WO2013127370A1 - 一种光异步采样信号测量的方法和*** - Google Patents

一种光异步采样信号测量的方法和*** Download PDF

Info

Publication number
WO2013127370A1
WO2013127370A1 PCT/CN2013/072093 CN2013072093W WO2013127370A1 WO 2013127370 A1 WO2013127370 A1 WO 2013127370A1 CN 2013072093 W CN2013072093 W CN 2013072093W WO 2013127370 A1 WO2013127370 A1 WO 2013127370A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
pulse sequence
signal
pulse
sequence
Prior art date
Application number
PCT/CN2013/072093
Other languages
English (en)
French (fr)
Inventor
郑铮
赵欣
刘磊
刘建胜
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210052940.6A external-priority patent/CN102607720B/zh
Priority claimed from CN201210052680.2A external-priority patent/CN102608825B/zh
Priority claimed from CN2012101371194A external-priority patent/CN102680404A/zh
Priority claimed from CN2012101374811A external-priority patent/CN102680099A/zh
Priority claimed from CN2013100627969A external-priority patent/CN103148940A/zh
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to US14/382,333 priority Critical patent/US9250128B2/en
Publication of WO2013127370A1 publication Critical patent/WO2013127370A1/zh
Priority to US14/475,434 priority patent/US9273994B2/en
Priority to US14/968,237 priority patent/US9885614B2/en
Priority to US14/968,289 priority patent/US9863815B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0245Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using an optical amplifier of light, e.g. doped fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/13Function characteristic involving THZ radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Definitions

