WO2013127320A1 - 采用尾矿复配料改质高温钢渣的方法 - Google Patents

采用尾矿复配料改质高温钢渣的方法 Download PDF

Info

Publication number
WO2013127320A1
WO2013127320A1 PCT/CN2013/071866 CN2013071866W WO2013127320A1 WO 2013127320 A1 WO2013127320 A1 WO 2013127320A1 CN 2013071866 W CN2013071866 W CN 2013071866W WO 2013127320 A1 WO2013127320 A1 WO 2013127320A1
Authority
WO
WIPO (PCT)
Prior art keywords
tailings
slag
steel slag
compounding
steel
Prior art date
Application number
PCT/CN2013/071866
Other languages
English (en)
French (fr)
Inventor
连芳
张作顺
郝洪顺
徐利华
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2013127320A1 publication Critical patent/WO2013127320A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for upgrading high-temperature slag, in particular to a method for upgrading high-temperature steel slag discharged from steelmaking at a final stage by using large and inexpensive mining tailings, so as to facilitate low-energy application of steel slag crushing recovery and post-selection waste residue Development, belonging to the field of industrial waste comprehensive utilization technology. Background technique
  • the steel slag treatment technology generally adopts the first method of water quenching, air quenching, hot pouring or hot boring of the discharged steel slag, and then by means of certain crushing and grinding methods, such as wet grinding, rod grinding, self-grinding, combined with multi-stage screening. Magnetic separation process. Due to many factors such as large equipment investment, complicated process flow, high energy consumption of multi-stage broken pulverization, secondary pollution, etc., steel slag treatment cost is high, and the utilization value of slag steel and tailing slag is low.
  • Grindability refers to the ease with which materials are ground.
  • the grindability can be expressed by the easy-grinding coefficient.
  • the national standard stipulates that the grindability coefficient of the material is expressed by the grinding work index (kwh/t).
  • the greater the grinding work index the harder it is to grind the material. It is closely related to the type and performance of the material. For example, slag is harder to grind than clinker, and clinker is harder to grind than limestone.
  • the grindability of cement clinker is related to the mineral composition. The clinker of different compositions has a large difference in grindability. Generally, as the clinker silicon rate increases, the grindability deteriorates.
  • the grindability of the material is also related to the physical state and structure of the material, such as density, pore structure, and the like.
  • the grinding work index of dry process rotary kiln clinker is generally 16 ⁇ 20kW_h/t.
  • the characterization of the grindability of the material and the testing of the grinding work index of the invention refer to the national standard of the test method for the grindability of the cement raw material (GB/T 26567-2011).
  • Mining tailings are the main components of solid industrial waste, characterized by fine size, large quantity and low cost.
  • Classification by chemical composition mainly includes: magnesium iron silicate type tailings, calcium aluminosilicate type tailings, long slate type tailings, alkaline silicate type tailings, high alumino silicate type tailings High calcium silicic acid tailings, siliceous rock tailings, carbonate tailings.
  • China's tailings production was 1.192 billion tons, and the comprehensive utilization amount was 159 million tons.
  • tailings accounted for about 3% of the total utilization of tailings, and the construction materials such as cement accounted for about 33%.
  • the mining goaf is about 63%, and the other utilization methods account for about 1%.
  • the comprehensive utilization rate of tailings is only 13.3%, and the comprehensive utilization rate of steel slag is only 21%.
  • a large number of renewable resources have not been recycled, which not only occupies land, causes environmental and water pollution, endangers human health, but also causes waste of resources.
  • the annual economic losses caused by the recycling of renewable resources in China amount to 20-30 billion yuan.
  • the object of the present invention is to overcome the above-mentioned deficiencies in the prior art, adopting a large-scale cheap mining tailings, utilizing waste heat to reform steel slag, realizing secondary phase reaction at high temperature to control mineral phase composition in steel slag, and promoting slag iron separation. It solves the shortcomings of poor grindability of steel slag and selected tailings and high energy consumption of grinding, which facilitates the development of low-consumption application of steel slag crushing and recovery and post-selection waste residue.
  • the invention carries out a certain proportion of compounding and prefabrication of the mining tailings, and mixes the high temperature steel slag upgrading material with the steel slag discharged at the final stage of steelmaking, and uses the residual heat of the steel slag to maintain a secondary reaction at a certain temperature, and then the treated high temperature steel slag Water quenching, hot pouring or hot boring, crushing magnetic separation, high-grade block steel, bean steel, iron fine powder and active waste slag that can be used in building materials design.
  • the technical solutions are as follows:
  • the high-temperature steel slag upgrading material is a compound material of mining tailings, which is a mixed material of high alumina silicate tailings, high calcium silicate tailings and calcareous carbonate tailings, and is divided into the following components by weight Mixed:
  • the mining tailings compounding material of high-temperature steel slag upgrading material is mixed according to the steel slag: tailings compound mass percentage (70-80%): (20-30%), and then the steel slag insulation, conventional treatment, and broken magnetic separation .
  • the main chemical composition (mass percentage) of the high alumina silicate type tailings is 40 ⁇ 60 Wt.%Si0 2 , 30-40 wt.%Al 2 0 3 , 2-8 wt.%Fe 2 0 3 , 2-5 wt.%K 2 0;
  • the main chemical composition of the high calcium silicate type tailings is 35 ⁇ 55wt.%Si0 2 , 5 ⁇ 10wt.%Al 2 O 3 , 20 ⁇ 35wt.%CaO, 5-10 wt.%Fe 2 0 3 ;
  • the main chemical composition of calcareous carbonate tailings is 2- 8 wt.% Si0 2 , 0-3 wt.% Al 2 0 3 , 30 ⁇ 42 wt.% CaO.
  • the tailings compounding material of the high-temperature steel slag upgrading material has a particle size of less than 3 mm, and is formed into agglomerated blocks of 3 to 5 cm.
  • the method for adding the tailings compounding material of the high-temperature steel slag upgrading material is as follows: pre-mixing the tailings compound with a mass percentage of 40-60 wt.% in a slag pot or a slag tray, and then discharging the slag, and then The remaining mass percentage of 40-60 wt.% of the tailings complex is fed to the slag pot or slag tray.
  • the steel slag insulation, conventional treatment, and crushing magnetic separation are maintained at a temperature of 1200-1400 ° C for 10 to 60 minutes, and are subjected to conventional treatment such as water quenching or hot pouring or hot boring below 1200 ° C. .
  • the content of free calcium oxide in the post-selection waste residue obtained by the method of upgrading the high-temperature steel slag by tailings compounding is less than 1.5%, and the grinding work index is 14-17 kW.h/t, which can be used instead of the silicate cement clinker.
  • the slag-iron separation effect is good, and high-grade block steel, bean steel and iron fine powder are obtained.
  • the components of the selected residue are controllable, the activity is improved, the wearability is improved, and the selection is achieved. Low waste energy and low cost application development of post waste.
  • tailings compounding can meet the requirements of the mineral composition and chemical composition of the modifier, and exert synergy effect. It can also minimize the impact of the fluctuation of the mineral tailings component on the upgrading effect.
  • the small particle size of the mixed powder is beneficial to improve. Kinetic strips for reaction at elevated temperatures
  • the ball is prepared into agglomerated block to avoid dust pollution caused by steel slag treatment and meet environmental protection requirements.
  • High-temperature secondary phase reaction and dispersed solid phase improve the grindability of steel slag, improve the magnetic separation efficiency of steel slag, achieve good separation of steel and slag, improve the grade of steel, slag and iron concentrate, and scrap steel recycling
  • the rate reaches 95-100%; the composition of the waste residue is controlled and the activity is improved, and the free calcium oxide content is less than 1.5%.
  • the grinding work index of the selected residue is slightly lower or close to the range of the clinker powder work index. The low value, the crushing fine grinding energy consumption is significantly reduced, the utilization of the tailings after the selection is improved, and the comprehensive utilization cost is reduced.
  • Tailings type Tailings used
  • the compound materials of high alumina silicate tailings, high calcium silicate tailings and calcareous carbonate tailings are selected as steel slag upgrading materials, in which bauxite tailings, gold mine tailings and The limestone tailings are mixed in parts by weight of 20, 80 and 5, and the main components of the mining tailings used are shown in Table 2.
  • the tailings compounding material used as the high-temperature steel slag upgrading material has a particle size of less than 3 mm, and the ball is agglomerated into agglomerates, specifically an ellipsoid with a long axis of 5 mm and a short axis of 3 cm.
  • the above-mentioned steel slag upgrading material is mixed according to the high temperature steel slag discharged from the Shougang Steel Plant and the high temperature modified material in a ratio of 70:30 by mass.
  • the method of addition is as follows: pre-mixing 60% by mass of the tailings complex into the slag pot or slag tray, and after the converter slag is discharged, the remaining 40% by mass of the tailings compound is put into the slag pot or slag. plate.
  • the steel slag remaining after the slag splashing protection furnace is no longer added to the slag tank or slag tray in which the tailings compounding compound is modified to slag, and the steel slag is kept at 1200-1400 °C for 50 min, below 1200 °C. Hot stuffy, broken magnetic separation.
  • the solid steel slag remaining at a lower temperature after the operation of the slag splashing furnace is no longer poured into the slag tank or the slag tray in which the tailings complex compound is modified to carry out the steel slag upgrading.
  • the slag iron separation effect is good, and high-grade block steel, bean steel and iron fine powder are obtained, and the scrap recovery rate reaches 98%.
  • the components of the waste residue can be controlled and the activity is improved.
  • the content of free calcium oxide is 1.41%, and the grinding work index is 15.8 kW-h/t, which can be used instead of cement clinker.
  • the compound materials of high alumina silicate tailings, high calcium silicate tailings and calcareous carbonate tailings are selected as steel slag upgrading materials, including coal gangue, gold mine tailings and limestone gravel respectively.
  • the mixture is divided into 30, 60 and 12 parts by weight, and the main components of the mining tailings used are shown in Table 2.
  • the particle size of the tailings compounding material as a high-temperature steel slag upgrading material is less than 3 mm.
  • the ball is condensed into agglomerates, specifically an ellipsoid with a long axis of 5 mm and a short axis of 3 cm.
  • the above-mentioned steel slag upgrading materials are mixed according to the high temperature steel slag discharged from the Shougang Steel Plant and the high temperature modified materials in a ratio of 80:20 by mass.
  • the method of addition is as follows: pre-mixing the tailings compound with a mass percentage of 50% in a slag pot or a slag tray, and after the converter slag is discharged, the remaining mass fraction of the tailings is 50% into the slag pot or slag. plate.
  • the slag iron separation effect is good, and high-grade block steel, bean steel and iron fine powder are obtained, and the scrap recovery rate reaches 99%.
  • the components of the waste residue can be controlled and the activity is improved.
  • the content of free calcium oxide is 1.10%, and the grinding work index is 14.2 kW-h/t, which can be used instead of cement clinker.
  • the composite materials of high alumina silicate tailings, high calcium silicate tailings and calcareous carbonate tailings are selected as steel slag upgrading materials, including coal gangue, iron tailings and limestone tailings respectively.
  • the parts by weight are each mixed at 24, 70 and 10, and the main components of the mining tailings used are shown in Table 2.
  • the particle size is less than 3 mm, and the spheroidal agglomerate block having a diameter of 4.5 cm is prepared by pelletizing.
  • the above-mentioned steel slag upgrading material is mixed according to the high temperature steel slag discharged from the Maanshan converter and the high temperature modified material in a ratio of 75:25 by mass.
  • the method of addition is as follows: Pre-mixing the tailings compound with a mass percentage of 40% in the slag tank or slag tray, and after the converter slag is discharged, the remaining mass fraction of the tailings is 60% into the slag tank or slag. plate.
  • the steel slag remaining after the slag splashing protection furnace is no longer added to the slag tank or slag tray where the tailings complex compound is modified to slag, and the steel slag is kept at 1200-1400 °C for 30 min, below 1200 °C. Water quenching, crushing magnetic separation. 5.
  • the slag iron separation effect is good, and high-grade block steel, bean steel and iron fine powder are obtained, and the scrap recovery rate reaches 97%.
  • the components of the selected residue are controllable and the activity is improved.
  • the free calcium oxide content is 1.33%, and the grinding work index is 16.3 kW-h/t, which can be used instead of cement clinker.
  • the compound materials of high alumina silicate tailings, high calcium silicate tailings and calcareous carbonate tailings mining tailings are selected as steel slag upgrading materials, in which bauxite tailings and iron tails are respectively used.
  • the ore and limestone macadam are mixed according to the weight fractions of 15, 60 and 15, and the main components of the mining tailings used are shown in Table 2.
  • the particle size is less than 3 mm, and the spheroidal agglomerate block having a diameter of 3 cm is prepared by pelletizing.
  • the above-mentioned steel slag upgrading material is mixed according to the high temperature steel slag discharged from the Longgang converter and the high temperature modified material in a ratio of 78:22 by mass.
  • the method of addition is as follows: Pre-mixing the tailings compound with a mass percentage of 45% in the slag pot or slag tray, and after the converter slag is discharged, the remaining mass fraction of the tailings is 55% into the slag tank or slag. plate.
  • the steel slag remaining after the slag splashing protection furnace is no longer added to the slag tank or slag tray with the tailings compounding compound for steel slag upgrading.
  • the steel slag is kept at 1200-1400 °C for 60 min, below 1200 °C. Hot, broken magnetic separation.
  • the slag iron separation effect is good, and high-grade block steel, bean steel and iron fine powder are obtained, and the scrap recovery rate reaches 95%.
  • the components of the waste residue can be controlled and the activity is improved.
  • the content of free calcium oxide is 1.47%, and the grinding work index is 16.98kW-h/t, which can be used instead of cement clinker.
  • the compound materials of high alumina silicate tailings, high calcium silicate tailings and calcareous carbonate tailings mining tailings are selected as steel slag upgrading materials, including coal gangue, iron tailings and limestone respectively.
  • the tailings are mixed according to the weight parts of 28, 76 and 7 respectively.
  • the main mining tailings used are The composition is shown in Table 2.
  • the particle size of the tailings compounding material as a high-temperature steel slag upgrading material is less than 3 mm, and the ellipsoidal agglomerate block with a long axis of 5 mm and a short axis of 3 cm is prepared.
  • the above-mentioned steel slag upgrading material is mixed according to the high temperature steel slag discharged from the Longgang converter and the high temperature modified material in a ratio of 78:22 by mass.
  • the method of addition is as follows: pre-mixing the tailings compound with a mass percentage of 56% in a slag pot or a slag tray, and after the converter slag is discharged, the remaining mass fraction of the tailings is 44% into the slag pot or slag. plate.
  • the slag iron separation effect is good, and high-grade block steel, bean steel and iron fine powder are obtained, and the scrap recovery rate reaches 98%.
  • the components of the waste residue can be controlled and the activity is improved.
  • the content of free calcium oxide is 1.32%, and the grinding work index is 15.1 kW-h/t, which can be used instead of cement clinker.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供一种钢渣改质处理的方法,采用大量廉价的矿业尾矿对炼钢终期排放的高温钢渣进行改质,以高铝硅酸盐尾矿、高钙硅酸盐尾矿和钙质碳酸盐尾矿的重量份数15~30、60-80和5~15混合而成尾矿复配料,造球制备聚结块体,按照排放钢渣:尾矿复配料质量百分比(70-80%):(20-30%)的比例将尾矿复配料分批加入渣罐或渣盘,钢渣在1200-1400°C的范围内保温30~60min,当温度低于1200°C时钢渣进行水淬、热泼或热闷等处理,破碎磁选分离。本方法改善渣铁的分离效果,提高了钢渣的易磨性,废钢总回收率达到95-100%,选后废渣的组份可控、活性提高,游离氧化钙重量百分比含量小于1.5%,粉磨功指数为14-17kW·h/t,用于替代硅酸盐水泥熟料。

Description

说 明 书
采用尾矿复配料改质高温钢渣的方法
技术领域
本发明涉及一种高温炉渣改质的方法, 特别是涉及采用大宗廉价的 矿业尾矿对炼钢终期排放的高温钢渣进行改质的方法, 以便于钢渣破碎 回收以及选后废渣的低能耗应用开发, 属于工业废弃物综合利用技术领 域。 背景技术
我国城镇化和工业化建设高速发展,每年的钢产量已经超过 5亿吨。 钢渣是炼钢过程的副产品, 平均生产 1吨钢材会生成 0.15~0.2吨左右的 钢渣,以此计算, 2010年我国粗钢产量达 6.3亿吨,钢渣排放量近亿吨, 其中 70%以上都是转炉钢渣。 目前, 钢渣处理技术一般采用首先对排放 钢渣进行水淬、 风淬、 热泼或热闷等处理, 再借助一定的破碎和研磨方 法, 例如湿磨、 棒磨、 自磨, 结合多级筛分磁选工艺处理。 由于诸多因 素如设备投入大、工艺流程复杂、多级破粉碎能耗高,存在二次污染等, 钢渣处理成本高, 而且产生的渣钢和尾渣的利用价值低。
炼钢终期排放的钢渣热含量较高, 1kg ( 1600°C ) 钢渣热含量达 2000kJ, 这些热量随着钢渣的冷却而逐渐散失, 并未有效的利用。 利用 钢渣余热早期介入钢渣处理, 专利 ZL200610024549.X利用粉煤灰或煤 渣为主的添加剂, 有效减少钢渣中 f-CaO和 f-MgO的含量,解决钢渣体 积不安定的问题。 专利 (申请号 200910039605.0) 利用电炉渣和煤粉为 主的改性剂从源头上提高钢渣的水化和胶凝活性, 利用余热的钢渣处理 工艺可以克服了钢渣在活性方面的先天性不足。 以上钢渣的综合利用以 及多品种建筑材料的设计是以钢渣的有效除铁和破碎细磨为前提的, 因 此理想的钢渣处理工艺中提高钢渣易磨性、 实现钢和渣的良好分离、 降 低破粉碎耗能, 提高铁回收效率是决定钢渣磁选效率、 处理能耗, 渣钢 品质的的重要因素, 同时也是提高选后废渣利用率, 降低综合利用成本 的前提条件。
易磨性是指物料被粉磨的难易程度。 易磨性大小可用易磨系数表示, 国家标准规定, 物料的易磨性系数用粉磨功指数表示 (kwh/t)。 粉磨功 指数越大, 表示物料越难磨。 它与物料的种类和性能有密切关系。 例如 矿渣比熟料难磨、 熟料比石灰石难磨。 水泥熟料的易磨性与矿物组成相 关, 不同组成的熟料易磨性差别较大, 通常随着熟料硅率的提高, 易磨 性变差; 随 C3S含量提高, 易磨性变好; 随着 A1203含量的提高, 易磨 性变好; 随 Fe203含量提高, 易磨性变好; 随 C2S含量提高, 易磨性变 差。 还有游离氧化钙也对易磨性有影响。 物料的易磨性还与物料的物理 状态和结构有关, 如致密度、 孔结构等。 干法回转窑熟料的粉磨功指数 一般为 16~20kW_h/t。 本发明对物料易磨性的表征和粉磨功指数的测试 参考水泥原料易磨性试验方法的国家标准 (GB/T 26567-2011 )。
根据全国污染源普查的基本情况, 2009年全国工业固体废物产生总 量 38.52亿吨, 其中矿业尾矿占 29 %、 冶金废渣占 11 %。矿业尾矿是固体 工业废料的主要组成部分, 具有粒度细、 数量大、 成本低的特点。 按化 学成分进行分类主要有: 镁铁硅酸盐型尾矿、 钙铝硅酸盐型尾矿、 长英 岩型尾矿、 碱性硅酸盐型尾矿、 高铝硅酸盐型尾矿、 高钙硅酸型尾矿、 硅质岩型尾矿、 碳酸盐型尾矿。 2009 年我国尾矿产生量为 11.92 亿吨, 综合利用量 1.59 亿吨,其中从尾矿中回收有价组分约占尾矿综合利用总 量的 3%, 生产水泥等建筑材料约占 33%, 充填矿山采空区约占 63%, 其 他利用方式约占 1%。 目前, 尾矿的综合利用率仅为 13.3%, 钢渣综合利 用率也只有 21%。 大量可再生资源尚未得到回收利用, 不仅占用土地、 造成环境和水资源污染、 危害人体健康, 而且造成资源的浪费。 我国每 年因再生资源未得到回收利用而造成的经济损失达 200-300亿元。 目前, 矿业尾矿和钢渣的综合利用技术上的突破关键在于: 形成整体利用的开 发思路, 简化利用工序、 降低利用成本, 最大限度消纳工业废弃物, 实 现矿业尾矿和钢渣大量、 廉价、 高效的应用开发。 对于当前资源短缺矛 盾变得日益突出的情况下, 钢渣和矿渣等工业废弃物的综合利用的不但 具有显著的经济价值、 而且具有巨大的社会效益。 发明内容
本发明的目的在于克服现有技术存在的上述不足, 采用大宗廉价的 矿业尾矿, 利用余热进行钢渣改质的方法, 实现高温下二次物相反应控 制钢渣中矿物相组成,促进渣铁分离, 解决钢渣和选后尾渣易磨性差、粉 磨能耗高的缺点, 便于钢渣破碎回收以及选后废渣的低耗应用开发。
本发明以矿业尾矿进行一定比例的复配、 预制, 作为高温钢渣改质 材料与炼钢终期排放的钢渣混合, 利用钢渣余热保持在一定温度下发生 二次反应, 继而对处理后高温钢渣进行水淬、 热泼或热闷, 破碎磁选分 离,得到高品位块钢、豆钢、铁精粉和可用于建筑材料设计的活性废渣。 技术方案如下:
高温钢渣改质材料采用矿业尾矿的复配材料, 为高铝硅酸盐尾矿、 高钙硅酸盐尾矿和钙质碳酸盐尾矿的混合材料, 由如下组分按重量份数 混合而成:
高铝硅酸盐尾矿 15~30
高钙硅酸盐尾矿 60-80
钙质碳酸盐尾矿 5~15
高温钢渣改质材料的矿业尾矿复配材料按照钢渣:尾矿复配料质量 百分比 (70-80%):(20-30%)的比例混合, 然后进行钢渣保温、 常规处理、 破碎磁选分离。
所述高铝硅酸盐型尾矿主要化学组成 (质量百分数) 为 40~60 wt.%Si02, 30-40 wt.%Al203, 2-8 wt.%Fe203, 2-5 wt.%K20; 高钙硅酸 盐型尾矿主要化学组成为 35~55wt.%Si02、 5~10wt.%Al2O3、 20~35wt.%CaO, 5-10 wt.%Fe203; 钙质碳酸盐型尾矿主要化学组成为 2-8 wt.%Si02, 0-3 wt.%Al203, 30~42 wt.% CaO。
所述高温钢渣改质材料的尾矿复配材料的颗粒粒度小于 3mm,造球 成 3~5cm的聚结块体。
所述高温钢渣改质材料的尾矿复配材料的添加方式为: 预先将质量 百分数为 40-60 wt.%的尾矿复配料置于渣罐或渣盘中, 转炉出渣后, 再 将剩余的质量百分数为 40-60wt.%的尾矿复配料投入渣罐或渣盘。
所述钢渣保温、 常规处理、 破碎磁选分离是在 1200-1400 °C的温度 下保温 10~60min, 低于 1200 °C下进行水淬或热泼或热闷等常规处理, 破碎磁选分离。
采用尾矿复配料改质高温钢渣的方法得到的选后废渣中游离氧化 钙重量百分比含量小于 1.5%, 粉磨功指数为 14-17kW.h/t, 可以替代硅 酸盐水泥熟料使用。
采用尾矿复配料进行高温钢渣改质后, 渣铁分离效果好, 得到高品 位块钢、豆钢、铁精粉,选后废渣的组份可控、活性改善, 易磨性提高, 实现选后废渣低能耗低成本应用开发。
本发明的突出特点在于:
( 1 ) 采用量大廉价的矿业尾矿, 利用钢渣余热促进二次物相反应, 改变钢渣矿物组成和物理状态, 提高其易磨性和胶凝活性, 不 额外增加钢渣处理设备, 投入成本低, 同时为尾矿的利用寻找 到一条量大、 廉价、 高效应用的新途径;
(2) 采用尾矿复配料可满足改质剂对矿物组成和化学组成的要求, 发挥协同效应, 也可以尽量减少矿业尾矿成分波动大对改质效 果的影响,混合粉末粒度小有利于改善高温下反应的动力学条 件, 另外造球制备成聚结块体可避免钢渣处理对现场造成的粉 尘污染, 满足环保要求。
( 3 ) 高温二次物相反应和弥散固相提高钢渣易磨性、 提高钢渣磁 选效率, 实现了钢和渣的良好分离、 提高了块钢、 渣钢和铁精 粉的品位, 废钢回收率达到 95-100%; 选后废渣的组份可控、 活性提高, 游离氧化钙重量百分比含量小于 1.5%, 选后废渣 的粉磨功指数稍低于或接近于熟料粉磨功指数范围的低值,粉 碎细磨耗能显著降低, 提高选后尾渣利用率, 降低综合利用成 本。 具体实施方式
以下结合实施例对本发明的具体实施作进一歩说明。
实例 1~5中涉及的钢渣和矿业尾矿的主要化学成份分别如表 1和表 2所示。
表 1实施例涉及的炼钢厂钢渣主要化学组成
钢渣主要化学成份 (质量百分比%)
CaO MgO Si02 A1203 FeO Fe203 P205 f-CaO 首钢 45.57 7.07 15.03 4.51 10.74 6.80 1.62 5.9 马钢 46.09 4.01 10.2 3.5 15.05 8.05 4.1 7.9 龙钢 35.28 9.43 12.74 3.32 13.93 8.12 0.42 12.1 表 2实施例中所用矿业尾矿的主要化学组成
主要化学成份 (质量百分比%) 尾矿种类 所用尾矿
CaO MgO Si02 A1203 Fe203 K20 铝土矿尾矿 0.5 41.2 39.5 7.3 4.7 高铝硅酸盐型尾矿
煤矸石 0.9 57.2 30.9 2.2 2.1 金矿尾矿 34.7 3.3 36.5 10.0 8.1 0.2 高钙硅酸盐型尾矿
铁尾矿 20.5 53.6 5.3 9.3 石灰石尾矿 30.2 4.1 2.0 0.6 1.8 - 钙质碳酸盐型尾矿
石灰石碎石 41.0 7.8 2.4 实施例 1
1、 选取高铝硅酸盐尾矿、 高钙硅酸盐尾矿和钙质碳酸盐尾矿的复 配材料为钢渣改质材料, 其中分别采用铝土矿尾矿、 金矿尾矿和石灰石 尾矿按照重量份数各为 20、 80和 5进行混合, 所用矿业尾矿的主要成 分如表 2所示。
2、 作为高温钢渣改质材料的尾矿复配材料的颗粒粒度小于 3mm, 造球成聚结块体, 具体是长轴是 5mm、 短轴为 3cm的椭球形。
3、 将上述钢渣改质材料按照首钢炼钢厂排放的高温钢渣与高温改 质材料按照质量百分比 70:30的比例混合。 添加的方式为: 预先将质量 百分数为 60%的尾矿复配料置于渣罐或渣盘中, 转炉出渣后, 再将剩余 的质量百分数为 40%的尾矿复配料投入渣罐或渣盘。
4、 溅渣护炉后剩余的钢渣不再加入存在尾矿复配料进行钢渣改质 的渣罐或渣盘中,钢渣在 1200-1400 °C的温度下保温 50min,低于 1200°C 下进行热闷, 破碎磁选分离。 为保障保温时间和改质效果, 溅渣护炉操 作后剩余的温度较低的固态钢渣不再倾倒入存在尾矿复配料进行钢渣 改质的渣罐或渣盘中。
5、 采用尾矿复配料进行高温钢渣改质后, 渣铁分离效果好, 得到 高品位块钢、 豆钢、 铁精粉, 废钢回收率达到 98%。 选后废渣的组份可 控、 活性提高, 游离氧化钙质量百分比含量 1.41%, 粉磨功指数为 15.8 kW-h/t, 可替代水泥熟料使用。
实施例 2
1、 选取高铝硅酸盐尾矿、 高钙硅酸盐尾矿和钙质碳酸盐尾矿的复 配材料为钢渣改质材料, 其中分别采用煤矸石、 金矿尾矿和石灰石碎石 按照重量份数各为 30、 60和 12进行混合, 所用矿业尾矿的主要成分如 表 2所示。
2、 作为高温钢渣改质材料的尾矿复配材料的颗粒粒度小于 3mm, 造球成聚结块体, 具体是长轴是 5mm、 短轴为 3cm的椭球形。
3、 将上述钢渣改质材料按照首钢炼钢厂排放的高温钢渣与高温改 质材料按照质量百分比 80:20的比例混合。 添加的方式为: 预先将质量 百分数为 50%的尾矿复配料置于渣罐或渣盘中, 转炉出渣后, 再将剩余 的质量百分数为 50%的尾矿复配料投入渣罐或渣盘。
4、 溅渣护炉后剩余的钢渣不再加入存在尾矿复配料进行钢渣改质 的渣罐或渣盘中,钢渣在 1200-1400 °C的温度下保温 40min,低于 1200°C 下进行热闷, 破碎磁选分离。
5、 采用尾矿复配料进行高温钢渣改质后, 渣铁分离效果好, 得到 高品位块钢、 豆钢、 铁精粉, 废钢回收率达到 99%。 选后废渣的组份可 控、 活性提高, 游离氧化钙质量百分比含量 1.10%, 粉磨功指数为 14.2 kW-h/t, 可替代水泥熟料使用。
实施例 3
1、 选取高铝硅酸盐尾矿、 高钙硅酸盐尾矿和钙质碳酸盐尾矿的复 配材料为钢渣改质材料, 其中分别采用煤矸石、 铁尾矿和石灰石尾矿按 照重量份数各为 24、 70和 10进行混合, 所用矿业尾矿的主要成分如表 2所示。
2、 作为高温钢渣改质材料的尾矿复配材料的颗粒粒度小于 3mm, 造球制备直径为 4.5cm的类球形聚结块体。
3、 将上述钢渣改质材料按照马钢转炉排放的高温钢渣与高温改质 材料按照质量百分比 75:25的比例混合。 添加的方式为: 预先将质量百 分数为 40%的尾矿复配料置于渣罐或渣盘中, 转炉出渣后, 再将剩余的 质量百分数为 60%的尾矿复配料投入渣罐或渣盘。
4、 溅渣护炉后剩余的钢渣不再加入存在尾矿复配料进行钢渣改质 的渣罐或渣盘中,钢渣在 1200-1400 °C的温度下保温 30min,低于 1200°C 下进行水淬, 破碎磁选分离。 5、 采用尾矿复配料进行高温钢渣改质后, 渣铁分离效果好, 得到 高品位块钢、 豆钢、 铁精粉, 废钢回收率达到 97%。 选后废渣的组份可 控、 活性提高, 游离氧化钙质量百分比含量 1.33%, 粉磨功指数为 16.3 kW-h/t, 可替代水泥熟料使用。
实施例 4
1、 选取高铝硅酸盐尾矿、 高钙硅酸盐尾矿和钙质碳酸盐尾矿矿业 尾矿的复配材料为钢渣改质材料, 其中分别采用铝土矿尾矿、 铁尾矿和 石灰石碎石按照重量份数各为 15、 60和 15进行混合, 所用矿业尾矿的 主要成分如表 2所示。
2、 作为高温钢渣改质材料的尾矿复配材料的颗粒粒度小于 3mm, 造球制备直径为 3cm的类球形聚结块体。
3、 将上述钢渣改质材料按照龙钢转炉排放的高温钢渣与高温改质 材料按照质量百分比 78:22的比例混合。 添加的方式为: 预先将质量百 分数为 45%的尾矿复配料置于渣罐或渣盘中, 转炉出渣后, 再将剩余的 质量百分数为 55%的尾矿复配料投入渣罐或渣盘。
4、 溅渣护炉后剩余的钢渣不再加入存在尾矿复配料进行钢渣改质 的渣罐或渣盘中,钢渣在 1200-1400 °C的温度下保温 60min,低于 1200°C 下进行热泼, 破碎磁选分离。
5、 采用尾矿复配料进行高温钢渣改质后, 渣铁分离效果好, 得到 高品位块钢、 豆钢、 铁精粉, 废钢回收率达到 95%。 选后废渣的组份可 控、 活性提高, 游离氧化钙质量百分比含量 1.47%, 粉磨功指数为 16.98kW-h/t, 可替代水泥熟料使用。
实施例 5
1、 选取高铝硅酸盐尾矿、 高钙硅酸盐尾矿和钙质碳酸盐尾矿矿业 尾矿的复配材料为钢渣改质材料, 其中分别采用煤矸石、 铁尾矿和石灰 石尾矿按照重量份数各为 28、 76和 7进行混合, 所用矿业尾矿的主要 成分如表 2所示。
2、 作为高温钢渣改质材料的尾矿复配材料的颗粒粒度小于 3mm, 造球制备长轴是 5mm、 短轴为 3cm的椭球形聚结块体。
3、 将上述钢渣改质材料按照龙钢转炉排放的高温钢渣与高温改质 材料按照质量百分比 78:22的比例混合。 添加的方式为: 预先将质量百 分数为 56%的尾矿复配料置于渣罐或渣盘中, 转炉出渣后, 再将剩余的 质量百分数为 44%的尾矿复配料投入渣罐或渣盘。
4、 溅渣护炉后剩余的钢渣不再加入存在尾矿复配料进行钢渣改质 的渣罐或渣盘中,钢渣在 1200-1400 °C的温度下保温 55min,低于 1200°C 下进行热泼, 破碎磁选分离。
5、 采用尾矿复配料进行高温钢渣改质后, 渣铁分离效果好, 得到 高品位块钢、 豆钢、 铁精粉, 废钢回收率达到 98%。 选后废渣的组份可 控、 活性提高, 游离氧化钙质量百分比含量 1.32%, 粉磨功指数为 15.1 kW-h/t, 可替代水泥熟料使用。

Claims

权 利 要 求 书
1. 一种采用尾矿复配料改质高温钢渣的方法, 其特征在于, 高温钢渣 改质材料为矿业尾矿复配材料, 其中高铝硅酸盐尾矿、 高钙硅酸盐 尾矿和钙质碳酸盐尾矿按照如下重量份数混合而成:
高铝硅酸盐尾矿 15~30
高钙硅酸盐尾矿 60~80
钙质碳酸盐尾矿 5~15
矿业尾矿复配材料按照排放钢渣:尾矿复配料质量百分比 (70-80%):(20-30%)的比例混合, 然后进行保温、 常规处理、破碎磁选 分离。
2. 如权利要求 1所述的采用尾矿复配料改质高温钢渣的方法, 其特征 在于, 所述高铝硅酸盐型尾矿化学组成按质量百分数计, 主要包含 40-60 %Si02、 30-40 %A1203、 2-8 %Fe203、 2~5%K20; 高钙硅酸盐 型尾矿化学组成按质量百分数计, 主要包含 35~55%Si02、 5~10%Α12Ο3、 20-35 %CaO, 5-10 %Fe203; 钙质碳酸盐型尾矿化学 组成按质量百分数计, 主要包含 2~8 %Si02、 0-3 %A1203、 30-42 %CaO。
3. 如权利要求 1或 2所述的采用尾矿复配料改质高温钢渣的方法, 其 特征在于, 所述矿业尾矿复配材料的颗粒粒度小于 3mm, 造球成 3~5cm的聚结块体。
4. 如权利要求 1或 2所述的采用尾矿复配料改质高温钢渣的方法, 其 特征在于, 矿业尾矿复配材料混合的添加方式为: 预先将质量百分 数为 40-60%的尾矿复配料置于渣罐或渣盘中, 出渣后, 再将剩余的 质量百分数为 40-60%的尾矿复配料投入渣罐或渣盘。
5. 如权利要求 1或 2所述的采用尾矿复配料改质高温钢渣的方法, 其 特征在于, 所述磁选分离是先将钢渣在 1200-1400°C的温度下保温 30~60min, 低于 1200°C下进行水淬、 热泼或热闷常规处理, 破碎磁 选分离。
6. 一种如权利要求 1 所述的采用尾矿复配料改质高温钢渣破碎磁选分 离后的废渣用于替代硅酸盐水泥熟料, 游离氧化钙重量百分比含量 小于 1.5%, 粉磨功指数为 14-17kW复配料改。
PCT/CN2013/071866 2012-02-29 2013-02-26 采用尾矿复配料改质高温钢渣的方法 WO2013127320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100493531A CN102605113B (zh) 2012-02-29 2012-02-29 采用尾矿复配料改质高温钢渣的方法
CN201210049353.1 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013127320A1 true WO2013127320A1 (zh) 2013-09-06

Family

ID=46522877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071866 WO2013127320A1 (zh) 2012-02-29 2013-02-26 采用尾矿复配料改质高温钢渣的方法

Country Status (2)

Country Link
CN (1) CN102605113B (zh)
WO (1) WO2013127320A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702838A (zh) * 2019-10-11 2020-01-17 唐山公路建设总公司市站公司 钢渣试件测定仪和测定方法
CN111187010A (zh) * 2020-01-10 2020-05-22 安徽马钢嘉华新型建材有限公司 一种无熟料高性能低成本的新型复合胶凝材料
CN113380348A (zh) * 2021-07-03 2021-09-10 内蒙古高等级公路建设开发有限责任公司 一种钢渣基矿物掺和料的制备方法及***

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605113B (zh) * 2012-02-29 2013-08-28 北京科技大学 采用尾矿复配料改质高温钢渣的方法
CN104016600B (zh) * 2014-06-19 2016-01-06 中冶建筑研究总院有限公司 一种钢渣高温改性方法
CN106587781A (zh) * 2016-12-20 2017-04-26 安徽建筑大学 一种钢渣煤矸石复合混凝土及其制备方法
CN107447064B (zh) * 2017-09-14 2022-10-14 江苏省镔鑫钢铁集团有限公司 一种液态钢渣急冷过程中调质改性的装置及方法
CN111850193A (zh) * 2020-08-04 2020-10-30 中冶节能环保有限责任公司 一种熔融钢渣出渣冷却过程在线调质装置及方法
CN113355464A (zh) * 2021-05-17 2021-09-07 首钢长治钢铁有限公司 一种高温钢渣改性处理方法、改性钢渣及其应用
CN114751661B (zh) * 2022-01-14 2023-02-28 新疆交通建设集团股份有限公司 热泼渣处理方法以及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906137A (zh) * 2003-12-18 2007-01-31 拉法尔热公司 水硬性无机组合物、其制造方法和含有这种组合物的水泥产品和水硬性粘合剂
US20110168058A1 (en) * 2008-09-26 2011-07-14 University Of Leeds Construction materials
CN102605113A (zh) * 2012-02-29 2012-07-25 北京科技大学 采用尾矿复配料改质高温钢渣的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133269A (zh) * 1995-04-04 1996-10-16 国家建材局成都建材设计研究院 钢渣复合道路水泥及生产工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906137A (zh) * 2003-12-18 2007-01-31 拉法尔热公司 水硬性无机组合物、其制造方法和含有这种组合物的水泥产品和水硬性粘合剂
US20110168058A1 (en) * 2008-09-26 2011-07-14 University Of Leeds Construction materials
CN102605113A (zh) * 2012-02-29 2012-07-25 北京科技大学 采用尾矿复配料改质高温钢渣的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702838A (zh) * 2019-10-11 2020-01-17 唐山公路建设总公司市站公司 钢渣试件测定仪和测定方法
CN111187010A (zh) * 2020-01-10 2020-05-22 安徽马钢嘉华新型建材有限公司 一种无熟料高性能低成本的新型复合胶凝材料
CN113380348A (zh) * 2021-07-03 2021-09-10 内蒙古高等级公路建设开发有限责任公司 一种钢渣基矿物掺和料的制备方法及***
CN113380348B (zh) * 2021-07-03 2022-12-13 安徽东材材料科技有限公司 一种钢渣基矿物掺和料的制备方法及***

Also Published As

Publication number Publication date
CN102605113A (zh) 2012-07-25
CN102605113B (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2013127320A1 (zh) 采用尾矿复配料改质高温钢渣的方法
CN108585573B (zh) 用于混凝土的复合活性掺合料制备方法
CN103397128B (zh) 一种赤泥深度还原提铁及二次尾渣制备胶凝材料的方法
CN103614547B (zh) 一种从一水硬铝石型铝土矿中分离铁铝硅的方法
CN104446041B (zh) 一种铜冶炼二次渣生产矿渣微粉的方法
CN101544479B (zh) 球磨钢渣尾泥与高炉矿渣复合活性粉及其在制备混凝土中的应用
CN101293281B (zh) 一种由高铝铁矿石直接制备金属铁粉的方法
CN111850214A (zh) 一种钢渣与赤泥反应资源回收再利用新工艺及应用
CN107602086B (zh) 一种用废弃耐火材料生产的镁钙质捣打料及其制造方法
CN101984079B (zh) 一种高磷赤铁矿直接还原脱磷提铁的方法
CN101984080A (zh) 一种赤泥分离铁、铝硅渣和碱金属去除的工艺方法及设备
CN112679195A (zh) 一种钢渣制备的黑色道路砖及其制备方法
CN101293220B (zh) 一种用于高铝铁矿石铁铝分离的添加剂
CN102719577A (zh) 一种耦合处理炼铁、炼钢炉渣的方法
CN113979655B (zh) 一种基于钢铁尘泥和赤泥的改性钢渣及其制备方法和应用
KR101167134B1 (ko) 전기로 산화 슬래그를 이용한 비정질 잠재수경성 시멘트를 제조하는 방법
CN111101002A (zh) 一种皮江法炼镁联产水泥的生产工艺
CN102320761B (zh) 一种水泥活性混合材与混凝土活性掺合料的制备方法
CN112080598A (zh) 综合利用钢铁冶炼炉渣资源的方法及***和高炉渣罐
CN115572084B (zh) 一种多钢渣协同全固废胶凝材料及其制备方法
CN115716738B (zh) 一种高强度钢渣砖的生产工艺
CN101264509B (zh) 利用高炉水渣制备连铸保护渣的方法
CN110563353A (zh) 一种利用矿渣和炼钢尾渣制备钢渣复合微粉的方法
CN114163148A (zh) 一种含铁水脱硫尾渣的固废基胶凝材料及其制备方法
CN109913641B (zh) 一种综合利用高铝铁矿的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13755418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13755418

Country of ref document: EP

Kind code of ref document: A1