WO2013125714A1 - Phenyl group-containing organic-inorganic hybrid prepolymer, heat-resistant organic-inorganic hybrid material, and heat-resistant structure - Google Patents

Phenyl group-containing organic-inorganic hybrid prepolymer, heat-resistant organic-inorganic hybrid material, and heat-resistant structure Download PDF

Info

Publication number
WO2013125714A1
WO2013125714A1 PCT/JP2013/054626 JP2013054626W WO2013125714A1 WO 2013125714 A1 WO2013125714 A1 WO 2013125714A1 JP 2013054626 W JP2013054626 W JP 2013054626W WO 2013125714 A1 WO2013125714 A1 WO 2013125714A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxide
phenyl group
metal
oligomer
inorganic hybrid
Prior art date
Application number
PCT/JP2013/054626
Other languages
French (fr)
Japanese (ja)
Inventor
信藤 卓也
秀典 久保
緑 佐藤
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Publication of WO2013125714A1 publication Critical patent/WO2013125714A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a heat-resistant elastic material, a phenyl group-containing organic one-inorganic hybrid prepolymer useful as a sealing material for a high-temperature exothermic element, a heat-resistant organic one-inorganic hybrid material comprising a gelled product of the prepolymer, and the heat-resistant material.
  • the present invention relates to a heat resistant structure using a conductive organic one-inorganic hybrid material.
  • heat-resistant materials have been used for insulation, fixing, etc. films, tapes, adhesives, protective films, semiconductor elements and wiring sealants for electronic parts and electrical parts that require heat resistance. It has been.
  • an epoxy resin is generally used, but in recent years, a demand for a heat resistant temperature has increased, and a silicone resin has become mainstream.
  • the silicone resin is generally well known as an elastic material having heat resistance, low cost and high safety.
  • an organic-inorganic hybrid material in which an inorganic component is introduced into a silicone resin to improve the properties of the silicone resin has been developed.
  • the above organic-inorganic hybrid material is a material that combines the polymer properties of silicone resin, which is an organic component, with polymer properties such as flexibility, water retention and releasability, and ceramic properties such as heat resistance and thermal conductivity of inorganic components.
  • this material is a material having excellent characteristics such as high heat resistance of 200 ° C. or more, flexibility derived from a polymer, high electrical insulation and low dielectric property at high frequency (patent) References 1-12).
  • the organic-inorganic hybrid material is incorporated in a laser diode (LD), a light emitting diode (LED), an LED print head (LPH), a charge coupled device (CCD), an insulated gate bipolar transistor (IGBT), or the like.
  • LD laser diode
  • LED light emitting diode
  • LPH LED print head
  • CCD charge coupled device
  • IGBT insulated gate bipolar transistor
  • Si semiconductors have been used as semiconductors used in these electronic components, but recently, the use of SiC semiconductors or GaN semiconductors instead of Si semiconductors has been studied.
  • the SiC semiconductor and the GaN semiconductor are expected to be smaller, lower power consumption, higher efficiency power elements, higher frequency elements, and semiconductor elements having higher radiation resistance than conventional Si semiconductors. For this reason, in addition to electric power, transportation, and home appliances, there are high needs in the space and nuclear fields. Recently, use in IGBTs (insulated gate bipolar transistors) for hybrid vehicles, solar power generation semiconductors, and the like has been studied.
  • IGBTs insulated gate bipolar transistors
  • a SiC semiconductor has a band gap of 3.25 eV, which is 3 times wider than that of a Si semiconductor
  • a GaN semiconductor also has a band gap of 3 times wider than that of a Si semiconductor, so that the electric field strength leading to dielectric breakdown is 3 MV / cm.
  • SiC semiconductors and GaN semiconductors have been replaced with SiC semiconductors and GaN semiconductors, and high integration and high-speed arithmetic processing can be realized.
  • the SiC semiconductor and the GaN semiconductor generate high-temperature heat of approximately 200 ° C. to 250 ° C.
  • the conventional organic one-inorganic hybrid material is used as a sealing material in the heat-resistant structure using the SiC semiconductor or GaN semiconductor.
  • the present invention solves the above-described conventional problems, and includes a phenyl group-containing organic material that can be used as a heat-resistant elastic material applicable to a heat-resistant structure such as a sealing material or an adhesive for an element incorporating a SiC semiconductor or a GaN semiconductor.
  • An object of the present invention is to provide a single inorganic hybrid prepolymer and a heat-resistant organic single inorganic hybrid material.
  • the present invention provides a polydimethylsiloxane (A) having silanol groups capable of reacting with a metal and / or semimetal alkoxide at both ends or one end, and a metal and / or metalloid alkoxide.
  • Polydimethylsiloxa having silanol groups capable of reacting with alkoxides is represented by the following general formula (Formula 1), and the polydimethylsiloxane having a silanol group capable of reacting with a metal and / or metalloid alkoxide at one end is represented by the following general formula (Formula 2).
  • the metal and / or metalloid alkoxide (B) is represented by the following general formula (Formula 3), and the alkoxide oligomer (C) is a phenyl represented by the following general formula (Formula 4).
  • a group-containing organic-inorganic hybrid prepolymer is provided.
  • the alkoxide oligomer (C) is preferably used in a proportion of 100 to 800 mol.
  • the phenyl group-containing organic-inorganic hybrid prepolymer is provided in a sol state, and the viscosity of the sol at 25 ° C. is preferably set to 4 to 50 Pa ⁇ s.
  • the oligomer (C) is preferably a dimer to a 10-mer oligomer.
  • the metal and / or metalloid alkoxide (B) having the phenyl group introduced therein is represented by the following general formula (Formula 5 or Formula 6).
  • R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.
  • the oligomer (C) of the metal and / or metalloid alkoxide having the phenyl group introduced therein is any of oligomer I, oligomer II, oligomer III or oligomer IV represented by the following general formulas (Chemical Formula 7 to Chemical Formula 10). It is.
  • M is a metal or metalloid
  • R is a linear or branched alkyl group having 4 or less carbon atoms
  • the alkyl groups may be the same or partially different.
  • p may be an integer of 2 to 10
  • q and r are integers, and p> q + r.
  • a heat-resistant organic mono-inorganic hybrid material comprising a gelled product obtained by heating and gelling the phenyl group-containing organic mono-inorganic hybrid prepolymer.
  • the heat-resistant organic one-inorganic hybrid material preferably has a hardness of 60 or less according to the Shore E hardness meter after 1000 hours have passed in an environment of 250 ° C.
  • a heat-resistant structure in which a heat-generating element is sealed using the above heat-resistant organic mono-inorganic hybrid material is provided.
  • SiC and / or GaN as a semiconductor is incorporated in all or part of the exothermic element.
  • the phenyl group-containing metal and / or metalloid alkoxide (B) and / or the oligomer (C) of the alkoxide as a raw material are as follows.
  • the following structure (Chemical Formula 5 or Chemical Formula 6) exists.
  • R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different.
  • the alkoxide (B) having the above structure or the oligomer (C) of the alkoxide is condensed with the polydimethylsiloxane (A) having a silanol group at the terminal, the M two-coordinate position of the alkoxide (B) or the oligomer (C) A siloxane bond is formed in the siloxane bond, but the siloxane bond is hardly thermally decomposed and hydrolyzed by the steric hindrance effect and the electronic stability effect of the phenyl group bonded to M.
  • the phenyl group-containing organic one-inorganic hybrid material which is a gelled product of the phenyl group-containing organic-inorganic hybrid prepolymer of the present invention, is limited by the phenyl group contained in the thermal cleavage of the molecular chain, and decomposes and deteriorates at high temperatures. It becomes difficult to be done and becomes stable even at high temperatures.
  • the phenyl group-containing organic one-inorganic hybrid prepolymer having such heat resistance characteristics is excellent in thermal stability after curing and does not easily decompose or deteriorate.
  • the heat-resistant organic-inorganic hybrid material which is a gel of the phenyl group-containing organic one-inorganic hybrid prepolymer of the present invention, has high heat resistance and is used for a heat-resistant structure incorporating a SiC semiconductor or GaN semiconductor that generates high-temperature heat. Is possible.
  • the present invention uses a metal and / or metalloid alkoxide (B) and / or an oligomer (C) of the alkoxide in which a phenyl group is introduced, and a polydimethylsiloxane (A) having a silanol group at the terminal.
  • the hybrid material obtained by not using the one with a phenyl group introduced in the side chain at the same time has low heat loss at high temperature and high heat resistance, and also has little change in hardness at high temperature and maintains flexibility.
  • the present invention provides a cluster particle which is a single polycondensate of the alkoxide present in the resulting hybrid material by using the oligomer (C) as a metal and / or semimetal alkoxide having a phenyl group introduced therein. The generation of is reduced. This is because the polycondensation of the alkoxide alone proceeds to suppress the generation of cluster particles.
  • the graph which shows the result of heat loss reduction evaluation The graph which shows the result of hardness measurement evaluation.
  • phenyl group-containing organic one-inorganic hybrid prepolymer As the phenyl group-containing organic one-inorganic hybrid prepolymer (hereinafter abbreviated as phenyl group-containing prepolymer) of the present invention, those listed in the following (1) to (2) are general.
  • an organic monoinorganic hybrid prepolymer is a prepolymer
  • a metal and / or metalloid alkoxide is an alkoxide (B)
  • a phenyl group-containing metal and / or metalloid alkoxide is a phenyl group-containing alkoxide (B)
  • alkoxides (B) both alkoxides not containing phenyl groups and alkoxides containing phenyl groups are referred to as alkoxides (B).
  • alkoxide or phenyl group-containing alkoxide examples include plural (usually 2 to 10, preferably 4 to 6) alkoxides (B) or oligomers (C) in which phenyl group-containing alkoxides (B) are bonded by polycondensation. More preferably.
  • the raw materials used for the phenyl group-containing prepolymer of the present invention will be described below.
  • the polydimethylsiloxane (A) having a silanol group at the terminal used in the present invention has a silanol group capable of reacting with a metal and / or a metalloid alkoxide at both terminals or one terminal, and has the following general formula ( 1 and 2).
  • both the polydimethylsiloxane (A) having a silanol group at both ends and the polydimethylsiloxane (A) having a silanol group at one end are both polydimethylsiloxane (A).
  • A) Polydimethylsiloxane having silanol groups at both ends A
  • (B) Polydimethylsiloxane having a silanol group at one end A)
  • the weight (mass) average molecular weight of the polydimethylsiloxane (A) is in the range of 3000 or more and 80000 or less, preferably 5000 or more and 60000 or less. If the weight average molecular weight is less than 3000, the ratio of those that volatilize and do not react during synthesis increases, and there are many components that vaporize when the resulting prepolymer is baked (heat-cured). Become. Moreover, the obtained hardening body is inferior to heat resistance with a large weight loss at high temperature.
  • the prepolymer becomes highly viscous and difficult to handle, and it is necessary to dilute with a solvent, and the solvent volatilizes when the prepolymer is baked (cured), causing shrinkage of the cured product.
  • the solvent volatilizes when the prepolymer is baked (cured), causing shrinkage of the cured product.
  • decomposition due to hydrolysis becomes a problem when the resulting prepolymer is baked (heat-cured).
  • the ratio of the silanol group which is a reactive group decreases, and the reactivity at the time of a prepolymer production
  • the number of inorganic cross-linking points decreases, and the sol has a low pot life, such as thickening at a stretch by a slight reaction.
  • Metal and / or metalloid alkoxide (B) The metal and / or metalloid alkoxide (B) is represented by the following general formula (Formula 3).
  • metal and / or metalloid of the metal and / or metalloid alkoxide (B) used in the present invention silicon, boron, aluminum, titanium, manganese, iron, zinc, yttrium, zirconium, niobium, cerium, although alkoxides such as tantalum are mentioned, preferred metals and / or metalloids are silicon, boron, aluminum, titanium and zirconium.
  • the type of the alkoxide is not particularly limited.
  • alkoxide is the use of alkoxides of silicon, titanium and zirconium which are readily available and stably present in the atmosphere.
  • silicon alkoxide examples include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, and tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and methyltripropoxysilane.
  • Methyltributoxysilane Methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, etc.
  • Trialkoxysilanes Among these, tetraethoxysilane (TEOS), methyltrimethoxysilane, and triethoxymethylsilane (TEOMS) are preferable.
  • Preferred examples of other metal alkoxides include titanium tetraisopropoxide (TTP) and zirconium tetrapropoxide (ZTP).
  • the metal and / or metalloid alkoxide oligomer (C) (hereinafter simply referred to as oligomer (C)) is a low polycondensate of metal and / or metalloid alkoxide (B). Is represented by the following general formula (Formula 4).
  • the phenyl group-containing alkoxide (B) is represented by the following general formula (Formula 5 or Formula 6). (In the above chemical formulas 5 and 6, R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.)
  • Examples of the metal and / or metalloid of the phenyl group-containing alkoxide used in the present invention include silicon, boron, aluminum, titanium, vanadium, manganese, iron, cobalt, zinc, germanium, yttrium, zirconium, niobium, lanthanum, Although cerium, cadmium, tantalum, tungsten and the like can be mentioned, preferred metals and / or metalloids are silicon, titanium and zirconium.
  • Examples of the phenyl group-containing alkoxide (B) include the following two types. (In the above chemical formulas 11 and 12, R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.)
  • the oligomer of a phenyl group-containing alkoxide used (hereinafter simply referred to as an oligomer) is a low polycondensate of a phenyl group-containing alkoxide.
  • the phenyl group-containing alkoxide oligomer has the following general formula.
  • Examples of the phenyl group-containing alkoxide oligomer include the following four types.
  • M is a metal or metalloid
  • R is a linear or branched alkyl group having 4 or less carbon atoms
  • the alkyl groups may be the same or partially different.
  • p may be an integer of 2 to 10
  • q and r are integers, and p> q + r.
  • the amount of the alkoxide oligomer (C) used is such that the metal and / or metalloid alkoxide (B) and / or the alkoxide oligomer (C) is 100 to 800 per 100 mol of the polydimethylsiloxane (A). The molar ratio.
  • the amount of the metal and / or metalloid alkoxide (B) and / or oligomer (C) of the alkoxide is preferably 200 to 800 moles per 100 moles of the polydimethylsiloxane (A). More preferably, the proportion is 260 to 400 mol.
  • Metal and / or metalloid alkoxide (B) and / or oligomer of said alkoxide (C) with respect to 100 mol of polydimethylsiloxane (A) having silanol groups capable of reacting with metal and / or metalloid alkoxide at both ends or one terminal If the amount used is less than 100 mol, the prepolymer sol tends to solidify and the pot life is shortened.
  • cured material (gelled material) obtained from a prepolymer will be inferior to adhesiveness.
  • the metal and / or metalloid alkoxide (B) and / or oligomer (C) of the alkoxide is 200 mol or more, preferably 260 mol or more, and the cured product (gel product) obtained from the prepolymer has excellent adhesion.
  • the amount of the metal and / or metalloid alkoxide (B) and / or oligomer (C) of the alkoxide used exceeds 100 mol with respect to 100 mol of the polydimethylsiloxane (A), a cured product obtained from the prepolymer is obtained.
  • the phenyl group-containing alkoxide (B) and / or oligomer (C) may have a molar fraction of 0.5 to 1.0 with respect to the whole alkoxide (B) and / or oligomer (C). desirable. If the ratio of the alkoxide (B) and / or the oligomer (C) containing a phenyl group is less than 0.5 in terms of molar fraction, the heat resistance may be insufficient. When the molar fraction is 1.0, all of the alkoxide (B) and / or oligomer (C) contains a phenyl group.
  • This condensation reaction involves hydrolysis of the alkoxy group of the phenyl group-containing alkoxide (oligomer).
  • a condensation catalyst such as stannous octoate, dibutyltin dilasylate, dibutyltin di-diethylhexoate, sodium-O-phenylphenate, tetra (21-ethylhexosyl) titanate, or the like is usually used.
  • hydrolysis and heating are performed in an atmosphere filled with an inert gas inside the container used for the reaction. It is preferable to perform a condensation reaction.
  • the inert gas examples include nitrogen gas and 18th elements which are rare gases (helium, neon, argon, krypton, xenon, etc.). These gases may be used in combination.
  • the phenyl group-containing prepolymer comprises the phenyl group-containing alkoxide (oligomer) and the polydimethylsiloxane (A) having a silanol group at the terminal and having no phenyl group in the side chain. It is obtained by hydrolysis and condensation reaction in the presence of the above condensation catalyst.
  • the alkoxy group of the phenyl group-containing alkoxide (oligomer) is easily hydrolyzed in the presence of water, the alkoxy group of the phenyl group-containing alkoxide (oligomer) is a highly reactive silanol group (—OH group). It becomes. That is, the alkoxy group of the phenyl group-containing alkoxide (oligomer) is hydrolyzed to become an OH group, and is heated in the presence of an —OH group of polydimethylsiloxane having a silanol group at the terminal and an inert gas. This causes a dehydration condensation reaction.
  • a condensation reaction accompanied by dealcoholization also occurs from polydimethylsiloxane having a phenyl group-containing alkoxide and a terminal silanol group.
  • the oligomer (C) is used as the alkoxide, the condensation reaction with the polydimethylsiloxane having a silanol group at the terminal can be smoothly performed as compared with the case where the alkoxide monomer (B) is used. That is, the oligomer (C) and the polydimethylsiloxane (A) react quantitatively, and the condensation reaction proceeds smoothly.
  • the alkoxide monomer (B) When the alkoxide monomer (B) is used, the reactivity of the alkoxide (B) is high, the polycondensation of the alkoxide alone proceeds, and the alkoxide (B) does not react with the polydimethylsiloxane (A). , A cluster formed of a single polycondensate of alkoxide (B) is likely to be formed.
  • the polydimethylsiloxane having a silanol group at the terminal (A)
  • the condensation reaction between the —OH group and the alkoxy group of the alkoxide (B) (oligomer (C)) is promoted, and a prepolymer is produced smoothly as a sol.
  • the low molecular weight siloxane which is a problem in the polydimethylsiloxane (A) is incorporated into the prepolymer at the time of producing the prepolymer or volatilizes by heating, the low molecular weight siloxane existing as a simple substance in the prepolymer.
  • the phenyl group-containing organic mono-inorganic hybrid prepolymer sol obtained in the present invention, or the phenyl group-containing organic mono-inorganic hybrid gelled product (cured product) obtained by gelling the prepolymer sol is a single polycondensation of the alkoxide. Since there are almost no clusters formed by a body, it is possible to provide a higher-quality heat-resistant adhesive material, heat-resistant sealing material, or heat-conductive material than before.
  • the sol viscosity of the prepolymer increases as the reaction of the polydimethylsiloxane (A) having a silanol group at the terminal and the metal and / or metalloid alkoxide (B) or its oligomer (C) proceeds. It becomes an index of the reaction rate between the polydimethylsiloxane (A) having a group and the metal and / or metalloid alkoxide (B) or its oligomer (C).
  • the viscosity of the prepolymer sol at 25 ° C. is preferably 4 to 50 Pa ⁇ s, more preferably 4 to 40 Pa ⁇ s, and still more preferably 8 to 30 Pa ⁇ s.
  • the viscosity (25 ° C.) of the prepolymer sol exceeds 50 Pa ⁇ s, the sol becomes unstable, easily gels, and the pot life is shortened. In addition, the cured product (gelled product) obtained from the prepolymer is likely to shrink.
  • the viscosity (25 ° C.) of the prepolymer sol is less than 4 Pa ⁇ s, gelation hardly occurs.
  • low molecular weight siloxane remains, shrinkage tends to occur in the cured product obtained from the prepolymer, and the weight loss of the cured product at high temperatures increases.
  • the viscosity (25 ° C.) of the prepolymer sol is less than 3 Pa ⁇ s when polydimethylsiloxane and the alkoxide (B) or oligomer thereof are unreacted.
  • the element according to the present invention is also referred to as an element mainly composed of a semiconductor, an element in which a semiconductor is incorporated, or an element in which the above element is mounted on the upper surface of a substrate.
  • the element include a transistor, a diode, a rectifying element, a negative resistance element, a photovoltaic element, a photoconductive element, a light emitting element, a magnetoelectric element, or an arithmetic element incorporated in an arithmetic device.
  • a sealing material is used to protect the light emitting surface and the light receiving surface.
  • the light emitting surface and the light receiving surface are covered.
  • the terminal provided on the surface of the substrate and the terminal provided on the element are electrically connected by wire connection (wire bonding). Cover with sealing material.
  • optical element case As an example, a method of manufacturing an element in which a semiconductor element is mounted on the upper surface of the substrate will be described with an optical element case as an example.
  • the optical element is first mounted on the surface of the substrate using a commercially available mounting machine or the like. If there is a terminal on the lower surface of the optical element, wire bonding may not be necessary, but if there is a terminal on the upper surface of the optical element, the terminal provided on the surface of the substrate and the terminal provided on the optical element are connected. Electrical connection is made by wire bonding.
  • the light emitting surface and / or the light receiving surface of the optical element is sealed by applying a sol-state sealing material containing the phenyl group-containing prepolymer of the present invention as a main component.
  • a sol-state sealing material containing the phenyl group-containing prepolymer of the present invention as a main component.
  • care must be taken so that bubbles do not enter the sealing material.
  • the method for applying the sealing material is not particularly limited, but it is generally desirable to use a coating apparatus capable of quantitatively applying (sealing) the sealing material as described later.
  • the sealing is not limited to the light emitting surface and / or the light receiving surface, but may be performed so that the entire optical element is covered with the sealing material.
  • the element coated with the sealing material is placed in a high-temperature furnace (also referred to as “oven”) and heated to gel the sealing material to form an organic-inorganic solid or semi-solid gelled product.
  • a high-temperature furnace also referred to as “oven”
  • the organic-inorganic hybrid material which is the gelled sealing material is formed into a desired shape.
  • a method of gelling the sealing material a method of mixing an additive (curing agent) with the sealing material and gelling at room temperature may be employed. Silicone resins and organic one-inorganic hybrid compositions that have been used as sealing materials have deteriorated over time and become cloudy or yellowed, so it is difficult to find foreign substances attached to the surface of the sealing material.
  • the sealing material made of the phenyl group-containing organic one-inorganic hybrid material according to the present invention is less likely to deteriorate with time and maintains colorless and transparent.
  • the sealing material which concerns on this invention can maintain the transparency and translucency of a sealing material, even if near-ultraviolet light is emitted over a long period of time.
  • the sealing material according to the present invention is less likely to cause a breaking phenomenon such as cracking or peeling due to high temperature heat generated from a semiconductor element such as SiC or GaN. Therefore, there is no problem of element destruction, wire bonding disconnection, or insulation deterioration, and a high-quality semiconductor element can be provided.
  • Viscosity of prepolymer sol Using a tuning fork type vibration viscometer (SV-10A manufactured by A & D) (JIS Z8803), the viscosity at 25 ° C. was measured.
  • Cluster particles Using an atomic force microscope (Auto-Probe CP-R manufactured by TM-Microscopes), cluster particles were measured for the following evaluation sheets and comparative sheets.
  • a Si chip Nano-Sensors NCH-10 Type, length 129 ⁇ m, width 28 ⁇ m, thickness 3.8 ⁇ m, spring constant 31 N / m, resonance frequency 312 kHz was measured in the atmosphere.
  • the measurement area was 10 ⁇ m ⁇ , and the number of cluster particles having a size of 0.5 ⁇ m or more was measured at five locations.
  • the hardness measurement evaluation was performed by a measurement method using a type E durometer (Shore E hardness meter) for soft rubber (low hardness) specified in JIS K 6253 and ISO 7619.
  • the following evaluation sheet and comparative sheet were stored in a convection-type drying furnace in the atmosphere at 250 ° C., and the hardness was measured at regular intervals up to 1000 hours.
  • the adhesion evaluation was performed by an adhesion test based on JIS A 5758. In this adhesion test, quartz glass is used as the adherend, prepolymer sol is used as an evaluation object, and the prepolymer sol is cured by heating at 180 ° C. for 3 hours to produce an H-type test body. did. The specimen was left at 23 ° C. and 50% RH for 24 hours, and then a tensile test was conducted to evaluate the adhesion.
  • Example 1 [Production of organic one-inorganic hybrid prepolymer (prepolymer 1)] Nitrogen gas was used as an inert gas in a reaction vessel (flask having a plurality of insertion ports) equipped with a stirrer, a thermometer, and a dropping line, and the reaction vessel was sufficiently filled with nitrogen gas. As the nitrogen gas, one produced by a nitrogen gas production apparatus (UNX-200 manufactured by Japan Unix Co., Ltd.) was used.
  • polydimethylsiloxane having silanol groups at both ends as polydimethylsiloxane (A) having a silanol group at the end and not having a phenyl group in the side chain in the reaction vessel sufficiently filled with the nitrogen gas.
  • PDMS weight average molecular weight 32000
  • TEPS triethoxyphenylsilane
  • Nitrogen gas was used as an inert gas in a reaction vessel (flask having a plurality of insertion ports) equipped with a stirrer, a thermometer, and a dropping line, and the reaction vessel was sufficiently filled with nitrogen gas.
  • a nitrogen gas production apparatus (UNX-200 manufactured by Japan Unix Co., Ltd.) was used.
  • Example 2-5 Reference Example 1-4
  • the type and amount of polydimethylsiloxane (A) having a silanol group at the terminal and the type and amount of metal alkoxide (B) are shown in Table 1, and the stirring time (reaction time) is desired.
  • a prepolymer was obtained in the same manner as in Example 1 except that the prepolymer sol was continued until the viscosity became.
  • the results of each example are shown in Table 1, and the results of each comparative example are shown in Table 2.
  • Example 1 made of the hybrid material of the present invention showed a moderate increase in hardness even under an environment of 250 ° C., and maintained a low hardness.
  • recording was performed only for up to 500 hours, but when the measurement was further continued, the hardness at 1000 hours was about 40.
  • Examples 2 to 5 have a weight loss rate of 5% or less after 200 hours under an environment of 250 ° C., and a hardness after 1000 hours under an environment of 250 ° C. of 60 or less. It was excellent in properties.
  • Examples 1 to 5 were also highly evaluated for adhesiveness.
  • Comparative Example 1 made of a conventional hybrid material
  • Comparative Example 2 made of a hybrid material in which polydimethylsiloxane has a phenyl group in the side chain had a higher hardness than before Example 1 before the measurement, and the hardness further increased in an environment of 250 ° C.
  • Reference examples 1 to 4 will be described below. From Table 1, in Reference Examples 1 and 2 in which the viscosity (25 ° C.) of the prepolymer sol as an index of the reaction rate was changed, the weight reduction rate after 200 hours in an environment of 250 ° C. was 5% or less. The hardness after 1000 hours in an environment of ° C. was 60 or less, and was excellent in heat resistance.
  • the adhesiveness was also highly evaluated. From Table 2, in Reference Example 3 in which the amount of alkoxide used (molar ratio) was reduced, the weight loss rate after 200 hours in an environment of 250 ° C. was 5% or less, and after 1000 hours in an environment of 250 ° C. The hardness was 60 or less and the heat resistance was excellent, but the adhesion was inferior. However, the hybrid material (prepolymer sol) does not necessarily require adhesion.
  • Reference Example 4 which was almost unreacted by setting the viscosity (25 ° C.) of the prepolymer sol to 3.1 Pa ⁇ s, had a hardness of 60 or less after 1000 hours in an environment of 250 ° C., Although the heat resistance is excellent in terms of hardness, the weight reduction rate after 200 hours in an environment of 250 ° C. exceeded 5%, and the heat resistance was inferior in terms of the weight reduction rate. Therefore, in order to achieve excellent heat resistance in both hardness and weight reduction rate, it is desirable to increase the viscosity (25 ° C.) of the prepolymer sol, that is, to increase the reaction rate between polydimethylsiloxane and alkoxide.
  • Examples 1 to 5 made of the hybrid material of the present invention are stable with little weight loss over a long period of time, and have a low hardness and maintain flexibility when measured at 250 ° C. for up to 500 hours.
  • the softness was maintained at a low hardness of about 40 even after 1000 hours at 250 ° C. Therefore, it was found that the hybrid material of the present invention has less weight loss at a high temperature, can maintain flexibility, and is excellent in heat resistance than the conventional hybrid material.
  • the hybrid material of the present invention does not cause defects such as cracks (breaks) after 1000 hours in an environment of 250 ° C., and the hardness by the Shore E hardness meter is 60 or less.
  • the hardness is preferably 55 or less, more preferably 50 or less.
  • the present invention is not limited only to the above-described embodiments, and changes, deletions, and additions may be made without departing from the technical idea of the present invention that can be recognized by those skilled in the art from the scope of the claims and the description. Is possible.
  • the present invention is not limited to this, and different types and characteristics of metal and / or metalloid alkoxides may be used.
  • the organic one-inorganic hybrid prepolymer is a sol
  • the organic one-inorganic hybrid prepolymer sol is used as a mold or the like in order to obtain a molded product that is solid or semi-solid (gel) by baking.
  • the organic mono-inorganic hybrid material of the present invention is used as a heat-resistant elastic material, for example, it may be combined with a ceramic filler for the purpose of imparting thermal conductivity, and in the form of flakes for the purpose of imparting electrical insulating properties. An insulating filler may be blended. On the other hand, in an optical application for which transparency is required, a single material may be cured without blending a filler or the like.
  • the organic one-inorganic hybrid prepolymer of the present invention it may be supplied in a semi-cured state for the purpose of curing by heat treatment during use.
  • the organic one-inorganic hybrid prepolymer of the present invention it can be employed in applications such as adhesives and paints in addition to the sealing material.
  • the cured product (gelated product) of the organic-inorganic hybrid prepolymer sol of the present invention is characterized by elastic properties at high temperatures, and is excellent in the ability to relieve the thermal expansion of the material to be bonded by cold shock. Therefore, it can be used as an adhesive layer that can be interposed between different materials to be bonded to relieve thermal stress.
  • organic one-inorganic hybrid compound of the present invention may be used in applications such as sealing materials and potting materials used in semiconductor elements such as light emitting elements such as laser diodes and light receiving elements such as image sensors. Can do.
  • the phenyl group-containing organic one-inorganic hybrid prepolymer of the present invention provides a heat-resistant gelled material, which is used for insulating a heat generating element sealing material, an adhesive, an electronic component, an electrical component, or the like. Since it is useful as a film or tape for fixing or a protective film, it has industrial applicability.

Abstract

The objective of the present invention is to provide a material which is able to be used as a heat-resistant elastic material that is applicable to heat-resistant structures. The present invention provides a phenyl group-containing organic-inorganic hybrid prepolymer that is produced by a condensation reaction of (A) a polydimethyl siloxane having a silanol group, which is reactive with a metal and/or a semimetal alkoxide, at both ends or at one end and having a weight average molecular weight of from 3,000 to 80,000 (inclusive), and (B) a metal and/or a semimetal alkoxide and/or (C) an oligomer of the above-mentioned alkoxide, a part or the whole of said oligomer having a phenyl group introduced thereinto.

Description

フェニル基含有有機-無機ハイブリッドプレポリマー、耐熱性有機-無機ハイブリッド材料、及び耐熱構造体Phenyl group-containing organic-inorganic hybrid prepolymer, heat-resistant organic-inorganic hybrid material, and heat-resistant structure
 本発明は、耐熱性弾性材料、高温発熱性素子の封止材等として有用なフェニル基含有有機一無機ハイブリッドプレポリマー、該プレポリマーのゲル化物からなる耐熱性有機一無機ハイブリッド材料、及び該耐熱性有機一無機ハイブリッド材料を用いた耐熱構造体に関するものである。 The present invention relates to a heat-resistant elastic material, a phenyl group-containing organic one-inorganic hybrid prepolymer useful as a sealing material for a high-temperature exothermic element, a heat-resistant organic one-inorganic hybrid material comprising a gelled product of the prepolymer, and the heat-resistant material. The present invention relates to a heat resistant structure using a conductive organic one-inorganic hybrid material.
 従来から、耐熱性が要求される電子部品、電気部品等の絶縁用または固定用等のフィルム、テープ、接着剤、保護膜、半導体素子や結線の封止材等には、耐熱性材料が用いられている。上記耐熱性材料としては、エポキシ樹脂が一般的であったが、近年、耐熱温度の要求が高まり、シリコーン樹脂が主流になってきている。該シリコーン樹脂は、耐熱性を有し、低価格で安全性も高い弾性材料として一般的によく知られている。最近では、シリコーン樹脂に無機成分を導入して上記シリコーン樹脂の特性を向上させた有機一無機ハイブリッド材料が開発されている。
 上記有機一無機ハイブリッド材料は、有機成分であるシリコーン樹脂の柔軟性、擁水性、離型性等のポリマー特性と、無機成分の耐熱性、熱伝導性等のセラミックス特性とを兼ね備えた材料であり(例えば、非特許文献1)、この材料は200℃以上の高い耐熱性とポリマー由来の柔軟性、更に高い電気絶縁性や高周波での低誘電性等の優れた特性を有する材料である(特許文献1~12)。
Conventionally, heat-resistant materials have been used for insulation, fixing, etc. films, tapes, adhesives, protective films, semiconductor elements and wiring sealants for electronic parts and electrical parts that require heat resistance. It has been. As the heat resistant material, an epoxy resin is generally used, but in recent years, a demand for a heat resistant temperature has increased, and a silicone resin has become mainstream. The silicone resin is generally well known as an elastic material having heat resistance, low cost and high safety. Recently, an organic-inorganic hybrid material in which an inorganic component is introduced into a silicone resin to improve the properties of the silicone resin has been developed.
The above organic-inorganic hybrid material is a material that combines the polymer properties of silicone resin, which is an organic component, with polymer properties such as flexibility, water retention and releasability, and ceramic properties such as heat resistance and thermal conductivity of inorganic components. (For example, Non-Patent Document 1), this material is a material having excellent characteristics such as high heat resistance of 200 ° C. or more, flexibility derived from a polymer, high electrical insulation and low dielectric property at high frequency (patent) References 1-12).
特開平1-113429号公報Japanese Patent Laid-Open No. 1-113429 特開平2-182728号公報Japanese Patent Laid-Open No. 2-182728 特開平4-227731号公報JP-A-4-227731 特開2009-292970号公報JP 2009-292970 A 特開2009-164636号公報JP 2009-164636 A 特開2009-024041号公報JP 2009-024041 A 特開2004-128468号公報JP 2004-128468 A 特開2010-118578号公報JP 2010-118578 A 特開2010-010505号公報JP 2010-010505 A 特開2004-107652号公報JP 2004-107652 A 特開2005-320461号公報JP 2005-320461 A 国際公開第2010/090280号International Publication No. 2010/090280
 前記したように、上記有機一無機ハイブリッド材料は、レーザーダイオード(LD)、発光ダイオード(LED)、LEDプリントヘッド(LPH)、チャージカップルドデバイス(CCD)、絶縁ゲートバイポーラトランジスタ(IGBT)等に組み込まれている半導体素子や結線の封止材、あるいは部品の固定や、放熱・絶縁及び導電性を目的とした部材の接合等、既存の材料では適用困難な新規性の部品に応用が検討されている。
 これら電子部品に使用されている半導体としては、従来からSi半導体が使用されてきたが、最近ではSi半導体に代えてSiC半導体やGaN半導体の使用が検討されている。
 上記SiC半導体やGaN半導体は、従来のSi半導体より小型、低消費電力、高効率のパワー素子、高周波素子、耐放射線性に優れた半導体素子として期待されている。このため、電力、輸送、家電に加え、宇宙、原子力分野でニーズが高い。最近では、ハイブリッド自動車用のIGBT(絶縁ゲートバイポーラトランジスタ)や太陽光発電の半導体などに使用することが検討されている。
 例えばSiC半導体は、Si半導体に比べてバンドギャップが3.25eVと3倍も広く、GaN半導体もまたSi半導体に比べてバンドギャップが3倍広く、その分絶縁破壊にいたる電界強度が3MV/cmと10倍程度大きく、熱伝導性、耐熱性、耐薬品性に優れ、放射線に対する耐性もSi半導体より高い。このため、最近ではインバーター回路やスイッチング電源向けのIGBTやMOSFETの一部がSiC半導体やGaN半導体に置き換えられ、高集積化、演算処理の高速化が実現出来るようになっている。
 しかしながら上記SiC半導体やGaN半導体は、おおよそ200℃~250℃の高温の熱を発生するので、該SiC半導体やGaN半導体を用いた耐熱構造体において従来の有機一無機ハイブリッド材料を封止材として、あるいは部材の接合に接着剤として使用した場合、熱劣化によって上記有機一無機ハイブリッド材料の柔軟性が低下してしまい、特にフェニル基を側鎖に導入したポリシロキサン(例えば特許文献12)は、熱劣化によって非常に硬くなる。その結果、従来の有機一無機ハイブリッド材料による耐熱構造体においては、200℃以上の高温で生じる構成部材の熱膨張差を緩和できず、封止材層や接合部位での割れや剥離という破壊現象が発生し、ひいては該有機一無機ハイブリッド材料が使用される耐熱部材の劣化という種々の問題が発生する。また封止材として使用した場合には透明性や透光性が失われるという問題も発生する。
As described above, the organic-inorganic hybrid material is incorporated in a laser diode (LD), a light emitting diode (LED), an LED print head (LPH), a charge coupled device (CCD), an insulated gate bipolar transistor (IGBT), or the like. Application to non-conventional parts that are difficult to apply with existing materials, such as fixing of semiconductor elements and connection sealing materials, or fixing of parts, and joining of members for the purpose of heat dissipation, insulation and conductivity Yes.
Conventionally, Si semiconductors have been used as semiconductors used in these electronic components, but recently, the use of SiC semiconductors or GaN semiconductors instead of Si semiconductors has been studied.
The SiC semiconductor and the GaN semiconductor are expected to be smaller, lower power consumption, higher efficiency power elements, higher frequency elements, and semiconductor elements having higher radiation resistance than conventional Si semiconductors. For this reason, in addition to electric power, transportation, and home appliances, there are high needs in the space and nuclear fields. Recently, use in IGBTs (insulated gate bipolar transistors) for hybrid vehicles, solar power generation semiconductors, and the like has been studied.
For example, a SiC semiconductor has a band gap of 3.25 eV, which is 3 times wider than that of a Si semiconductor, and a GaN semiconductor also has a band gap of 3 times wider than that of a Si semiconductor, so that the electric field strength leading to dielectric breakdown is 3 MV / cm. It is about 10 times larger, has excellent thermal conductivity, heat resistance, and chemical resistance, and has higher resistance to radiation than Si semiconductors. For this reason, recently, some of IGBTs and MOSFETs for inverter circuits and switching power supplies have been replaced with SiC semiconductors and GaN semiconductors, and high integration and high-speed arithmetic processing can be realized.
However, since the SiC semiconductor and the GaN semiconductor generate high-temperature heat of approximately 200 ° C. to 250 ° C., the conventional organic one-inorganic hybrid material is used as a sealing material in the heat-resistant structure using the SiC semiconductor or GaN semiconductor. Alternatively, when used as an adhesive for joining members, the flexibility of the organic one-inorganic hybrid material is reduced due to thermal deterioration, and in particular, polysiloxane (for example, Patent Document 12) in which a phenyl group is introduced into a side chain, It becomes very hard due to deterioration. As a result, in the conventional heat-resistant structure using an organic-inorganic hybrid material, the difference in thermal expansion of the constituent members that occurs at a high temperature of 200 ° C. or higher cannot be mitigated, and the destruction phenomenon such as cracking or peeling at the sealing material layer or the joint portion As a result, various problems such as deterioration of a heat-resistant member in which the organic-inorganic hybrid material is used occur. Moreover, when used as a sealing material, the problem that transparency and translucency are lost also occurs.
 本発明は、上記従来の問題点を解決し、SiC半導体やGaN半導体を組み込んだ素子の封止材や接着剤のような、耐熱構造体に適用可能な耐熱弾性材料として使用できるフェニル基含有有機一無機ハイブリッドプレポリマー及び耐熱性有機一無機ハイブリッド材料を提供することを目的とするものである。
 上記課題を解決するための手段として、本発明は、両末端または片末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサン(A)と、金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)との縮合反応によって製造された有機-無機ハイブリッドプレポリマーであって、上記ポリジメチルシロキサン(A)の重量平均分子量は3000以上、80000以下の範囲であり、上記金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)の一部または全部には、フェニル基が導入されており、上記両末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサン(A)は、下記の一般式(化1)で表わされ、上記片末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサンは、下記の一般式(化2)で表わされ、上記金属および/または半金属アルコキシド(B)は下記の一般式(化3)で表わされ、上記アルコキシドのオリゴマー(C)は下記の一般式(化4)で表わされるフェニル基含有有機-無機ハイブリッドプレポリマーを提供するものである。
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

 上記両末端または片末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサン(A)が100モルに対して、上記金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)が100~800モルの割合で使用されることが望ましい。
 また通常、上記フェニル基含有有機-無機ハイブリッドプレポリマーはゾルの状態で提供され、該ゾルの25℃における粘度は4~50Pa・sに設定することが望ましい。
 更に上記オリゴマー(C)は、2~10量体のオリゴマーであることが望ましい。
 一般に、上記フェニル基が導入された金属および/または半金属アルコキシド(B)は下記の一般式(化5または化6)で表されるものである。
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

(上記化5及び化6中、Rは炭素数4以下の直鎖または分枝のアルキル基であり、該直鎖または分枝のアルキル基は同一のものでも、部分的に異なっていても、あるいは全部異なっていてもよい。)
 また上記フェニル基が導入された金属および/または半金属アルコキシドのオリゴマー(C)は、下記の一般式(化7~化10)で表されるオリゴマーIまたはオリゴマーIIまたはオリゴマーIIIまたはオリゴマーIVの何れかである。
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-C000020

(上記化7~化10中、Mは金属または半金属、Rは炭素数4以下の直鎖または分枝のアルキル基であり、上記アルキル基は同一のものでも、部分的に異なったものでも、あるいは全部異なったものでもよく、pは2~10の整数であり、qとrは整数であり、p>q+rである。)
The present invention solves the above-described conventional problems, and includes a phenyl group-containing organic material that can be used as a heat-resistant elastic material applicable to a heat-resistant structure such as a sealing material or an adhesive for an element incorporating a SiC semiconductor or a GaN semiconductor. An object of the present invention is to provide a single inorganic hybrid prepolymer and a heat-resistant organic single inorganic hybrid material.
As means for solving the above problems, the present invention provides a polydimethylsiloxane (A) having silanol groups capable of reacting with a metal and / or semimetal alkoxide at both ends or one end, and a metal and / or metalloid alkoxide. (B) and / or an organic-inorganic hybrid prepolymer produced by a condensation reaction with the alkoxide oligomer (C), wherein the polydimethylsiloxane (A) has a weight average molecular weight in the range of 3,000 to 80,000. A phenyl group is introduced into a part or all of the metal and / or metalloid alkoxide (B) and / or oligomer (C) of the alkoxide, and the metal and / or metalloid are at both ends. Polydimethylsiloxa having silanol groups capable of reacting with alkoxides (A) is represented by the following general formula (Formula 1), and the polydimethylsiloxane having a silanol group capable of reacting with a metal and / or metalloid alkoxide at one end is represented by the following general formula (Formula 2). The metal and / or metalloid alkoxide (B) is represented by the following general formula (Formula 3), and the alkoxide oligomer (C) is a phenyl represented by the following general formula (Formula 4). A group-containing organic-inorganic hybrid prepolymer is provided.
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012

Figure JPOXMLDOC01-appb-C000013

Figure JPOXMLDOC01-appb-C000014

The metal and / or half-metal alkoxide (B) and / or the above-mentioned polydimethylsiloxane (A) having silanol groups capable of reacting with the metal and / or metalloid alkoxide at both ends or one-end, relative to 100 moles. The alkoxide oligomer (C) is preferably used in a proportion of 100 to 800 mol.
Usually, the phenyl group-containing organic-inorganic hybrid prepolymer is provided in a sol state, and the viscosity of the sol at 25 ° C. is preferably set to 4 to 50 Pa · s.
Furthermore, the oligomer (C) is preferably a dimer to a 10-mer oligomer.
In general, the metal and / or metalloid alkoxide (B) having the phenyl group introduced therein is represented by the following general formula (Formula 5 or Formula 6).
Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016

(In the above chemical formulas 5 and 6, R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.)
The oligomer (C) of the metal and / or metalloid alkoxide having the phenyl group introduced therein is any of oligomer I, oligomer II, oligomer III or oligomer IV represented by the following general formulas (Chemical Formula 7 to Chemical Formula 10). It is.
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-C000020

(In the above chemical formulas 7 to 10, M is a metal or metalloid, R is a linear or branched alkyl group having 4 or less carbon atoms, and the alkyl groups may be the same or partially different. Or p may be an integer of 2 to 10, q and r are integers, and p> q + r.)
 本発明においては、更に上記フェニル基含有有機一無機ハイブリッドプレポリマーを加熱ゲル化したゲル化物からなる耐熱性有機一無機ハイブリッド材料が提供される。
 上記耐熱性有機一無機ハイブリッド材料は、250℃の環境下で1000時間経過後におけるショアーE硬度計による硬度が60以下であることが好ましい。
 また更に本発明においては、上記耐熱性有機一無機ハイブリッド材料を使用して発熱性素子を封止した耐熱構造体が提供される。例えば、上記発熱性素子には半導体としてSiCおよび/またはGaNが全部または一部に組み込まれている。
In the present invention, there is further provided a heat-resistant organic mono-inorganic hybrid material comprising a gelled product obtained by heating and gelling the phenyl group-containing organic mono-inorganic hybrid prepolymer.
The heat-resistant organic one-inorganic hybrid material preferably has a hardness of 60 or less according to the Shore E hardness meter after 1000 hours have passed in an environment of 250 ° C.
Furthermore, in the present invention, a heat-resistant structure in which a heat-generating element is sealed using the above heat-resistant organic mono-inorganic hybrid material is provided. For example, SiC and / or GaN as a semiconductor is incorporated in all or part of the exothermic element.
〔作用〕
 本発明では、フェニル基含有有機一無機ハイブリッドプレポリマーの原料として、末端にシラノール基を有しフェニル基を側鎖に有さないポリジメチルシロキサン(A)と、金属および/または半金属アルコキシドおよび/または上記アルコキシドにフェニル基が導入されたフェニル基含有金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)とを使用する。
 本発明のフェニル基含有有機-無機ハイブリッドプレポリマーにおける耐熱性の向上について説明すると、原料である上記フェニル基含有金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)には、例えば下記の構造(化5あるいは化6)が存在する。
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022

(上記化5及び化6中、Rは炭素数4以下の直鎖または分枝のアルキル基であり、該直鎖または分枝のアルキル基は同一のものでも、部分的に異なっていても、あるいは全部異なっていてもよい。)
 上記構造のアルコキシド(B)あるいはアルコキシドのオリゴマー(C)と、末端にシラノール基を有するポリジメチルシロキサン(A)とを縮合させると、アルコキシド(B)またはオリゴマー(C)のMの二配位位置にシロキサン結合が形成されるが、該Mに結合しているフェニル基の立体障害効果および電子安定効果によって該シロキサン結合が熱分解、加水分解されにくくなっている。
 したがって本発明のフェニル基含有有機-無機ハイブリッドプレポリマーのゲル化物であるフェニル基含有有機一無機ハイブリッド材料は、分子鎖の熱による切断が含有するフェニル基によって制限されており、高温で分解、劣化されにくくなり、高温でも安定になる。このような耐熱性特性を有するフェニル基含有有機一無機ハイブリッドプレポリマーは、硬化後の熱安定性に優れ、容易に分解・劣化を生じない。
[Action]
In the present invention, as a raw material for a phenyl group-containing organic monoinorganic hybrid prepolymer, polydimethylsiloxane (A) having a silanol group at the terminal and not having a phenyl group in the side chain, a metal and / or semimetal alkoxide and / or Alternatively, a phenyl group-containing metal and / or metalloid alkoxide (B) in which a phenyl group is introduced into the alkoxide and / or an oligomer (C) of the alkoxide are used.
The improvement in heat resistance of the phenyl group-containing organic-inorganic hybrid prepolymer of the present invention will be described. The phenyl group-containing metal and / or metalloid alkoxide (B) and / or the oligomer (C) of the alkoxide as a raw material are as follows. For example, the following structure (Chemical Formula 5 or Chemical Formula 6) exists.
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022

(In the above chemical formulas 5 and 6, R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.)
When the alkoxide (B) having the above structure or the oligomer (C) of the alkoxide is condensed with the polydimethylsiloxane (A) having a silanol group at the terminal, the M two-coordinate position of the alkoxide (B) or the oligomer (C) A siloxane bond is formed in the siloxane bond, but the siloxane bond is hardly thermally decomposed and hydrolyzed by the steric hindrance effect and the electronic stability effect of the phenyl group bonded to M.
Accordingly, the phenyl group-containing organic one-inorganic hybrid material, which is a gelled product of the phenyl group-containing organic-inorganic hybrid prepolymer of the present invention, is limited by the phenyl group contained in the thermal cleavage of the molecular chain, and decomposes and deteriorates at high temperatures. It becomes difficult to be done and becomes stable even at high temperatures. The phenyl group-containing organic one-inorganic hybrid prepolymer having such heat resistance characteristics is excellent in thermal stability after curing and does not easily decompose or deteriorate.
〔効果〕
 本発明のフェニル基含有有機一無機ハイブリッドプレポリマーのゲル化物である耐熱性有機-無機ハイブリッド材料は、耐熱性に富み、高温発熱を生ずるSiC半導体やGaN半導体が組み込まれた耐熱構造体への使用が可能になる。
 さらに、本発明は、金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)にフェニル基が導入されたものを使用し、末端にシラノール基を有するポリジメチルシロキサン(A)にフェニル基が側鎖に導入されたものを使用しないことで、得られるハイブリッド材料は、高温での熱減量が小さく耐熱性が高い上に、高温での硬度の変化が小さく、柔軟性を維持する。
 さらに、本発明は、フェニル基が導入された金属および/または半金属アルコキシドとしてオリゴマー(C)を使用することで、得られるハイブリッド材料の中に存在する上記アルコキシドの単独重縮合物であるクラスター粒子の生成が少なくなる。上記アルコキシドの単独での重縮合が進行してクラスター粒子が生成することが抑制されるためである。
〔effect〕
The heat-resistant organic-inorganic hybrid material, which is a gel of the phenyl group-containing organic one-inorganic hybrid prepolymer of the present invention, has high heat resistance and is used for a heat-resistant structure incorporating a SiC semiconductor or GaN semiconductor that generates high-temperature heat. Is possible.
Furthermore, the present invention uses a metal and / or metalloid alkoxide (B) and / or an oligomer (C) of the alkoxide in which a phenyl group is introduced, and a polydimethylsiloxane (A) having a silanol group at the terminal. In addition, the hybrid material obtained by not using the one with a phenyl group introduced in the side chain at the same time has low heat loss at high temperature and high heat resistance, and also has little change in hardness at high temperature and maintains flexibility. To do.
Furthermore, the present invention provides a cluster particle which is a single polycondensate of the alkoxide present in the resulting hybrid material by using the oligomer (C) as a metal and / or semimetal alkoxide having a phenyl group introduced therein. The generation of is reduced. This is because the polycondensation of the alkoxide alone proceeds to suppress the generation of cluster particles.
耐熱減量評価の結果を示すグラフ。The graph which shows the result of heat loss reduction evaluation. 硬度測定評価の結果を示すグラフ。The graph which shows the result of hardness measurement evaluation.
〔半金属〕
 周期表上で金属元素との境界付近の元素。類金属とも云う。具体例としてホウ素、ケイ素、チタン、アルミニウム、ゲルマニウム、アンチモン、セレン、テルル等が挙げられる。
〔重量(質量)平均分子量〕
 末端にシラノール基を有するポリジメチルシロキサン(A)の重量(質量)平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。標準試料としてポリスチレンを用いてポリスチレン換算分子量を測定した。
〔フェニル基含有有機一無機ハイブリッドプレポリマー〕
 本発明のフェニル基含有有機一無機ハイブリッドプレポリマー(以下、フェニル基含有プレポリマーと略称する)としては、以下の(1)~(2)に挙げるものが一般的である。
 なお、以下の記載では、有機一無機ハイブリッドプレポリマーをプレポリマー、金属および/または半金属アルコキシドをアルコキシド(B)、フェニル基含有金属および/または半金属アルコキシドをフェニル基含有アルコキシド(B)、と略称し、ここではフェニル基を含有しないアルコキシドもフェニル基を含有するアルコキシドも共にアルコキシド(B)とする。
(1)末端にシラノール基を有しフェニル基を側鎖に含有していないポリジメチルシロキサン(A)と、フェニル基を含有していないアルコキシドと、フェニル基含有アルコキシド(B)と、の縮合反応によって得られるプレポリマーI。
(2)末端にシラノール基を有しフェニル基を側鎖に含有していないポリジメチルシロキサン(A)と、フェニル基含有アルコキシド(B)との縮合反応によって得られるプレポリマーII。
 上記アルコキシドやフェニル基含有アルコキシドとしては、複数個(通常2~10個、望ましくは4~6個)のアルコキシド(B)またはフェニル基含有アルコキシド(B)が重縮合によって結合したオリゴマー(C)であるのがより好ましい。
 以下に本発明のフェニル基含有プレポリマーに使用する原料について説明する。
[Semi-metal]
An element near the boundary with a metal element on the periodic table. Also called similar metals. Specific examples include boron, silicon, titanium, aluminum, germanium, antimony, selenium, tellurium and the like.
[Weight (mass) average molecular weight]
The weight (mass) average molecular weight of the polydimethylsiloxane (A) having a silanol group at the terminal was measured by gel permeation chromatography (GPC). Polystyrene conversion molecular weight was measured using polystyrene as a standard sample.
[Phenyl group-containing organic one-inorganic hybrid prepolymer]
As the phenyl group-containing organic one-inorganic hybrid prepolymer (hereinafter abbreviated as phenyl group-containing prepolymer) of the present invention, those listed in the following (1) to (2) are general.
In the following description, an organic monoinorganic hybrid prepolymer is a prepolymer, a metal and / or metalloid alkoxide is an alkoxide (B), a phenyl group-containing metal and / or metalloid alkoxide is a phenyl group-containing alkoxide (B), and Abbreviated, both alkoxides not containing phenyl groups and alkoxides containing phenyl groups are referred to as alkoxides (B).
(1) Condensation reaction of polydimethylsiloxane (A) having a silanol group at the terminal and not containing a phenyl group in the side chain, an alkoxide not containing a phenyl group, and a phenyl group-containing alkoxide (B) Prepolymer I obtained by
(2) Prepolymer II obtained by a condensation reaction of polydimethylsiloxane (A) having a silanol group at the terminal and not containing a phenyl group in the side chain and a phenyl group-containing alkoxide (B).
Examples of the alkoxide or phenyl group-containing alkoxide include plural (usually 2 to 10, preferably 4 to 6) alkoxides (B) or oligomers (C) in which phenyl group-containing alkoxides (B) are bonded by polycondensation. More preferably.
The raw materials used for the phenyl group-containing prepolymer of the present invention will be described below.
〔末端にシラノール基を有するポリジメチルシロキサン(A)〕
 本発明において使用する末端にシラノール基を有するポリジメルシロキサン(A)は、両末端または片末端に、金属および/または半金属アルコキシドと反応可能なシラノール基を有するものであり、下記の一般式(化1、化2)で表される。
 なお、ここでは両末端にシラノール基を有するポリジメルシロキサン(A)も、片末端にシラノール基を有するポリジメルシロキサン(A)も共にポリジメルシロキサン(A)とする。
(a)両末端にシラノール基を有するポリジメチルシロキサン(A)
Figure JPOXMLDOC01-appb-C000023

(b)片末端にシラノール基を有するポリジメチルシロキサン(A)
Figure JPOXMLDOC01-appb-C000024
[Polydimethylsiloxane having a silanol group at the terminal (A)]
The polydimethylsiloxane (A) having a silanol group at the terminal used in the present invention has a silanol group capable of reacting with a metal and / or a metalloid alkoxide at both terminals or one terminal, and has the following general formula ( 1 and 2).
Here, both the polydimethylsiloxane (A) having a silanol group at both ends and the polydimethylsiloxane (A) having a silanol group at one end are both polydimethylsiloxane (A).
(A) Polydimethylsiloxane having silanol groups at both ends (A)
Figure JPOXMLDOC01-appb-C000023

(B) Polydimethylsiloxane having a silanol group at one end (A)
Figure JPOXMLDOC01-appb-C000024
 上記ポリジメチルシロキサン(A)の重量(質量)平均分子量は、3000以上、80000以下の範囲であり、好ましくは、5000以上、60000以下である。重量平均分子量が、3000未満では、合成時に揮発して反応しないものの割合が多くなり、得られるプレポリマーの焼成(加熱硬化)時に気化する成分が多く、硬化体(ゲル化物)の収縮が問題となる。また、得られた硬化体は、高温で減量が大きい耐熱性に劣るものとなる。80000以上では、プレポリマーが高粘度になり、取り扱いが困難になり、溶媒での希釈が必要となって、プレポリマーの焼成(硬化)時に溶媒が揮発し、硬化体の収縮が問題となる。また、使用する溶媒によっては水分を取り込みやすいので、得られるプレポリマーの焼成(加熱硬化)時に加水分解による分解が問題となる。また、反応基であるシラノール基の割合が少なくなり、プレポリマーの生成や焼成(加熱硬化)時の反応性が悪くなる。また、無機架橋点が減少し、わずかの反応で一気に増粘するなど、ポットライフが低いゾルとなってしまう。 The weight (mass) average molecular weight of the polydimethylsiloxane (A) is in the range of 3000 or more and 80000 or less, preferably 5000 or more and 60000 or less. If the weight average molecular weight is less than 3000, the ratio of those that volatilize and do not react during synthesis increases, and there are many components that vaporize when the resulting prepolymer is baked (heat-cured). Become. Moreover, the obtained hardening body is inferior to heat resistance with a large weight loss at high temperature. If it is 80000 or more, the prepolymer becomes highly viscous and difficult to handle, and it is necessary to dilute with a solvent, and the solvent volatilizes when the prepolymer is baked (cured), causing shrinkage of the cured product. Moreover, since it is easy to take in water depending on the solvent to be used, decomposition due to hydrolysis becomes a problem when the resulting prepolymer is baked (heat-cured). Moreover, the ratio of the silanol group which is a reactive group decreases, and the reactivity at the time of a prepolymer production | generation or baking (heat curing) worsens. In addition, the number of inorganic cross-linking points decreases, and the sol has a low pot life, such as thickening at a stretch by a slight reaction.
〔金属および/または半金属アルコキシド(B)〕
 上記金属および/または半金属のアルコキシド(B)は、下記の一般式(化3)で表わされる。
Figure JPOXMLDOC01-appb-C000025
[Metal and / or metalloid alkoxide (B)]
The metal and / or metalloid alkoxide (B) is represented by the following general formula (Formula 3).
Figure JPOXMLDOC01-appb-C000025
 本発明で使用される金属および/または半金属アルコキシド(B)の金属および/または半金属の種類としては、ケイ素、ホウ素、アルミニウム、チタン、マンガン、鉄、亜鉛、イットリウム、ジルコニウム、ニオブ、セリウム、タンタル等のアルコキシドが挙げられるが、好ましい金属および/または半金属は、ケイ素、ホウ素、アルミニウム、チタン、ジルコニウムである。
 上記アルコキシドの種類としては特に限定されることなく、例えばメトキシド、エトキシド、n一プロポキシド、iso一プロポキシド、n一ブトキシド、iso一ブトキシド、sec一ブトキシド、tert一ブトキシド、メトキシエトキシド、エトキシエトキシド等が挙げられるが、安定性および安全性の点からエトキシド、プロポキシド、イソプロポキシド等の使用が好ましい。
 上記アルコキシドとして、特に好ましいのは、入手容易でかつ大気中で安定に存在するケイ素、チタン、ジルコニウムのアルコキシドの使用が好ましい。
 上記ケイ素のアルコキシドとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n一プロピルトリメトキシシラン、n一プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のトリアルコキシシラン類があげられる。これらの中でもテトラエトキシシラン(TEOS)、メチルトリメトキシシラン、トリエトキシメチルシラン(TEOMS)が好ましい。
 その他の金属のアルコキシドのうち好ましいものとしては、チタニウムテトライソプロポキシド(TTP)、ジルコニウムテトラプロポキシド(ZTP)等が例示される。
As the metal and / or metalloid of the metal and / or metalloid alkoxide (B) used in the present invention, silicon, boron, aluminum, titanium, manganese, iron, zinc, yttrium, zirconium, niobium, cerium, Although alkoxides such as tantalum are mentioned, preferred metals and / or metalloids are silicon, boron, aluminum, titanium and zirconium.
The type of the alkoxide is not particularly limited. For example, methoxide, ethoxide, n-propoxide, iso-propoxide, n-butoxide, iso-butoxide, sec-butoxide, tert-butoxide, methoxyethoxide, ethoxyethoxy In view of stability and safety, use of ethoxide, propoxide, isopropoxide and the like is preferable.
Particularly preferred as the alkoxide is the use of alkoxides of silicon, titanium and zirconium which are readily available and stably present in the atmosphere.
Examples of the silicon alkoxide include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, and tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and methyltripropoxysilane. , Methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, etc. Trialkoxysilanes. Among these, tetraethoxysilane (TEOS), methyltrimethoxysilane, and triethoxymethylsilane (TEOMS) are preferable.
Preferred examples of other metal alkoxides include titanium tetraisopropoxide (TTP) and zirconium tetrapropoxide (ZTP).
〔金属および/または半金属アルコキシドのオリゴマー(C)〕
 本発明において、使用する金属および/または半金属のアルコキシドのオリゴマー(C)(以下、単にオリゴマー(C)と云う)は、金属および/または半金属のアルコキシド(B)の低重縮合体であり、下記の一般式(化4)で表わされる。
Figure JPOXMLDOC01-appb-C000026
[Oligomer of metal and / or metalloid alkoxide (C)]
In the present invention, the metal and / or metalloid alkoxide oligomer (C) (hereinafter simply referred to as oligomer (C)) is a low polycondensate of metal and / or metalloid alkoxide (B). Is represented by the following general formula (Formula 4).
Figure JPOXMLDOC01-appb-C000026
〔フェニル基含有金属および/または半金属アルコキシド(B)〕
 フェニル基含有アルコキシド(B)は、下記の一般式(化5または化6)で表されるものである。
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

(上記化5及び化6中、Rは炭素数4以下の直鎖または分枝のアルキル基であり、該直鎖または分枝のアルキル基は同一のものでも、部分的に異なっていても、あるいは全部異なっていてもよい。)
[Phenyl group-containing metal and / or metalloid alkoxide (B)]
The phenyl group-containing alkoxide (B) is represented by the following general formula (Formula 5 or Formula 6).
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

(In the above chemical formulas 5 and 6, R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.)
 本発明で使用されるフェニル基含有アルコキシドの金属および/または半金属の種類としては、ケイ素、ホウ素、アルミニウム、チタン、バナジウム、マンガン、鉄、コバルト、亜鉛、ゲルマニウム、イットリウム、ジルコニウム、ニオブ、ランタン、セリウム、カドミウム、タンタル、タングステン等が挙げられるが、好ましい金属および/または半金属は、ケイ素、チタン、ジルコニウムである。
 フェニル基含有アルコキシド(B)の例としては、下記の2種類のものが挙げられる。
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

(上記化11及び化12中、Rは炭素数4以下の直鎖または分枝のアルキル基であり、該直鎖または分枝のアルキル基は同一のものでも、部分的に異なっていても、あるいは全部異なっていてもよい。)
Examples of the metal and / or metalloid of the phenyl group-containing alkoxide used in the present invention include silicon, boron, aluminum, titanium, vanadium, manganese, iron, cobalt, zinc, germanium, yttrium, zirconium, niobium, lanthanum, Although cerium, cadmium, tantalum, tungsten and the like can be mentioned, preferred metals and / or metalloids are silicon, titanium and zirconium.
Examples of the phenyl group-containing alkoxide (B) include the following two types.
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

(In the above chemical formulas 11 and 12, R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.)
〔フェニル基含有金属および/または半金属アルコキシドのオリゴマー(C)〕
 本発明において、使用するフェニル基含有アルコキシドのオリゴマー(以下、単にオリゴマーと云う)は、フェニル基含有アルコキシドの低重縮合体である。
フェニル基含有アルコキシドオリゴマーは、下記の一般式を有するものである。
Figure JPOXMLDOC01-appb-C000031
[Oligomer of phenyl group-containing metal and / or metalloid alkoxide (C)]
In the present invention, the oligomer of a phenyl group-containing alkoxide used (hereinafter simply referred to as an oligomer) is a low polycondensate of a phenyl group-containing alkoxide.
The phenyl group-containing alkoxide oligomer has the following general formula.
Figure JPOXMLDOC01-appb-C000031
 フェニル基含有アルコキシドオリゴマーには例として下記の4種類のものがある。
Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035

(上記化7~化10中、Mは金属または半金属、Rは炭素数4以下の直鎖または分枝のアルキル基であり、上記アルキル基は同一のものでも、部分的に異なったものでも、あるいは全部異なったものでもよく、pは2~10の整数であり、qとrは整数であり、p>q+rである。)
Examples of the phenyl group-containing alkoxide oligomer include the following four types.
Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035

(In the above chemical formulas 7 to 10, M is a metal or metalloid, R is a linear or branched alkyl group having 4 or less carbon atoms, and the alkyl groups may be the same or partially different. Or p may be an integer of 2 to 10, q and r are integers, and p> q + r.)
 本発明において、上記両末端または片末端に金属および/または半金属アルコキシド(B)と反応可能なシラノール基を有するポリジメチルシロキサン(A)と上記金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)の使用量は、上記ポリジメチルシロキサン(A)100モルに対して、上記金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)が100~800モルの割合である。更に好ましい使用量は、上記ポリジメチルシロキサン(A)100モルに対して、上記金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)が好ましくは、200~800モルの割合であり、より好ましくは、260~400モルの割合である。
 両末端または片末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサン(A)100モルに対する金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)の使用量が100モル未満であると、プレポリマーゾルが固化しやすくポットライフが短くなる。また、プレポリマーから得られる硬化体(ゲル化物)が接着性の劣るものになる。金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)が200モル以上、好ましくは260モル以上が、プレポリマーから得られる硬化体(ゲル化物)が接着性に優れている。
 一方、上記ポリジメチルシロキサン(A)100モルに対する金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)の使用量が800モルを超えると、プレポリマーから得られる硬化体が、高温において、減量が大きく、また硬度の上昇が速く柔軟性を維持できない。
 またフェニル基含有のアルコキシド(B)および/またはオリゴマー(C)は、アルコキシド(B)および/またはオリゴマー(C)の全体に対する比率が、モル分率で0.5~1.0とすることが望ましい。アルコキシド(B)および/またはオリゴマー(C)の全体の中でフェニル基含有のものの比率がモル分率で0.5に満たないと、耐熱性の特性が不十分となるおそれがある。なおモル分率が1.0の場合、アルコキシド(B)および/またはオリゴマー(C)の全部がフェニル基含有のものである。
In the present invention, the polydimethylsiloxane (A) having silanol groups capable of reacting with the metal and / or metalloid alkoxide (B) at both ends or one terminal, the metal and / or metalloid alkoxide (B) and / or The amount of the alkoxide oligomer (C) used is such that the metal and / or metalloid alkoxide (B) and / or the alkoxide oligomer (C) is 100 to 800 per 100 mol of the polydimethylsiloxane (A). The molar ratio. More preferably, the amount of the metal and / or metalloid alkoxide (B) and / or oligomer (C) of the alkoxide is preferably 200 to 800 moles per 100 moles of the polydimethylsiloxane (A). More preferably, the proportion is 260 to 400 mol.
Metal and / or metalloid alkoxide (B) and / or oligomer of said alkoxide (C) with respect to 100 mol of polydimethylsiloxane (A) having silanol groups capable of reacting with metal and / or metalloid alkoxide at both ends or one terminal If the amount used is less than 100 mol, the prepolymer sol tends to solidify and the pot life is shortened. Moreover, the hardened | cured material (gelled material) obtained from a prepolymer will be inferior to adhesiveness. The metal and / or metalloid alkoxide (B) and / or oligomer (C) of the alkoxide is 200 mol or more, preferably 260 mol or more, and the cured product (gel product) obtained from the prepolymer has excellent adhesion. .
On the other hand, when the amount of the metal and / or metalloid alkoxide (B) and / or oligomer (C) of the alkoxide used exceeds 100 mol with respect to 100 mol of the polydimethylsiloxane (A), a cured product obtained from the prepolymer is obtained. At high temperatures, the weight loss is large, the hardness increases rapidly and the flexibility cannot be maintained.
Further, the phenyl group-containing alkoxide (B) and / or oligomer (C) may have a molar fraction of 0.5 to 1.0 with respect to the whole alkoxide (B) and / or oligomer (C). desirable. If the ratio of the alkoxide (B) and / or the oligomer (C) containing a phenyl group is less than 0.5 in terms of molar fraction, the heat resistance may be insufficient. When the molar fraction is 1.0, all of the alkoxide (B) and / or oligomer (C) contains a phenyl group.
〔有機一無機ハイブリッドプレポリマーゾルの製造〕
 本発明においては、前記したように、末端にシラノール基を有し側鎖にフェニル基を有さないポリジメチルシロキサン(A)と、上記一部または全部にフェニル基が導入されているアルコキシド(B)またはオリゴマー(C)(以下フェニル基含有アルコキシド(オリゴマー)と云う)と、を縮合反応させてフェニル基含有有機一無機ハイブリッドプレポリマー(フェニル基含有プレポリマー)とする。この縮合反応においては、上記フェニル基含有アルコキシド(オリゴマー)のアルコキシ基の加水分解が伴う。
 上記縮合反応には、通常スタナスオクトエート、ジブチル錫ジラシレート、ジブチル錫ジー2一エチルヘキソエート、ナトリウムーO一フェニルフェネート、テトラ(2一エチルヘキソシル)チタネート等の縮合触媒を使用する。
 上記縮合反応を行う際、フェニル基含有アルコキシド(オリゴマー)の安定的な加水分解を行うために、反応に使用する容器内を不活性ガスにて充満させた雰囲気下で加熱することによって加水分解および縮合反応を行うことが好ましい。不活性ガスとしては、窒素ガスや希ガス類である第18元素類(ヘリウム、ネオン、アルゴン、クリプトン、キセノン等が挙げられる。また、これらのガスを複合して用いてもよい。
 フェニル基含有プレポリマーは、上記不活性ガス雰囲気下で、上記フェニル基含有アルコキシド(オリゴマー)と、上記末端にシラノール基を有し側鎖にフェニル基を有さないポリジメチルシロキサン(A)とを上記縮合触媒存在下で加水分解および縮合反応させることにより得られる。上記フェニル基含有アルコキシド(オリゴマー)のアルコキシ基は、水の存在下にて容易に加水分解するため、上記フェニル基含有アルコキシド(オリゴマー)のアルコキシ基は、反応性の高いシラノール基(-OH基)となる。
 即ち上記フェニル基含有アルコキシド(オリゴマー)のアルコキシ基は、加水分解を受けて一OH基になり、末端にシラノール基を有するポリジメチルシロキサンの-OH基と、不活性ガスの存在下にて加熱することによって、脱水縮合反応を起こす。なお、フェニル基含有アルコキシドと末端シラノール基を有するポリジメチルシロキサンから脱アルコールを伴う縮合反応も起こる。上記アルコキシドとしてオリゴマー(C)を使用すると、上記アルコキシドの単量体(B)を使用した場合と比較して、末端にシラノール基を有するポリジメチルシロキサンとの縮合反応を円滑に行うことが出来る。つまり、上記オリゴマー(C)と、上記ポリジメチルシロキサン(A)とが定量的に反応し、縮合反応が順調に進行する。上記アルコキシドの単量体(B)を使用した場合、上記アルコキシド(B)の反応性が高く、アルコキシド単独の重縮合が進み、上記アルコキシド(B)が上記ポリジメチルシロキサン(A)と反応せず、アルコキシド(B)の単独重縮合体で形成されたクラスターができやすい。
[Production of organic one-inorganic hybrid prepolymer sol]
In the present invention, as described above, the polydimethylsiloxane (A) having a silanol group at the terminal and having no phenyl group in the side chain, and the alkoxide (B) in which a phenyl group is introduced in part or all of the above ) Or oligomer (C) (hereinafter referred to as phenyl group-containing alkoxide (oligomer)) to form a phenyl group-containing organic one-inorganic hybrid prepolymer (phenyl group-containing prepolymer). This condensation reaction involves hydrolysis of the alkoxy group of the phenyl group-containing alkoxide (oligomer).
In the condensation reaction, a condensation catalyst such as stannous octoate, dibutyltin dilasylate, dibutyltin di-diethylhexoate, sodium-O-phenylphenate, tetra (21-ethylhexosyl) titanate, or the like is usually used.
When performing the above condensation reaction, in order to perform stable hydrolysis of the phenyl group-containing alkoxide (oligomer), hydrolysis and heating are performed in an atmosphere filled with an inert gas inside the container used for the reaction. It is preferable to perform a condensation reaction. Examples of the inert gas include nitrogen gas and 18th elements which are rare gases (helium, neon, argon, krypton, xenon, etc.). These gases may be used in combination.
In the inert gas atmosphere, the phenyl group-containing prepolymer comprises the phenyl group-containing alkoxide (oligomer) and the polydimethylsiloxane (A) having a silanol group at the terminal and having no phenyl group in the side chain. It is obtained by hydrolysis and condensation reaction in the presence of the above condensation catalyst. Since the alkoxy group of the phenyl group-containing alkoxide (oligomer) is easily hydrolyzed in the presence of water, the alkoxy group of the phenyl group-containing alkoxide (oligomer) is a highly reactive silanol group (—OH group). It becomes.
That is, the alkoxy group of the phenyl group-containing alkoxide (oligomer) is hydrolyzed to become an OH group, and is heated in the presence of an —OH group of polydimethylsiloxane having a silanol group at the terminal and an inert gas. This causes a dehydration condensation reaction. A condensation reaction accompanied by dealcoholization also occurs from polydimethylsiloxane having a phenyl group-containing alkoxide and a terminal silanol group. When the oligomer (C) is used as the alkoxide, the condensation reaction with the polydimethylsiloxane having a silanol group at the terminal can be smoothly performed as compared with the case where the alkoxide monomer (B) is used. That is, the oligomer (C) and the polydimethylsiloxane (A) react quantitatively, and the condensation reaction proceeds smoothly. When the alkoxide monomer (B) is used, the reactivity of the alkoxide (B) is high, the polycondensation of the alkoxide alone proceeds, and the alkoxide (B) does not react with the polydimethylsiloxane (A). , A cluster formed of a single polycondensate of alkoxide (B) is likely to be formed.
 また、不活性ガスの雰囲気下で加水分解反応および縮合反応させることにより、空気中に存在する水分による不規則な加水分解反応が抑制されるため、末端にシラノール基を有するポリジメチルシロキサン(A)の-OH基と、上記アルコキシド(B)(オリゴマー(C))のアルコキシ基との縮合反応が促進されて順調にプレポリマーがゾルとして生成される。
 また、ポリジメチルシロキサン(A)で問題となる低分子のシロキサンは、プレポリマーの生成時にプレポリマー中に取り入れられるか、または加熱により揮発するため、プレポリマー中に単体として存在する低分子シロキサンの量は少なくなる。
 以上により、本発明で得られるフェニル基含有有機一無機ハイブリッドプレポリマーゾル、あるいは上記プレポリマーゾルをゲル化したフェニル基含有有機一無機ハイブリッドゲル化物(硬化物)には、上記アルコキシドの単独重縮合体で形成されたクラスターがほとんど存在しないので、従来よりも、高品質な耐熱性接着材料、耐熱性封止材料、あるいは熱伝導性材料を提供することができる。
In addition, since the hydrolysis reaction and the condensation reaction in an inert gas atmosphere suppress an irregular hydrolysis reaction due to moisture present in the air, the polydimethylsiloxane having a silanol group at the terminal (A) The condensation reaction between the —OH group and the alkoxy group of the alkoxide (B) (oligomer (C)) is promoted, and a prepolymer is produced smoothly as a sol.
In addition, since the low molecular weight siloxane which is a problem in the polydimethylsiloxane (A) is incorporated into the prepolymer at the time of producing the prepolymer or volatilizes by heating, the low molecular weight siloxane existing as a simple substance in the prepolymer. The amount is reduced.
As described above, the phenyl group-containing organic mono-inorganic hybrid prepolymer sol obtained in the present invention, or the phenyl group-containing organic mono-inorganic hybrid gelled product (cured product) obtained by gelling the prepolymer sol is a single polycondensation of the alkoxide. Since there are almost no clusters formed by a body, it is possible to provide a higher-quality heat-resistant adhesive material, heat-resistant sealing material, or heat-conductive material than before.
〔プレポリマーゾルの粘度〕
 プレポリマーのゾル粘度は、末端にシラノール基を有するポリジメチルシロキサン(A)と、金属および/または半金属アルコキシド(B)またはそのオリゴマー(C)の反応が進むと上昇することから、末端にシラノール基を有するポリジメチルシロキサン(A)と、金属および/または半金属アルコキシド(B)またはそのオリゴマー(C)との反応率の指標になる。
 プレポリマーゾルの25℃における粘度は、好ましくは4~50Pa・sであり、より好ましくは4~40Pa・sであり、更に好ましくは8~30Pa・sである。
 プレポリマーゾルの粘度(25℃)が50Pa・sを超えると、ゾルが不安定になり、ゲル化しやすくなり、ポットライフが短くなる。またプレポリマーから得られる硬化体(ゲル化物)に収縮が起こりやすくなる。
 プレポリマーゾルの粘度(25℃)が4Pa・sに満たない場合、ゲル化が起こりにくくなる。また、低分子のシロキサンが残留するようになり、プレポリマーから得られる硬化体に収縮が起こりやすくなり、高温での硬化体の減量が大きくなる。なおプレポリマーゾルの粘度(25℃)は、ポリジメチルシロキサンと、アルコキシド(B)またはそのオリゴマーとが未反応では3Pa・s未満である。
[Viscosity of prepolymer sol]
The sol viscosity of the prepolymer increases as the reaction of the polydimethylsiloxane (A) having a silanol group at the terminal and the metal and / or metalloid alkoxide (B) or its oligomer (C) proceeds. It becomes an index of the reaction rate between the polydimethylsiloxane (A) having a group and the metal and / or metalloid alkoxide (B) or its oligomer (C).
The viscosity of the prepolymer sol at 25 ° C. is preferably 4 to 50 Pa · s, more preferably 4 to 40 Pa · s, and still more preferably 8 to 30 Pa · s.
When the viscosity (25 ° C.) of the prepolymer sol exceeds 50 Pa · s, the sol becomes unstable, easily gels, and the pot life is shortened. In addition, the cured product (gelled product) obtained from the prepolymer is likely to shrink.
When the viscosity (25 ° C.) of the prepolymer sol is less than 4 Pa · s, gelation hardly occurs. In addition, low molecular weight siloxane remains, shrinkage tends to occur in the cured product obtained from the prepolymer, and the weight loss of the cured product at high temperatures increases. The viscosity (25 ° C.) of the prepolymer sol is less than 3 Pa · s when polydimethylsiloxane and the alkoxide (B) or oligomer thereof are unreacted.
〔素子封止構造〕
 本発明に係る素子とは、主として半導体からなる素子、あるいは半導体が組み込まれた素子、あるいは基板上面に上記素子が実装されたものも素子という。上記素子としてはトランジスター、ダイオード、整流素子、負性抵抗素子、光起電素子、光導電素子、発光素子、磁電素子、あるいは演算装置に組み込まれている演算素子等である。
例えば上記光起電素子、光導電素子、発光素子等、発光したり受光したりする素子(まとめて光素子という)にあっては、上記発光面や受光面を保護するために封止材で上記発光面や受光面を被覆する。
 更に基板上面に実装された素子にあっては、基板表面に設けられた端子と上記素子に設けられた端子とを結線(ワイヤボンディング)により電気的に接続するが、上記素子とともに上記結線も上記封止材によって被覆する。
[Element sealing structure]
The element according to the present invention is also referred to as an element mainly composed of a semiconductor, an element in which a semiconductor is incorporated, or an element in which the above element is mounted on the upper surface of a substrate. Examples of the element include a transistor, a diode, a rectifying element, a negative resistance element, a photovoltaic element, a photoconductive element, a light emitting element, a magnetoelectric element, or an arithmetic element incorporated in an arithmetic device.
For example, in the above-described photovoltaic element, photoconductive element, light emitting element, and the like (hereinafter collectively referred to as an optical element) that emits and receives light, a sealing material is used to protect the light emitting surface and the light receiving surface. The light emitting surface and the light receiving surface are covered.
Further, in the element mounted on the upper surface of the substrate, the terminal provided on the surface of the substrate and the terminal provided on the element are electrically connected by wire connection (wire bonding). Cover with sealing material.
〔素子の製造方法〕
 本発明において、上記基板上面に半導体素子が実装された素子の製造方法を光素子のケースを例示として説明する。
 基板の表面に、光素子を実装する素子の場合は、まず、基板の表面に光素子を市販の実装機等を用いて実装する。光素子の下面に端子がある場合は、ワイヤボンディングが不要な場合があるが、光素子の上面に端子がある場合は、基板の表面に設けられた端子と光素子に設けられた端子とをワイヤボンディングにて電気的に接続する。
 そして、少なくとも光素子の発光面および/または受光面に本発明のフェニル基含有プレポリマーを主成分とするゾル状態の封止材を塗布して封止する。この時、上記封止材の中に気泡が入らないように注意が必要である。上記封止材を塗布する方法は、特に問わないが、一般的には、後述するように上記封止材を定量的に塗布(封止)できる塗布装置を利用するのが望ましい。封止は、発光面および/または受光面のみに限らず、光素子全体が封止材で覆われるように封止を行ってもよい。
 その後、上記封止材を塗布した上記素子を高温炉(「オーブン」とも呼ぶ。)に入れて加熱し、上記封止材をゲル化させて固体または半固体状のゲル化物である有機-無機ハイブリッド材料とし、ゲル化した上記封止材である有機-無機ハイブリッド材料を所望の形状に成形する。
 なお、上記封止材をゲル化する方法として、上記封止材に添加剤(硬化剤)を混合して、室温でゲル化させる方法を採用してもよい。
 従来から封止材として使用されているシリコーン樹脂や有機一無機ハイブリッド組成物等は、経年劣化し白濁または黄変するので、封止材の表面に付着した異物等の発見が困難である上、内部で不具合が発生した場合、該不具合の発見、解析が困難であった。しかし、本発明に係るフェニル基含有有機一無機ハイブリッド材料からなる封止材は、経年劣化しにくく、無色透明が維持されるので、異物の発見、解析が容易にできる。また、本発明に係る封止材は、近紫外光が長期に渡って発せられても封止材の透明性および透光性を維持することができる。さらに、200℃~250℃の高温化の環境でも、本発明に係る封止材は、SiCやGaN等の半導体素子から発する高温の熱によって、割れ(クラック)や剥離という破壊現象が発生しにくく、素子の破壊や、ワイヤボンディングの断線、絶縁性が劣化する問題が発生せず、高品質な半導体素子を提供することができる。
[Device manufacturing method]
In the present invention, a method of manufacturing an element in which a semiconductor element is mounted on the upper surface of the substrate will be described with an optical element case as an example.
In the case of an element that mounts an optical element on the surface of the substrate, the optical element is first mounted on the surface of the substrate using a commercially available mounting machine or the like. If there is a terminal on the lower surface of the optical element, wire bonding may not be necessary, but if there is a terminal on the upper surface of the optical element, the terminal provided on the surface of the substrate and the terminal provided on the optical element are connected. Electrical connection is made by wire bonding.
Then, at least the light emitting surface and / or the light receiving surface of the optical element is sealed by applying a sol-state sealing material containing the phenyl group-containing prepolymer of the present invention as a main component. At this time, care must be taken so that bubbles do not enter the sealing material. The method for applying the sealing material is not particularly limited, but it is generally desirable to use a coating apparatus capable of quantitatively applying (sealing) the sealing material as described later. The sealing is not limited to the light emitting surface and / or the light receiving surface, but may be performed so that the entire optical element is covered with the sealing material.
Thereafter, the element coated with the sealing material is placed in a high-temperature furnace (also referred to as “oven”) and heated to gel the sealing material to form an organic-inorganic solid or semi-solid gelled product. As a hybrid material, the organic-inorganic hybrid material which is the gelled sealing material is formed into a desired shape.
In addition, as a method of gelling the sealing material, a method of mixing an additive (curing agent) with the sealing material and gelling at room temperature may be employed.
Silicone resins and organic one-inorganic hybrid compositions that have been used as sealing materials have deteriorated over time and become cloudy or yellowed, so it is difficult to find foreign substances attached to the surface of the sealing material. When a problem occurs inside, it is difficult to find and analyze the problem. However, the sealing material made of the phenyl group-containing organic one-inorganic hybrid material according to the present invention is less likely to deteriorate with time and maintains colorless and transparent. Moreover, the sealing material which concerns on this invention can maintain the transparency and translucency of a sealing material, even if near-ultraviolet light is emitted over a long period of time. Further, even in a high temperature environment of 200 ° C. to 250 ° C., the sealing material according to the present invention is less likely to cause a breaking phenomenon such as cracking or peeling due to high temperature heat generated from a semiconductor element such as SiC or GaN. Therefore, there is no problem of element destruction, wire bonding disconnection, or insulation deterioration, and a high-quality semiconductor element can be provided.
 実施例及び比較例を用いて、本発明を更に具体的に説明する。なお、本発明は、これらの実施例により何ら限定されるものではない。
 実施例及び比較例における「部」、「%」は特記のない限りいずれも質量基準(質量部、質量%)である。
The present invention will be described more specifically using examples and comparative examples. In addition, this invention is not limited at all by these Examples.
In the examples and comparative examples, “parts” and “%” are based on mass (mass parts, mass%) unless otherwise specified.
〔評価方法〕
(分子量)
重量(質量)平均分子量は、下記の測定条件により標準試料としてポリスチレンを用いてポリスチレン換算分子量を測定した。
a)測定装置 :日本分光 ChromNAV(データ処理機)
       :日本分光 PU-980(ポンプ)
       :日本分光 DG-980-50(デガッサ)
       :日本分光 CO-2065(カラムオーブン)
 b)検出器  :日本分光 RI-930(示差屈折率検出器)
 c)カラム  :Shodex KF-804L×2本
 d)カラム温度:40℃
 e)溶離液  :トルエン 0.7ml/min
 f)標準試料 :ポリスチレン
 g)注入量  :20μl
 h)濃度   :試料/溶媒=2drop/4ml
 i)試料調製 :トルエンを溶媒として室温で溶解
j)校正   :各測定前に標準試料を用いて校正曲線を作成
〔Evaluation methods〕
(Molecular weight)
The weight (mass) average molecular weight was measured by measuring polystyrene equivalent molecular weight using polystyrene as a standard sample under the following measurement conditions.
a) Measuring device: JASCO ChromNAV (data processor)
: JASCO PU-980 (pump)
: JASCO DG-980-50 (Degassa)
: JASCO CO-2065 (column oven)
b) Detector: JASCO RI-930 (differential refractive index detector)
c) Column: Shodex KF-804L x 2 d) Column temperature: 40 ° C
e) Eluent: Toluene 0.7 ml / min
f) Standard sample: polystyrene g) Injection volume: 20 μl
h) Concentration: Sample / solvent = 2 drop / 4 ml
i) Sample preparation: Dissolved in toluene at room temperature j) Calibration: Create calibration curve using standard sample before each measurement
(プレポリマーゾルの粘度)
 音叉型振動式粘度計(エー・アンド・デイ社製 SV-10A)(JIS Z8803)を使用し、25℃における粘度の値を測定した。
(Viscosity of prepolymer sol)
Using a tuning fork type vibration viscometer (SV-10A manufactured by A & D) (JIS Z8803), the viscosity at 25 ° C. was measured.
(クラスター粒子)
 原子間力顕微鏡(TM-Microscopes社製 Auto-Probe CP-R)を用いて、下記の評価用シート、比較用シートについて、クラスター粒子の測定を実施した。クラスター粒子の測定におけるカンチレバーとしては、Siチップ(Nano-Sensors NCH-10Ttype 長さ129μm・巾28μm・厚さ3.8μm、バネ定数31N/m、共振周波数312kHz)を用い大気中で測定した。測定エリアは10μm□とし5箇所測定して0.5μm以上のクラスター粒子の数を測定した。
(Cluster particles)
Using an atomic force microscope (Auto-Probe CP-R manufactured by TM-Microscopes), cluster particles were measured for the following evaluation sheets and comparative sheets. As a cantilever in the measurement of cluster particles, a Si chip (Nano-Sensors NCH-10 Type, length 129 μm, width 28 μm, thickness 3.8 μm, spring constant 31 N / m, resonance frequency 312 kHz) was measured in the atmosphere. The measurement area was 10 μm □, and the number of cluster particles having a size of 0.5 μm or more was measured at five locations.
(耐熱減量評価)
 耐熱減量評価は、下記の評価用シート、比較用シートを、対流式の乾燥炉にて大気中で250℃の環境下にて保管し、1000時間までの一定時間毎に電子天秤〔メトラートレッド社製 New CIassic MF(Model:ML204)〕にて重量を測定し、元の重量に対して減少した重量減少率[〔重量減少率=(初期の重量-測定時の重量)/初期の重量〕×100]を測定した。
(Evaluation of heat loss)
The heat loss test was conducted by storing the following evaluation sheets and comparative sheets in a convection-type drying furnace in the atmosphere at 250 ° C., and using an electronic balance at regular intervals up to 1000 hours New CI ASIC MF (Model: ML204)] was used to measure the weight, and the weight reduction rate decreased with respect to the original weight [[weight reduction rate = (initial weight−weight at measurement) / initial weight] × 100].
(硬度測定評価)
 硬度測定評価は、JIS K 6253、ISO 7619に規定されている軟質ゴム(低硬度)用のタイプEデュロメータ(ショアーE硬度計)による測定方法で行った。下記の評価用シート、比較用シートを、対流式の乾燥炉にて大気中で250℃の環境下にて保管し、1000時間までの一定時間毎に硬度を測定した。
(Hardness measurement evaluation)
The hardness measurement evaluation was performed by a measurement method using a type E durometer (Shore E hardness meter) for soft rubber (low hardness) specified in JIS K 6253 and ISO 7619. The following evaluation sheet and comparative sheet were stored in a convection-type drying furnace in the atmosphere at 250 ° C., and the hardness was measured at regular intervals up to 1000 hours.
(接着性評価)
 接着性評価は、JIS A 5758に準拠した接着性試験で行なった。この接着性試験においては、被着体して石英ガラスを使用し、評価物としてプレポリマーゾルを使用して、プレポリマーゾルを180℃で3時間加熱して硬化させ、H型試験体を作製した。この試験体を23℃、50%RHで24時間放置した後、引張試験を行ない、接着性を評価した。
(Adhesion evaluation)
The adhesion evaluation was performed by an adhesion test based on JIS A 5758. In this adhesion test, quartz glass is used as the adherend, prepolymer sol is used as an evaluation object, and the prepolymer sol is cured by heating at 180 ° C. for 3 hours to produce an H-type test body. did. The specimen was left at 23 ° C. and 50% RH for 24 hours, and then a tensile test was conducted to evaluate the adhesion.
[実施例1]
〔有機一無機ハイブリッドプレポリマー(プレポリマー1)の製造〕
 撹拌装置、温度計、滴下ラインを取り付けた反応容器(挿入口が複数個あるフラスコ)に、不活性ガスとして窒素ガスを使用し、反応容器内に窒素ガスを十分に充満させた。窒素ガスには、窒素ガス製造装置(ジャパンユニックス社製UNX-200)によって製造したものを用いた。
 次に、上記窒素ガスを十分に充満させた反応容器内に、末端にシラノール基を有しフェニル基を側鎖に有しないポリジメチルシロキサン(A)として、両末端にシラノール基を有するポリジメチルシロキサン(モメンティブ製、YF3057、重量平均分子量32000)(PDMS)1molと、フェニル基を有する金属アルコキシド(B)として、トリエトキシフェニルシラン(TEPS)(東京化成工業製)2.6molとを投入した。
 縮合触媒として、テトラ(2一エチルヘキシル)チタネート(松本ファインケミカル製)0.01molを、脱水エタノール(和光純薬製)で希釈したものを反応容器内に滴下し、100℃にて60分撹拌した後、急冷して、プレポリマー1を得た。結果を表1に示す。
[Example 1]
[Production of organic one-inorganic hybrid prepolymer (prepolymer 1)]
Nitrogen gas was used as an inert gas in a reaction vessel (flask having a plurality of insertion ports) equipped with a stirrer, a thermometer, and a dropping line, and the reaction vessel was sufficiently filled with nitrogen gas. As the nitrogen gas, one produced by a nitrogen gas production apparatus (UNX-200 manufactured by Japan Unix Co., Ltd.) was used.
Next, a polydimethylsiloxane having silanol groups at both ends as polydimethylsiloxane (A) having a silanol group at the end and not having a phenyl group in the side chain in the reaction vessel sufficiently filled with the nitrogen gas. (Momentive, YF3057, weight average molecular weight 32000) (PDMS) 1 mol, and 2.6 mol of triethoxyphenylsilane (TEPS) (manufactured by Tokyo Chemical Industry Co., Ltd.) as the metal alkoxide (B) having a phenyl group were added.
As a condensation catalyst, 0.01 mol of tetra (21-ethylhexyl) titanate (manufactured by Matsumoto Fine Chemical) diluted with dehydrated ethanol (manufactured by Wako Pure Chemical Industries) was dropped into the reaction vessel and stirred at 100 ° C. for 60 minutes. The polymer was quenched and the prepolymer 1 was obtained. The results are shown in Table 1.
[比較例1]
〔従来のプレポリマーの製造〕
 撹拌装置、温度計、滴下ラインを取り付けた反応容器(挿入口が複数個あるフラスコ)に、不活性ガスとして窒素ガスを使用し、反応容器内に窒素ガスを十分に充満させた。窒素ガスには、窒素ガス製造装置(ジャパンユニックス社製UNX-200)によって製造したものを用いた。
 次に、窒素ガスを十分に充満させた反応容器内に、両末端にシラノール基を有するポリジメチルシロキサン(モメンティブ製、YF3057、重量平均分子量32000)(PDMS)1molと、テトラエトキシシランのオリゴマーであるエチルシリケート(多摩化学工業株式会社製、シリケート40 重合度n=4~6)2.6molとを投入した。
縮合触媒として、テトラ(2一エチルヘキシル)チタネート(松本ファインケミカル製)0.01molを、脱水エタノール(和光純薬製)で希釈したものを反応容器内に滴下し、100℃にて60分程度撹拌した後、急冷して、従来のプレポリマーを得た。結果を表2に示す。
[Comparative Example 1]
[Production of conventional prepolymers]
Nitrogen gas was used as an inert gas in a reaction vessel (flask having a plurality of insertion ports) equipped with a stirrer, a thermometer, and a dropping line, and the reaction vessel was sufficiently filled with nitrogen gas. As the nitrogen gas, one produced by a nitrogen gas production apparatus (UNX-200 manufactured by Japan Unix Co., Ltd.) was used.
Next, in a reaction vessel sufficiently filled with nitrogen gas, 1 mol of polydimethylsiloxane having a silanol group at both ends (manufactured by Momentive, YF3057, weight average molecular weight 32000) (PDMS), and an oligomer of tetraethoxysilane 2.6 mol of ethyl silicate (manufactured by Tama Chemical Co., Ltd., silicate 40 degree of polymerization n = 4 to 6) was added.
As a condensation catalyst, 0.01 mol of tetra (21-ethylhexyl) titanate (manufactured by Matsumoto Fine Chemical) diluted with dehydrated ethanol (manufactured by Wako Pure Chemical Industries) was dropped into the reaction vessel and stirred at 100 ° C. for about 60 minutes. Thereafter, it was rapidly cooled to obtain a conventional prepolymer. The results are shown in Table 2.
[比較例2]
〔フェニル基を側鎖に有するポリジメチルシロキサンを使用したプレポリマー(プレポリマー2)の製造〕
 末端にシラノール基を有するポリジメチルシロキサンとして、両末端にシラノール基を有しフェニル基を側鎖に有するポリジメチルシロキサン(モメンティブ製、YF3804、重量平均分子量6000)0.5molと両末端にシラノール基を有しフェニル基を側鎖に有しないポリジメチルシロキサン(モメンティブ製、YF3905、重量平均分子量20000)0.5molの混合物を用い、金属アルコキシドとして、エチルシリケート(多摩化学工業株式会社製、シリケート40 n=4~6)2.6molを用いる以外は、比較例1と同様にして、プレポリマー2を得た。結果を表2に示す。
[Comparative Example 2]
[Production of Prepolymer (Prepolymer 2) Using Polydimethylsiloxane Having Phenyl Group in Side Chain]
As polydimethylsiloxane having silanol groups at the ends, 0.5 mol of polydimethylsiloxane (momentive, YF3804, weight average molecular weight 6000) having silanol groups at both ends and phenyl groups in the side chain, and silanol groups at both ends A mixture of 0.5 mol of polydimethylsiloxane (Momentive, YF3905, weight average molecular weight 20000) having no phenyl group in the side chain was used as the metal alkoxide, and ethyl silicate (manufactured by Tama Chemical Co., Ltd., silicate 40 n = 4-6) Prepolymer 2 was obtained in the same manner as in Comparative Example 1 except that 2.6 mol was used. The results are shown in Table 2.
[実施例2-5、参考例1-4]
 末端にシラノール基を有するポリジメチルシロキサン(A)の種類および使用量と、金属アルコキシド(B)の種類および使用量とを表1に示したものとし、また、撹拌時間(反応時間)を、所望のプレポリマーゾルの粘度になるまで継続した以外は、実施例1と同様にして、プレポリマーを得た。各実施例の結果を表1に示し、各比較例の結果を表2に示す。
[Example 2-5, Reference Example 1-4]
The type and amount of polydimethylsiloxane (A) having a silanol group at the terminal and the type and amount of metal alkoxide (B) are shown in Table 1, and the stirring time (reaction time) is desired. A prepolymer was obtained in the same manner as in Example 1 except that the prepolymer sol was continued until the viscosity became. The results of each example are shown in Table 1, and the results of each comparative example are shown in Table 2.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036

Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
[評価用シートの作製]
 各実施例及び各比較例で作製したプレポリマーのゾルを、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)で表面処理を施した金型(15cm□)に、仕上がりで4mmの厚みになるように注入し、常温23℃~250℃までを10時間かけて昇温した後、2時間保持して乾燥焼成処理を行った。その後、金型から離型し、各実施例及び各比較例の評価用シート(縦150×横150×厚さ4mm)を得た。
[Production of evaluation sheet]
The prepolymer sol produced in each example and each comparative example was formed into a die (15 cm □) that was surface-treated with tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) to a thickness of 4 mm. Then, the temperature was raised from room temperature to 23 ° C. to 250 ° C. over 10 hours, and then held for 2 hours to carry out a drying and firing treatment. Then, it released from the metal mold | die and obtained the sheet | seat for evaluation of each Example and each comparative example (length 150 x width 150 x thickness 4mm).
[評価結果]
 耐熱減量評価の結果を図1のグラフに示す。
 図1のグラフより、本発明の有機-無機ハイブリッド材料からなる実施例1は、250℃の環境下においても比較的緩やかに重量減少が進み、500時間までの重量減少量が少なかった。
 一方、従来のハイブリッド材料からなる比較例1は、250℃の環境下では急激に重量減少が進んだ。
[Evaluation results]
The results of the heat loss evaluation are shown in the graph of FIG.
From the graph of FIG. 1, in Example 1 made of the organic-inorganic hybrid material of the present invention, the weight loss proceeded relatively slowly even under an environment of 250 ° C., and the weight loss amount up to 500 hours was small.
On the other hand, in Comparative Example 1 made of a conventional hybrid material, the weight reduction rapidly progressed under an environment of 250 ° C.
 硬度測定評価の結果を図2のグラフに示す。
 図2のグラフより、本発明のハイブリッド材料からなる実施例1は、250℃の環境下でも硬度の上昇が緩やかであり、低い硬度を維持していた。図2のグラフでは500時間までしか記録していないが、さらに測定を続けたところ、1000時間における硬度が40程度であった。
 また表1より、実施例2~5は、250℃の環境下で200時間後の重量減少率は5%以下であり、250℃の環境下で1000時間後の硬度は60以下であり、耐熱性に優れたものであった。さらに表1より、実施例1~5は、接着性についても高評価であった。
 従来のハイブリッド材料からなる比較例1は、250℃の環境では、短時間のうちに硬度が上昇した。
 ポリジメチルシロキサンがフェニル基を側鎖に有するハイブリッド材料からなる比較例2は、測定前から実施例1に比べて硬度が高く、250℃の環境下では、さらに硬度が上昇した。
 なお、参考例1~4について以下に説明する。
 表1より、反応率の指標であるプレポリマーゾルの粘度(25℃)を変えた参考例1,2は、250℃の環境下で200時間後の重量減少率は5%以下であり、250℃の環境下で1000時間後の硬度は60以下であり、耐熱性に優れたものであった。さらに接着性についても高評価であった。
 表2より、アルコキシドの使用量(モル比)を少なくした参考例3は、250℃の環境下で200時間後の重量減少率は5%以下であり、250℃の環境下で1000時間後の硬度は60以下であり、耐熱性に優れたものであったが、接着性で劣った。但し、ハイブリッド材料(プレポリマーゾル)は、必ずしも接着性が要求されるものではない。
 表2より、プレポリマーゾルの粘度(25℃)を3.1Pa・sとすることでほぼ未反応とした参考例4は、250℃の環境下で1000時間後の硬度は60以下であり、硬度の点で耐熱性が優れているが、250℃の環境下で200時間後の重量減少率が5%を超え、重量減少率の点で耐熱性が劣った。よって、硬度と重量減少率の両方で耐熱性の優れたものにするには、プレポリマーゾルの粘度(25℃)を高める、つまりポリジメチルシロキサンとアルコキシドとの反応率を高めることが望ましい。
The result of hardness measurement evaluation is shown in the graph of FIG.
From the graph of FIG. 2, Example 1 made of the hybrid material of the present invention showed a moderate increase in hardness even under an environment of 250 ° C., and maintained a low hardness. In the graph of FIG. 2, recording was performed only for up to 500 hours, but when the measurement was further continued, the hardness at 1000 hours was about 40.
Also, from Table 1, Examples 2 to 5 have a weight loss rate of 5% or less after 200 hours under an environment of 250 ° C., and a hardness after 1000 hours under an environment of 250 ° C. of 60 or less. It was excellent in properties. Furthermore, from Table 1, Examples 1 to 5 were also highly evaluated for adhesiveness.
In Comparative Example 1 made of a conventional hybrid material, the hardness increased within a short time in an environment of 250 ° C.
Comparative Example 2 made of a hybrid material in which polydimethylsiloxane has a phenyl group in the side chain had a higher hardness than before Example 1 before the measurement, and the hardness further increased in an environment of 250 ° C.
Reference examples 1 to 4 will be described below.
From Table 1, in Reference Examples 1 and 2 in which the viscosity (25 ° C.) of the prepolymer sol as an index of the reaction rate was changed, the weight reduction rate after 200 hours in an environment of 250 ° C. was 5% or less. The hardness after 1000 hours in an environment of ° C. was 60 or less, and was excellent in heat resistance. Furthermore, the adhesiveness was also highly evaluated.
From Table 2, in Reference Example 3 in which the amount of alkoxide used (molar ratio) was reduced, the weight loss rate after 200 hours in an environment of 250 ° C. was 5% or less, and after 1000 hours in an environment of 250 ° C. The hardness was 60 or less and the heat resistance was excellent, but the adhesion was inferior. However, the hybrid material (prepolymer sol) does not necessarily require adhesion.
From Table 2, Reference Example 4, which was almost unreacted by setting the viscosity (25 ° C.) of the prepolymer sol to 3.1 Pa · s, had a hardness of 60 or less after 1000 hours in an environment of 250 ° C., Although the heat resistance is excellent in terms of hardness, the weight reduction rate after 200 hours in an environment of 250 ° C. exceeded 5%, and the heat resistance was inferior in terms of the weight reduction rate. Therefore, in order to achieve excellent heat resistance in both hardness and weight reduction rate, it is desirable to increase the viscosity (25 ° C.) of the prepolymer sol, that is, to increase the reaction rate between polydimethylsiloxane and alkoxide.
 以上より、本発明のハイブリッド材料からなる実施例1~5は、長時間にわたり重量減少が少なく安定であり、250℃で500時間まで測定したところ低硬度で柔軟性を維持しており、さらに測定を続けて250℃で1000時間経過後も40程度の低硬度で柔軟性を維持していた。よって本発明のハイブリッド材料は、従来のハイブリッド材料よりも、高温で重量減少が少なく、柔軟性を維持することができ、耐熱性に優れていることがわかった。
 本発明のハイブリッド材料は、250℃の環境下で1000時間経過後において、割れ(破断)等の不良が発生せず、ショアーE硬度計による硬度が、60以下である。硬度は、好ましく55以下、より好ましくは50以下である。
From the above, Examples 1 to 5 made of the hybrid material of the present invention are stable with little weight loss over a long period of time, and have a low hardness and maintain flexibility when measured at 250 ° C. for up to 500 hours. The softness was maintained at a low hardness of about 40 even after 1000 hours at 250 ° C. Therefore, it was found that the hybrid material of the present invention has less weight loss at a high temperature, can maintain flexibility, and is excellent in heat resistance than the conventional hybrid material.
The hybrid material of the present invention does not cause defects such as cracks (breaks) after 1000 hours in an environment of 250 ° C., and the hardness by the Shore E hardness meter is 60 or less. The hardness is preferably 55 or less, more preferably 50 or less.
[変更例]
 本発明は上記実施例のみに限定されるものではなく、特許請求の範囲および明細書の記載から当業者が認識することができる本発明の技術的思想に反しない限り、変更、削除および付加が可能である。
 前記した実施例においては、これに限定されるものではなく、異なった種類・特性の金属および/または半金属のアルコキシドを使用してもよい。
 上記実施例において、上記有機一無機ハイブリッドプレポリマーは、ゾルであるので、焼成して固体または半固体(ゲル)である成形物を得るには、上記有機一無機ハイブリッドプレポリマーゾルを金型等のトレイに塗布し、乾燥焼成処理することによって、硬化(ゲル化)させる。成形形状は特に限定されないが、一般的にはシート状、板状に成形する。
 また、置換に用いる不活性ガスは、純度が80%以上、含水分率で20%以下のものであってもよい。
 本発明の有機一無機ハイブリッド材料は、耐熱性弾性材料として使用する際に、例えば熱伝導性の付与を目的としてセラミックスフィラーを複合してもよく、電気絶縁特性の付与を目的としてりん片形状の絶縁性フィラーを配合してもよい。
 また一方で、透明性を求める光学用途では、フィラーなどを配合せずに、単一材料として硬化させてもよい。
 接着用途などでは、使用時の熱処理で硬化させることを目的として、半硬化状態で供給してもよい。
 本発明の有機一無機ハイブリッドプレポリマーの応用技術として、封止材以外に接着剤や塗料といった用途においても採用することができる。
 本発明の有機一無機ハイブリッドプレポリマーゾルの硬化物(ゲル化物)は、高温時での弾性特性に特徴があり、冷熱衝撃による被接着材料の熱膨張緩和能力に優れている。そのために、異なった材質の被接着材料間に介在させ、熱応力を緩和する接着層として使用することが出来る。
 その他に、本発明の有機一無機ハイブリッド化合物の応用技術として、レーザーダイオード等の発光素子、イメージセンサ等の受光素子等の半導体素子に採用される封止材やポッティング材といった用途においても採用することができる。
[Example of change]
The present invention is not limited only to the above-described embodiments, and changes, deletions, and additions may be made without departing from the technical idea of the present invention that can be recognized by those skilled in the art from the scope of the claims and the description. Is possible.
In the above-described embodiments, the present invention is not limited to this, and different types and characteristics of metal and / or metalloid alkoxides may be used.
In the above embodiment, since the organic one-inorganic hybrid prepolymer is a sol, the organic one-inorganic hybrid prepolymer sol is used as a mold or the like in order to obtain a molded product that is solid or semi-solid (gel) by baking. It is cured (gelled) by being applied to a tray and dried and baked. Although a shaping | molding shape is not specifically limited, Generally, it shape | molds in a sheet form and plate shape.
Further, the inert gas used for the substitution may have a purity of 80% or more and a moisture content of 20% or less.
When the organic mono-inorganic hybrid material of the present invention is used as a heat-resistant elastic material, for example, it may be combined with a ceramic filler for the purpose of imparting thermal conductivity, and in the form of flakes for the purpose of imparting electrical insulating properties. An insulating filler may be blended.
On the other hand, in an optical application for which transparency is required, a single material may be cured without blending a filler or the like.
In adhesive applications, etc., it may be supplied in a semi-cured state for the purpose of curing by heat treatment during use.
As an application technique of the organic one-inorganic hybrid prepolymer of the present invention, it can be employed in applications such as adhesives and paints in addition to the sealing material.
The cured product (gelated product) of the organic-inorganic hybrid prepolymer sol of the present invention is characterized by elastic properties at high temperatures, and is excellent in the ability to relieve the thermal expansion of the material to be bonded by cold shock. Therefore, it can be used as an adhesive layer that can be interposed between different materials to be bonded to relieve thermal stress.
In addition, as an applied technology of the organic one-inorganic hybrid compound of the present invention, it may be used in applications such as sealing materials and potting materials used in semiconductor elements such as light emitting elements such as laser diodes and light receiving elements such as image sensors. Can do.
 本発明のフェニル基含有有機一無機ハイブリッドプレポリマーは、耐熱性のあるゲル化物を与え、該ゲル化物は、発熱性素子の封止材、あるいは接着剤や電子部品、電機部品等の絶縁用または固定用等のフィルムやテープ、保護膜として有用であるから、産業上の利用可能性を有する。 The phenyl group-containing organic one-inorganic hybrid prepolymer of the present invention provides a heat-resistant gelled material, which is used for insulating a heat generating element sealing material, an adhesive, an electronic component, an electrical component, or the like. Since it is useful as a film or tape for fixing or a protective film, it has industrial applicability.

Claims (10)

  1.  両末端または片末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサン(A)と、金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)との縮合反応によって製造された有機-無機ハイブリッドプレポリマーであって、
     上記ポリジメチルシロキサン(A)の重量平均分子量は3000以上、80000以下の範囲であり、
     上記金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)の一部または全部には、フェニル基が導入されており、
     上記両末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサン(A)は、下記の一般式(化1)で表わされ、
     上記片末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサンは、下記の一般式(化2)で表わされ、
     上記金属および/または半金属アルコキシド(B)は下記の一般式(化3)で表わされ、
     上記アルコキシドのオリゴマー(C)は下記の一般式(化4)で表わされることを特徴とするフェニル基含有有機-無機ハイブリッドプレポリマー。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004
    A polydimethylsiloxane (A) having silanol groups capable of reacting with a metal and / or metalloid alkoxide at both ends or one terminal, a metal and / or metalloid alkoxide (B) and / or an oligomer of the alkoxide (C) An organic-inorganic hybrid prepolymer produced by the condensation reaction of
    The polydimethylsiloxane (A) has a weight average molecular weight in the range of 3,000 to 80,000.
    A phenyl group is introduced into a part or all of the metal and / or metalloid alkoxide (B) and / or the oligomer (C) of the alkoxide,
    The polydimethylsiloxane (A) having silanol groups capable of reacting with metal and / or metalloid alkoxide at both ends is represented by the following general formula (Formula 1):
    The polydimethylsiloxane having a silanol group capable of reacting with a metal and / or metalloid alkoxide at one end is represented by the following general formula (Formula 2):
    The metal and / or metalloid alkoxide (B) is represented by the following general formula (Formula 3):
    The phenyl group-containing organic-inorganic hybrid prepolymer, wherein the alkoxide oligomer (C) is represented by the following general formula (Formula 4):
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004
  2.  上記両末端または片末端に金属および/または半金属アルコキシドと反応可能なシラノール基を有するポリジメチルシロキサン(A)が100モルに対して、上記金属および/または半金属アルコキシド(B)および/または上記アルコキシドのオリゴマー(C)が100~800モルの割合で使用される請求項1に記載のフェニル基含有有機一無機ハイブリッドプレポリマー。 The metal and / or half-metal alkoxide (B) and / or the above-mentioned polydimethylsiloxane (A) having silanol groups capable of reacting with the metal and / or metalloid alkoxide at both ends or one-end, relative to 100 moles. The phenyl-containing organic monoinorganic hybrid prepolymer according to claim 1, wherein the alkoxide oligomer (C) is used in a proportion of 100 to 800 mol.
  3.  請求項1または請求項2に記載のフェニル基含有有機-無機ハイブリッドプレポリマーはゾルの状態で提供され、該ゾルの25℃における粘度は4~50Pa・sであるフェニル基含有有機-無機ハイブリッドプレポリマー。 The phenyl group-containing organic-inorganic hybrid prepolymer according to claim 1 or 2 is provided in a sol state, and the viscosity of the sol at 25 ° C. is 4 to 50 Pa · s. polymer.
  4.  上記一部または全部にフェニル基が導入された金属および/または半金属アルコキシドのオリゴマー(C)は、2~10量体のオリゴマーである請求項1から請求項3のうち何れか一項に記載のフェニル基含有有機一無機ハイブリッドプレポリマー。 4. The metal and / or metalloid alkoxide oligomer (C) in which a phenyl group is partially or entirely introduced is a dimer to 10-mer oligomer according to any one of claims 1 to 3. An organic one-inorganic hybrid prepolymer of phenyl group.
  5.  上記フェニル基が導入された金属および/または半金属アルコキシド(B)は下記の一般式(化5または化6)で表されるものである請求項1から請求項4のうち何れか一項に記載のフェニル基含有有機-無機ハイブリッドプレポリマー。
    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    (上記化5及び化6中、Rは炭素数4以下の直鎖または分枝のアルキル基であり、該直鎖または分枝のアルキル基は同一のものでも、部分的に異なっていても、あるいは全部異なっていてもよい。)
    The metal and / or metalloid alkoxide (B) into which the phenyl group is introduced is represented by the following general formula (Chemical Formula 5 or Chemical Formula 6): A phenyl group-containing organic-inorganic hybrid prepolymer as described.
    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    (In the above chemical formulas 5 and 6, R is a linear or branched alkyl group having 4 or less carbon atoms, and the linear or branched alkyl group may be the same or partially different. Or they may all be different.)
  6.  上記フェニル基が導入された金属および/または半金属アルコキシドのオリゴマー(C)は、下記の一般式(化7~化10)で表されるオリゴマーIまたはオリゴマーIIまたはオリゴマーIIIまたはオリゴマーIVの何れかである請求項1から請求項4のうち何れか1項に記載のフェニル基含有有機-無機ハイブリッドプレポリマー。
    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    (上記化7~化10中、Mは金属または半金属、Rは炭素数4以下の直鎖または分枝のアルキル基であり、上記アルキル基は同一のものでも、部分的に異なったものでも、あるいは全部異なったものでもよく、pは2~10の整数であり、qとrは整数であり、p>q+rである。)
    The oligomer (C) of the metal and / or metalloid alkoxide having the phenyl group introduced therein is any of oligomer I, oligomer II, oligomer III or oligomer IV represented by the following general formulas (Chemical Formula 7 to Chemical Formula 10). The phenyl group-containing organic-inorganic hybrid prepolymer according to any one of claims 1 to 4, which is
    Figure JPOXMLDOC01-appb-C000007

    Figure JPOXMLDOC01-appb-C000008

    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    (In the above chemical formulas 7 to 10, M is a metal or metalloid, R is a linear or branched alkyl group having 4 or less carbon atoms, and the alkyl groups may be the same or partially different. Or p may be an integer of 2 to 10, q and r are integers, and p> q + r.)
  7.  請求項1から請求項6のうち何れか一項に記載のフェニル基含有有機一無機ハイブリッドプレポリマーを加熱ゲル化したゲル化物からなることを特徴とする耐熱性有機一無機ハイブリッド材料。 A heat-resistant organic one-inorganic hybrid material comprising a gelled product obtained by heating and gelling the phenyl group-containing organic one-inorganic hybrid prepolymer according to any one of claims 1 to 6.
  8.  250℃の環境下で1000時間経過後におけるショアーE硬度計による硬度が60以下である請求項7に記載の耐熱性有機一無機ハイブリッド材料。 The heat-resistant organic one-inorganic hybrid material according to claim 7, which has a hardness of 60 or less according to a Shore E hardness meter after 1000 hours in an environment of 250 ° C.
  9.  請求項7または請求項8に記載の耐熱性有機一無機ハイブリッド材料を使用して発熱性素子を封止したことを特徴とする耐熱構造体。 A heat-resistant structure in which a heat-generating element is sealed using the heat-resistant organic one-inorganic hybrid material according to claim 7 or 8.
  10.  上記発熱性素子には半導体としてSiCおよび/またはGaNが全部または一部に組み込まれている請求項9に記載の耐熱構造体。
     
    The heat-resistant structure according to claim 9, wherein SiC and / or GaN are incorporated in the heat-generating element as a semiconductor.
PCT/JP2013/054626 2012-02-22 2013-02-22 Phenyl group-containing organic-inorganic hybrid prepolymer, heat-resistant organic-inorganic hybrid material, and heat-resistant structure WO2013125714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012036860 2012-02-22
JP2012-036860 2012-02-22

Publications (1)

Publication Number Publication Date
WO2013125714A1 true WO2013125714A1 (en) 2013-08-29

Family

ID=49005889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054626 WO2013125714A1 (en) 2012-02-22 2013-02-22 Phenyl group-containing organic-inorganic hybrid prepolymer, heat-resistant organic-inorganic hybrid material, and heat-resistant structure

Country Status (1)

Country Link
WO (1) WO2013125714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104621A1 (en) * 2014-12-25 2016-06-30 日本山村硝子株式会社 Phenyl-modified hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid prepolymer, and phenyl-modified polydimethylsiloxane-based hybrid polymer, and production processes therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183427A (en) * 2001-12-21 2003-07-03 Suzuka Fuji Xerox Co Ltd Surface-treatment method for base material and transfer and fixing member
JP2003241537A (en) * 2002-02-20 2003-08-29 Suzuka Fuji Xerox Co Ltd Transfer fixing member for electrophotographic device
JP2004252000A (en) * 2003-02-18 2004-09-09 Suzuka Fuji Xerox Co Ltd Electrophotographic elastic material
JP2004250665A (en) * 2003-01-30 2004-09-09 Suzuka Fuji Xerox Co Ltd Heat-resistant and heat-conductive material
JP2007116139A (en) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
WO2010090280A1 (en) * 2009-02-09 2010-08-12 荒川化学工業株式会社 Transparent sealing material composition and optical semiconductor element
WO2011125832A1 (en) * 2010-03-31 2011-10-13 日本山村硝子株式会社 Organic-inorganic hybrid prepolymer and process for production thereof
WO2012023618A1 (en) * 2010-08-20 2012-02-23 日本山村硝子株式会社 Phenyl group-containing organic/inorganic hybrid prepolymer, heat resisitant organic/inorganic hybrid material, and element encapsulation structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183427A (en) * 2001-12-21 2003-07-03 Suzuka Fuji Xerox Co Ltd Surface-treatment method for base material and transfer and fixing member
JP2003241537A (en) * 2002-02-20 2003-08-29 Suzuka Fuji Xerox Co Ltd Transfer fixing member for electrophotographic device
JP2004250665A (en) * 2003-01-30 2004-09-09 Suzuka Fuji Xerox Co Ltd Heat-resistant and heat-conductive material
JP2004252000A (en) * 2003-02-18 2004-09-09 Suzuka Fuji Xerox Co Ltd Electrophotographic elastic material
JP2007116139A (en) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
WO2010090280A1 (en) * 2009-02-09 2010-08-12 荒川化学工業株式会社 Transparent sealing material composition and optical semiconductor element
WO2011125832A1 (en) * 2010-03-31 2011-10-13 日本山村硝子株式会社 Organic-inorganic hybrid prepolymer and process for production thereof
WO2012023618A1 (en) * 2010-08-20 2012-02-23 日本山村硝子株式会社 Phenyl group-containing organic/inorganic hybrid prepolymer, heat resisitant organic/inorganic hybrid material, and element encapsulation structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104621A1 (en) * 2014-12-25 2016-06-30 日本山村硝子株式会社 Phenyl-modified hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid prepolymer, and phenyl-modified polydimethylsiloxane-based hybrid polymer, and production processes therefor
JPWO2016104621A1 (en) * 2014-12-25 2017-05-25 日本山村硝子株式会社 Phenyl-modified hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid polymer, and methods for producing the same
US10227454B2 (en) 2014-12-25 2019-03-12 Nihon Yamamura Glass Co., Ltd. Phenyl-modified hybrid prepolymer, phenyl-modified polydimethylsiloxane-based hybrid prepolymer, and phenyl-modified polydimethylsiloxane-based hybrid polymer, and production processes therefor

Similar Documents

Publication Publication Date Title
WO2012023618A1 (en) Phenyl group-containing organic/inorganic hybrid prepolymer, heat resisitant organic/inorganic hybrid material, and element encapsulation structure
JP5686458B2 (en) Organic-inorganic hybrid prepolymer, organic-inorganic hybrid material, and device sealing structure
TWI666267B (en) Silicone gel composition
KR101802736B1 (en) Cross-linkable silicone composition and cross-linked product thereof
JP5465781B2 (en) Method for producing organic-inorganic hybrid prepolymer
JPWO2010090280A1 (en) Transparent encapsulant composition and optical semiconductor element
US9758694B2 (en) Curable resin composition, cured product thereof, and semiconductor device using the same
TW201843282A (en) Silicone resin composition for die-bonding and cured product
JP2010120979A (en) Thermally conductive silicone gel cured product
JP2015013927A (en) Moisture-curable resin composition and heat conduction sheet
WO2012014560A1 (en) Curable composition for semiconductor encapsulation
CN109312216B (en) High thermal conductivity composite material
WO2020179115A1 (en) Heat conductive sheet and method for producing same
CN113508460A (en) Multicomponent curable polyorganosiloxane composition, heat conductive member, and heat dissipation structure
JP6349163B2 (en) Organopolysiloxane prepolymer, organopolysiloxane polymer gel, sealing material for SiC or GaN power module, semiconductor sealing structure
JP6257446B2 (en) Ultraviolet light emitting diode encapsulated with organic-inorganic hybrid polymer and method for producing the same
WO2015194159A1 (en) Organopolysiloxane and method for producing same
TW202124587A (en) Curable white silicone formulation, a reflective material for optical semiconductor module, and optical semiconductor device
WO2013125714A1 (en) Phenyl group-containing organic-inorganic hybrid prepolymer, heat-resistant organic-inorganic hybrid material, and heat-resistant structure
JP6313774B2 (en) Organic-inorganic hybrid prepolymer, organic-inorganic hybrid polymer and LED element sealing material obtained thereby, and LED element sealing structure
TW201313829A (en) Organic-inorganic hybrid prepolymer containing phenyl group, heat resistant organic-inorganic hybrid material and element sealed structure
JP7452304B2 (en) Composition for heat dissipation member, heat dissipation member, electronic device, and method for producing heat dissipation member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13751894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP