WO2013124175A1 - Method for filling a reactor with a catalyst - Google Patents

Method for filling a reactor with a catalyst Download PDF

Info

Publication number
WO2013124175A1
WO2013124175A1 PCT/EP2013/052626 EP2013052626W WO2013124175A1 WO 2013124175 A1 WO2013124175 A1 WO 2013124175A1 EP 2013052626 W EP2013052626 W EP 2013052626W WO 2013124175 A1 WO2013124175 A1 WO 2013124175A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactor
carbonylation
filler
filling
Prior art date
Application number
PCT/EP2013/052626
Other languages
German (de)
French (fr)
Inventor
Alexander Zipp
Christoph RÜDINGER
Rasmus Fehrmann
Christopher William Hanning
Anders Riisager
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Publication of WO2013124175A1 publication Critical patent/WO2013124175A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0294Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by polar or ionic interaction with the substrate, e.g. glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • B01J2531/007Promoter-type Additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0219Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium

Definitions

  • the invention relates to a process for filling a reactor with a catalyst for the carbonylation of carbonylatable compounds in the gas phase.
  • WO2006122563 discloses a process for the continuous heterogeneous-catalyzed carbonylation of carbonylatable compounds in the gas phase.
  • the catalyst used here is a metal of group VIII of the Periodic Table, preferably rhodium, dissolved in an ionic liquid and immobilized on a support material.
  • This catalyst also called SILP (supported ionic liquid phase) catalyst, is not stable in a normal atmosphere. It decomposes comparatively quickly in air and therefore has little or no activity after filling a reactor in a conventional manner. To avoid this, the catalyst can be transferred under carbon monoxide atmosphere into the reactor, which is not practical on an industrial scale.
  • Such reactors have Rata TM lysator fill times of several days.
  • the object of the present invention is to provide a process which makes it possible to convert a SILP catalyst into a technical reactor simply and without loss of activity.
  • the object is achieved by a method in which the SILP catalyst is covered with a filler, which is liquid under normal conditions and under reaction conditions of the carbonylation, and such a treated catalyst is filled into the reactor and the reactor is sealed.
  • the filler obstructs the diffusion of gas to or from the catalyst.
  • the diffusion coefficient of CO through the filler is decreased by at least a factor of 100 compared to the diffusion of CO into air or reduced to below 10 -7 m 2 s -1 .
  • an alkanoic acid preferably acetic acid
  • a corresponding alcohol shorter by one carbon atom, preferably methanol
  • the carbonylation is carried out at a temperature between 100 and 300 ° C, preferably between 150 and 250 ° C and under reaction pressures between 0.1 and 10 MPa, preferably between 0.5 and 5 MP, more preferably between 1 and 3 MPa.
  • reaction conditions of the carbonylation are to be understood as meaning these temperature and pressure conditions.
  • the filler is preferably a compound or mixture of compounds having a normal boiling point of from 30 to 180 ° C, preferably from 50 to 150 ° C.
  • the filler is liquid at 25 ° C and 0.1 MPa and has at 200 ° C a vapor pressure between 0.5 and 5 MPa.
  • Particular preference is also given to compounds which occur in the carbonylation of carbonylatable substances with this catalyst as starting material, intermediate or end product, particular preference being given to acetic acid and / or methanol.
  • the SILP catalyst is known and described in WO2006122563. It consists of a metal complex active under the reaction conditions of the carbonylation and an ionic liquid on a porous inert carrier material.
  • the metal complex is a transition metal compound which is active with respect to the carbonylation of carbonylatable substances or a precursor of such a compound to be converted under the reaction conditions of carbonylation into an active transition metal compound.
  • Such metal complexes are disclosed in O2006122563, in this respect reference is made to the local disclosure, for example on page 4 Z. 31 to page 5 Z, 6.
  • Preference is given to compounds of the transition metals rhodium and iridium, particular preference being given to rhodium compounds.
  • particularly suitable rhodium compounds are RhCl 3 ⁇ H 2 O, [Rh (CO) 2 Clj 2 , RhBr 3 ⁇ H 2 O,
  • the ionic liquid is the compounds described in paragraphs [0022] through [0027] of EP 1883 616 Bl, to which reference is made in this respect.
  • they may also be organic salts which are solid under the reaction conditions of the carbonylation, preferably a phosphonium salt with a melting point between 120 and 200 ° C., preferably a quaternary phosphonium salt with four independently selected aliphatic salts aromatic radicals having 1 to 20 C atoms having a melting point between 120 and 200 ° C, more preferably tetraalkylphosphonium iodide having a melting point between 120 and 200 ° C.
  • the support material for the catalyst according to the invention is porous materials which are inert under the reaction conditions of the carbonylation.
  • carrier materials are Si0 2 , Al 2 0 3 , Ti0 2 . It is preferably Si0 2 , particularly preferably pyrogenically produced Si0 2 as well as moldings produced therefrom.
  • Such shaped bodies are already described in WO 2008/071612. In that regard, reference is made to the local disclosure, for example on page 4 Z. 30 to p. 17. Z. 14 reference.
  • the support materials may be in any known form for catalysts, for example as powder, granules or as shaped bodies such as strands, cylinders, pellets, rings, multi-hole rings, spheres, caliper body, wheels, chairs, foam or honeycomb, are particularly suitable cylindrical Extrudates such as cylinders or rings.
  • the catalyst supports can be obtained by various molding techniques such as extrusion, agglomeration, granulation, pressing or pelleting.
  • the porous catalyst support may also be coated on a non-porous carrier body. The resulting coated catalyst molding (catalytically active component of SILP catalyst, ionic liquid and porous SILP catalyst support on a non-porous molding) is then treated as a Vollkatalysatorformmaschine.
  • the filler is added in an amount such that the pores of the catalyst are filled to more than 80%, more preferably more than 90% of the pore volume, most preferably about 100% of the pore volume.
  • the above-mentioned media for filling the pore volume can be added during the impregnation of the porous carrier material with the catalyst components (metal complex and ionic liquid) to produce the catalyst with the solvent used and remain on the catalyst during drying.
  • the media for filling the pore volume can also be applied to an already dried catalyst in a further impregnation step and remain in an analogous manner on the catalyst.
  • Such a treated catalyst is then transferred by sequential filling and pressure balance in the individual tubes of a technical tube bundle reactor.
  • the reactor is preferably a Rohrbün- with more than 1000 reaction tubes, each having a diameter between 15 and 50 mm and a length between 0.5 and 15 m. Due to the large number of reaction tubes or for the filling of the reactor necessary steps, the filling of such a reactor usually takes between 0.5 and 5 days to complete.
  • the support materials of fumed silica were prepared as described in WO2008071612 Example 21.
  • the carrier material has a BET specific surface area of 203 m 2 g -1 and a pore volume of 0.76 mL g -1 .
  • the material was adjusted by grinding and fractional sieving to a particle size distribution of 100 to 250 ⁇ .
  • the catalyst To prepare the catalyst, an appropriate amount of the rhodium compound diiodo-tetracarbonyl-dirhodium (1) and the ionic liquid l-butyl-3-methylimidazolium iodide was impregnated with a volume of methanol corresponding to the pore volume of the porous support material on the support material and the methanol in vacuo at 0.1 mbar and 60 ° C. for 12 h The catalyst thus prepared had a rhodium content of 2.45% by weight and a pore filling level of ionic liquid of 42% by volume.
  • the catalyst To prepare the catalyst, an appropriate amount of the rhodium compound diiodo-tetracarbonyl-dirhodium (I) and the ionic liquid 1-butyl-3-methylimidazolium iodide was impregnated onto the support material with a volume of methanol corresponding to the pore volume of the porous support material, and the methanol was vacuum-impregnated at 0.1 mbar and 60 ° C for 12 h.
  • the catalyst thus prepared had a rhodium content of 2.45% by weight and a pore filling level of ionic liquid of 42% by volume.
  • the catalyst was impregnated with an amount of acetic acid corresponding to the remaining pore volume prior to transfer to the experimental reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention relates to a method for filling a reactor with a catalyst for the carbonylation of carbonylated compounds in the gas phase. According to said method, a SILP catalyst is covered with a filling agent which is liquid under normal conditions and is volatile under carbonylation reaction conditions, and a thus-treated catalyst is introduced into the reactor and the reactor is sealed.

Description

Verfahren zur Befüllung eines Reaktors mit einem Katalysator Process for filling a reactor with a catalyst
Die Erfindung betrifft ein Verfahren zur Befüllung eines Reaktors mit einem Katalysator zur Carbonylierung carbonylierbarer Verbindungen in der Gasphase. The invention relates to a process for filling a reactor with a catalyst for the carbonylation of carbonylatable compounds in the gas phase.
Aus WO2006122563 ist ein Verfahren zur kontinuierlichen hetero- gen-katalysierten Carbonylierung carbonylierbarer Verbindungen, in der Gasphase bekannt. Als Katalysator dient dabei ein Metall der Gruppe VIII des Periodensystems, vorzugsweise Rhodium, gelöst in einer ionischen Flüssigkeit und immobilisiert auf einem Trägermaterial. Dieser Katalysator, auch SILP (supported ionic liquid phase) Katalysator genannt, ist an normaler Atmosphäre nicht stabil. Er zersetzt sich an Luft vergleichsweise schnell und weist daher nach Befüllen eines Reaktors in herkömmlicher Art und Weise nur noch geringe oder keine Aktivität mehr auf. Um dies zu vermeiden rauss der Katalysator unter Kohlenmonoxid Atmosphäre in den Reaktor überführt werden, was in technischem Maßstab nicht praktikabel ist. Derartige Reaktoren weisen Rata™ lysator-Füllzeiten von mehreren Tagen auf. WO2006122563 discloses a process for the continuous heterogeneous-catalyzed carbonylation of carbonylatable compounds in the gas phase. The catalyst used here is a metal of group VIII of the Periodic Table, preferably rhodium, dissolved in an ionic liquid and immobilized on a support material. This catalyst, also called SILP (supported ionic liquid phase) catalyst, is not stable in a normal atmosphere. It decomposes comparatively quickly in air and therefore has little or no activity after filling a reactor in a conventional manner. To avoid this, the catalyst can be transferred under carbon monoxide atmosphere into the reactor, which is not practical on an industrial scale. Such reactors have Rata ™ lysator fill times of several days.
Aufgabe der vorliegenden Erfindung ist es ein Verfahren zur Verfügung zu stellen, welches es ermöglicht, einen SILP Katalysator einfach und ohne Aktivitätsverlust in einen technischen Reaktor zu überführen. The object of the present invention is to provide a process which makes it possible to convert a SILP catalyst into a technical reactor simply and without loss of activity.
Die Aufgabe wird gelöst durch ein Verfahren, bei dem der SILP Katalysator mit einem Füllmittel, das unter Normalbedingungen flüssig und unter Reaktionsbedingungen der Carbonylierung flüchtig ist, bedeckt wird und ein derart behandelter Katalysator in den Reaktor gefüllt und der Reaktor verschlossen wird. The object is achieved by a method in which the SILP catalyst is covered with a filler, which is liquid under normal conditions and under reaction conditions of the carbonylation, and such a treated catalyst is filled into the reactor and the reactor is sealed.
Unter Normalbedingungen sind im Sinne der vorliegenden Erfindung eine Temperatur von 25 °C und ein Druck von 0,1 MPa zu verstehen. Das Füllmittel behindert die Diffusion von Gas zum oder vom Katalysator. Vorzugsweise wird der Diffusionskoeffizient von CO durch das Füllmittel um mindestens den Faktor 100 verglichen mit der Diffusion von CO in Luft erniedrigt oder auf unter 10~7 m2 s""1 verringert. Under normal conditions are within the meaning of the present invention, a temperature of 25 ° C and a pressure of 0.1 MPa to understand. The filler obstructs the diffusion of gas to or from the catalyst. Preferably, the diffusion coefficient of CO through the filler is decreased by at least a factor of 100 compared to the diffusion of CO into air or reduced to below 10 -7 m 2 s -1 .
Mittels des so gefüllten Reaktors lässt sich anschließend in an sich bekannter Weise eine Alkansäure vorzugsweise Essigsäure durch Carbonylierung eines entsprechenden um ein Kohlenstoff- atom kürzeren Alkohols, vorzugsweise Methanol, in der Gasphase in technischem oder großtechnischem Maßstab herstellen. By means of the reactor thus filled, an alkanoic acid, preferably acetic acid, can then be prepared in a conventional manner by carbonylating a corresponding alcohol shorter by one carbon atom, preferably methanol, in the gas phase on an industrial or industrial scale.
Die Carbonylierung erfolgt bei einer Temperatur zwischen 100 und 300°C, bevorzugt zwischen 150 und 250°C sowie unter Reaktionsüberdrücken zwischen 0,1 und 10 MPa, bevorzugt zwischen 0,5 und 5 MP , besonders bevorzugt zwischen 1 und 3 MPa. Unter den Reaktionsbedingungen der Carbonylierung sind im Sinne der vorliegenden Erfindung diese Temperatur und Druckbedingungen zu verstehen. The carbonylation is carried out at a temperature between 100 and 300 ° C, preferably between 150 and 250 ° C and under reaction pressures between 0.1 and 10 MPa, preferably between 0.5 and 5 MP, more preferably between 1 and 3 MPa. For the purposes of the present invention, the reaction conditions of the carbonylation are to be understood as meaning these temperature and pressure conditions.
Bei dem Füllmittel handelt es sich vorzugsweise um eine Verbindung oder ein Gemisch von Verbindungen mit einem Normalsiedepunkt von 30 bis 180 °C, bevorzugt von 50 bis 150 °C. Besonders bevorzugt ist das Füllmittel bei 25 °C und 0,1 MPa flüssig und weist bei 200 °C einen Dampfdruck zwischen 0,5 und 5 MPa auf. Insbesondere bevorzugt handelt es sich zudem um Verbindungen, die bei der Carbonylierung carbonylierbarer Substanzen mit diesem Katalysator als Edukt, Intermediat oder Endprodukt auftre- ten, besonders bevorzugt sind Essigsäure und/oder Methanol. The filler is preferably a compound or mixture of compounds having a normal boiling point of from 30 to 180 ° C, preferably from 50 to 150 ° C. Particularly preferably, the filler is liquid at 25 ° C and 0.1 MPa and has at 200 ° C a vapor pressure between 0.5 and 5 MPa. Particular preference is also given to compounds which occur in the carbonylation of carbonylatable substances with this catalyst as starting material, intermediate or end product, particular preference being given to acetic acid and / or methanol.
Der SILP Katalysator ist bekannt und in WO2006122563 beschreiben. Er besteht aus einem unter den Reaktionsbedingungen der Carbonylierung aktiven Metallkomplex und einer ionischen Flüs- sigkeit auf einem porösen inerten Trägermaterial. Bei dem Metallkomplex handelt es sich um eine hinsichtlich der Carbonylierung carbonylierbarer Substanzen aktive ÜbergangsmetallVerbi dung oder eine unter den Reaktionsbedingungen der Carbonylierung in eine aktive Übergangsmetallverbindung zu überführende Vorstufe einer derartigen Verbindung. Derartige Metallkomplexe sind in O2006122563 offenbart, insoweit wird auf die dortige Offenbarung beispielsweise auf S. 4 Z. 31 bis S. 5 Z, 6 Bezug genommen. Bevorzugt sind Verbindungen der Über- gangsmetalle Rhodium und Iridium, besonders bevorzugt sind Rhodiumverbindungen. Beispiele für insbesondere geeignete Rhodiumverbindungen sind RhCl3 x H20, [Rh (CO) 2Clj 2 , RhBr3 x H20, The SILP catalyst is known and described in WO2006122563. It consists of a metal complex active under the reaction conditions of the carbonylation and an ionic liquid on a porous inert carrier material. The metal complex is a transition metal compound which is active with respect to the carbonylation of carbonylatable substances or a precursor of such a compound to be converted under the reaction conditions of carbonylation into an active transition metal compound. Such metal complexes are disclosed in O2006122563, in this respect reference is made to the local disclosure, for example on page 4 Z. 31 to page 5 Z, 6. Preference is given to compounds of the transition metals rhodium and iridium, particular preference being given to rhodium compounds. Examples of particularly suitable rhodium compounds are RhCl 3 × H 2 O, [Rh (CO) 2 Clj 2 , RhBr 3 × H 2 O,
[Rh{CO) 2Br] 2, Rh(CO)2I]2, [Rh (OAc) 2] 2 und [Rh (CO) 2 (acac) ] 2 · {OAc bedeutet Acetatrest, Acac bedeutet Acetylacetonatrest) [Rh {CO) 2 Br] 2 , Rh (CO) 2 I] 2 , [Rh (OAc) 2 ] 2 and [Rh (CO) 2 (acac)] 2 · {OAc means acetoacetate, Acac means acetylacetonate residue)
Bei der ionischen Flüssigkeit handelt es sich um die in den Absätzen [0022] bis einschließlich [0027] von EP 1883 616 Bl beschriebenen Verbindungen, Auf diese Schrift wird insofern Bezug genommen. Ferner kann es sich anstatt dieser konventionellen ionischen Flüssigkeiten auch um unter Normalbedingungen feste und unter den Reaktionsbedingungen der Carbonylierung flüssige organische Salze handeln, vorzugsweise um ein Phosphoniumsalz mit einem Schmelzpunkt zwischen 120 und 200 °C, bevorzugt ein quarternäres Phosphoniumsalz mit vier unabhängig voneinander ausgewählten aliphatischen oder aromatischen Resten mit 1 bis 20 C Atomen mit einem Schmelzpunkt zwischen 120 und 200 °C, insbesondere bevorzugt um Tetraalkylphosphoniumiodid mit einem Schmelzpunkt zwischen 120 und 200 °C. Bei dem Trägermaterial für den erfindungsgemäßen Katalysator handelt es sich um poröse und unter den Reaktionsbedingungen der Carbonylierung inerte Materialien. Beispiele für derartige Trägermaterialien sind Si02, Al203, Ti02. Bevorzugt handelt es sich um Si02, besonders bevorzugt um pyrogen erzeugte Si02 sowie daraus hergestellte Formkörper. Derartige Formkörper sind be- reits in WO 2008/071612 beschrieben. Insoweit wird auf die dortige Offenbarung beispielsweise auf S. 4 Z. 30 bis S. 17. Z. 14 Bezug genommen. Die Trägermaterialien können in jeder für Katalysatoren bekannten Form vorliegen, beispielsweise als Pulver, Granulat oder als Formkörper wie Stränge, Zylinder, Pellets, Ringe, Multi-Loch-Ringe, Kugeln, Sattelkörper, Räder, Sessel, Schaumkörper oder Waben, besonders geeignet sind zylindrische Extrudate wie Zylinder oder Ringe. Die Katalysatorträger können über verschiedene Formgebungstechniken wie zum Beispiel Extru- sion, Agglomeration, Granulation, Pressen oder Pelletieren gewonnen werden. Der poröse Katalysatorträger kann auch auf einem nicht porösen Trägerköper als Schicht aufgetragen sein. Der daraus resultierende Schalenkatalysatorformkörper (katalytisch aktive Komponente aus SILP Katalysator, ionischer Flüssigkeit und porösem SILP-Katalysatorträger auf einem unporösen Formkörper) wird dann wie ein Vollkatalysatorformkörper behandelt. The ionic liquid is the compounds described in paragraphs [0022] through [0027] of EP 1883 616 Bl, to which reference is made in this respect. Furthermore, instead of these conventional ionic liquids, they may also be organic salts which are solid under the reaction conditions of the carbonylation, preferably a phosphonium salt with a melting point between 120 and 200 ° C., preferably a quaternary phosphonium salt with four independently selected aliphatic salts aromatic radicals having 1 to 20 C atoms having a melting point between 120 and 200 ° C, more preferably tetraalkylphosphonium iodide having a melting point between 120 and 200 ° C. The support material for the catalyst according to the invention is porous materials which are inert under the reaction conditions of the carbonylation. Examples of such carrier materials are Si0 2 , Al 2 0 3 , Ti0 2 . It is preferably Si0 2 , particularly preferably pyrogenically produced Si0 2 as well as moldings produced therefrom. Such shaped bodies are already described in WO 2008/071612. In that regard, reference is made to the local disclosure, for example on page 4 Z. 30 to p. 17. Z. 14 reference. The support materials may be in any known form for catalysts, for example as powder, granules or as shaped bodies such as strands, cylinders, pellets, rings, multi-hole rings, spheres, caliper body, wheels, chairs, foam or honeycomb, are particularly suitable cylindrical Extrudates such as cylinders or rings. The catalyst supports can be obtained by various molding techniques such as extrusion, agglomeration, granulation, pressing or pelleting. The porous catalyst support may also be coated on a non-porous carrier body. The resulting coated catalyst molding (catalytically active component of SILP catalyst, ionic liquid and porous SILP catalyst support on a non-porous molding) is then treated as a Vollkatalysatorformkörper.
Vorzugsweise wird das Füllmittel in einer derartigen Menge zugesetzt, dass die Poren des Katalysators zu mehr als 80%, be- sonders bevorzugt zu mehr als 90% des Porenvolumens, insbesondere bevorzugt zu etwa 100% des Porenvolumens gefüllt werden. Preferably, the filler is added in an amount such that the pores of the catalyst are filled to more than 80%, more preferably more than 90% of the pore volume, most preferably about 100% of the pore volume.
Die o.g. Medien zur Befüllung des Porenvolumens können bei der Imprägnierung des porösen Trägermaterials mit den Katalysa- torkomponenten (Metallkomplex und ionischer Flüssigkeit) zur Herstellung des Katalysators mit dem verwendeten Lösungsmittel zugegeben werden und verbleiben bei der Trocknung auf dem Katalysator. In einer weiteren Aus ührungsform können die Medien zur Befüllung des Porenvolumens auch auf einen bereits getrock- neten Katalysator in einem weiteren Imprägnierungsschritt aufgebracht werden und verbleiben in analoger Weise auf dem Katalysator. Ein derart behandelter Katalysator wird anschließend durch se- quenzielle Befüllung und Druckabgleich in die einzelnen Rohre eines technischen Rohrbündelreaktors überführt. Bei dem Reaktor handelt es sich vorzugsweise um einen Rohrbün- mit mehr als 1000 Reaktionsrohren, die jeweils einen Durchmesser zwischen 15 und 50 mm und eine Länge zwischen 0,5 und 15 m aufweisen. Aufgrund der großen Anzahl an Reaktionsrohren bzw. zu der Befüllung des Reaktors notwendigen Arbeits- schritten nimmt die Befüllung eines solchen Reaktors üblicherweise zwischen 0,5 und 5 Tagen in Anspruch. The above-mentioned media for filling the pore volume can be added during the impregnation of the porous carrier material with the catalyst components (metal complex and ionic liquid) to produce the catalyst with the solvent used and remain on the catalyst during drying. In a further embodiment, the media for filling the pore volume can also be applied to an already dried catalyst in a further impregnation step and remain in an analogous manner on the catalyst. Such a treated catalyst is then transferred by sequential filling and pressure balance in the individual tubes of a technical tube bundle reactor. The reactor is preferably a Rohrbün- with more than 1000 reaction tubes, each having a diameter between 15 and 50 mm and a length between 0.5 and 15 m. Due to the large number of reaction tubes or for the filling of the reactor necessary steps, the filling of such a reactor usually takes between 0.5 and 5 days to complete.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung :  The following examples serve to further explain the invention:
Tragermaterial support material
Die Trägermaterialien aus pyrogener Kieselsäure wurden hergestellt wie in WO2008071612 Beispiel 21 beschrieben. Das Tr germaterial weist eine spezifische Oberfläche nach BET von 203 m2 g"1 und ein Porenvolumen 0,76 mL g"1 auf. Das Material wurde durch Mahlung und fraktionierte Siebung auf eine Korngrößenverteilung von 100 bis 250 μτη eingestellt. The support materials of fumed silica were prepared as described in WO2008071612 Example 21. The carrier material has a BET specific surface area of 203 m 2 g -1 and a pore volume of 0.76 mL g -1 . The material was adjusted by grinding and fractional sieving to a particle size distribution of 100 to 250 μτη.
Vergleichsbeispiel Comparative example