  • the present invention relates to the field of optical measurement, and in particular, to a method and system for optical asynchronous sample signal measurement. Background technique
  • the optical asynchronous sampling technique is an optical frequency comb that uses two frequency-precision locks but slightly different, and realizes a high-precision time domain "equivalent” similar to the principle of a sample oscilloscope by utilizing a small frequency difference between two frequencies. "The measurement method of the signal.
  • Optical asynchronous sampling technology has been applied to pump-detection, terahertz time domain optical terms, ranging and other fields.
  • the light sources used by previous researchers are two independent lasers with a certain frequency difference. These two lasers require complex circuit feedback control systems to maintain a constant frequency difference and phase lock.
  • the system is complex. High cost and difficult application.
  • the modal dispersion, polarization mode dispersion, birefringence and chromatic dispersion existing in the optical cavity one light source can output two pulsed lights with different repetition frequencies, and due to the stability of the dispersion values, the two pulsed lights The repetition frequency difference is also quite stable.
  • the dual-frequency pulse light source realized in this way has the advantages of simple structure and good integration, so that the system for measuring optical asynchronous sample signals is simpler and easier. Summary of the invention
  • the present invention provides a method and system for optical asynchronous sample signal measurement.
  • the invention provides a method for measuring optical asynchronous sampling signals, which comprises:
  • a pulse light source outputs two or more different repetition frequency optical pulse sequences, wherein the optical pulse sequence having the first repetition frequency is the first optical pulse sequence, and the optical pulse sequence having the second repetition frequency f 2 is the second light a pulse sequence, ⁇ is the difference between the repetition frequency of the first optical pulse sequence and the second optical pulse sequence, that is, lf r f 2 l;
  • Step 2 the first optical pulse sequence is converted into a signal pulse sequence by a signal optical path, and the second optical pulse sequence is converted into a reference pulse sequence by a reference optical path;
  • Step 3 the signal pulse sequence interacts with the reference pulse sequence in the detecting device to obtain an asynchronous sample signal determined by , f 2 ;
  • the above measurement methods can be applied to the following five examples for terahertz signal measurement, pump detection signal measurement, time domain optical language measurement, optical path measurement based on correlation signal measurement, and optical language measurement based on uncorrelated signal measurement:
  • the first optical pulse sequence is input to the terahertz transmitting device after power control, pulse waveform transform, polarization control, and/or double frequency conversion, and the terahertz generated by the terahertz transmitting device
  • the pulse sequence passes through the object to be tested to form a signal pulse sequence, and the second light pulse sequence is converted into a reference pulse sequence by power control, pulse waveform transformation, polarization control, and/or double frequency conversion; the signal pulse sequence and the reference pulse in step 3
  • the sequence is input to the terahertz receiving device, and the asynchronous sampling signal is detected by the photodetector.
  • the asynchronous sampling signal is processed to obtain terahertz time domain information and/or time domain spectral information.
  • the asynchronous sampling signal measuring method for terahertz signal measurement described above includes:
  • power amplification, power control, pulse waveform transformation, polarization control, and double frequency conversion are performed on the first optical pulse sequence or a part thereof to form a pump optical pulse sequence, and the pump optical pulse sequence is input to the terahertz emission.
  • the device generates a terahertz signal by a photoconductive method, an optical rectification method or a surface effect method, and a terahertz signal forms a signal pulse sequence after passing through the object to be tested; and performs power amplification, power control, and pulse waveform on the second optical pulse sequence or a part thereof Optical processing of transform, polarization control, and double frequency conversion to form a pump pulse sequence, that is, a reference pulse sequence; and a third step, the signal pulse sequence and the reference pulse sequence are commonly input to the terahertz receiving device through the photoconductive
  • a sample-like or electro-optical sample method detects an asynchronous sample-like signal associated with a time domain waveform of the terahertz wave;
  • the fourth step is to perform data processing on the asynchronous sample signal.
  • the time length of the signal can also be obtained by time domain-frequency domain signal transformation to obtain terahertz time domain spectral information.
  • the first optical pulse sequence is converted into a signal pulse sequence by power control, pulse waveform transformation, polarization control, and/or double frequency conversion, and the second optical pulse sequence is subjected to power control and pulse waveform.
  • the signal pulse sequence is converted into a reference pulse sequence; in step 3, the signal pulse sequence is input to the object to be tested together with the reference pulse sequence, and the signal pulse sequence is detected by the photodetector to obtain an asynchronous sample signal;
  • step 4 data processing is performed on the asynchronous sample signal to obtain a pump detection signal of the object to be tested.
  • the signal pulse sequence and the reference pulse sequence are collinear or non-collinearly incident on the object to be tested, and the signal pulse sequence is detected by the photodetector to obtain an asynchronous sample signal related to the pump detection signal;
  • the fourth step is to perform data processing on the asynchronous sample signal.
  • the first optical pulse sequence is input to the object to be tested after power amplification, pulse waveform transformation, polarization control, and spectral shift, to form a signal pulse sequence, and the second optical pulse sequence is subjected to power amplification.
  • pulse waveform transformation and polarization control it is converted into a reference pulse sequence; in step 3, a time domain correlation signal generated between the reference pulse sequence and the signal pulse sequence is obtained; in step 4, the signal is processed by data to obtain a time domain of the object to be tested. Spectral information.
  • the second step power amplification, power control, pulse waveform transformation, polarization control, and optical language conversion are performed on the first optical pulse sequence or a part thereof, and a signal pulse sequence is formed after the object to be tested; or a second optical pulse sequence or a part thereof Perform power amplification, power control, pulse waveform conversion, polarization control, and optical language conversion to form a reference pulse sequence.
  • the signal pulse sequence and the reference pulse sequence are incident on the photodetector, and the signal pulse is detected by the photodetector. Sequence, get asynchronous sample signal;
  • the fourth step is to perform data processing on the asynchronous sample signal, and the time domain signal and the asynchronous sample signal time axis conversion are off.
  • Time domain optical frequency information can be obtained by time domain-frequency domain transformation.
  • the reason why the first optical pulse sequence described above is moved by the optical vocabulary is to overlap the reference pulse sequence.
  • the first optical pulse sequence is divided into two paths after power control, pulse waveform transformation, polarization control, and/or wavelength shift, and one path passes through the calibration optical path to generate a calibration pulse sequence, and the other passes through
  • the target optical path generates a target pulse sequence
  • the calibration pulse sequence is combined with the target pulse sequence to form a signal pulse sequence
  • the second optical pulse sequence is subjected to power control, pulse waveform transformation, polarization control, and/or wavelength shift to generate a reference pulse sequence
  • the time difference between the target pulse in the signal pulse sequence and the nearest calibration pulse in the signal pulse sequence is calculated according to the correlation signal, thereby measuring The optical path difference between the target optical path and the calibration optical path.
  • the asynchronous sample signal measurement method for optical path measurement described above includes:
  • the pulse light source In the first step, the pulse light source generates a sequence of optical pulses having two or more different repetition frequencies, and is divided into a first optical pulse sequence having a repetition frequency and a second optical pulse sequence having a repetition frequency of f 2 by pulse splitting, the first light
  • the first optical pulse sequence generates a calibration pulse sequence through the calibration optical path
  • the first optical pulse sequence generates a target pulse sequence through the target optical path
  • the calibration pulse sequence and the target pulse sequence are combined into a signal pulse sequence
  • Measuring a field strength or intensity related signal generated between the signal pulse sequence and the reference pulse sequence Measuring a field strength or intensity related signal generated between the signal pulse sequence and the reference pulse sequence
  • fourth step calculating a time difference between the target pulse in the signal pulse sequence and the nearest calibration pulse in the signal pulse sequence according to the time domain correlation signal The optical path difference between the target optical path and the calibration optical path is obtained.
  • the time domain correlation signal is a field strength correlation signal between the reference light pulse sequence and the probe light pulse sequence
  • the first light pulse sequence and/or the second light pulse sequence are wavelength-shifted, such that the optical sequence of the reference pulse sequence The optical overlap of the signal pulse sequence.
  • the first optical pulse sequence is incident on the calibration surface, and the calibration pulse surface is reflected by the calibration surface to generate a calibration pulse sequence; the first optical pulse sequence is incident on the target surface, and the target pulse sequence is generated by the target surface reflection.
  • the first optical pulse sequence transmits a scaling pulse sequence through a scaling delay
  • the first optical pulse sequence transmits a target pulse sequence through the target delay
  • the optical path is calculated according to the following formula:
  • d v g ( ⁇ / ⁇ ⁇ + ⁇ / ⁇ ⁇ ) , where d is the optical path difference between the target optical path and the calibrated optical path, v g is the group velocity of the probe light pulse, ⁇ is the first optical pulse sequence and The difference between the repetition frequencies of the two optical pulse sequences is the repetition frequency of the first optical pulse sequence, and ⁇ is the measurement time difference between the target pulse correlation signal and the nearest calibration pulse related signal in the time domain correlation signal actually measured. , ⁇ is an integer, and n Vg /f p represents a fuzzy distance.
  • the first optical pulse sequence is divided into two paths after power control, pulse waveform transformation, and polarization control, one of which passes through the calibration optical path to generate a calibration pulse sequence, and the other path generates a target pulse through the target optical path.
  • the sequence, the calibration pulse sequence and the target pulse sequence are combined into a signal pulse sequence, and the second optical pulse sequence generates a reference pulse sequence through power control, pulse waveform transformation, and polarization control; in step 3, the signal pulse sequence and the reference pulse sequence enter the pulse action device The characteristic of the pulse in the signal pulse sequence coincident with the pulse of the reference pulse sequence in the time domain is changed, and the signal pulse sequence at the time of the measurement is obtained as an asynchronous sample signal; in step 4, the characteristic changes according to the asynchronous sample signal The time position of the pulse is used to calculate the target pulse in the signal pulse sequence and the most recent details thereof.
  • the above-mentioned asynchronous sample signal measurement method for optical path measurement includes:
  • the first optical pulse sequence is divided into two paths after power control, pulse waveform transformation and polarization control, one of which passes through the calibration optical path to generate a calibration pulse sequence, and the other passes through the target optical path to generate a target pulse sequence, and the calibration pulse sequence Combining with the target pulse sequence to form a signal pulse sequence, and the second optical pulse sequence generates a reference pulse sequence through power control, pulse waveform transformation, and polarization control;
  • the signal pulse sequence and the reference pulse sequence enter the pulse action device, and the characteristics of the pulse in the signal pulse sequence coincident with the pulse of the reference pulse sequence in the time domain are changed, and the signal pulse sequence at the time is measured to obtain an asynchronous sample signal.
  • the time difference between the target pulse and the nearest calibration pulse in the signal pulse sequence is calculated according to the asynchronous sample signal to measure the optical path difference between the target optical path and the calibration optical path.
  • the optical path is calculated according to the following formula:
  • d v g ( ⁇ / ⁇ ⁇ + ⁇ / ⁇ ⁇ ) , where d is the optical path difference between the target optical path and the calibrated optical path, v g is the group velocity of the probe light pulse, ⁇ is the first optical pulse sequence and The difference between the repetition frequencies of the two optical pulse sequences is the repetition frequency of the first optical pulse sequence, and ⁇ is the measurement time difference between the target pulse correlation signal and the nearest calibration pulse related signal in the time domain correlation signal actually measured. , ⁇ is an integer, and n Vg /f p represents a fuzzy distance.
  • the invention provides a system for measuring optical asynchronous sampling signals, which comprises:
  • a pulse light source outputting two or more optical pulse sequences having different repetition frequencies, the optical pulse sequence having the first repetition frequency is a first optical pulse sequence, and the optical pulse sequence having the second repetition frequency f 2 is a second optical pulse sequence; a signal light path, configured to transform the first optical pulse sequence into a signal pulse sequence;
  • a reference optical path configured to transform the second optical pulse sequence into a reference pulse sequence
  • the detecting device is configured to implement an interaction between the signal pulse sequence and the reference pulse sequence to obtain an asynchronous sample signal.
  • the pulsed light source includes only one resonant cavity, and through the modal dispersion, polarization mode dispersion, birefringence, or chromatic dispersion in the resonant cavity, simultaneous output of a sequence of optical pulses having two different repetition frequencies is achieved.
  • the above measurement system is applied to the following five examples for terahertz signal measurement, pump detection signal measurement, time domain optical language measurement, optical path measurement based on correlation signal measurement, and optical language measurement based on uncorrelated signal measurement:
  • the signal optical path includes an optical power amplifier, a dispersion control device, a polarization control device, a double frequency crystal, a terahertz emission device, and a test object;
  • the reference optical path includes an optical power amplifier, and a dispersion control device And a polarization control device and a double frequency crystal;
  • the detecting device comprises a terahertz receiving device composed of a terahertz receiving device or a photoconductive switch composed of an electrooptic material device and a photodetector.
  • the above-described optical asynchronous sampling signal measuring system for terahertz signal measurement comprising a pulse light source, generates an output signal of two or more optical pulse sequences having different repetition frequencies;
  • Pulse splitting and processing device including a fiber coupler, a beam splitting prism, a splitting beam, a filter, a band pass filter or a wavelength division multiplexer, a first optical pulse sequence for outputting a pulsed light source and a second
  • the optical pulse sequence is divided into two paths;
  • the signal optical path includes an optical power amplifier, a dispersion control device, a polarization control device, and a double frequency crystal, and processes the first optical pulse sequence into a pump optical pulse sequence, and further includes an electric light that radiates the terahertz wave.
  • a terahertz emitting device such as a material device, a photoconductive switching device or a surface effect device, and a test object;
  • a reference optical path including an optical power amplifier, a dispersion control device, a polarization control device, a double frequency crystal, and processing the second optical pulse sequence into a reference pulse sequence;
  • the detecting device comprises a terahertz receiving device consisting of a terahertz receiving device or a photoconductive switch composed of an electro-optic material device and a photodetector, wherein the electro-optic material device comprises InAs, GaAs, InSb, ZnTe, LiTa0 3 , DAST, electro-optic polymer Materials, etc.
  • photodetectors are PIN detectors, APD detectors, photomultiplier tubes or balance detectors.
  • the wavelengths of the columns can be the same or different.
  • the wavelength of the pump light pulse sequence and the wavelength of the reference pulse sequence may be the same as the wavelength of a pulse sequence in the output signal of the pulse light source, or may be converted to another wavelength by a wavelength of a pulse sequence in the output signal of the pulse light source.
  • One wavelength, but the frequency of the pump light pulse sequence and the reference pulse sequence must be different, and the frequency is not an integer multiple relationship.
  • the signal optical path includes an optical power amplifier, a dispersion control device, a polarization control device, and/or a double frequency crystal
  • the reference optical path includes an optical power amplifier, a dispersion control device, a polarization control device, and/or A double frequency crystal
  • the detecting device includes a sample to be tested, a filter device, and a photodetector.
  • the optical asynchronous sampling signal measuring system for pumping detection signal measurement described above includes a pulse light source, and generates an output signal of two or more optical pulse sequences having different repetition frequencies, different pulse repetition frequencies. It is not an integer multiple relationship.
  • a signal optical path including an optical power amplifier, a dispersion control device, a polarization control device, and a double frequency crystal, processing the first optical pulse sequence into a signal pulse sequence;
  • a reference optical path including an optical power amplifier, a dispersion control device, a polarization control device, a nonlinear optical device, and processing the second optical pulse sequence into a reference pulse sequence;
  • the detecting device comprises a test object, a filter component and a photodetector, wherein the filter component is a filter having a filtering function, a band pass filter or a wavelength division multiplexer, a polarization splitting prism with a polarization detecting function, and a polarizing plate
  • the filter component is a filter having a filtering function, a band pass filter or a wavelength division multiplexer, a polarization splitting prism with a polarization detecting function, and a polarizing plate
  • Photodetectors include PIN detectors, APD detectors, photomultiplier tubes or balance detectors.
  • the signal optical path includes an optical power amplifier, a dispersion control device, a polarization control device, and a nonlinear optical device;
  • the reference optical path includes an optical power amplifier, a dispersion control device, and a polarization control device; Includes the object under test, filter components, and photodetectors.
  • the above-described optical asynchronous sampling signal measuring system for time domain spectral signal measurement comprising a pulse light source, generates an output signal of two or more optical pulse sequences having different repetition frequencies;
  • a signal optical path including an optical power amplifier, a dispersion control device, a polarization control device, and a nonlinear optical device, processes the first optical pulse sequence into a signal pulse sequence; wherein the nonlinear optical device functions to transform the spectrum of the signal pulse sequence to The spectra of the reference pulse sequence overlap;
  • a reference optical path including an optical power amplifier, a dispersion control device, and a polarization control device, processing the second optical pulse sequence into a reference pulse sequence;
  • the detecting device includes a test object, a filter member and a photodetector.
  • the signal optical path includes an optical power amplifier, a dispersion control device, a polarization control device, a nonlinear optical device, a target optical path, and an optical path to be tested;
  • the reference optical path includes an optical power amplifier, a dispersion control device, and a polarization Control device and/or nonlinear optics;
  • the detection device comprises a double frequency crystal, a filter device and a photodetector.
  • the optical asynchronous sampling signal measuring system for optical path measurement described above can be classified into the following two systems according to the measured signal as a field strength related signal or a light intensity related signal:
  • the first system measures the optical path by measuring the field strength related signal, and requires the spectral overlap of the signal pulse sequence with the reference pulse sequence, including:
  • a pulsed light source that produces an output signal of two or more optical pulse sequences having different repetition frequencies
  • Signal light path including optical power amplifier, dispersion control device, polarization control device, nonlinear optical device, target optical path and optical path to be tested, wherein the nonlinear optical device spectrally broadens or shifts the first optical pulse sequence to generate a new spectral component , causing the optical language of the signal pulse sequence and the optical sequence of the reference pulse sequence to overlap;
  • a reference optical path including an optical power amplifier, a dispersion control device, a polarization control device, a nonlinear optical device, wherein the nonlinear optical device optically broadens or shifts the second optical pulse sequence to generate a new spectral component, such that The optical language overlap of the optical sequence of the reference pulse sequence and the signal pulse sequence;
  • the detecting device includes a filter member and a photodetector.
  • the second system measures the optical path by measuring the light intensity related signal, and does not require the spectral overlap of the signal pulse sequence with the reference pulse sequence, including:
  • a pulsed light source that produces an output signal of two or more optical pulse sequences having different repetition frequencies
  • Signal light path including optical power amplifier, dispersion control device, polarization control device, target optical path and optical path to be tested;
  • Reference optical path including optical power amplifier, dispersion control device, polarization control device;
  • the detecting device comprises a double frequency detector or a two-photon absorption photodetector comprising a double frequency crystal and a PIN detector, an APD detector or a photomultiplier tube.
  • the signal optical path includes an optical power amplifier, a dispersion control device, a polarization control device, a target optical path, and an optical path to be tested;
  • the reference optical path includes an optical power amplifier, a dispersion control device, and polarization control.
  • the detecting device includes a pulse action device, a filter device and a photodetector.
  • the optical asynchronous sampling signal measuring system for optical path measurement described above, the measured asynchronous sampling signal is not the correlation signal of the reference pulse sequence and the signal pulse sequence, and the system includes
  • a pulsed light source that produces an output signal of two or more optical pulse sequences having different repetition frequencies
  • Signal light path including optical power amplifier, dispersion control device, polarization control device, nonlinear optical device, target optical path and optical path to be tested;
  • Reference optical path including optical power amplifier, dispersion control device, polarization control device;
  • the detection device includes a pulse action device, a filter device and a photodetector.
  • the pulse-action device comprises a semiconductor optical amplifier, a saturable absorber, an all-optical switch, and an all-optical logic gate.
  • the invention provides a method for generating a multi-frequency optical comb, comprising:
  • Step 1 the pulse laser outputs two or more optical pulse sequences having different center wavelengths and different repetition frequencies, and the maximum value of the full width at half maximum of the adjacent optical pulse sequences of different central wavelengths in the spectrum is smaller than the difference between the central wavelengths;
  • Step 2 The optical pulse sequence of the pulse laser output having different center wavelengths and different repetition frequencies is subjected to a nonlinear optical process, so that one or more optical pulse sequences of different central wavelengths in the optical pulse sequence are spectrally broadened, so that after broadening The spectra of the optical pulse sequences of different central wavelengths are overlapped so that there are two or more optical combs of different repetition frequencies in the wavelength region where the spectra overlap.
  • step 2 light pulse sequences having different center wavelengths and different repetition frequencies are simultaneously passed through the same element capable of generating a nonlinear optical process, and the optical language is broadened such that the light of the first light pulse sequence after broadening is made.
  • the overlapping of the words and the second optical pulse sequence are simultaneously passed through the same element capable of generating a nonlinear optical process, and the optical language is broadened such that the light of the first light pulse sequence after broadening is made.
  • step 2 is further divided into:
  • Step 21 The optical splitting device divides the optical pulse sequence output by the pulse laser into a first optical pulse sequence and a second optical pulse sequence.
  • the center wavelength of the first optical pulse sequence is the first wavelength
  • the repetition frequency of the first optical pulse sequence is the first a frequency
  • a center wavelength of the second optical pulse sequence is a second wavelength
  • a repetition frequency of the second optical pulse sequence is a second frequency
  • Step 22 the separated first optical pulse sequence and/or the second optical pulse sequence respectively undergo a nonlinear optical process, and spectral broadening occurs, so that the optical term of the first optical pulse sequence and the second optical pulse sequence are broadened. overlap.
  • the nonlinear optical process is a nonlinear optical process based on four-wave mixing, self-phase modulation, cross-phase modulation, stimulated Raman scattering effects, or a different combination thereof.
  • the invention provides a multi-frequency optical comb system, comprising:
  • a pulsed laser that outputs two or more optical pulse sequences having different center wavelengths.
  • the maximum value of the full width at half maximum of adjacent optical pulse sequences of different central wavelengths in the spectrum is smaller than the difference between the center wavelengths, and the average of the laser cavity of the pulsed laser.
  • the group velocity is different for different output center wavelengths, so that the repetition frequency of the optical pulse sequences of different center wavelengths is different;
  • the sequence of optical pulses output by the pulsed laser passes through a nonlinear optical system such that one or more optical pulse sequences of different central wavelengths in the optical pulse sequence are optically broadened such that the spectra of the optical pulse sequences of different central wavelengths after broadening overlap.
  • the nonlinear optical system includes:
  • a nonlinear optical element used for one or more optical pulse sequences of different central wavelengths in the sequence of optical pulses, to have a broadening of the optical language such that the spectra of the optical pulse sequences of different central wavelengths after broadening overlap.
  • the nonlinear optical system includes:
  • a light splitting device is configured to divide a sequence of optical pulses output by the pulsed laser into a plurality of optical pulse sequences.
  • the center wavelength of each optical pulse sequence is different, and the full width at half maximum of the optical language is smaller than the difference between adjacent central wavelengths;
  • a nonlinear optical element used for one or more optical pulse sequences of different central wavelengths in the sequence of optical pulses, to have a broadening of the optical language such that the spectra of the optical pulse sequences of different central wavelengths after broadening overlap.
  • the cavity structure of the pulsed laser is a linear cavity, a folded cavity, an annular cavity, and an "8" shaped cavity.
  • the pulsed laser is an active mode-locked laser, a passive mode-locked laser, or a hybrid mode-locked laser.
  • the nonlinear optical element is a single mode transmission fiber, a highly nonlinear fiber, a gain fiber, a photonic crystal fiber, or a nonlinear optical integrated waveguide.
  • the beam splitting device is a fiber coupler, a beam splitting prism, a beam splitter, a filter, a band pass filter, or a wavelength division multiplexer.
  • Figure 1 is a system structural diagram of optical asynchronous sample signal measurement
  • FIG. 2 is a first structural diagram of an optical asynchronous sample signal measuring system for terahertz signal measurement
  • FIG. 3 is a structural diagram of a second optical asynchronous sample signal measuring system for terahertz signal measurement
  • Figure 4 is a third structural diagram of an optical asynchronous sample signal measuring system for terahertz signal measurement
  • Figure 5 is a structural diagram of the first optical asynchronous sampling signal measuring system for pumping detection signal measurement
  • Figure 6 is a second structural diagram of an optical asynchronous sampling signal measuring system for pumping detection signal measurement
  • It is the third structural diagram of the optical asynchronous sampling signal measuring system for pumping detection signal measurement
  • Fig. 8 is a structural diagram of the fourth optical asynchronous sampling signal measuring system for pumping detection signal measurement
  • Figure 10 is a structural diagram of a dual wavelength pulse laser system
  • Figure 11 is a dual-wavelength pulsed laser output photogram
  • Figure 12 is a spectrum diagram of the output signal of the dual-wavelength pulsed laser after photoelectric conversion
  • Figure 13 is a structural diagram of an optical asynchronous sample signal measuring system for optical path measurement
  • Figure 14 is a photogram of a light pulse of a center wavelength of 1532 legs outputted by a dual-wavelength pulsed laser output filter;
  • Figure 15 is a photogram of a light pulse with a center wavelength of 1547 legs outputted by a dual-wavelength pulsed laser output filter;
  • Figure 16 is a spectrum diagram of a light pulse having a center wavelength of 1547 nm passing through an optical amplifier 2 for power amplification and optical spanning;
  • Figure 17 is a photogram of the output light after the broadband is spread and then passed through a bandpass filter with a passband of 1528 nm-1536 legs;
  • Figure 18 is a field strength related signal measured using an oscilloscope;
  • Figure 19 is a schematic diagram of the light intensity related signal.
  • 20 is a structural diagram of an optical asynchronous sampling signal measuring system for optical path measurement
  • Figure 21 is a diagram of the output optical pattern of a dual-wavelength pulsed laser
  • Figure 22 is a frequency spectrum diagram of a dual-wavelength pulsed laser output signal
  • Figure 13 is a time domain plot measured using an oscilloscope.
  • Figure 24 is a structural diagram of another optical asynchronous sample signal measuring system for optical path measurement
  • Figure 25 is a system configuration diagram of a dual wavelength pulse laser
  • 26 is a structural diagram of a system for realizing multi-frequency optical comb using a dual-wavelength pulsed laser
  • Figure 27 is a diagram of the output wavelength of a dual-wavelength mode-locked laser
  • 28 is a frequency spectrum diagram of a photoelectrically converted signal outputted by a dual-wavelength mode-locked laser
  • Figure 29 is a photogram of a light pulse of a center wavelength of 1535 legs outputted by a dual-wavelength mode-locked laser after passing through a filter;
  • Figure 30 is a photogram of a light pulse with a center wavelength of 1557 legs outputted by a dual-wavelength pulsed laser output filter;
  • Figure 31 is a spectrum diagram of a power amplification and spectral broadening of an optical pulse having a center wavelength of 1557 nm through an optical amplifier and a single mode transmission fiber;
  • Figure 32 is a photogram showing the output light of a light pulse with a center wavelength of 1557 nm after the broadening of the light path through a bandpass filter with a passband of 1528 nm-1536 legs;
  • Figure 33 is a diagram of the optical amplifier after power amplification and optical spanning of the output amplifier of the dual-wavelength pulsed laser and the single-mode transmission fiber;
  • Figure 34 is a frequency spectrum diagram of the photoelectrically converted signal of the multi-frequency optical comb after the output of the dual-wavelength pulsed laser is passed through the amplifier and the transmission fiber;
  • the pulse light source only includes one resonant cavity, that is, the pulse light of two frequencies is generated by the same resonant cavity, since the two pulsed lights have different modes and polarizations. Characteristics such as state or center wavelength, using the modal dispersion, polarization mode dispersion, birefringence or chromatic dispersion of the relevant devices in the cavity, it is possible to simultaneously output a sequence of optical pulses having two different repetition frequencies.
  • the pulse light source in the following example is a mode-locked laser, which utilizes the chromatic dispersion in the optical cavity to realize a pulsed light source outputting pulse sequences of two different wavelengths and different repetition frequencies.
  • a DC laser pumping ⁇ :resonant ring to generate a pulsed light source by means of a light Kerr effect, which uses a different resonant mode refractive index of the micro-resonant ring.
  • the difference that is, the presence of modal dispersion, can simultaneously output optical pulse sequences with different repetition frequencies.
  • the pulse light source used in the following examples 1 to 7 is a dual-wavelength mode-locked laser, which uses an erbium-doped fiber as a gain medium, and adjusts the shape of the gain spectrum in the cavity by controlling the loss in the cavity to realize dual-wavelength pulses at 1530 and 1560 nm. Laser output. Due to the chromatic dispersion of devices such as optical fibers in the fiber cavity, the group velocities of the two wavelengths are different, so the repetition frequency of the two wavelength pulse outputs is also different. Let the repetition frequency of the 1530 nm wavelength pulse sequence be / ⁇ , and the repetition frequency of the 1560 m wavelength pulse sequence be / 2 and the frequency difference be ⁇ /. Example one
  • An optical asynchronous sampling signal measuring system for terahertz signal measurement using the above dual-wavelength mode-locked laser Figure 2 shows.
  • the dual-wavelength mode-locked laser is separated by a wavelength division multiplexer with pulsed light having a center wavelength of 1530 nm and 1560 nm, respectively.
  • the pulsed light of 1560 nm is subjected to power amplification and pulse compression through an optical power amplifier, and passes through a polarizing plate to serve as a pumping pulse sequence of a horizontal polarization state.
  • the pulsed light having a wavelength of 1530 nm is linearly polarized at 45 degrees after passing through the polarizing plate as a reference pulse sequence.
  • the pump light pulse sequence is incident on the terahertz emission device with an applied magnetic field at 45 degrees, and the terahertz signal is radiated by reflection by the optical Danbull effect enhanced by the magnetic field.
  • the terahertz beam passes through the first one. After the axis parabolic mirror is collimated, it is transmitted in the air of the object to be tested for a certain distance to become a signal pulse sequence, and after being focused by the second off-axis parabolic mirror, it is incident on the terahertz receiving device and the electro-optic polymer film together with the reference pulse sequence.
  • the signal pulse sequence transmitted through the electro-optic polymer film is incident on the Wollaston prism, and is divided into two beams, which are respectively incident on the two probes of the balanced photodetector, and the oscilloscope is used to detect the asynchronous output of the balanced detector.
  • the sample signal, and the time step of the signal is transformed by Af/f 2 times to obtain a terahertz time domain signal, and the terahertz time domain spectral information can be obtained by Fourier transform.
  • FIG. 1 An optical asynchronous sampling signal measuring system for terahertz signal measurement using the above dual-wavelength mode-locked laser is shown in FIG.
  • the dual-wavelength mode-locked laser is separated by a wavelength division multiplexer with pulsed light having a center wavelength of 1530 nm and 1560 nm, respectively.
  • the pulsed light of 1560 nm passes through the polarizer and is horizontally polarized as a sequence of pumping light pulses.
  • the 1530 nm pulsed light is power amplified and pulse-compressed by an optical power amplifier and a common single-mode fiber with nonlinear optical effects, and incident on a double-frequency crystal BBO to produce a multi-shot light of 765 nm as a reference pulse sequence.
  • the pump light pulse sequence is incident on the GaAs crystal at 45 degrees, and the terahertz wave is radiated by the optical rectification method.
  • the terahertz beam is collimated by the first off-axis parabolic mirror and is in the air of the object to be tested. After transmitting a distance, it becomes a signal pulse sequence, and after being focused by a second off-axis parabolic mirror, it is incident on the ZnTe crystal of the terahertz receiving device together with the reference pulse sequence, and the terahertz signal is detected by electro-optical sampling.
  • the signal pulse sequence of the ZnTe crystal is incident on the Wollaston prism, and is divided into two beams, which are respectively incident on the two probes of the balanced photodetector, and an oscilloscope is used to detect the asynchronous sample signal output by the balance detector, and the The time step of the signal is transformed by Af/f 2 times to obtain the terahertz time domain waveform signal, and the terahertz time domain optical information can be obtained by Fourier transform.
  • FIG. 1 An optical asynchronous sampling signal measuring system for terahertz signal measurement using the above dual-wavelength mode-locked laser is shown in FIG.
  • the dual-wavelength mode-locked laser is separated by a wavelength division multiplexer with pulsed light having a center wavelength of 1530 nm and 1560 nm, respectively.
  • the pulsed light of 1560 nm is amplified by power and pulsed by an optical power amplifier and a common single-mode fiber with nonlinear optical effects, and incident on a double-frequency crystal BBO to generate a 780 nm double-frequency light as a pump light pulse. sequence.
  • the 1530 nm pulsed light is power amplified and pulse-compressed by an optical power amplifier and a common single-mode fiber with nonlinear optical effects, and incident on a double-frequency crystal BBO to produce a multi-shot light of 765 nm as a reference pulse sequence.
  • the pump light pulse sequence is incident on a HzTe photoconductive switch of a terahertz emission device, and a terahertz wave is radiated.
  • the terahertz beam is collimated by the first off-axis parabolic mirror and transmitted in the air of the object to be tested for a certain distance.
  • the signal pulse sequence is focused by a second off-axis parabolic mirror, and is incident on the ZnTe photoconductive switch together with the reference pulse sequence, and the terahertz signal is detected by the photoconductive method, and the ZnTe crystal is transmitted through the ZnTe crystal.
  • the signal pulse sequence is incident on the Wollaston prism, and is divided into two beams, which are respectively incident on the two probes of the balanced photodetector, and an oscilloscope is used to detect the asynchronous sample signal output by the balance detector, and the signal is
  • the time step transform Af/f is 2 times, and the terahertz time domain waveform signal is obtained. After Fourier transform, the terahertz time domain spectral information can be obtained.
  • Optical asynchronous sampling signal measuring system for pumping detection signal measurement using the above dual-wavelength mode-locked laser
  • the figure is shown in Figure 5.
  • the two wavelengths of the dual-wavelength mode-locked laser output are divided into 1530 and 1560 nm pulsed light outputs through an optical filter.
  • the pulsed light of 1560 nm is subjected to power amplification and pulse compression through an optical power amplifier as a reference pulse sequence, and pulsed light having a wavelength of 1530 nm is passed through a power control device as a signal pulse sequence.
  • the signal pulse sequence and the reference pulse sequence are combined into a light path through the fiber coupling device, incident on the object to be tested, and the output light signal passes through the optical filter, and the signal pulse sequence is filtered out, and photoelectrically converted by the photodetector device to become an asynchronous sample signal. , using an oscilloscope to measure, and transform the time axis of the signal by ⁇ / times to obtain the pump detection signal.
  • Example five using an oscilloscope to measure, and transform the time axis of the signal by ⁇ / times to obtain the pump detection signal.
  • FIG. 1 An optical asynchronous sample signal measuring system for pumping detection signal measurement using the above dual-wavelength mode-locked laser is shown in FIG.
  • Two optical pulses with different repetition frequencies output from the dual-wavelength mode-locked laser are incident on the object to be tested, and 1560 nm of pulsed light is used as the reference pulse sequence, and pulsed light with a wavelength of 1530 nm is used as the signal pulse sequence.
  • the signal pulse sequence is filtered out, photoelectrically converted by the photodetector device to become an asynchronous sample signal, measured by an oscilloscope, and the time axis of the signal is transformed by Af/time to obtain a pump.
  • Pu detection signal Example six
  • FIG. 1 An optical asynchronous sample signal measuring system for pumping detection signal measurement using the above dual-wavelength mode-locked laser is shown in FIG.
  • the two wavelengths of the dual-wavelength mode-locked laser output are divided into 1530 and 1560 nm pulsed light outputs by a beam splitter.
  • the pulsed light of 1560 nm is subjected to power amplification and pulse compression through an optical amplifier as a reference pulse sequence, and the pulsed light having a wavelength of 1530 nm is subjected to power amplification and pulse compression by an optical amplifier, and is subjected to 765 nm light after frequency doubling by BBO crystal.
  • the non-collinear signal pulse sequence and the reference pulse sequence are focused on the object to be tested through the lens, and the photodetector device detects the signal pulse sequence ⁇ ij to obtain an asynchronous sample signal and measures with an oscilloscope.
  • the time axis of the measurement signal is transformed by ⁇ / times to obtain the pump detection signal.
  • FIG. 1 An optical asynchronous sample signal measuring system for pumping detection signal measurement using the above dual-wavelength mode-locked laser is shown in FIG.
  • the two wavelengths of the dual-wavelength mode-locked laser output are divided into 1530 and 1560 nm pulsed laser outputs by a beam splitter.
  • the pulsed light of 1530 nm is subjected to power amplification and pulse compression through an optical amplifier, and is multiplied by BBO crystal to become 765 nm light, which passes through a polarization beam splitting prism and becomes a horizontally polarized reference pulse sequence.
  • the pulsed light with a wavelength of 1560 nm is amplified by power and pulsed by an optical amplifier, and after being doubled by the BBO crystal, it becomes 780 nm light, and passes through a polarizer to become a signal pulse sequence having a linear polarization state of 45 degrees.
  • the non-collinear signal pulse sequence and the reference pulse sequence are focused on the object to be tested through a lens, and the signal pulse sequence is detected by the photodetector device through an analyzer having a polarization direction perpendicular to the polarizer, and an asynchronous sample signal is obtained by using an oscilloscope. Measurement, the time axis of the measurement signal is transformed by Af/f 2 times to obtain a pump detection signal.
  • the pulse light source of the present example and the dual-wavelength dual-frequency pulse laser output two pulsed light sequences of different repetition frequencies with a repetition frequency difference of 472 Hz, a center wavelength of 1532 nm and 1555 nm, respectively, and an output light pulse passes through the beam splitting device.
  • the optical pulse sequence with a center wavelength of 1532 nm and the optical pulse sequence with a center wavelength of 1555 nm are separated into two independent outputs.
  • the light with a center wavelength of 1555 nm is used as the first light pulse sequence, and after passing through the object to be tested, it is a signal pulse sequence.
  • the light with the center wavelength of 1532 nm is used as the second optical pulse sequence.
  • the spectrum After being amplified by the optical amplifier and passing through a common single-mode fiber, the spectrum broadens and overlaps with the spectrum of the signal pulse sequence to become a reference pulse sequence.
  • the signal pulse sequence and the reference pulse sequence are combined by the coupler and output through the photodetector
  • the time domain electrical signal is transformed by time axis and time domain-frequency domain to obtain time domain spectral information of the object to be tested.
  • any one of the two optical pulses may be overlapped by the spectral broadening and the other spectrally.
  • the pulse light source used in this example is a dual-wavelength mode-locked laser.
  • the principle of achieving dual-wavelength pulse output is to use the gain unevenness characteristic of the erbium-doped fiber, and adjust the shape of the gain spectrum by controlling the loss in the cavity, so that the wavelength is different.
  • the gain is the same, which in turn enables dual-mode mode-locked pulsed laser output.
  • the structure of the laser is shown in Fig. 10.
  • the laser is a fiber-optic passive mode-locked laser with a ring cavity structure.
  • the pump source is a semiconductor laser 1003 with a wavelength of 1480 nm, and the pump light emitted is coupled into a 5 meter long erbium doped fiber (EDF) 1001 via a 1480/1550 wavelength division multiplexer 1002.
  • the EDF 1001 has an absorption coefficient of 6.1 dB/m at 1530 nm.
  • the EDF is connected to the optical isolator 1008 to ensure that light propagates in one direction in the fiber cavity.
  • a polarization controller 1006 is added to the cavity to control the polarization state.
  • the cavity-mode-locking device is a carbon nanotube/polyimide film 1003 with a film thickness of 45 microns and a loss of about 4 dB after sandwiching the FC/PC connector.
  • an additional 6.85m ordinary single-mode fiber 1004 (including the pigtails of each device) is added to the cavity, and the total length of the single-mode fiber in the cavity. It is 11.85m.
  • the 80/20 fiber coupler 1007 outputs 20% of the laser light out of the cavity and 80% of the laser back into the cavity.
  • the loss in the cavity allows the EDF to have the same gain around 1530 and 1560 nm, satisfying the conditions of dual wavelength generation.
  • the pump power is about 80 mW, dual-wavelength mode-locking can be achieved by introducing vibration into the optical cavity.
  • the center wavelengths are 1532.46 nm and 1547.43 nm, respectively.
  • the obtained spectrum is shown in Fig. 11.
  • the spectrum of the output pulse is detected using a fast photodetector and a frequency detector, as shown in FIG. Due to the chromatic dispersion of devices such as optical fibers in the fiber cavity, the group velocities of the two wavelengths are different, so the repetition frequency of the two wavelength pulse outputs is also different. It can be seen from the spectrogram that the repetition frequency j of the 1532.46 nm wavelength pulse is 34.518773 MHz, and the repetition frequency of the 1564.43 nm wavelength pulse / 2 is 34.518156 MHz, and the frequency difference ⁇ / is 617 Hz. Second harmonic.
  • the optical path measurement system of the above dual-wavelength mode-locked laser is shown in Figure 13.
  • the output pulse of the dual-wavelength mode-locked laser 1301 passes through the optical amplifier 1302 for power amplification, and then enters the four-channel bandpass optical filter 1303, and the passband of 1528.5 nm-1536.5 nm can transmit light with a center wavelength of 1532.46 nm.
  • Pulsed out, the output spectrum is shown in Figure 14.
  • the filter with a passband of 1546 nm-1554 nm can filter out the optical pulse with a center wavelength of 1547.43 nm.
  • the output spectrum is shown in Figure 15.
  • the optical pulse with a center wavelength of 1547.43 nm is passed through an optical amplifier 1304 for power amplification, and the optical effect is broadened by the nonlinear effect of the erbium-doped fiber and the single-mode transmission fiber 1314 in the optical amplifier, and FIG. 16 is a broadened spectrum.
  • Figure. As can be seen from the figure, the spectrum is broadly broadened, with a certain power component around 1532 nm, which overlaps with the optical term of the optical pulse with a center wavelength of 1532.46 nm.
  • the spectrum of the reference optical pulse as the optical path measurement system has a spectrum as shown in Fig.
  • the optical pulse with a wavelength of 1532.46 nm is amplified by the optical amplifier 1305, and the power is about 15 mW. It is input to the 131 port of the circulator, and the first probe optical pulse sequence is output from the 132 port.
  • the cut single mode fiber and the focal length is 12 mm.
  • the lens 1307 is followed by a collimated beam output. A portion of the beam is incident on the mirror 1308, and another portion is incident on the mirror 1309, which is remotely reflected, coupled back into the fiber, and output through the port 133 of the circulator.
  • the distance from 1308 is approximately 18.5 cm and the distance between the two mirrors is approximately 29 cm.
  • the optical path difference between the two mirrors causes a relative delay between the pulses they reflect back.
  • the second probe light pulse sequence outputted by the port 133 and the reference light pulse sequence are respectively input to the 50/50 3dB coupler 1311 through the polarization controllers 1309 and 1310, and the coupler 1311 will be the second probe.
  • the photometric pulse sequence is combined with the reference optical pulse sequence, it is respectively incident on the two probes of the balance detector 1312.
  • the oscilloscope 1313 to detect the output signal of the balance detector 1312, the time shown in Fig. 18 can be obtained. Domain-related signals.
  • the nonlinear optical device exists in at least one signal of the signal optical path or the reference optical path, so that the spectrum of the path signal is broadened.
  • the function of the optical power amplifier is to amplify the optical signal so that it can generate a sufficiently strong nonlinear effect through the nonlinear optics, so that the broadened or shifted spectrum can overlap with the spectrum of the other signal, if the optical signal is amplified
  • the optical amplifier is not necessary before the spectrum is overlapped; the polarization control device functions to adjust the polarization state of the optical signal so that the two signals satisfy the field strength correlation or the intensity correlation polarization relationship.
  • the two signals can generate related signals, and the polarization controller is not necessary.
  • the function of the optical filter is to ensure that the spectrum of the reference pulse sequence and the spectrum of the signal pulse sequence have similar center wavelengths, and is not necessary.
  • This example uses a dual-wavelength mode-locked laser with the same principle as the example 9.
  • the output pulse of the dual-wavelength mode-locked laser passes through the beam splitting device, and the optical pulse component with a center wavelength of 1532.46 nm and the optical pulse component with a center wavelength of 1547.43 nm. Divided into separate two outputs.
  • One of the two optical pulses is used as a reference pulse sequence with a reference pulse width of 0.6 ps and the other as a first optical pulse sequence with a pulse width of 1 ps.
  • the first optical pulse sequence synthesizes a sequence of signal pulses after two different optical path delays in a transmissive manner.
  • the signal pulse sequence and the reference pulse sequence become parallel beams, and after being focused by the lens, they are concentrated on the second-order nonlinear optical material, such as a double-frequency crystal BBO crystal, and the photomultiplier tube is placed behind the BBO.
  • the intensity-related signal is obtained, and an intensity-related signal curve similar to that of Fig. 18 can be obtained, wherein the intensity-related signals constituting each peak are as shown in Fig. 19.
  • the optical path information contained therein can be solved by a method similar to that of the example 9.
  • the optical amplifier functions to amplify the optical signal so that it can generate a light intensity related signal through a nonlinear photoelectric detecting device, which is sufficient to generate a light intensity correlation before the optical signal is amplified. Signal, then the optical amplifier is not necessary; the role of the polarization control device is to adjust the polarization state of the optical signal so that the two signals satisfy the polarization relationship of the light intensity. If the two signals can generate the relevant signal before the adjustment, Then a polarization controller is not necessary.
  • Fig. 20 is a system structural diagram of optical asynchronous sampling optical path measurement.
  • the dual-frequency pulsed laser 2001 outputs two pulsed light sequences of different repetition frequencies with a repetition frequency difference of 472 Hz and a center wavelength of 1532 nm and 1555 nm, respectively.
  • the spectrum is shown in Fig. 21, and the spectrum is shown in Fig. 22.
  • the two pulsed light sequences are divided into two paths by a band pass filter 2002 as a spectroscopic device.
  • the light having a center wavelength of 1532 nm is a first optical pulse sequence
  • the light having a center wavelength of 1555 nm is a second optical pulse sequence.
  • the first optical pulse sequence is divided into two paths after passing through the optical coupler 2003, and becomes a calibration pulse sequence and a target pulse sequence after the calibration delay and the target delay, respectively, and is combined into a signal pulse sequence through the optical coupler 2004.
  • the second optical pulse sequence is amplified by the optical amplifier 2005 to become a reference pulse sequence, which is combined with the signal pulse sequence as a beam of light through the optical coupler 2006, and is input as a semiconductor optical amplifier (SOA) 2007 as a pulse action device.
  • SOA semiconductor optical amplifier
  • Fig. 24 is a system structural diagram of another optical asynchronous sample optical path measurement.
  • the difference between this example and the eleventh embodiment is that the all-optical switch is used as the pulse action device.
  • the dual-frequency pulsed laser 2401 outputs two pulsed light sequences of different repetition frequencies with a repetition frequency difference of 472 Hz and center wavelengths of 1532 nm and 1555 nm, respectively.
  • the two pulsed light sequences are divided into two paths by a band pass filter 2402 as a spectroscopic device.
  • the light having a center wavelength of 1532 nm is a first optical pulse sequence
  • the light having a center wavelength of 1555 nm is a second optical pulse sequence.
  • the first optical pulse sequence is divided into two paths after passing through the optical coupler 2403, and after being subjected to the calibration delay and the target delay, respectively, it becomes a calibration pulse sequence and a target pulse sequence, and passes through the optical coupler 2404 to be combined into a signal pulse sequence.
  • the second optical pulse sequence is amplified by the optical amplifier 2405 to become a reference pulse sequence, and whether or not the all-optical switch 2406 as the pulse action means is controlled to pass light.
  • the pulse of the reference pulse sequence coincides with the pulse in the signal pulse sequence, the pulse in the signal pulse sequence can pass through the all-optical switch, otherwise the all-optical switch cannot pass, and the optical pulse sequence output by the all-optical switch passes through the photodetector.
  • the structure of the dual-wavelength mode-locked laser used in this example is shown in Fig. 25.
  • the laser is a fiber-optic passive mode-locked laser with a ring cavity structure.
  • the pump source is a semiconductor laser 2503 with a wavelength of 1480 nm.
  • the pump light is coupled into a 5 meter long erbium doped fiber (EDF) 2501 via a 1480/1550 wavelength division multiplexer 2502.
  • the EDF has an absorption coefficient of 6.1 dB/m at 1530 nm.
  • the EDF is connected to the optical isolator 2508 to ensure that light propagates in one direction in the fiber cavity.
  • a polarization controller 2506 is added to the cavity to control the polarization state.
  • the cavity clamping device is a carbon nanotube/polyimide film 2503 with a film thickness of 40 ⁇ m and a loss of about 3.5 dB after sandwiching the FC/PC connector.
  • the total length of the common single mode fiber 2504 in the cavity is 6.1. m.
  • the 80/20 fiber coupler 2507 outputs 20% of the laser light out of the cavity and 80% of the laser back into the cavity.
  • the loss in the cavity allows the EDF to have two gain peaks around 1530 and 1560 nm, meeting the conditions for dual wavelength generation.
  • the center wavelengths of the dual-wavelength mode-locking are 1535 nm and 1557 nm, respectively, and the obtained spectrum is shown in Fig. 27.
  • the spectrum of the output pulse is detected using a fast photodetector and a frequency detector, as shown in FIG. Due to the dispersion of devices such as optical fibers in the fiber cavity, the group speeds of the two wavelengths are different, so the repetition frequency of the two different wavelengths of the optical pulse sequence (i.e., the frequency difference of the optical comb) is also different. As can be seen from the spectrogram, the repetition frequency of the 1535 nm wavelength pulse is 14.489145 MHz, and the repetition frequency of the 1557 nm wavelength pulse / 2 is 14.488649 MHz, and the frequency difference ⁇ / is 496 Hz.
  • the splitting filter device 2603 filters out two pulse sequences having center wavelengths of 1535 nm and 1557 nm at the two output ports, respectively, and the optical patterns are as shown in FIG. 29 and Figure 30 shows.
  • the 1557 nm optical pulse sequence passes through the fiber amplifier 2604 and the single-mode transmission fiber 2605, and uses the third-order nonlinear effects (self-phase modulation, four-wave mixing, etc.) in the gain fiber and the single-mode transmission fiber to realize the optical language broadening.
  • the spectral components around 1535 nm are shown in Figure 32.
  • the system simultaneously realizes two optical comb outputs with different frequency differences in the wavelength range around 1535 nm.
  • the function of the optical amplifier in the system is to amplify the optical signal so that it can overlap the broadened spectrum with the spectrum of the other signal by nonlinear effects, but the optical amplifier is not necessary, especially for the optical signal before amplification. It is sufficient to cause the spectra to overlap.
  • This example uses the same dual-wavelength mode-locked laser as in Example 1.
  • the output directly passes through the amplifier and the single-mode transmission fiber, using the third-order nonlinear effects (self-phase modulation, four-wave mixing, etc.) in the gain fiber and the single-mode transmission fiber.
  • the optical pulse sequences of different central wavelengths in the optical pulse sequence are optically broadened such that the spectra of the optical pulse sequences of different central wavelengths after the broadening overlap, thereby having two different frequency differences in the wavelength region overlapping the spectra.
  • the optical comb, the broadened optical language is shown in Fig. 33
  • the photoelectrically converted spectrum of the signal in the overlapping region of the optical language is as shown in Fig. 34.
  • the system simultaneously realizes the comb output with different frequency differences.
  • the function of the optical amplifier in the system is to amplify the optical signal so that it can overlap the broadened spectrum by nonlinear effects.
  • An optical amplifier is not necessary, especially if the optical signal is sufficient to overlap the spectrum before amplification.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光异步采样信号测量的方法和***。光异步采样信号测量的***包括一个能够输出两个不同重复频率的光脉冲的脉冲光源、信号光路、参考光路和探测装置。由于只利用了一个脉冲光源就能实现光异步采样信号测量,降低了***的复杂度和成本。还公开了使用该脉冲光源的多频光梳***和实现多频光梳的方法。

