WO2013124968A1 - Sail-type wind and water power generators - Google Patents

Sail-type wind and water power generators Download PDF

Info

Publication number
WO2013124968A1
WO2013124968A1 PCT/JP2012/054107 JP2012054107W WO2013124968A1 WO 2013124968 A1 WO2013124968 A1 WO 2013124968A1 JP 2012054107 W JP2012054107 W JP 2012054107W WO 2013124968 A1 WO2013124968 A1 WO 2013124968A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
blades
generator
fluid
upstream
Prior art date
Application number
PCT/JP2012/054107
Other languages
French (fr)
Japanese (ja)
Inventor
小川 弘
正志 豊岡
Original Assignee
Ogawa Hiroshi
Toyooka Masashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogawa Hiroshi, Toyooka Masashi filed Critical Ogawa Hiroshi
Priority to JP2013523423A priority Critical patent/JP5409969B1/en
Priority to PCT/JP2012/054107 priority patent/WO2013124968A1/en
Publication of WO2013124968A1 publication Critical patent/WO2013124968A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/231Rotors for wind turbines driven by aerodynamic lift effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power / hydraulic power generator that generates power by driving a power generator by receiving wind or water flow generated by natural energy or the like on a predetermined number of blades.
  • a vertical rotating shaft type windmill used in a wind power generator can rotate without being influenced by the wind direction, but one blade of the vertical rotating shaft has a drawback that it receives resistance from the head wind.
  • the blade is more efficiently rotated by specifying the shape of the blade (see, for example, Patent Documents 1 and 2).
  • the present invention has been made paying attention to such problems, and can be received by the entire inner surface of the blade on the downstream side to increase the rotational force applied to the generator so that a large drag can be instantaneously obtained.
  • the purpose is to provide a wind and hydraulic power generator that can improve power generation efficiency.
  • the sail type wind power / hydroelectric power generator of the present invention is A rotating shaft for transmitting a rotational force to the generator; at least three blades are provided at equal intervals in a circumferential direction around the rotating shaft, and a trailing edge of the blade in the rotating direction is the rotating shaft
  • the blade is inclined so as to be away from the wind turbine, and is a wind power / hydroelectric generator that drives the generator by rotating the rotating shaft by the energy received by the blade from the fluid flowing from the direction orthogonal to the rotating shaft.
  • the blade is formed as a sail type formed by a curved thin plate member, and the fluid passes between two predetermined blades on the upstream side of the fluid and hits the entire inner surface of the downstream blade, At the moment of contact with the fluid, the inner surface of the downstream blade is directed in the upstream direction, and a region between imaginary lines extending in parallel with the upstream direction from the leading edge and the trailing edge in the rotational direction of the downstream blade.
  • Each of the blades is arranged so that the upstream blade is not blocked.
  • the rotational force is applied to the generator by the drag received by the inner surface of the downstream blade, and the fluid that has passed without being blocked by the two predetermined blades is allowed to flow downstream.
  • Power generation efficiency can be improved by increasing the rotational force applied to the generator so that it can be received by the entire inner surface of the blade, and a large drag can be obtained instantaneously.
  • the sail type wind power / hydroelectric power generator of the present invention is Of the sweep region of the blade in the circumferential direction, approximately half of the region is occupied by the blade. According to this feature, an opening having approximately the same size as the blade is formed between the blades provided at equal intervals in the circumferential direction while ensuring the area of the blade that receives the fluid. Thus, the fluid can be blown out, and a sufficient amount of fluid can be applied to the entire inner surface of the downstream blade, and the rotational force applied to the generator can be increased to improve the power generation efficiency.
  • the sail type wind power / hydroelectric power generator of the present invention is A longitudinal end portion of the blade is supported by a blade support portion connected to the rotation shaft, and a space portion through which the fluid passes without being blocked is formed at a rotation center portion of the blade. It is a feature. According to this feature, the blade support portion that supports the blade is disposed at the end portion in the longitudinal direction of the blade, and the member that causes disturbance in the flow of the fluid does not need to be disposed at the central portion of the rotation of the blade. Thus, a space part through which the fluid passes is formed, and the fluid that has passed through the space part hits the entire inner surface of the downstream blade, so that the rotational force applied to the generator can be increased and the power generation efficiency can be improved.
  • the sail type wind power / hydroelectric power generator of the present invention is The blade is characterized in that it has a wing shape that generates lift. According to this feature, when the fluid hits the outer surface of the blade, lift force is generated on the blade, and the rotational force applied to the generator is also increased by the lift force generated on the outer surface of the blade as well as the drag received by the inner surface of the blade. Can do.
  • FIG. 1 is a perspective view showing a sail type wind power generator in Embodiment 1.
  • FIG. It is a front view showing a sale type wind power generator.
  • FIG. 3 is an AA cross-sectional plan view showing the blades in FIG. 2. It is an expansion cross-sectional top view which shows a blade
  • FIG. 6 is a cross-sectional plan view showing blades in Example 3.
  • FIG. 3 is an AA cross-sectional plan view showing the blades in FIG. 2.
  • FIG. 6 is a cross-sectional plan view showing blades in Example 3.
  • FIG. It is a front view which shows the sail type ocean current generator in Example 4.
  • FIG. 1 is a sail type wind power generator to which the present invention is applied.
  • This wind power generator 1 is a vertical rotating shaft type wind power generator 1 having four blades 2 and can be rotated without being influenced by the wind direction.
  • the wind power generator 1 has the foundation part 3 installed in the ground.
  • the base portion 3 has a quadrangular shape in plan view, and pillars 4 standing in the vertical direction are arranged at the four corners of the base portion 3.
  • each support column 4 is connected by a connecting beam 5 having an X shape in plan view.
  • a rotating shaft 8 pivotally supported by a bearing portion 6 is provided in the center of the upper connecting beam 5.
  • a generator 10 is installed at the center of the lower connecting beam 5, and a rotary shaft 9 for rotating the generator 10 is provided on the upper side of the lower connecting beam 5.
  • the rotating shaft 9 is pivotally supported by a bearing portion 7 provided on the lower connecting beam 5.
  • a support member 11 that extends radially from the respective rotary shafts 8 and 9 to the front end portions of the respective rotary shafts 8 and 9 arranged vertically and supports the upper end or the lower end of the blade 2 at each end portion. , 12 (blade support) are attached. That is, the blades 2 are not attached to any part other than the upper and lower ends of the blades 2 such that any member that would obstruct the wind W (fluid) passes through. A space 13 through which the wind W passes without being blocked is formed.
  • each blade 2 has a sail shape formed by a curved thin plate member.
  • the four blades 2 are arranged at equal intervals every 90 degrees in a plan view along the rotation direction. Note that each blade 2 rotates counterclockwise in FIG.
  • the blade 2 when the blade 2 receives the wind W and starts to rotate, the rotational force is transmitted to the generator 10 through the rotating shaft 9, and the generator 10 is driven to generate power.
  • the blades 2 are arranged side by side so that the width direction thereof is along the rotation direction (circumferential direction), and the rear end edge B of the blade 2 in the rotation direction is further away from the rotation shaft 9 than the front end edge F. So that it is tilted. That is, the blades 2 are arranged so as to be inclined so that the outer surface side of the blades 2 is slightly directed in the rotation direction.
  • the blade 2 has a blade shape that generates lift.
  • the blade 2 has a curved line shape in which the position E near the front end in the width direction is bulged most outward, and the curvature on the front end side in the rotation direction from the bulge position E is larger than the curvature on the rear end side. It is getting bigger. Further, the leading edge F and the trailing edge B of the blade 2 have an acute angle shape in a cross-sectional view, and are difficult to receive a drag due to the airflow K flowing along the width direction of the blade 2.
  • the inner surface side of the blade 2 is curved in a concave shape, and from the air flow K flowing in the direction perpendicular to the inner surface of the blade 2 (the thickness direction of the blade 2). It has come to receive a great drag.
  • the air flow K received by the inner surface of the blade 2 flows toward the rear end side of the blade 2 as the blade 2 rotates.
  • each blade 2 is arranged so that the upstream two blades 2 do not block the region ⁇ between the imaginary line V extending parallel to the upstream direction from the edge F and the rear edge B. That is, as shown in FIG. 2, in the front view of the wind power generator 1, there is a moment when a large opening is formed between the two upstream blades 2 so that the entire inner surface of the downstream blade 2 is exposed. .
  • the space 13 through which the wind W passes without being blocked by the rotation of the blades 2 is formed at the center of the rotation of the blades 2.
  • the members such as the rotating shaft that cause the disturbance are not disposed, and the wind W that has passed through the space 13 hits the entire inner surface of the blade 2 on the downstream side to increase the rotational force applied to the generator 10. Power generation efficiency can be improved.
  • the inner surface of the blade disposed on the downstream side is Instead of the upstream direction of the wind W, it faces the rear side in the rotational direction, and the downstream blade cannot receive the wind W efficiently on the entire inner surface thereof, and further, the upstream blade expands.
  • the ejected part blocks the area between the imaginary lines extending in parallel to the upstream direction from the leading edge and the trailing edge in the rotational direction of the downstream blade, and the flow direction changes when it hits the upstream blade.
  • the inner surface of the downstream blade 2 faces the upstream direction and the downstream blade 2 rotates.
  • Each blade 2 is arranged so that the upstream two blades 2 do not block the region ⁇ between the imaginary line V extending parallel to the upstream direction from the leading edge F and the rear edge B in the direction. Therefore, the wind W that has passed without being blocked by the two upstream blades 2 can be received by the entire inner surface of the downstream blade 2, and the downstream blade 2 can instantaneously obtain a large drag. It is like that.
  • the wind power generator 1a has three blades 2a.
  • the three blades 2a are arranged at equal intervals every 120 degrees in a plan view along the rotation direction.
  • approximately half of the region ⁇ is occupied by the blades 2 a, and the remaining approximately half of the region ⁇ is wind W ( Fluid).
  • wing 2a of Example 2 is formed relatively larger than the thing of Example 1, and the inner surface of this blade
  • the rear end edge B of the blade 2a in the rotational direction is disposed so as to be further away from the rotation shaft 9 than the front end edge F, and the inclination of the blade 2a is larger than that of the first embodiment. The wind W hitting the inner surface of the blade 2a is easily received in the direction opposite to the rotation direction of the blade 2a.
  • each blade 2a is arranged so that the upstream two blades 2a do not block the region ⁇ between the virtual lines V extending in parallel with the direction.
  • the wind power generator 1b has six blades 2b.
  • the six blades 2b are arranged at equal intervals every 60 degrees in a plan view along the rotation direction.
  • approximately half of the region ⁇ is occupied by the blades 2b, and the remaining approximately half of the region ⁇ is wind W ( Fluid).
  • wing 2b of Example 3 is formed relatively smaller than the thing of Example 1, and can arrange
  • the blade 2b has a blade shape that generates lift as in the first embodiment, but the blade 2b has a position E (see FIG. 4 of the first embodiment) closer to the front end in the width direction. It is thicker than that of the first embodiment. Therefore, the lift of the blades 2b can be increased.
  • each blade 2b is arranged so that the upstream two blades 2b do not block the region ⁇ between the virtual lines V extending in parallel with the direction.
  • the generator 10 receives the force generated by the inner surface of the downstream blades 2b.
  • a large drag can be obtained instantaneously by allowing the wind W, which has been able to be given a rotational force and passed without being blocked by the upstream blade 2b, to be received by the entire inner surface of the downstream blade 2b.
  • the rotational force applied to the generator 10 can be increased to improve the power generation efficiency.
  • FIG. 7 shows an ocean current generator 14 (hydroelectric generator) that is installed on the seabed and rotates the rotating shaft 9 by the energy received by the blades 2 from the ocean current (hydropower, fluid) to drive the generator 10. .
  • a generator 15 is connected to the upper rotary shaft 8.
  • This generator 10 is an underwater generator 15 configured to prevent inundation.
  • a barge 3 ′ is provided instead of the base portion 3 in the first embodiment.
  • the barge 3 ′ has a sealed hull structure that creates buoyancy by storing air therein.
  • crushed stone 16 is accommodated as ballast inside the barge 3 ', and when the air is extracted from the barge 3', it sinks to the seabed.
  • power generation is performed by rotating the blades 2 by wind or ocean current generated by natural energy
  • the fluid used for power generation is not limited to the wind W or ocean current, but is artificially created. It may be an air flow or a water flow generated from a machine element, and a fluid that flows in an air duct or pipe by installing the sail type wind power / hydroelectric generator of the present invention in an air duct or pipe of a predetermined machine device. You may make it generate electric power by.
  • the support column 4 standing in the vertical direction from the base portion 3 is arranged, and the upper rotating shaft 8 is supported by the support column 4 and the upper connecting beam 5.
  • the support column 4 and the upper rotating shaft 8 are not necessarily required.
  • a turntable or the like in which the lower end of the blade 2 is fixed to the upper surface of the base portion 3 is installed, and the upper ends of the blade 2 are connected to the support member 11 (blade support). Part) only, and may be configured such that the upper rotating shaft 8, the support column 4 and the like are omitted.
  • the ocean current generator 14 is installed on the seabed to generate power.
  • the ocean current generator 14 may be installed not only on the ocean floor but also in a river or a water channel. Alternatively, it may be used as a hydroelectric generator that generates power by the flow of water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)

Abstract

[Problem] To provide wind and water power generators, the power generation efficiency of which can be improved by allowing fluid to be received by the entire internal surface of a blade present on the downstream side, instantaneously obtaining a large drag, and increasing torque to be applied to the generators. [Solution] A blade (2) is formed by a curved thin plate member to form a sail type. Fluid (W) passes between predetermined two blades (2) present on the upstream side of the fluid (W) and hits against the entire internal surface of the blade (2) on the downstream side. Instantaneously when the fluid (W) hits, the internal surface of the blade (2) on the downstream side faces the upstream direction and the blades (2) on the upstream side are each disposed so as not to block a region (γ) between virtual lines (V) extending in parallel with each other in the upstream direction from the front end edge (F) and back end edge (B) in a rotational direction of the blade (2) on the downstream side.

Description

セール型風力・水力発電機Sale type wind power and hydro power generator
 本発明は、自然エネルギー等により生じる風または水流を所定枚数の羽根に受けることで発電機を駆動させて発電を行う風力・水力発電機に関する。 The present invention relates to a wind power / hydraulic power generator that generates power by driving a power generator by receiving wind or water flow generated by natural energy or the like on a predetermined number of blades.
 従来、風力発電機に用いられる垂直回転軸型の風車は、風向きに左右されずに回転可能であるが、垂直回転軸の片側の羽根は向かい風による抵抗を受けるという難点を有しており、この難点を克服するために、羽根の形状を特定することでより効率よく回転するようにしている(例えば、特許文献1及び2参照)。 Conventionally, a vertical rotating shaft type windmill used in a wind power generator can rotate without being influenced by the wind direction, but one blade of the vertical rotating shaft has a drawback that it receives resistance from the head wind. In order to overcome the difficulty, the blade is more efficiently rotated by specifying the shape of the blade (see, for example, Patent Documents 1 and 2).
特開2004-211707号公報Japanese Patent Laid-Open No. 2004-211707 国際公開第2007/141834号International Publication No. 2007/141834
 しかしながら、特許文献1及び2の風力発電機にあっては、風(流体)が正面側から当たったときに、左右に配置される羽根は、互いにその向きが逆向きとなっており、一方の羽根の内面に追い風が当たったときに、他方の羽根の外面に向かい風が当たるようになり、一方の羽根の内面に受ける風の抗力により風車を回転させることができるものの、他方の羽根の外面に当たる風が風車の回転方向と逆向きのトルクを発生させ、風車の回転の邪魔をしてしまうという問題がある。また、円周方向に配置された複数の羽根のうち、風下側(下流側)の羽根の内面には、風上側(上流側)の羽根に当たって流れ方向が変化して風力が減衰した風しか当てることができず、風下側の羽根の内面が風の抗力を充分に受けることができず、発電効率が悪くなってしまうという問題がある。 However, in the wind power generators of Patent Documents 1 and 2, when the wind (fluid) hits from the front side, the blades arranged on the left and right are opposite to each other. When a tailwind hits the inner surface of the blade, the wind hits the outer surface of the other blade and the windmill can be rotated by the drag of the wind applied to the inner surface of one blade, but it hits the outer surface of the other blade There is a problem that the wind generates torque in the direction opposite to the direction of rotation of the windmill, thereby interfering with the rotation of the windmill. Further, among the plurality of blades arranged in the circumferential direction, only the wind in which the wind force is attenuated is applied to the inner surface of the blade on the leeward side (downstream side) by hitting the blade on the windward side (upstream side). There is a problem that the inner surface of the wing on the leeward side cannot sufficiently receive the drag force of the wind and power generation efficiency is deteriorated.
 本発明は、このような問題点に着目してなされたもので、下流側の羽根の内面全体に受けられるようにし、瞬間的に大きな抗力を得られるようにして発電機に与える回転力を高めて発電効率を向上させることができる風力・水力発電機を提供することを目的とする。 The present invention has been made paying attention to such problems, and can be received by the entire inner surface of the blade on the downstream side to increase the rotational force applied to the generator so that a large drag can be instantaneously obtained. The purpose is to provide a wind and hydraulic power generator that can improve power generation efficiency.
 前記課題を解決するために、本発明のセール型風力・水力発電機は、
 発電機に回転力を伝達する回転軸を有し、該回転軸を中心とする円周方向に少なくとも3枚の羽根が等間隔に設けられ、該羽根の回転方向の後端縁が前記回転軸から離れるように該羽根が傾けられており、前記回転軸に直交する方向から流れてくる流体から前記羽根が受けるエネルギーにより前記回転軸を回転させて発電機を駆動する風力・水力発電機であって、
 前記羽根が湾曲された薄板部材により形成されたセール型をなし、前記流体は、該流体の上流側にある所定の2枚の羽根の間を通過して下流側の羽根の内面全体に当たるとともに、該流体が当たる瞬間には、前記下流側の羽根の内面が上流方向を向き、該下流側の羽根の回転方向の先端縁及び後端縁から前記上流方向に平行に延びる仮想線の間の領域を、前記上流側の羽根が遮らないように前記各羽根が配置されていることを特徴としている。
 この特徴によれば、羽根が湾曲された薄板部材により形成されたセール型をなすことで、羽根が回転する際に、その回転方向に対して逆向きに流れる流体の抗力を受け難くなるとともに、少なくとも3枚の羽根のうち、下流側の羽根の内面が受ける抗力により発電機に回転力を与えられるようになり、かつ所定の2枚の羽根に遮られずに通過した流体を、下流側の羽根の内面全体に受けられるようにし、瞬間的に大きな抗力を得られるようにして発電機に与える回転力を高めて発電効率を向上させることができる。
In order to solve the above-mentioned problem, the sail type wind power / hydroelectric power generator of the present invention is
A rotating shaft for transmitting a rotational force to the generator; at least three blades are provided at equal intervals in a circumferential direction around the rotating shaft, and a trailing edge of the blade in the rotating direction is the rotating shaft The blade is inclined so as to be away from the wind turbine, and is a wind power / hydroelectric generator that drives the generator by rotating the rotating shaft by the energy received by the blade from the fluid flowing from the direction orthogonal to the rotating shaft. And
The blade is formed as a sail type formed by a curved thin plate member, and the fluid passes between two predetermined blades on the upstream side of the fluid and hits the entire inner surface of the downstream blade, At the moment of contact with the fluid, the inner surface of the downstream blade is directed in the upstream direction, and a region between imaginary lines extending in parallel with the upstream direction from the leading edge and the trailing edge in the rotational direction of the downstream blade. Each of the blades is arranged so that the upstream blade is not blocked.
According to this feature, by making a sail type formed by a thin plate member with a curved blade, when the blade rotates, it becomes difficult to receive the drag of the fluid flowing in the opposite direction to the rotation direction, Of the at least three blades, the rotational force is applied to the generator by the drag received by the inner surface of the downstream blade, and the fluid that has passed without being blocked by the two predetermined blades is allowed to flow downstream. Power generation efficiency can be improved by increasing the rotational force applied to the generator so that it can be received by the entire inner surface of the blade, and a large drag can be obtained instantaneously.
 本発明のセール型風力・水力発電機は、
 前記円周方向における前記羽根の掃過領域のうち、略半分の領域が前記羽根により占められていることを特徴としている。
 この特徴によれば、流体を受ける羽根の面積を確保しつつ、円周方向に等間隔に設けられた各羽根の間には、羽根の大きさとほぼ同じ大きさの開口が形成され、この開口から流体が吹き抜けるようになり、下流側の羽根の内面全体に充分な量の流体を当てることができ、発電機に与える回転力を高めて発電効率を向上させることができる。
The sail type wind power / hydroelectric power generator of the present invention is
Of the sweep region of the blade in the circumferential direction, approximately half of the region is occupied by the blade.
According to this feature, an opening having approximately the same size as the blade is formed between the blades provided at equal intervals in the circumferential direction while ensuring the area of the blade that receives the fluid. Thus, the fluid can be blown out, and a sufficient amount of fluid can be applied to the entire inner surface of the downstream blade, and the rotational force applied to the generator can be increased to improve the power generation efficiency.
 本発明のセール型風力・水力発電機は、
 前記羽根の長手方向の端部が前記回転軸に連結された羽根支持部により支持され、前記羽根の回転の中心部には、前記流体が遮られずに通り抜けられる空間部が形成されることを特徴としている。
 この特徴によれば、羽根を支持する羽根支持部が羽根の長手方向の端部に配置されて、羽根の回転の中心部には、流体の流れに乱れを生じさせる部材が配置されずに済むようになり、流体が通り抜けられる空間部が形成され、この空間部を通過した流体が下流側の羽根の内面全体に当たって、発電機に与える回転力を高めて発電効率を向上させることができる。
The sail type wind power / hydroelectric power generator of the present invention is
A longitudinal end portion of the blade is supported by a blade support portion connected to the rotation shaft, and a space portion through which the fluid passes without being blocked is formed at a rotation center portion of the blade. It is a feature.
According to this feature, the blade support portion that supports the blade is disposed at the end portion in the longitudinal direction of the blade, and the member that causes disturbance in the flow of the fluid does not need to be disposed at the central portion of the rotation of the blade. Thus, a space part through which the fluid passes is formed, and the fluid that has passed through the space part hits the entire inner surface of the downstream blade, so that the rotational force applied to the generator can be increased and the power generation efficiency can be improved.
 本発明のセール型風力・水力発電機は、
 前記羽根は、揚力を生じさせる翼形状となっていることを特徴としている。
 この特徴によれば、羽根の外面に流体が当たることにより、羽根に揚力が生じるようになり、羽根の内面が受ける抗力とともに、羽根の外面に生じる揚力によっても発電機に与える回転力を高めることができる。
The sail type wind power / hydroelectric power generator of the present invention is
The blade is characterized in that it has a wing shape that generates lift.
According to this feature, when the fluid hits the outer surface of the blade, lift force is generated on the blade, and the rotational force applied to the generator is also increased by the lift force generated on the outer surface of the blade as well as the drag received by the inner surface of the blade. Can do.
実施例1におけるセール型風力発電機を示す斜視図である。1 is a perspective view showing a sail type wind power generator in Embodiment 1. FIG. セール型風力発電機を示す正面図である。It is a front view showing a sale type wind power generator. 図2における羽根を示すA-A横断平面図である。FIG. 3 is an AA cross-sectional plan view showing the blades in FIG. 2. 羽根を示す拡大横断平面図である。It is an expansion cross-sectional top view which shows a blade | wing. 実施例2における羽根を示す横断平面図である。It is a cross-sectional top view which shows the blade | wing in Example 2. FIG. 実施例3における羽根を示す横断平面図である。6 is a cross-sectional plan view showing blades in Example 3. FIG. 実施例4におけるセール型海流発電機を示す正面図である。It is a front view which shows the sail type ocean current generator in Example 4. FIG.
 本発明に係るセール型風力・水力発電機を実施するための形態を実施例に基づいて以下に説明する。 DETAILED DESCRIPTION OF EMBODIMENTS Embodiments for implementing a sail-type wind / hydroelectric generator according to the present invention will be described below based on examples.
 実施例1に係るセール型風力発電機につき、図1から図4を参照して説明する。図1の符号1は、本発明の適用されたセール型風力発電機である。この風力発電機1は、4枚の羽根2を有する垂直回転軸型の風力発電機1となっており、風向きに左右されずに回転可能となっている。また、風力発電機1は、地面に設置される基礎部3を有している。この基礎部3は平面視で四角形状をなしており、基礎部3における四隅には、鉛直方向に立設される支柱4が配置されている。 The sail type wind power generator according to the first embodiment will be described with reference to FIGS. Reference numeral 1 in FIG. 1 is a sail type wind power generator to which the present invention is applied. This wind power generator 1 is a vertical rotating shaft type wind power generator 1 having four blades 2 and can be rotated without being influenced by the wind direction. Moreover, the wind power generator 1 has the foundation part 3 installed in the ground. The base portion 3 has a quadrangular shape in plan view, and pillars 4 standing in the vertical direction are arranged at the four corners of the base portion 3.
 図2に示すように、各支柱4の上端同士及び下部同士が平面視でX字形状をなす繋ぎ梁5により連結されている。上部の繋ぎ梁5の中央には、軸受部6により枢支された回転軸8が設けられている。さらに、下部の繋ぎ梁5の中央には、発電機10が設置されており、この発電機10を回転駆動するための回転軸9が下部の繋ぎ梁5の上部側に突設されている。なお、この回転軸9は、下部の繋ぎ梁5に設けられた軸受部7により枢支されている。 As shown in FIG. 2, the upper ends and the lower portions of each support column 4 are connected by a connecting beam 5 having an X shape in plan view. In the center of the upper connecting beam 5, a rotating shaft 8 pivotally supported by a bearing portion 6 is provided. Furthermore, a generator 10 is installed at the center of the lower connecting beam 5, and a rotary shaft 9 for rotating the generator 10 is provided on the upper side of the lower connecting beam 5. The rotating shaft 9 is pivotally supported by a bearing portion 7 provided on the lower connecting beam 5.
 また、上下に配置される各回転軸8,9の先端部には、各回転軸8,9から四方に放射状に延びて、それぞれの端部に羽根2の上端または下端を支持する支持部材11,12(羽根支持部)が取り付けられている。即ち、羽根2は、上下端部以外の部位には、風W(流体)が通り抜ける際に障害物になるような何らの部材も取り付けられておらず、これら羽根2の回転の中心部には、風Wが遮られずに通り抜けられる空間部13が形成される。 Further, a support member 11 that extends radially from the respective rotary shafts 8 and 9 to the front end portions of the respective rotary shafts 8 and 9 arranged vertically and supports the upper end or the lower end of the blade 2 at each end portion. , 12 (blade support) are attached. That is, the blades 2 are not attached to any part other than the upper and lower ends of the blades 2 such that any member that would obstruct the wind W (fluid) passes through. A space 13 through which the wind W passes without being blocked is formed.
 図3に示すように、各羽根2は、湾曲された薄板部材により形成されたセール型をなしている。本実施例では、4枚の羽根2が、その回転方向に沿って平面視において90度毎に等間隔に配置されている。なお、各々の羽根2は、図3中において反時計回りに回転するようになっている。 As shown in FIG. 3, each blade 2 has a sail shape formed by a curved thin plate member. In the present embodiment, the four blades 2 are arranged at equal intervals every 90 degrees in a plan view along the rotation direction. Note that each blade 2 rotates counterclockwise in FIG.
 また、羽根2が風Wを受けて回転を始めると、その回転力が回転軸9を介して発電機10に伝達され、発電機10が駆動されて発電が行われるようになっている。なお、各羽根2は、その幅方向が回転方向(円周方向)に沿うように並んで配置されるとともに、羽根2の回転方向の後端縁Bが先端縁Fよりも回転軸9から離れるように傾けられて配置されている。即ち、羽根2の外面側が回転方向に若干向けられるように傾けられて配置されている。 Further, when the blade 2 receives the wind W and starts to rotate, the rotational force is transmitted to the generator 10 through the rotating shaft 9, and the generator 10 is driven to generate power. The blades 2 are arranged side by side so that the width direction thereof is along the rotation direction (circumferential direction), and the rear end edge B of the blade 2 in the rotation direction is further away from the rotation shaft 9 than the front end edge F. So that it is tilted. That is, the blades 2 are arranged so as to be inclined so that the outer surface side of the blades 2 is slightly directed in the rotation direction.
 また、回転軸9を中心として円周方向に90度毎に分けられた角度領域θのうち、略半分の領域αが羽根2で占められており、残りの略半分の領域βが風W(流体)が吹き抜ける開口となっている。そして、円周方向における羽根2の掃過領域(全α領域+全β領域)のうち、略半分の領域(全α領域)が羽根2により占められている。 Of the angular regions θ divided by 90 degrees in the circumferential direction around the rotation axis 9, approximately half of the region α is occupied by the blades 2, and the remaining approximately half of the region β is wind W ( Fluid). Of the sweep region (total α region + total β region) of the blade 2 in the circumferential direction, a substantially half region (total α region) is occupied by the blade 2.
 図4(a)に示すように、羽根2は、揚力を生じさせる翼形状となっている。この羽根2は、その幅方向において前端寄りの位置Eが外方に最も膨出された湾曲線状をなし、この膨出位置Eから回転方向の先端側の曲率が後端側の曲率よりも大きくなっている。さらに、羽根2の先端縁F及び後端縁Bは、断面視において鋭角状をなしており、羽根2の幅方向に沿って流れる空気流Kによる抗力を受け難くなっている。 As shown in FIG. 4 (a), the blade 2 has a blade shape that generates lift. The blade 2 has a curved line shape in which the position E near the front end in the width direction is bulged most outward, and the curvature on the front end side in the rotation direction from the bulge position E is larger than the curvature on the rear end side. It is getting bigger. Further, the leading edge F and the trailing edge B of the blade 2 have an acute angle shape in a cross-sectional view, and are difficult to receive a drag due to the airflow K flowing along the width direction of the blade 2.
 また、図4(b)に示すように、羽根2の内面側は、凹状に湾曲されており、羽根2の内面に対して垂直方向(羽根2の厚み方向)に流れ込んでくる空気流Kから大きな抗力を受けるようになっている。そして、この羽根2の内面が受けた空気流Kは、羽根2の回転移動とともに羽根2の後端側に向かって流れるようになっている。 Further, as shown in FIG. 4B, the inner surface side of the blade 2 is curved in a concave shape, and from the air flow K flowing in the direction perpendicular to the inner surface of the blade 2 (the thickness direction of the blade 2). It has come to receive a great drag. The air flow K received by the inner surface of the blade 2 flows toward the rear end side of the blade 2 as the blade 2 rotates.
 このように、羽根2が湾曲された薄板部材により形成されたセール型をなすことで、羽根2が回転する際に、その回転方向に対して逆向きに流れる空気流Kの抗力を受け難くなる。また、羽根2の外面に空気流Kが当たることにより、羽根2に揚力が生じるようになり、羽根2の内面が受ける抗力とともに、羽根2の外面に生じる揚力によっても羽根2の回転力が高められる。 In this way, by forming the sail type formed by the thin plate member in which the blade 2 is curved, when the blade 2 rotates, it is difficult to receive the drag of the air flow K flowing in the direction opposite to the rotation direction. . Further, when the air flow K hits the outer surface of the blade 2, lift force is generated on the blade 2, and the rotational force of the blade 2 is increased by the lift force generated on the outer surface of the blade 2 as well as the drag received by the inner surface of the blade 2. It is done.
 次に、図3において紙面下方側を風力発電機1の正面側とし、この正面側(風上側)から風Wが吹いてくる場合を説明する。この図3に示すように、回転する羽根2のうち、風上側に配置される2枚の羽根2の間の領域βが風Wに対して大きく開口する瞬間がある。そして、この風Wは、上流側の2枚の羽根2の間を通過して下流側に配置される羽根2の内面全体に当たるようになっている。 Next, the case where the wind W blows from the front side (windward side) will be described with the lower side in FIG. 3 being the front side of the wind power generator 1 in FIG. As shown in FIG. 3, among the rotating blades 2, there is a moment when the region β between the two blades 2 disposed on the windward side is greatly opened with respect to the wind W. And this wind W hits the whole inner surface of the blade | wing 2 which passes between the two blade | wings 2 of an upstream side, and is arrange | positioned downstream.
 より詳しく羽根2の配置について説明すると、下流側の羽根2の内面に風Wが当たる特定の瞬間では、下流側の羽根2の内面が上流方向を向き、下流側の羽根2の回転方向の先端縁F及び後端縁Bから上流方向に平行に延びる仮想線Vの間の領域γを、上流側の2枚の羽根2が遮らないように各羽根2が配置されている。即ち、図2に示すように、風力発電機1の正面視において、下流側の羽根2の内面全体が露呈するように、上流側の2枚の羽根2の間が大きく開口される瞬間がある。 The arrangement of the blades 2 will be described in more detail. At a specific moment when the wind W hits the inner surface of the downstream blade 2, the inner surface of the downstream blade 2 faces the upstream direction and the tip of the downstream blade 2 rotates in the rotational direction. Each blade 2 is arranged so that the upstream two blades 2 do not block the region γ between the imaginary line V extending parallel to the upstream direction from the edge F and the rear edge B. That is, as shown in FIG. 2, in the front view of the wind power generator 1, there is a moment when a large opening is formed between the two upstream blades 2 so that the entire inner surface of the downstream blade 2 is exposed. .
 このようにすることで、風Wを受けて羽根2が回転して発電機10による発電が行われる際に、下流側の羽根2の内面が受ける抗力により発電機10に回転力を与えられるようになり、かつ上流側の2枚の羽根2に遮られずに通過した風Wを、下流側の羽根2の内面全体に受けられるようにすることで、下流側の羽根2が瞬間的に大きな抗力を得られるようにし、発電機10に与える回転力を高めて発電効率を向上させることができる。 By doing in this way, when the blades 2 are rotated by receiving the wind W and the power generation by the generator 10 is performed, a rotational force is applied to the generator 10 by the drag received by the inner surface of the downstream blades 2. And the wind W that has passed without being blocked by the two upstream blades 2 is received by the entire inner surface of the downstream blade 2, so that the downstream blade 2 is instantaneously large. It is possible to improve the power generation efficiency by obtaining a drag force and increasing the rotational force applied to the generator 10.
 また、前述したように、円周方向における羽根2の掃過領域(全α領域+全β領域)のうち、略半分の領域(全α領域)が羽根2により占められていることで、風Wを受ける羽根2の面積を確保しつつ、円周方向に等間隔に設けられた各羽根2の間には、羽根2の大きさとほぼ同じ大きさの開口が形成され、この開口から風Wが吹き抜けるようになり、下流側の羽根2の内面全体に充分な量の風Wを当てることができ、発電機10に与える回転力を高めて発電効率を向上させることができる。 Further, as described above, of the sweep region (total α region + total β region) of the blades 2 in the circumferential direction, approximately half of the region (total α region) is occupied by the blades 2. While securing the area of the blade 2 that receives W, an opening having the same size as that of the blade 2 is formed between the blades 2 provided at equal intervals in the circumferential direction. As a result, a sufficient amount of wind W can be applied to the entire inner surface of the downstream blade 2, and the rotational force applied to the generator 10 can be increased to improve the power generation efficiency.
 また、前述したように、羽根2の回転の中心部には、風Wが遮られずに通り抜けられる空間部13が形成されることで、羽根2の回転の中心部には、風Wの流れに乱れを生じさせる回転軸等の部材が配置されずに済むようになり、この空間部13を通過した風Wが下流側の羽根2の内面全体に当たって、発電機10に与える回転力を高めて発電効率を向上させることができる。 Further, as described above, the space 13 through which the wind W passes without being blocked by the rotation of the blades 2 is formed at the center of the rotation of the blades 2. The members such as the rotating shaft that cause the disturbance are not disposed, and the wind W that has passed through the space 13 hits the entire inner surface of the blade 2 on the downstream side to increase the rotational force applied to the generator 10. Power generation efficiency can be improved.
 なお、背景技術で述べたような風力発電機の羽根では、厚み寸法が大きく、かつ羽根が径方向に向かって延びるように大きく傾いている場合には、下流側に配置される羽根の内面が風Wの上流方向ではなく、回転方向の後方側を向くようになり、この下流側の羽根は、その内面全体で効率的に風Wを受けることができず、さらに、上流側の羽根の膨出された部位が、下流側の羽根の回転方向の先端縁及び後端縁から上流方向に平行に延びる仮想線の間の領域を遮ってしまうようになり、上流側の羽根に当たって流れ方向が変化して風力が減衰した風Wしか下流側の羽根に当てることができないようになっている。 In addition, in the blade of a wind power generator as described in the background art, when the thickness dimension is large and the blade is inclined so as to extend in the radial direction, the inner surface of the blade disposed on the downstream side is Instead of the upstream direction of the wind W, it faces the rear side in the rotational direction, and the downstream blade cannot receive the wind W efficiently on the entire inner surface thereof, and further, the upstream blade expands. The ejected part blocks the area between the imaginary lines extending in parallel to the upstream direction from the leading edge and the trailing edge in the rotational direction of the downstream blade, and the flow direction changes when it hits the upstream blade. Thus, only the wind W attenuated by the wind force can be applied to the downstream blades.
 これに対して本発明の風力発電機1では、下流側の羽根2の内面に風Wが当たる特定の瞬間では、下流側の羽根2の内面が上流方向を向き、下流側の羽根2の回転方向の先端縁F及び後端縁Bから上流方向に平行に延びる仮想線Vの間の領域γを、上流側の2枚の羽根2が遮らないように各羽根2が配置されている。そのため、上流側の2枚の羽根2に遮られずに通過した風Wを、下流側の羽根2の内面全体に受けられるようにし、かつ下流側の羽根2が瞬間的に大きな抗力を得られるようになっている。 On the other hand, in the wind power generator 1 of the present invention, at a specific moment when the wind W hits the inner surface of the downstream blade 2, the inner surface of the downstream blade 2 faces the upstream direction and the downstream blade 2 rotates. Each blade 2 is arranged so that the upstream two blades 2 do not block the region γ between the imaginary line V extending parallel to the upstream direction from the leading edge F and the rear edge B in the direction. Therefore, the wind W that has passed without being blocked by the two upstream blades 2 can be received by the entire inner surface of the downstream blade 2, and the downstream blade 2 can instantaneously obtain a large drag. It is like that.
 次に、実施例2に係るセール型風力発電機1aにつき、図5を参照して説明する。なお、前記実施例1に示される構成部分と同一構成部分に付いては同一符号を付して重複する説明を省略する。 Next, a sail type wind power generator 1a according to the second embodiment will be described with reference to FIG. Note that the same components as those shown in the first embodiment are denoted by the same reference numerals and redundant description is omitted.
 図5に示すように、実施例2における風力発電機1aは、3枚の羽根2aを有している。そして、3枚の羽根2aが、その回転方向に沿って平面視において120度毎に等間隔に配置されている。なお、回転軸9を中心として円周方向に120度毎に分けられた角度領域θのうち、略半分の領域αが羽根2aで占められており、残りの略半分の領域βが風W(流体)が吹き抜ける開口となっている。 As shown in FIG. 5, the wind power generator 1a according to the second embodiment has three blades 2a. The three blades 2a are arranged at equal intervals every 120 degrees in a plan view along the rotation direction. Of the angular region θ divided by 120 degrees in the circumferential direction around the rotation axis 9, approximately half of the region α is occupied by the blades 2 a, and the remaining approximately half of the region β is wind W ( Fluid).
 なお、実施例2の羽根2aは、実施例1のものよりも相対的に大きく形成され、この羽根2aの内面は、より広い面積で風Wを受けることができる。さらに、羽根2aの回転方向の後端縁Bが先端縁Fよりも回転軸9から離れるように傾けられて配置されており、この羽根2aの傾きは、実施例1よりも大きくなっており、羽根2aの内面に当たった風Wを羽根2aの回転方向と逆向きに受け流し易くなっている。 In addition, the blade | wing 2a of Example 2 is formed relatively larger than the thing of Example 1, and the inner surface of this blade | wing 2a can receive the wind W in a wider area. Furthermore, the rear end edge B of the blade 2a in the rotational direction is disposed so as to be further away from the rotation shaft 9 than the front end edge F, and the inclination of the blade 2a is larger than that of the first embodiment. The wind W hitting the inner surface of the blade 2a is easily received in the direction opposite to the rotation direction of the blade 2a.
 また、下流側の羽根2aの内面に風Wが当たる瞬間には、下流側の羽根2aの内面が上流方向を向き、下流側の羽根2aの回転方向の先端縁F及び後端縁Bから上流方向に平行に延びる仮想線Vの間の領域γを、上流側の2枚の羽根2aが遮らないように各羽根2aが配置されている。 In addition, at the moment when the wind W hits the inner surface of the downstream blade 2a, the inner surface of the downstream blade 2a faces the upstream direction, upstream from the leading edge F and the trailing edge B in the rotational direction of the downstream blade 2a. Each blade 2a is arranged so that the upstream two blades 2a do not block the region γ between the virtual lines V extending in parallel with the direction.
 このように、3枚羽根2aであっても、風Wを受けて羽根2aが回転して発電機10による発電が行われる際に、下流側の羽根2aの内面が受ける抗力が発電機10に回転力を与えるようになり、かつ上流側の2枚の羽根2aに遮られずに通過した風Wを、下流側の羽根2aの内面全体に受けられるようにし、瞬間的に大きな抗力を得られるようにして発電機10に与える回転力を高めて発電効率を向上させることができる。 Thus, even with the three blades 2a, when the blades 2a are rotated by receiving the wind W and the power generation by the generator 10 is performed, the resistance received by the inner surface of the downstream blades 2a is applied to the generator 10. A rotational force is applied, and the wind W that has passed without being blocked by the two upstream blades 2a can be received by the entire inner surface of the downstream blade 2a, and a large drag can be instantaneously obtained. Thus, the rotational force applied to the generator 10 can be increased to improve the power generation efficiency.
 次に、実施例3に係るセール型風力発電機1bにつき、図6を参照して説明する。なお、前記実施例1に示される構成部分と同一構成部分に付いては同一符号を付して重複する説明を省略する。 Next, a sail type wind power generator 1b according to the third embodiment will be described with reference to FIG. Note that the same components as those shown in the first embodiment are denoted by the same reference numerals and redundant description is omitted.
 図6に示すように、実施例3における風力発電機1bは、6枚の羽根2bを有している。そして、6枚の羽根2bが、その回転方向に沿って平面視において60度毎に等間隔に配置されている。なお、回転軸9を中心として円周方向に60度毎に分けられた角度領域θのうち、略半分の領域αが羽根2bで占められており、残りの略半分の領域βが風W(流体)が吹き抜ける開口となっている。 As shown in FIG. 6, the wind power generator 1b according to the third embodiment has six blades 2b. The six blades 2b are arranged at equal intervals every 60 degrees in a plan view along the rotation direction. Of the angular region θ divided by 60 degrees in the circumferential direction around the rotation axis 9, approximately half of the region α is occupied by the blades 2b, and the remaining approximately half of the region β is wind W ( Fluid).
 なお、実施例3の羽根2bは、実施例1のものよりも相対的に小さく形成され、風力発電機1bの下流側に風Wの抗力を受ける羽根2bを3枚配置できるようになっている。さらに、羽根2bは、実施例1と同様に、揚力を生じさせる翼形状となっているが、この羽根2bは、その幅方向において前端寄りの位置E(実施例1の図4参照)が、実施例1のものよりも厚く形成されている。そのため羽根2bの揚力を高めることができるようになっている。 In addition, the blade | wing 2b of Example 3 is formed relatively smaller than the thing of Example 1, and can arrange | position three blade | wing 2b which receives the drag of the wind W in the downstream of the wind power generator 1b. . Further, the blade 2b has a blade shape that generates lift as in the first embodiment, but the blade 2b has a position E (see FIG. 4 of the first embodiment) closer to the front end in the width direction. It is thicker than that of the first embodiment. Therefore, the lift of the blades 2b can be increased.
 また、下流側の羽根2bの内面に風Wが当たる瞬間には、下流側の羽根2bの内面が上流方向を向き、下流側の羽根2bの回転方向の先端縁F及び後端縁Bから上流方向に平行に延びる仮想線Vの間の領域γを、上流側の2枚の羽根2bが遮らないように各羽根2bが配置されている。 Further, at the moment when the wind W hits the inner surface of the downstream blade 2b, the inner surface of the downstream blade 2b faces the upstream direction, and upstream from the leading edge F and the trailing edge B in the rotational direction of the downstream blade 2b. Each blade 2b is arranged so that the upstream two blades 2b do not block the region γ between the virtual lines V extending in parallel with the direction.
 このように、6枚羽根2bであっても、風Wを受けて羽根2bが回転して発電機10による発電が行われる際に、下流側の羽根2bの内面が受ける抗力により発電機10に回転力を与えられるようになり、かつ上流側の羽根2bに遮られずに通過した風Wを、下流側の羽根2bの内面全体に受けられるようにすることで、瞬間的に大きな抗力を得られるようにし、発電機10に与える回転力を高めて発電効率を向上させることができる。 Thus, even with the six blades 2b, when the blades 2b are rotated by receiving the wind W and the power generation by the generator 10 is performed, the generator 10 receives the force generated by the inner surface of the downstream blades 2b. A large drag can be obtained instantaneously by allowing the wind W, which has been able to be given a rotational force and passed without being blocked by the upstream blade 2b, to be received by the entire inner surface of the downstream blade 2b. Thus, the rotational force applied to the generator 10 can be increased to improve the power generation efficiency.
 次に、実施例4に係るセール型海流発電機14につき、図7を参照して説明する。なお、前記実施例1に示される構成部分と同一構成部分に付いては同一符号を付して重複する説明を省略する。 Next, the sail-type ocean current generator 14 according to the fourth embodiment will be described with reference to FIG. Note that the same components as those shown in the first embodiment are denoted by the same reference numerals and redundant description is omitted.
 図7に示したのは、海底に設置されて海流(水力,流体)から羽根2が受けるエネルギーにより回転軸9を回転させて発電機10を駆動する海流発電機14(水力発電機)である。この実施例4における海流発電機14では、上部の回転軸8に発電機15が接続されている。この発電機10は、浸水を防ぐように構成された水中用発電機15となっている。 FIG. 7 shows an ocean current generator 14 (hydroelectric generator) that is installed on the seabed and rotates the rotating shaft 9 by the energy received by the blades 2 from the ocean current (hydropower, fluid) to drive the generator 10. . In the ocean current generator 14 according to the fourth embodiment, a generator 15 is connected to the upper rotary shaft 8. This generator 10 is an underwater generator 15 configured to prevent inundation.
 また、実施例4では、実施例1における基礎部3の代りにバージ3’が設けられている。このバージ3’は、その内部に空気を溜めることで浮力を生じさせる密閉された船体構造となっている。さらに、バージ3’の内部には、バラストとして砕石16が収容されており、バージ3’から空気を抜くと海底に沈むようになっている。 In the fourth embodiment, a barge 3 ′ is provided instead of the base portion 3 in the first embodiment. The barge 3 ′ has a sealed hull structure that creates buoyancy by storing air therein. Furthermore, crushed stone 16 is accommodated as ballast inside the barge 3 ', and when the air is extracted from the barge 3', it sinks to the seabed.
 なお、海流発電機14を海洋の所定の設置場所まで移動させる際には、バージ3’に設けられた給排気バルブ17から空気を給気してバージ3’に浮力を発生させるとともに、この海流発電機14を作業船等により曳航して移動させる。そして、海流発電機14の設置場所に到着したら、給排気バルブ17から空気を排気するとともにバージ3’内に海水を注入し、バージ3’の浮力を失わせて、かつアンカーチェーン18により海底に固定して設置するようになっている。 When the ocean current generator 14 is moved to a predetermined installation location in the ocean, air is supplied from an air supply / exhaust valve 17 provided in the barge 3 'to generate buoyancy in the barge 3', and this ocean current The generator 14 is towed and moved by a work ship or the like. When arriving at the installation location of the ocean current generator 14, air is exhausted from the air supply / exhaust valve 17, seawater is injected into the barge 3 ′, the buoyancy of the barge 3 ′ is lost, and the anchor chain 18 returns to the seabed. It is designed to be fixed.
 そして、図7に示すように、羽根2が海流を受けて開店し始めると、海流発電機14の正面視において、下流側の羽根2の内面全体が露呈するように、上流側の2枚の羽根2の間が大きく開口される瞬間がある。 Then, as shown in FIG. 7, when the blade 2 starts to open in response to the ocean current, the upstream two sheets are exposed so that the entire inner surface of the downstream blade 2 is exposed in the front view of the ocean current generator 14. There is a moment when the gap between the blades 2 is greatly opened.
 このようにすることで、海流を受けて羽根2が回転して発電機10による発電が行われる際に、下流側の羽根2の内面が受ける抗力により発電機10に回転力を与えられるようになり、かつ上流側の2枚の羽根2に遮られずに通過した海流を、下流側の羽根2の内面全体に受けられるようにすることで、下流側の羽根2が瞬間的に大きな抗力を得られるようにし、発電機10に与える回転力を高めて発電効率を向上させることができる。 By doing in this way, when the blade | wing 2 rotates in response to an ocean current and the power generation by the generator 10 is performed, a rotational force is given to the generator 10 by the drag which the inner surface of the downstream blade | wing 2 receives. The downstream blades 2 instantaneously receive a large drag by allowing the ocean current that has passed without being blocked by the two upstream blades 2 to be received by the entire inner surface of the downstream blades 2. As a result, it is possible to improve the power generation efficiency by increasing the rotational force applied to the generator 10.
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.
 例えば、前記実施例1から4では、自然エネルギーにより生じる風や海流により羽根2を回転させて発電を行っているが、発電に用いる流体は風Wや海流に限らず、人工的に作られた機械要素から生じる空気流や水流であってもよく、所定の機械装置の空気ダクトや配管などの中に、本発明のセール型風力・水力発電機を設置して空気ダクトや配管内を流れる流体により発電を行うようにしてもよい。 For example, in Examples 1 to 4, power generation is performed by rotating the blades 2 by wind or ocean current generated by natural energy, but the fluid used for power generation is not limited to the wind W or ocean current, but is artificially created. It may be an air flow or a water flow generated from a machine element, and a fluid that flows in an air duct or pipe by installing the sail type wind power / hydroelectric generator of the present invention in an air duct or pipe of a predetermined machine device. You may make it generate electric power by.
 また、前記実施例1から4では、基礎部3から鉛直方向に立設される支柱4を配置して、この支柱4及び上部の繋ぎ梁5により上部の回転軸8を支持しているが、支柱4や上部の回転軸8は必ずしも必要ではなく、例えば、基礎部3の上面に羽根2の下端を固定したターンテーブル等を設置するとともに、羽根2の上端同士は、支持部材11(羽根支持部)のみで連結した構成とし、上部の回転軸8及び支柱4等を省略した構成としてもよい。 Further, in the first to fourth embodiments, the support column 4 standing in the vertical direction from the base portion 3 is arranged, and the upper rotating shaft 8 is supported by the support column 4 and the upper connecting beam 5. The support column 4 and the upper rotating shaft 8 are not necessarily required. For example, a turntable or the like in which the lower end of the blade 2 is fixed to the upper surface of the base portion 3 is installed, and the upper ends of the blade 2 are connected to the support member 11 (blade support). Part) only, and may be configured such that the upper rotating shaft 8, the support column 4 and the like are omitted.
 また、前記実施例4では、海流発電機14を海底に設置して発電を行っているが、この海流発電機14は、海底に設置するのみならず、河川や水路などに設置してもよく、水の流れにより発電を行う水力発電機として用いてもよい。 In the fourth embodiment, the ocean current generator 14 is installed on the seabed to generate power. However, the ocean current generator 14 may be installed not only on the ocean floor but also in a river or a water channel. Alternatively, it may be used as a hydroelectric generator that generates power by the flow of water.
1,1a,1b  風力発電機
2,2a,2b  羽根
3        基礎部
3’       バージ
4        支柱
5        繋ぎ梁
6,7      軸受部
8,9      回転軸
10       発電機
11,12    支持部材(羽根支持部)
13       空間部
14       海流発電機(水力発電機)
15       水中用発電機
16       砕石
17       給排気バルブ
18       アンカーチェーン
1, 1a, 1b Wind generator 2, 2a, 2b Blade 3 Base 3 'Barge 4 Strut 5 Connecting beam 6, 7 Bearing portion 8, 9 Rotating shaft 10 Generator 11, 12 Support member (blade support)
13 Space 14 Ocean Current Generator (Hydroelectric Generator)
15 Underwater generator 16 Crushed stone 17 Supply / exhaust valve 18 Anchor chain

Claims (4)

  1.  発電機に回転力を伝達する回転軸を有し、該回転軸を中心とする円周方向に少なくとも3枚の羽根が等間隔に設けられ、該羽根の回転方向の後端縁が前記回転軸から離れるように該羽根が傾けられており、前記回転軸に直交する方向から流れてくる流体から前記羽根が受けるエネルギーにより前記回転軸を回転させて発電機を駆動する風力・水力発電機であって、
     前記羽根が湾曲された薄板部材により形成されたセール型をなし、前記流体は、該流体の上流側にある所定の2枚の羽根の間を通過して下流側の羽根の内面全体に当たるとともに、該流体が当たる瞬間には、前記下流側の羽根の内面が上流方向を向き、該下流側の羽根の回転方向の先端縁及び後端縁から前記上流方向に平行に延びる仮想線の間の領域を、前記上流側の羽根が遮らないように前記各羽根が配置されていることを特徴とするセール型風力・水力発電機。
    A rotating shaft for transmitting a rotational force to the generator; at least three blades are provided at equal intervals in a circumferential direction around the rotating shaft, and a trailing edge of the blade in the rotating direction is the rotating shaft The blade is inclined so as to be away from the wind turbine, and is a wind power / hydroelectric generator that drives the generator by rotating the rotating shaft by the energy received by the blade from the fluid flowing from the direction orthogonal to the rotating shaft. And
    The blade is formed as a sail type formed by a curved thin plate member, and the fluid passes between two predetermined blades on the upstream side of the fluid and hits the entire inner surface of the downstream blade, At the moment of contact with the fluid, the inner surface of the downstream blade is directed in the upstream direction, and a region between imaginary lines extending in parallel with the upstream direction from the leading edge and the trailing edge in the rotational direction of the downstream blade. Each of the blades is arranged so that the upstream blades are not obstructed.
  2.  前記円周方向における前記羽根の掃過領域のうち、略半分の領域が前記羽根により占められていることを特徴とする請求項1に記載のセール型風力・水力発電機。 The sail type wind power / hydraulic power generator according to claim 1, wherein approximately half of the sweep region of the blade in the circumferential direction is occupied by the blade.
  3.  前記羽根の長手方向の端部が前記回転軸に連結された羽根支持部により支持され、前記羽根の回転の中心部には、前記流体が遮られずに通り抜けられる空間部が形成されることを特徴とする請求項1または2に記載のセール型風力・水力発電機。 A longitudinal end portion of the blade is supported by a blade support portion connected to the rotation shaft, and a space portion through which the fluid passes without being blocked is formed at a rotation center portion of the blade. The sail-type wind power / hydraulic power generator according to claim 1 or 2.
  4.  前記羽根は、揚力を生じさせる翼形状となっていることを特徴とする請求項1ないし3のいずれかに記載のセール型風力・水力発電機。 The sail type wind power / hydraulic power generator according to any one of claims 1 to 3, wherein the blade has a blade shape that generates lift.
PCT/JP2012/054107 2012-02-21 2012-02-21 Sail-type wind and water power generators WO2013124968A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013523423A JP5409969B1 (en) 2012-02-21 2012-02-21 Sale type wind power and hydro power generator
PCT/JP2012/054107 WO2013124968A1 (en) 2012-02-21 2012-02-21 Sail-type wind and water power generators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054107 WO2013124968A1 (en) 2012-02-21 2012-02-21 Sail-type wind and water power generators

Publications (1)

Publication Number Publication Date
WO2013124968A1 true WO2013124968A1 (en) 2013-08-29

Family

ID=49005191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054107 WO2013124968A1 (en) 2012-02-21 2012-02-21 Sail-type wind and water power generators

Country Status (2)

Country Link
JP (1) JP5409969B1 (en)
WO (1) WO2013124968A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370456A (en) * 1989-08-04 1991-03-26 Japan Servo Co Ltd Rotor drive
JP2015058049A (en) * 2013-09-17 2015-03-30 株式会社コーワ Rotary cleaning body, suction tool for cleaner, and vacuum cleaner
US9777709B2 (en) 2015-01-08 2017-10-03 Hans Dysarsz Translating foil system for harvesting kinetic energy from wind and flowing water
WO2022057493A1 (en) * 2020-09-18 2022-03-24 宁波弗德消防科技有限公司 Split-type blade, fluid drive device and fluid drive proportional mixer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004910A1 (en) * 1980-02-09 1981-08-20 Götz-Gerd Prof. Dr.med. 4400 Münster Kuhn Wind-driver rotor with vertical shaft and blades - has hollow body filled with air or gas and cord joining tips of aerodynamic blades, and may be used as electric generator
JP2006067784A (en) * 2004-07-28 2006-03-09 Shiro Kanehara Rotating machine
JP2009185667A (en) * 2008-02-05 2009-08-20 Maekawa Seisakusho:Kk Generator
JP2009191744A (en) * 2008-02-14 2009-08-27 Yamaguchi Prefecture Vertical shaft wind turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368537B1 (en) * 2001-11-08 2003-01-20 学校法人東海大学 Straight wing type windmill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004910A1 (en) * 1980-02-09 1981-08-20 Götz-Gerd Prof. Dr.med. 4400 Münster Kuhn Wind-driver rotor with vertical shaft and blades - has hollow body filled with air or gas and cord joining tips of aerodynamic blades, and may be used as electric generator
JP2006067784A (en) * 2004-07-28 2006-03-09 Shiro Kanehara Rotating machine
JP2009185667A (en) * 2008-02-05 2009-08-20 Maekawa Seisakusho:Kk Generator
JP2009191744A (en) * 2008-02-14 2009-08-27 Yamaguchi Prefecture Vertical shaft wind turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370456A (en) * 1989-08-04 1991-03-26 Japan Servo Co Ltd Rotor drive
JP2015058049A (en) * 2013-09-17 2015-03-30 株式会社コーワ Rotary cleaning body, suction tool for cleaner, and vacuum cleaner
US9777709B2 (en) 2015-01-08 2017-10-03 Hans Dysarsz Translating foil system for harvesting kinetic energy from wind and flowing water
WO2022057493A1 (en) * 2020-09-18 2022-03-24 宁波弗德消防科技有限公司 Split-type blade, fluid drive device and fluid drive proportional mixer

Also Published As

Publication number Publication date
JPWO2013124968A1 (en) 2015-05-21
JP5409969B1 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN104471239B (en) Vertical-shaft wind with flow control and hydraulic turbo machine
US8277168B2 (en) Tidal power apparatus
JP2005502821A (en) Underwater ducted turbine
JP2008025518A (en) Wind turbine generator
JP2007177797A (en) Hydraulic power generating device
JP5409969B1 (en) Sale type wind power and hydro power generator
US20110187112A1 (en) Hydro-kinetically powered electrical generator power head
TW201544683A (en) Water wheel impeller blade type electric power generating apparatus
US20080019832A1 (en) Turbine/rotorcraft/oar blade
CN105134454B (en) Slow speed vertical axle water flow generator
JP5941899B2 (en) Vertical axis windmill
JP2005214142A (en) Power generating device
KR101015572B1 (en) Water mill turbine developing tide
US20140102088A1 (en) Natural energy extraction apparatus
JP6624349B1 (en) Rectifier
JP6189025B2 (en) Energy conversion mechanism
SK287751B6 (en) Flow turbine with pivoted blades
KR101046917B1 (en) Fan generator
KR101183172B1 (en) Horizontal Type Windmill And Marine Based Horizontal Type Power Generator
JP6077295B2 (en) Power converter
JP6449372B2 (en) Design method of water flow control plate
JP5162736B2 (en) Installation method of turbine blade in running water use
KR100928126B1 (en) Transverse axle multistage windpower turbine
WO2020161819A1 (en) Rectifier
JPH08159008A (en) Natural flow water impeller independent type power hydraulic turbine of automatic omnidirectional type

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013523423

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869117

Country of ref document: EP

Kind code of ref document: A1