Zur Herstellung des Katalysators wurde eine entsprechende Menge der Rhodiumverbindung Di- -iodo-tetracarbonyldirhodium (1} und der ionischen Flüssigkeit l-Butyl-3-methylimidazoliumiodid mit einem dem Porenvolumen des porösen Trägermaterials entsprechenden Volumen an Methanol auf das Trägermaterial imprägniert und das Methanol im Vakuum bei 0,1 mbar und 60 °C für 12 h entfernt. Der so hergestellte Katalysator wies einen Rhodiumanteil von 2,45 Gew.-% und einen Porenfüllgrad an ionischer Flüssigkeit von 42 Vol.-% auf. To prepare the catalyst, an appropriate amount of the rhodium compound diiodo-tetracarbonyl-dirhodium (1) and the ionic liquid l-butyl-3-methylimidazolium iodide was impregnated with a volume of methanol corresponding to the pore volume of the porous support material on the support material and the methanol in vacuo at 0.1 mbar and 60 ° C. for 12 h The catalyst thus prepared had a rhodium content of 2.45% by weight and a pore filling level of ionic liquid of 42% by volume.
Zur Untersuchung wurden 250 mg des beschriebenen Katalysators mit 100 NmL/min eines Gasgemischs bestehend aus 10,6 Mol-% Me- t anol und 2.0 Mol-% lodmethan in Kohlenmonoxid mit 8,7 Mol~% Methan als internen Standard in einem Titan-Reaktor mit 4 mm Innendurchmesser bei einer Temperatur von 190 °C und einem Reaktionsüberdruck von 20 bar zur Reaktion gebracht. Die Analyse der Produkte erfolgte mittels Gaschromatographie. For the investigation, 250 mg of the catalyst described were mixed with 100 NmL / min of a gas mixture consisting of 10.6 mol% of MeOH. t anol and 2.0 mol% of iodomethane in carbon monoxide with 8.7 mol% methane as internal standard in a titanium reactor with 4 mm inner diameter at a temperature of 190 ° C and a reaction pressure of 20 bar reacted. The analysis of the products was carried out by gas chromatography.
Die dabei mit dem Katalysator im stationären Betrieb erzielten Raum-Zeit-Leistung der Summe der Acetyl-Spezies {Essigsäure + Essigsäuremethylester} gerechnet als Essigsäure lag zwischen 1000 und 1500 gAc0H "1 h"1. The case achieved with the catalyst in steady-state space-time performance of the sum of the acetyl species {acetic acid + methyl acetate}, calculated as acetic acid was between 1000 and 1500 g Ac0H "1 h " . 1
Erfindungsgemäßes Beispiel Inventive example
Zur Herstellung des Katalysators wurde eine entsprechende Menge der Rhodiumverbindung Di- -iodo-tetracarbonyldirhodium (I) und der ionischen Flüssigkeit l-Butyl-3-methylimidazoliumiodid mit einem dem Porenvolumen des porösen Trägermaterials entsprechenden Volumen an Methanol auf das Trägermaterial imprägniert und das Methanol im Vakuum bei 0,1 mbar und 60 °C für 12 h entfernt. Der so hergestellte Katalysator wies einen Rhodiumanteil von 2,45 Gew.-% und einen Porenfüllgrad an ionischer Flüssig- keit von 42 Vol.-% auf. Der Katalysator wurde vor der Überführung in den Versuchsreaktor mit einer dem verbleibenden Porenvolumen entsprechenden Menge Essigsäure imprägniert.  To prepare the catalyst, an appropriate amount of the rhodium compound diiodo-tetracarbonyl-dirhodium (I) and the ionic liquid 1-butyl-3-methylimidazolium iodide was impregnated onto the support material with a volume of methanol corresponding to the pore volume of the porous support material, and the methanol was vacuum-impregnated at 0.1 mbar and 60 ° C for 12 h. The catalyst thus prepared had a rhodium content of 2.45% by weight and a pore filling level of ionic liquid of 42% by volume. The catalyst was impregnated with an amount of acetic acid corresponding to the remaining pore volume prior to transfer to the experimental reactor.
Zur Untersuchung wurden 250 mg des beschriebenen Katalysators mit 100 NmL/min eines Gasgemischs bestehend aus 10,6 Mol-% Me- thanol und 2.0 Mol-% lodmethan in Kohlenmonoxid mit 8,7 Mol-% Methan als internen Standard in einem Titan-Reaktor mit 4 mm Innendurchmesser bei einer Temperatur von 190 °C und einem Reaktionsüberdruck von 20 bar zur Reaktion gebracht. Die Analyse der Produkte erfolgte mittels GasChromatographie . For the investigation, 250 mg of the described catalyst with 100 NmL / min of a gas mixture consisting of 10.6 mol% of methanol and 2.0 mol% of iodomethane in carbon monoxide with 8.7 mol% of methane as an internal standard in a titanium reactor with 4 mm inner diameter at a temperature of 190 ° C and a reaction pressure of 20 bar reacted. The analysis of the products was carried out by gas chromatography.
Die dabei mit dem Katalysator im stationären Betrieb erzieltenThe thereby achieved with the catalyst in steady-state operation
Raum- Zeit-Leistung der Summe der Acetyl-Spezies (Essigsäure + Essigsäuremethylester} gerechnet als Essigsäure lag im Mittel bei 2300 gAooH Lcat ^ ^ . Die Beispiele zeigen, dass der identisch präparierte Katalysa tor selbst bei der nur etwa 30 Sekunden dauernden Befüllung e nes Versuchsreaktors gegenüber dem mit Essigsäure geschützten Katalysator signifikant an Aktivität verliert. Es ist offensichtlich, dass bei einer mindestens 2 Tagen dauernden Befüllung eines technischen Produktionsreaktors ein noch erheblich höherer Aktivitätsverlust auftritt. The space-time performance of the sum of the acetyl species (acetic acid + methyl acetate), calculated as acetic acid, was on average 2300 gAooH Lcat ^ ^. The examples show that the identically prepared catalyst significantly loses activity even when only about 30 seconds filling a test reactor against the catalyst protected with acetic acid. It is obvious that with a filling of a technical production reactor for at least 2 days a still considerably higher activity loss occurs.

Claims

Patentansprüche : Claims:
1. Verfahren zum Befüllen eines technischen Reaktors mit einem SILP Katalysator dadurch gekennzeichnet, dass der SILP Katalysator mit einem Füllmittel, das unter Normalbedingungen flüssig und unter Reaktionsbedingungen der Carbony- lierung flüchtig ist, bedeckt wird und ein derart behandelter Katalysator in den Reaktor gefüllt und der Reaktor verschlossen wird. 1. A method for filling a technical reactor with a SILP catalyst, characterized in that the SILP catalyst is covered with a filler which is liquid under normal conditions and volatile under reaction conditions of the carbonylation, and such a treated catalyst is filled into the reactor and the Reactor is closed.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei dem Füllmittel um eine Verbindung oder ein Gemisch von Verbindungen mit einem NormalSiedepunkt von 30 bis 180 °C, bevorzugt von 50 bis 150 °C handelt. 2. The method according to claim 1, characterized in that it is the filler is a compound or a mixture of compounds having a normal boiling point of 30 to 180 ° C, preferably from 50 to 150 ° C.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass das Füllmittel bei 25 °C und 0,1 MPa flüssig ist und bei 200 °C einen Dampfdruck zwischen 0,5 und 5 MPa aufweist. 3. The method according to claim 2, characterized in that the filler is liquid at 25 ° C and 0.1 MPa and at 200 ° C has a vapor pressure between 0.5 and 5 MPa.
4. Verfahren gemäß einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass es sich bei dem Füllmittel um eine Verbindungen handelt, die bei der Carbonylierung carbonylier- barer Substanzen mit dem Katalysator als Edukt, Intermedi- at oder Endprodukt auftritt. 4. The method according to any one of claims 1 to 3, characterized in that it is the filler is a compound which occurs in the carbonylation of carbonylier barer substances with the catalyst as starting material, intermediate or end product.
5. Verfahren gemäß einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass es sich bei dem Füllmittel um Essigsäure und/oder Methanol handelt. 5. The method according to any one of claims 1 to 4, characterized in that it is the filler to acetic acid and / or methanol.
6. Verfahren gemäß einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass der SILP Katalysator aus einem unter den Reaktionsbedingungen der Carbonylierung aktiven Metallkomplex und einer ionischen Flüssigkeit auf einem porösen inerten Trägermaterial besteht . 6. The method according to any one of claims 1 to 5, characterized in that the SILP catalyst consists of a under the reaction conditions of the carbonylation active metal complex and an ionic liquid on a porous inert support material.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass es sich bei der ionischen Flüssigkeit um ein unter Hormal- bedingungen festes und unter den Reaktionsbedingungen der Carbonylierung flüssiges organisches Salz handelt, vor- zugsweise um ein Phosphoniumsal mit einem Schmelzpunkt zwischen 120 und 200 °C, bevorzugt ein quarternäres Phos- phoniumsalze mit vier unabhängig voneinander ausgewählten aliphatischen oder aromatischen Resten mit 1 bis 20 C Atomen mit einem Schmelzpunkt zwischen 120 und 200 °C, insbe- sondere bevorzugt um Tetraalkylphosphoniumiodid mit einem7. Process according to claim 6, characterized in that the ionic liquid is an organic salt which is solid under hormone conditions and liquid under the reaction conditions of the carbonylation, preferably a phosphonium salt with a melting point between 120 and 200 ° C Preferably, a quaternary phosphonium salts having four independently selected aliphatic or aromatic radicals having 1 to 20 C atoms with a melting point between 120 and 200 ° C, in particular preferably tetraalkylphosphonium iodide with a
Schmelzpunkt zwischen 120 und 200 °C. Melting point between 120 and 200 ° C.
8. Verfahren gemäß einem der Ansprüche 1 bis 7 dadurch gekennzeichnet, dass das Füllmittel in einer derartigen Men- ge zugesetzt wird, dass die Poren des Katalysators zu mehr als 80%, bevorzugt zu mehr als 90% des Porenvolumens, insbesondere bevorzugt zu etwa 100% des Porenvolumens gefüllt werden. 8. The method according to any one of claims 1 to 7, characterized in that the filler is added in an amount such that the pores of the catalyst to more than 80%, preferably more than 90% of the pore volume, more preferably about 100 % of the pore volume are filled.
9. Verfahren gemäß Anspruch 1 bis 8 dadurch gekennzeichnet, dass es sich bei dem technischen Reaktor um einen Rohrbündelreaktor mit mehr als 1000 Reaktionsrohren, die jeweils einen Durchmesser zwischen 15 und 50 mm und eine Länge zwischen 0,5 und 15 aufweisen, handelt, dessen Befüllung üblicherweise zwischen 0,5 und 5 Tagen in Anspruch nimmt. 9. The method according to claim 1 to 8, characterized in that it is the technical reactor to a tube bundle reactor with more than 1000 reaction tubes, each having a diameter between 15 and 50 mm and a length between 0.5 and 15, is the Filling usually takes between 0.5 and 5 days.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Reaktor zur Herstellung einer Alkansäure vorzugsweise Essigsäure durch Carbonylierung ei- nes entsprechenden um ein Kohlenstoffatom kürzeren Alkohols, vorzugsweise Methanol, in der Gasphase in technischem oder großtechnischem Maßstab genutzt wird. 10. The method according to any one of claims 1 to 9, characterized in that the reactor for producing an alkanoic acid, preferably acetic acid by carbonylation of a corresponding one carbon shorter alcohol, preferably methanol, is used in the gas phase on an industrial or industrial scale.
PCT/EP2013/052626 2012-02-21 2013-02-11 Method for filling a reactor with a catalyst WO2013124175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210202621 DE102012202621A1 (en) 2012-02-21 2012-02-21 Process for filling a reactor with a catalyst
DE102012202621.5 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013124175A1 true WO2013124175A1 (en) 2013-08-29

Family

ID=47681912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052626 WO2013124175A1 (en) 2012-02-21 2013-02-11 Method for filling a reactor with a catalyst

Country Status (2)

Country Link
DE (1) DE102012202621A1 (en)
WO (1) WO2013124175A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9387469B2 (en) 2013-12-30 2016-07-12 Eastman Chemical Company Carbonylation catalyst and process using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122563A1 (en) 2005-05-20 2006-11-23 Danmarks Tekniske Universitet A process for continuous carbonylation by supported ionic liquid-phase catalysis
WO2008071612A1 (en) 2006-12-13 2008-06-19 Wacker Chemie Ag Method for the production of stable binder-free high-purity mouldings composed of metal oxides and their use
DE102009029284A1 (en) * 2009-09-08 2011-03-10 Evonik Oxeno Gmbh Process for the oligomerization of olefins
DE102010036631A1 (en) * 2010-07-26 2012-01-26 Philipps-Universität Marburg Process for the preparation of dialkyl carbonates, copper-containing catalyst and use of a copper-containing catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL369753A1 (en) 2004-08-26 2006-03-06 GoMobile Sp.z o.o. Method for the protection against illegal payment made by the financial institution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122563A1 (en) 2005-05-20 2006-11-23 Danmarks Tekniske Universitet A process for continuous carbonylation by supported ionic liquid-phase catalysis
EP1883616B1 (en) 2005-05-20 2009-09-30 Wacker Chemie AG A process for continuous carbonylation by supported ionic liquid-phase catalysis
WO2008071612A1 (en) 2006-12-13 2008-06-19 Wacker Chemie Ag Method for the production of stable binder-free high-purity mouldings composed of metal oxides and their use
DE102009029284A1 (en) * 2009-09-08 2011-03-10 Evonik Oxeno Gmbh Process for the oligomerization of olefins
DE102010036631A1 (en) * 2010-07-26 2012-01-26 Philipps-Universität Marburg Process for the preparation of dialkyl carbonates, copper-containing catalyst and use of a copper-containing catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9387469B2 (en) 2013-12-30 2016-07-12 Eastman Chemical Company Carbonylation catalyst and process using same

Also Published As

Publication number Publication date
DE102012202621A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
EP1373277B1 (en) Organometallic building materials and method for producing the same
EP3684751B1 (en) Catalyst for oxidative esterification of aldehydes to carboxylic acid esters
EP3632886B1 (en) Method for the hydroformylation of short chain olefins using a heterogenised catalyst system without ionic liquid
EP1261424A1 (en) Hollow cylindrical catalyst and a method for producing a maleic acid anhydride
DE1767151A1 (en) Process for the production of organic acids and esters and catalyst therefor
EP3515594A1 (en) Method for providing a fixed catalyst bed containing a doped structured shaped catalyst body
EP3515593A1 (en) Method for activating a fixed catalyst bed which contains monolithic shaped catalyst bodies or consists of monolithic shaped catalyst bodies
DE4310971A1 (en) Nickel / alumina catalyst, process for its preparation, its use and process for the hydrogenation of aromatic hydrocarbons with the aid of the catalyst
EP3515597A1 (en) Method for the hydrogenation of organic compounds in the presence of co and a fixed catalyst bed which contains monolithic shaped catalyst body
WO2018054755A1 (en) Method for providing a catalytically active fixed bed for hydrogenating organic compounds
EP3736258B1 (en) Process for hydroformylation of short-chain olefins in alkane-rich exhaust gas streams
DE4405029C2 (en) Process for curing unsaturated fats, fatty acids or fatty acid esters
EP1457476B1 (en) Selective hydrogenation of cyclododecatriene to cyclododecene
EP3012021B1 (en) Method for preparing a catalyst composition comprising at least one noble metal and at least one si-zr mixed oxide
DE60008118T2 (en) STEAM PHASE CARBONYLATION METHOD USING ACTIVATED IRIDIUM CATALYSTS
DE102011083528A1 (en) Process for the preparation of sugar alcohols by catalytic hydrogenation of sugars on a Ru / SiO 2 catalyst
WO2015071266A1 (en) Immobilized catalytically active composition having tridentate phosphorus ligands in an ionic liquid for the hydroformylation of olefin-containing mixtures
WO2013124175A1 (en) Method for filling a reactor with a catalyst
DE19646679A1 (en) Catalyst and process for the preparation of 2-buten-1-ol compounds
DE60035106T2 (en) PROCESS FOR PRODUCING HYDROGENATED ESTERS
EP3632888A1 (en) Process for the in-situ production of a hydroformylation catalyst system which is heterogenized on a vessel
DE19815639A1 (en) Process for the production of sugar alcohols
EP1082282A1 (en) Method for producing hexanediol
WO2013124174A1 (en) Catalyst for the carboxylation of carbonylated compounds in the gas phase
EP3601206B1 (en) Process for preparing an anticorrosion component for an antifreeze

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13703412

Country of ref document: EP

Kind code of ref document: A1