成し、さらにコーティング層16上に電極18を設けた構成とされている。 FIG. 4 shows an example of the back surface configuration of the solar cell 100. In the solar cell 100, the transparent electrode layer 12, the back metal layer 14, and the coating layer 16 made of a transparent conductive film are formed on the back surface of the photovoltaic layer 10, and the electrode 18 is further provided on the coating layer 16. Yes.
 ところで、上記構成では、電極18は、コーティング層16を介して裏面金属層14と導通している。この構成では、裏面金属層14とコーティング層16との界面及びコーティング層16と電極18との界面が存在し、裏面金属層14と電極18とが直接接触する場合に比べて接触抵抗が増加する問題がある。また、コーティング層16自体の抵抗が高いと、裏面金属層14と電極18との間の抵抗値も高くなる。これらは、太陽電池100の曲線因子FF及び発電効率の低下を招く原因となる。 By the way, in the above configuration, the electrode 18 is electrically connected to the back metal layer 14 through the coating layer 16. In this configuration, the interface between the back surface metal layer 14 and the coating layer 16 and the interface between the coating layer 16 and the electrode 18 exist, and the contact resistance increases as compared with the case where the back surface metal layer 14 and the electrode 18 are in direct contact. There's a problem. Further, when the resistance of the coating layer 16 itself is high, the resistance value between the back surface metal layer 14 and the electrode 18 is also high. These cause a reduction in the fill factor FF of the solar cell 100 and the power generation efficiency.
 本発明の1つの態様は、光起電力層と、光起電力層の裏面を被う裏面金属層と、裏面金属層上の一部を被う導電性のコーティング層と、コーティング層を介さず、裏面金属層に直接接触する導電性の電極と、を備える、太陽電池である。 One aspect of the present invention includes a photovoltaic layer, a back surface metal layer that covers the back surface of the photovoltaic layer, a conductive coating layer that covers a portion of the back surface metal layer, and a coating layer. And a conductive electrode that is in direct contact with the back metal layer.
 本発明の1つの態様は、光起電力層上に裏面金属層を形成する第1の工程と、裏面金属層上の一部を被うように導電性のコーティング層を形成する第2の工程と、コーティング層を介さず、裏面金属層に直接接触するように導電性の電極を形成する第3の工程と、を備える、太陽電池の製造方法である。 One aspect of the present invention includes a first step of forming a back metal layer on the photovoltaic layer and a second step of forming a conductive coating layer so as to cover a part of the back metal layer. And a third step of forming a conductive electrode so as to be in direct contact with the back surface metal layer without passing through the coating layer.
 本発明によれば、太陽電池及び太陽電池モジュールの信頼性を向上させることができる。 According to the present invention, the reliability of solar cells and solar cell modules can be improved.
第1の実施の形態における太陽電池モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the solar cell module in 1st Embodiment. 第2の実施の形態における太陽電池モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the solar cell module in 2nd Embodiment. 第2の実施の形態における太陽電池モジュールの構成を示す一部断面図である。It is a partial cross section figure which shows the structure of the solar cell module in 2nd Embodiment. 従来の太陽電池の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional solar cell.
<第1の実施の形態>
 第1の実施の形態における太陽電池200は、図1の断面図に示すように、基板30、i型非晶質層32i、p型非晶質層32p、透明導電層34、i型非晶質層36i、n型非晶質層36n、透明導電層38、裏面金属層39、第1コーティング層40、第2コーティング層42、第1電極44及び第2電極46を含んで構成されている。基板30、i型非晶質層32i、p型非晶質層32p、i型非晶質層36i及びn型非晶質層36nは、光起電力層201を構成する。
<First Embodiment>
As shown in the cross-sectional view of FIG. 1, the solar cell 200 in the first embodiment includes a substrate 30, an i-type amorphous layer 32i, a p-type amorphous layer 32p, a transparent conductive layer 34, an i-type amorphous material. The material layer 36i includes an n-type amorphous layer 36n, a transparent conductive layer 38, a back metal layer 39, a first coating layer 40, a second coating layer 42, a first electrode 44, and a second electrode 46. . The substrate 30, the i-type amorphous layer 32i, the p-type amorphous layer 32p, the i-type amorphous layer 36i, and the n-type amorphous layer 36n constitute the photovoltaic layer 201.
 なお、i型非晶質層32i、p型非晶質層32p、i型非晶質層36i及びn型非晶質層36nは、結晶粒を含む微結晶構造を含んでいてもよい。また、太陽電池モジュール300は、太陽電池200、タブ47、充填層48,50及び封止体52,54を含んで構成される。 Note that the i-type amorphous layer 32i, the p-type amorphous layer 32p, the i-type amorphous layer 36i, and the n-type amorphous layer 36n may include a microcrystalline structure including crystal grains. The solar cell module 300 includes a solar cell 200, a tab 47, filling layers 48 and 50, and sealing bodies 52 and 54.
 以下、太陽電池200の製造方法を示しつつ、太陽電池200の構造を説明する。 Hereinafter, the structure of the solar cell 200 will be described while showing a method for manufacturing the solar cell 200.
 基板30は、結晶系の半導体材料からなるウエハ状の板体である。基板30は、n型又はp型の導電型の結晶性半導体からなる基板とすることができる。基板30は、例えば、単結晶シリコン基板、多結晶シリコン基板、砒化ガリウム基板(GaAs)、インジウム燐基板(InP)等を適用することができる。基板30は、入射された光を吸収することで、光電変換効果により電子及び正孔のキャリア対を発生させる。以下では、基板30としてn型の単結晶シリコンからなる基板を用いた例を説明する。 The substrate 30 is a wafer-like plate made of a crystalline semiconductor material. The substrate 30 can be a substrate made of an n-type or p-type conductive crystalline semiconductor. As the substrate 30, for example, a single crystal silicon substrate, a polycrystalline silicon substrate, a gallium arsenide substrate (GaAs), an indium phosphide substrate (InP), or the like can be used. The substrate 30 absorbs the incident light and generates a carrier pair of electrons and holes by a photoelectric conversion effect. Hereinafter, an example in which a substrate made of n-type single crystal silicon is used as the substrate 30 will be described.
 基板30には、まず洗浄等の前処理が施される。この前処理において、基板30の少なくとも受光面にテクスチャ構造と呼ばれる凹凸構造が形成される。 The substrate 30 is first subjected to pretreatment such as cleaning. In this pretreatment, an uneven structure called a texture structure is formed on at least the light receiving surface of the substrate 30.
 i型非晶質層32iは、基板30の一主面上に積層される。例えば、i型非晶質層32iは、真性のアモルファスのシリコン半導体層である。i型非晶質層32iは、水素を含んでいてもよい。p型非晶質層32pは、i型非晶質層32iに積層される。例えば、p型非晶質層32pは、p型の非晶質シリコン半導体層である。p型非晶質層32pは、水素を含んでいてもよい。 The i-type amorphous layer 32 i is laminated on one main surface of the substrate 30. For example, the i-type amorphous layer 32i is an intrinsic amorphous silicon semiconductor layer. The i-type amorphous layer 32i may contain hydrogen. The p-type amorphous layer 32p is stacked on the i-type amorphous layer 32i. For example, the p-type amorphous layer 32p is a p-type amorphous silicon semiconductor layer. The p-type amorphous layer 32p may contain hydrogen.
 i型非晶質層32iは、p型非晶質層32pと基板30との間の接合特性を改善するために、p型非晶質層32pと基板30との間に挿入されている。このため、i型非晶質層32iの膜厚は、実質的に発電に寄与しない程度の厚み、例えば0.1nm以上25nm以下、好ましくは1nm以上10nm以下の厚みにされている。 The i-type amorphous layer 32 i is inserted between the p-type amorphous layer 32 p and the substrate 30 in order to improve the junction characteristics between the p-type amorphous layer 32 p and the substrate 30. For this reason, the i-type amorphous layer 32i has a thickness that does not substantially contribute to power generation, for example, 0.1 nm to 25 nm, preferably 1 nm to 10 nm.
 i型非晶質層32i及びp型非晶質層32pは、化学気相成長法等のCVD法、或いはスパッタリング法等の成膜方法により形成することができる。 The i-type amorphous layer 32i and the p-type amorphous layer 32p can be formed by a CVD method such as a chemical vapor deposition method or a film forming method such as a sputtering method.
 i型非晶質層36iは、基板30の他主面上に積層される。例えば、i型非晶質層36iは、真性のアモルファスシリコン半導体層である。i型非晶質層36iは、水素を含んでいてもよい。n型非晶質層36nは、i型非晶質層36i上に積層される。例えば、n型非晶質層36nは、n型のアモルファスシリコン半導体層である。n型非晶質層36nは、水素を含んでいてもよい。 The i-type amorphous layer 36 i is laminated on the other main surface of the substrate 30. For example, the i-type amorphous layer 36i is an intrinsic amorphous silicon semiconductor layer. The i-type amorphous layer 36i may contain hydrogen. The n-type amorphous layer 36n is stacked on the i-type amorphous layer 36i. For example, the n-type amorphous layer 36n is an n-type amorphous silicon semiconductor layer. The n-type amorphous layer 36n may contain hydrogen.
 i型非晶質層36iは、n型非晶質層36nと基板30との間の接合特性を改善するために、n型非晶質層36nと基板30との間に挿入されている。このため、i型非晶質層36iの膜厚は、実質的に発電に寄与しない程度の厚み、例えばi型非晶質層32iと同様に、0.1nm以上25nm以下、好ましくは1nm以上10nm以下の厚みにされている。 The i-type amorphous layer 36i is inserted between the n-type amorphous layer 36n and the substrate 30 in order to improve the bonding characteristics between the n-type amorphous layer 36n and the substrate 30. For this reason, the i-type amorphous layer 36i has a thickness that does not substantially contribute to power generation, for example, 0.1 nm to 25 nm, preferably 1 nm to 10 nm, similarly to the i-type amorphous layer 32i. The thickness is as follows.
 i型非晶質層36i及びn型非晶質層36nは、CVD法、スパッタリング法等の成膜方法により形成することができる。 The i-type amorphous layer 36i and the n-type amorphous layer 36n can be formed by a film forming method such as a CVD method or a sputtering method.
 透明導電層34は、p型非晶質層32p上に形成される。透明導電層38は、n型非晶質層36n上に形成される。透明導電層34,38は、例えば、酸化インジウム、酸化亜鉛、酸化錫、または酸化チタンなどの金属酸化物を少なくとも一つを含んで構成され、これらの金属酸化物に、錫、亜鉛、タングステン、アンチモン、チタン、セリウム、ガリウムなどのドーパントがドープされていてもよい。透明導電層34,38は、蒸着法、CVD法、スパッタリング法等の成膜方法により形成することができる。透明導電層34,38の膜厚は、透明導電層34,38の屈折率に対応して適宜調整され得る。 The transparent conductive layer 34 is formed on the p-type amorphous layer 32p. The transparent conductive layer 38 is formed on the n-type amorphous layer 36n. The transparent conductive layers 34 and 38 include, for example, at least one metal oxide such as indium oxide, zinc oxide, tin oxide, or titanium oxide, and these metal oxides include tin, zinc, tungsten, A dopant such as antimony, titanium, cerium, or gallium may be doped. The transparent conductive layers 34 and 38 can be formed by a film forming method such as an evaporation method, a CVD method, or a sputtering method. The film thicknesses of the transparent conductive layers 34 and 38 can be appropriately adjusted according to the refractive index of the transparent conductive layers 34 and 38.
 裏面金属層39は、透明導電層38上の導電層である。裏面金属層39は、太陽電池200で発生する電力を裏面側でまんべんなく集電できるように裏面の略全体に亘って設けられる。裏面金属層39は、反射性及び導電性の高い金属層とすることが好ましく、銀(Ag)、銅(Cu)及びアルミニウム(Al)の少なくとも1つを主成分として含むことが好ましい。 The back metal layer 39 is a conductive layer on the transparent conductive layer 38. The back surface metal layer 39 is provided over substantially the entire back surface so that the power generated in the solar cell 200 can be collected evenly on the back surface side. The back metal layer 39 is preferably a highly reflective and conductive metal layer, and preferably contains at least one of silver (Ag), copper (Cu), and aluminum (Al) as a main component.
 第1コーティング層40は、透明導電層34上に配され、第2コーティング層42は、裏面金属層39上に配される。第1コーティング層40及び第2コーティング層42は、例えば、酸化インジウム、酸化亜鉛、酸化錫、または酸化チタンなどの金属酸化物を少なくとも一つを含んで構成され、これらの金属酸化物に、錫、亜鉛、タングステン、アンチモン、チタン、セリウム、ガリウムなどのドーパントがドープされていてもよい。第1コーティング層40及び第2コーティング層42は、蒸着法、CVD法、スパッタリング法等の成膜方法により形成することができる。第1コーティング層40及び第2コーティング層42は、単層構造であってもよいし、複数層の積層構造であってもよい。 The first coating layer 40 is disposed on the transparent conductive layer 34, and the second coating layer 42 is disposed on the back metal layer 39. The first coating layer 40 and the second coating layer 42 include, for example, at least one metal oxide such as indium oxide, zinc oxide, tin oxide, or titanium oxide. Further, a dopant such as zinc, tungsten, antimony, titanium, cerium, or gallium may be doped. The first coating layer 40 and the second coating layer 42 can be formed by a film forming method such as an evaporation method, a CVD method, or a sputtering method. The first coating layer 40 and the second coating layer 42 may have a single layer structure or a multilayer structure of a plurality of layers.
 第1電極44は、透明導電層34上の導電層である。第1電極44は、太陽電池200の発生する電力を表面からまんべんなく集電できるように、複数のフィンガー及びフィンガーを接続する電極を含む櫛形の構成とすることが好適である。第1電極44は、導電性の高い金属層とすることが好ましく、銀(Ag)、銅(Cu)及びアルミニウム(Al)の少なくとも1つを主成分として含むことが好ましい。 The first electrode 44 is a conductive layer on the transparent conductive layer 34. The first electrode 44 preferably has a comb-like structure including a plurality of fingers and electrodes connecting the fingers so that the power generated by the solar cell 200 can be collected evenly from the surface. The first electrode 44 is preferably a highly conductive metal layer, and preferably contains at least one of silver (Ag), copper (Cu), and aluminum (Al) as a main component.
 第2電極46は、太陽電池200で発生する電力を裏面から集電するための集電電極である。第2電極46は、直線状、ジグザグ状の平面形状とすることが好適である。第2電極46は、導電性の高い金属層とすることが好ましく、銀(Ag)、銅(Cu)及びアルミニウム(Al)の少なくとも1つを主成分として含むことが好ましい。 The second electrode 46 is a current collecting electrode for collecting electric power generated in the solar cell 200 from the back surface. The second electrode 46 is preferably a linear or zigzag planar shape. The second electrode 46 is preferably a highly conductive metal layer, and preferably contains at least one of silver (Ag), copper (Cu), and aluminum (Al) as a main component.
 第2電極46は、第2コーティング層42の開口部Aに埋設される。第2電極46の膜厚は、その近傍にある第2コーティング層42の膜厚より厚くする。例えば、第2コーティング層42の膜厚は100nm程度であるので、第2電極46の膜厚は100nm以上とすることが好適である。第2電極46及び第2コーティング層42も同様とすることが好適である。 The second electrode 46 is embedded in the opening A of the second coating layer 42. The film thickness of the second electrode 46 is made larger than the film thickness of the second coating layer 42 in the vicinity thereof. For example, since the thickness of the second coating layer 42 is about 100 nm, the thickness of the second electrode 46 is preferably 100 nm or more. The second electrode 46 and the second coating layer 42 are preferably the same.
 開口部Aは、第2コーティング層42に対してフォトリソグラフィ、メタルマスク等を適用して形成することができる。すなわち、第2コーティング層42の形成前に裏面金属層39上に開口部Aの部分を被うようにマスクを配した後、第2コーティング層42を成膜する。そして、第2コーティング層42の成膜後にマスクを除去することにより、裏面金属層39が露出した開口部Aを有する第2コーティング層42を形成することができる。また、裏面金属層39の全面に第2コーティング層42を形成した後、エッチングにより開口部Aを形成してもよい。この場合も、フォトリソグラフィ、メタルマスク等を適用することができる。また、第2コーティング層42の形成後、レーザアブレーションにより開口部Aを形成してもよい。 The opening A can be formed by applying photolithography, a metal mask or the like to the second coating layer 42. That is, a mask is disposed on the back metal layer 39 so as to cover the portion of the opening A before the second coating layer 42 is formed, and then the second coating layer 42 is formed. Then, by removing the mask after the second coating layer 42 is formed, the second coating layer 42 having the opening A where the back surface metal layer 39 is exposed can be formed. Alternatively, the opening A may be formed by etching after the second coating layer 42 is formed on the entire surface of the back metal layer 39. Also in this case, photolithography, a metal mask, or the like can be applied. Further, after the second coating layer 42 is formed, the opening A may be formed by laser ablation.
 第2電極46は、スクリーン印刷法やオフセット印刷法で形成することができる。第2コーティング層42に開口部Aを形成後、開口部Aのパータンに併せてパターニングされたスクリーンマスクやオフセットマスクを用いて第2電極46を形成する。第2電極46は、裏面金属層39に直接接するように形成する。第2電極46の膜厚は、マスク厚、導電性インクの粘度等の条件により調整することができる。第2電極46の一部は、第2コーティング層42上を覆っていてもよい。 The second electrode 46 can be formed by a screen printing method or an offset printing method. After forming the opening A in the second coating layer 42, the second electrode 46 is formed using a screen mask or an offset mask patterned in accordance with the pattern of the opening A. The second electrode 46 is formed so as to be in direct contact with the back surface metal layer 39. The film thickness of the second electrode 46 can be adjusted by conditions such as the mask thickness and the viscosity of the conductive ink. A part of the second electrode 46 may cover the second coating layer 42.
 第2コーティング層42及び第2電極46の構造は、電子顕微鏡を用いた断面観察によって確認することができる。例えば、断面SEMや断面TEMを用いて第2コーティング層42及び第2電極46の相対的配置や膜厚の関係を同定することができる。 The structures of the second coating layer 42 and the second electrode 46 can be confirmed by cross-sectional observation using an electron microscope. For example, the relative arrangement of the second coating layer 42 and the second electrode 46 and the film thickness relationship can be identified using the cross-section SEM and the cross-section TEM.
 太陽電池モジュール300に複数の太陽電池200が含まれる場合、太陽電池200はタブ47によって相互に接続される。例えば、タブ47により太陽電池200の表面の第1電極44と隣接する太陽電池200の裏面の第2電極46の電極とを電気的に接続することで、複数の太陽電池200を直列に接続することができる。また、例えば、タブ47により太陽電池200と隣接する太陽電池200の表面の第1電極44同士及び裏面の第2電極46同士を電気的に接続することで、複数の太陽電池200を並列に接続することができる。太陽電池200の表裏面は封止体52,54により封止され、太陽電池モジュール300とされる。第1コーティング層40,第2コーティング層42及び第1電極44,第2電極46上にはそれぞれ充填層48,50が配され、加熱下において封止体52,54を押し付けることによって封止される。充填層48,50は、EVAやPVB等の樹脂とすることが好適である。太陽電池200の表面(受光面)側の封止体は、透光性を有するガラス板や樹脂シートとすることが好適である。また、太陽電池200の裏面側の封止体は、透光性を有するガラス板や樹脂シート以外に、金属箔をサンドイッチしてなる樹脂フィルム等の遮光性の部材も用いることができる。 When the solar cell module 300 includes a plurality of solar cells 200, the solar cells 200 are connected to each other by tabs 47. For example, the plurality of solar cells 200 are connected in series by electrically connecting the first electrode 44 on the surface of the solar cell 200 and the electrode of the second electrode 46 on the back surface of the adjacent solar cell 200 by the tab 47. be able to. Further, for example, by connecting the first electrodes 44 on the front surface of the solar cell 200 adjacent to the solar cell 200 and the second electrodes 46 on the back surface of the solar cell 200 adjacent to each other by the tab 47, the plurality of solar cells 200 are connected in parallel. can do. The front and back surfaces of the solar cell 200 are sealed with sealing bodies 52 and 54 to form a solar cell module 300. Filling layers 48 and 50 are disposed on the first coating layer 40, the second coating layer 42, the first electrode 44, and the second electrode 46, respectively, and sealed by pressing the sealing bodies 52 and 54 under heating. The The filling layers 48 and 50 are preferably made of a resin such as EVA or PVB. The sealing body on the surface (light receiving surface) side of the solar cell 200 is preferably a light-transmitting glass plate or resin sheet. In addition, the sealing body on the back surface side of the solar cell 200 can use a light-shielding member such as a resin film formed by sandwiching a metal foil in addition to a light-transmitting glass plate or resin sheet.
 このように、裏面金属層39と第2電極46とが直接接触した構成となり、裏面金属層39と第2電極46との間の接触抵抗を低減することができる。その結果、第2コーティング層42を適用した太陽電池200及び太陽電池モジュール300において、長期的な信頼性を高めつつ、曲線因子FFを向上させ、発電効率を高めることができる。 Thus, the back metal layer 39 and the second electrode 46 are in direct contact with each other, and the contact resistance between the back metal layer 39 and the second electrode 46 can be reduced. As a result, in the solar cell 200 and the solar cell module 300 to which the second coating layer 42 is applied, the curve factor FF can be improved and the power generation efficiency can be increased while improving long-term reliability.
<第2の実施の形態>
 第2の実施の形態における太陽電池202は、図2の断面図に示すように、裏面金属層39上に第2電極46が配置され、裏面金属層39及び第2電極46を被う第2コーティング層42を有する。
<Second Embodiment>
In the solar cell 202 according to the second embodiment, as shown in the cross-sectional view of FIG. 2, the second electrode 46 is disposed on the back metal layer 39, and the second electrode 46 covers the back metal layer 39 and the second electrode 46. A coating layer 42 is provided.
 本実施の形態では、図3の一部断面図に示すように、スクリーン印刷法やオフセット印刷法により裏面金属層39上にパターニングされた第2電極46を形成する。その後、裏面金属層39及び第2電極46が形成された裏面の略全面に第2コーティング層42を形成する。 In this embodiment, as shown in the partial cross-sectional view of FIG. 3, the second electrode 46 patterned on the back metal layer 39 is formed by a screen printing method or an offset printing method. Thereafter, the second coating layer 42 is formed on substantially the entire back surface where the back metal layer 39 and the second electrode 46 are formed.
 太陽電池200をタブ47によって相互に接続する場合、太陽電池200の裏面において第2コーティング層42上からタブ47を第2電極46に圧接する。これによって、図2に示すように、第2コーティング層42を貫いてタブ47の少なくとも一部が第2電極46に直接接触する。 When the solar cells 200 are connected to each other by the tab 47, the tab 47 is pressed against the second electrode 46 from the second coating layer 42 on the back surface of the solar cell 200. As a result, as shown in FIG. 2, at least a part of the tab 47 directly contacts the second electrode 46 through the second coating layer 42.
 このような構成においても、裏面金属層39と第2電極46との間の接触抵抗を低減することができる。これにより、第2コーティング層42を適用した太陽電池202及び太陽電池モジュール302において、長期的な信頼性を高めつつ、曲線因子FFを向上させ、発電効率を高めることができる。 Even in such a configuration, the contact resistance between the back surface metal layer 39 and the second electrode 46 can be reduced. Thereby, in the solar cell 202 and the solar cell module 302 to which the second coating layer 42 is applied, the curve factor FF can be improved and the power generation efficiency can be increased while improving long-term reliability.
 尚、本発明の適用範囲は上記実施の形態に限定されるものではない。例えば、本発明は、本発明は熱拡散により形成された結晶系太陽電池にも適用可能である。この場合、電極、裏面金属層及びコーティング層の下地は結晶系半導体層となる。また、本発明の適用範囲は結晶系太陽電池に限定されるものではなく、電極を有する太陽電池であれば薄膜型等の他のタイプの太陽電池にも同様に適用可能である。 Note that the scope of application of the present invention is not limited to the above embodiment. For example, the present invention can be applied to a crystalline solar cell formed by thermal diffusion. In this case, the base of the electrode, the back metal layer, and the coating layer is a crystalline semiconductor layer. The scope of application of the present invention is not limited to crystalline solar cells, and any solar cells having electrodes can be similarly applied to other types of solar cells such as a thin film type.
 10 光起電力層、12 透明電極層、14 裏面金属層、16 コーティング層、18 電極、30 基板、32i i型非晶質層、32p p型非晶質層、34,38 透明導電層、36i i型非晶質層、36n n型非晶質層、39 裏面金属層、40 第1コーティング層、42 第2コーティング層、44 第1電極、46 第2電極、47 タブ、48,50 充填層、52,54 封止体、100,200,202 太陽電池、201 光起電力層、300,302 太陽電池モジュール。
 
DESCRIPTION OF SYMBOLS 10 Photovoltaic layer, 12 Transparent electrode layer, 14 Back surface metal layer, 16 Coating layer, 18 Electrode, 30 Substrate, 32i i-type amorphous layer, 32pp p-type amorphous layer, 34, 38 Transparent conductive layer, 36i i-type amorphous layer, 36n n-type amorphous layer, 39 back metal layer, 40 first coating layer, 42 second coating layer, 44 first electrode, 46 second electrode, 47 tab, 48, 50 filling layer , 52, 54 Sealed body, 100, 200, 202 Solar cell, 201 Photovoltaic layer, 300, 302 Solar cell module.

Claims (9)

  1.  光起電力層と、
     前記光起電力層の裏面を被う裏面金属層と、
     前記裏面金属層上の一部を被う導電性のコーティング層と、
     前記コーティング層を介さず、前記裏面金属層に直接接触する導電性の電極と、
    を備えることを特徴とする太陽電池。
    A photovoltaic layer;
    A back metal layer covering the back surface of the photovoltaic layer;
    A conductive coating layer covering a portion of the back metal layer;
    A conductive electrode that is in direct contact with the back metal layer without the coating layer;
    A solar cell comprising:
  2.  請求項1に記載の太陽電池であって、
     前記電極の一部は、前記コーティング層の一部を覆う。
    The solar cell according to claim 1,
    A part of the electrode covers a part of the coating layer.
  3.  請求項1に記載の太陽電池であって、
     前記コーティング層は、前記電極の一部を覆う。
    The solar cell according to claim 1,
    The coating layer covers a part of the electrode.
  4.  請求項1~3のいずれか1項に記載の太陽電池であって、
     前記コーティング層は、透明導電膜からなる。
    The solar cell according to any one of claims 1 to 3,
    The coating layer is made of a transparent conductive film.
  5.  請求項1~4のいずれか1項に記載の太陽電池であって、
     前記裏面金属層は、前記光起電力層の略全面を被う。
    The solar cell according to any one of claims 1 to 4,
    The back metal layer covers substantially the entire surface of the photovoltaic layer.
  6.  請求項1~5のいずれか1項に記載の太陽電池であって、
     前記裏面金属層は、銅又は銀を含む。
    A solar cell according to any one of claims 1 to 5,
    The back metal layer includes copper or silver.
  7.  光起電力層上に裏面金属層を形成する第1の工程と、
     前記裏面金属層上の一部を被うように導電性のコーティング層を形成する第2の工程と、
     前記コーティング層を介さず、前記裏面金属層に直接接触するように導電性の電極を形成する第3の工程と、
    を備えることを特徴とする太陽電池の製造方法。
    A first step of forming a back metal layer on the photovoltaic layer;
    A second step of forming a conductive coating layer so as to cover a part of the back metal layer;
    A third step of forming a conductive electrode so as to be in direct contact with the back metal layer without passing through the coating layer;
    A method for producing a solar cell, comprising:
  8.  請求項7に記載の太陽電池の製造方法であって、
     前記第3の工程は、
     前記第2の工程後、前記コーティング層の一部を除去し、前記裏面金属層を露出させる工程と、
     露出された前記裏面金属層に直接接触するように前記電極を形成する工程と、
    を含む。
    It is a manufacturing method of the solar cell of Claim 7, Comprising:
    The third step includes
    After the second step, removing a part of the coating layer and exposing the back metal layer,
    Forming the electrode in direct contact with the exposed back metal layer;
    including.
  9.  請求項7に記載の太陽電池の製造方法であって、
     前記第1の工程後、前記第3の工程により前記電極を形成し、
     前記第3の工程後、前記第2の工程により前記裏面金属層の一部及び前記電極の一部を覆うように前記コーティング層を形成する。
     
    It is a manufacturing method of the solar cell of Claim 7, Comprising:
    After the first step, the electrode is formed by the third step,
    After the third step, the coating layer is formed by the second step so as to cover a part of the back metal layer and a part of the electrode.
PCT/JP2012/054917 2012-02-28 2012-02-28 Solar cell and method for manufacturing same WO2013128566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054917 WO2013128566A1 (en) 2012-02-28 2012-02-28 Solar cell and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054917 WO2013128566A1 (en) 2012-02-28 2012-02-28 Solar cell and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013128566A1 true WO2013128566A1 (en) 2013-09-06

Family

ID=49081819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054917 WO2013128566A1 (en) 2012-02-28 2012-02-28 Solar cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013128566A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110125A (en) * 1991-10-17 1993-04-30 Canon Inc Photovoltaic element
JPH10275926A (en) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd Photovoltaic device and module
JP2003031831A (en) * 2001-07-13 2003-01-31 Sanyo Electric Co Ltd Photovoltaic element and its manufacturing method
JP2007266327A (en) * 2006-03-29 2007-10-11 Kyocera Corp Solar battery element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110125A (en) * 1991-10-17 1993-04-30 Canon Inc Photovoltaic element
JPH10275926A (en) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd Photovoltaic device and module
JP2003031831A (en) * 2001-07-13 2003-01-31 Sanyo Electric Co Ltd Photovoltaic element and its manufacturing method
JP2007266327A (en) * 2006-03-29 2007-10-11 Kyocera Corp Solar battery element

Similar Documents

Publication Publication Date Title
USRE47484E1 (en) Solar cell
CN107710419B (en) Solar cell and solar cell module
KR101142861B1 (en) Solar cell and manufacturing method of the same
WO2013039158A1 (en) Solar cell module
US20170256661A1 (en) Method of manufacturing photovoltaic panels with various geometrical shapes
WO2010098445A1 (en) Solaer cell
JP6785427B2 (en) Solar cell elements and solar cell modules
US20130125964A1 (en) Solar cell and manufacturing method thereof
JP2017520928A (en) Solar cells
JP5771759B2 (en) SOLAR CELL, SOLAR CELL MODULE, SOLAR CELL MANUFACTURING METHOD, AND SOLAR CELL MODULE MANUFACTURING METHOD
JP2013532911A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP2014135343A (en) Photoelectric conversion element, and method of manufacturing the same
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
WO2012105153A1 (en) Photoelectric conversion element
TW201442260A (en) Solar cell and manufacturing method thereof
WO2012090650A1 (en) Solar cell
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP6143520B2 (en) Crystalline silicon solar cell and manufacturing method thereof
US9972728B2 (en) Solar cell, solar cell module, and method for manufacturing solar cell
WO2013128566A1 (en) Solar cell and method for manufacturing same
CN107980180B (en) Solar cell
JP6294694B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP6191995B2 (en) Solar cell module
WO2013042242A1 (en) Solar cell, solar cell module, and methods for manufacturing solar cell and solar cell module
WO2020035987A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP