WO2013124901A1 - Optical-projection-type display apparatus, portable terminal, and program - Google Patents

Optical-projection-type display apparatus, portable terminal, and program Download PDF

Info

Publication number
WO2013124901A1
WO2013124901A1 PCT/JP2012/001263 JP2012001263W WO2013124901A1 WO 2013124901 A1 WO2013124901 A1 WO 2013124901A1 JP 2012001263 W JP2012001263 W JP 2012001263W WO 2013124901 A1 WO2013124901 A1 WO 2013124901A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
image
projector
contour
shape
Prior art date
Application number
PCT/JP2012/001263
Other languages
French (fr)
Japanese (ja)
Inventor
清水 宏
▲吉▼澤 和彦
西島 英男
益岡 信夫
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2012/001263 priority Critical patent/WO2013124901A1/en
Publication of WO2013124901A1 publication Critical patent/WO2013124901A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/147Optical correction of image distortions, e.g. keystone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback

Definitions

  • the present invention provides an optical projection type display device that can easily correct distortion of a projected image and freely adjust it from the viewer's perspective when installing an optical projection type display device (hereinafter referred to as a projector) used in a conference or a presentation. It is about.
  • a projector optical projection type display device
  • projectors and screens are not always installed like movie theaters. Especially, projectors used in small to medium-sized conferences, etc., are installed on the desks of conference rooms at each meeting. In addition, it is common to use a screen that is unfolded and projected at each meeting.
  • the optical axis of the projection optical system of the projector and the screen are in a vertical relationship, the image projected from the projector is correctly projected on the screen, but if the axis is tilted, the projected image is projected on the screen. Projected in a distorted shape. And, it is time-consuming and difficult to maintain accuracy because it is necessary to check the projected image by visual observation to install the projector so that the optical system optical axis of the projector and the positional relationship of the screen are kept vertical. is there.
  • Patent Document 1 of the prior art document describes an invention in which a projection screen is photographed with a mobile phone and the image is transmitted to the projector by e-mail to correct the distortion of the projection screen.
  • Japanese Patent Application Laid-Open No. 2004-228561 describes a scheme for correcting distortion of a projection screen by inputting from a screen of a terminal device with a touch panel.
  • the problem to be solved by the present invention is that the projector projection can be freely adjusted so as to minimize the distortion when the distortion of the projection screen of the projector is viewed from a free viewpoint that can be specified by a conference participant. It is to provide a video distortion correction means.
  • the present invention uses a camera and a terminal with a touch panel to shoot a projection screen onto a projector screen, automatically detects the outline of the projection screen, and corrects the contour shape with a finger or a pen on the screen of the terminal with a touch panel.
  • a correction amount for correcting the distortion of the projection screen is acquired, and quantitative distortion is added to the shape of the two-dimensional image data displayed on the projection image display unit of the projector according to the correction amount, or the projection image is displayed. This is achieved by changing the position and inclination of the part.
  • the optical projection display device, portable terminal, and program of the present invention suppress distortion of a projected image projected on a screen by a simple operation using a camera and a terminal with a touch panel when a projector and a screen are installed in a meeting or the like. An easy-to-see projector image can be obtained.
  • 6 is a flowchart showing an operation of inputting a distortion correction amount of a projected image and performing distortion correction in the optical projection display device, the portable terminal, and the program. It is explanatory drawing which shows the operation
  • FIG. 1 is an explanatory diagram showing a positional relationship and operation images between devices constituting an optical projection display device, a portable terminal, and a program according to the present invention.
  • the liquid crystal projector 10000 projects, for example, an image displayed on the projector liquid crystal panel irradiated with light from the built-in back surface onto the screen 10020 using a projection lens.
  • the projected image 10030 is captured by the camera 10002 for the purpose described later.
  • the projected image 10030 is preferably projected in the same rectangular shape as the projected content displayed on the projector liquid crystal, but the location of the LCD projector 10000 and the screen 10020 is limited or installed.
  • the projection is distorted because the relative positional relationship due to the influence of accuracy is not parallel.
  • the mobile terminal 10010 captures a projected image 10030 projected on the screen 10020 by a built-in or attachable camera 10011 and captures the image.
  • the portable terminal 10010 performs photographing from the viewpoint of the user who actually views the projected video 10030 at a position different from the liquid crystal projector 10000.
  • information for correcting the projection video 10030 projected in the distorted form is transmitted to the liquid crystal projector 10000, and the liquid crystal projector 10000 determines the shape of the projection video 10030 according to the information. Correct.
  • FIG. 2 is an explanatory diagram for explaining the operation of correcting distortion of a projected image by the optical projection display device, portable terminal, and program according to the present invention.
  • FIG. 2A shows a state in which the installation position of the liquid crystal projector 20000 is projected from the oblique position rather than the front with respect to the screen 20010.
  • the projected image 20020 projected on the screen 20010 is projected at a short distance from the liquid crystal projector and projected at a long distance. Therefore, as shown in the figure, the light is projected in a trapezoidal shape in which the height on the right side is larger than that on the left side.
  • the horizontal distortion has been described, but this phenomenon occurs in the same manner when it is projected obliquely in the vertical direction.
  • FIG. 2 (c) shows a case where the projected image 200040 is corrected so that it looks like a rectangle when the screen 20010 is viewed from the front according to the present invention.
  • the liquid crystal projector 20000 shown in FIG. 2 (a) is correctly installed in front of the screen 20010 and the user's line of sight is in front of the screen 20010, it can be viewed in this way without correction.
  • Fig. 2 (a) it is difficult to place the installation position of the liquid crystal projector 20000 in the correct position depending on the arrangement of the desk in the place of use and the installation position of the screen. In the present invention, this correction method will be specifically described.
  • FIG. 3 is an explanatory diagram showing an operation procedure for correcting distortion of a projected image projected by the optical projection display device, portable terminal, and program according to the present invention using the portable terminal.
  • FIG. 3 (a) shows a portable terminal configured by a screen with a touch panel built in the portable terminal, with a screen shot by a camera built in or attached to the portable terminal 30000 described in FIG. 1 and a projected image projected on the screen.
  • the screen 30010 is displayed.
  • the user looking at the screen is not from the front of the screen but at a slightly shifted place, specifically, in this case, when viewing from the right side of the screen, and thus the displayed screen 30030 is also distorted. It is displayed in an oval form.
  • the projected image 30040 projected on the screen is distorted by combining the distortion generated due to the positional relationship between the screen and the liquid crystal projector shown in FIG. 2B and the distortion generated when the screen is viewed obliquely. Is displayed.
  • the mobile terminal 30000 uses the information such as the luminance difference on the screen using the projection image 30040 projected on the screen by light from the liquid crystal projector, and the projection image 30040 Contour information is detected, and based on the information, a projected contour 30050 is superimposed and displayed on the image displayed on the mobile terminal screen 30010 in the form indicated by the dotted line in the figure. Since this screen is composed of a display with a touch panel, it is possible to read event information that touched by the pen 30020 or a finger and the touched coordinates.
  • FIG. 3B is a screen in which the projection contour is manipulated with the pen 30020 to create a projection contour change line 30051.
  • the pen 30020 touches the end points of the four corners of the projected contour 30050 displayed in FIG. 3A for a predetermined time, for example, the pen 30020 enters a mode in which the end point moves with respect to the position of the pen tip. Each end point can be moved to a location desired by the user. In this way, the projection contour 30050 can be changed to the easy-to-see projection contour change line 30051 with the line of sight seen from the camera of the mobile terminal, that is, the viewer's line of sight.
  • the viewer can issue a correction instruction so that the viewer looks like a rectangle even though the screen is viewed obliquely.
  • Information on the projection contour change line 30051 and the projection contour 30050 extracted from the first photographed image is sent to the liquid crystal projector, and the liquid crystal projector corrects the projected video based on the information.
  • Fig. 3 (c) shows the correction operation of the liquid crystal projector when the projection image is actually corrected.
  • the projector illuminates the content displayed on the built-in projector liquid crystal surface 30060 from the rear surface of the projector liquid crystal with a light source, and projects the light onto the screen through the lens.
  • the pre-change projection contour screen 30070 which is an image before the correction displayed on the projector liquid crystal surface 30060, is made up of the projection contour change line 30051 and the projection contour 30050 extracted from the first photographed image. Coordinate conversion is performed based on the information, and the post-change projection contour screen 30070 is displayed as an image having a contour.
  • This post-change projection contour screen 30070 is a reverse transformation of the projection contour change line 30051 and the change in the coordinates of the projection contour 30050 extracted from the first photographed image, and as a result, the projection contour change line 30051 designated on the screen. The image corrected to the shape is projected.
  • the change of the projection contour change line is not limited to the method of performing a pen operation on the screen of the mobile terminal with a touch panel, for example, selection of the end points of the four corners using a cross key mounted or displayed on a mobile phone or the like.
  • the projection contour change line 30051 may be moved by moving the end point up and down, left and right by a minute step with the cross key. Specifically, after moving the cross key, for example, press the selection key in the center of the cross key to select one of the four corner endpoints, then move the endpoint selected with the cross key up and down, left and right again, When the end point comes to an appropriate position, an operation of confirming by pressing the selection key may be performed.
  • FIG. 4 is an explanatory diagram of the first embodiment showing a method of performing correction by moving the projector liquid crystal in the projector in the optical projection display device, portable terminal, and program of the present invention.
  • FIG. 4 (a) is an explanatory diagram including the optical configuration inside the liquid crystal projector and the positional relationship between the liquid crystal projector and the screen shown in FIG. 2 (a). It shows the positional relationship as if the projection.
  • the liquid crystal projector there is a projector liquid crystal 40000 constituting a display image, and an image of the projector liquid crystal 40000 transmitted by a light source (not shown) (described later in FIG. 9) is projected onto a screen 40020 through a lens 40010.
  • a light source not shown
  • FIG. 4B shows a state in which the projector liquid crystal 40001 is tilted with respect to the lens 40010 in order to solve this problem.
  • the focal length L of the lens the distance La1 from the middle point of the lens shown in FIG. 4B to the right edge of the screen, the distance Lb1 to the left edge, the distance La2 to the left edge of the projector liquid crystal, and the distance Lb2 to the right edge
  • FIG. 4C which is a general formula for lenses.
  • the distance of La2 and Lb2 is calculated according to the distance of La1 and Lb1 determined by the positional relationship between the liquid crystal projector and the screen, and tilted to align the projector liquid crystal with that position, the left edge on the screen You can focus on both sides of the right edge at the same time.
  • the left end of the projector liquid crystal that is, the portion corresponding to the right end on the screen is farther from the lens, and the length projected on the screen is also shortened. This also contributes to suppressing the phenomenon that the image shape projected on the screen shown in (b) is longer on the right side than on the left side.
  • the performance of the lens 40010 can minimize the range (image circle) that can project the entire surface of the projector liquid crystal with aberrations such as field distortion and field curvature below the allowable range on the screen. Contributes to improvement.
  • FIG. 5 is an explanatory diagram of a second embodiment showing a method of performing correction by making the projector liquid crystal movable in the projector in the optical projection display device, portable terminal, and program according to the present invention.
  • the image circle of the lens described in FIG. 4 is sufficiently large, that is, larger than the size of the projector liquid crystal 50000, and no aberration occurs in the projected image on the screen 50020 even if the projector liquid crystal is displaced, FIG. ), Even if the projector is installed at a position shifted from the center of the screen 50020, by shifting the projector liquid crystal 50001 to the left as shown in FIG. The light can be projected to the approximate center of the screen 50020. In this case, it is necessary to install the projector and the screen so that the positional relationship between them is vertical, but it is effective even with rough visual installation, for example, because the distance between the projector and the screen is large.
  • the positional relationship between the screen and the projector can be made closer to the vertical by a method described later with reference to FIG.
  • the movable structure of the projector liquid crystal in the projector can be simplified as compared with the method of FIG.
  • FIG. 6 is an explanatory diagram showing an example of the screen operation of the mobile terminal of the intelligent liquid crystal projector of the optical projection display device, the mobile terminal, and the program according to the present invention.
  • FIG. 6A a portable terminal screen 60010 on the portable terminal 60000 is a screen in which a projector projection screen is projected on the screen, similar to that described in FIG.
  • the projected image 60030 is projected at a deviated position as it protrudes from the screen.
  • a projected contour 60040 is superimposed on the projected image 60030 and displayed as a contour detection result.
  • the operation is simply to move the projected image left / right / up / down, it is not necessary to change the shape of the projection contour as shown in FIG. 3A, and the pen 60020 is at the four corner end points of the projection contour 60040.
  • the projected contour 60040 can be selected by touching an arbitrary place on the contour line in the same manner as in FIG. Next, by shifting the pen as shown in FIG. 6B, the projected contour 60041 can be brought to the approximate center of the mobile terminal screen, that is, in front of the user's line of sight.
  • the position is fixed, and the operation of moving the projected image to the projected contour position is performed by the method shown in FIG.
  • FIG. 6 (c) by directly entering a rough projection outline 60042 with a pen, it is possible to perform an operation of moving the projected video to a place that roughly matches the position.
  • the projection image 60030 changes its shape with the position of the projection contour 60042 as a target. If the control is performed so that the projection is performed without moving, simple position correction of the projected image can be performed.
  • the projection contour is moved after the selection of the end points of the four corners using a cross key mounted on or displayed on a mobile phone, for example, in addition to a method of performing a pen operation on the screen of the mobile terminal with a touch panel.
  • the projection contour 60040 may be moved by moving the end point up / down / left / right by a small step with the cross key. Specifically, after moving the cross key, for example, press the selection key in the center of the cross key to select one of the four corner endpoints, then move the endpoint selected with the cross key up and down, left and right again, When the end point comes to an appropriate position, an operation of confirming by pressing the selection key may be performed.
  • FIG. 7 is an explanatory diagram for explaining a method of measuring the distance between the projector and the screen in the optical projection display device, the portable terminal, and the program according to the present invention.
  • FIG. 7 (a) shows the positional relationship between the projector liquid crystal 70020, the lens 70000, and the screen 70010 in the liquid crystal projector, which is the same as FIG. 4 (a) and FIG. 5 (a).
  • the lens position L can be moved back and forth for focus adjustment.
  • the lens 70000 is closest to the projector liquid crystal 70020, that is, the focal plane is the farthest, and the lens 70000 is the farthest from the projector liquid crystal 7020, that is, the focal plane is closest. Scanning is performed at the stage of initial setting after installing the liquid crystal projector and screen.
  • FIG. 7B shows an example of a projection image 70030 projected from the projector when performing this scanning operation. This is an example of an image in which a mark with clear contrast is projected near the four corners as a test pattern. it's shown.
  • FIGS. 7C to 7F show the image analysis results of the camera 10011 with or with the projector shown in FIG. 1A when L is scanned.
  • the vertical axis represents the spatial frequency characteristic f of the image input to the camera.
  • the frequency characteristic is low when the focal plane and the screen are coincident, that is, not in focus, and the frequency characteristic f is high when in focus. .
  • the spatial frequency characteristic f the result of processing a captured image by fast Fourier transform may be used.
  • the contrast of adjacent pixels is compared. The case where the difference is locally large may be distinguished from the case where the light and dark changes gently, and may be handled as data of the spatial frequency characteristic f.
  • FIGS. 7 (c) to (f) show the results of extracting only the images around the marked portions with clear contrasts installed at the four corners of the projected image 70030, respectively.
  • the lens focal length L when the spatial frequency characteristic f is maximized for each point is different, that is, when the peak of the spatial frequency f is generated, the focus is as shown in FIG. 4B. It corresponds to La1 and Lb1.
  • La2 and Lb2 in Fig. 4 (b) are obtained at four positions at each of the four corners, and tilted as shown in Fig. 4 (b) so that the projector liquid crystal is installed at the position corresponding to the distance. Just do it.
  • FIG. 4 (b) the explanation is given on the two-dimensional plane, but by performing this on the three-dimensional plane, the four corners of the screen projected from the projector are focused, and as a result the whole projected screen is focused. It will be.
  • FIG. 8 is an explanatory diagram showing an example of a structure in which the projector liquid crystal is movable in the optical projection display device, the portable terminal, and the program according to the present invention.
  • FIG. 8 (a) shows a configuration for enabling the projector liquid crystal to be movable so as to translate left and right / up and down as shown in FIG.
  • the projector liquid crystal 80000 is mounted on a rail 80050 that can move up and down and left and right, and the projector liquid crystal moves right and left / up and down as the projector liquid crystal moves on the rail and the rail moves.
  • an actuator that can move under quantitative control using, for example, a stepping motor.
  • FIG. 8B shows a structure for enabling the projector liquid crystal to be tilted as shown in FIG.
  • the projector liquid crystal 80000 is mounted on the rail 80050 and is configured to be movable left / right / up / down.
  • the rail itself is configured to be capable of vertical axis rotation 80030 and horizontal axis rotation 80040, whereby the projector liquid crystal as shown in FIG. 4B can be tilted.
  • this rotational movement is achieved by using a stepping motor, a servo motor composed of a DC motor and a potentiometer, etc., and further providing a gear structure on the rotating shaft that accurately adjusts the angle by increasing the reduction ratio. It is possible to set an accurate tilt amount of the projector liquid crystal.
  • FIG. 9 is an explanatory diagram showing an operation of tilting using a specific configuration including structures around the projector liquid crystal in the optical projection display device, portable terminal, and program according to the present invention.
  • FIG. 9A shows a case where the projector liquid crystal is a single-plate color liquid crystal.
  • the transmissive color liquid crystal is illuminated by the light emitted from behind by the light source 90030, and forms an optical image as a content screen with colors and shapes for each pixel.
  • the optical image is projected by the lens 90000, and is focused on the screen 90010, so that the content displayed on the projector liquid crystal can be enlarged and projected onto the screen for viewing on a large screen.
  • the projector liquid crystal 90020 is tilted as shown in FIGS. 4B and 8B, it can be realized by rotating (90040) the entire module in which the projector liquid crystal 90020 and the light source 90030 are integrated. I can do it.
  • the projector liquid crystal is composed of different projector liquid crystals for R, G, and B, which are the three primary colors of light, and each is irradiated by an R, G, B filter or a three-color light source 90030.
  • the optical image is combined into one optical image by a cross prism 90050 and projected onto a screen 90010 through a lens 90000.
  • the cross prism has half mirrors in the two diagonal lines shown in the figure of the rectangular parallelepiped prism.
  • the light of the projector liquid crystal located above and below is reflected at right angles and sent to the right optical axis 90060, and left
  • the light from the projector liquid crystal goes straight and is sent to the same optical axis 90060, so that the optical images of the three projector liquid crystals can be synthesized and projected.
  • the three projector liquid crystal 90020s for three colors are tilted as described above, it is realized by rotating (90040) the entire module in which the combination of the projector liquid crystal 90020 and the light source 90030 is integrated. I can do it.
  • FIG. 10 is a block diagram showing the device configuration of the optical projection display device, portable terminal, and program according to the present invention.
  • FIG. 10 (a) is a block diagram of a portable terminal according to the present invention, which uses a general computer system configuration, and various hardwares are connected using a bus 100001 around a CPU 100000.
  • the hardware incorporates a hardware interface (not shown), and controls data input, storage, output, etc. according to control of a program operating on the CPU.
  • the terminal uses the CPU as a core to display LCD100010 as a display device, V-RAM (Video-RAM) 100060 for constructing an image to be displayed on the display device, and detects the touch of a pen or finger as a coordinate value while overlaid on the LCD Touch panel 100020 to be used, Flash memory 100070 for storing programs executed by CPU 100000 and basic data, various switches 100030 for turning on / off the terminal and adjusting backlight, RAM 100080 to be used as a work area by CPU 100000, for example, camera 100040, etc.
  • each device has an interface (not shown), and by connecting to the CPU bus 100001, input / output data to each device can be handled by a program operating on the CPU.
  • FIG. 10 (b) is a block diagram of the projector according to the present invention.
  • the intelligent liquid crystal projector uses the configuration of a general computer system, like the terminal shown in FIG. 10 (a).
  • Various hardware mainly the CPU 100100, is connected using a bus 100101, and each hardware has a hardware interface (not shown) to control data input, storage, and output on the CPU.
  • a hardware interface not shown
  • the intelligent LCD projector uses the CPU as a core, built-in or external projector 100110, V-RAM (Video-RAM) 100150 to construct an image to be sent to the projector for display, various switches for power ON / OFF and various operations 100120, flash memory 1000160 that saves programs executed by CPU60000 and basic data, RAM100170 that CPU100100 uses as work area, and IP address is assigned to each terminal with touch panel to construct LAN, and projections sent from each terminal
  • the wireless LAN router 100130 receives the video and the corrected projection contour data.
  • Each device has an interface (not shown) as described above, and by connecting to the CPU bus 100101, input / output data to each device can be handled by a program operating on the CPU.
  • FIG. 11 is an explanatory diagram showing the positional relationship between the projected image on the screen handled by the optical projection display device, portable terminal, and program of the present invention and the coordinates of the projector liquid crystal.
  • the positional relationship between the projected image 110010 projected onto the screen shown in FIG. 4 and the projector liquid crystal 110000 is constructed with a lens having a focal length L (110020) interposed therebetween.
  • the projector holds the xyz coordinate value data on the four corners a, b, c, and d of the built-in projector liquid crystal 110000, and the image of the projected video taken by the camera shown in FIG.
  • scanning is performed from a state where the lens is closest to the projector liquid crystal, that is, a state where the focal plane is farthest, to a state where the lens is the farthest from the projector liquid crystal, ie, the state where the focal plane is closest.
  • the coordinates in the space of the end points A, B, C, D at the four corners of the projected image 110010 can also be measured.
  • the focal length L of the lens is information determined at the design stage, and is also held in the same way.
  • the coordinates of the four corners of the projector liquid crystal corresponding to the distance from the screen to each endpoint of the projected image and the vectors (AL, BL, CL, DL) are the distances from the lens principal point to the four corners of the projector liquid crystal
  • the vectors (aL, bL, cL, dL) are calculated, and the projector liquid crystal is tilted according to the calculated values, whereby the projection image can be projected with the entire projected image in focus.
  • FIG. 12 is an explanatory diagram showing the relationship between the software structure and hardware of the optical projection display device, portable terminal, and program of the present invention.
  • FIG. 12 (a) shows the configuration of the terminal device, which operates under the overall control of an operating system (hereinafter referred to as OS) 120010.
  • OS operating system
  • a projection distortion correction user input application 120000 is executed.
  • the projection distortion correction user input application and the OS are connected to each hardware via an application interface (hereinafter referred to as API) 120001, and the projection distortion correction user input application sends and receives data to and from each hardware via the OS. I do.
  • API application interface
  • the projection distortion correction user input application displays the input camera-captured video on the liquid crystal display 120024 of the portable terminal via the API 120001, the OS120010, and the driver 120014.
  • the coordinate value on the liquid crystal display 120024 of the mobile terminal of the corrected contour input by the touch panel 120021 is the coordinate value detected by the touch panel 120021 attached to the liquid crystal display 120024, and the coordinate value is the touch panel driver 120011.
  • whether the pen or finger is touching or touching the touch panel is detected as event information indicating that the pen or finger touched the touch panel described in FIG. And used as the projection contour change line described with reference to FIG. 3B, or used as data for selecting / moving the projection contour as shown in FIG. 6A.
  • FIG. 12 (b) shows the configuration of the liquid crystal projector, which operates under the overall control of the OS120050, and is connected to the projection distortion calculation application 120031, which is connected via the APIs 120041, 120042, and 120043 under the management of the OS.
  • a distortion correction application 120032 and a presentation application 120033 are executed.
  • the input data transmitted from the connected terminal connected to the portable terminal via the wireless LAN 120062 is input to the OS by the wireless LAN driver 120052 and input to the projection distortion calculation application 120031 via the API 120042.
  • the camera 120063 built in or installed in the liquid crystal projector is driven, and projection video data captured while scanning the lens in the camera as shown in FIG. 7 is also input to the OS via the dry 120053.
  • the scanning of the lens associated with the camera 120023 and the control of the scanning amount are performed by sending a control signal to the camera from the projection distortion calculation application 120031.
  • the projection distortion calculation application 120031 calculates the numerical values shown in FIG. 11 from the received data, and calculates to the projection distortion correction application 120032 via the API and OS, for example, each of the four corners of the projector liquid crystal described in FIG.
  • the projector liquid crystal as shown in FIGS. 4 and 5 is obtained by using the coordinates and coordinates of the end points from the lens principal point to the four corners of the projector liquid crystal and the correction amount for moving the projected image shown in FIG.
  • the position change and the tilt angle change due to the horizontal / vertical shift are issued to the actuator 120064 via the OS and the driver 120054.
  • the actuator 120064 is composed of the step motor, servo motor, etc. described above with reference to FIG. 8, and changes the position and tilt of the projector liquid crystal according to this instruction.
  • the output signal from the distortion correction application is sent to the presentation application 120033, and the presentation application 120033 corrects the distortion by changing the image data displayed on the projector liquid crystal as shown in FIG.
  • the resulting corrected image data is projected by the projector 120061 through the driver 120051. Through these operations, video data with corrected distortion can be projected onto the screen.
  • FIG. 13 is an explanatory diagram showing a method of detecting the relative position between the projector and the screen for correcting projection distortion in the optical projection display device, portable terminal, and program according to the present invention.
  • FIG. 13A shows the positional relationship between the projector 130010 and the screen 130040 as viewed from above.
  • the projector is provided with an orientation sensor 130,000, and the installation direction of the projector can be measured as an absolute value using information such as geomagnetism, and the orientation of the projector at the time of installation can be obtained.
  • the orientation sensor 130,000 it is explained as a view from above, but this is the same when viewed from the side, and it is also possible to acquire the direction in which the projector is pointing up or down from the horizontal direction using a gravity sensor or the like. I can do it.
  • FIG. 13 (b) is a diagram showing a method of measuring the installation surface of the screen with a portable terminal, and is a diagram seen from above, similarly to FIG. 13 (a).
  • the portable terminal is equipped with an orientation sensor 130021 similar to that of the projector and a gravity sensor (not shown), and the orientation of the portable terminal in the left-right and vertical directions can be acquired.
  • the positional relationship between the screen and the mobile terminal is the moment when the specific surface matches the surface of the screen. Records information on the left and right and up and down orientations of mobile devices. That is, the left / right / up / down angles of the projection surface of the screen can be measured as absolute values.
  • both screen measurement and projector measurement are carried.
  • the difference between the direction of the projector and the screen is measured by removing it from the terminal or removing the sensor mounted on the projector, bringing it into contact with the screen, and then mounting it on the projector again.
  • the distortion of the projected image can be corrected.
  • FIG. 14 is a flowchart showing an operation of inputting a distortion correction amount of a projected image and performing distortion correction in the optical projection display device, portable terminal, and program according to the present invention.
  • FIG. 14 (a) is a flowchart showing a distortion correction amount input operation 140000 by the mobile terminal.
  • the camera first shoots the projection image first projected by the projector (140010), and then extracts the outline of the projection screen in the photographed image (140020).
  • An image in which a contour is superimposed on the captured image is displayed on the LCD of the portable terminal (140030), and a correction contour for changing the shape of the extracted contour is input using a pen or a finger (140040).
  • the input contour change amount is acquired (140050), and the information is transmitted as the contour change amount to the projector as transmission data 140090 (140060).
  • it is determined whether additional correction is necessary by visually confirming a projection screen newly projected by the process described later in FIG. 14B (140070), and the correction contour is started to be input again. Either a series of operations is performed once again, or the correction is terminated (14080).
  • FIG. 14B is a flowchart showing the correction operation 140400 by the projector.
  • the projector is first activated (140110), and then a screen such as a test pattern is projected onto the screen (140120).
  • the contour change amount sent from the portable terminal by the transmission data 140090 is received (140130), and the contour change amount is calculated based on this data and the specifications of the projector lens and projector liquid crystal (140140).
  • the night angle of the image data and the projector liquid crystal is changed (140150), and the image corrected as a result of the change is projected onto the screen (140160).
  • the additional correction is recognized by transmitting a new contour change amount from the mobile terminal, and the processes from 140130 to 240160 are performed again. If no additional correction is required, the correction is finished (140180), and the projection of the originally projected content is started.
  • FIG. 15 is an explanatory view showing the operation of automatic distortion correction based on the screen shape by the optical projection display device, portable terminal, and program according to the present invention.
  • FIG. 15A shows the state of a screen 150000 and a projected image 150010 initially projected on the screen.
  • FIG. 15B shows a state in which an image taken by a camera built in or installed in the mobile terminal is displayed on the LCD of the mobile terminal.
  • the contour of the projected video is extracted to generate the projected contour 150010
  • the screen contour is extracted to generate the screen contour 150001, which is superimposed on the LCD image.
  • the boundary line between the projected image indicating the projection contour and the screen is detected using a difference between the luminance of the projected image and the luminance of the screen not receiving the light projection by the projector.
  • the screen outline is usually detected by using the boundary between the color and a colored portion such as a wall as a background.
  • the outline of the screen is composed of straight lines, so when a plurality of boundary lines detected by color are found, the shape that is composed of straight lines and forms a quadrilateral by the straight lines is defined as an outline.
  • FIG. 15 (c) shows a shape for correcting the projected image as shown in FIG. 15 (a), and the correction is made so that the contour of the projected image is substantially parallel to the contour of the screen.
  • the distance between the screen on each side and the outline of the projected image is sampled at a plurality of positions for each side, and distance 150020 ⁇ distance 150021, distance 150030 ⁇ distance 150031, distance 150040 ⁇ distance 150041, distance 150050 ⁇ Correction is performed so that the distance 150051 and the aspect ratio of the projected image are substantially the same as the aspect ratio of the shape of the projector liquid crystal to be projected.
  • FIG. 15 (d) when the screen 150,000 is viewed from the front, the projected image is corrected to be rectangular.
  • the correction is described as using the camera mounted on the mobile terminal, but in this case, only the camera mounted on or installed in the projector may be used instead of the mobile terminal, or an LCD as shown in FIG. There is no need for display, and an automatic correction method may be used.
  • the automatic correction button is pressed on the mobile terminal. It is also possible to perform a process of automatically performing correction.
  • FIG. 16 is an explanatory diagram showing a specific operation for correcting distortion of a projected image and an operation screen of the mobile terminal by the optical projection display device, the mobile terminal, and the program according to the present invention.
  • FIG. 16 (a) shows a state of the projected image 160020 projected on the screen 160000 by the projector. As already described, the projected image is projected in a distorted form according to the installation location of the projector.
  • FIG. 16 (b) shows a state where the image of FIG. 16 (a) is displayed on the screen of the mobile terminal 160010, which is an image taken by the camera 160011 built in or installed in the mobile terminal 160010 according to the present invention.
  • This state is the state before still image shooting.
  • the shutter button 160012 displayed on the touch panel provided on the screen with a pen or a finger this image is captured as a still image into the mobile terminal 160010. I can do it. After capturing, the captured image is displayed on the screen as a still image.
  • FIG. 16 (c) shows a state in which the captured still image is displayed after the shutter is pressed in FIG. 16 (b).
  • the portable terminal 160010 extracts the outline of the projected video from the captured image by digital processing, and displays a line called the projected outline 160030 superimposed on the still image.
  • FIG. 16 (d) is a screen for creating the shape of the target projection image by modifying the projection contour 160030 displayed in FIG. 16 (c).
  • each end point of the four corners of the projection contour is touched with a pen 160060, and when a predetermined time has passed in the touched state, the projection contour shape is switched to a mode that can be deformed.
  • the projection contour change line 160031 is transformed into a desired shape by the pen 160060.
  • the change work is confirmed by touching the “EXEC” (execution) button 160040 with the pen 160060.
  • FIG. 16 (e) shows a state in which the projection contour change line 160031 is confirmed in FIG. 16 (d).
  • the contour change amount transmission data 140090 indicated by the projection contour change line 160031 is transmitted from the portable terminal to the projector, and the projector changes the shape of the projected video according to the value.
  • the changed line is displayed on the screen, and either the “EXIT” button (end of change) 160040 or the “ReTry” button (change again) 160050 is selected with the pen 160060.
  • the “EXIT” button 160040 is pressed, the change operation is completed, and the projector can start projecting the designated content.
  • the “ReTry” button 160050 is touched, the screen returns to the screen for re-shooting (FIG. 16B) and the deformable screen (FIG. 16C), and the projection screen can be adjusted again.
  • FIG. 16 (f) is another embodiment of FIG. 16 (d).
  • the pen contour 160031 is used to directly enter the projection contour change line 160031 on the screen with the touch panel of the portable terminal. It is a method to do.
  • the projected contour change line 160031 is a quadrilateral shape with four corners, and is a closed shape with the start point and end point coinciding with each other. The pen starts to draw a line from the start point, and the pen shape is nearly the same as the end point position. Is reached, the “EXEC” (execution) button 160040 shown in FIG. 16D is displayed, and the change work is confirmed by touching the button with the pen 160060.
  • the change of the projection contour change line is not limited to the method of performing a pen operation on the screen of the mobile terminal with a touch panel, for example, selection of the end points of the four corners using a cross key mounted or displayed on a mobile phone or the like.
  • the projection contour change line 160031 may be moved by moving the end point up and down, left and right by a minute step with the cross key. Specifically, after moving the cross key, for example, press the selection key in the center of the cross key to select one of the four corner endpoints, then move the endpoint selected with the cross key up and down, left and right again, When the end point comes to an appropriate position, an operation of confirming by pressing the selection key may be performed.
  • the function that operates in the mobile terminal described so far is a program executed on the CPU shown in FIG. 10, and this program is installed in advance in the mobile terminal, and in addition to the wireless function shown in FIG. Even a program that is taken in and installed in a portable terminal by an external communication means such as LAN100090, or may be installed by a program stored in an external storage medium via an external storage medium interface (not shown).
  • liquid crystal projector 10010 portable terminal 10011 camera 20020 projection image 30050 projection contour 30051 projection contour change line 40000 projector liquid crystal 40010 lens

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)

Abstract

Provided is a distortion correction means for images projected by a projector, allowing for free adjustment so as to minimize the distortion of an image projected by the projector. Using a camera and a terminal having a touch-sensitive panel, the distortion correction means captures an image projected on a screen by the projector, automatically detects the contour of the projected image, and acquires the amount of correction to be applied to the distortion of the projected image according to correction of the shape of the contour made on the screen of the terminal having the touch-sensitive panel via a finger or pen. Based on the amount of correction, quantitative distortion is applied to the shape of two-dimensional image data to be displayed on a projection-image display section of the projector, or the position or the tilt of the projection-image display section is changed, thereby reducing the distortion of the image projected on the screen.

Description

光学投射型表示装置、携帯端末、プログラムOptical projection display device, portable terminal, program
 本発明は、会議や発表会等において使用する光学投射型表示装置(以下、プロジェクタと呼称)の設置において、投射映像の歪みを簡便且つ閲覧者目線での自由な補正を行う光学投射型表示装置に関するものである。 The present invention provides an optical projection type display device that can easily correct distortion of a projected image and freely adjust it from the viewer's perspective when installing an optical projection type display device (hereinafter referred to as a projector) used in a conference or a presentation. It is about.
 通常、プロジェクタ及びスクリーンは、映画館のように常時設置してあるものではなく、特に小規模から中規模の会議等で使用されるプロジェクタは、会議の都度、プロジェクタを会議室の机上等に設置し、またスクリーンも会議の都度、展開して投射するという利用法が一般的である。 Normally, projectors and screens are not always installed like movie theaters. Especially, projectors used in small to medium-sized conferences, etc., are installed on the desks of conference rooms at each meeting. In addition, it is common to use a screen that is unfolded and projected at each meeting.
 ここで、プロジェクタの投射光学系の光軸と、スクリーンが垂直の関係になれば、プロジェクタから投射したイメージは、正しくスクリーンに投射されるが、その軸が傾くと、投射したイメージはスクリーン上で歪んだ形状になって投射される。そして、会議の都度、正確にプロジェクタの光学系光軸とスクリーンの位置関係を垂直に保つように設置することは、目視による投射画像確認により行うため、時間もかかり、精度を保つことも困難である。 Here, if the optical axis of the projection optical system of the projector and the screen are in a vertical relationship, the image projected from the projector is correctly projected on the screen, but if the axis is tilted, the projected image is projected on the screen. Projected in a distorted shape. And, it is time-consuming and difficult to maintain accuracy because it is necessary to check the projected image by visual observation to install the projector so that the optical system optical axis of the projector and the positional relationship of the screen are kept vertical. is there.
 ここで、先行技術文献の特許文献1に、携帯電話により投射画面を撮影し、その画像をメールにてプロジェクタに送信することで、投射画面の歪みを補正する方法する発明が記載されている。
 また、特許文献2には、タッチパネル付端末装置の画面からの入力により、投射画面の歪みを修正する案が記載されている。
Here, Patent Document 1 of the prior art document describes an invention in which a projection screen is photographed with a mobile phone and the image is transmitted to the projector by e-mail to correct the distortion of the projection screen.
Japanese Patent Application Laid-Open No. 2004-228561 describes a scheme for correcting distortion of a projection screen by inputting from a screen of a terminal device with a touch panel.
特開2006-033357号公報JP 2006-033357 A 特開2009-290354号公報JP 2009-290354 A
 本発明にて解決しようとする課題は、プロジェクタの投射画面の歪みを、会議参加者が指定可能な自由な目線で見たときに、歪みを最小となるように自由な調節が可能なプロジェクタ投射映像の歪み修正手段を提供することである。 The problem to be solved by the present invention is that the projector projection can be freely adjusted so as to minimize the distortion when the distortion of the projection screen of the projector is viewed from a free viewpoint that can be specified by a conference participant. It is to provide a video distortion correction means.
 本発明は、カメラ及びタッチパネル付端末を用いて、プロジェクタのスクリーンへの投射画面を撮影し、投射画面の輪郭を自動検出して、タッチパネル付端末の画面で指もしくはペンで、輪郭の形状を修正することで、投射画面の歪みを補正する補正量を取得し、その補正量に応じてプロジェクタの投射画像表示部に表示する二次元画像データの形状に対する定量的な歪みの付加、もしくは投射画像表示部の位置や傾きを変更することで達成される。 The present invention uses a camera and a terminal with a touch panel to shoot a projection screen onto a projector screen, automatically detects the outline of the projection screen, and corrects the contour shape with a finger or a pen on the screen of the terminal with a touch panel. Thus, a correction amount for correcting the distortion of the projection screen is acquired, and quantitative distortion is added to the shape of the two-dimensional image data displayed on the projection image display unit of the projector according to the correction amount, or the projection image is displayed. This is achieved by changing the position and inclination of the part.
  本発明の光学投射型表示装置、携帯端末、プログラムは、会議等におけるプロジェクタとスクリーンの設置時に、カメラ及びタッチパネル付端末を用いた簡便な操作で、スクリーンに投射される投射画像の歪みを抑制し、見やすいプロジェクタ画像を得ることが出来る。 The optical projection display device, portable terminal, and program of the present invention suppress distortion of a projected image projected on a screen by a simple operation using a camera and a terminal with a touch panel when a projector and a screen are installed in a meeting or the like. An easy-to-see projector image can be obtained.
光学投射型表示装置、携帯端末、プログラムを構成する、各機器間の位置関係と、動作イメージを示す説明図である。It is explanatory drawing which shows the positional relationship between each apparatus which comprises an optical projection type display apparatus, a portable terminal, and a program, and an operation image. 光学投射型表示装置、携帯端末、プログラムによる、投射映像の歪みを補正する動作を説明した説明図である。It is explanatory drawing explaining the operation | movement which correct | amends distortion of a projection image | video by an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムにより、投射された投射映像の歪みを、携帯端末を用いて補正する操作手順を示した説明図である。It is explanatory drawing which showed the operation procedure which correct | amends distortion of the projection image projected with the optical projection display apparatus, the portable terminal, and the program using a portable terminal. 光学投射型表示装置、携帯端末、プログラムにおける、プロジェクタ液晶をプロジェクタ内で可動とすることによる補正を行う方法を示した第一の実施例の説明図である。It is explanatory drawing of the 1st Example which showed the method to correct | amend by making projector liquid crystal movable within a projector in an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムにおける、プロジェクタ液晶をプロジェクタ内で可動させることにより補正を行う方法を示した第二の実施例の説明図である。It is explanatory drawing of the 2nd Example which showed the method to correct | amend by moving a projector liquid crystal within a projector in an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムの、インテリジェント液晶プロジェクタの、携帯端末の画面操作の例を示す説明図である。It is explanatory drawing which shows the example of screen operation of the portable terminal of an intelligent liquid crystal projector of an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムの、プロジェクタとスクリーンの距離を測定する方法を説明する説明図である。It is explanatory drawing explaining the method to measure the distance of a projector and a screen of an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムの、プロジェクタ液晶を可動とする構造の例を示す説明図である。It is explanatory drawing which shows the example of the structure which makes a projector liquid crystal movable of an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムにおいて、プロジェクタ液晶周辺の構造物を含めた具体的な構成を用いて、傾けを行う動作を示した説明図である。It is explanatory drawing which showed the operation | movement which inclines using the specific structure including the structure around a projector liquid crystal in an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムの機器構成を示したブロック図である。It is the block diagram which showed the apparatus structure of the optical projection type display apparatus, the portable terminal, and the program. 光学投射型表示装置、携帯端末、プログラムにて取り扱うスクリーン上の投射画像と、プロジェクタ液晶の座標の位置関係を示した説明図である。It is explanatory drawing which showed the positional relationship of the projection image on the screen handled with an optical projection type display apparatus, a portable terminal, and a program, and the coordinate of a projector liquid crystal. 光学投射型表示装置、携帯端末、プログラムの、ソフトウェアの構造とハードウェアの関係を示す説明図である。It is explanatory drawing which shows the structure of the software of an optical projection type display apparatus, a portable terminal, and a program, and the relationship of hardware. 光学投射型表示装置、携帯端末、プログラムの、投射歪みを補正するためのプロジェクタとスクリーンとの相対位置を検出する方法を示した説明図である。It is explanatory drawing which showed the method to detect the relative position of the projector and screen for correcting projection distortion of an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムにおいて、投射映像の歪み補正量の入力と歪み補正を行う動作を示したフローチャートである。6 is a flowchart showing an operation of inputting a distortion correction amount of a projected image and performing distortion correction in the optical projection display device, the portable terminal, and the program. 光学投射型表示装置、携帯端末、プログラムによる、スクリーン形状を基準とした自動歪み補正の動作を示す説明図である。It is explanatory drawing which shows the operation | movement of the automatic distortion correction on the basis of the screen shape by an optical projection type display apparatus, a portable terminal, and a program. 光学投射型表示装置、携帯端末、プログラムによる、投射映像の歪み補正を行う具体的な操作と携帯端末の操作画面を示した説明図である。It is explanatory drawing which showed the specific operation and the operation screen of a portable terminal which perform distortion correction of a projection image | video by an optical projection type display apparatus, a portable terminal, and a program.
  以下、本発明による光学投射型表示装置、携帯端末、プログラムの具体的な実施例を、図を用いて説明する。 Hereinafter, specific examples of the optical projection display device, the portable terminal, and the program according to the present invention will be described with reference to the drawings.
 図1は、本発明による光学投射型表示装置、携帯端末、プログラムを構成する、各機器間の位置関係と、動作イメージを示す説明図である。 FIG. 1 is an explanatory diagram showing a positional relationship and operation images between devices constituting an optical projection display device, a portable terminal, and a program according to the present invention.
 液晶プロジェクタ10000は、例えば内蔵された背面からライトで照射されたプロジェクタ液晶パネルに表示された映像を、投射レンズを用いてスクリーン10020に投射する。ここで後述する目的により、投射した投射映像10030を、カメラ10002により撮影する。 The liquid crystal projector 10000 projects, for example, an image displayed on the projector liquid crystal panel irradiated with light from the built-in back surface onto the screen 10020 using a projection lens. Here, the projected image 10030 is captured by the camera 10002 for the purpose described later.
 投射された投射映像10030は、プロジェクタ液晶に表示された投射コンテンツと同じ形で、正しく長方形の形になるように投射されるのが望ましいが、液晶プロジェクタ10000とスクリーン10020の設置場所の制限や設置精度の影響による相対位置関係が平行でない等の理由により、歪んだ形で投射される。 The projected image 10030 is preferably projected in the same rectangular shape as the projected content displayed on the projector liquid crystal, but the location of the LCD projector 10000 and the screen 10020 is limited or installed. The projection is distorted because the relative positional relationship due to the influence of accuracy is not parallel.
 携帯端末10010は、内蔵もしくは取り付け可能なカメラ10011により、スクリーン10020に投射された投射映像10030を撮影して、そのイメージを取り込む。この携帯端末10010は、液晶プロジェクタ10000とは別な位置の、実際に投射映像10030を閲覧する利用者の目線からの撮影を行う。カメラ10011により取り込まれたイメージを用いて、前記歪んだ形で投射された投射映像10030を補正するための情報を、液晶プロジェクタ10000に送信し、液晶プロジェクタ10000はその情報に従って、投射映像10030の形状を補正する。 The mobile terminal 10010 captures a projected image 10030 projected on the screen 10020 by a built-in or attachable camera 10011 and captures the image. The portable terminal 10010 performs photographing from the viewpoint of the user who actually views the projected video 10030 at a position different from the liquid crystal projector 10000. Using the image captured by the camera 10011, information for correcting the projection video 10030 projected in the distorted form is transmitted to the liquid crystal projector 10000, and the liquid crystal projector 10000 determines the shape of the projection video 10030 according to the information. Correct.
 図2は、本発明による光学投射型表示装置、携帯端末、プログラムによる、投射映像の歪みを補正する動作を説明した説明図である。 FIG. 2 is an explanatory diagram for explaining the operation of correcting distortion of a projected image by the optical projection display device, portable terminal, and program according to the present invention.
 図2(a)は、スクリーン20010に対して液晶プロジェクタ20000の設置位置が、正面ではなく斜めの位置から投射された状態を示している。このように左斜めから投射すると、図2(b)に示すように、スクリーン20010上に投射された投射映像20020は、液晶プロジェクタから近距離の部分は小さく、遠距離の部分は大きく投射されるため、図示のように左側に対して右側の高さが大きい台形状に歪んだ形で投射される。本図では、水平方向の歪みに関する説明を行っているが、この現象は垂直方向に斜めに投射された場合も同様に発生する。 FIG. 2A shows a state in which the installation position of the liquid crystal projector 20000 is projected from the oblique position rather than the front with respect to the screen 20010. When projected from the left oblique in this way, as shown in FIG. 2B, the projected image 20020 projected on the screen 20010 is projected at a short distance from the liquid crystal projector and projected at a long distance. Therefore, as shown in the figure, the light is projected in a trapezoidal shape in which the height on the right side is larger than that on the left side. In this figure, the horizontal distortion has been described, but this phenomenon occurs in the same manner when it is projected obliquely in the vertical direction.
 図2(c)は、本発明によりスクリーン20010を正面から見たときに、投射映像20040が正しく長方形に見えるように補正した場合を示す。本来図2(a)に示す液晶プロジェクタ20000がスクリーン20010の正面に正しく設置された場合で、且つ利用者の目線が、スクリーン20010の正面にあれば、補正する必要もなくこのように見ることが出来るが、実際には図2(a)のように液晶プロジェクタ20000の設置位置を正しい位置に置くことは、利用場所の机の配置やスクリーンの設置位置により困難なため、補正して閲覧できるようにすることが望ましく、本発明ではこの補正方法を具体的に説明する。 FIG. 2 (c) shows a case where the projected image 200040 is corrected so that it looks like a rectangle when the screen 20010 is viewed from the front according to the present invention. If the liquid crystal projector 20000 shown in FIG. 2 (a) is correctly installed in front of the screen 20010 and the user's line of sight is in front of the screen 20010, it can be viewed in this way without correction. Actually, as shown in Fig. 2 (a), it is difficult to place the installation position of the liquid crystal projector 20000 in the correct position depending on the arrangement of the desk in the place of use and the installation position of the screen. In the present invention, this correction method will be specifically described.
 図3は、本発明による光学投射型表示装置、携帯端末、プログラムにより、投射された投射映像の歪みを、携帯端末を用いて補正する操作手順を示した説明図である。 FIG. 3 is an explanatory diagram showing an operation procedure for correcting distortion of a projected image projected by the optical projection display device, portable terminal, and program according to the present invention using the portable terminal.
 図3(a)は、図1で説明した携帯端末30000に内蔵もしくは取り付けられたカメラにより撮影したスクリーンとスクリーンに投射された投射映像を、携帯端末に内蔵したタッチパネル付ディスプレイにより構成された携帯端末画面30010表示した状態である。本実施例において、スクリーンを見ている利用者はスクリーン正面からではなく、少しずれた場所、具体的にはこの場合は、スクリーンの右側から見る場合であり、従って表示されたスクリーン30030も、歪んだ形で表示される。そしてスクリーンに投射された投射映像30040は、図2(b)に示したスクリーンと液晶プロジェクタの位置関係により発生する歪みと、スクリーンを斜めから見た状態により発生する歪みが合成された形で歪んで表示される。 FIG. 3 (a) shows a portable terminal configured by a screen with a touch panel built in the portable terminal, with a screen shot by a camera built in or attached to the portable terminal 30000 described in FIG. 1 and a projected image projected on the screen. The screen 30010 is displayed. In this embodiment, the user looking at the screen is not from the front of the screen but at a slightly shifted place, specifically, in this case, when viewing from the right side of the screen, and thus the displayed screen 30030 is also distorted. It is displayed in an oval form. The projected image 30040 projected on the screen is distorted by combining the distortion generated due to the positional relationship between the screen and the liquid crystal projector shown in FIG. 2B and the distortion generated when the screen is viewed obliquely. Is displayed.
 本実施例において、携帯端末30000は、スクリーンに投射された投射映像30040が、液晶プロジェクタから光により投射されることを利用して、スクリーン上の輝度差等の情報を用いて、投射映像30040の輪郭情報を検出し、その情報に基づいて投射輪郭30050を図中の点線で示す形で携帯端末画面30010に表示された画像に重畳して表示する。この画面はタッチパネル付ディスプレイにより構成するので、ペン30020や指により接触したというイベント情報や、接触した座標を読み取ることが出来る。 In the present embodiment, the mobile terminal 30000 uses the information such as the luminance difference on the screen using the projection image 30040 projected on the screen by light from the liquid crystal projector, and the projection image 30040 Contour information is detected, and based on the information, a projected contour 30050 is superimposed and displayed on the image displayed on the mobile terminal screen 30010 in the form indicated by the dotted line in the figure. Since this screen is composed of a display with a touch panel, it is possible to read event information that touched by the pen 30020 or a finger and the touched coordinates.
 図3(b)は、前記投射輪郭をペン30020により操作し、投射輪郭変更ライン30051を作成している画面である。ペン30020は、例えば図3(a)で表示された投射輪郭30050の四隅の端点に触れた状態で所定時間経過すると、端点がペン先の位置について移動するモードに入るなどのタッチパネル入力制御プログラムにより、各端点を利用者が望む場所に移動することが出来る。このように投射輪郭30050を、携帯端末のカメラから見た目線、即ち閲覧者の目線で、見やすい投射輪郭変更ライン30051に変更することが出来る。この図の場合、スクリーンから斜めに見ているにも係らず、閲覧者からは正しく長方形に見えるような補正指示を行うことが出来る。この投射輪郭変更ライン30051と、最初に撮影した画像から抽出した投射輪郭30050の情報を、液晶プロジェクタに送り、液晶プロジェクタはその情報に基づいて投射映像の修正を行う。 FIG. 3B is a screen in which the projection contour is manipulated with the pen 30020 to create a projection contour change line 30051. When the pen 30020 touches the end points of the four corners of the projected contour 30050 displayed in FIG. 3A for a predetermined time, for example, the pen 30020 enters a mode in which the end point moves with respect to the position of the pen tip. Each end point can be moved to a location desired by the user. In this way, the projection contour 30050 can be changed to the easy-to-see projection contour change line 30051 with the line of sight seen from the camera of the mobile terminal, that is, the viewer's line of sight. In the case of this figure, the viewer can issue a correction instruction so that the viewer looks like a rectangle even though the screen is viewed obliquely. Information on the projection contour change line 30051 and the projection contour 30050 extracted from the first photographed image is sent to the liquid crystal projector, and the liquid crystal projector corrects the projected video based on the information.
 図3(c)は、投射映像を実際に修正するときの、液晶プロジェクタの修正動作を示す。本実施例において、プロジェクタは内蔵したプロジェクタ液晶面30060に表示したコンテンツを、プロジェクタ液晶背面から光源により照らし出され、その光をレンズを通してスクリーンに投射している。ここで、プロジェクタ液晶面30060に表示されている補正を行う以前のイメージである、変更前投射輪郭画面30070を、前記した投射輪郭変更ライン30051と、最初に撮影した画像から抽出した投射輪郭30050の情報に基づいて座標変換を行い、変更後投射輪郭画面30070を輪郭とするイメージとして表示する。この変更後投射輪郭画面30070は、投射輪郭変更ライン30051と、最初に撮影した画像から抽出した投射輪郭30050の座標の変化の逆変換であり、その結果としてスクリーンに指定した投射輪郭変更ライン30051の形状に補正されたイメージが投射される。 Fig. 3 (c) shows the correction operation of the liquid crystal projector when the projection image is actually corrected. In this embodiment, the projector illuminates the content displayed on the built-in projector liquid crystal surface 30060 from the rear surface of the projector liquid crystal with a light source, and projects the light onto the screen through the lens. Here, the pre-change projection contour screen 30070, which is an image before the correction displayed on the projector liquid crystal surface 30060, is made up of the projection contour change line 30051 and the projection contour 30050 extracted from the first photographed image. Coordinate conversion is performed based on the information, and the post-change projection contour screen 30070 is displayed as an image having a contour. This post-change projection contour screen 30070 is a reverse transformation of the projection contour change line 30051 and the change in the coordinates of the projection contour 30050 extracted from the first photographed image, and as a result, the projection contour change line 30051 designated on the screen. The image corrected to the shape is projected.
 ここで、投射輪郭変更ラインの変更は、タッチパネル付携帯端末の画面上で、ペン操作により行う方法以外に、例えば携帯電話等に搭載もしくは表示される十字キーを用いて、4隅の端点の選択の後、同じく十字キーにより端点を上下左右に微小ステップずつ移動することで、投射輪郭変更ライン30051を動かす方法を取ってもよい。具体的には、十字キーを動かした後、例えば十字キーの中央にある選択キーを押して4隅の端点のうちのひとつを選択した後、再び十字キーで選択した端点を上下左右に動かして、適切な位置に端点が来たところで、選択キーを押すことで確定するという動作を行えばよい。 Here, the change of the projection contour change line is not limited to the method of performing a pen operation on the screen of the mobile terminal with a touch panel, for example, selection of the end points of the four corners using a cross key mounted or displayed on a mobile phone or the like. After that, the projection contour change line 30051 may be moved by moving the end point up and down, left and right by a minute step with the cross key. Specifically, after moving the cross key, for example, press the selection key in the center of the cross key to select one of the four corner endpoints, then move the endpoint selected with the cross key up and down, left and right again, When the end point comes to an appropriate position, an operation of confirming by pressing the selection key may be performed.
 図4は、本発明の光学投射型表示装置、携帯端末、プログラムにおける、プロジェクタ液晶をプロジェクタ内で可動させることによる補正を行う方法を示した第一の実施例の説明図である。 FIG. 4 is an explanatory diagram of the first embodiment showing a method of performing correction by moving the projector liquid crystal in the projector in the optical projection display device, portable terminal, and program of the present invention.
 図4(a)は、図2(a)で示した液晶プロジェクタとスクリーンの位置関係を、液晶プロジェクタ内部の光学構成を含めた説明図であり、スクリーン40020に対して左側から斜め右方向に向けて投射をしているような位置関係を示している。液晶プロジェクタ内は表示画像を構成するプロジェクタ液晶40000があり、図示しない(図9にて後述)光源により透過したプロジェクタ液晶40000のイメージを、レンズ40010を通してスクリーン40020に投射している。このとき、液晶プロジェクタからスクリーンに投射した投射画像の左側端と、右側端では液晶プロジェクタからの距離が異なるため、両方に同時にピントを合わせることは難しい。 FIG. 4 (a) is an explanatory diagram including the optical configuration inside the liquid crystal projector and the positional relationship between the liquid crystal projector and the screen shown in FIG. 2 (a). It shows the positional relationship as if the projection. In the liquid crystal projector, there is a projector liquid crystal 40000 constituting a display image, and an image of the projector liquid crystal 40000 transmitted by a light source (not shown) (described later in FIG. 9) is projected onto a screen 40020 through a lens 40010. At this time, since the distance from the liquid crystal projector differs between the left end and the right end of the projected image projected from the liquid crystal projector onto the screen, it is difficult to focus on both at the same time.
 図4(b)は、この問題を解決するために、プロジェクタ液晶40001をレンズ40010に対して傾けた状態を示している。レンズの焦点距離Lと、図4(b)に示したレンズの中点からスクリーンの右端までの距離La1と、左端までの距離Lb1、プロジェクタ液晶の左端までの距離La2と、右端までの距離Lb2の関係は、レンズの一般的な公式である図4(c)で現すことが出来る。ここでレンズのスペックの基本値である焦点距離Lは、無限遠の物体から発生する光、即ち平行光線を受けたときに、その平行光線がレンズにより屈折して一点に焦点を合わせたときの、レンズの中点から焦点までの距離を示す。即ち、
 1/L=1/L+1/∞
を示している。
FIG. 4B shows a state in which the projector liquid crystal 40001 is tilted with respect to the lens 40010 in order to solve this problem. The focal length L of the lens, the distance La1 from the middle point of the lens shown in FIG. 4B to the right edge of the screen, the distance Lb1 to the left edge, the distance La2 to the left edge of the projector liquid crystal, and the distance Lb2 to the right edge This relationship can be expressed in FIG. 4C, which is a general formula for lenses. Here, the focal length L, which is the basic value of the lens specifications, is the value when the light generated from an object at infinity, that is, a parallel light beam, is refracted by the lens and focused on one point. Indicates the distance from the midpoint of the lens to the focal point. That is,
1 / L = 1 / L + 1 / ∞
Is shown.
 この式に従って、液晶プロジェクタとスクリーンの位置関係により決定されるLa1、Lb1の距離に従って、La2、Lb2の距離を算出して、その位置にプロジェクタ液晶を合わせるように傾けることで、スクリーン上の左端と右端の両側に同時にピントを合わせることが出来る。 According to this formula, the distance of La2 and Lb2 is calculated according to the distance of La1 and Lb1 determined by the positional relationship between the liquid crystal projector and the screen, and tilted to align the projector liquid crystal with that position, the left edge on the screen You can focus on both sides of the right edge at the same time.
 また、レンズからプロジェクタ液晶までの距離La2が、Lb2に比べて長いので、プロジェクタ液晶の左端、即ちスクリーン上の右端に当たる部分がレンズより遠くなるので、スクリーンに投射される長さも短くなり、図2(b)で示したスクリーン上に投射されたイメージ形状が、左側に比べて右側が長くなってしまう現象を抑制することにも貢献する。また、レンズ40010の性能として、スクリーン上に像面歪曲や像面湾曲などの収差が許容範囲以下でプロジェクタ液晶の全面を投射可能な範囲(イメージサークル)を最小にすることが出来、レンズの性能向上にも貢献する。 Further, since the distance La2 from the lens to the projector liquid crystal is longer than Lb2, the left end of the projector liquid crystal, that is, the portion corresponding to the right end on the screen is farther from the lens, and the length projected on the screen is also shortened. This also contributes to suppressing the phenomenon that the image shape projected on the screen shown in (b) is longer on the right side than on the left side. Also, the performance of the lens 40010 can minimize the range (image circle) that can project the entire surface of the projector liquid crystal with aberrations such as field distortion and field curvature below the allowable range on the screen. Contributes to improvement.
 実際にLa1、Lb1を測定する方法は、図7にて後述する。 The method of actually measuring La1 and Lb1 will be described later with reference to FIG.
 図5は、本発明による光学投射型表示装置、携帯端末、プログラムにおける、プロジェクタ液晶をプロジェクタ内で可動とすることにより補正を行う方法を示した第二の実施例の説明図である。 FIG. 5 is an explanatory diagram of a second embodiment showing a method of performing correction by making the projector liquid crystal movable in the projector in the optical projection display device, portable terminal, and program according to the present invention.
 図4で説明したレンズのイメージサークルが十分に大きい場合、即ちプロジェクタ液晶50000の大きさよりも大きく、プロジェクタ液晶をずらしても、スクリーン50020への投射イメージに収差が発生しない場合は、図5(a)に示すように、スクリーン50020の中心から、ずれた位置にプロジェクタを設置したとしても、図5(b)に示すようにプロジェクタ液晶50001を左にずらすことで、レンズ50010を通して投射するイメージを、スクリーン50020の略中央に投射することが出来る。この場合、プロジェクタとスクリーンの位置関係を、垂直に保つように設置する必要があるが、目視による概略の設置でも効果はあり、例えばプロジェクタとスクリーンの距離が離れている等の理由で、目視ではうまく垂直に設置できない場合には、さらに図13で後述するような方法で、スクリーンとプロジェクタの位置関係を垂直に近づけることが出来る。また、この方式の場合、図8で後述するが、プロジェクタ内のプロジェクタ液晶の可動構造を図4の方法に比べて簡易化することが出来る。 If the image circle of the lens described in FIG. 4 is sufficiently large, that is, larger than the size of the projector liquid crystal 50000, and no aberration occurs in the projected image on the screen 50020 even if the projector liquid crystal is displaced, FIG. ), Even if the projector is installed at a position shifted from the center of the screen 50020, by shifting the projector liquid crystal 50001 to the left as shown in FIG. The light can be projected to the approximate center of the screen 50020. In this case, it is necessary to install the projector and the screen so that the positional relationship between them is vertical, but it is effective even with rough visual installation, for example, because the distance between the projector and the screen is large. If the projector cannot be installed vertically, the positional relationship between the screen and the projector can be made closer to the vertical by a method described later with reference to FIG. In the case of this method, as will be described later with reference to FIG. 8, the movable structure of the projector liquid crystal in the projector can be simplified as compared with the method of FIG.
 図6は、本発明による光学投射型表示装置、携帯端末、プログラムの、インテリジェント液晶プロジェクタの、携帯端末の画面操作の例を示す説明図である。 FIG. 6 is an explanatory diagram showing an example of the screen operation of the mobile terminal of the intelligent liquid crystal projector of the optical projection display device, the mobile terminal, and the program according to the present invention.
 本実施例は、特に図5における、プロジェクタ液晶を水平に移動させて、スクリーンに投射するイメージの位置を左右/上下に単純移動させる際の、携帯端末の操作例を示している。図6(a)において、携帯端末60000の上の携帯端末画面60010には、図3(a)で説明したのと同様な、プロジェクタ投射画面がスクリーンに投射されている画面である。ここで投射映像60030は、プロジェクタとスクリーンの位置関係が大きくずれているため、スクリーンの画面外にはみ出すほど、ずれた位置に投射されている。 This embodiment shows an operation example of the portable terminal when the projector liquid crystal is moved horizontally in FIG. 5 and the position of the image projected on the screen is simply moved left / right / up / down. In FIG. 6A, a portable terminal screen 60010 on the portable terminal 60000 is a screen in which a projector projection screen is projected on the screen, similar to that described in FIG. Here, since the positional relationship between the projector and the screen is greatly deviated, the projected image 60030 is projected at a deviated position as it protrudes from the screen.
 図3(a)で説明したのと同様に、この投射映像60030には、投射輪郭60040が輪郭検出結果として重畳されて表示される。本実施例では、投射映像を左右/上下に単純移動させるための操作なので、図3(a)のように、投射輪郭の形状を変更する必要がなく、ペン60020は投射輪郭60040の四隅端点ではなく、図3(b)と同様な方法で輪郭線上の任意の場所をタッチすることで、投射輪郭60040を選択することが出来る。次に図6(b)のようにペンをずらすことで、投射輪郭60041を携帯端末画面の略中央、即ち利用者目線の正面に持ってくることが出来る。ここでペンを携帯端末画面から離すことで、位置が確定し、投射映像を投射輪郭位置に移動する動作が、図5(b)に示した方法で行われる。また、図6(c)に示すように、概略の投射輪郭60042をペンで直接記入することで、その位置に概略一致するような場所に、投射映像を移動するような動作も行える。この場合は、投射輪郭60042の形状が長方形ではなく歪んだ形状であったり、縦横比が投射映像と異なった場合も、投射輪郭60042の位置を目標として、投射映像60030は、その形状を変化させることなく、移動して投射するように制御すれば、簡便な投射映像の位置補正を行うことが出来る。 In the same manner as described with reference to FIG. 3 (a), a projected contour 60040 is superimposed on the projected image 60030 and displayed as a contour detection result. In this embodiment, since the operation is simply to move the projected image left / right / up / down, it is not necessary to change the shape of the projection contour as shown in FIG. 3A, and the pen 60020 is at the four corner end points of the projection contour 60040. Instead, the projected contour 60040 can be selected by touching an arbitrary place on the contour line in the same manner as in FIG. Next, by shifting the pen as shown in FIG. 6B, the projected contour 60041 can be brought to the approximate center of the mobile terminal screen, that is, in front of the user's line of sight. Here, by moving the pen away from the mobile terminal screen, the position is fixed, and the operation of moving the projected image to the projected contour position is performed by the method shown in FIG. Further, as shown in FIG. 6 (c), by directly entering a rough projection outline 60042 with a pen, it is possible to perform an operation of moving the projected video to a place that roughly matches the position. In this case, even if the shape of the projection contour 60042 is not a rectangle but a distorted shape, or the aspect ratio is different from that of the projection image, the projection image 60030 changes its shape with the position of the projection contour 60042 as a target. If the control is performed so that the projection is performed without moving, simple position correction of the projected image can be performed.
 ここで、投射輪郭の移動は、タッチパネル付携帯端末の画面上で、ペン操作により行う方法以外に、例えば携帯電話等に搭載もしくは表示される十字キーを用いて、4隅の端点の選択の後、同じく十字キーにより端点を上下左右に微小ステップずつ移動することで、投射輪郭60040を動かす方法を取ってもよい。具体的には、十字キーを動かした後、例えば十字キーの中央にある選択キーを押して4隅の端点のうちのひとつを選択した後、再び十字キーで選択した端点を上下左右に動かして、適切な位置に端点が来たところで、選択キーを押すことで確定するという動作を行えばよい。 Here, the projection contour is moved after the selection of the end points of the four corners using a cross key mounted on or displayed on a mobile phone, for example, in addition to a method of performing a pen operation on the screen of the mobile terminal with a touch panel. Similarly, the projection contour 60040 may be moved by moving the end point up / down / left / right by a small step with the cross key. Specifically, after moving the cross key, for example, press the selection key in the center of the cross key to select one of the four corner endpoints, then move the endpoint selected with the cross key up and down, left and right again, When the end point comes to an appropriate position, an operation of confirming by pressing the selection key may be performed.
 図7は、本発明による光学投射型表示装置、携帯端末、プログラムの、プロジェクタとスクリーンの距離を測定する方法を説明する説明図である。 FIG. 7 is an explanatory diagram for explaining a method of measuring the distance between the projector and the screen in the optical projection display device, the portable terminal, and the program according to the present invention.
 図7(a)は、液晶プロジェクタ内のプロジェクタ液晶70020とレンズ70000、そしてスクリーン70010の位置関係を示しており、図4(a)や図5(a)と同様のものである。ここで、レンズの位置Lはピント調節のため、前後に動かすことが出来る。本実施例では、このLをレンズ70000がもっともプロジェクタ液晶70020に近づいた状態、即ち焦点面が一番遠い状態から、レンズ70000がもっともプロジェクタ液晶70020から遠のいた状態、即ち焦点面が一番近い状態までを、液晶プロジェクタとスクリーンを設置した後、初期設定を行う段階でスキャンする。 FIG. 7 (a) shows the positional relationship between the projector liquid crystal 70020, the lens 70000, and the screen 70010 in the liquid crystal projector, which is the same as FIG. 4 (a) and FIG. 5 (a). Here, the lens position L can be moved back and forth for focus adjustment. In this embodiment, the lens 70000 is closest to the projector liquid crystal 70020, that is, the focal plane is the farthest, and the lens 70000 is the farthest from the projector liquid crystal 7020, that is, the focal plane is closest. Scanning is performed at the stage of initial setting after installing the liquid crystal projector and screen.
 図7(b)は、このスキャン動作を行う際に、プロジェクタから投影する投影映像70030の例を示しており、これはテストパターンとして、四隅近傍にコントラストのはっきりしたマークを投射する映像を例として表示している。 FIG. 7B shows an example of a projection image 70030 projected from the projector when performing this scanning operation. This is an example of an image in which a mark with clear contrast is projected near the four corners as a test pattern. it's shown.
 図7(c)~(f)は、Lをスキャンさせたときに、図1(a)でも示したプロジェクタ内蔵もしくは接続されたカメラ10011の画像解析結果である。縦軸はカメラに入力された画像の空間周波数特性fで、焦点面とスクリーンが一致した状態、即ちピントが合っていないと周波数特性は低く、ピントが合っている場合は周波数特性fが高くなる。空間周波数特性fは撮影画像を高速フーリエ変換により処理した結果を用いてもよいし、本実施例のようにテストパターンとしてマークの存在が分かっている場合には、隣接画素の明暗を比較して、その差が局所的に大きい場合と、なだらかに明暗が変化している場合とを区別して、空間周波数特性fのデータとして扱ってもよい。 FIGS. 7C to 7F show the image analysis results of the camera 10011 with or with the projector shown in FIG. 1A when L is scanned. The vertical axis represents the spatial frequency characteristic f of the image input to the camera. The frequency characteristic is low when the focal plane and the screen are coincident, that is, not in focus, and the frequency characteristic f is high when in focus. . As the spatial frequency characteristic f, the result of processing a captured image by fast Fourier transform may be used. When the presence of a mark is known as a test pattern as in this embodiment, the contrast of adjacent pixels is compared. The case where the difference is locally large may be distinguished from the case where the light and dark changes gently, and may be handled as data of the spatial frequency characteristic f.
 図7(c)~(f)は、各々投射映像70030の四隅に設置されたコントラストのはっきりしたマークの部分周囲の映像のみを抽出した結果である。各点ごとに空間周波数特性fが最大になるときのレンズ焦点距離Lが異なり、即ちこの空間周波数fのピークが発生したときのLが、図4(b)に示したピントがあった状態でのLa1、Lb1に相当する。あとは、このデータに従って図4(b)におけるLa2、Lb2を、四隅それぞれの位置で4点求めて、その距離にあった位置にプロジェクタ液晶を設置するように図4(b)のように傾ければよい。図4(b)では二次元平面で説明しているが、これを三次元平面で行うことで、プロジェクタから投射された画面の4隅にピントが合い、結果的に投射画面全体のピントが合うことになる。 FIGS. 7 (c) to (f) show the results of extracting only the images around the marked portions with clear contrasts installed at the four corners of the projected image 70030, respectively. The lens focal length L when the spatial frequency characteristic f is maximized for each point is different, that is, when the peak of the spatial frequency f is generated, the focus is as shown in FIG. 4B. It corresponds to La1 and Lb1. After that, according to this data, La2 and Lb2 in Fig. 4 (b) are obtained at four positions at each of the four corners, and tilted as shown in Fig. 4 (b) so that the projector liquid crystal is installed at the position corresponding to the distance. Just do it. In FIG. 4 (b), the explanation is given on the two-dimensional plane, but by performing this on the three-dimensional plane, the four corners of the screen projected from the projector are focused, and as a result the whole projected screen is focused. It will be.
 図8は、本発明による光学投射型表示装置、携帯端末、プログラムの、プロジェクタ液晶を可動とする構造の例を示す説明図である。 FIG. 8 is an explanatory diagram showing an example of a structure in which the projector liquid crystal is movable in the optical projection display device, the portable terminal, and the program according to the present invention.
 図8(a)は、図5に示したようにプロジェクタ液晶を、左右/上下に平行移動するように可動可能とするための構成を示している。プロジェクタ液晶80000は、上下及び左右に移動可能なレール80050の上に搭載され、レール上のプロジェクタ液晶の移動、及びレールの移動に伴って、左右/上下にプロジェクタ液晶が移動する。図示しないが、この移動は例えばステッピングモーター等による定量的な制御下での移動が可能なアクチュエータを使うことが望ましい。デジタルカメラの手振れ補正に使用される磁気とスプリングによる移動方式でも可能であるが、手振れ補正で必要な動きは速度であって変位ではないので、所定変位を保とうとすると、一定量の磁気を継続的に与え続けて、電力消費が発生する。本実施に必要な所定量の変位での固定を行う場合には、例えば所定速度で所定変位を移動させたところでプロジェクタ液晶をブレーキ等で押さえつけるような構成を使うのが望ましい。 FIG. 8 (a) shows a configuration for enabling the projector liquid crystal to be movable so as to translate left and right / up and down as shown in FIG. The projector liquid crystal 80000 is mounted on a rail 80050 that can move up and down and left and right, and the projector liquid crystal moves right and left / up and down as the projector liquid crystal moves on the rail and the rail moves. Although not shown, it is desirable to use an actuator that can move under quantitative control using, for example, a stepping motor. Although it is possible to move with a magnet and a spring used for camera shake correction of digital cameras, the movement required for camera shake correction is speed and not displacement, so if you try to keep a predetermined displacement, a certain amount of magnetism will continue. As a result, power consumption occurs. When fixing with a predetermined amount of displacement necessary for this embodiment, it is desirable to use a configuration in which, for example, the projector liquid crystal is pressed with a brake or the like when the predetermined displacement is moved at a predetermined speed.
 図8(b)は、図4に示したように、プロジェクタ液晶を傾けることを可能にするための構造を示している。図8(a)と同様にプロジェクタ液晶80000は、レール80050の上に搭載され、左右/上下に移動可能な構成になっている。本実施例ではこのレール自体を垂直軸回転80030及び水平軸回転80040が可能な構成とすることで、図4(b)に示すようなプロジェクタ液晶を傾けることを可能とする。図示しないが、この回転動作は、ステッピングモーターやDCモーターとポテンショメータにより構成するサーボモーター等を使い、さらに減速比を高めて微小な角度調整を正確に行うようなギア構成を回転軸に設けることで、正確なプロジェクタ液晶の傾き量を設定することが出来る。 FIG. 8B shows a structure for enabling the projector liquid crystal to be tilted as shown in FIG. Similarly to FIG. 8A, the projector liquid crystal 80000 is mounted on the rail 80050 and is configured to be movable left / right / up / down. In this embodiment, the rail itself is configured to be capable of vertical axis rotation 80030 and horizontal axis rotation 80040, whereby the projector liquid crystal as shown in FIG. 4B can be tilted. Although not shown in the figure, this rotational movement is achieved by using a stepping motor, a servo motor composed of a DC motor and a potentiometer, etc., and further providing a gear structure on the rotating shaft that accurately adjusts the angle by increasing the reduction ratio. It is possible to set an accurate tilt amount of the projector liquid crystal.
 図9は、本発明による光学投射型表示装置、携帯端末、プログラムにおいて、プロジェクタ液晶周辺の構造物を含めた具体的な構成を用いて、傾けを行う動作を示した説明図である。 FIG. 9 is an explanatory diagram showing an operation of tilting using a specific configuration including structures around the projector liquid crystal in the optical projection display device, portable terminal, and program according to the present invention.
 図9(a)は、プロジェクタ液晶が、単板のカラー液晶である場合を示す。透過型のカラー液晶は、光源90030により後ろから照射された光に照らされて、画素毎に色と形をつけたコンテンツ画面として光学像を形成する。その光学像はレンズ90000により投射され、スクリーン90010上に焦点を合わせることで、プロジェクタ液晶に表示されたコンテンツを拡大してスクリーンに投射して、大画面で閲覧することが可能になる。ここで図4(b)、図8(b)に示すようにプロジェクタ液晶90020を傾ける場合は、プロジェクタ液晶90020と光源90030が一体となったモジュール全体を回転(90040)させることで実現することが出来る。 FIG. 9A shows a case where the projector liquid crystal is a single-plate color liquid crystal. The transmissive color liquid crystal is illuminated by the light emitted from behind by the light source 90030, and forms an optical image as a content screen with colors and shapes for each pixel. The optical image is projected by the lens 90000, and is focused on the screen 90010, so that the content displayed on the projector liquid crystal can be enlarged and projected onto the screen for viewing on a large screen. Here, when the projector liquid crystal 90020 is tilted as shown in FIGS. 4B and 8B, it can be realized by rotating (90040) the entire module in which the projector liquid crystal 90020 and the light source 90030 are integrated. I can do it.
 図9(b)は、プロジェクタ液晶が、コンテンツ画像を、光の三原色であるR、G、Bそれぞれ別なプロジェクタ液晶により構成し、各々R、G、Bフィルタもしくは三色の光源90030により照射された光学像を、クロスプリズム90050により一枚の光学像に合成し、レンズ90000を通してスクリーン90010に投射することを示している。クロスプリズムは、直方体のプリズムが図示する二本の斜め線部分にハーフミラーが入っており、これにより上と下に位置するプロジェクタ液晶の光を直角に反射して右側の光軸90060に送ると共に、左のプロジェクタ液晶の光は直進して同じ光軸90060に送ることで、3枚のプロジェクタ液晶の光学像を合成して、投射することが出来る。この場合も、前記のように三色分の三枚のプロジェクタ液晶90020を傾ける場合は、プロジェクタ液晶90020と光源90030の組み合わせ部品の3つが一体となったモジュール全体を回転(90040)させることで実現することが出来る。 In FIG. 9B, the projector liquid crystal is composed of different projector liquid crystals for R, G, and B, which are the three primary colors of light, and each is irradiated by an R, G, B filter or a three-color light source 90030. The optical image is combined into one optical image by a cross prism 90050 and projected onto a screen 90010 through a lens 90000. The cross prism has half mirrors in the two diagonal lines shown in the figure of the rectangular parallelepiped prism. By this, the light of the projector liquid crystal located above and below is reflected at right angles and sent to the right optical axis 90060, and left The light from the projector liquid crystal goes straight and is sent to the same optical axis 90060, so that the optical images of the three projector liquid crystals can be synthesized and projected. In this case as well, when the three projector liquid crystal 90020s for three colors are tilted as described above, it is realized by rotating (90040) the entire module in which the combination of the projector liquid crystal 90020 and the light source 90030 is integrated. I can do it.
 図10は、本発明による光学投射型表示装置、携帯端末、プログラムの機器構成を示したブロック図である。 FIG. 10 is a block diagram showing the device configuration of the optical projection display device, portable terminal, and program according to the present invention.
 図10(a)は、本発明による携帯端末のブロック図であり、一般的なコンピュータシステムの構成を用いており、CPU100000を中心として、各種ハードウェアがバス100001を用いて接続されており、各ハードウェアは図示しないハードウェアインタフェースを内蔵して、データの入力や保存、出力等の制御を、CPU上で動作するプログラムの制御に従って行う。 FIG. 10 (a) is a block diagram of a portable terminal according to the present invention, which uses a general computer system configuration, and various hardwares are connected using a bus 100001 around a CPU 100000. The hardware incorporates a hardware interface (not shown), and controls data input, storage, output, etc. according to control of a program operating on the CPU.
 端末はCPUを核として、表示デバイスであるLCD100010、表示デバイスで表示するイメージを構築するV-RAM(Video-RAM)100060、LCDの上に重なった状態でペンや指の接触を座標値として検出するタッチパネル100020、CPU100000が実行するプログラムや基本データを保存したフラッシュメモリ100070、端末の電源ON/OFFやバックライトの調整などを行う各種スイッチ100030、CPU100000がワークエリアとして使用するRAM100080、例えばカメラ100040などの前記タッチパネル以外のイメージデータの入力デバイス、そして前記カメラで撮影した投射映像と、修正した投射輪郭のデータを送信する無線LAN100090により構成される。各々のデバイスには、前記したように図示しないインタフェースがあり、CPUバス100001と接続することで、各々のデバイスへの入出力データを、CPU上で動作するプログラムが扱うことが出来る。 The terminal uses the CPU as a core to display LCD100010 as a display device, V-RAM (Video-RAM) 100060 for constructing an image to be displayed on the display device, and detects the touch of a pen or finger as a coordinate value while overlaid on the LCD Touch panel 100020 to be used, Flash memory 100070 for storing programs executed by CPU 100000 and basic data, various switches 100030 for turning on / off the terminal and adjusting backlight, RAM 100080 to be used as a work area by CPU 100000, for example, camera 100040, etc. Image data input devices other than the touch panel, and a projection image captured by the camera and a wireless LAN 100090 for transmitting corrected projection contour data. As described above, each device has an interface (not shown), and by connecting to the CPU bus 100001, input / output data to each device can be handled by a program operating on the CPU.
 図10(b)は、本発明によるプロジェクタのブロック図であり、本実施例においても、インテリジェント液晶プロジェクタは、図10(a)で示した端末と同様に、一般的なコンピュータシステムの構成を用いており、CPU100100を中心として、各種ハードウェアがバス100101を用いて接続されており、各ハードウェアは図示しないハードウェアインタフェースを内蔵して、データの入力や保存、出力等の制御を、CPU上で動作するプログラムの制御に従って行う。 FIG. 10 (b) is a block diagram of the projector according to the present invention. In this embodiment as well, the intelligent liquid crystal projector uses the configuration of a general computer system, like the terminal shown in FIG. 10 (a). Various hardware, mainly the CPU 100100, is connected using a bus 100101, and each hardware has a hardware interface (not shown) to control data input, storage, and output on the CPU. Follow the control of the program running on
 インテリジェント液晶プロジェクタはCPUを核として、内蔵もしくは外付けのプロジェクタ100110、プロジェクタに送信して表示するイメージを構築するV-RAM(Video-RAM)100150、電源ON/OFFや各種の操作を行う各種スイッチ100120、CPU60000が実行するプログラムや基本データを保存したフラッシュメモリ1000160、CPU100100がワークエリアとして利用するRAM100170、そして各タッチパネル付端末にIPアドレスを付与してLANを構築し、各端末から送信された投射映像と、修正した投射輪郭のデータの受信を行う無線LANルータ100130により構成される。各々のデバイスには、前記したように図示しないインタフェースがあり、CPUバス100101と接続することで、各々のデバイスへの入出力データを、CPU上で動作するプログラムが扱うことが出来る。 The intelligent LCD projector uses the CPU as a core, built-in or external projector 100110, V-RAM (Video-RAM) 100150 to construct an image to be sent to the projector for display, various switches for power ON / OFF and various operations 100120, flash memory 1000160 that saves programs executed by CPU60000 and basic data, RAM100170 that CPU100100 uses as work area, and IP address is assigned to each terminal with touch panel to construct LAN, and projections sent from each terminal The wireless LAN router 100130 receives the video and the corrected projection contour data. Each device has an interface (not shown) as described above, and by connecting to the CPU bus 100101, input / output data to each device can be handled by a program operating on the CPU.
 図11は、本発明の光学投射型表示装置、携帯端末、プログラムにて取り扱うスクリーン上の投射画像と、プロジェクタ液晶の座標の位置関係を示した説明図である。 FIG. 11 is an explanatory diagram showing the positional relationship between the projected image on the screen handled by the optical projection display device, portable terminal, and program of the present invention and the coordinates of the projector liquid crystal.
 本実施例は、図4に示したスクリーン上に投射した投射映像110010とプロジェクタ液晶110000の位置関係を、間に焦点距離L(110020)のレンズを挟んで構築した状態である。 In this embodiment, the positional relationship between the projected image 110010 projected onto the screen shown in FIG. 4 and the projector liquid crystal 110000 is constructed with a lens having a focal length L (110020) interposed therebetween.
 ここで、プロジェクタは内蔵するプロジェクタ液晶110000の四隅の端点a、b、c、dそれぞれの空間上のxyz座標値データは保持しており、また、図7に示すカメラで撮影した投射映像の画像データと、同じく図7において、レンズがもっともプロジェクタ液晶に近づいた状態、即ち焦点面が一番遠い状態から、レンズがもっともプロジェクタ液晶から遠のいた状態、即ち焦点面が一番近い状態までをスキャンする方法により、投射映像110010の四隅の端点A、B、C、Dの空間上の座標も測定できる。また、レンズの焦点距離Lは設計段階で決められている情報であり、同じく保有している。 Here, the projector holds the xyz coordinate value data on the four corners a, b, c, and d of the built-in projector liquid crystal 110000, and the image of the projected video taken by the camera shown in FIG. Similarly to the data in FIG. 7, scanning is performed from a state where the lens is closest to the projector liquid crystal, that is, a state where the focal plane is farthest, to a state where the lens is the farthest from the projector liquid crystal, ie, the state where the focal plane is closest. By the method, the coordinates in the space of the end points A, B, C, D at the four corners of the projected image 110010 can also be measured. The focal length L of the lens is information determined at the design stage, and is also held in the same way.
 これらの値の関係は、図11(b)に示す式(図4にて既説明)の関係にあるが、ここで、プロジェクタ液晶110000の4隅の端点は同一平面状にあるが、プロジェクタ液晶の4隅の各端点とレンズ主点の距離、そしてレンズ主点から投射映像の4隅の各端点との距離関係は、前記レンズのスキャンの位置によりすべて異なる。即ち合焦時のレンズからの距離が異なるので、通常使用時、即ちレンズ位置が一点に固定された条件化では、投射映像110010の4隅の端点の焦点位置は、スクリーンの平面上には必ずしも同時には存在しない。この問題点を解決するために本発明における実施例では、特に図4に示すような状態の補正を行う場合には、図11に示す座標系において、レンズ位置を固定した状態で、レンズ主点から投射映像の各端点までの距離とベクトル(AL、BL、CL、DL)に対応した、プロジェクタ液晶の4隅の各端点の座標をレンズ主点からプロジェクタ液晶の4隅の各端点までの距離とベクトル(aL、bL、cL、dL)を算出し、その値に従ってプロジェクタ液晶を傾けることにより、スクリーン上に投射映像全面が焦点を合わせた状態の投射を行うことが出来る。 The relationship between these values is that of the equation shown in FIG. 11B (explained in FIG. 4). Here, the end points of the four corners of the projector liquid crystal 110000 are in the same plane, but the projector liquid crystal The distance between each end point of the four corners and the lens principal point, and the distance relationship between the lens principal point and each end point of the four corners of the projected image are all different depending on the scanning position of the lens. That is, since the distance from the lens at the time of focusing is different, under normal use, that is, in a condition where the lens position is fixed at one point, the focal positions of the four corners of the projected image 110010 are not necessarily on the plane of the screen. It doesn't exist at the same time. In order to solve this problem, in the embodiment of the present invention, in particular, when correcting the state as shown in FIG. 4, in the coordinate system shown in FIG. The coordinates of the four corners of the projector liquid crystal corresponding to the distance from the screen to each endpoint of the projected image and the vectors (AL, BL, CL, DL) are the distances from the lens principal point to the four corners of the projector liquid crystal And the vectors (aL, bL, cL, dL) are calculated, and the projector liquid crystal is tilted according to the calculated values, whereby the projection image can be projected with the entire projected image in focus.
 図12は、本発明の光学投射型表示装置、携帯端末、プログラムの、ソフトウェアの構造とハードウェアの関係を示す説明図である。 FIG. 12 is an explanatory diagram showing the relationship between the software structure and hardware of the optical projection display device, portable terminal, and program of the present invention.
 図12(a)は端末装置の構成を示しており、オペレーティングシステム(以下OSと呼称)120010の全体制御で動作しており、そのOSの管理下で、投射歪み補正ユーザー入力アプリケーション120000が実行されている。投射歪み補正ユーザー入力アプリケーションとOSの間は、各ハードウェアごとにアプリケーションインタフェース(以下、APIと呼称)120001で接続され、投射歪み補正ユーザー入力アプリケーションはOSを介して、各ハードウェアとデータの送受信を行う。 FIG. 12 (a) shows the configuration of the terminal device, which operates under the overall control of an operating system (hereinafter referred to as OS) 120010. Under the management of the OS, a projection distortion correction user input application 120000 is executed. ing. The projection distortion correction user input application and the OS are connected to each hardware via an application interface (hereinafter referred to as API) 120001, and the projection distortion correction user input application sends and receives data to and from each hardware via the OS. I do.
 カメラ120023により撮影される、利用者目線にて閲覧されている液晶プロジェクタの投射画面は、ドライバ120013を経てOS120010を経由し、前記APIを介して投射歪み補正ユーザー入力アプリケーションに送られる。投射歪み補正ユーザー入力アプリケーションは入力されたカメラ撮影映像を、API120001、OS120010及びドライバ120014を経て、携帯端末の液晶ディスプレイ120024に表示する。 The projection screen of the liquid crystal projector viewed from the user's perspective, which is photographed by the camera 120023, is sent to the projection distortion correction user input application via the API via the OS 120010 via the driver 120013. The projection distortion correction user input application displays the input camera-captured video on the liquid crystal display 120024 of the portable terminal via the API 120001, the OS120010, and the driver 120014.
 タッチパネル120021にて入力された修正輪郭の携帯端末の液晶ディスプレイ120024上の座標値は、液晶ディスプレイ120024に重ねて装着されている前記タッチパネル120021で検出した座標値であり、その座標値はタッチパネルドライバ120011によりOSに入力され、API120001を経由して投射歪み補正ユーザー入力アプリケーションに入力される。このとき、また、ペンまたは指がタッチパネルに触れているか離れているかを、図3で説明したペンや指がタッチパネルに接触したというイベント情報として検出し、触れている場合の座標を時間に従って連続的に取り込み、図3(b)で説明した投射輪郭変更ラインとして利用したり、図6(a)で示すように投射輪郭を選択・移動するためのデータとして利用する。 The coordinate value on the liquid crystal display 120024 of the mobile terminal of the corrected contour input by the touch panel 120021 is the coordinate value detected by the touch panel 120021 attached to the liquid crystal display 120024, and the coordinate value is the touch panel driver 120011. Is input to the OS and input to the projection distortion correction user input application via the API120001. At this time, whether the pen or finger is touching or touching the touch panel is detected as event information indicating that the pen or finger touched the touch panel described in FIG. And used as the projection contour change line described with reference to FIG. 3B, or used as data for selecting / moving the projection contour as shown in FIG. 6A.
 これらのデータは、API120001、OS120010、無線LANドライバ120012を経由して、無線LAN120022より液晶プロジェクタに向けて送信される。 These data are transmitted from the wireless LAN 120022 to the liquid crystal projector via the API 120001, the OS 120010, and the wireless LAN driver 120012.
 図12(b)は液晶プロジェクタの構成を示しており、OS120050の全体制御で動作しており、そのOSの管理下で、API120041、120042、120043を経て接続されている投射歪み計算アプリケーション120031、投射歪み補正アプリケーション120032、プレゼンテーションアプリケーション120033が実行されている。 FIG. 12 (b) shows the configuration of the liquid crystal projector, which operates under the overall control of the OS120050, and is connected to the projection distortion calculation application 120031, which is connected via the APIs 120041, 120042, and 120043 under the management of the OS. A distortion correction application 120032 and a presentation application 120033 are executed.
 無線LAN120062にて、携帯端末と接続し、接続した端末より送信された入力されたデータは、無線LANドライバ120052によりOSに入力され、API120042を経由して投射歪み計算アプリケーション120031に入力される。同様に、液晶プロジェクタに内蔵もしくは設置されたカメラ120063は駆動され、カメラ内のレンズを図7に示すようにスキャンしつつ撮影された投射映像データも、ドライな120053を経由してOSに入力され、API120042を経由して投射歪み計算アプリケーション120031に入力される。ここでカメラ120023に付随するレンズのスキャンと、スキャン量の制御は、投射歪み計算アプリケーション120031よりカメラに制御信号を送ることにより行う。 The input data transmitted from the connected terminal connected to the portable terminal via the wireless LAN 120062 is input to the OS by the wireless LAN driver 120052 and input to the projection distortion calculation application 120031 via the API 120042. Similarly, the camera 120063 built in or installed in the liquid crystal projector is driven, and projection video data captured while scanning the lens in the camera as shown in FIG. 7 is also input to the OS via the dry 120053. , And input to the projection distortion calculation application 120031 via the API 120042. Here, the scanning of the lens associated with the camera 120023 and the control of the scanning amount are performed by sending a control signal to the camera from the projection distortion calculation application 120031.
 投射歪み計算アプリケーション120031は、受信したデータより、図11に示す数値を算出し、API及びOSを経由して、投射歪み補正アプリケーション120032に算出した例えば図7で説明したプロジェクタ液晶の4隅の各端点の座標をレンズ主点からプロジェクタ液晶の4隅の各端点までの距離とベクトルや、図6で示した投射映像を移動する補正量を用いて、図4や図5に示すようなプロジェクタ液晶の水平・垂直のシフトによる位置変更や傾き角度変更を、OS及びドライバ120054を経由して、アクチュエータ120064に変更指示を出す。アクチュエータ120064は図8にて前述したステップモーターやサーボモーター等で構成されており、この指示に従ってプロジェクタ液晶の位置や傾きの変更を行う。また、歪み補正アプリケーションからの出力信号は、プレゼンテーションアプリケーション120033に送られ、プレゼンテーションアプリケーション120033は図2(c)に示したようにプロジェクタ液晶に表示するイメージデータを変更することで、歪み補正を行った結果の補正イメージデータを、ドライバ120051を経て、プロジェクタ120061にて投射する。これらの動作により、歪みを補正した映像データをスクリーンに投射することが出来る。 The projection distortion calculation application 120031 calculates the numerical values shown in FIG. 11 from the received data, and calculates to the projection distortion correction application 120032 via the API and OS, for example, each of the four corners of the projector liquid crystal described in FIG. The projector liquid crystal as shown in FIGS. 4 and 5 is obtained by using the coordinates and coordinates of the end points from the lens principal point to the four corners of the projector liquid crystal and the correction amount for moving the projected image shown in FIG. The position change and the tilt angle change due to the horizontal / vertical shift are issued to the actuator 120064 via the OS and the driver 120054. The actuator 120064 is composed of the step motor, servo motor, etc. described above with reference to FIG. 8, and changes the position and tilt of the projector liquid crystal according to this instruction. The output signal from the distortion correction application is sent to the presentation application 120033, and the presentation application 120033 corrects the distortion by changing the image data displayed on the projector liquid crystal as shown in FIG. The resulting corrected image data is projected by the projector 120061 through the driver 120051. Through these operations, video data with corrected distortion can be projected onto the screen.
 図13は、本発明による光学投射型表示装置、携帯端末、プログラムの、投射歪みを補正するためのプロジェクタとスクリーンとの相対位置を検出する方法を示した説明図である。 FIG. 13 is an explanatory diagram showing a method of detecting the relative position between the projector and the screen for correcting projection distortion in the optical projection display device, portable terminal, and program according to the present invention.
 図13(a)は、プロジェクタ130010とスクリーン130040の位置関係を、上から見た図である。ここでプロジェクタには、方位センサ130000が設けてあり、地磁気等の情報を利用して、プロジェクタの設置方向を絶対値として測定することが出来、設置時点でのプロジェクタの向きを取得することが出来る。本図では、上から見た図として説明しているが、これは横から見た場合も同様で、重力センサ等により、プロジェクタが水平方向から上や下に向いている方向を取得することも出来る。 FIG. 13A shows the positional relationship between the projector 130010 and the screen 130040 as viewed from above. Here, the projector is provided with an orientation sensor 130,000, and the installation direction of the projector can be measured as an absolute value using information such as geomagnetism, and the orientation of the projector at the time of installation can be obtained. . In this figure, it is explained as a view from above, but this is the same when viewed from the side, and it is also possible to acquire the direction in which the projector is pointing up or down from the horizontal direction using a gravity sensor or the like. I can do it.
 図13(b)は、携帯端末によりスクリーンの設置面を測定する方法を示した図であり、図13(a)と同様に、上から見た図である。携帯端末にはプロジェクタと同様の方位センサ130021や、図示しない重力センサを搭載しており、携帯端末の左右や上下方向の向きを取得することが出来る。ここで、携帯端末の筐体の特定面をスクリーンに接触した状態で、携帯端末に設けたスイッチを押すことで、スクリーンと携帯端末の位置関係が、前記特定面がスクリーンの表面と一致した瞬間の携帯端末の左右や上下方向の向きの情報を記録する。即ち、スクリーンの投射面の左右・上下の角度を絶対値として測定することが出来る。 FIG. 13 (b) is a diagram showing a method of measuring the installation surface of the screen with a portable terminal, and is a diagram seen from above, similarly to FIG. 13 (a). The portable terminal is equipped with an orientation sensor 130021 similar to that of the projector and a gravity sensor (not shown), and the orientation of the portable terminal in the left-right and vertical directions can be acquired. Here, by pressing a switch provided on the mobile terminal with the specific surface of the casing of the mobile terminal in contact with the screen, the positional relationship between the screen and the mobile terminal is the moment when the specific surface matches the surface of the screen. Records information on the left and right and up and down orientations of mobile devices. That is, the left / right / up / down angles of the projection surface of the screen can be measured as absolute values.
 この測定値を用いて、図13(c)や図13(d)に示すように、プロジェクタ液晶をシフト(130011)したり、傾けたり(130012)という方法により、スクリーン130040に投射する映像の歪みを補正することが出来る。特に図13(c)の場合、即ちプロジェクタ内のプロジェクタ液晶の平行移動機能のみを持たせたプロジェクタを使用する場合は、プロジェクタの設置位置をスクリーンに対して直交するように置く必要があるが、プロジェクタ上部に方位センサの表示を行い、その表示を見ながらプロジェクタを設置することで、利用者が簡便に精度よくスクリーンに直行した位置にプロジェクタを設置することが可能となる。 Using this measurement value, as shown in FIGS. 13 (c) and 13 (d), distortion of the image projected on the screen 130040 by a method of shifting (130011) or tilting (130012) the projector liquid crystal. Can be corrected. In particular, in the case of FIG. 13 (c), that is, when using a projector having only a parallel movement function of the projector liquid crystal in the projector, it is necessary to set the installation position of the projector so as to be orthogonal to the screen. By displaying the azimuth sensor on the upper part of the projector and installing the projector while viewing the display, the user can easily and accurately install the projector at a position perpendicular to the screen.
 また、方位センサや重力センサによる方向の絶対値の取得を行う代わりに、ジャイロのように駆動中は常に一定の方向を向くようなセンサを用いて、スクリーンの測定とプロジェクタの測定の両方を携帯端末で行ったり、プロジェクタに取り外し可能で搭載したセンサを取り外して、それをスクリーンに接触させた後に、再びプロジェクタに搭載することで、プロジェクタとスクリーンの相対的な方向の差を測定し、前記と同様に投射画像の歪みを補正することが出来る。 Also, instead of obtaining the absolute value of the direction by the direction sensor or gravity sensor, using a sensor that always points in a certain direction during driving, such as a gyro, both screen measurement and projector measurement are carried. The difference between the direction of the projector and the screen is measured by removing it from the terminal or removing the sensor mounted on the projector, bringing it into contact with the screen, and then mounting it on the projector again. Similarly, the distortion of the projected image can be corrected.
 図14は、本発明による光学投射型表示装置、携帯端末、プログラムにおいて、投射映像の歪み補正量の入力と歪み補正を行う動作を示したフローチャートである。 FIG. 14 is a flowchart showing an operation of inputting a distortion correction amount of a projected image and performing distortion correction in the optical projection display device, portable terminal, and program according to the present invention.
 図14(a)は、携帯端末による歪み補正量の入力操作140000を示したフローチャートである。プロジェクタで最初に投射された投射画像を、まずカメラが撮影し(140010)、次に撮影した画像中の投射画面の輪郭を抽出する(140020)。撮影した画像に輪郭を重畳した画像を、携帯端末のLCDに表示し(140030)、ペンや指を用いて、抽出した輪郭の形状を変更する補正輪郭の入力を行う(140040)。そして入力した輪郭の変更量を取得して(140050)、その情報を輪郭変更量としてプロジェクタに、送信データ140090として送信する(140060)。ここで図14(b)にて後述する処理により新たに投射された投射画面を目視で確認することで、追加補正が必要かどうかの判断を行い(140070)、補正輪郭の再度の入力を始めとする一連の動作をもう一度行うか、補正の終了をするか(14080)、いずれかの処理を行う。 FIG. 14 (a) is a flowchart showing a distortion correction amount input operation 140000 by the mobile terminal. The camera first shoots the projection image first projected by the projector (140010), and then extracts the outline of the projection screen in the photographed image (140020). An image in which a contour is superimposed on the captured image is displayed on the LCD of the portable terminal (140030), and a correction contour for changing the shape of the extracted contour is input using a pen or a finger (140040). The input contour change amount is acquired (140050), and the information is transmitted as the contour change amount to the projector as transmission data 140090 (140060). Here, it is determined whether additional correction is necessary by visually confirming a projection screen newly projected by the process described later in FIG. 14B (140070), and the correction contour is started to be input again. Either a series of operations is performed once again, or the correction is terminated (14080).
 図14(b)は、プロジェクタによる補正動作140400を示したフローチャートである。図14(a)の冒頭で説明したように、まずプロジェクタを起動し(140110)、次に例えばテストパターンのような画面をスクリーンに投射する(140120)。次に携帯端末から送信データ140090により送られてきた輪郭変更量を受信し(140130)、このデータとプロジェクタのレンズやプロジェクタ液晶のスペックを元に輪郭変更量を計算する(140140)。そして、算出した変更量に従って、画像データやプロジェクタ液晶の一夜角度を変更し(140150)、変更した結果として補正がなされた画像をスクリーンに投射する(140160)。ここで、追加補正がさらに必要であれば、携帯端末から新たな輪郭変更量が送信されることで追加補正要を認識し、再び140130から240160の処理を行う。追加補正が不要であれば、補正を終了して(140180)、本来投射するコンテンツの投射を開始する。 FIG. 14B is a flowchart showing the correction operation 140400 by the projector. As described at the beginning of FIG. 14A, the projector is first activated (140110), and then a screen such as a test pattern is projected onto the screen (140120). Next, the contour change amount sent from the portable terminal by the transmission data 140090 is received (140130), and the contour change amount is calculated based on this data and the specifications of the projector lens and projector liquid crystal (140140). Then, according to the calculated change amount, the night angle of the image data and the projector liquid crystal is changed (140150), and the image corrected as a result of the change is projected onto the screen (140160). Here, if further correction is necessary, the additional correction is recognized by transmitting a new contour change amount from the mobile terminal, and the processes from 140130 to 240160 are performed again. If no additional correction is required, the correction is finished (140180), and the projection of the originally projected content is started.
 図15は、本発明による光学投射型表示装置、携帯端末、プログラムによる、スクリーン形状を基準とした自動歪み補正の動作を示す説明図である。 FIG. 15 is an explanatory view showing the operation of automatic distortion correction based on the screen shape by the optical projection display device, portable terminal, and program according to the present invention.
 図15(a)は、スクリーン150000と、スクリーンに初期投射された投射映像150010の様子を示している。これを携帯端末に内蔵もしくは設置されたカメラで撮影した画像を、携帯端末のLCDに表示した状態を図15(b)に示す。ここで、投射映像の輪郭抽出を行って投射輪郭150010を生成すると同時に、スクリーンの輪郭抽出も行って、スクリーン輪郭150001も生成し、LCDの画像に重畳表示する。ここで、投射輪郭を示す投射映像とスクリーンの境界線は、投射映像の輝度と、プロジェクタにより光の投射を受けていないスクリーンの輝度の差を用いて検出する。また、スクリーンの輪郭は、通常スクリーンは白色に近い単一色で全面が構成されており、その色と背景となる壁などの有色部分との境界を用いて検出する。ここで、特にスクリーンの輪郭は直線で構成されているので、色により検出した境界線が複数見つかった場合、その中で直線で構成され、その直線により四辺形を構成している形状を、輪郭として使用する。 FIG. 15A shows the state of a screen 150000 and a projected image 150010 initially projected on the screen. FIG. 15B shows a state in which an image taken by a camera built in or installed in the mobile terminal is displayed on the LCD of the mobile terminal. Here, the contour of the projected video is extracted to generate the projected contour 150010, and at the same time, the screen contour is extracted to generate the screen contour 150001, which is superimposed on the LCD image. Here, the boundary line between the projected image indicating the projection contour and the screen is detected using a difference between the luminance of the projected image and the luminance of the screen not receiving the light projection by the projector. In addition, the screen outline is usually detected by using the boundary between the color and a colored portion such as a wall as a background. Here, in particular, the outline of the screen is composed of straight lines, so when a plurality of boundary lines detected by color are found, the shape that is composed of straight lines and forms a quadrilateral by the straight lines is defined as an outline. Use as
 図15(c)は、図15(a)のように投射した映像を補正する形状を示しており、投射映像の輪郭とスクリーンの輪郭が略平行になるような補正を目標値とする。具体的には各辺のスクリーンと投射映像の輪郭線の間の距離を、各辺ごとに複数個所サンプルし、距離150020≒距離150021、距離150030≒距離150031、距離150040≒距離150041、距離150050≒距離150051、そして投射映像の縦横比が投射するプロジェクタ液晶の形状の縦横比と略同一になるような補正を行う。その結果として、図15(d)に示すように、スクリーン150000を正面から見たときに、投射映像が長方形に見える補正、即ち一般的にスクリーンをどの方向から見ても、複数の閲覧者が同時に閲覧するに適した形状の自動的に補正することが出来る。ここでは携帯端末に搭載したカメラを用いた補正として説明しているが、この場合携帯端末ではなくプロジェクタに搭載もしくは設置したカメラのみを用いてもよく、また、図15(b)のようなLCD表示をする必要もなく、自動的に補正を行う方法を取ってもよい。さらに、携帯端末を使う場合も、タッチパネル付携帯端末の画面上で、ペン操作により行う方法以外に、例えば携帯電話等に搭載もしくは表示されるキーを用いて、自動補正ボタンを携帯端末上で押すだけで、自動的に補正を行うという処理を行ってもよい。 FIG. 15 (c) shows a shape for correcting the projected image as shown in FIG. 15 (a), and the correction is made so that the contour of the projected image is substantially parallel to the contour of the screen. Specifically, the distance between the screen on each side and the outline of the projected image is sampled at a plurality of positions for each side, and distance 150020≈distance 150021, distance 150030≈distance 150031, distance 150040≈distance 150041, distance 150050≈ Correction is performed so that the distance 150051 and the aspect ratio of the projected image are substantially the same as the aspect ratio of the shape of the projector liquid crystal to be projected. As a result, as shown in FIG. 15 (d), when the screen 150,000 is viewed from the front, the projected image is corrected to be rectangular. It is possible to automatically correct the shape suitable for browsing at the same time. Here, the correction is described as using the camera mounted on the mobile terminal, but in this case, only the camera mounted on or installed in the projector may be used instead of the mobile terminal, or an LCD as shown in FIG. There is no need for display, and an automatic correction method may be used. In addition, when using a mobile terminal, in addition to the method of performing a pen operation on the screen of the mobile terminal with a touch panel, for example, using the key mounted or displayed on the mobile phone, the automatic correction button is pressed on the mobile terminal. It is also possible to perform a process of automatically performing correction.
 図16は、本発明による光学投射型表示装置、携帯端末、プログラムによる、投射映像の歪み補正を行う具体的な操作と携帯端末の操作画面を示した説明図である。 FIG. 16 is an explanatory diagram showing a specific operation for correcting distortion of a projected image and an operation screen of the mobile terminal by the optical projection display device, the mobile terminal, and the program according to the present invention.
 図16(a)は、プロジェクタによりスクリーン160000に投射された投射映像160020の様子である。既に説明したように、投射映像はプロジェクタの設置場所に従って歪んだ形に投射されている。 FIG. 16 (a) shows a state of the projected image 160020 projected on the screen 160000 by the projector. As already described, the projected image is projected in a distorted form according to the installation location of the projector.
 図16(b)は、図16(a)の様子を、本発明による携帯端末160010に内蔵もしくは設置されたカメラ160011により撮影したイメージを、携帯端末160010の画面に表示した状態である。この状態はまだ静止画撮影をする前の状態で、画面上に設けたタッチパネル上に表示されたシャッターボタン160012を、ペンもしくは指で押すことで、このイメージを静止画として携帯端末160010に取り込むことが出来る。取り込んだ後は、取り込んだ画像を静止画として画面に表示する。 FIG. 16 (b) shows a state where the image of FIG. 16 (a) is displayed on the screen of the mobile terminal 160010, which is an image taken by the camera 160011 built in or installed in the mobile terminal 160010 according to the present invention. This state is the state before still image shooting. By pressing the shutter button 160012 displayed on the touch panel provided on the screen with a pen or a finger, this image is captured as a still image into the mobile terminal 160010. I can do it. After capturing, the captured image is displayed on the screen as a still image.
 図16(c)は、図16(b)にてシャッターを押した後に、取り込んだ静止画像を表示した状態である。このとき携帯端末160010は、取り込んだ画像から投射映像の輪郭をデジタル処理により抽出し、投射輪郭160030という線を、静止画像に重畳して表示する。 FIG. 16 (c) shows a state in which the captured still image is displayed after the shutter is pressed in FIG. 16 (b). At this time, the portable terminal 160010 extracts the outline of the projected video from the captured image by digital processing, and displays a line called the projected outline 160030 superimposed on the still image.
 図16(d)は、図16(c)にて表示した投射輪郭160030を変形して、目標の投射映像の形を作成する画面である。タッチパネル付画面上で、ペン160060にて投射輪郭の4隅の各端点に触れて、触れた状態で所定時間が経過したところで、投射輪郭形状を変形可能なモードに切り替える。そしてペン160060にて投射輪郭変更ライン160031を希望の形状に変形する。変形が終了したところで、「EXEC」(実行)ボタン160040をペン160060でタッチすることで、変更作業が確定する。 FIG. 16 (d) is a screen for creating the shape of the target projection image by modifying the projection contour 160030 displayed in FIG. 16 (c). On the screen with a touch panel, each end point of the four corners of the projection contour is touched with a pen 160060, and when a predetermined time has passed in the touched state, the projection contour shape is switched to a mode that can be deformed. Then, the projection contour change line 160031 is transformed into a desired shape by the pen 160060. When the transformation is completed, the change work is confirmed by touching the “EXEC” (execution) button 160040 with the pen 160060.
 図16(e)は、図16(d)にて投射輪郭変更ライン160031を確定した状態である。ここで、図14のフローチャートにて説明したように、投射輪郭変更ライン160031が示す輪郭変更量送信データ140090を、携帯端末からプロジェクタに送信し、プロジェクタをその値に従って投射映像の形状を変更する。端末上では変更完了したラインを画面に表示しており、「EXIT」ボタン(変更終了)160040か、「ReTry」ボタン(再度変更)160050かのいずれかをペン160060にて選択する。「EXIT」ボタン160040を押した場合には変更作業が終了し、プロジェクタは指定されたコンテンツの投射を開始することが出来るようになる。「ReTry」ボタン160050をタッチした場合は、再度撮影する画面(図16(b))や、変形可能画面(図16(c))に戻り、再度の投射画面の調整が行えるようになる。 FIG. 16 (e) shows a state in which the projection contour change line 160031 is confirmed in FIG. 16 (d). Here, as described with reference to the flowchart of FIG. 14, the contour change amount transmission data 140090 indicated by the projection contour change line 160031 is transmitted from the portable terminal to the projector, and the projector changes the shape of the projected video according to the value. On the terminal, the changed line is displayed on the screen, and either the “EXIT” button (end of change) 160040 or the “ReTry” button (change again) 160050 is selected with the pen 160060. When the “EXIT” button 160040 is pressed, the change operation is completed, and the projector can start projecting the designated content. When the “ReTry” button 160050 is touched, the screen returns to the screen for re-shooting (FIG. 16B) and the deformable screen (FIG. 16C), and the projection screen can be adjusted again.
 図16(f)は、図16(d)の別な実施例であり、既に表示された投射輪郭の変更ではなく、ペン160031により、直接投射輪郭変更ライン160031を携帯端末のタッチパネル付画面に記入する方法である。投射輪郭変更ライン160031は4隅を持つ四角形の形状で、始点と終点が一致した閉形状であり、ペンで始点からラインを書き始め、四角形の形状でペンが終点位置≒始点位置と略同一点に達すると、図16(d)で示した「EXEC」(実行)ボタン160040が表示され、そのボタンをペン160060でタッチすることで、変更作業が確定する。 FIG. 16 (f) is another embodiment of FIG. 16 (d). Instead of changing the already displayed projection contour, the pen contour 160031 is used to directly enter the projection contour change line 160031 on the screen with the touch panel of the portable terminal. It is a method to do. The projected contour change line 160031 is a quadrilateral shape with four corners, and is a closed shape with the start point and end point coinciding with each other. The pen starts to draw a line from the start point, and the pen shape is nearly the same as the end point position. Is reached, the “EXEC” (execution) button 160040 shown in FIG. 16D is displayed, and the change work is confirmed by touching the button with the pen 160060.
 ここで、投射輪郭変更ラインの変更は、タッチパネル付携帯端末の画面上で、ペン操作により行う方法以外に、例えば携帯電話等に搭載もしくは表示される十字キーを用いて、4隅の端点の選択の後、同じく十字キーにより端点を上下左右に微小ステップずつ移動することで、投射輪郭変更ライン160031を動かす方法を取ってもよい。具体的には、十字キーを動かした後、例えば十字キーの中央にある選択キーを押して4隅の端点のうちのひとつを選択した後、再び十字キーで選択した端点を上下左右に動かして、適切な位置に端点が来たところで、選択キーを押すことで確定するという動作を行えばよい。 Here, the change of the projection contour change line is not limited to the method of performing a pen operation on the screen of the mobile terminal with a touch panel, for example, selection of the end points of the four corners using a cross key mounted or displayed on a mobile phone or the like. After that, the projection contour change line 160031 may be moved by moving the end point up and down, left and right by a minute step with the cross key. Specifically, after moving the cross key, for example, press the selection key in the center of the cross key to select one of the four corner endpoints, then move the endpoint selected with the cross key up and down, left and right again, When the end point comes to an appropriate position, an operation of confirming by pressing the selection key may be performed.
 尚、これまで説明した携帯端末で動作する機能は、図10で示したCPU上で実行されるプログラムであり、このプログラムは携帯端末に予めインストールされている他に、図10(a)の無線LAN100090等の外部通信手段により携帯端末に取り込まれてインストールするプログラムであっても、また図示しない外部記憶媒体インタフェースを経由して、外部記憶媒体に保存されているプログラムによりインストールされてもよい。 The function that operates in the mobile terminal described so far is a program executed on the CPU shown in FIG. 10, and this program is installed in advance in the mobile terminal, and in addition to the wireless function shown in FIG. Even a program that is taken in and installed in a portable terminal by an external communication means such as LAN100090, or may be installed by a program stored in an external storage medium via an external storage medium interface (not shown).
 10000  液晶プロジェクタ
 10010  携帯端末
 10011  カメラ
 20020  投射映像
 30050  投射輪郭
 30051  投射輪郭変更ライン
 40000  プロジェクタ液晶
 40010  レンズ
10000 liquid crystal projector 10010 portable terminal 10011 camera 20020 projection image 30050 projection contour 30051 projection contour change line 40000 projector liquid crystal 40010 lens

Claims (12)

  1.  光学投射型表示装置であって、
     投射映像の歪み形状及び投射映像の目標形状を入力する投射歪み変更量入力手段と、
     前記歪み形状及び目標形状より、投射映像形状を変更ための変更量を算出する投射映像変更解析手段と、
     前記複当社映像変更解析手段により得られた値により、投射映像の変更を行う投射映像変更手段と、
     前記変更された投射映像を投射する投射手段と、
     を有する光学投射型表示装置。
    An optical projection display device,
    A projection distortion change amount input means for inputting a distortion shape of the projection image and a target shape of the projection image;
    From the distortion shape and the target shape, a projection video change analysis means for calculating a change amount for changing the projection video shape,
    Projected video change means for changing the projected video according to the value obtained by the double image change analysis means;
    Projecting means for projecting the changed projection image;
    An optical projection display device.
  2.  請求項1記載の光学投射型表示装置であって、
     前記投射歪み変更量入力手段は、接続可能な携帯端末装置より受信したデータを入力することを特徴とする光学投射型表示装置。
    The optical projection type display device according to claim 1,
    The projection distortion change amount input means inputs data received from a connectable portable terminal device.
  3.  請求項1記載の光学投射型表示装置であって、
     前記投射歪み変更量入力手段は、該光学投射型表示装置に内蔵もしくは接続したカメラにより撮影した映像を用いて算出した変更量を入力することを特徴とする光学投射型表示装置。
    The optical projection type display device according to claim 1,
    The projection distortion change amount input means inputs an amount of change calculated using an image taken by a camera built in or connected to the optical projection display device.
  4.  請求項1記載の光学投射型表示装置であって、
     該光学投射型表示装置は、方位センサと、重力センサの少なくとも一方を有し、
     前記光学投射型表示装置により投射画像を投射する投射対象物に接触し、該投射対象物の水平もしくは垂直角度を計測可能な接触面を有し、
     前記携帯端末が有する方位センサもしくは重力センサのいずれか一方もしくは両方より出力された方位センサもしくは重力センサのいずれか一方もしくは両方の出力値を受信し、
     前記光学投射型表示装置が有する方位センサもしくは重力センサのいずれか一方もしくは両方の出力値と、前記携帯端末から受信した出力値の両方を用いて、投射映像形状を変更ための変更量を算出する投射映像変更解析手段を特徴とする光学投射型表示装置。
    The optical projection type display device according to claim 1,
    The optical projection display device has at least one of an orientation sensor and a gravity sensor,
    Contacting a projection object for projecting a projection image by the optical projection display device, and having a contact surface capable of measuring the horizontal or vertical angle of the projection object,
    Receiving the output value of either one or both of the azimuth sensor and gravity sensor output from either or both of the azimuth sensor and gravity sensor of the portable terminal;
    The amount of change for changing the projected image shape is calculated using both the output value of one or both of the azimuth sensor and the gravity sensor of the optical projection display device and the output value received from the portable terminal. An optical projection type display device characterized by projected image change analysis means.
  5.  請求項1ないし4のいずれか記載の光学投射型表示装置であって、
     前記投射映像変更手段は、投射映像を形成する液晶パネルに表示する情報の幾何学的形状を変更することにより変更を行うことを特徴とする光学投射型表示装置。
    An optical projection display device according to any one of claims 1 to 4,
    The optical projection type display device, wherein the projection image changing means changes the information by changing a geometric shape of information displayed on the liquid crystal panel forming the projection image.
  6.  請求項1ないし4のいずれか記載の光学投射型表示装置であって、
    前記投射映像変更手段は、投射映像を形成する液晶パネルの水平・垂直位置もしくは傾きを変更することにより変更を行うことを特徴とする光学投射型表示装置。
    An optical projection display device according to any one of claims 1 to 4,
    The optical projection type display device characterized in that the projection image changing means changes by changing a horizontal / vertical position or inclination of a liquid crystal panel forming a projection image.
  7.  光学投射型表示装置と通信可能な携帯端末であって、
     該携帯端末に内蔵もしくは接続し、前記光学投射型表示装置により投射された投射映像を画像データとして取得するカメラと、
     前記画像データより、前記投射映像の輪郭形状を抽出する輪郭抽出手段と、
     前記画像および投射映像の輪郭形状を表示する表示手段と、
     利用者からの図形形状や座標位置の入力を受付けて、前記輪郭の形状を修正した輪郭変更形状情報を入力するタッチパネルと、
     前記タッチパネルから入力された輪郭形状情報を用いて生成する輪郭変更形状情報生成手段と、
     前記輪郭形状および輪郭変更形状情報を、前記他の携帯端末から光学投射型表示装置への送信を行う送信手段と、
    を有する携帯端末。
    A portable terminal capable of communicating with an optical projection display device,
    A camera that is built in or connected to the portable terminal, and that obtains a projection image projected by the optical projection display device as image data;
    From the image data, contour extracting means for extracting the contour shape of the projected video,
    Display means for displaying the contour shape of the image and the projected image;
    A touch panel that accepts input of a figure shape and coordinate position from a user and inputs contour change shape information obtained by correcting the shape of the contour;
    Contour change shape information generating means for generating using contour shape information input from the touch panel;
    Transmitting means for transmitting the contour shape and contour change shape information from the other portable terminal to the optical projection display device;
    Mobile terminal having.
  8.  請求項7記載の携帯端末であって、
     前記輪郭抽出手段、輪郭変更形状情報生成手段、前記送信手段により輪郭形状情報及び輪郭変更形状情報を送信する処理を行う送信手段の処理手順、を記載したプログラムをインストール可能且つ実行可能であることを特徴とする携帯端末。
    The mobile terminal according to claim 7,
    It is possible to install and execute a program that describes the processing procedure of the contour extraction unit, the contour change shape information generation unit, and the transmission unit that performs processing of transmitting the contour shape information and the contour change shape information by the transmission unit. A featured mobile terminal.
  9.  請求項7記載の携帯端末であって、
     前記輪郭変更形状情報は、前記表示された輪郭形状の端点を、前記タッチパネルからの入力によりずらすことにより得られる図形の形状、もしくはタッチパネルから入力された新たに入力された図形の形状、もしくは前記タッチパネルからの入力により輪郭形状の全体の位置をずらすことにより得られる情報であることを特徴とする携帯端末。
    The mobile terminal according to claim 7,
    The contour change shape information is a shape of a figure obtained by shifting an end point of the displayed contour shape by an input from the touch panel, a shape of a newly input figure input from the touch panel, or the touch panel A portable terminal, which is information obtained by shifting the overall position of the contour shape by input from.
  10.  光学投射型表示装置と通信可能な携帯端末であって、
     該携帯端末は、方位センサと、重力センサの少なくとも一方を有し、
     前記光学投射型表示装置により投射画像を投射する投射対象物に接触し、該投射対象物の水平もしくは垂直角度を計測可能な接触面を有し、
     前記接触面に投射対象物を接触させた状態で、前記方位センサもしくは重力センサのいずれか一方もしくは両方の出力値を記録し、
     前記出力値を、光学投射型表示装置に送信することを特徴とする携帯端末。
    A portable terminal capable of communicating with an optical projection display device,
    The portable terminal has at least one of an orientation sensor and a gravity sensor,
    Contacting a projection object for projecting a projection image by the optical projection display device, and having a contact surface capable of measuring the horizontal or vertical angle of the projection object,
    With the projection object in contact with the contact surface, record the output value of either one or both of the azimuth sensor and the gravity sensor,
    A portable terminal that transmits the output value to an optical projection display device.
  11.  光学投射型表示装置もしくは携帯端末にインストールされ、識別情報により特定される他の携帯端末およびプロジェクタと通信するために実行されるプログラムであって、
     タッチパネルから入力された線画情報を所定の間隔で線分に分割して、該線分の始点と終点の座標値及び描画線の種類、色等の属性情報と共に線分データパケットを生成し、プロジェクタに送信するよう、タッチパネル手段、表示手段および送受信手段を制御し、
     前記表示手段に前記識別情報により識別された他の携帯端末のユーザ情報が表示され、該ユーザ情報を特定し、前記タッチパネルから入力された線画情報を所定の間隔で線分に分割して、該線分の始点と終点の座標値及び描画線の種類、色等の属性情報と共に線分データパケットを生成し、該他の携帯端末のユーザに送信するよう、タッチパネル手段、表示手段および送受信手段を制御し、
     前記表示手段に前記識別情報により識別された他の携帯端末のユーザからの受信データを表示するよう、表示手段および送受信手段を制御することを特徴とするプログラム。
    A program that is installed in an optical projection display device or a portable terminal and is executed to communicate with another portable terminal and a projector specified by identification information,
    Line drawing information input from the touch panel is divided into line segments at predetermined intervals, and line segment data packets are generated together with attribute information such as the coordinate values of the start and end points of the line segment, the type and color of the drawing line, and the projector. Control the touch panel means, the display means and the transmission / reception means to transmit to
    User information of another mobile terminal identified by the identification information is displayed on the display means, the user information is specified, line drawing information input from the touch panel is divided into line segments at predetermined intervals, and A touch panel means, a display means, and a transmission / reception means for generating a line segment data packet together with attribute information such as the coordinate value of the start point and end point of the line segment and the type and color of the drawing line, and transmitting it to the user of the other portable terminal. Control
    A program for controlling a display means and a transmission / reception means to display received data from a user of another portable terminal identified by the identification information on the display means.
  12.  請求項11記載のプログラムであって、
     前記輪郭変更形状情報は、前記表示された輪郭形状の端点を、携帯端末のタッチパネルからの入力によりずらすことにより得られる図形の形状、もしくはタッチパネルから入力された新たに入力された図形の形状、もしくは前記タッチパネルからの入力により輪郭形状の全体の位置をずらすことにより得られる情報であることを特徴とするプログラム。
    The program according to claim 11, wherein
    The contour change shape information is a shape of a figure obtained by shifting an end point of the displayed contour shape by an input from a touch panel of a mobile terminal, a shape of a newly input figure input from a touch panel, or A program characterized in that it is information obtained by shifting the overall position of the contour shape by an input from the touch panel.
PCT/JP2012/001263 2012-02-24 2012-02-24 Optical-projection-type display apparatus, portable terminal, and program WO2013124901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001263 WO2013124901A1 (en) 2012-02-24 2012-02-24 Optical-projection-type display apparatus, portable terminal, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001263 WO2013124901A1 (en) 2012-02-24 2012-02-24 Optical-projection-type display apparatus, portable terminal, and program