Description

说明书
一种光异步采样信号测量的方法和*** 技术领域
本发明涉及光学测量领域, 尤其涉及一种光异步釆样信号测量的方法和***。 背景技术
光异步釆样技术是釆用两个频率精确锁定但略有差别的光频梳,通过利用两个频率之 间的微小的频率差实现与釆样示波器原理类似的高精度时域"等效釆样"信号的测量方法。
光异步釆样技术已经应用于泵浦-探测, 太赫兹时域光语, 测距等领域。 但是之前的 研究人员所使用的光源均为两个独立的、具有一定频率差的激光器,这两个激光器需要复 杂的电路反馈控制***, 才能使其保持恒定的频率差与相位锁定, ***复杂, 成本高, 应 用困难。 利用光谐振腔中存在的模式色散、 偏振模色散、 双折射和色度色散, 可以实现一 个光源输出具有不同重复频率的两个脉冲光, 而且由于色散值的稳定性,这两个脉冲光的 重复频率差也相当稳定。 釆用这种方式实现的双频率脉冲光源具有结构简单, 集成化好 等优点, 从而使光异步釆样信号测量的***更简单易行。 发明内容
针对现有技术中存在的上述问题,本发明提供了一种光异步釆样信号测量的方法和系 统。
本发明提供了一种光异步釆样信号测量的方法, 其特征在于, 包括:
步骤 1 ,一个脉冲光源输出两种以上不同重复频率的光脉冲序列, 其中具有第一重复 频率 的光脉冲序列为第一光脉冲序列, 具有第二重复频率 f2的光脉冲序列为第二光脉 冲序列, Δί为第一光脉冲序列和第二光脉冲序列的重复频率之差, 即 lfr f2l;
步骤 2, 第一光脉冲序列经过信号光路变换为信号脉冲序列, 第二光脉冲序列经过参 考光路变换为参考脉冲序列;
步骤 3, 信号脉冲序列与参考脉冲序列在探测装置中相互作用, 获得由 、 f2决定的 异步釆样信号;
步骤 4, 对获得的异步釆样信号进行时间轴变换, 变换公式为 ΔΤ =ΔτΔί/ί! , 其中 Δτ 为异步釆样信号中的时间长度, ΔΤ 为实际时间长度, 从而得到时域信息, 通过时域- 频域变换可得到时域光语信息。 上述测量方法可应用于以下五个示例,分别用于太赫兹信号测量,泵浦探测信号测量, 时域光语测量, 基于相关信号测量的光程测量和基于非相关信号测量的光语测量:
1、 在一个示例中, 步骤 2中, 第一光脉冲序列经过功率控制、 脉冲波形变换、 偏振 控制和 /或二倍频变换后输入到太赫兹发射器件, 由太赫兹发射器件产生的太赫兹脉冲序 列经过待测物后形成信号脉冲序列, 第二光脉冲序列经过功率控制、脉冲波形变换、偏振 控制和 /或二倍频变换后变换为参考脉冲序列; 步骤 3 中信号脉冲序列与参考脉冲序列共 同输入到太赫兹接收器件, 经过光电探测器检测得到异步釆样信号; 步骤 4中,对异步釆 样信号进行数据处理, 得到太赫兹时域信息和 /或时域光谱信息。
具体说来, 上面所述的用于太赫兹信号测量的异步釆样信号测量方法, 包括: 第一步,脉冲光源产生具有两个以上不同重复频率的光脉冲序列,经过脉冲分束分为 重复频率为 的第一光脉冲序列和重复频率为 f2的第二光脉冲序列, 第一光脉冲序列和 第二光脉冲序列的重复频率差为 Af =lfr f2l; 第二步, 对第一光脉冲序列或其一部分进行功率放大、 功率控制、 脉冲波形变换、 偏 振控制、 二倍频变换, 以形成泵浦光脉冲序列, 泵浦光脉冲序列输入到太赫兹发射器件, 通过光电导方法、 光整流方法或表面效应方法产生太赫兹信号, 太赫兹信号经过待测物 后形成信号脉冲序列; 对第二光脉冲序列或其一部分进行功率放大、功率控制、脉冲波形 变换、偏振控制、二倍频变换的光学处理,以形成泵浦光脉冲序列,也就是参考脉冲序列; 第三步, 将信号脉冲序列和参考脉冲序列共同输入到太赫兹接收器件, 通过光电导 釆样或电光釆样方法检测得到与太赫兹波时域波形有关的异步釆样信号;
第四步, 对异步釆样信号进行数据处理, 太赫兹时域信号和异步釆样信号时间轴 换算关系为 ΔΤ =ΔτΔί/ , 其中 Δτ为异步釆样信号的时间长度, ΔΤ为太赫兹时域信号的 时间长度, 还可以通过时域 -频域信号变换得到太赫兹时域光谱信息。
2、 在一个示例中, 步骤 2中第一光脉冲序列经过功率控制、 脉冲波形变换、 偏振控 制和 /或二倍频变换后变换为信号脉冲序列, 第二光脉冲序列经过功率控制、 脉冲波形变 换、 偏振控制和 /或二倍频变换后变换为参考脉冲序列; 步骤 3中信号脉冲序列与参考脉 冲序列共同输入到待测物, 经过光电探测器检测信号脉冲序列, 得到异步釆样信号; 步骤 4中, 对异步釆样信号进行数据处理, 得到待测物的泵浦探测信号。
具体说来, 上面所述的用于泵浦探测信号测量的异步釆样信号测量方法, 包括: 第一步,脉冲光源产生具有两个以上不同重复频率的光脉冲序列,经过脉冲分束分为 重复频率为 的第一光脉冲序列和重复频率为 f2的第二光脉冲序列, 第一光脉冲序列和 第二光脉冲序列的重复频率差为 Af =lfr f2l;
第二步, 对第一光脉冲序列或其一部分进行功率放大、 功率控制、 脉冲波形变换、 偏 振控制、 光束分路或二倍频变换, 以形成信号脉冲序列; 对第二光脉冲序列或其一部分进 行功率放大、 功率控制、 脉冲波形变换、 偏振控制、 光束分路或二倍频变换, 以形成参考 脉冲序列;
第三步, 将信号脉冲序列和参考脉冲序列共线或者非共线入射到待测物上, 通过光 电探测器检测信号脉冲序列, 得到与泵浦探测信号有关的异步釆样信号; 。
第四步, 对异步釆样信号进行数据处理, 泵浦探测信号和异步釆样信号时间轴换 算关系为 ΔΤ =ΔτΔί/ί! , 其中 Δτ为异步釆样信号的时间长度, ΔΤ为泵浦探测信号的时间 长度。
3、 在一个示例中, 步骤 2中第一光脉冲序列经过功率放大、 脉冲波形变换、 偏振控 制和光谱移动后输入到待测物上, 形成信号脉冲序列, 第二光脉冲序列经过功率放大、 脉冲波形变换、 偏振控制后变换为参考脉冲序列; 步骤 3 中获得参考脉冲序列与信号脉 冲序列之间产生的时域相关信号; 步骤 4 中, 对信号进行数据处理, 得到待测物的时 域光谱信息。
具体说来, 上面所述的用于时域光语测量的异步釆样信号测量方法, 包括: 第一步,脉冲光源产生具有两个以上不同重复频率的光脉冲序列,经过脉冲分束分为 重复频率为 的第一光脉冲序列和重复频率为 f2的第二光脉冲序列, 第一光脉冲序列和 第二光脉冲序列的重复频率差为 Af =lfr f2l;
第二步, 对第一光脉冲序列或其一部分进行功率放大、 功率控制、 脉冲波形变换、 偏 振控制、 光语变换, 经过待测物后形成信号脉冲序列; 对第二光脉冲序列或其一部分进行 功率放大、 功率控制、 脉冲波形变换、 偏振控制、 光语变换, 以形成参考脉冲序列; 第三步, 将信号脉冲序列和参考脉冲序列入射到光电探测器上, 通过光电探测器检 测信号脉冲序列, 得到异步釆样信号; 。
第四步, 对异步釆样信号进行数据处理, 时域信号和异步釆样信号时间轴换算关 系为 ΔΤ =ΔτΔί/ , 其中 Δτ为异步釆样信号的时间长度, ΔΤ为时域信号的时间长度, 通 过时域-频域变换可得到时域光语信息。
具体说来,上面所述的第一光脉冲序列之所以经过光语移动是为了与参考脉冲序列具 有重叠的光语范围, 。
4、 在一个示例中, 步骤 2中第一光脉冲序列经过功率控制、 脉冲波形变换、 偏振控 制和 /或波长移动后分为两路, 一路经过定标光路生成定标脉冲序列, 另一路经过目标光 路生成目标脉冲序列,定标脉冲序列与目标脉冲序列合并成为信号脉冲序列,第二光脉冲 序列经过功率控制、 脉冲波形变换、 偏振控制和 /或波长移动生成参考脉冲序列; 步骤 3 中获得参考脉冲序列与信号脉冲序列之间产生的场强相关信号或光强相关信号; 步骤 4 中, 根据相关信号计算信号脉冲序列中目标脉冲与其前面的最近的定标脉冲之间的时 间差从而测得目标光路与定标光路间的光程差。
具体说来, 上面所述的用于光程测量的异步釆样信号测量方法, 包括:
第一步,脉冲光源产生具有两个以上不同重复频率的光脉冲序列,经过脉冲分束分为 重复频率为 的第一光脉冲序列和重复频率为 f2的第二光脉冲序列, 第一光脉冲序列和 第二光脉冲序列的重复频率差为 Af =lfr f2l;
第二步, 第一光脉冲序列经过定标光路生成定标脉冲序列, 第一光脉冲序列经过目 标光路生成目标脉冲序列, 定标脉冲序列与目标脉冲序列合并成为信号脉冲序列; 第三步, 测量信号脉冲序列与参考脉冲序列之间产生的场强或光强相关信号; 第四步, 根据时域相关信号计算信号脉冲序列中目标脉冲与其前面的最近的定标脉 冲之间的时间差从而测得目标光路与定标光路间的光程差。
其中, 时域相关信号为参考光脉冲序列与探测光脉冲序列之间的场强相关信号时, 第一光脉冲序列和 /或第二光脉冲序列经过波长移动, 使得参考脉冲序列的光语和信号脉 冲序列的光语交叠。
其中, 第一光脉冲序列入射到定标面, 经定标面反射生成定标脉冲序列; 第一光脉 冲序列入射到目标面, 经目标面反射生成目标脉冲序列。
其中, 第一光脉冲序列透射通过定标延迟生成定标脉冲序列, 第一光脉冲序列透射 通过目标延迟生成目标脉冲序列。
在第四步中, 根据下式计算光程:
d=vg ( ΔτΔί/ίρ+η/ίρ ) , 其中 d为目标光路与定标光路间的光程差, vg为探测光脉 冲的群速度, Δί为第一光脉冲序列和第二光脉冲序列的重复频率之差, 为第一光脉 冲序列的重复频率, Δτ为实际测量得到的时域相关信号中目标脉冲相关信号与其前面 的最近的定标脉冲相关信号之间的测量时间差, η为整数, nVg/fp表示模糊距离。
5、 在一个示例中, 步骤 2中第一光脉冲序列经过功率控制、 脉冲波形变换、 偏振控 制后分为两路, 一路经过定标光路生成定标脉冲序列, 另一路经过目标光路生成目标脉 冲序列,定标脉冲序列与目标脉冲序列合并成为信号脉冲序列,第二光脉冲序列经过功率 控制、脉冲波形变换、偏振控制生成参考脉冲序列; 步骤 3中信号脉冲序列和参考脉冲序 列进入脉冲作用装置,信号脉冲序列中与参考脉冲序列的脉冲在时间域上重合的脉冲的特 性发生改变, 测量此时的信号脉冲序列得到异步釆样信号; 步骤 4中, 根据异步釆样信 号中特性发生改变的脉冲的时间位置计算信号脉冲序列中目标脉冲与其前面的最近的 具体说来, 上面所述的用于光程测量的异步釆样信号测量方法, 包括:
第一步,脉冲光源产生具有两个以上不同重复频率的光脉冲序列,经过脉冲分束分为 重复频率为 的第一光脉冲序列和重复频率为 f2的第二光脉冲序列, 第一光脉冲序列和 第二光脉冲序列的重复频率差为 Af =lfr f2l;
第二步, 第一光脉冲序列经过功率控制、 脉冲波形变换、 偏振控制后分为两路, 一 路经过定标光路生成定标脉冲序列, 另一路经过目标光路生成目标脉冲序列, 定标脉冲 序列与目标脉冲序列合并成为信号脉冲序列,第二光脉冲序列经过功率控制、脉冲波形变 换、 偏振控制生成参考脉冲序列;
第三步,信号脉冲序列和参考脉冲序列进入脉冲作用装置,信号脉冲序列中与参考脉 冲序列的脉冲在时间域上重合的脉冲的特性发生改变,测量此时的信号脉冲序列得到异步 釆样信号;
第四步, 才艮据异步釆样信号计算信号脉冲序列中目标脉冲与其前面的最近的定标脉 冲之间的时间差从而测得目标光路与定标光路间的光程差。
在第四步中, 根据下式计算光程:
d=vg ( ΔτΔί/ίρ+η/ίρ ) , 其中 d为目标光路与定标光路间的光程差, vg为探测光脉 冲的群速度, Δί为第一光脉冲序列和第二光脉冲序列的重复频率之差, 为第一光脉 冲序列的重复频率, Δτ为实际测量得到的时域相关信号中目标脉冲相关信号与其前面 的最近的定标脉冲相关信号之间的测量时间差, η为整数, nVg/fp表示模糊距离。 本发明提供了一种光异步釆样信号测量的***, 其特征在于, 包括:
脉冲光源, 输出两种以上具有不同重复频率的光脉冲序列, 具有第一重复频率 的 光脉冲序列为第一光脉冲序列, 具有第二重复频率 f2的光脉冲序列为第二光脉冲序列; 信号光路, 用于将第一光脉冲序列变换为信号脉冲序列;
参考光路, 用于将第二光脉冲序列变换为参考脉冲序列;
探测装置, 用于实现信号脉冲序列和参考脉冲序列的相互作用, 获得异步釆样信号。 在一个示例中, 所述脉冲光源只包含一个谐振腔, 通过谐振腔中的模式色散、 偏振 模色散、 双折射或色度色散, 实现同时输出具有两个不同重复频率的光脉冲序列。
上述测量***应用于以下五个示例, 分别用于太赫兹信号测量, 泵浦探测信号测量, 时域光语测量, 基于相关信号测量的光程测量和基于非相关信号测量的光语测量:
1、 在一个示例中, 所述信号光路包括光功率放大器, 色散控制器件、 偏振控制器件、 二倍频晶体、太赫兹发射器件和待测物;所述参考光路包括光功率放大器,色散控制器件、 偏振控制器件和二倍频晶体; 所述探测装置包括由电光材料器件和光电探测器构成的太 赫兹接收器件或光电导开关构成的太赫兹接收器件。
具体说来, 上面所述的用于太赫兹信号测量的光异步釆样信号测量***, 包括 脉冲光源, 产生两种以上具有不同重复频率的光脉冲序列的输出信号;
脉冲分束及处理器件, 包括光纤耦合器、 分束棱镜、 分束片、 滤光片、 带通滤波器 或波分复用器, 用于将脉冲光源输出的第一光脉冲序列和第二光脉冲序列分成两路; 信号光路, 包括光功率放大器, 色散控制器件、 偏振控制器件、 二倍频晶体, 将第 一光脉冲序列处理成为泵浦光脉冲序列, 还包括辐射太赫兹波的电光材料器件、 光电导 开关器件或表面效应器件等太赫兹发射器件, 还包括待测物;
参考光路, 包括光功率放大器, 色散控制器件、 偏振控制器件、 二倍频晶体, 将第 二光脉冲序列处理成为参考脉冲序列;
探测装置, 包括由电光材料器件和光电探测器构成的太赫兹接收器件或光电导开关 构成的太赫兹接收器件, 其中电光材料器件包括 InAs、 GaAs、 InSb、 ZnTe、 LiTa03、 DAST、 电光聚合物材料等, 光电探测器是 PIN检测器、 APD检测器、 光电倍增管或 平衡检测器。
用于太赫兹信号测量的光异步釆样信号测量***中,泵浦光脉冲序列和参考脉冲序 列的波长可以相同也可以不同。泵浦光脉冲序列的波长和参考脉冲序列的波长可以与脉冲 光源的输出信号中的某个脉冲序列的波长相同,也可以通过对脉冲光源的输出信号中的某 个脉冲序列的波长变换到另一波长, 但泵浦光脉冲序列和参考脉冲序列的频率必须不同, 且频率不是整数倍关系。
2、 在一个示例中, 所述信号光路包括光功率放大器, 色散控制器件、 偏振控制器件 和 /或二倍频晶体; 所述参考光路包括光功率放大器, 色散控制器件、 偏振控制器件和 /或 二倍频晶体; 所述探测装置包括待测物、 滤波器件和光电探测器。
具体说来, 上面所述的用于泵浦探测信号测量的光异步釆样信号测量***, 包括 脉冲光源, 产生两种以上具有不同重复频率的光脉冲序列的输出信号, 不同的脉冲 重复频率之间不是整数倍关系。
信号光路, 包括光功率放大器, 色散控制器件、 偏振控制器件、 二倍频晶体, 将第 一光脉冲序列处理成为信号脉冲序列;
参考光路, 包括光功率放大器, 色散控制器件、 偏振控制器件、 非线性光学器件, 将第二光脉冲序列处理成为参考脉冲序列;
探测装置, 包括待测物、 滤波器件和光电探测器, 其中滤波器件为具有滤波功能的 滤光片、 带通滤波器或波分复用器、 具有检偏功能的偏振分束棱镜、 偏振片; 光电探 测器包括 PIN检测器、 APD检测器、 光电倍增管或平衡检测器。
3、 在一个示例中, 所述信号光路包括光功率放大器, 色散控制器件、 偏振控制器件 和非线性光学器件; 所述参考光路包括光功率放大器, 色散控制器件、 偏振控制器件; 所 述探测装置包括待测物、 滤波器件和光电探测器。
具体说来, 上面所述的用于时域光谱信号测量的光异步釆样信号测量***, 包括 脉冲光源, 产生两种以上具有不同重复频率的光脉冲序列的输出信号;
信号光路, 包括光功率放大器, 色散控制器件、 偏振控制器件和非线性光学器件, 将第一光脉冲序列处理成为信号脉冲序列; 其中非线性光学器件的作用为将信号脉冲序 列的光谱变换至与参考脉冲序列的光谱有重叠;
参考光路, 包括光功率放大器, 色散控制器件、 偏振控制器件, 将第二光脉冲序列 处理成为参考脉冲序列;
探测装置, 包括待测物、 滤波器件和光电探测器。
4、 在一个示例中, 所述信号光路包括光功率放大器, 色散控制器件、 偏振控制器件、 非线性光学器件、 目标光路和待测光路;所述参考光路包括光功率放大器,色散控制器件、 偏振控制器件和 /或非线性光学器件; 所述探测装置包括二倍频晶体、 滤波器件和光电探 测器。
具体说来, 上面所述的用于光程测量的光异步釆样信号测量***, 根据所测量信号 为场强相关信号或光强相关信号, 可分为以下两种***:
第一种***是通过测量场强相关信号测量光程的, 需要信号脉冲序列与参考脉冲 序列的光谱交叠, 包括:
脉冲光源, 产生两种以上具有不同重复频率的光脉冲序列的输出信号;
信号光路, 包括光功率放大器, 色散控制器件、 偏振控制器件、 非线性光学器件, 目标光路和待测光路, 其中非线性光学器件将第一光脉冲序列进行光谱展宽或移动, 产 生新的光谱分量, 使得信号脉冲序列的光语和参考脉冲序列的光语交叠;
参考光路, 包括光功率放大器, 色散控制器件、 偏振控制器件, 非线性光学器件, 其中非线性光学器件将第二光脉冲序列进行光语展宽或移动, 产生新的光谱分量, 使得 参考脉冲序列的光语和信号脉冲序列的光语交叠;
探测装置, 包括滤波器件和光电探测器。
第二种***是通过测量光强相关信号测量光程的, 不需要信号脉冲序列与参考脉 冲序列的光谱交叠, 包括:
脉冲光源, 产生两种以上具有不同重复频率的光脉冲序列的输出信号;
信号光路, 包括光功率放大器, 色散控制器件、 偏振控制器件、 目标光路和待测光 路;
参考光路, 包括光功率放大器, 色散控制器件、 偏振控制器件;
探测装置, 包括二倍频晶体与 PIN检测器、 APD检测器或光电倍增管构成的二倍频 检测器或双光子吸收光电探测器件。
5、 在一个示例中, 其特征在于, 所述信号光路包括光功率放大器, 色散控制器件、 偏振控制器件、 目标光路和待测光路; 所述参考光路包括光功率放大器, 色散控制器件、 偏振控制器件; 所述探测装置包括脉冲作用装置, 滤波器件和光电探测器。
具体说来, 上面所述的用于光程测量的光异步釆样信号测量***, 所测量到的异步 釆样信号并非参考脉冲序列和信号脉冲序列的相关信号, ***包括
脉冲光源, 产生两种以上具有不同重复频率的光脉冲序列的输出信号;
信号光路, 包括光功率放大器, 色散控制器件、 偏振控制器件、 非线性光学器件, 目标光路和待测光路;
参考光路, 包括光功率放大器, 色散控制器件、 偏振控制器件;
探测装置, 包括脉冲作用装置, 滤波器件和光电探测器。 在一个示例中,其特征在于,所述脉冲作用装置包括半导体光放大器、饱和吸收体、 全光开关和全光逻辑门。 本发明提供了一种生成多频光梳的方法, 包括:
步骤 1 ,脉冲激光器输出两个及两个以上具有不同中心波长和不同重复频率的光脉冲 序列, 光谱中相邻的不同中心波长的光脉冲序列的半高全宽的最大值小于其中心波长之 差;
步骤 2,将脉冲激光器输出的具有不同中心波长和不同重复频率的光脉冲序列经过非 线性光学过程, 使得光脉冲序列中的一个或多个不同中心波长的光脉冲序列发生光谱展 宽, 使得展宽后不同中心波长的光脉冲序列的光谱产生交叠, 从而在光谱交叠的波长 区域内具有两种以上不同重复频率的光梳。
在一个示例中, 步骤 2 中将具有不同中心波长和不同重复频率的光脉冲序列一起同 时经过相同的能够产生非线性光学过程的元件, 发生光语展宽, 使得展宽后第一光脉冲 序列的光语和第二光脉冲序列的光语交叠。
在一个示例中, 步骤 2又进一步分为:
步骤 21 , 分光器件将脉冲激光器输出的光脉冲序列分为第一光脉冲序列和第二光脉 冲序列,第一光脉冲序列的中心波长为第一波长,第一光脉冲序列的重复频率为第一频率, 第二光脉冲序列的中心波长为第二波长, 第二光脉冲序列的重复频率为第二频率;
步骤 22, 被分开的第一光脉冲序列和 /或第二光脉冲序列分别经过非线性光学过程, 发生光谱展宽, 使得展宽后第一光脉冲序列的光语和第二光脉冲序列的光语交叠。
在一个示例中, 非线性光学过程为基于四波混频、 自相位调制、 交叉相位调制、 受 激拉曼散射效应或其不同组合的非线性光学过程。 本发明提供了一种多频光梳***, 包括:
一个脉冲激光器, 输出两种以上具有不同中心波长的光脉冲序列, 光谱中相邻的不 同中心波长的光脉冲序列的半高全宽的最大值小于其中心波长之差, 脉冲激光器的激光 腔内的平均群速度对不同的输出中心波长不相同,从而不同中心波长的光脉冲序列的重复 频率不同;
脉冲激光器输出的光脉冲序列经过非线性光学***,使得光脉冲序列中的一个或多个 不同中心波长的光脉冲序列发生光语展宽,使得展宽后不同中心波长的光脉冲序列的光 谱产生交叠。
在一个示例中, 非线性光学***包括:
非线性光学元件, 用于光脉冲序列中的一个或多个不同中心波长的光脉冲序列发生 光语展宽, 使得展宽后不同中心波长的光脉冲序列的光谱产生交叠。
在一个示例中, 非线性光学***包括:
分光器件, 用于将脉冲激光器输出的光脉冲序列分为多个光脉冲序列。 各光脉冲序 列的中心波长不同, 光语的半高全宽小于相邻中心波长之差;
非线性光学元件, 用于光脉冲序列中的一个或多个不同中心波长的光脉冲序列发生 光语展宽, 使得展宽后不同中心波长的光脉冲序列的光谱产生交叠。
在一个示例中, 脉冲激光器的腔型结构为线型腔、折叠腔、 环形腔和 "8" 字形腔。 在一个示例中,脉冲激光器为主动锁模激光器、被动锁模激光器或混合锁模激光器。 在一个示例中, 非线性光学元件为单模传输光纤、 高非线性光纤、 增益光纤、 光子 晶体光纤或非线性光学集成波导。
在一个示例中, 分光器件为光纤耦合器、 分束棱镜、 分束片、 滤光片、 带通滤波器 或波分复用器。 附图说明
下面结合附图来对本发明作进一步详细说明, 其中:
图 1是光异步釆样信号测量的***结构图;
图 2是第一种用于太赫兹信号测量的光异步釆样信号测量***结构图;
图 3是第二种用于太赫兹信号测量的光异步釆样信号测量***结构图;
图 4是第三种用于太赫兹信号测量的光异步釆样信号测量***结构图;
图 5是第一种用于泵浦探测信号测量的光异步釆样信号测量***结构图; 图 6是第二种用于泵浦探测信号测量的光异步釆样信号测量***结构图; 图 7是第三种用于泵浦探测信号测量的光异步釆样信号测量***结构图; 图 8是第四种用于泵浦探测信号测量的光异步釆样信号测量***结构图; 图 9是一种用于时域光语测量的光异步釆样信号测量***结构图;
图 10是双波长脉冲激光器***结构图;
图 11是双波长脉冲激光器输出光语图;
图 12是双波长脉冲激光器输出信号经光电转换后的频谱图;
图 1 3是一种用于光程测量的光异步釆样信号测量***结构图;
图 14是双波长脉冲激光器输出光经过滤波器后输出的中心波长为 1532 腿的光脉冲 的光语图;
图 15是双波长脉冲激光器输出光经过滤波器后输出的中心波长为 1547 腿的光脉冲 的光语图;
图 16是将中心波长为 1547 nm的光脉冲经过光放大器 2 , 进行功率放大和光语展宽 后的光谱图; 图 17是光语展宽后再经过通带为 1528 nm-1536腿的带通滤波器后输出光的光语图; 图 18是使用示波器测量到的场强相关信号;
图 19 是光强相关信号示意图。
图 20是一种用于光程测量的光异步釆样信号测量***结构图;
图 21是双波长脉冲激光器输出光语图;
图 22是双波长脉冲激光器输出信号的频谱图;
图 13是使用示波器测量到的时域图。
图 24是另一种用于光程测量的光异步釆样信号测量***结构图;
图 25是双波长脉冲激光器的***结构图;
图 26是釆用双波长脉冲激光器实现多频光梳的***结构图;
图 27是双波长锁模激光器输出光语图;
图 28是双波长锁模激光器输出经过光电变换后的信号的频谱图;
图 29是双波长锁模激光器输出光经过滤波器后输出的中心波长为 1535 腿的光脉冲 的光语图;
图 30是双波长脉冲激光器输出光经过滤波器后输出的中心波长为 1557 腿的光脉冲 的光语图;
图 31是将中心波长为 1557 nm的光脉冲经过光放大器和单模传输光纤, 进行功率放 大和光谱展宽后的光谱图;
图 32是光语展宽后的原中心波长为 1557 nm的光脉冲经过通带为 1528 nm-1536 腿 的带通滤波器后输出光的光语图;
图 33是双波长脉冲激光器的输出放大器和单模传输光纤进行功率放大和光语展宽后 的光语图;
图 34是双波长脉冲激光器的输出经放大器和传输光纤后的实现多频光梳的经过光电 变换后的信号的频谱图; 具体实施方式
在本发明的光异步釆样信号测量***中,脉冲光源只包含一个谐振腔,也就是两个频 率的脉冲光是由同一个谐振腔产生的, 由于这两个脉冲光具有不同的模式、偏振态或中心 波长等特性, 利用谐振腔内相关器件的模式色散、 偏振模色散、 双折射或色度色散, 可以 实现一个谐振腔同时输出具有两个不同重复频率的光脉冲序列。下面的实例中的脉冲光源 为锁模激光器, 利用了光腔中的色度色散, 实现了一个脉冲光源输出两个不同波长、 不同 重复频率的脉冲序列。 除此之外, 也可釆用直流激光器泵浦^:谐振环, 通过光克尔效应产 生光频梳的方式, 实现脉冲光源,这种脉冲光源利用微谐振环的不同谐振模式折射率略有 差别, 也就是存在模式色散, 可以同时输出具有不同重复频率的光脉冲序列。 此外, 也可 以在光谐振腔中引入双折射器件,利用双折射色散来实现输出不同重复频率光脉冲序列的 脉冲光源。 以下实例一至实例七中使用的脉冲光源为双波长锁模激光器, 它釆用掺铒光纤作 为增益介质, 通过控制腔内的损耗调节腔内增益谱的形状, 实现在 1530和 1560nm的 双波长脉冲激光输出。 由于在光纤腔中光纤等器件存在的色度色散, 两个波长的群速 度不同, 所以两个波长脉冲输出的重复频率也不同。 设 1530 nm波长脉冲序列的重复 频率是 /ι , 而 1560 m波长脉冲序列的重复频率是 /2 , 频率差为 Δ/ 。 实例一
釆用上述双波长锁模激光器的用于太赫兹信号测量的光异步釆样信号测量***如 图 2所示。 双波长锁模激光器经过波分复用器将中心波长分别为 1530 nm和 1560 nm 的脉冲光分开。 将 1560 nm的脉冲光经过光功率放大器进行功率放大和脉冲压缩, 经 过偏振片后作为水平偏振态的泵浦光脉冲序列。 波长为 1530 nm的脉冲光经过偏振片 后为 45度线偏振,作为参考脉冲序列。泵浦光脉冲序列 45度入射到太赫兹发射器件一 带有外加磁场的 InAs晶体上, 通过磁场增强的光丹伯尔效应, 以反射的方式辐射出太 赫兹信号, 太赫兹波束经过第一个离轴抛物面镜准直后在待测物一空气中传输一段距 离, 成为信号脉冲序列, 并经过第二个离轴抛物面镜聚焦后, 与参考脉冲序列共同入 射到太赫兹接收器件一电光聚合物薄膜上, 透过电光聚合物薄膜的信号脉冲序列入射 到沃拉斯顿棱镜上, 分为两束光, 分别入射到平衡光电探测器的两个探头上, 使用示 波器检测平衡探测器输出的异步釆样信号, 并将该信号的时间步长变换 Af/f2倍, 得到 太赫兹时域信号, 经过傅里叶变换可以得到太赫兹时域光谱信息。 实例二
釆用上述双波长锁模激光器的用于太赫兹信号测量的光异步釆样信号测量***如 图 3所示。 双波长锁模激光器经过波分复用器将中心波长分别为 1530 nm和 1560 nm 的脉冲光分开。 1560 nm 的脉冲光经过偏振片后为水平偏振, 作为泵浦光脉冲序列。 1530 nm 的脉冲光经过光功率放大器和具有非线性光学效应的普通单模光纤进行功率 放大和脉冲压缩, 并入射到二倍频晶体 BBO上, 产生 765 nm的倍频光, 作为参考脉 冲序列。 泵浦光脉冲序列 45度入射到太赫兹发射器件一 GaAs晶体上, 通过光整流的 方法辐射出太赫兹波, 太赫兹波束经过第一个离轴抛物面镜准直后在待测物一空气中 传输一段距离, 成为信号脉冲序列, 并经过第二个离轴抛物面镜聚焦后, 与参考脉冲 序列共同入射到太赫兹接收器件一 ZnTe 晶体上, 通过电光釆样的方法检测太赫兹信 号, 透过 ZnTe晶体的信号脉冲序列入射到沃拉斯顿棱镜上, 分为两束光, 分别入射到 平衡光电探测器的两个探头上, 使用示波器检测平衡探测器输出的异步釆样信号, 并 将该信号的时间步长变换 Af/f2倍, 得到太赫兹时域波形信号, 经过傅里叶变换可以得 到太赫兹时域光语信息。 实例三
釆用上述双波长锁模激光器的用于太赫兹信号测量的光异步釆样信号测量***如 图 4所示。 双波长锁模激光器经过波分复用器将中心波长分别为 1530 nm和 1560 nm 的脉冲光分开。 1560 nm 的脉冲光经过光功率放大器和具有非线性光学效应的普通单 模光纤进行功率放大和脉冲压缩, 并入射到二倍频晶体 BBO上, 产生 780 nm的倍频 光, 作为泵浦光脉冲序列。 1530 nm 的脉冲光经过光功率放大器和具有非线性光学效 应的普通单模光纤进行功率放大和脉冲压缩, 并入射到二倍频晶体 BBO上, 产生 765 nm的倍频光, 作为参考脉冲序列。 泵浦光脉冲序列入射在太赫兹发射器件一 ZnTe光 电导开关上,辐射出太赫兹波,太赫兹波束经过第一个离轴抛物面镜准直后在待测物一 空气中传输一段距离, 成为信号脉冲序列, 并经过第二个离轴抛物面镜聚焦后, 与参 考脉冲序列共同入射到太赫兹接收器件一 ZnTe光电导开关上, 通过光电导釆样的方法 检测太赫兹信号,透过 ZnTe晶体的信号脉冲序列入射到沃拉斯顿棱镜上,分为两束光, 分别入射到平衡光电探测器的两个探头上, 使用示波器检测平衡探测器输出的异步釆 样信号, 并将该信号的时间步长变换 Af/f2倍, 得到太赫兹时域波形信号, 经过傅里叶 变换可以得到太赫兹时域光谱信息。 实例四
釆用上述双波长锁模激光器的用于泵浦探测信号测量的光异步釆样信号测量*** 图如图 5所示。 双波长锁模激光器输出的两个重复频率不同的光脉冲经过光滤波器分 为 1530和 1560nm的脉冲光输出。 将 1560 nm的脉冲光经过光功率放大器进行功率放 大和脉冲压缩, 作为参考脉冲序列, 波长为 1530 nm的脉冲光经过功率控制器件, 作 为信号脉冲序列。 信号脉冲序列和参考脉冲序列经过光纤耦合器件合为一路光, 入射 到待测物上, 输出光信号经过光滤波器, 滤出信号脉冲序列, 经过光电探测器件进行 光电转换后成为异步釆样信号, 使用示波器测量, 并将该信号的时间轴变换 Δί/ 倍, 得到泵浦探测信号。 实例五
釆用上述双波长锁模激光器的用于泵浦探测信号测量的光异步釆样信号测量*** 图如图 6所示。 双波长锁模激光器输出的两个重复频率不同的光脉冲共线入射到待测 物上, 其中 1560 nm的脉冲光作为参考脉冲序列, 波长为 1530 nm的脉冲光作为信号 脉冲序列。 经过待测物之后的光信号经过光滤波器, 滤出信号脉冲序列, 经过光电探 测器件进行光电转换后成为异步釆样信号, 使用示波器测量, 并将该信号的时间轴变 换 Af/ 倍得到泵浦探测信号。 实例六
釆用上述双波长锁模激光器的用于泵浦探测信号测量的光异步釆样信号测量*** 图如图 7所示。 双波长锁模激光器输出的两个重复频率不同的光脉冲经过分束器分为 1530和 1560nm的脉冲光输出。 将 1560 nm的脉冲光经过光放大器进行功率放大和脉 冲压缩, 作为参考脉冲序列, 波长为 1530 nm的脉冲光经过光放大器进行功率放大和 脉冲压缩, 并经过 BBO晶体倍频后的 765 nm的光作为信号脉冲序列。 非共线的信号 脉冲序列和参考脉冲序列经过透镜聚焦在待测物上, 光电探测器件检测信号脉冲序歹 ij 得到异步釆样信号, 并用示波器进行测量。 将测量信号的时间轴变换 Δί/ 倍, 得到泵 浦探测信号。 实例七
釆用上述双波长锁模激光器的用于泵浦探测信号测量的光异步釆样信号测量*** 图如图 7所示。 双波长锁模激光器输出的两个重复频率不同的光脉冲经过分束器分为 1530和 1560nm的脉冲激光输出。 将 1530 nm的脉冲光经过光放大器进行功率放大和 脉冲压缩, 并经过 BBO晶体倍频后成为 765 nm的光, 通过偏振分光棱镜后成为水平 偏振的参考脉冲序列。 波长为 1560 nm的脉冲光经过光放大器进行功率放大和脉冲压 缩, 并经过 BBO晶体倍频后成为 780 nm的光, 通过起偏器, 成为具有 45度线性偏振 态的信号脉冲序列。 非共线的信号脉冲序列和参考脉冲序列经过透镜聚焦在待测物上, 信号脉冲序列通过偏振方向与起偏器垂直的检偏器后被光电探测器件检测得到异步釆 样信号, 用示波器进行测量, 将测量信号的时间轴变换 Af/f2倍, 得到泵浦探测信号。 实例八
本实例的脉冲光源与为双波长双频脉冲激光器, 输出两个不同重复频率的脉冲光序 列, 其重复频率差为 472 Hz, 中心波长分别为 1532 nm和 1555 nm, 输出光脉冲经过分 光器件, 将中心波长为 1532 nm的光脉冲序列与中心波长为 1555 nm 的光脉冲序列分 成独立的两路输出。 将中心波长为 1555 nm的光作为第一光脉冲序列, 经过待测物后, 为信号脉冲序列。 将中心波长为 1532 nm的光作为第二光脉冲序列, 经过光放大器放 大并经过一段普通单模光纤后, 光谱展宽, 和信号脉冲序列的光谱发生交叠, 成为参 考脉冲序列。 信号脉冲序列和参考脉冲序列经过耦合器合波后, 经过光电探测器输出 时域的电信号, 经过时间轴的变换以及时域-频域的变换得到待测物的时域光谱信息。 在本实例中, 两路光脉冲任何一路光脉冲经过光谱展宽与另一路光谱产生交叠即可。 实例九
本实例中使用的脉冲光源为双波长锁模激光器, 其实现双波长脉冲输出的原理是 利用掺铒光纤的增益不平坦特性, 通过控制腔内的损耗调节增益谱的形状, 使得不同 波长处的增益相同,进而实现双波长的锁模脉冲激光输出。激光器的结构如图 10所示, 激光器为釆用环形腔结构的光纤被动锁模激光器。 泵浦光源为波长 1480nm 的半导体 激光器 1003 ,所发出的泵浦光经过 1480/1550波分复用器 1002耦合进入 5米长的掺铒 光纤( EDF ) 1001。 该 EDF 1001在 1530nm的吸收系数是 6.1dB/m。 EDF连接光隔离 器 1008 , 保证光在光纤腔内单向传播。 腔内加入偏振控制器 1006来控制偏振态。 腔内 的锁模器件为碳纳米管 /聚酰亚胺薄膜 1003 , 薄膜厚度为 45微米, 夹入 FC/PC接头后 的损耗约为 4 dB。 为了保证腔内平均色散为反常色散, 进而使激光器产生孤子脉冲, 在腔内还额外加入 6.85m的普通单模光纤 1004 (包括各个器件的尾纤在内) , 腔内单 模光纤的总长度为 11.85m。 80/20的光纤耦合器 1007将腔内 20%的激光输出到腔外, 80%的激光返回腔内。 腔内的损耗使得 EDF在 1530和 1560nm附近的增益相同, 满足 双波长产生的条件。 当泵浦功率约为 80 mW时, 通过在光腔中引入振动^:扰, 可以实 现双波长锁模, 中心波长分别为 1532.46nm及 1547.43nm, 得到的光谱如图 11所示。 使用快速光电探测器和频语仪检测输出脉冲的频谱图, 如图 12所示。 由于在光纤腔中 光纤等器件存在的色度色散, 两个波长的群速度不同, 所以两个波长脉冲输出的重复 频率也不同。 从频谱图中可以看到, 1532.46nm 波长脉冲的重复频率 j 是 34.518773MHz, 而 1547.43nm波长脉冲的重复频率 /2是 34.518156MHz, 频率差 Δ/为 617Hz , 两个波长所实现的脉冲均为二次谐波。
釆用上述双波长锁模激光器的光程测量***图如图 13 所示。 双波长锁模激光器 1301输出光脉冲经过光放大器 1302, 进行功率放大, 然后进入四通道的带通光滤波器 1303 ,通带为 1528.5 nm-1536.5 nm的滤波器可以将中心波长为 1532.46 nm的光脉冲滤 出, 其输出光谱如图 14所示, 通带为 1546 nm-1554 nm的滤波器可以将中心波长为 1547.43 nm的光脉冲滤出, 其输出光谱如图 15所示。 将中心波长为 1547.43 nm的光 脉冲经过光放大器 1304, 进行功率的放大, 并利用光放大器中掺铒光纤和单模传输光 纤 1314的非线性效应进行光语展宽, 图 16为经过展宽后的光谱图。 从图中可以看到, 光谱得到了很大程度的展宽, 在 1532 nm附近有了一定的功率分量, 即与中心波长为 1532.46 nm的光脉冲的光语发生了交叠。 此时再经过通带为 1528 nm-1536 nm的带通 滤波器 1306后, 作为光程测量***的参考光脉冲序列, 其光谱如图 17所示, 其功率 约为 6(H敫瓦。 中心波长为 1532.46 nm的光脉冲经过光放大器 1305放大后, 功率约为 15毫瓦, 输入环行器的 131端口, 由 132端口输出第一探测光脉冲序列, 经过切断的 单模光纤和焦距为 12mm的透镜 1307后成为准直光束输出,光束一部分入射到反射镜 1308 , 另一部分入射到距离较远的反射镜 1309上, 分别反射并耦合回光纤中, 经过环 形器的端口 133输出。 单模光纤端面与 1308的距离约为 18.5 cm, 两个反射镜之间的 距离约为 29cm。 两个反射镜之间的存在的光程差会使它们反射回来的脉冲间存在一个 相对时延?。 环形器端口 133输出的第二探测光脉冲序列与上述参考光脉冲序列分别经 过偏振控制器 1309、 1310后输入到 50/50的 3dB耦合器 1311中, 耦合器 1311将第二 探测光脉冲序列与参考光脉冲序列合波之后, 又分别入射到平衡检测器 1312的两个探 头上。 使用示波器 1313对平衡检测器 1312的输出信号进行探测, 可以得到如图 18所 示的时域相关信号。 由图 18可以看出存在 3个相关信号, 分别是由单模光纤端面、 反 射镜 1和反射镜 2反射回的光与参考光脉冲序列场强相关得到的, 其两两之间的测量 时间差 Δτ 分别为 70 和 109 s。 由此根据脉冲之间的时间差 τ = Δτ x Af/fp, 光程差 d=vg*T , 可以得到单模光纤端面与反射镜 1的光程为 37.5368 cm, 反射镜 1与反射镜 2的 光程为 58.8262 cm。 通过测量场强相关信号得到光程信息的***中, 非线性光学器件至少存在于信号 光路或者参考光路的一路信号中, 使得该路信号的光谱得到展宽。 光功率放大器的作 用是放大光信号, 使其能够通过非线性光学器件产生足够强的非线性效应, 从而使展 宽或者移动后的光谱能够与另外一路信号的光谱产生交叠, 如果光信号在放大前就足 以使光谱产生交叠, 则光放大器不是必须的; 偏振控制器件的作用是通过调整光信号 的偏振态, 使两路信号满足场强相关或者光强相关的偏振关系, 如果在调整前, 两路 信号就能够产生相关信号了, 则偏振控制器也不是必须的; 光滤波器的作用是保证参 考脉冲序列的光谱和信号脉冲序列的光谱具有相近的中心波长, 也不是必须的。 实例十
本实例釆用的是与实例九原理相同的双波长锁模激光器, 双波长锁模激光器输出 光脉冲经过分光器件, 将中心波长为 1532.46 nm的光脉冲分量与中心波长为 1547.43 nm 的光脉冲分量分成独立的两路输出。 将这两路光脉冲的其中一路作为参考脉冲序 列, 参考脉冲宽度为 0.6 ps, 另一路作为第一光脉冲序列, 脉冲宽度为 l ps。 第一光脉 冲序列以透射的方式经过两路不同的光程延迟之后, 合成信号脉冲序列。 经过调整偏 振态后, 信号脉冲序列和参考脉冲序列成为平行的光束, 经过透镜聚焦后, 会聚到二 阶非线性光学材料上, 如二倍频晶体 BBO晶体上, 光电倍增管放置于 BBO的后侧, 釆集强度相关信号, 可以得到与图 18相似的强度相关信号曲线, 其中构成每个峰的强 度相关信号如图 19所示。根据互相关信号序列中各相关信号的测量时间差可以釆用与 实例九相似的方法解算出其中包含的光程信息。 通过测量光强相关信号得到光程信息的***中, 光放大器的作用是放大光信号, 使其能够通过非线性光电探测装置产生光强相关信号, 如果光信号在放大前就足以产 生光强相关信号, 则光放大器不是必须的; 偏振控制器件的作用是通过调整光信号的 偏振态, 使两路信号满足光强相关的偏振关系, 如果在调整前, 两路信号就能够产生 相关信号了, 则偏振控制器也不是必须的。 实例十一
图 20是光异步釆样光程测量的***结构图。 双频脉冲激光器 2001输出两个不同重 复频率的脉冲光序列, 其重复频率差为 472 Hz, 中心波长分别为 1532 nm和 1555 nm, 光 谱图如图 21所示,频谱图如图 22所示。这两个脉冲光序列经过作为分光器件的带通滤波 器 2002后分为两路, 中心波长为 1532 nm的光为第一光脉冲序列, 中心波长为 1555 nm 的光为第二光脉冲序列。 第一光脉冲序列经过光耦合器 2003后分为两路, 分别经过定标 延迟和目标延迟后成为定标脉冲序列和目标脉冲序列, 并经过光耦合器 2004后合为信号 脉冲序列。 第二光脉冲序列经过光放大器 2005放大后成为参考脉冲序列, 它和信号脉冲 序列经过光耦合器 2006合为一束光, 输入作为脉冲作用装置的半导体光放大器( SOA ) 2007。 SOA输出的光脉冲序列经过滤波器 2008后滤出和参考脉冲序列作用后的信号脉冲 序列, 经过光电探测器 2009转换为电信号, 最后示波器 2010接收该电信号, 所得到的时 域图如图 23所示。 由于 SOA具有增益饱和的特性,所以当参考光脉冲与探测光脉冲在时 域上重合时, 由于参考光脉冲使得 SOA饱和, 探测光脉冲的透过率下降, 通过测量两个 下降沿的时间差 Δτ , 可以计算得到目标延迟与定标延迟之间的距离差(1=ν§ΔτΔί/ , 其中 vg为信号脉冲序列的群速度。 实例十二
图 24是另一种光异步釆样光程测量的***结构图,本实例与实例十一的区别是釆用 全光开关作为脉冲作用器件。双频脉冲激光器 2401输出两个不同重复频率的脉冲光序列, 其重复频率差为 472 Hz, 中心波长分别为 1532 nm和 1555 nm。这两个脉冲光序列经过作 为分光器件的带通滤波器 2402后分为两路,中心波长为 1532 nm的光为第一光脉冲序列, 中心波长为 1555 nm的光为第二光脉冲序列。 第一光脉冲序列经过光耦合器 2403后分为 两路,分别经过定标延迟和目标延迟后成为定标脉冲序列和目标脉冲序列,并经过光耦合 器 2404后合为信号脉冲序列。第二光脉冲序列经过光放大器 2405放大后成为参考脉冲序 列, 控制作为脉冲作用装置的全光开关 2406是否通光。 当参考脉冲序列的脉冲与信号脉 冲序列中的脉冲在时间上重合时,信号脉冲序列中的脉冲能通过全光开关,否则无法通过 全光开关, 全光开关输出的光脉冲序列经过光电探测器 2407转换为电信号, 最后示波器 2408接收该电信号。 根据电信号中两个相邻脉冲的时间差 Δτ, 可以计算得到目标延迟与 定标延迟之间的距离差 d=vgATAf/f i , 其中 vg为信号脉冲序列的群速度。 实例十三
本实例中使用的双波长锁模激光器的结构如图 25 所示, 激光器为釆用环形腔结 构的光纤被动锁模激光器。 泵浦光源为波长 1480nm的半导体激光器 2503 , 所发出的 泵浦光经过 1480/1550波分复用器 2502耦合进入 5米长的掺铒光纤( EDF ) 2501。 该 EDF在 1530nm的吸收系数是 6.1dB/m。 EDF连接光隔离器 2508 , 保证光在光纤腔内 单向传播。 腔内加入偏振控制器 2506 来控制偏振态。 腔内的锁模器件为碳纳米管 /聚 酰亚胺薄膜 2503 , 薄膜厚度为 40微米, 夹入 FC/PC接头后的损耗约为 3.5 dB , 腔内 普通单模光纤 2504的总长度是 6.1m。 80/20的光纤耦合器 2507将腔内 20%的激光输 出到腔外, 80%的激光返回腔内。腔内的损耗使得 EDF在 1530和 1560 nm附近具有两 个增益峰,满足双波长产生的条件。实现双波长锁模的中心波长分别为 1535 nm及 1557 nm, 得到的光谱如图 27所示。 使用快速光电探测器和频语仪检测输出脉冲的频谱图, 如图 28所示。 由于在光纤腔中光纤等器件存在的色散, 两个波长的群速度不同, 所以 这两个不同波长的光脉冲序列的重复频率 (即光梳的频率差) 也不同。 从频谱图中可 以看到, 1535 nm波长脉冲的重复频率 是 14.489145 MHz, 而 1557 nm波长脉冲的重 复频率 /2是 14.488649 MHz , 频率差 Δ/为 496 Hz。 双波长激光器 2601的输出经光纤放 大器 2602放大后,被分光滤波器件 2603在两个输出端口分别滤出中心波长分别为 1535 nm和 1557 nm的两个脉冲序列, 其光语图分别如图 29和图 30所示。 1557 nm的光脉 冲序列经过光纤放大器 2604及单模传输光纤 2605 , 利用增益光纤和单模传输光纤中的 三阶非线性效应 (自相位调制、 四波混频等) 实现光语展宽, 光语如图 31所示。 经滤波 器滤波 2606后, 1535 nm附近的光谱分量如图 32所示。 从而该***在 1535 nm附近 波长范围内同时实现了两路具有不同频率差的光梳输出。 ***中的光放大器的作用是 放大光信号, 使其能够通过非线性效应使展宽后的光谱能够与另外一路信号的光谱产 生交叠, 但光放大器不是必须的, 特别是对于光信号在放大前就足以使光谱产生交叠 的情况。 实例十四
本实例釆用与实例一相同的双波长锁模激光器。 其输出直接经过放大器及单模传 输光纤,利用增益光纤和单模传输光纤中的三阶非线性效应(自相位调制、四波混频等), 使得光脉冲序列中的不同中心波长的光脉冲序列发生光语展宽,使得展宽后不同中心波长 的光脉冲序列的光谱产生交叠, 从而在光谱交叠的波长区域内具有两种不同频率差的光 梳,其展宽后的光语如图 33所示,光语交叠区域的信号经光电转换后的频谱如图 34所示, 可以看出***同时实现了具有不同频率差的光梳输出。***中的光放大器的作用是放大 光信号,使其能够通过非线性效应使展宽后的光谱产生交叠,光放大器不是必须的, 特 别是如果光信号在放大前就足以使光谱产生交叠。 以上所述仅为本发明的优选实施方式,但本发明保护范围并不局限于此。任何本领域 的技术人员在本发明公开的技术范围内,均可对其进行适当的改变或变化, 而这种改变或 变化都应涵盖在本发明的保护范围之内。

Claims

权利要求书
1、 一种光异步釆样信号测量的方法, 其特征在于, 包括:
步骤 1 ,一个脉冲光源输出两种以上不同重复频率的光脉冲序列, 其中具有第一重复 频率 fi的光脉冲序列为第一光脉冲序列, 具有第二重复频率 f2的光脉冲序列为第二光脉 冲序列, Δί为第一光脉冲序列和第二光脉冲序列的重复频率之差, 即 lfr f2l;
步骤 2, 第一光脉冲序列经过信号光路变换为信号脉冲序列, 第二光脉冲序列经过参 考光路变换为参考脉冲序列;
步骤 3, 信号脉冲序列与参考脉冲序列在探测装置中相互作用, 获得由 、 f2决定的 异步釆样信号;
步骤 4, 对获得的异步釆样信号进行时间轴变换, 变换公式为 ΔΤ =ΔτΔί/ίι , 其中 Δτ 为异步釆样信号中的时间长度, ΔΤ 为实际时间长度, 从而得到时域信息, 通过时域- 频域变换可得到时域光语信息。
2、 如权利要求 1所述的光异步釆样信号测量的方法, 其特征在于, 步骤 2中, 第 一光脉冲序列经过功率控制、 脉冲波形变换、 偏振控制和 /或二倍频变换后输入到太赫兹 发射器件, 由太赫兹发射器件产生的太赫兹脉冲序列经过待测物后形成信号脉冲序列,第 二光脉冲序列经过功率控制、 脉冲波形变换、 偏振控制和 /或二倍频变换后变换为参考脉 冲序列; 步骤 3中信号脉冲序列与参考脉冲序列共同输入到太赫兹接收器件, 经过光电 探测器检测得到异步釆样信号; 步骤 4中, 对异步釆样信号进行数据处理, 得到太赫 兹时域信号和 /或时域光谱信息。
3、 如权利要求 1所述的光异步釆样信号测量的方法, 其特征在于, 步骤 2中第一 光脉冲序列经过功率控制、 脉冲波形变换、 偏振控制和 /或二倍频变换后变换为信号脉冲 序列, 第二光脉冲序列经过功率控制、 脉冲波形变换、 偏振控制和 /或二倍频变换后变换 为参考脉冲序列; 步骤 3中信号脉冲序列与参考脉冲序列共同输入到待测物, 经过光电 探测器检测信号脉冲序列, 得到异步釆样信号; 步骤 4 中, 对异步釆样信号进行数据 处理, 得到待测物的泵浦探测信号。
4、 如权利要求 1所述的光异步釆样信号测量的方法, 其特征在于, 步骤 2中第一 光脉冲序列经过功率放大、 脉冲波形变换、 偏振控制和光语移动后输入到待测物上, 形 成信号脉冲序列, 第二光脉冲序列经过功率放大、 脉冲波形变换、 偏振控制后变换为参 考脉冲序列; 步骤 3中获得参考脉冲序列与信号脉冲序列之间产生的时域相关信号; 步 骤 4中, 对信号进行数据处理, 得到待测物的时域光谱信息。
5、 如权利要求 1所述的光异步釆样信号测量的方法, 其特征在于, 步骤 2中第一 光脉冲序列经过功率控制、 脉冲波形变换、 偏振控制和 /或光谱移动后分为两路, 一路经 过定标光路生成定标脉冲序列, 另一路经过目标光路生成目标脉冲序列,定标脉冲序列与 目标脉冲序列合并成为信号脉冲序列, 第二光脉冲序列经过功率控制、脉冲波形变换、偏 振控制和 /或光语移动生成参考脉冲序列; 步骤 3中获得参考脉冲序列与信号脉冲序列之 间产生的场强相关信号或光强相关信号; 步骤 4 中, 根据相关信号计算信号脉冲序列 的光程差。
6、 如权利要求 1所述的光异步釆样信号测量的方法, 其特征在于, 步骤 2中第一 光脉冲序列经过功率控制、 脉冲波形变换、 偏振控制后分为两路, 一路经过定标光路生 成定标脉冲序列, 另一路经过目标光路生成目标脉冲序列,定标脉冲序列与目标脉冲序列 合并成为信号脉冲序列, 第二光脉冲序列经过功率控制、脉冲波形变换、偏振控制后生成 参考脉冲序列; 步骤 3中信号脉冲序列和参考脉冲序列进入脉冲作用装置,信号脉冲序列 中与参考脉冲序列的脉冲在时间域上重合的脉冲的特性发生改变,测量此时的信号脉冲序 列得到异步釆样信号; 步骤 4中, 根据异步釆样信号中特性发生改变的脉冲的时间位置 计算信号脉冲序列中目标脉冲与其前面的最近的定标脉冲之间的时间差从而测得目标 光路与定标光路间的光程差。
7、 一种光异步釆样信号测量的***, 其特征在于, 包括:
脉冲光源, 输出两种以上具有不同重复频率的光脉冲序列, 具有第一重复频率 的 光脉冲序列为第一光脉冲序列, 具有第二重复频率 f2的光脉冲序列为第二光脉冲序列; 信号光路, 用于将第一光脉冲序列变换为信号脉冲序列;
参考光路, 用于将第二光脉冲序列变换为参考脉冲序列;
探测装置, 用于实现信号脉冲序列和参考脉冲序列的相互作用, 获得异步釆样信号。
8、 如权利要求 7 所述的光异步釆样信号测量的***, 其特征在于, 所述脉冲光源 只包含一个谐振腔, 通过谐振腔中的模式色散、 偏振模色散、 双折射或色度色散, 实现同 时输出具有两个不同重复频率的光脉冲序列。
9、 如权利要求 7 所述的光异步釆样信号测量的***, 其特征在于, 所述信号光路 包括光功率放大器, 色散控制器件、 偏振控制器件、 二倍频晶体、 太赫兹发射器件和待测 物; 所述参考光路包括光功率放大器, 色散控制器件、 偏振控制器件和二倍频晶体; 所述 探测装置包括由电光材料器件和光电探测器构成的太赫兹接收器件或光电导开关构成 的太赫兹接收器件。
10、 如权利要求 7所述的光异步釆样信号测量的***, 其特征在于, 所述信号光路 包括光功率放大器, 色散控制器件、 偏振控制器件和 /或二倍频晶体; 所述参考光路包括 光功率放大器, 色散控制器件、 偏振控制器件和 /或二倍频晶体; 所述探测装置包括待测 物、 滤波器件和光电探测器。
11、 如权利要求 7所述的光异步釆样信号测量的***, 其特征在于, 所述信号光路 包括光功率放大器, 色散控制器件、 偏振控制器件和 /或非线性光学器件; 所述参考光路 包括光功率放大器, 色散控制器件、 偏振控制器件; 所述探测装置包括待测物、 滤波器件 和光电探测器。
12、 如权利要求 7所述的光异步釆样信号测量的***, 其特征在于, 所述信号光路 包括光功率放大器, 色散控制器件、 偏振控制器件、 非线性光学器件、 目标光路和待测光 路; 所述参考光路包括光功率放大器, 色散控制器件、 偏振控制器件和 /或非线性光学器 件; 所述探测装置包括二倍频晶体、 滤波器件和光电探测器。
13、 如权利要求 7所述的光异步釆样信号测量的***, 其特征在于, 所述信号光路 包括光功率放大器, 色散控制器件、 偏振控制器件、 目标光路和待测光路; 所述参考光路 包括光功率放大器, 色散控制器件、 偏振控制器件; 所述探测装置包括脉冲作用装置, 滤波器件和光电探测器。
14、 如权利要求 13所述的光异步釆样信号测量的***, 其特征在于, 所述脉冲作 用装置包括半导体光放大器、 饱和吸收体、 全光开关和全光逻辑门。
15、 一种实现多频光梳的方法, 其特征在于, 包括:
步骤 1 ,脉冲激光器输出两个及两个以上具有不同中心波长和不同重复频率的光脉冲 序列, 光谱中相邻的不同中心波长的光脉冲序列的半高全宽的最大值小于其中心波长之 差;
步骤 2,将脉冲激光器输出的具有不同中心波长和不同重复频率的光脉冲序列经过非 线性光学过程, 使得光脉冲序列中的一个或多个不同中心波长的光脉冲序列发生光谱展 宽, 使得展宽后不同中心波长的光脉冲序列的光谱产生交叠, 从而在光谱交叠的波长 区域内具有两种以上不同重复频率的光梳。
16、 如权利要求 15所述的多频光梳的产生方法,其特征在于,所述步骤 2中具有不 同中心波长和不同重复频率的光脉冲序列一起同时经过相同的能够产生非线性光学过程 的元件,发生光语展宽,使得展宽后第一光脉冲序列的光语和第二光脉冲序列的光语交叠。
17、 如权利要求 15所述的实现多频光梳的方法,其特征在于,所述步骤 2又进一步 分为:
步骤 21 , 分光器件将脉冲激光器输出的光脉冲序列分为第一光脉冲序列和第二光脉 冲序列,第一光脉冲序列的中心波长为第一波长,第一光脉冲序列的重复频率为第一频率, 第二光脉冲序列的中心波长为第二波长, 第二光脉冲序列的重复频率为第二频率;
步骤 22, 被分开的第一光脉冲序列和 /或第二光脉冲序列分别经过非线性光学过程, 发生光谱展宽, 使得展宽后第一光脉冲序列的光语和第二光脉冲序列的光语交叠。
18、 如权利要求 15所述的多频光梳的产生方法,其特征在于,所述非线性光学过程 为基于四波混频、 自相位调制、 交叉相位调制、 受激拉曼散射效应或其不同组合的非线性 光学过程。
19、 一种多频光梳***, 其特征在于, 包括:
一个脉冲激光器, 输出两种以上具有不同中心波长的光脉冲序列, 光谱中相邻的不 同中心波长的光脉冲序列的半高全宽的最大值小于其中心波长之差, 脉冲激光器的激光 腔内的平均群速度对不同的输出中心波长不相同,从而不同中心波长的光脉冲序列的重复 频率不同;
脉冲激光器输出的光脉冲序列经过非线性光学***,使得光脉冲序列中的一个或多个 不同中心波长的光脉冲序列发生光语展宽,使得展宽后不同中心波长的光脉冲序列的光 谱产生交叠。
20、 如权利要求 19所述的多频光梳***, 其特征在于, 非线性光学***包括: 非线性光学元件, 用于光脉冲序列中的一个或多个不同中心波长的光脉冲序列发生 光语展宽, 使得展宽后不同中心波长的光脉冲序列的光谱产生交叠。
21、 如权利要求 19所述的多频光梳***, 其特征在于, 非线性光学***包括: 分光器件, 用于将脉冲激光器输出的光脉冲序列分为多个光脉冲序列。 各光脉冲序 列的中心波长不同, 光语的半高全宽小于相邻中心波长之差;
非线性光学元件, 用于光脉冲序列中的一个或多个不同中心波长的光脉冲序列发生 光语展宽, 使得展宽后不同中心波长的光脉冲序列的光谱产生交叠。
22、 如权利要求 19所述的多频光梳***,其特征在于,所述脉冲激光器为主动锁模 激光器、 被动锁模激光器或混合锁模激光器。
23、 如权利要求 20和 21所述的多频光梳***, 其特征在于, 所述非线性光学元件 为单模传输光纤、 高非线性光纤、 增益光纤、 光子晶体光纤或非线性光学集成波导。
24、 如权利要求 20和 21所述的多频光梳***, 其特征在于, 所述分光器件为光纤 耦合器、 分束棱镜、 分束片、 滤光片、 带通滤波器或波分复用器。
PCT/CN2013/072093 2012-03-02 2013-03-01 一种光异步采样信号测量的方法和*** WO2013127370A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/382,333 US9250128B2 (en) 2012-03-02 2013-03-01 Method and apparatus for optical asynchronous sampling signal measurements
US14/475,434 US9273994B2 (en) 2012-03-02 2014-09-02 Method and apparatus for optical asynchronous sampling signal measurements
US14/968,237 US9885614B2 (en) 2012-03-02 2015-12-14 Method and apparatus for multifrequency optical comb generation
US14/968,289 US9863815B2 (en) 2012-03-02 2015-12-14 Method and apparatus for multifrequency optical comb generation

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201210052940.6A CN102607720B (zh) 2012-03-02 2012-03-02 一种测量光程的方法和***
CN201210052680.2A CN102608825B (zh) 2012-03-02 2012-03-02 一种实现多频光梳的方法和***
CN201210052940.6 2012-03-02
CN201210052680.2 2012-03-02
CN201210137119.4 2012-05-04
CN2012101371194A CN102680404A (zh) 2012-05-04 2012-05-04 一种泵浦探测的方法和***
CN201210137481.1 2012-05-04
CN2012101374811A CN102680099A (zh) 2012-05-04 2012-05-04 一种太赫兹脉冲产生和检测的方法和***
CN2013100627969A CN103148940A (zh) 2013-02-28 2013-02-28 一种光异步采样信号测量的方法和***
CN201310062796.9 2013-02-28

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/382,333 A-371-Of-International US9250128B2 (en) 2012-03-02 2013-03-01 Method and apparatus for optical asynchronous sampling signal measurements
US14/475,434 Continuation-In-Part US9273994B2 (en) 2012-03-02 2014-09-02 Method and apparatus for optical asynchronous sampling signal measurements
US14/968,237 Continuation US9885614B2 (en) 2012-03-02 2015-12-14 Method and apparatus for multifrequency optical comb generation

Publications (1)

Publication Number Publication Date
WO2013127370A1 true WO2013127370A1 (zh) 2013-09-06

Family

ID=49081661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072093 WO2013127370A1 (zh) 2012-03-02 2013-03-01 一种光异步采样信号测量的方法和***

Country Status (2)

Country Link
US (4) US9250128B2 (zh)
WO (1) WO2013127370A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268766A1 (en) * 2013-10-21 2016-09-15 Genia Photonics Inc. Synchronized tunable mode-locked lasers
TWI572152B (zh) * 2015-01-21 2017-02-21 國立臺灣科技大學 光纖色散監控系統

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488259B2 (en) * 2014-06-12 2019-11-26 Colorado State University Research Foundation Apparatus and method for measurement of optical frequency shifts
CN104296884B (zh) * 2014-10-22 2017-12-12 上海交通大学 超高速光采样时钟的多通道失配测量方法及测量补偿装置
EP3037805B1 (en) 2014-12-23 2018-11-28 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Method for measuring a spectral sample response
US10082534B2 (en) * 2015-06-17 2018-09-25 Intel IP Corporation Directional pulse injection into a microelectronic system for electrostatic test
JP6752567B2 (ja) * 2015-10-23 2020-09-09 キヤノン株式会社 光源装置、波長変換装置及び情報取得装置
WO2017120454A1 (en) * 2016-01-07 2017-07-13 Brightspec, Inc. Methods and apparatus for direct multiplication fourier transform millimeter wave spectroscopy
US20170248491A1 (en) * 2016-02-26 2017-08-31 Christophe Dorrer Diagnostic for resolution-enhanced temporal measurement of short optical pulses
WO2018013756A1 (en) * 2016-07-15 2018-01-18 Safe-Com Wireless A method, apparatus and system to amplify and transport analog signals
CN106248616B (zh) * 2016-09-27 2017-10-24 深圳市太赫兹科技创新研究院有限公司 太赫兹全偏振态检测光谱仪
TWI626805B (zh) * 2016-10-28 2018-06-11 National Taipei University Of Technology 被動式q開關光纖雷射系統及製造其飽和吸收體的方法
CA3054470C (en) * 2017-03-21 2023-10-03 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Methods and devices for measuring changes in the polarization response of a sample by time-domain infrared spectroscopy (field-resolved vibrational spectroscopy)
CA3066636C (en) * 2017-07-11 2021-06-15 Infinite Potential Laboratories Lp Generating quantum electrodynamic (qed) interactions using a parabolic transmission mirror
JP6985695B2 (ja) * 2017-08-23 2021-12-22 国立大学法人徳島大学 屈折率計測装置及び方法
CN111615657B (zh) * 2017-12-12 2022-10-18 艾伦研究所 用于同时多平面成像的***、设备以及方法
EP3534176A1 (de) * 2018-03-01 2019-09-04 TOPTICA Projects GmbH Laserbasierte distanzmessung mittels doppelkamm-laser
US10855047B1 (en) 2018-11-06 2020-12-01 United States Of America As Represented By The Secretary Of The Air Force Passively cavity-dumped laser apparatus, system and methods
CN110207837B (zh) * 2019-05-29 2024-04-05 中国科学院西安光学精密机械研究所 高分辨率实时超短脉冲时频域测量装置及方法
CN110631718A (zh) * 2019-09-20 2019-12-31 中国科学院西安光学精密机械研究所 中红外超快光信号高速实时采样与测量装置及方法
KR20210051060A (ko) 2019-10-29 2021-05-10 한국전자통신연구원 비동기식 변조 기반 분광 장치
CN111537466B (zh) * 2020-05-15 2022-07-05 西安理工大学 一种用于检测细胞和生物大分子的瞬态THz光谱仪
CN112532325B (zh) * 2020-11-25 2021-11-19 浙江大学 一种多维复用的光子太赫兹通信***
JP7374937B2 (ja) * 2021-01-13 2023-11-07 株式会社アドバンテスト 試験装置、試験方法およびプログラム
JP7386190B2 (ja) 2021-01-21 2023-11-24 株式会社アドバンテスト 試験装置、試験方法およびプログラム
JP7355773B2 (ja) 2021-02-26 2023-10-03 株式会社アドバンテスト 試験装置、試験方法およびプログラム
CN113281766B (zh) * 2021-05-24 2023-08-25 清华大学 测距***及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110069309A1 (en) * 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
US20110285980A1 (en) * 2010-05-21 2011-11-24 Newbury Nathan R Optical frequency comb-based coherent lidar
JP2011242180A (ja) * 2010-05-16 2011-12-01 Osaka Univ 超高分解テラヘルツ分光計測装置
CN102349205A (zh) * 2009-03-06 2012-02-08 Imra美国公司 基于双脉冲激光器***的光学扫描和成像***
WO2012026289A1 (en) * 2010-08-27 2012-03-01 Canon Kabushiki Kaisha Optical pulse generating apparatus, terahertz spectroscopy apparatus, and tomography apparatus
CN102608825A (zh) * 2012-03-02 2012-07-25 北京航空航天大学 一种实现多频光梳的方法和***
CN102607720A (zh) * 2012-03-02 2012-07-25 北京航空航天大学 一种测量光程的方法和***
CN102680404A (zh) * 2012-05-04 2012-09-19 北京航空航天大学 一种泵浦探测的方法和***
CN102680099A (zh) * 2012-05-04 2012-09-19 北京航空航天大学 一种太赫兹脉冲产生和检测的方法和***

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479422A (en) * 1994-08-12 1995-12-26 Imra America, Inc. Controllabel dual-wavelength operation of modelocked lasers
US7426038B2 (en) * 2003-08-12 2008-09-16 Fujikura Ltd. Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
US8759778B2 (en) * 2007-09-27 2014-06-24 Anis Rahman Terahertz time domain and frequency domain spectroscopy
US20050243882A1 (en) * 2004-04-29 2005-11-03 Jian-Jun He Dual-wavelength semiconductor laser
JP4445325B2 (ja) * 2004-05-19 2010-04-07 アイシン精機株式会社 テラヘルツ波発生用半導体結晶、その結晶を用いたテラヘルツ波発生装置とその方法及びテラヘルツ波検出装置とその方法
US20060061770A1 (en) * 2004-09-22 2006-03-23 The Regents Of The University Of California Heterodyning time resolution boosting method and system
US7327445B2 (en) 2005-06-30 2008-02-05 The Board Of Trustees Of The Leland Stanford Junior University Enhanced surface plasmon resonance sensor using Goos-Hänchen effect
US20090010589A1 (en) 2005-08-30 2009-01-08 Robertson William M Optical sensor based on surface electromagnetic wave resonance in photonic band gap materials
US20080218860A1 (en) 2005-08-30 2008-09-11 Robertson William M Optical sensor based on surface electromagnetic wave resonance in photonic band gap materials
US7436596B2 (en) 2005-08-30 2008-10-14 Robertson William M Optical sensor based on surface electromagnetic wave resonance in photonic band gap materials and method for using same
US9153928B2 (en) * 2006-03-10 2015-10-06 Imra America, Inc. Optical signal processing with modelocked lasers
US8571075B2 (en) * 2010-11-29 2013-10-29 Imra America, Inc. Frequency comb source with large comb spacing
US9013705B2 (en) * 2006-06-27 2015-04-21 Lawrence Livermore National Security, Llc Ultrafast chirped optical waveform recorder using a time microscope
US7639362B2 (en) 2006-07-25 2009-12-29 The Regents Of The University Of Michigan Photonic crystal sensor
US20090074016A1 (en) * 2006-10-18 2009-03-19 Orval Mamer Apparatus for Terahertz wave generation from water vapor
CN101042341A (zh) 2007-04-19 2007-09-26 上海交通大学 基于导模激发古斯汉欣位移增强效应的溶液浓度测量方法
CN101144726A (zh) 2007-11-01 2008-03-19 上海交通大学 基于波长扫描的古斯汉欣位移的测量***
CN101241017A (zh) 2008-03-13 2008-08-13 上海交通大学 基于导模激发古斯汉欣位移增强效应的微位移测量方法
CN101413827A (zh) 2008-06-19 2009-04-22 上海交通大学 利用古斯汉欣位移特性检测激光波长的方法
CN101419344A (zh) 2008-11-27 2009-04-29 上海交通大学 基于古斯汉欣位移效应的光束平移电控制装置及方法
US8692211B2 (en) 2011-03-20 2014-04-08 William M. Robertson Surface electromagnetic waves in photonic band gap multilayers
CN102230986B (zh) 2011-05-20 2013-10-09 北京航空航天大学 一种光学相位器件及其应用方法和***
US20130120750A1 (en) 2011-05-20 2013-05-16 Beihang University Optical phase device, method and system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349205A (zh) * 2009-03-06 2012-02-08 Imra美国公司 基于双脉冲激光器***的光学扫描和成像***
US20110069309A1 (en) * 2009-09-18 2011-03-24 Newbury Nathan R Comb-based spectroscopy with synchronous sampling for real-time averaging
JP2011242180A (ja) * 2010-05-16 2011-12-01 Osaka Univ 超高分解テラヘルツ分光計測装置
US20110285980A1 (en) * 2010-05-21 2011-11-24 Newbury Nathan R Optical frequency comb-based coherent lidar
WO2012026289A1 (en) * 2010-08-27 2012-03-01 Canon Kabushiki Kaisha Optical pulse generating apparatus, terahertz spectroscopy apparatus, and tomography apparatus
CN102608825A (zh) * 2012-03-02 2012-07-25 北京航空航天大学 一种实现多频光梳的方法和***
CN102607720A (zh) * 2012-03-02 2012-07-25 北京航空航天大学 一种测量光程的方法和***
CN102680404A (zh) * 2012-05-04 2012-09-19 北京航空航天大学 一种泵浦探测的方法和***
CN102680099A (zh) * 2012-05-04 2012-09-19 北京航空航天大学 一种太赫兹脉冲产生和检测的方法和***

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARTELS A. ET AL.: "Asynchronous Optical Sampling for High-speed Characterization of Integrated Resonant Terahertz Sensors", OPTICS LETTERS, vol. 30, no. 11, 1 June 2005 (2005-06-01), pages 1405 - 1407 *
LIU, TZE-AN ET AL.: "Sub-micron Absolute Distance Measurements in Sub-millisecond Times with Dual Free-running Femtosecond Er Fiber-lasers", OPTICS EXPRESS, vol. 19, no. 19, 7 September 2011 (2011-09-07), pages 18501 - 18509 *
ZHANG, ZHAOWEI ET AL.: "Asynchronous Midinfrared Ultrafast Optical Parametric Oscillator for Dual-comb Spectroscopy", OPTICS LETTERS, vol. 37, no. 2, 12 January 2012 (2012-01-12), pages 187 - 189, XP001572677, DOI: doi:10.1364/OL.37.000187 *
ZHAO, XIN ET AL.: "Switchable, Dual-wavelength Passively Mode-locked Ultrafast Fiber Laser Based on a Single-wall Carbon Nanotube Modelocker and Intracavity Loss Tuning", OPTICS EXPRESS, vol. 19, no. 2, 11 January 2011 (2011-01-11), pages 1168 - 1173 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160268766A1 (en) * 2013-10-21 2016-09-15 Genia Photonics Inc. Synchronized tunable mode-locked lasers
US10135220B2 (en) * 2013-10-21 2018-11-20 Halifax Biomedical Inc. Synchronized tunable mode-locked lasers
TWI572152B (zh) * 2015-01-21 2017-02-21 國立臺灣科技大學 光纖色散監控系統

Also Published As

Publication number Publication date
US20150015890A1 (en) 2015-01-15
US20160097964A1 (en) 2016-04-07
US9250128B2 (en) 2016-02-02
US9863815B2 (en) 2018-01-09
US20160169748A1 (en) 2016-06-16
US9885614B2 (en) 2018-02-06
US20150097118A1 (en) 2015-04-09
US9273994B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
WO2013127370A1 (zh) 一种光异步采样信号测量的方法和***
US8265280B2 (en) System and method of entangled photons generation
Wang et al. Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion
US8493650B2 (en) Method and apparatus for suppression of four-wave mixing using polarization control with a high power polarization maintaining fiber amplifier system
CN102608825B (zh) 一种实现多频光梳的方法和***
WO2017190055A1 (en) Nonlinear interferometer systems and methods
CN110716365A (zh) 一种基于反向相位匹配的频率解关联偏振纠缠源制备装置
US6181429B1 (en) Interferometer for measurements of optical properties in bulk samples
CN102255225A (zh) 一种实现双色激光场的啁啾参数独立调节***
CN111323986A (zh) 一种基于Sagnac光纤环路产生三光子偏振纠缠GHZ态的***
CN113285344B (zh) 一种宽波段可调谐的双色超快脉冲同步技术
CN111637980B (zh) 基于二维材料横向二倍频效应的集成光学自相关器
Ma et al. Detection and spectral measurement of single photons in communication bands using up-conversion technology
EP0924507B1 (en) Interferometer for measurements of optical properties in bulk samples
CN111290193A (zh) 一种倍频装置及全光纤自相关仪
JP2012132704A (ja) ピークパワーモニター装置、およびピークパワーのモニター方法
JP3393081B2 (ja) 光デバイスの特性評価システム
CA2257034A1 (en) Interferometer for measurements of optical properties in bulk samples
JP2008209214A (ja) 光サンプリング装置
JP3231117B2 (ja) 光ファイバの非線形屈折率の計測法
ZHOU et al. 0.4–5.2 µm frequency comb based on compact all-fiber laser and LiNbO3 waveguide
Li et al. Over three hundred watts linearly-polarized supercontinuum laser source
JP6789658B2 (ja) 光源装置及びそれを用いた情報取得装置
KR20240092571A (ko) 광 주파수 콤 광원을 포함하는 셀프-헤테로다인 검출 시스템
US20060244951A1 (en) Autocorrelation Technique Based on Measurement of Polarization Effects of Optical Pulses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14382333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755915

Country of ref document: EP

Kind code of ref document: A1