Publications (1)

Publication Number Publication Date
WO2013124901A1 true WO2013124901A1 (en) 2013-08-29

Family

ID=49005127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001263 WO2013124901A1 (en) 2012-02-24 2012-02-24 Optical-projection-type display apparatus, portable terminal, and program

Country Status (1)

Country Link
WO (1) WO2013124901A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080234A1 (en) * 2013-11-28 2015-06-04 コニカミノルタ株式会社 Projection device
JP2016114925A (en) * 2014-12-15 2016-06-23 テスト リサーチ, インク. Optical system and image compensation method for optical device
CN107861312A (en) * 2017-12-10 2018-03-30 罗世兰 Angular adjustment component on projecting apparatus
CN109271053A (en) * 2018-07-17 2019-01-25 苏州佳世达光电有限公司 For adjusting the embedded touch system of projection image and using its projector
CN109698947A (en) * 2017-10-23 2019-04-30 精工爱普生株式会社 The control method of projector and projector
CN111886567A (en) * 2018-03-07 2020-11-03 日本电气方案创新株式会社 Operation input device, operation input method, and computer-readable recording medium
CN114827562A (en) * 2022-03-11 2022-07-29 深圳海翼智新科技有限公司 Projection method, projection device, projection equipment and computer storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033357A (en) * 2004-07-15 2006-02-02 Olympus Corp Image converting apparatus and video image projecting device
JP2006129511A (en) * 2004-02-02 2006-05-18 Sharp Corp Projection system, method for adjusting projected image and projector
JP2006352514A (en) * 2005-06-16 2006-12-28 Seiko Epson Corp Projector and projection method
JP2008170671A (en) * 2007-01-11 2008-07-24 Seiko Epson Corp Projector provided with projector body and remote controller, remote controller, projector body, image display device body, and image display device provided with remote controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129511A (en) * 2004-02-02 2006-05-18 Sharp Corp Projection system, method for adjusting projected image and projector
JP2006033357A (en) * 2004-07-15 2006-02-02 Olympus Corp Image converting apparatus and video image projecting device
JP2006352514A (en) * 2005-06-16 2006-12-28 Seiko Epson Corp Projector and projection method
JP2008170671A (en) * 2007-01-11 2008-07-24 Seiko Epson Corp Projector provided with projector body and remote controller, remote controller, projector body, image display device body, and image display device provided with remote controller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080234A1 (en) * 2013-11-28 2015-06-04 コニカミノルタ株式会社 Projection device
JP2016114925A (en) * 2014-12-15 2016-06-23 テスト リサーチ, インク. Optical system and image compensation method for optical device
CN109698947A (en) * 2017-10-23 2019-04-30 精工爱普生株式会社 The control method of projector and projector
CN107861312A (en) * 2017-12-10 2018-03-30 罗世兰 Angular adjustment component on projecting apparatus
CN111886567A (en) * 2018-03-07 2020-11-03 日本电气方案创新株式会社 Operation input device, operation input method, and computer-readable recording medium
CN111886567B (en) * 2018-03-07 2023-10-20 日本电气方案创新株式会社 Operation input device, operation input method, and computer-readable recording medium
CN109271053A (en) * 2018-07-17 2019-01-25 苏州佳世达光电有限公司 For adjusting the embedded touch system of projection image and using its projector
CN114827562A (en) * 2022-03-11 2022-07-29 深圳海翼智新科技有限公司 Projection method, projection device, projection equipment and computer storage medium

Similar Documents

Publication Publication Date Title
WO2013124901A1 (en) Optical-projection-type display apparatus, portable terminal, and program
US20220286654A1 (en) Projector Keystone Correction Method, Apparatus And System, And Readable Storage Medium
JP3509652B2 (en) Projector device
CN110099266B (en) Projector picture correction method and device and projector
JP4495041B2 (en) A method for determining projector pixels associated with laser points on a display surface by pinhole projection
JP3761563B2 (en) Projection image automatic adjustment method for projector system and projector
JP5401940B2 (en) Projection optical system zoom ratio measurement method, projection image correction method using the zoom ratio measurement method, and projector for executing the correction method
US20170195647A1 (en) MEMS Scan Controlled Keystone and Distortion Correction
JP6645687B2 (en) Display device and control method
JP2010130225A (en) Projection display device and adjustment method for projection
JP2003283964A (en) Video display apparatus
US20210364900A1 (en) Projection Method of Projection System for Use to Correct Image Distortion on Uneven Surface
JP2003015218A (en) Projection display device
JP2016085380A (en) Controller, control method, and program
JP2005092592A (en) Projector and projection system
KR20130043300A (en) Apparatus and method for correcting image projected by projector
JP4199641B2 (en) Projector device
CN114286066A (en) Projection correction method, projection correction device, storage medium and projection equipment
CN114339179B (en) Projection correction method, apparatus, storage medium and projection device
KR20100129437A (en) Projector of mobile terminal and method for correcting image thereof
JP6494059B2 (en) Information processing apparatus, information processing method, and program
WO2017149851A1 (en) Information processing device, information processing method and program
JP5267175B2 (en) Projection optical system zoom ratio measurement method, projection image correction method using the zoom ratio measurement method, and projector for executing the correction method
JP2013145949A (en) Projection system, and alignment adjusting method for superposed image
JP4839858B2 (en) Remote indication system and remote indication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP