WO2013119073A1 - 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치 - Google Patents

채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치 Download PDF

Info

Publication number
WO2013119073A1
WO2013119073A1 PCT/KR2013/001026 KR2013001026W WO2013119073A1 WO 2013119073 A1 WO2013119073 A1 WO 2013119073A1 KR 2013001026 W KR2013001026 W KR 2013001026W WO 2013119073 A1 WO2013119073 A1 WO 2013119073A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource configuration
information
crs
transmission
Prior art date
Application number
PCT/KR2013/001026
Other languages
English (en)
French (fr)
Inventor
박종현
손일수
김기준
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020147019344A priority Critical patent/KR101927322B1/ko
Priority to US14/373,082 priority patent/US9768930B2/en
Priority to JP2014555504A priority patent/JP6006335B2/ja
Priority to EP13746635.5A priority patent/EP2800286A4/en
Priority to CN201380008380.7A priority patent/CN104106223A/zh
Publication of WO2013119073A1 publication Critical patent/WO2013119073A1/ko
Priority to US15/685,454 priority patent/US10084583B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present invention relates to a wireless communication system. Specifically, the present invention relates to a method for reporting channel state information, a method for supporting the same, and an apparatus therefor.
  • a node is a fixed point capable of transmitting / receiving a radio signal with a user device having one or more antennas.
  • a communication system having a high density of nodes can provide higher performance communication services to user equipment by cooperation between nodes.
  • This multi-node cooperative communication method in which a plurality of nodes communicate with a user equipment using the same time-frequency resources, is more efficient than a conventional communication method in which each node operates as an independent base station to communicate with a user equipment without mutual cooperation. It has much better performance in data throughput.
  • each node cooperates using a plurality of nodes, acting as base stations or access points, antennas, antenna groups, radio remote headers (RRHs), radio remote units (RRUs). Perform communication.
  • the plurality of nodes are typically located more than a certain distance apart.
  • the plurality of nodes may be managed by one or more base stations or base station controllers that control the operation of each node or schedule data to be transmitted / received through each node.
  • Each node is connected to a base station or base station controller that manages the node through a cable or dedicated line.
  • Such a multi-node system can be viewed as a kind of multiple input multiple output (MIMO) system in that distributed nodes can simultaneously communicate with a single or multiple user devices by transmitting and receiving different streams.
  • MIMO multiple input multiple output
  • the multi-node system transmits signals using nodes distributed in various locations, the transmission area that each antenna should cover is reduced as compared to the antennas provided in the existing centralized antenna system. Therefore, compared to the existing system implementing the MIMO technology in the centralized antenna system, in the multi-node system, the transmission power required for each antenna to transmit a signal can be reduced.
  • the transmission distance between the antenna and the user equipment is shortened, path loss is reduced, and high-speed data transmission is possible.
  • the transmission capacity and power efficiency of the cellular system can be increased, and communication performance of relatively uniform quality can be satisfied regardless of the position of the user equipment in the cell.
  • the base station (s) or base station controller (s) connected to the plurality of nodes cooperate with data transmission / reception, signal loss occurring in the transmission process is reduced.
  • the correlation (correlation) and interference between the antennas are reduced. Therefore, according to the multi-node cooperative communication scheme, a high signal to interference-plus-noise ratio (SINR) can be obtained.
  • SINR signal to interference-plus-noise ratio
  • the multi-node system is designed to reduce the cost of base station expansion and backhaul network maintenance in the next generation mobile communication system, and to increase service coverage and channel capacity and SINR. In parallel with or in place of a centralized antenna system, it is emerging as a new foundation for cellular communication.
  • the present invention proposes a method for reporting or feedback of channel state information.
  • the present invention proposes a method for transmitting or receiving information necessary for reporting or feedback of channel state information.
  • a method for a user equipment to receive channel state information (CSI) -reference signal (RS) in a wireless communication system comprising: resources of a CSI-RS Receiving configuration information, and receiving the CSI-RS based on the resource configuration information of the CSI-RS, wherein the resource configuration information of the CSI-RS includes a cell specific-RS associated with the CSI-RS; Information about a cell specific-RS (CRS), and the user equipment includes an antenna port associated with the CRS information and an antenna port used for transmission of a CSI-RS corresponding to resource configuration information of the CSI-RS.
  • CRS cell specific-RS
  • the information about the CRS may be used to obtain a large-scale property of a radio channel from an antenna port used for transmission of the CSI-RS.
  • the broad nature of the radio channel from the antenna port used for transmission of the CSI-RS is derivable from the radio channel from the antenna port used for the transmission of the CRS. Way.
  • the information about the CRS may include identifier information about the CRS.
  • the user equipment can be configured in the transmission mode 10.
  • the user equipment is an antenna port used for transmitting a demodulation-reference signal (DM-RS) and an antenna port used for transmitting the CSI-RS identified by resource configuration information of the CSI-RS.
  • DM-RS demodulation-reference signal
  • the resource configuration information of the at least one CSI-RS may be received through higher layer signaling.
  • the CSI-RS and the CRS may be transmitted from different cells.
  • the broad characteristics of the wireless channel may include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • the method is a CSI- to a user equipment; Transmitting resource configuration information of an RS; and transmitting a CSI-RS based on the resource configuration information of the CSI-RS to the user equipment, wherein the resource configuration information of the CSI-RS is determined by the CSI-RS; Information about an associated cell specific-RS (CRS), wherein the user equipment transmits an antenna port associated with the information about the CRS and a CSI-RS corresponding to resource configuration information of the CSI-RS. It can be assumed that the antenna port used for this purpose is quasi co-located.
  • CRS cell specific-RS
  • the user device configured to receive channel state information (CSI) -reference signal (RS) in a wireless communication system
  • the user device is a radio frequency (radio frequency) RF) unit
  • a processor configured to control the RF unit, wherein the processor receives the resource configuration information of the CSI-RS through the RF unit and receives the CSI-RS based on the resource configuration information of the CSI-RS
  • the resource configuration information of the CSI-RS includes information about a cell specific-RS (CRS) associated with the CSI-RS
  • the user equipment includes an antenna port associated with the information about the CRS and the CSI. It may be assumed that an antenna port used for transmission of CSI-RS corresponding to resource configuration information of -RS is quasi-colocated.
  • the information about the CRS may be used to obtain a large-scale property of a radio channel from an antenna port used for transmission of the CSI-RS.
  • the broad characteristics of the radio channel from the antenna port used for the transmission of the CSI-RS may be derivable from the radio channel from the antenna port used for the transmission of the CRS.
  • the information about the CRS may include identifier information about the CRS.
  • the user equipment can be configured in the transmission mode 10.
  • the user equipment is an antenna port used for transmitting a demodulation-reference signal (DM-RS) and an antenna port used for transmitting the CSI-RS identified by resource configuration information of the CSI-RS.
  • DM-RS demodulation-reference signal
  • the resource configuration information of the at least one CSI-RS may be received through higher layer signaling.
  • the CSI-RS and the CRS may be transmitted from different cells.
  • the broad characteristics of the wireless channel may include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • a base station configured to transmit channel state information (CSI) -reference signal (RS) to a user equipment in a wireless communication system, wherein the base station is a radio frequency (radio) frequency (RF) unit; And a processor configured to control the RF unit, wherein the processor transmits resource configuration information of the CSI-RS and transmits the CSI-RS based on the resource configuration information of the CSI-RS through the RF unit,
  • the resource configuration information of the CSI-RS includes information on a cell specific-RS (CRS) associated with the CSI-RS, and the user equipment includes an antenna port and the CSI- associated with the information about the CRS. It may be assumed that an antenna port used for transmission of a CSI-RS corresponding to resource configuration information of an RS is quasi-colocated.
  • the processing load or complexity of the user equipment may be reduced when reporting the channel state information.
  • the efficiency of uplink / downlink resource usage is increased.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
  • Figure 4 shows an example of an uplink subframe structure used in the 3GPP LTE (-A) system.
  • FIG. 5 illustrates a mapping pattern of cell specific reference signals according to antenna ports.
  • FIG. 6 illustrates mapping patterns of demodulation reference signals according to antenna ports.
  • FIG. 7 illustrates a mapping pattern of channel state information reference signals according to antenna ports.
  • FIG. 8 illustrates an example of a multi-point transmit / receive operation.
  • FIG. 9 is a block diagram illustrating components of a transmitter and a receiver that perform the present invention.
  • the techniques, devices, and systems described below may be applied to various wireless multiple access systems.
  • 3GPP LTE 3GPP LTE
  • the technical features of the present invention are not limited thereto.
  • the following detailed description is described based on the mobile communication system corresponding to the 3GPP LTE (-A) system, any other mobile communication except for the matters specific to 3GPP LTE (-A) Applicable to the system as well.
  • a user equipment may be fixed or mobile, and various devices that communicate with the BS to transmit and receive user data and / or various control information belong to the same.
  • the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
  • a base station generally refers to a fixed station for communicating with a UE and / or another BS, and communicates various data and control information by communicating with the UE and another BS. do.
  • the BS may be referred to in other terms such as ABS (Advanced Base Station), NB (Node-B), eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point), and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • PS Processing Server
  • Physical Downlink Control CHannel PDCCH
  • Physical Control Format Indicator CHannel PCFICH
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • PUSCH Physical Uplink Shared CHannel
  • UCI uplink control information
  • the expression that the user equipment transmits the PUCCH / PUSCH is used in the same sense as transmitting the uplink control information / uplink data / random access signal on the PUSCH / PUCCH, respectively.
  • the expression that the BS transmits PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on the PDCCH / PCFICH / PHICH / PDSCH, respectively.
  • a cell-specific reference signal (CRS) / demodulation reference signal (DMRS) / channel state information reference signal (CSI-RS) time-frequency resource (or RE) is allocated to the CRS / DMRS / CSI-RS, respectively.
  • a time-frequency resource (or RE) carrying an available RE or CRS / DMRS / CSI-RS is allocated to the CRS / DMRS / CSI-RS, respectively.
  • a subcarrier including a CRS / DMRS / CSI-RS RE is called a CRS / DMRS / CSI-RS subcarrier
  • an OFDM symbol including a CRS / DMRS / CSI-RS RE is called a CRS / DMRS / CSI-RS symbol.
  • the SRS time-frequency resource (or RE) is transmitted from the UE to the BS so that the BS uses the sounding reference signal (Sounding Reference Signal, SRS) to measure the uplink channel state formed between the UE and the BS.
  • SRS Sounding Reference Signal
  • the reference signal refers to a signal of a predefined, special waveform that the UE and the BS know each other, and are also called pilots.
  • a cell refers to a certain geographic area where one BS, node (s) or antenna port (s) provide communication services. Therefore, in the present invention, communication with a specific cell may mean communication with a BS, a node, or an antenna port that provides a communication service to the specific cell.
  • the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to a BS, node, or antenna port that provides a communication service to the specific cell.
  • the channel state / quality of a specific cell refers to a channel state / quality of a channel or communication link formed between a BS, a node, or an antenna port providing a communication service to the specific cell, and a UE.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 1 (a) illustrates a radio frame structure that can be used for FDD in 3GPP LTE (-A)
  • FIG. 1 (b) illustrates a radio frame structure that can be used for TDD in 3GPP LTE (-A). It is illustrated.
  • a radio frame used in 3GPP LTE has a length of 10 ms (307200 Ts) and consists of 10 equally sized subframes. Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink (DL) transmission and uplink (UL) transmission are divided by frequency, a radio frame is a downlink subframe or a UL subframe for a predetermined frequency band operating at a predetermined carrier frequency. Includes only one of them. Since the DL transmission and the UL transmission in the TDD mode are separated by time, a radio frame includes both a downlink subframe and an UL subframe for a predetermined frequency band operating at a predetermined carrier frequency.
  • DL downlink
  • UL uplink
  • Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
  • D denotes a downlink subframe
  • U denotes an UL subframe
  • S denotes a special subframe.
  • the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for DL transmission
  • UpPTS is a time interval reserved for UL transmission.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG. 2 shows a structure of a resource grid of a 3GPP LTE (-A) system. There is one resource grid per antenna port.
  • -A 3GPP LTE
  • the slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on DL transmission bandwidth and UL transmission bandwidth, respectively.
  • N DL symb represents the number of OFDM symbols in the downlink slot
  • N UL symb represents the number of OFDM symbols in the UL slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • the OFDM symbol may be called an OFDM symbol, an SC-FDM symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the CP. For example, one slot includes seven OFDM symbols in the case of a normal CP, but one slot includes six OFDM symbols in the case of an extended CP.
  • FIG. 2 illustrates a subframe in which one slot includes 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. Referring to FIG. 2, each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain.
  • the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard bands, and DC components.
  • the null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency (carrier freqeuncy, f 0 ) in the OFDM signal generation process or the frequency upconversion process.
  • the carrier frequency is also called the center frequency.
  • One RB is defined as N DL / UL symb (e.g., seven) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g., twelve) consecutive subcarriers in the frequency domain. Is defined.
  • N DL / UL symb e.g., seven
  • N RB sc e.g., twelve
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb * N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot.
  • k is an index given from 0 to N DL / UL RB * N RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • PRB physical resource block
  • Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • VRB is a kind of logical resource allocation unit introduced for resource allocation.
  • VRB has the same size as PRB.
  • the VRB is divided into a localized type VRB and a distributed type VRB. Localized type VRBs are mapped directly to PRBs, so that a VRB number (also called a VRB index) corresponds directly to a PRB number.
  • n PRB n VRB .
  • the distributed type VRB is mapped to the PRB through interleaving. Therefore, a distributed type VRB having the same VRB number may be mapped to different numbers of PRBs in the first slot and the second slot. Two PRBs, one located in two slots of a subframe and having the same VRB number, are called VRB pairs.
  • FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
  • the DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to the UL transmission.
  • DCI downlink control information
  • DCI includes resource allocation information and other control information for the UE or UE group.
  • the DCI includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel. channel, paging information on PCH), system information on DL-SCH, resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual UEs in UE group, Tx power Control command, activation instruction information of Voice over IP (VoIP), and the like.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • a plurality of PDCCHs may be transmitted in the PDCCH region of the DL subframe.
  • the UE may monitor the plurality of PDCCHs.
  • the BS determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI.
  • CRC cyclic redundancy check
  • the CRC is masked (or scrambled) with an identifier (eg, a radio network temporary identifier (RNTI)) depending on the owner or purpose of use of the PDCCH.
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG.
  • the REG concept is also used for other DL control channels (ie, PCFICH and PHICH).
  • the DCI format and the number of DCI bits are determined according to the number of CCEs.
  • CCEs are numbered consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can only be started in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH, that is, the CCE aggregation level is determined by the BS according to the channel state. For example, one CCE may be sufficient for a PDCCH for a UE having a good DL channel (eg, adjacent to a BS). However, in case of a PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • Figure 4 shows an example of an uplink subframe structure used in the 3GPP LTE (-A) system.
  • the UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • the control region and data region in the UL subframe may also be called a PUCCH region and a PUSCH region, respectively.
  • a sounding reference signal (SRS) may be allocated to the data area.
  • the SRS is transmitted in the OFDM symbol located at the end of the UL subframe in the time domain and in the data transmission band of the UL subframe, that is, in the data domain, in the frequency domain.
  • SRSs of several UEs transmitted / received in the last OFDM symbol of the same subframe may be distinguished according to frequency location / sequence.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • the UCI carried by one PUCCH is different in size and use according to the PUCCH format, and may vary in size according to a coding rate.
  • the following PUCCH format may be defined.
  • the PUCCH format 1 series and the PUCCH format 3 series are mainly used to transmit ACK / NACK information
  • the PUCCH format 2 series is mainly CQI (channel quality indicator) / precoding matrix index (PMI) / RI ( It is used to carry channel state information such as rank index).
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during transmission.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side, and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal as an uplink reference signal,
  • DM-RS Demodulation-Reference Signal
  • SRS sounding reference signal
  • DM-RS Demodulation-Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. In the former, since the UE can acquire channel information on the downlink, it should be transmitted over a wide band, and even if the UE does not receive downlink data in a specific subframe, it should receive the reference signal. It is also used in situations such as handover.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
  • the CRS is used for two purposes of channel information acquisition and data demodulation, and the UE-specific reference signal is used only for data demodulation.
  • the CRS is transmitted every subframe for the broadband, and reference signals for up to four antenna ports are transmitted according to the number of transmit antennas of the base station.
  • CRSs for antenna ports 0 and 1 are transmitted, and for four antennas, CRSs for antenna ports 0 to 3 are transmitted.
  • DMRS demodulation reference signal
  • DMRS is a reference signal defined by the UE for channel estimation for PDSCH.
  • DMRS may be used in transmission modes 7, 8 and 9.
  • DMRS was initially defined for single layer transmission of antenna port 5, but has since been extended to spatial multiplexing of up to eight layers.
  • DMRS is transmitted only for one specific terminal, as can be seen from its other name, UE-specific reference signal, and therefore, may be transmitted only in an RB through which a PDSCH for the specific UE is transmitted.
  • DMRS For up to eight layers is as follows.
  • DMRS generates a reference-signal sequence generated according to Equation 5 ) Is a complex-valued modulation symbol, May be mapped and transmitted.
  • FIG. 8 illustrates antenna ports 7 to 10 as DMRSs are mapped to resource grids on a subframe in the case of normal CPs according to Equation 2. Referring to FIG.
  • the reference signal sequence is orthogonal as shown in Table 1 according to the antenna port when mapping to a complex modulation symbol. Is applied.
  • the antenna port for transmitting the CSI-RS is called a CSI-RS port, and the location of a resource in a predetermined resource region where the CSI-RS port (s) transmits the corresponding CSI-RS (s) is indicated by a CSI-RS pattern or a CSI-RS resource. This is called a resource configuration.
  • the time-frequency resource to which the CSI-RS is allocated / transmitted is called a CSI-RS resource.
  • a resource element (RE) used for CSI-RS transmission is called a CSI-RS RE.
  • the CSI-RS is designed to reduce inter-cell interference (ICI) in a multi-cell environment including a heterogeneous network environment.
  • ICI inter-cell interference
  • the configuration of the CSI-RS is different depending on the number of antenna ports in a cell, and the neighboring cells are configured to have different configurations as much as possible.
  • Tables 4 and 5 illustrate CSI-RS configurations that can be used in the frame structure for frequency division duplex (FDD) (hereinafter FS-1) and frame structure for time division duplex (TDD) (hereinafter FS-2).
  • FDD frequency division duplex
  • TDD time division duplex
  • Table 4 shows CSI-RS configurations in subframes with normal CPs
  • Table 5 shows CSI-RS configurations in subframes with extended CPs.
  • the time-frequency resource that each CSI-RS port uses for transmission of the corresponding CSI-RS may be determined. That is, the complex modulation symbols in the CSI-RS subframe is configured for transmission (hereinafter, CSI-RS subframe) within a slot n s, CSI-RS sequence is used as a reference symbol (reference symbols) on the CSI-RS port p ( complex-valued modulation symbols) a (p) k, l can be mapped according to the following equation.
  • a resource index pair (k, l) (where k is a subcarrier index and l is an OFDM symbol index in a subframe) that the CSI-RS port p uses for CSI-RS transmission may be determined according to the following equation. .
  • FIG. 7 illustrates CSI-RS configurations.
  • FIG. 7 illustrates CSI-RS configurations according to Equation 3 and Table 4, and shows positions of resources occupied by the CSI-RS in one RB pair according to each CSI-RS configuration.
  • FIG. 7 (a) shows 20 CSI-RS configurations usable for CSI-RS transmission by two CSI-RS ports
  • FIG. 7 (b) shows four CSI-RS ports. 10 CSI-RS configurations that can be used by the above
  • Figure 7 (c) shows five CSI-RS configurations that can be used by the eight CSI-RS ports.
  • Each CSI-RS configuration defined according to the number of CSI-RS ports may be assigned a number.
  • the two CSI-RS ports have 20 CSI-RS configurations shown in FIG. CSI-RS transmission is performed on a radio resource corresponding to one of these. If the number of CSI-RS ports configured for a specific cell is four, the four CSI-RS ports are configured for the specific cell among the ten CSI-RS configurations shown in FIG. 7 (b). Send CSI-RS on the resources of. Similarly, if there are eight CSI-RS ports configured for the specific cell, the eight CSI-RS ports are configured for the specific cell among the five CSI-RS configurations shown in FIG. 7C. Send CSI-RS on the resources of the configuration.
  • the CSI-RS configurations of Tables 4 and 5 have nested properties.
  • the nested attribute means that the CSI-RS configuration for a large number of CSI-RS ports becomes a superset of the CSI-RS configuration for a small number of CSI-RS ports.
  • REs constituting CSI-RS configuration 0 for four CSI-RS ports may include CSI-RS for eight CSI-RS ports. Included in the resources that make up Configuration 0.
  • CSI-RSs can be used in a given cell. For non-zero power CSI-RS, only CSI-RS for one configuration is transmitted. In the case of zero power CSI-RS, CSI-RS for a plurality of configurations may be transmitted. The UE assumes zero transmit power for resources, except for resources corresponding to zero power CSI-RS, except for resources that the UE should assume as non-zero power CSI-RS.
  • a radio frame for TDD includes a special subframe in which downlink transmission and uplink transmission coexist, a subframe in which a paging message is transmitted, a synchronization signal, a physical broadcast channel (PBCH), or system information (SIB1).
  • PBCH physical broadcast channel
  • SIB1 system information
  • the CSI-RS is not transmitted in the subframe where the transmission of block type 1) collides with the CSI-RS, and the UE assumes that the CSI-RS is not transmitted in these subframes.
  • the time-frequency resource used by the CSI-RS port for transmission of the corresponding CSI-RS is not used for PDSCH transmission on any antenna port, but is used for CSI-RS transmission of an antenna port other than the corresponding CSI-RS port. It doesn't work.
  • the CSI-RS is not configured to be transmitted every subframe, but is configured to be transmitted every predetermined transmission period corresponding to a plurality of subframes. In this case, there is an advantage that the CSI-RS transmission overhead can be much lower than that transmitted in every subframe.
  • a CSI-RS subframe configured for CSI-RS transmission.
  • the subframe in which the CSI-RS transmission is configured may be defined by the CSI-RS transmission period and the subframe offset.
  • the transmission period and subframe offset of the CSI-RS are called a CSI-RS subframe configuration. Table 6 illustrates the transmission period T CSI-RS and subframe offset ⁇ CSI-RS of the CSI-RS .
  • CSI-RS subframe configuration I CSI-RS CSI-RS periodicityT CSI-RS (subframes) CSI-RS subframe offset ⁇ CSI-RS (subframes) I CSI-RS ⁇ 4 5 I CSI-RS 5 ⁇ I CSI-RS ⁇ 14 10 I CSI-RS -5 15 ⁇ I CSI-RS ⁇ 34 20 I CSI-RS -15 35 ⁇ I CSI-RS ⁇ 74 40 I CSI-RS -35 75 ⁇ I CSI-RS ⁇ 154 80 I CSI-RS -75
  • I CSI-RS specifies the CSI-RS transmission period and subframe offset.
  • the BS may determine or adjust the I CSI-RS and transmit the CSI-RS I in the coverage of the UE within the cell.
  • the UE may know the CSI-RS subframe in which the CSI-RS of a cell (hereinafter, a serving cell) that provides a communication service to the UE based on the I CSI-RS is transmitted.
  • the UE may determine a subframe satisfying the following equation as a CSI-RS subframe.
  • n f represents a system frame number
  • n s represents a slot number in a radio frame.
  • I CSI-RS is greater than or equal to 5 and less than or equal to 14, the CSI-RS starts with a subframe whose subframe number is (I CSI-RS -5) in a radio frame. It is transmitted every 10 subframes.
  • the BS may notify the UE of the following parameters through higher layer signaling (eg, medium access control (MAC) signaling, radio resource control (RRC) signaling).
  • higher layer signaling eg, medium access control (MAC) signaling, radio resource control (RRC) signaling.
  • MAC medium access control
  • RRC radio resource control
  • the BS may notify the UE of the CSI-RS configuration transmitted with zero power and the subframe configuration where the zero power CSI-RS configuration is transmitted.
  • the CSI-RS configuration of Tables 5 and 6 may be used for the zero power CSI-RS configuration
  • the CSI-RS subframe configuration of Table 6 may be used for the subframe configuration in which the zero power CSI-RS is configured.
  • a UE receives a joint transmission (JT) service from a CoMP set. That is, the UE is an example when it is set to the transmission mode 10.
  • the downlink operation associated with CoMP aggregation is not only the JT, but also a dynamic cell selection (DPS) configured to transmit a downlink signal from one cell (or transmission point, eg, BS or eNB) to the UE at one time point.
  • DPS dynamic cell selection
  • CS / CB coordinated scheduling / beamforming
  • the UE receives data from all transmission points (TPs) belonging to the CoMP group, for example, TP1 and TP2, and accordingly, the UE receives channel state information for all TPs belonging to the CoMP group. Can be transmitted.
  • RSs may also be sent to the UE from a plurality of TPs in the CoMP population.
  • the load and complexity of the reception processing of the UE may be reduced.
  • the load and complexity of the reception processing of the UE may be reduced. Therefore, in this specification, a method of sharing characteristics for channel estimation between RS ports will be described.
  • QCL quad co-located
  • the two antenna ports are QCLed, meaning that the wide characteristic of the radio channel from one antenna port is the same as the broad characteristic of the radio channel from the other antenna port.
  • a reference signal RS
  • a wide range of characteristics of a radio channel from one type of antenna port is changed to another type of antenna port. Can be replaced by the broad nature of the wireless channel.
  • the UE cannot assume the same broad characteristics between the radio channels from the corresponding antenna ports for non-QCL antenna ports. That is, in this case, the UE should perform independent processing for each set non-QCL antenna port for timing acquisition and tracking, frequency offset estimation and compensation, delay estimation, and Doppler estimation.
  • the UE For antenna ports that can assume QCL, the UE has the advantage that it can perform the following operations:
  • the UE calculates the power-delay-profile, delay spreading and Doppler spectrum, and Doppler spreading estimation results for the radio channel from one antenna port, for the radio channel from another antenna port. The same applies to the Wiener filter used in the estimation.
  • the UE may perform time and frequency synchronization for one antenna port and then apply the same synchronization to demodulation of another antenna port.
  • the UE may average Reference Signal Received Power (RSRP) measurements for two or more antenna ports.
  • RSRP Reference Signal Received Power
  • the UE When the UE receives a specific DMRS-based DL-related DCI format through a control channel (PDCCH or ePDCCH), the UE performs data demodulation after performing channel estimation for the corresponding PDSCH through the DMRS sequence. For example, if the UE has a configuration of antenna ports (hereinafter referred to as "DMRS port") for transmission of DMRS received from this DL scheduling grant, the CRS of its DL serving cell or another cell If QCL assumption can be made with antenna ports (hereinafter referred to as " CRS Port ”) for transmitting the UE, the UE can determine the broad characteristics of the radio channel estimated from the CRS port when estimating the channel through the DMRS port. The estimates can be used as-is to improve the performance of the DMRS-based receiver's processor.
  • DMRS port antenna ports
  • CRS Port antenna ports
  • the CRS is a reference signal broadcasted at a relatively high density over every subframe and the entire band as described above, since the estimate of the wide characteristic is generally more stable from the CRS. to be.
  • the DMRS is UE-specifically transmitted for a specific scheduled RB, and the effective channel received by the UE is changed in units of PRG since the precoding matrix used by the eNB for transmission may be changed in units of PRGs. Therefore, even when multiple PRGs are scheduled, performance degradation may occur when DMRS is used to estimate a wide range of characteristics of a wireless channel over a wide band.
  • the CSI-RS Since the CSI-RS also has a low density of 1RE per antenna port (received in 2RE units when CDM is applied) on an average per RB, the CSI-RS may have a transmission period of several to several tens of ms. Performance degradation may occur when used for estimation of a wide range of characteristics.
  • the QCL assumption between the antenna ports can be used for receiving various downlink reference signals, channel estimation, channel state reporting, and the like.
  • the eNB signals QCL hypothesis information between downlink RSs such as DMRS, CRS, and CSI-RS, that is, information indicating that the QCL is between at least two antenna ports, to the UE, thereby providing CSI of the UE. It provides a way to improve performance such as feedback and receiver processing.
  • the UE is preferably set or operated in transmission mode 10.
  • QSI assumptions between different RS ports may be indicated through CSI-RS resource configuration.
  • the QCL assumption of the CSI-RS port (s) and CRS port (s) may be indicated.
  • each CSI-RS port and specific RS port (s) Information can be received, including whether the QCL assumption of is possible. Then, when calculating channel state information (CSI), for example, CQI, RI, PMI, etc., to be reported at the time of CSI reporting on each CSI-RS resource configuration, these QCL or NQCL (non-QCL) assumptions are used. Calculate based on
  • the CSI-RS resource configuration used in one embodiment of the present invention may include the following parameters or information.
  • a sequence scrambling identifier (or initial value) as a pseudo-random sequence generator parameter
  • the CRS port (s) from the specific cell for each CSI-RS resource configuration Information may be received indicating whether a QCL assumption is possible. Then, in the CSI reporting for each CSI-RS resource configuration, when calculating the CQI, RI, PMI, etc. to be reported, it is calculated based on the QCL or NQCL (non-QCL) assumption. That is, when the first CSI-RS port corresponding to the CSI-RS resource configuration from the first cell and the CRS port from the second cell are signaled to be capable of QCL assumption, the UE corresponds to the first CSI-RS.
  • the wide characteristic of the radio channel estimated from the CRS port may be used without obtaining the wide characteristic of the radio channel from the CSI-RS port.
  • the UE may inform an identifier of a CRS to assume a QCL for each CSI-RS resource configuration.
  • the UE when calculating CQI, RI, PMI, etc. for CSI reporting corresponding to each CSI-RS resource configuration, uses the corresponding DMRS port (s) and the given identifier when the UE receives a future DMRS-based PDSCH. Under the assumption that the CRS port (s) transmitted in the identified cell is QCL, it is possible to calculate and report a CSI that can achieve a 10% Frame Error Rate (FER) in data demodulation.
  • FER Frame Error Rate
  • the CSI-RS It can be implicitly indicated whether an RS port and the CRS port can assume a QCL.
  • the UE refers to the first CSI-RS resource configuration (hereinafter referred to as "CSI-RS resource configuration # 1") and the second CSI-RS resource configuration (hereinafter referred to as "CSI-RS resource configuration # 2").
  • CSI-RS resource configuration # 1 is set to QCL and CSI-RS resource configuration # 2 is set to NQCL to establish a QCL / NQCL assumption or relationship with the CRS port (s) from a specific cell (eg, DL serving cell). If received, the UE, when receiving CSI for a specific CSI-RS resource configuration (ie, CSI-RS resource configuration # 1) capable of QCL assumption with the corresponding cell (eg, DL serving cell), is itself DMRS-based.
  • CSI-RS resource configuration # 1 is set to QCL
  • CSI-RS resource configuration # 2 is set to NQCL to establish a QCL / NQCL assumption or relationship with the CRS port (s) from a specific cell (eg, DL serving cell).
  • the PMI can be calculated and reported.
  • the CQI may be calculated by applying a specific scaling value to the ratio Pc of the PDSCH EPRE (energy per resource element) included in the CSI-RS resource configuration and the CSI-RS EPRE.
  • the CSI-RS resource configuration # 2 is set to NQCL, when receiving a DMRS-based PDSCH from the cell transmitting the second CSI-RS, the CRS from the corresponding cell (eg, the DL serving cell). Since no QCL assumptions can be made with the port (s), it is possible to calculate and report the MCS level, CQI, RI, and PMI at this time, which can achieve 10% FER in data demodulation without QCL assumptions. For example, the CSI may be calculated and reported with a lower value than when the QCL assumption was possible.
  • one CSI-RS resource configuration may include whether the QCL / NQCL with the CSI-RS port (s) of the other CSI-RS resource configuration.
  • a signaling method capable of assuming QCL between CSI-RS ports having the same identifier information by including some identifier information for each CSI-RS resource configuration is possible. That is, it may mean that the CSI-RS ports in which the identifier information of the N-bit width is set to the same value may make QCL assumptions with each other.
  • CSI having such a QCL relationship by indicating that the L * M panel antenna for 3-D beamforming is a QCL between a plurality of CSI-RS resource configurations set on the same eNB side when the eNB uses the same.
  • the QCL assumption may be excluded with respect to the average gain among the wide range characteristics in view of the 3-D beamforming gain characteristics.
  • a specific flag bit is added to each CSI-RS resource configuration so that the flag bit is toggled.
  • an X value (eg, a physical cell identifier, a virtual cell identifier, or a scrambling identifier) that is a CSI-RS sequence scrambling seed included in each CSI-RS resource configuration Or QCL / NQCL assumption may be indicated depending on whether the initial value) is the same X value between CSI-RS resource configurations. If it is possible to implicitly indicate that QCL assumption is possible between CSI-RS port (s) corresponding to CSI-RS resource configurations including the same X value. On the contrary, it will be obvious that NQCL is assumed between CSI-RS port (s) corresponding to CSI-RS resource configurations including different X values.
  • the X value may be individually assigned to each CSI-RS port included in each CSI-RS resource configuration. In this case, depending on whether each X value is the same, the QCL or NQCL hypothesis may be implicitly indicated.
  • the UE may Perform processing assuming QCL between some or all CRS port (s) from cell A and all CSI-RS port (s) in the CSI-RS resource configuration, and CSI-RS port in the corresponding CSI-RS resource configuration (S) can also be interpreted as possible QCL assumptions.
  • no QCL assumption is possible between the CRS port (s) from a specific cell A and a specific CSI-RS resource configuration (NQCL), when higher layer signaling comes down to the UE, thus allowing the UE to partially or all from that cell A.
  • Processing is performed between the CRS port (s) and all CSI-RS port (s) in the CSI-RS resource configuration without making QCL assumptions, and the CSI-RS port (s) in the CSI-RS resource configuration are also QCLed together. Assume that an assumption is impossible.
  • higher layer signaling that a QCL assumption is possible only between a CRS port (s) from a specific cell A and some CSI-RS port (s) in a specific CSI-RS resource configuration may be sent to the UE.
  • the CSI-RS port (s) that the UE can make the QCL assumption among the CSI-RS port (s) in the CSI-RS resource configuration may perform processing through the QCL assumption with the corresponding CRS port (s).
  • the UE determines that the other CSI-RS port (s) except for the CSI-RS port (s) capable of the QCL assumption cannot make QCL assumptions with each other, and in addition, the remaining CSI-RS ports ( For example, it can be determined that no QCL assumption with the corresponding CRS port (s) is made.
  • the above contents are independent of the CRS port (s) from another cell B, and information about a specific CSI-RS resource configuration may be delivered through higher layer signaling.
  • information bit (s) on whether or not QCL assumption is possible between CSI-RS port (s) in the corresponding CSI-RS resource configuration is added and transmitted.
  • the information bits may be delivered in addition to higher layer signaling, and more specifically, the information bit (s) may be included in each CSI-RS resource configuration. That is, the specific CSI- in the CoMP measurement set (the set of TP (s) or the set of CSI-RS resource configurations associated with that TP (s) on which the actual CoMP operation (eg, DPS, JT, CS / CB, etc.) will be performed.
  • the CSI-RS resource configuration may be delivered by including information bits on whether or not QCL assumption is possible between CSI-RS port (s) in the RS resource configuration.
  • s CSI-RS port
  • the CSI-RS resource configuration may be delivered by including information bits on whether or not QCL assumption is possible between CSI-RS port (s) in the RS resource configuration.
  • CSI-RS resource configuration # 1 is a CSI-RS resource configuration transmitted by TP A
  • CSI-RS resource configuration # 2 may be a CSI-RS resource configuration transmitted by TP B
  • a CSI-RS resource Configuration # 3 may be another CSI-RS resource configuration configured by extracting and combining some specific port (s) from CSI-RS resource configurations # 1 and # 2 corresponding to TP A and TP B, respectively.
  • the CSI-RS resource # 3 corresponds to a 2-port CSI-RS resource configuration created by combining a specific CSI-RS port # 1 at TP A and a specific CSI-RS port # 1 at TP B. .
  • the CSI-RS resource configuration # 1, # 2, and # 3 When the UE receives the CSI-RS resource configuration # 1, # 2, and # 3 and receives them and performs CSI feedback (for example, feedback of RI / PMI / CQI) for each, the CSI-RS resource configuration is actually made.
  • CSI reporting for # 1 and # 2 is CSI reporting for each TP A and TP B
  • CSI reporting for CSI-RS resource configuration # 3 is from TP A when JT transmission from TP A and TP B is made.
  • Inter-cell CSI information that can convey information such as a specific phase difference between the channel of the channel and the channel from the TP B can be used as being delivered.
  • the eNB indicates that the CSI-RS resource configuration # 1 can assume QCL between the corresponding CSI-RS port (s), and the CSI-RS port also corresponds to the CSI-RS resource configuration # 2. It is possible to indicate that QCL hypothesis is possible between (s), and CSI-RS resource configuration # 3 may indicate that QCL assumption is not possible (NQCL) between the corresponding CSI-RS port (s).
  • the CSI-RS resource configuration # 3 is a CSI-RS resource configuration configured by combining some specific CSI-RS port (s) in TP A and TP B, so that the geographically separated port (s) between the CSI-RS port (s) It may be necessary to inform the NQCL information.
  • the UE should not share the estimate of the broad characteristic among the port (s) in this CSI-RS resource configuration # 3, and thus the estimate of the broad characteristic for each port (eg, delay spread, Doppler spread, Doppler shift). , Average gain, average delay, etc.) are estimated for each port. While the above has been described an embodiment for the case where TP A and TP B is present, it is obvious that the method proposed in the present invention can be generally applied to more or fewer TPs.
  • information bit (s) as to whether QCL assumption is possible between the CSI-RS port (s) in the corresponding CSI-RS resource configuration. ) May be further delivered via higher layer signaling.
  • the information bit (s) may be included in each CSI-RS resource configuration.
  • the above example is not limited to the CSI-RS resource configuration included in a specific CoMP measurement set and a specific CRM set, and for a general CSI-RS or RS resource configuration even though it is not included in these specific sets, Can be applied as:
  • RS e.g., CSI-RS, CRS, DMRS, SRS, TRS (tracking RS)
  • information bit (s) regarding whether QCL assumption is possible between corresponding RS port (s) in the RS resource configuration is possible. It may be further delivered to the UE through higher layer signaling. If the information bit (s) is received that the QCL assumption is possible between the corresponding RS port (s), the UE can share or average the estimate of the broad characteristic between the corresponding RS port (s), and vice versa. Or not averaged.
  • indication information on whether QCL / NQCL between the CSI-RS port (s) and the DMRS port (s) may be included in the CSI-RS resource configuration.
  • whether or not to assume QCL / NQCL with specific DMRS port (s) for each CSI-RS resource configuration may be designated as RRC. If the UE receives CSI-RS resource configuration # 1 set to enable QCL assumptions with all DMRS port (s), the UE may specify certain broad characteristics assumed in CSI-RS resource configuration # 1 upon receiving DMRS-based PDSCH in the future. The same can be applied to the reception processing by applying the estimate of. This may mean that, unless there is a re-configuration, the eNB transmits the PDSCH to the UE from the TP which has transmitted the CSI-RS resource configuration # 1 for a while.
  • the CSI-RS resource configuration # 1 may correspond to a specific cell (eg, DL).
  • CSI-RS resource configuration # 2 is configured to perform NQCL hypothesis with CRS port (s) of specific cell (e.g., DL serving cell).
  • the port (s) may determine that both the CSI-RS resource configuration # 1 and the CRS port (s) of the cell (eg, the DL serving cell) can assume QCL.
  • the UE Because the CSI-RS resource configuration # 1 is set to be capable of QCL assumption with the CRS port (s) of the cell (eg, DL serving cell), the UE provides CSI feedback based on the CSI-RS resource configuration # 1. As noted earlier, the CSI may have calculated and reported higher MCS levels, CQIs, and so on. Therefore, as long as the eNB sets the corresponding CSI-RS port (s) and the CRS port (s) and QCL assumptions of the cell (eg DL serving cell) in CSI-RS Resource Configuration # 1, there is no future reconfiguration.
  • the TP that transmits CSI-RS resource configuration # 1 is interpreted as a kind of promise that it will transmit a DMRS-based PDSCH, and the UE uses CSI based on CSI-RS resource configuration # 1 based on QCL.
  • the performance improvement can be expected by calculating and reporting and performing actual reception of the PDSCH received QCL. That is, if any of the one or more CSI-RS resource configuration (s) in the CoMP measurement set has a CSI-RS resource configuration that is allowed to make QCL assumptions with the CRS port (s) of a particular cell (eg, DL serving cell).
  • the UE In case of DMRS-based PDSCH demodulation, the UE is capable of QCL assumption between the corresponding DMRS port (s) and the CRS port (s) (and corresponding QCL assumed CSI-RS port (s)) of the corresponding cell (eg, DL serving cell). It can be judged that. This is allowed to perform the reception processing by this QCL hypothesis, and also report the CSI in the case of assuming the reception processing by this QCL hypothesis in the corresponding CSI reporting.
  • QCL assumption between the corresponding DMRS port (s) and the CRS port (s) (and corresponding QCL assumed CSI-RS port (s)) of the corresponding cell (eg, DL serving cell). It can be judged that. This is allowed to perform the reception processing by this QCL hypothesis, and also report the CSI in the case of assuming the reception processing by this QCL hypothesis in the corresponding CSI reporting.
  • the UE may use the corresponding DMRS port (s) in DMRS-based PDSCH demodulation.
  • NQCL assumption of the CRS port (s) of the cell eg, DL serving cell
  • specific CFR-RS resource configuration includes specific subframe index (s) information and receives DMRS-based DL scheduling in the corresponding subframe index (es)
  • the corresponding DMRS port In the case of (s), the CSI-RS port (s) indicated by each CSI-RS resource configuration and whether QCL / NQCL assumption can be made can be designated as RRC. It may also include whether the DMRS port (s) can make QCL / NQCL assumptions with the CRS port (s) of a particular cell (eg, DL serving cell).
  • the UE may configure the CSI-RS resource configuration when receiving a DMRS-based PDSCH in a subframe of an even index. All or part of the estimates of the broad characteristics assumed at 1 (and / or the CRS port (s) of the cell (eg, DL serving cell)) may be equally applied to reflect the received processing. If this information is reflected in CSI reporting, CSI considering the QCL / NQCL assumption (eg, the UE receives a DMRS-based PDSCH in the future and configures corresponding DMRS port (s) and CSI-RS resource).
  • PSI, etc. may be calculated to report CSI under QCL hypothesis and / or CSI under NQCL hypothesis, respectively.
  • Such information may be provided in the form of a specific subframe bitmap or subframe index set.
  • subframe set # 1 allows for QCL assumption between DMRS port (s) and CRS port (s) of a particular cell (eg, DL serving cell), and subframe set # 2 is specific to DMRS port (s).
  • subframe set # 1 may be a DMRS port (s) and a CRS port (s) of a specific cell (eg, DL serving cell).
  • QCL assumption is possible, subframe set # 2 may be set to assume NQCL between DMRS port (s) and specific CSI-RS port (s).
  • the pair information between the (s) and the CSI-RS port (s), or the pair information between the CRS port (s) and the DMRS port (s) for which QCL assumption is possible is configured in a semi-static manner in a plurality of states. For example, when providing a grant through DCI, one of these states can be dynamically indicated.
  • N 2
  • state '00' is NQCL (i.e. DMRS port (s) cannot assume QCL with any other RS port (s))
  • state '01' is DMRS port (s) specific.
  • state '10' is inter-RS QCL pair information (eg, "CSI-RS / DMRS port (s)” set to the first set of RRCs Or “CRS / DMRS port (s)”
  • state '11' is the QCL pair information (eg, “CSI-RS / DMRS port (s)” or “CRS / DMRS port (s) set to the second set of RRCs. It can be set in the form of ”)”.
  • the inter-RS QCL pair information set to the RRC of the first set is " DMRS port (s) is the CSI-RS port included in ⁇ CSI-RS resource configuration # 1, CSI-RS resource configuration # 2 ⁇ QCL pair information between RS (s) and QCL hypothesized, and also set to the second set of RRCs, is "DMRS port (s) can QCL hypothesized with CRS port (s) of a particular cell (eg DL serving cell)". And the like.
  • the "QCL pair information between CRS port (s) and DMRS port (s)" is a semi-static manner by higher layer signaling such as RRC signaling without dynamic indication through DCI. Can be set. That is, if such RRC signaling is received at the UE, the UE, when scheduled for a future DMRS-based PDSCH, may be configured to demodulate data based on RS from the corresponding DMRS port (s) of a particular cell (eg, DL serving cell). Receive processing may be performed by reflecting QCL / NQCL assumption with the CRS port (s).
  • the CRS port (s) and DMRS port (s) of a specific cell (eg, DL serving cell) set to the RRC are set.
  • CCL e.g., it receives a future DMRS-based PDSCH so that the QCL / (QCL) between the corresponding DMRS port (s) and the CRS port (s) of the corresponding cell (e.g., DL serving cell)
  • QCL QCL /
  • the MCS level, CQI, RI, and PMI at this time which can achieve 10% FER in data demodulation, can be reported.
  • FIG. 9 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the embodiments of the present invention.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
  • the device is operatively connected to components such as the memory 12 and 22 storing the communication related information, the RF units 13 and 23 and the memory 12 and 22, and controls the components.
  • a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • application specific integrated circuits ASICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include Nt transmit antennas (Nt is a positive integer greater than or equal to 1).
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include Nr receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal.
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the RF units 13, 23 have one or more antennas.
  • the antenna transmits a signal processed by the RF units 13 and 23 to the outside or receives a radio signal from the outside according to an embodiment of the present invention under the control of the processors 11 and 21. , 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted corresponding to the corresponding antenna defines an antenna viewed from the perspective of the receiving apparatus 20, and includes a channel or whether the channel is a single radio channel from one physical antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
  • MIMO multi-input multi-output
  • the UE operates as the transmitter 10 in the uplink and the receiver 20 in the downlink.
  • the eNB operates as the receiving device 20 in the uplink, and operates as the transmitting device 10 in the downlink.
  • the transmitting device and / or the receiving device may perform at least one or a combination of two or more embodiments of the present invention described with reference to FIGS. 1 to 18.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예에 따라 무선 통신 시스템에서 사용자기기가 채널상태정보(channel state information; CSI)-참조신호(reference signal; RS)를 수신하기 위한 방법에 있어서, 상기 방법은 CSI-RS의 자원 구성 정보를 수신하는 단계, 및 상기 CSI-RS의 자원 구성 정보에 기반하여 CSI-RS를 수신하는 단계를 포함하되, 상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고, 상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정할 수 있다.

Description

채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치
본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치에 관한 것이다.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다. 또한, 사용자기기가 주변에서 엑세스할 수 있는 노드의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 노드라 함은 하나 이상의 안테나를 구비하여 사용자기기와 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 사용자기기에게 제공할 수 있다.
복수의 노드에서 동일한 시간-주파수 자원을 이용하여 사용자기기와 통신을 수행하는 이러한 다중 노드 협력 통신 방식은 각 노드가 독립적인 기지국으로 동작하여 상호 협력 없이 사용자기기와 통신을 수행하는 기존의 통신 방식보다 데이터 처리량에 있어서 훨씬 우수한 성능을 갖는다.
다중 노드 시스템은 각 노드가, 기지국 혹은 엑세스 포인트, 안테나, 안테나 그룹, 무선 리모트 헤드(radio remote header, RRH), 무선 리모트 유닛(radio remote unit, RRU)로서 동작하는, 복수의 노드를 사용하여 협력 통신을 수행한다. 안테나들이 기지국에 집중되어 위치해 있는 기존의 중앙 집중형 안테나 시스템과 달리, 다중 노드 시스템에서 상기 복수의 노드는 통상 일정 간격 이상으로 떨어져 위치한다. 상기 복수의 노드는 각 노드의 동작을 제어하거나, 각 노드를 통해 송/수신될 데이터를 스케줄링하는 하나 이상의 기지국 혹은 기지국 컨트롤러(controller)에 의해 관리될 수 있다. 각 노드는 해당 노드를 관리하는 기지국 혹은 기지국 컨트롤러와 케이블 혹은 전용 회선(dedicated line)을 통해 연결된다.
이러한 다중 노드 시스템은 분산된 노드들이 동시에 서로 다른 스트림을 송/수신하여 단일 또는 다수의 사용자기기와 통신할 수 있다는 점에서 일종의 MIMO(multiple input multiple output) 시스템으로 볼 수 있다. 다만, 다중 노드 시스템은 다양한 위치에 분산된 노드들을 이용하여 신호를 전송하므로, 기존의 중앙 집중형 안테나 시스템에 구비된 안테나들에 비해, 각 안테나가 커버해야 하는 전송 영역이 축소된다. 따라서, 중앙 집중형 안테나 시스템에서 MIMO 기술을 구현하던 기존 시스템에 비해, 다중 노드 시스템에서는 각 안테나가 신호를 전송하는 데 필요한 전송 전력이 감소될 수 있다. 또한, 안테나와 사용자기기 간의 전송 거리가 단축되므로 경로 손실이 감소되며, 데이터의 고속 전송이 가능하게 된다. 이에 따라, 셀룰러 시스템의 전송 용량 및 전력 효율이 높아질 수 있으며, 셀 내의 사용자기기의 위치에 상관없이 상대적으로 균일한 품질의 통신 성능이 만족될 수 있다. 또한, 다중 노드 시스템에서는, 복수의 노드들에 연결된 기지국(들) 혹은 기지국 컨트롤러(들)이 데이터 전송/수신에 협력하므로, 전송 과정에서 발생하는 신호 손실이 감소된다. 또한, 일정 거리 이상 떨어져 위치한 노드들이 사용자기기와 협력 통신을 수행하는 경우, 안테나들 사이의 상관도(correlation) 및 간섭이 줄어들게 된다. 따라서, 다중 노드 협력 통신 방식에 의하면, 높은 신호 대 잡음비(signal to interference-plus-noise ratio, SINR)이 얻어질 수 있다.
이와 같은 다중 노드 시스템의 장점 때문에, 차세대 이동 통신 시스템에서 기지국 증설 비용과 백홀(backhaul) 망의 유지 비용을 줄이는 동시에, 서비스 커버리지의 확대와 채널용량 및 SINR의 향상을 위해, 다중 노드 시스템이 기존의 중앙집중형 안테나 시스템과 병행 혹은 대체하여 셀룰러 통신의 새로운 기반으로 대두되고 있다.
본 발명은 채널상태정보의 보고 또는 피드백을 위한 방안을 제안하고자 한다.
본 발명은 채널상태정보의 보고 또는 피드백을 위해 필요한 정보를 전송하거나 이를 수신하기 위한 방안을 제안하고자 한다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따라 무선 통신 시스템에서 사용자기기가 채널상태정보(channel state information; CSI)-참조신호(reference signal; RS)를 수신하기 위한 방법에 있어서, 상기 방법은 CSI-RS의 자원 구성 정보를 수신하는 단계, 및 상기 CSI-RS의 자원 구성 정보에 기반하여 CSI-RS를 수신하는 단계를 포함하되, 상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고, 상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정할 수 있다.
바람직하게는, 상기 CRS에 관한 정보는 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성(large-scale property)을 획득하기 위해 사용될 수 있다.
바람직하게는, 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성은 상기 CRS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널로부터 도출가능한 것을 특징으로 하는, CSI-RS 수신 방법.
바람직하게는, 상기 CRS에 관한 정보는 상기 CRS에 대한 식별자 정보를 포함할 수 있다.
바람직하게는, 상기 사용자기기는 전송 모드 10으로 구성될 수 있다.
바람직하게는, 상기 사용자기기는 DM-RS(demodulation-reference signal)를 전송하기 위해 사용되는 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 의해 식별되는 상기 CSI-RS를 전송하기 위해 사용되는 안테나 포트가, 상기 안테나 포트들의 무선 채널의 광범위 특성(large-scale property)에 관하여, 의사 코로케이트된다고 가정할 수 있다.
바람직하게는, 상기 하나 이상의 CSI-RS의 자원 구성 정보는 상위 계층 시그널링을 통해 수신될 수 있다.
바람직하게는, 상기 CSI-RS와 상기 CRS는 서로 다른 셀로부터 전송될 수 있다.
바람직하게는, 상기 무선 채널의 광범위 특성은 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연 중 하나 이상을 포함할 수 있다.
본 발명의 다른 일 실시예에 따라 무선 통신 시스템에서 기지국이 채널상태정보(channel state information; CSI)- 참조신호(reference signal; RS)를 전송하기 위한 방법에 있어서, 상기 방법은 사용자기기로 CSI-RS의 자원 구성 정보를 전송하는 단계, 및 상기 사용자기기로 상기 CSI-RS의 자원 구성 정보에 기반한 CSI-RS를 전송하는 단계를 포함하고, 상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고, 상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정할 수 있다.
본 발명의 다른 일 실시예에 따라 무선 통신 시스템에서 채널상태정보(channel state information; CSI)- 참조신호(reference signal; RS)를 수신하도록 구성된 사용자기기에 있어서, 상기 사용자기기는 무선 주파수(radio frequency, RF) 유닛; 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 상기 RF 유닛을 통해 CSI-RS의 자원 구성 정보를 수신하고, 상기 CSI-RS의 자원 구성 정보에 기반하여 CSI-RS를 수신하되, 상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고, 상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정할 수 있다.
바람직하게는, 상기 CRS에 관한 정보는 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성(large-scale property)을 획득하기 위해 사용될 수 있다.
바람직하게는, 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성은 상기 CRS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널로부터 도출가능할 수 있다.
바람직하게는, 상기 CRS에 관한 정보는 상기 CRS에 대한 식별자 정보를 포함할 수 있다.
바람직하게는, 상기 사용자기기는 전송 모드 10으로 구성될 수 있다.
바람직하게는, 상기 사용자기기는 DM-RS(demodulation-reference signal)를 전송하기 위해 사용되는 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 의해 식별되는 상기 CSI-RS를 전송하기 위해 사용되는 안테나 포트가, 상기 안테나 포트들로부터의 무선 채널의 광범위 특성(large-scale property)에 관하여, 의사 코로케이트된다고 가정할 수 있다.
바람직하게는, 상기 하나 이상의 CSI-RS의 자원 구성 정보는 상위 계층 시그널링을 통해 수신될 수 있다.
바람직하게는, 상기 CSI-RS와 상기 CRS는 서로 다른 셀로부터 전송될 수 있다.
바람직하게는, 상기 무선 채널의 광범위 특성은 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연 중 하나 이상을 포함할 수 있다.
본 발명의 다른 일 실시예에 따라 무선 통신 시스템에서 채널상태정보(channel state information; CSI)-참조신호(reference signal; RS)를 사용자기기로 전송하도록 구성된 기지국에 있어서, 상기 기지국은 무선 주파수(radio frequency, RF) 유닛; 및 상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는 상기 RF 유닛을 통해 CSI-RS의 자원 구성 정보를 전송하고, 상기 CSI-RS의 자원 구성 정보에 기반한 CSI-RS를 전송하되, 상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고, 상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정할 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시예들에 의하면, 채널상태정보 보고시에 사용자기기의 프로세싱 부하 또는 복잡도가 감소될 수 있다.
또한, 본 발명에 의하면, 상/하향링크 자원 사용의 효율성이 높아진다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 5는 안테나 포트에 따른 셀특정 참조신호의 맵핑 패턴을 도시한다.
도 6은 안테나 포트에 따른 복조참조신호의 맵핑 패턴을 도시한다.
도 7은 안테나 포트에 따른 채널상태정보 참조신호의 맵핑 패턴을 도시한다.
도 8은 다중 포인트 송수신 동작의 예를 도시한다.
도 9는 본 발명을 수행하는 전송장치 및 수신장치의 구성요소를 나타내는 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE(-A)에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE(-A) 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE(-A)에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자 기기(UE: User Equipment)는 고정되거나 이동성을 가질 수 있으며, BS와 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 UE 및/또는 다른 BS와 통신하는 고정된 지점(fixed station)을 말하며, UE 및 타 BS과 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 모음(set) 혹은 자원요소의 모음을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)은 각각 UCI(Uplink Control Information)/상향링크 데이터를 나르는 시간-주파수 자원의 모음 혹은 자원요소의 모음을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH 자원이라고 칭한다. 따라서, 본 발명에서 사용자 기기가 PUCCH/PUSCH를 전송한다는 표현은, 각각, PUSCH/PUCCH 상에서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, 본 발명에서 BS가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
또한, 본 발명에서 CRS(Cell-specific Reference Signal)/DMRS(Demodulation Reference Signal)/CSI-RS(Channel State Information Reference Signal) 시간-주파수 자원(혹은 RE)은 각각 CRS/DMRS/CSI-RS에 할당 혹은 이용가능한 RE 혹은 CRS/DMRS/CSI-RS를 나르는 시간-주파수 자원(혹은 RE)를 의미한다. 또한, CRS/DMRS/CSI-RS RE를 포함하는 부반송파를 CRS/DMRS/CSI-RS 부반송파라 칭하며, CRS/DMRS/CSI-RS RE를 포함하는 OFDM 심볼을 CRS/DMRS/CSI-RS 심볼이라 칭하다. 또한, 본 발명에서 SRS 시간-주파수 자원(혹은 RE)은 UE에서 BS로 전송되어 BS가 상기 UE와 상기 BS 사이에 형성된 상향링크 채널 상태의 측정에 이용하는 사운딩 참조신호(Sounding Reference Signal, SRS)를 나르는 시간-주파수 자원(혹은 RE)를 의미한다. 참조신호(reference signal, RS)라 함은 UE와 BS가 서로 알고 있는 기정의된, 특별한 파형의 신호를 의미하며, 파일럿이라고도 한다.
한편, 본 발명에서 셀이라 함은 일 BS, 노드(들) 혹은 안테나 포트(들)이 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 발명에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 BS, 노드 혹은 안테나 포트와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 BS, 노드 혹은 안테나 포트로부터의/로의 하향링크/상향링크 신호를 의미한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 BS, 노드 혹은 안테나 포트와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다. 특히, 도 1(a)는 3GPP LTE(-A)에서 FDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이고, 도 1(b)는 3GPP LTE(-A)에서 TDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이다.
도 1을 참조하면, 3GPP LTE(-A)에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(TTI: transmission time interval)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플렉스(duplex) 모드에 따라 다르게 구성될 수 있다. 예를 들어, FDD 모드에서, 하향링크(DL) 전송 및 상향링크(UL) 전송은 주파수에 의해 구분되므로, 무선 프레임은 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 하향링크 서브프레임 또는 UL 서브프레임 중 하나만을 포함한다. TDD 모드에서 DL 전송 및 UL 전송은 시간에 의해 구분되므로, 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 UL 서브프레임을 모두 포함한다.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 구성을 예시한 것이다.
표 1
DL-UL configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표 1에서, D는 하향링크 서브프레임을, U는 UL 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 DL 전송용으로 유보되는 시간 구간이며, UpPTS는 UL 전송용으로 유보되는 시간 구간이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE(-A) 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
슬롯은 시간 도메인에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL RB*NRB sc개의 부반송파(subcarrier)와 NDL/UL symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL RB은 UL 슬롯에서의 RB의 개수를 나타낸다. NDL RB와 NUL RB은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. NDL symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, NUL symb은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 표준(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL RB*NRB sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 DC 성분을 위한 널 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인 채 남겨지는 부반송파로서, OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier freqeuncy, f0)로 맵핑된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다.
일 RB는 시간 도메인에서 NDL/UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는 NDL/UL symb*NRB sc개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL RB*NRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL symb-1까지 부여되는 인덱스이다.
일 서브프레임에서 NRB sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 물리자원블록(physical resource block, PRB) 쌍이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스라고도 함)를 갖는다. VRB는 자원할당을 위해 도입된 일종의 논리적 자원할당 단위이다. VRB는 PRB와 동일한 크기를 갖는다. VRB를 PRB로 맵핑하는 방식에 따라, VRB는 로컬라이즈(localized) 타입의 VRB와 분산(distributed) 타입의 VRB로 구분된다. 로컬라이즈 타입의 VRB들은 PRB들에 바로 맵핑되어, VRB 번호(VRB 인덱스라고도 함)가 PRB 번호에 바로 대응된다. 즉, nPRB=nVRB가 된다. 로컬라이즈 타입의 VRB들에는 0부터 NDL VRB-1 순으로 번호가 부여되며, NDL VRB=NDL RB이다. 따라서, 로컬라이즈 맵핑 방식에 의하면, 동일한 VRB 번호를 갖는 VRB가 첫 번째 슬롯과 두 번째 슬롯에서, 동일 PRB 번호의 PRB에 맵핑된다. 반면, 분산 타입의 VRB는 인터리빙을 거쳐 PRB에 맵핑된다. 따라서, 동일한 VRB 번호를 갖는 분산 타입의 VRB는 첫 번째 슬롯과 두 번째 슬롯에서 서로 다른 번호의 PRB에 맵핑될 수 있다. 서브프레임의 두 슬롯에 1개씩 위치하며 동일한 VRB 번호를 갖는 2개의 PRB를 VRB 쌍이라 칭한다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
DL 서브프레임은 시간 도메인에서 제어영역과 데이터영역으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원영역을 PDCCH 영역이라 칭한다. 제어영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용가능한 자원영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송의 응답으로 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, UE 그룹 내의 개별 UE들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 포함한다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다.
복수의 PDCCH가 DL 서브프레임의 PDCCH 영역 내에서 전송될 수 있다. UE는 복수의 PDCCH를 모니터링 할 수 있다. BS는 UE에게 전송될 DCI에 따라 DCI 포맷을 결정하고, DCI에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹(또는 스크램블)된다. 예를 들어, PDCCH가 특정 UE을 위한 것일 경우, 해당 UE의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIB))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다. CRC 마스킹(또는 스크램블)은 예를 들어 비트 레벨에서 CRC와 RNTI를 XOR 연산하는 것을 포함한다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 4개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 DL 제어채널(즉, PCFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE의 개수에 따라 결정된다.
CCE들은 번호가 매겨져 연속적으로 사용되고, 복호 프로세스를 간단히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수, 다시 말해, CCE 집성 레벨은 채널 상태에 따라 BS에 의해 결정된다. 예를 들어, 좋은 DL 채널을 가지는 UE(예, BS에 인접함)를 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 UE(예, 셀 경계에 근처에 존재)를 위한 PDCCH의 경우 충분한 로버스트(robustness)를 얻기 위해서는 8개의 CCE가 요구될 수 있다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 4를 참조하면, UL 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 UCI(uplink control information)를 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터영역에 할당될 수 있다. UL 서브프레임 내 제어영역과 데이터영역은 PUCCH 영역과 PUSCH 영역으로 각각 불리기도 한다. 상기 데이터영역에는 사운딩 참조신호(sounding reference signal, SRS)가 할당될 수도 있다. SRS는 시간 도메인에서는 UL 서브프레임의 가장 마지막에 위치하는 OFDM 심볼, 주파수 도메인에서는 상기 UL 서브프레임의 데이터 전송 대역, 즉, 데이터영역 상에서 전송된다. 동일한 서브프레임의 마지막 OFDM 심볼에서 전송/수신되는 여러 UE들의 SRS들은 주파수 위치/시퀀스에 따라 구분이 가능하다.
UE가 UL 전송에 SC-FDMA 방식을 채택하는 경우, 단일 반송파 특성을 유지하기 위해, 3GPP LTE 릴리즈(release) 8 혹은 릴리즈 9 시스템에서는, 일 반송파 상에서는 PUCCH와 PUSCH를 동시에 전송할 수 없다. 3GPP LTE 릴리즈 10 시스템에서는, PUCCH와 PUSCH의 동시 전송 지원 여부가 상위 계층에서 지시될 수 있다.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
일 PUCCH가 나르는 UCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. 예를 들어, 다음과 같은 PUCCH 포맷이 정의될 수 있다.
표 2
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
1 N/A N/A (exist or absent) SR (Scheduling Request)
1a BPSK 1 ACK/NACK orSR + ACK/NACK One codeword
1b QPSK 2 ACK/NACK orSR + ACK/NACK Two codeword
2 QPSK 20 CQI/PMI/RI Joint coding ACK/NACK (extended CP)
2a QPSK+BPSK 21 CQI/PMI/RI + ACK/NACK Normal CP only
2b QPSK+QPSK 22 CQI/PMI/RI + ACK/NACK Normal CP only
3 QPSK 48 ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACK
표 2를 참조하면, PUCCH 포맷 1 계열과 PUCCH 포맷 3 계열은 주로 ACK/NACK 정보를 전송하는 데 사용되며, PUCCH 포맷 2 계열은 주로 CQI(channel quality indicator)/PMI(precoding matrix index)/RI(rank index) 등의 채널상태정보를 나르는 데 사용된다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(안테나 포트)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드 오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
도 5는 안테나 포트에 따른 CRS의 매핑 패턴을 도시한다. CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 사용되며, 단말 특정 참조신호는 데이터 복조용으로만 사용된다. CRS는 광대역에 대해서 매 서브 프레임마다 전송되며, 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 참조신호가 전송된다.
예를 들어 기지국의 송신 안테나의 개수가 2개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 4개인 경우 0~3번 안테나 포트에 대한 CRS가 각각 전송된다.
도 6은 안테나 포트에 따른 복조참조신호(DMRS)의 매핑 패턴을 도시한다. DMRS는 단말이 PDSCH를 위한 채널 추정을 위한 용도로 정의된 참조신호이다. DMRS는 전송 모드 7, 8, 9에서 사용될 수 있다. 초기에 DMRS는 안테나 포트 5번의 단일 레이어(single layer) 전송을 위한 것으로 정의되었으나, 이후 최대 8개의 레이어의 공간 다중화를 위한 것으로 확장되었다. DMRS는 그 다른 이름인 단말 특정 참조신호에서 알 수 있듯이, 특정한 하나의 단말을 위해서만 전송되는 것이며, 따라서, 그 특정 단말을 위한 PDSCH가 전송되는 RB에서만 전송될 수 있다.
최대 8개의 레이어를 위한 DMRS의 생성에 대해 살펴보면 다음과 같다. DMRS은 다음 수학식 5에 따라 생성된 참조신호 시퀀스(reference-signal sequence,
Figure PCTKR2013001026-appb-I000001
)가 다음 수학식 6에 따라 복소값 변조 심볼(complex-valued modulation symbols,
Figure PCTKR2013001026-appb-I000002
)에 매핑되어 전송될 수 있다. 도 8은 수학식 2에 따라 DMRS가 노멀 CP의 경우, 서브프레임상의 자원 그리드에 매핑된 것으로써, 안테나 포트 7~10에 관한 것을 도시하였다.
수학식 1
Figure PCTKR2013001026-appb-M000001
여기서,
Figure PCTKR2013001026-appb-I000003
은 참조신호 시퀀스,
Figure PCTKR2013001026-appb-I000004
는 의사랜덤시퀀스,
Figure PCTKR2013001026-appb-I000005
은 하향링크 대역폭의 최대 RB 개수를 각각 의미한다.
수학식 2
Figure PCTKR2013001026-appb-M000002
Figure PCTKR2013001026-appb-I000006
상기 수학식 2에서 알 수 있듯이, 참조신호 시퀀스는 복소변조심볼에 매핑시 안테나 포트에 따라 다음 표 1과 같은 직교시퀀스
Figure PCTKR2013001026-appb-I000007
가 적용된다.
표 3
Figure PCTKR2013001026-appb-T000001
도 7은 안테나 포트에 따른 CSI-RS 매핑 패턴을 도시한다. CSI-RS를 전송하는 안테나 포트를 CSI-RS 포트라 칭하고, CSI-RS 포트(들)이 해당 CSI-RS(들)을 전송하는 소정 자원영역 내 자원의 위치를 CSI-RS 패턴 혹은 CSI-RS 자원 구성(resource configuration)이라 칭한다. 또한, CSI-RS가 할당/전송되는 시간-주파수 자원을 CSI-RS 자원이라 칭한다. 예를 들어, CSI-RS 전송에 사용되는 자원요소(resouce element, RE)는 CSI-RS RE라 칭해진다. 안테나 포트별 CRS가 전송되는 RE의 위치가 고정되어 있는 CRS와 달리, CSI-RS는 이종 네트워크 환경을 포함한 다중셀(multi-cell) 환경에서 셀간 간섭(inter-cell interference, ICI)를 줄이기 위하여, 최대 32가지의 서로 다른 구성을 갖는다. CSI-RS에 대한 구성은 셀 내 안테나 포트 수에 따라 서로 다르며, 인접 셀들이 최대한 다른 구성을 갖도록 구성된다. CSI-RS는 CRS와 달리 최대 8개의 안테나 포트들(p=15, p=15,16, p=15,...,18 및 p=15,...,22)까지 지원하며, △f=15kHz에 대해서만 정의된다. 안테나 포트 p=15,...,22는 이하에서는 CSI-RS 포트 p=0,...,7에 각각 대응할 수 있다.
표 4 및 표 5은 FDD(frequency division duplex)용 프레임 구조(이하, FS-1)와 TDD(time division duplex)용 프레임 구조(이하, FS-2)에서 사용될 수 있는 CSI-RS 구성들을 예시한 것이다. 특히 표 4는 정상 CP를 갖는 서브프레임에서의 CSI-RS 구성들을 나타내며, 표 5는 확장 CP를 갖는 서브프레임에서의 CSI-RS 구성들을 나타낸다.
표 4
CSI-RS configuration Number of CSI-RSs configured
1 or 2 4 8
(k',l') nsmod2 (k',l') nsmod2 (k',l') nsmod2
FS-1 and FS-2 0 (9,5) 0 (9,5) 0 (9,5) 0
1 (11,2) 1 (11,2) 1 (11,2) 1
2 (9,2) 1 (9,2) 1 (9,2) 1
3 (7,2) 1 (7,2) 1 (7,2) 1
4 (9,5) 1 (9,5) 1 (9,5) 1
5 (8,5) 0 (8,5) 0
6 (10,2) 1 (10,2) 1
7 (8,2) 1 (8,2) 1
8 (6,2) 1 (6,2) 1
9 (8,5) 1 (8,5) 1
10 (3,5) 0
11 (2,5) 0
12 (5,2) 1
13 (4,2) 1
14 (3,2) 1
15 (2,2) 1
16 (1,2) 1
17 (0,2) 1
18 (3,5) 1
19 (2,5) 1
FS-2 only 20 (11,1) 1 (11,1) 1 (11,1) 1
21 (9,1) 1 (9,1) 1 (9,1) 1
22 (7,1) 1 (7,1) 1 (7,1) 1
23 (10,1) 1 (10,1) 1
24 (8,1) 1 (8,1) 1
25 (6,1) 1 (6,1) 1
26 (5,1) 1
27 (4,1) 1
28 (3,1) 1
29 (2,1) 1
30 (1,1) 1
31 (0,1) 1
표 5
CSI-RS configuration Number of CSI-RSs configured
1 or 2 4 8
(k',l') nsmod2 (k',l') nsmod2 (k',l') nsmod2
FS-1 and FS-2 0 (11,4) 0 (11,4) 0 (11,4) 0
1 (9,4) 0 (9,4) 0 (9,4) 0
2 (10,4) 1 (10,4) 1 (10,4) 1
3 (9,4) 1 (9,4) 1 (9,4) 1
4 (5,4) 0 (5,4) 0
5 (3,4) 0 (3,4) 0
6 (4,4) 1 (4,4) 1
7 (3,4) 1 (3,4) 1
8 (8,4) 0
9 (6,4) 0
10 (2,4) 0
11 (0,4) 0
12 (7,4) 1
13 (6,4) 1
14 (1,4) 1
15 (0,4) 1
FS-2 only 16 (11,1) 1 (11,1) 1 (11,1) 1
17 (10,1) 1 (10,1) 1 (10,1) 1
18 (9,1) 1 (9,1) 1 (9,1) 1
19 (5,1) 1 (5,1) 1
20 (4,1) 1 (4,1) 1
21 (3,1) 1 (3,1) 1
22 (8,1) 1
23 (7,1) 1
24 (6,1) 1
25 (2,1) 1
26 (1,1) 1
27 (0,1) 1
표 4 또는 표 5의 (k',l')(여기서, k'은 자원블록 내 부반송파 인덱스이고 l'은 슬롯 내 OFDM 심볼 인덱스) 및 ns(여기서, ns는 프레임 내 슬롯 인덱스)가 다음식에 적용되면, 각 CSI-RS 포트가 해당 CSI-RS의 전송에 이용하는 시간-주파수 자원이 결정될 수 있다. 즉, CSI-RS 전송을 위해 구성된 서브프레임(이하, CSI-RS 서브프레임) 내 슬롯 ns에서, CSI-RS 시퀀스는 CSI-RS 포트 p상의 참조심볼(reference symbols)로서 사용되는 복소변조심볼(complex-valued modulation symbols) a(p)k,l에 다음식에 따라 맵핑될 수 있다.
수학식 3
Figure PCTKR2013001026-appb-M000003
수학식 3에서, CSI-RS 포트 p가 CSI-RS 전송에 이용하는 자원 인덱스 쌍 (k,l)(여기서, k는 부반송파 인덱스, l은 서브프레임 내 OFDM 심볼 인덱스)은 다음식에 따라 결정될 수 있다.
수학식 4
Figure PCTKR2013001026-appb-M000004
도 7은 CSI-RS 구성들을 예시한 것이다. 특히, 도 7은 수학식 3 및 표 4에 따른 CSI-RS 구성들을 예시한 것으로서, 각 CSI-RS 구성에 따라 일 RB 쌍에서 CSI-RS가 점유하는 자원들의 위치를 나타낸다.
도 7을 참조하면, 도 7(a)는 2개의 CSI-RS 포트들에 의한 CSI-RS 전송에 사용가능한 20가지 CSI-RS 구성들을 나타낸 것이고, 도 7(b)는 4개의 CSI-RS 포트들에 의해 사용가능한 10가지 CSI-RS 구성들을 나타낸 것이며, 도 7(c)는 8개의 CSI-RS 포트들에 의해 사용가능한 5가지 CSI-RS 구성들을 나타낸 것이다. CSI-RS 포트 개수에 따라 정의된 각 CSI-RS 구성에는 번호가 부여될 수 있다.
BS가 CSI-RS 전송을 위해 2개의 안테나 포트를 구성하면, 즉, 2개의 CSI-RS 포트를 구성하면, 상기 2개의 CSI-RS 포트들은 도 7(a)에 도시된 20개 CSI-RS 구성들 중 하나에 해당하는 무선자원 상에서 CSI-RS 전송을 수행한다. 특정 셀을 위해 구성된 CSI-RS 포트의 개수가 4개이면, 상기 4개의 CSI-RS 포트들은 도 7(b)에 도시된 10개의 CSI-RS 구성들 중 상기 특정 셀을 위해 구성된 CSI-RS 구성의 자원들 상에서 CSI-RS를 전송한다. 마찬가지로, 상기 특정 셀을 위해 구성된 CSI-RS 포트가 8개이면, 상기 8개의 CSI-RS 포트들은 도 7(c)에 도시된 5개의 CSI-RS 구성들 중 상기 특정 셀을 위해 구성된 CSI-RS 구성의 자원들 상에서 CSI-RS를 전송한다.
표 4와 표 5의 CSI-RS 구성들은 네스티드 속성(nested property)을 갖는다. 네스티드 속성이라 함은 많은 개수의 CSI-RS 포트들에 대한 CSI-RS 구성이 적은 개수의 CSI-RS 포트를 위한 CSI-RS 구성의 수퍼셋(super set)이 되는 것을 의미한다. 도 7(b) 및 도 7(c)를 참조하면, 예를 들어, 4개 CSI-RS 포트들에 대한 CSI-RS 구성 0을 구성하는 RE들은 8개 CSI-RS 포트들에 대한 CSI-RS 구성 0를 구성하는 자원들에 포함된다.
복수의 CSI-RS가 주어진 셀에서 사용될 수 있다. 비-제로 전력 CSI-RS의 경우, 일 구성에 대한 CSI-RS만 전송된다. 제로 전력 CSI-RS의 경우, 복수의 구성들에 대한 CSI-RS가 전송될 수 있다. UE는 제로 전력 CSI-RS에 해당하는 자원들 중, UE는 비-제로 전력 CSI-RS이라고 상정해야 하는 자원들을 제외한, 자원들에 대해서는 제로 전송 전력을 상정한다. 예를 들어, TDD를 위한 무선 프레임은 하향링크 전송과 상향링크 전송이 공존하는 특이 서브프레임(special subframe), 페이징 메시지가 전송되는 서브프레임, 동기신호, PBCH(physical broadcast channel) 혹은 SIB1(system information block type1)의 전송과 CSI-RS가 충돌하는 서브프레임에서는 CSI-RS가 전송되지 않으며, UE는 이들 서브프레임에서는 CSI-RS가 전송되지 않는다고 상정한다. 한편, CSI-RS 포트가 해당 CSI-RS의 전송에 사용하는 시간-주파수 자원은 어떤 안테나 포트 상에서의 PDSCH 전송에도 사용되지 않으며, 해당 CSI-RS 포트가 아닌 다른 안테나 포트의 CSI-RS 전송에 사용되지 않는다.
CSI-RS의 전송에 사용되는 시간-주파수 자원들은 데이터 전송에 사용될 수 없으므로, CSI-RS 오버헤드가 증가할수록 데이터 처리량(throughput)이 감소하게 된다. 이러한 사실을 고려하여, CSI-RS는 매 서브프레임마다 전송되도록 구성되는 것이 아니라, 다수의 서브프레임에 대응하는 소정 전송주기마다 전송되도록 구성된다. 이 경우, 매 서브프레임마다 전송되는 경우에 비해, CSI-RS 전송 오버헤드가 많이 낮아질 수 있다는 장점이 있다. 이하에서는 CSI-RS 전송을 위해 구성된 CSI-RS 서브프레임이라 칭한다. CSI-RS 전송이 구성된 서브프레임은 CSI-RS 전송주기와 서브프레임 오프셋에 의해 정의될 수 있다. CSI-RS의 전송주기 및 서브프레임 오프셋을 CSI-RS 서브프레임 구성이라 칭한다. 표 6은 CSI-RS의 전송주기 TCSI-RS 및 서브프레임 오프셋 △CSI-RS을 예시한 것이다.
표 6
CSI-RS subframe configurationICSI-RS CSI-RS periodicityTCSI-RS (subframes) CSI-RS subframe offset△CSI-RS (subframes)
ICSI-RS≤4 5 ICSI-RS
5≤ICSI-RS≤14 10 ICSI-RS-5
15≤ICSI-RS≤34 20 ICSI-RS-15
35≤ICSI-RS≤74 40 ICSI-RS-35
75≤ICSI-RS≤154 80 ICSI-RS-75
표 6에서, ICSI-RS은 CSI-RS 전송주기와 서브프레임 오프셋을 특정한다.
BS는 ICSI-RS를 결정 혹은 조정하고, ICSI-RS를 해당 셀의 커버리지 내 UE들에 전송할 수 있다. UE는 ICSI-RS를 기반으로 상기 UE에 통신 서비스를 제공하는 셀(이하, 서빙 셀)의 CSI-RS가 전송되는 CSI-RS 서브프레임을 알 수 있다. UE는 다음식을 만족하는 서브프레임을 CSI-RS 서브프레임으로 판단할 수 있다.
수학식 5
Figure PCTKR2013001026-appb-M000005
여기서, nf는 시스템 프레임 넘버를 나타내며, ns는 무선 프레임 내 슬롯 넘버를 나타낸다.
예를 들어, 표 6을 참조하면, ICSI-RS이 5 이상이고 14 이하의 값이면, CSI-RS는 무선 프레임 내 서브프레임 번호가 (ICSI-RS-5)인 서브프레임부터 시작하여, 10개의 서브프레임마다 전송된다.
BS는 다음과 같은 파라미터들을 상위 레이어 시그널링(예를 들어, 매체접근제어(Medium Access Control, MAC) 시그널링, 무선자원제어(Radio Resource Control, RRC) 시그널링)을 통해 UE에게 통지할 수 있다.
- CSI-RS 포트의 개수
- CSI-RS 구성 (예를 들어, 표 4 및 표 5 참조)
- CSI-RS 서브프레임 구성 (예를 들어, 표 6 참조)
- CSI-RS 서브프레임 구성 주기 TCSI-RS
- CSI-RS 서브프레임 오프셋 △CSI-RS
필요한 경우, BS는 제로 전력으로 전송되는 CSI-RS 구성과 제로 전력 CSI-RS 구성이 전송되는 서브프레임 구성을 UE에게 통지할 수 있다. 제로 전력 CSI-RS 구성에는 표 5 및 표 6의 CSI-RS 구성이 사용될 수 있으며, 제로 전력 CSI-RS가 구성된 서브프레임 구성은 표 6의 CSI-RS 서브프레임 구성이 사용될 수 있다.
도 8은 CoMP 집합으로부터 UE가 결합 전송(joint transmission; JT) 서비스를 받는 무선 통신 시스템을 도시한다. 즉, 상기 UE는 전송 모드 10으로 설정되는 경우의 예이다. CoMP 집합과 관련된 하향링크 동작은 상기 JT뿐만 아니라, 한 시점에 하나의 셀(또는 전송 포인트, 예컨대, BS 또는 eNB)로부터 UE로 하향링크 신호가 전송되도록 구성되는 동적 셀 선택(dynamic cell selection; DPS), 그리고 UE로부터 CoMP 집합에 속한 복수의 셀로의 간섭이 최소가 되도록 스케줄링 또는 빔포밍을 수행하는 조정 스케줄링/빔포밍(coordinated scheduling/beamforming; CS/CB)이 있다.
도 8에서, UE는 CoMP 집단에 속한 모든 전송 포인트(transmission point; TP)들, 예컨대, TP1 및 TP2로부터 데이터를 수신하게 되며, 이에 따라 UE는 상기 CoMP 집단에 속한 모든 TP들에 대한 채널상태정보를 전송할 수 있다. 이 경우, RS들도 상기 CoMP 집단 내의 복수의 TP들로부터 상기 UE로 전송될 수 있다. 이러한 경우에 있어서, 서로 다른 TP들의 서로 다른 RS 포트들로부터 채널 추정을 위한 특성들을 서로 공유할 수 있다면, 상기 UE의 수신 프로세싱의 부하와 복잡도를 낮출 수 있을 것이다. 아울러, 동일한 TP의 서로 다른 RS 포트들로부터의 채널 추정을 위한 특성을 RS 포트들 간에 공유할 수 있다면, 상기 UE의 수신 프로세싱의 부하와 복잡도를 낮출 수 있을 것이다. 따라서, 본 명세서에서는 RS 포트들 간의 채널 추정을 위한 특성들을 공유하는 방안에 대하여 설명하도록 한다.
본 발명의 실시예들을 설명하기에 앞서 모든 실시예들에 적용되는 새로운 개념에 대해 정의하고자한다. 본 명세서에서는 "의사 코-로케이티드(quasi co-located; QCL)"라는 표현을 언급하며, 이 표현은 다음을 의미한다. 두 개의 안테나 포트간에 대해서 예를 들면, 만약 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널의 광범위 특성(large-scale property)이 다른 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널로부터 암시(infer)될 수 있다면, 상기 두 개의 안테나 포트들은 의사 코-로케이티드된다고 말할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 쉬프트(Doppler shift), 평균 이득(average gain) 및 평균 지연(average delay) 중 하나 이상을 포함한다. 앞으로, 상기 의사 코-로케이티드를 간단히 QCL이라고 지칭하도록 한다.
즉, 두 개의 안테나 포트들이 QCL되었다 함은, 하나의 안테나 포트로부터의 무선 채널의 광범위 특성이 나머지 하나의 안테나 포트로부터의 무선 채널의 광범위 특성과 같음을 의미한다. 참조신호(RS)가 전송되는 복수의 안테나 포트를 고려하면, 서로 다른 두 종류의 RS가 전송되는 안테나 포트들이 QCL되면, 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성을 다른 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성으로 대체할 수 있을 것이다.
상기 QCL의 개념에 따라, UE는 비-QCL 안테나 포트들에 대해서는 해당 안테나 포트들로부터의 무선 채널 간에 동일한 상기 광범위 특성을 가정할 수 없다. 즉, 이 경우 UE는 타이밍 획득 및 트랙킹(tracking), 주파수 오프셋 추정 및 보상, 지연 추정 및 도플러 추정 등에 대하여 각각의 설정된 비-QCL 안테나 포트 별로 독립적인 프로세싱을 수행하여야 한다.
QCL을 가정할 수 있는 안테나 포트들간에 대해서, UE는 다음과 같은 동작을 수행할 수 있다는 장점이 있다:
- 지연 확산 및 도플러 확산에 대하여, UE는 어떤 하나의 안테나 포트로부터의 무선 채널에 대한 전력-지연-프로파일, 지연 확산 및 도플러 스펙트럼, 도플러 확산 추정 결과를, 다른 안테나 포트로부터의 무선 채널에 대한 채널 추정 시 사용되는 위너 필터(Wiener filter) 등에 동일하게 적용할 수 있다.
- 주파수 쉬프트(shift) 및 수신된 타이밍에 대하여, UE는 어떤 하나의 안테나 포트에 대한 시간 및 주파수 동기화 수행한 후, 동일한 동기화를 다른 안테나 포트의 복조에 적용할 수 있다.
- 평균 수신 전력에 대하여, UE는 둘 이상의 안테나 포트들에 대하여 RSRP(Reference Signal Received Power) 측정을 평균할 수 있다.
UE가 제어 채널(PDCCH 또는 ePDCCH)를 통해 특정 DMRS-기반 DL-관련 DCI 포맷을 수신하면, UE는 DMRS 시퀀스를 통해 해당 PDSCH에 대한 채널 추정을 수행한 후 데이터 복조를 수행한다. 예를 들어, 만일 UE가 이러한 DL 스케줄링 그랜트(grant)로부터 받은 DMRS의 전송을 위한 안테나 포트들(이하, "DMRS 포트"로 지칭함)의 구성(configuration)이 자신의 DL 서빙 셀 또는 다른 셀의 CRS를 전송하기 위한 안테나 포트들(이하, "CRS 포트"로 지칭함)과의 QCL 가정(assumption)을 할 수 있다면, UE는 해당 DMRS 포트를 통한 채널 추정시 CRS 포트로부터 추정했던 무선 채널의 광범위 특성의 추정치를 그대로 적용하여 DMRS-기반 수신기의 프로세서의 성능을 향상시킬 수가 있다.
왜냐하면, CRS는 앞서 설명한 것처럼 매 서브프레임 그리고 전체 대역에 걸쳐 상대적으로 높은 밀도(density)로 브로드캐스팅되는 참조신호이기 때문에, 통상적으로 상기 광범위 특성에 관한 추정치는 CRS로부터 보다 안정적으로 획득이 가능하기 때문이다. 반면에, DMRS는 특정 스케줄링된 RB에 대해서는 UE-특정하게 전송되며, 또한 PRG단위로 eNB가 송신에 사용한 프리코딩 행렬(precoding matrix)이 변할 수 있기 때문에 UE에게 수신되는 유효 채널은 PRG단위로 달라질 수 있어 다수의 PRG를 스케줄링 받은 경우라 하더라도 넓은 대역에 걸쳐 DMRS를 무선 채널의 광범위 특성 추정용으로 사용 시에 성능 열화가 발생할 수 있다. CSI-RS도 그 전송 주기가 수 내지 수십 ms가 될 수 있고 RB당 평균적으로 안테나 포트당 1RE (CDM이 적용되면 2RE 단위로 수신됨)로서 낮은 밀도를 가지므로, CSI-RS도 마찬가지로 상기 무선 채널의 광범위 특성 추정용으로 사용할 경우 성능 열화가 발생할 수 있다.
즉, 안테나 포트들 간의 QCL 가정을, 각종 하향링크 참조 신호의 수신, 채널 추정, 채널 상태 보고 등에 활용할 수 있다.
본 발명의 실시예들에서는, DMRS, CRS, CSI-RS 등 하향링크 RS들 간에 QCL 가정 정보, 즉 적어도 두 개의 안테나 포트들 간에 QCL임을 지시하는 정보를 eNB가 UE로 시그널링해줌으로써, UE의 CSI 피드백 및 수신기 프로세싱 등의 성능을 향상시킬 수 있는 방안을 제공한다. 본 발명의 실시예들에서는, 바람직하게 UE는 전송 모드 10으로 설정 또는 동작한다.
<CSI-RS 자원 구성 정보에 기반한 서로 다른 RS 포트 간의 QCL>
본 발명의 일 실시예에 따라, CSI-RS 자원 구성을 통해 서로 다른 RS 포트들 간의 QCL 가정을 지시받을 수 있다. 예컨대, CSI-RS 포트(들)와 CRS 포트(들)의 QCL 가정이 지시될 수 있다.
UE가 하나 이상의 CSI-RS 자원 구성(resource configuration(s))을 RRC(Radio Resource Control)를 통해 설정받음에 있어서, 각 CSI-RS 자원 구성 별로 각 CSI-RS 포트와 특정 RS 포트(들)과의 QCL 가정이 가능한지의 여부가 포함한 정보를 수신할 수 있다. 그리고, 이후 각 CSI-RS 자원 구성에 대한 CSI 보고시에 보고될 채널상태정보(channel state information; CSI), 예컨대, CQI, RI, PMI 등을 계산할 때에 이러한 QCL 또는 NQCL(non-QCL) 가정에 기초하여 계산하도록 한다.
본 발명의 일 실시예에서 이용되는 CSI-RS 자원 구성은 다음과 같은 파라미터 또는 정보를 포함할 수 있다.
- CSI-RS 자원 구성 식별자(CSI-RS resource configuration identity)
- CSI-RS 포트들의 수(Number of CSI-RS ports)
- CSI-RS 구성(CSI RS Configuration) (예를 들어, 표 4 및 표 5 참조)
- CSI-RS 서브프레임 구성(CSI RS subframe configuration)(예를 들어, 표 6 참조)
- 각각의 CSI 프로세스에 대해 CSI 피드백을 위한 기준 PDSCH 전송 전력, Pc에 대한 UE의 가정
- 의사-임의 시퀀스 생성기 파라미터로서 시퀀스 스크램블링 식별자(또는 초기값)
- 다음의 파라미터들로 CRS 안테나 포트들과 CSI-RS 안테나 포트들이 QCL이라는 가정
-QCL CRS를 위한 셀 ID(Cell ID for quasi-co-located CRS)
-QCL CRS를 위한 CRS 안테나 포트들의 수(Number of CRS antenna ports for quasi-co-located CRS)
-QCL CRS를 위한 MBSFN 서브프레임 구성(MBSFN subframe configuration for quasi-co-located CRS)
좀더 상세하게 설명하면, UE가 CoMP 측정 세트에 속하는 하나 이상의 CSI-RS 자원 구성(들)을 RRC를 통해 설정받음에 있어서, 각 CSI-RS 자원 구성 별로 특정 셀로부터의 CRS 포트(들)과의 QCL 가정이 가능한지를 알려주는 정보를 수신할 수 있다. 그리고나서, 상기 각 CSI-RS 자원 구성에 대한 CSI 보고시에, 보고될 CQI, RI, PMI 등을 계산할 때에 상기 QCL 또는 NQCL(non-QCL) 가정에 기초하여 계산하도록 한다. 즉, 제 1 셀로부터의 CSI-RS 자원 구성에 해당하는 제 1 CSI-RS 포트와 제 2 셀로부터의 CRS 포트가 QCL 가정이 가능하다고 시그널링되면, 상기 UE는 상기 제 1 CSI-RS에 대응한 CSI 정보 계산 시에, 상기 CSI-RS 포트로부터 무선 채널의 광범위 특성을 획득하지 않고, 상기 CRS 포트로부터 추정했던 무선 채널의 광범위 특성을 이용할 수 있다.
예를 들어, 상기 UE가 상기 하나 이상의 CSI-RS 자원 구성(들)을 RRC를 통해 설정받는 경우에, 각각의 CSI-RS 자원 구성에 대해 QCL을 가정할 CRS에 대한 식별자를 알려줄 수 있다. 상기 UE는 각각의 CSI-RS 자원 구성에 해당하는 CSI 보고를 위한 CQI, RI, PMI 등의 계산 시에, 자신이 향후 DMRS-기반 PDSCH를 수신할 때 해당 DMRS 포트(들)와 상기 주어진 식별자로 식별되는 셀에서 전송된 CRS 포트(들)가 QCL이라는 가정 하에 데이터 복조시에 10% FER(Frame Error Rate)을 성취할 수 있는 CSI를 계산하여 보고할 수 있다.
또 다른 예로, 각각의 CSI-RS 자원 구성에 포함된 CSI-RS를 위한 스크램블링 식별자가 특정 CRS 포트(들)의 셀 식별자(또는 스크림블링 식별자 또는 물리 셀 식별자)와 같은지 여부에 따라서, 상기 CSI-RS 포트와 상기 CRS 포트가 QCL을 가정할 수 있는지 여부를 암묵적으로(implicitly) 지시될 수 있다.
또 다른 예로, UE가 제 1 CSI-RS 자원 구성(이하에서 "CSI-RS 자원 구성 #1"로 지칭함) 및 제 2 CSI-RS 자원 구성(이하에서 "CSI-RS 자원 구성 #2"로 지칭함)을 설정받으면서 CSI-RS 자원 구성 #1은 QCL로, CSI-RS 자원 구성 #2는 NQCL로 특정 셀(예컨대, DL 서빙 셀)로부터의 CRS 포트(들)와의 QCL/NQCL 가정 또는 관계를 설정받았다면, 상기 UE는 해당 셀(예컨대, DL 서빙 셀)과의 QCL 가정이 가능한 특정 CSI-RS 자원 구성(즉, CSI-RS 자원 구성 #1)에 대한 CSI 계산 시, 자신이 향후 DMRS-기반 PDSCH를 수신하여 해당 DMRS 포트(들)와 해당 셀(예컨대, DL 서빙 셀)로부터의 CRS 포트(들)와의 QCL가정 하에 데이터 복조 시에 10% FER을 성취할 수 있는 MCS 레벨, CQI, RI 및 이 때의 PMI 등을 계산하여 보고 할 수 있다. 또한, CSI-RS 자원 구성에 포함된 PDSCH EPRE(energy per resource element)과 CSI-RS EPRE의 비율(Pc)에 특정 스케일링 값을 적용하여 상기 CQI 등을 계산할 수 있다. 상기 CSI-RS 자원 구성 #2의 경우 NQCL로 설정받았으므로, 이후 상기 제 2 CSI-RS를 전송한 셀로부터 DMRS-기반 PDSCH를 수신하는 경우에, 해당 셀(예컨대, DL 서빙 셀)로부터의 CRS 포트(들)와의 QCL 가정을 할 수 없으므로, QCL 가정 없이 데이터 복조시에 10% FER을 성취할 수 있는 MCS 레벨, CQI, RI 및 이 때의 PMI 등을 계산하여 보고할 수 있다. 일례로, QCL 가정이 가능했을 때의 경우 대비 좀더 낮은 값으로 CSI를 계산하여 보고할 수 있다.
<CSI-RS 자원 구성 정보에 기반한 서로 다른 CSI-RS 포트 간의 QCL>
본 발명의 다른 일 실시예에 따라, 일 CSI-RS 자원 구성에 다른 CSI-RS 자원 구성의 CSI-RS 포트(들)와의 QCL/NQCL 여부가 포함되는 것도 가능하다.
예를 들어, 각 CSI-RS 자원 구성 별로 어떠한 식별자 정보를 포함시켜, 같은 식별자 정보를 가지는 CSI-RS 포트들 간에는 서로 QCL을 가정할 수 있는 시그널링 방법이 가능하다. 즉, N-비트 폭의 상기 식별자 정보가 동일한 값으로 설정된 CSI-RS 포트들끼리는 서로간에 QCL 가정을 할 수 있음을 의미할 수 있다. 대표적인 실시 예로서, 3-D 빔포밍(beamforming)을 위한 L*M 패널 안테나를 eNB가 사용시에 같은 eNB 측에서 설정되는 복수의 CSI-RS 자원 구성간에는 QCL임을 알려줌으로써, 이러한 QCL 관계가 있는 CSI-RS 포트들간에는 상기 광범위 특성의 추정치 모두 혹은 일부를 공유할 수 있도록 함으로써 UE 수신기의 프로세싱의 부하 또는 복잡성을 줄여주는 효과를 얻을 수 있다. 한편, 상기 3-D 빔포밍 이득 특성상 상기 광범위 특성 중에서 평균 이득에 대해서는 QCL 가정이 제외될 수 있다.
본 발명의 다른 일 실시예에 따라, 하나 이상의 CSI-RS 자원 구성(들)을 UE가 설정받을 때, 각 CSI-RS 자원 구성마다 특정 플래그 비트(flag bit)를 부가하여, 상기 플래그 비트가 토글(toggle)될 때마다 또 다른 QCL 가정이 가능한 CSI-RS 자원 구성 그룹으로 인식하도록 적용가능하다. 즉, 상기 UE가 총 5개의 CSI-RS 자원 구성들(예컨대, CSI-RS 자원 구성 #1, CSI-RS 자원 구성 #2, …, CSI-RS 자원 구성 #5)을 설정받은 경우, 상기 플래그 비트가 CSI-RS 자원 구성 #1과 CSI-RS 자원 구성 #2에 대해서는 0이었고, CSI-RS 자원 구성 #3 및 CSI-RS 자원 구성 #4에 대해서는 1이었고, 다시 CSI-RS 자원 구성 #5에 대해서는 0으로 토글된 경우라면, {CSI-RS 자원 구성 #1, CSI-RS 자원 구성 #2}간에 QCL 가정이 가능하고, 또 다른 {CSI-RS 자원 구성 #3, CSI-RS 자원 구성 #4}간에 QCL가정이 가능하며, {CSI-RS 자원 구성 #5}는 단독으로 QCL가정이 가능함을 지시하므로 CSI-RS 자원 구성 #5는 사실상 어떠한 다른 CSI-RS 자원 구성과도 QCL가정이 불가한 NQCL를 지시할 수 있다.
또한, 본 발명의 다른 일 실시예에 따라, 각 CSI-RS 자원 구성에 포함된 CSI-RS 시퀀스 스크램블링 씨앗(seed) 인 X값(예컨대, 물리 셀 식별자, 가상(virtual) 셀 식별자, 또는 스크램블링 식별자 또는 초기값)이 CSI-RS 자원 구성간의 동일한 X값인지 여부에 따라, QCL/NQCL 가정이 지시될 수 있다. 만약 서로 동일한 X값이 포함된 CSI-RS 자원 구성들에 해당하는 CSI-RS 포트(들)간에 QCL 가정이 가능한 것으로 암묵적으로 지시될 수 있다. 이와 반대로, 서로 다른 X값이 포함된 CSI-RS 자원 구성들에 해당하는 CSI-RS 포트(들)간에는 NQCL이 가정됨은 당연할 것이다.
아울러, 상기 X값은 각 CSI-RS 자원 구성에 포함된 각 CSI-RS 포트마다 개별적으로 할당될 수 있다. 이 경우, 각각의 X값이 동일한지 여부에 따라, 상기 QCL 또는 NQCL 가정이 암묵적으로 지시될 수 있다.
또한, 본 발명의 다른 일 실시예에따라, 특정 셀 A로부터의 CRS 포트(들)와 특정 CSI-RS 자원 구성 간에 QCL 가정이 가능하다는 상위 계층 시그널링이 UE로 내려오면, 이에 따라 상기 UE는 상기 셀 A로부터의 일부 혹은 모든 CRS 포트(들)와 해당 CSI-RS 자원 구성내의 모든 CSI-RS 포트(들)간에 QCL을 가정하여 프로세싱을 수행하도록 하고, 해당 CSI-RS 자원 구성내의 CSI-RS 포트(들)끼리도 서로 QCL 가정이 가능한 것으로 해석할 수 있다. 반대로 특정 셀 A로부터의 CRS 포트(들)와 특정 CSI-RS 자원 구성 간에 QCL 가정이 불가하다(NQCL)는 상위 계층 시그널링이 UE로 내려오면, 이에 따라 상기 UE는 해당 셀 A로부터의 일부 혹은 모든 CRS 포트(들)와 해당 CSI-RS 자원 구성 내의 모든 CSI-RS 포트(들)간에 QCL 가정을 하지 않고 프로세싱을 수행하도록 하고, 해당 CSI-RS 자원 구성 내의 CSI-RS 포트(들)끼리도 서로 QCL 가정이 불가능한 것으로 판단할 수 있다.
본 발명의 다른 일 실시예에 따라, 특정 셀 A로부터의 CRS 포트(들)와 특정 CSI-RS 자원 구성 내의 일부 CSI-RS 포트(들)간에만 QCL 가정이 가능하다는 상위 계층 시그널링이 UE로 내려올 수도 있으며, 이에 따라 상기 UE는 해당 CSI-RS 자원 구성 내의 CSI-RS 포트(들) 중 상기 QCL 가정이 가능하다는 CSI-RS 포트(들)은 해당 CRS 포트(들)와의 QCL 가정을 통해 프로세싱을 수행하고, 반면에 UE는 상기 QCL 가정이 가능한 CSI-RS 포트(들)를 제외한 나머지 CSI-RS 포트(들)에 대해서는 서로 QCL 가정을 할 수 없는 것으로 판단하고, 이에 더하여 나머지 CSI-RS 포트(들)에 대해서는 해당 CRS 포트(들)와의 QCL 가정도 하지 않는 것으로 판단할 수 있다. 상기 내용들은 또 다른 셀 B로부터의 CRS 포트(들)에 대해서도 독립적인 상기 정보들이 상위 계층 시그널링 등을 통해 특정 CSI-RS 자원 구성에 대한 정보가 전달될 수 있다.
본 발명의 또 다른 실시예에 따라, 각 CSI-RS 자원 구성 별로 해당 CSI-RS 자원 구성 내의 CSI-RS 포트(들) 간에 QCL 가정이 가능한지의 여부에 관한 정보 비트(들)가 추가되어 전달될 수 있다. 예컨대, 상기 정보 비트들은 상위 계층 시그널링에 추가되어 전달될 수 있고, 좀더 상세하게는 각 CSI-RS 자원 구성 내에 상기 정보 비트(들)이 포함될 수 있다. 즉, CoMP 측정 집합(실제 CoMP 동작(예컨대, DPS, JT, CS/CB등)이 수행될 TP(들)의 집합 혹은 해당 TP(들)과 관련된 CSI-RS 자원 구성들의 집합)내의 특정 CSI-RS 자원 구성 내의 CSI-RS 포트(들)간에 QCL 가정이 가능한지 아닌지 여부에 관한 정보 비트가 포함되어 해당 CSI-RS 자원 구성이 전달될 수 있다. 이러한 정보 비트는 TP A와 TP B를 통해 JT 전송을 받을 UE가 있을 때, 상기 UE에게는 CSI-RS 자원 구성 #1, #2, #3에 해당하는 총 3개의 CSI-RS 자원 구성들이 전송될 수 있고, 여기서 CSI-RS 자원 구성 #1은 TP A가 전송하는 CSI-RS 자원 구성이고, CSI-RS 자원 구성 #2는 TP B가 전송하는 CSI-RS 자원 구성일 수 있으며, CSI-RS 자원 구성 #3은 예를 들어 TP A와 TP B 각각에 해당하는 CSI-RS 자원 구성 #1과 #2에서 일부 특정 포트(들)을 추출한 뒤 결합하여 구성하는 또 다른 CSI-RS 자원 구성일 수 있다. 예를 들어, 상기 CSI-RS resource #3는 TP A에서의 특정 CSI-RS 포트 #1와 TP B에서의 특정 CSI-RS 포트 #1을 결합하여 만든 2-포트 CSI-RS 자원 구성에 해당한다. UE는 이와 같은 CSI-RS 자원 구성 #1, #2, #3을 설정받아 이들을 수신하여 각각에 대한 CSI 피드백(예컨대, RI/PMI/CQI 등의 피드백)을 수행하면, 사실상 CSI-RS 자원 구성 #1 및 #2에 대한 CSI 보고는 각 TP A 및 TP B에 대한 CSI 보고이고, CSI-RS 자원 구성 #3에 대한 CSI 보고는 TP A와 TP B로부터의 JT 전송이 이루어질 때의 TP A로부터의 채널과 TP B로부터의 채널간의 특정 위상 차이 등의 정보를 전달할 수 있는 셀-간 CSI 정보가 전달되는 것으로서 이용될 수 있다. 이와 같은 동작을 수행하도록 하기 위해서, eNB는 상기 CSI-RS 자원 구성 #1에는 해당 CSI-RS 포트(들)간에 QCL 가정이 가능함을 지시하고, CSI-RS 자원 구성 #2에도 해당 CSI-RS 포트(들)간에 QCL 가정이 가능함을 지시할 수 있으며, CSI-RS 자원 구성 #3에는 해당 CSI-RS 포트(들)간에 QCL 가정이 불가능함(NQCL)을 지시할 수 있다. 이와 같이, CSI-RS 자원 구성 #3은 TP A와 TP B에서 일부 특정 CSI-RS 포트(들)을 결합하여 구성한 CSI-RS 자원 구성이므로 해당 CSI-RS 포트(들)간에는 지리적으로 떨어진 포트(들)일 수 있으므로 상기 NQCL 정보를 알려줄 필요가 있다. 이를 통해, 상기 UE는 이러한 CSI-RS 자원 구성 #3내의 포트(들)간에는 상기 광범위 특성의 추정치를 공유하면 안되고, 따라서 각 포트별로 상기 광범위 특성의 추정치(예컨대, 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득, 평균 지연 등)를 각 포트별로 추정한다. 이상에서 TP A 및 TP B가 존재하는 경우에 대한 실시예를 기술하였으나, 본 발명에서 제안하는 방식은 더 많거나 적은 수의 TP들에 대해 일반적으로 적용될 수 있음은 자명하다.
또한 상기 실시예에 추가하여, CoMP 자원 관리(CRM) 집합 내의 각 CSI-RS 자원 구성 별로 해당 CSI-RS 자원 구성내의 CSI-RS 포트(들)간에 QCL 가정이 가능한지의 여부에 관한 정보 비트(들)이 상위 계층 시그널링을 통해 추가 전달될 수도 있다. 일 예로, 각 CSI-RS 자원 구성 내에 상기 정보 비트(들)가 포함될 수 있다. 이와 같은 정보 비트(들)이 상기 CRM 집합에 포함되는 각 CSI-RS 자원 구성 별로 포함될 수 있도록 함으로써, 각 CSI-RS 자원 구성 내의 CSI-RS 포트(들)간의 상기 광범위 특성의 추정치를 공유할 수 있는지의 여부를 유연하게 설정할 수 있다.
상기 예는, 특정 CoMP 측정 집합 및 특정 CRM 집합에 포함되어 있는 CSI-RS 자원 구성에만 국한되는 것이 아니라, 이러한 특정 집합들에 포함되지 않더라도 일반적인 CSI-RS 또는 RS 자원 구성에 대하여, 다음과 같이 일반적으로 적용될 수 있다:
일 RS(예컨대, CSI-RS, CRS, DMRS, SRS, TRS(tracking RS)) 자원 구성 별로 해당 RS 자원 구성 내의 해당 RS 포트(들)간에 QCL 가정이 가능한지의 여부에 관한 정보 비트(들)이 상위 계층 시그널링을 통해 UE로 추가 전달될 수 있다. 만약 해당 RS 포트(들)간에 QCL 가정이 가능하다는 정보 비트(들)이 수신되면, 상기 UE는 해당 RS 포트(들)간에 상기 광범위 특성의 추정치를 공유 또는 평균할 수 있으며, 반대의 경우에는 공유 또는 평균할 수 없다.
<CSI-RS 자원 구성 정보에 기반한 CSI-RS 포트와 DMRS 포트 간의 QCL>
본 발명의 다른 일 실시예에 따라, CSI-RS 자원 구성 내에 CSI-RS 포트(들)와 DMRS 포트(들)과의 QCL/NQCL 여부에 대한 지시 정보가 포함될 수 있다.
예를 들어, 각 CSI-RS 자원 구성 별로 특정 DMRS 포트(들)와의 QCL/NQCL의 가정 여부를 RRC로 지정해 놓을 수 있다. 만일 UE가 모든 DMRS 포트(들)와의 QCL 가정이 가능하도록 설정된 CSI-RS 자원 구성 #1을 수신하면, 상기 UE는 앞으로 DMRS-기반 PDSCH 수신 시 CSI-RS 자원 구성 #1에서 가정한 특정 광범위 특성의 추정치를 동일하게 적용하여 수신 프로세싱에 반영할 수 있다. 이는, 재-구성이 없는한 eNB가 한동안 CSI-RS 자원 구성 #1을 전송한 TP로부터 해당 UE에게 PDSCH를 전송하겠다는 의미일 수 있다. 특히, CoMP 시나리오 4와 같이 CRS가 다수의 TP에서 동시에 전송되는 상황에서는 이러한 CRS를 통한 TP-특정 QCL 가정을 하기가 어려우므로 CSI-RS 포트(들)와 QCL가정이 설정된 DMRS 포트(들)에 대한 정보를 알려주어 DMRS-기반 수신 프로세싱 성능을 향상시키는데 활용될 수 있다.
예를 들어, UE가 CSI-RS 자원 구성 #1과 CSI-RS 자원 구성 #2에 해당하는 두 개의 CSI-RS 자원 구성을 수신한 경우, CSI-RS 자원 구성 #1은 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와 QCL 가정 가능, CSI-RS 자원 구성 #2은 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와 NQCL 가정을 하도록 설정 받았다면, 상기 UE는 DMRS 포트(들)는 CSI-RS 자원 구성 #1 및 해당 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와 모두 QCL 가정 가능한 것으로 판단할 수 있다. 왜냐하면 CSI-RS 자원 구성 #1이 해당 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와 QCL 가정이 가능한 것으로 설정 받았기 때문에, 상기 UE는 CSI-RS 자원 구성 #1을 기반으로한 CSI 피드백 시에 앞에서 설명한 것처럼 더 높은 MCS level, CQI 등의 CSI를 계산하여 보고했을 수 있다. 따라서 eNB가 CSI-RS 자원 구성 #1에서 해당 CSI-RS 포트(들)와 해당 셀(예컨대 DL 서빙 셀)의 CRS 포트(들)와 QCL 가정 가능한 것으로 설정한 이상 앞으로 재-구성이 있지 않는한, 해당 UE에게 스케줄링할 때는 CSI-RS 자원 구성 #1을 전송한 TP가 DMRS-기반 PDSCH를 전송할 것이라는 일종의 약속으로 해석되어, 상기 UE는 QCL이 가정된 CSI-RS 자원 구성 #1 기반의 CSI를 계산하여 보고하고 실제 PDSCH 수신도 QCL이 가정된 수신 프로세싱을 수행함으로써 성능 향상을 기대할 수 있기 때문이다. 즉, CoMP 측정 집합 내의 하나 이상의 CSI-RS 자원 구성(들) 중 하나라도 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와의 QCL 가정이 가능하도록 허용된 CSI-RS 자원 구성이 있는 경우, UE는 DMRS-기반 PDSCH 복조 시 해당 DMRS 포트(들)와 해당 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)(및 해당 QCL 가정된 CSI-RS 포트(들))와의 QCL 가정이 가능한 것으로 판단할 수 있다. 이는 이러한 QCL 가정에 의한 수신 프로세싱을 수행하는 것이 허용되는 것이고, 또한 해당 CSI 보고시에도 이와 같은 QCL 가정에 의한 수신 프로세싱을 가정한 경우의 CSI를 보고하도록 한다.
반대로, CoMP 측정 집합 내의 하나 이상의 CSI-RS 자원 구성이 모두 특정 셀(예컨대, DL 서빙-셀)의 CRS 포트(들)와의 NQCL 가정으로 설정된 경우, UE는 DMRS-기반 PDSCH 복조 시 해당 DMRS 포트(들)와 해당 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와의 NQCL 가정을 해야하는 것으로 암묵적이고 반-정적인 방식으로 지시받은 것으로 판단할 수 있다. 이는 수신 프로세싱 시 어떠한 다른 RS 포트(들)와도 QCL 가정을 고려한 동작을 수행하면 안되고, 또한 해당 CSI 보고시에도 NQCL 가정에 의한 수신 프로세싱을 가정한 경우의 CSI를 보고하도록 한다.
또한, 본 발명의 다른 일 실시예에 따라, 각 CSI-RS 자원 구성에 특정 서브프레임 인덱스(들) 정보를 포함시켜, 해당 서브프레임 인덱스(들)에 DMRS-기반 DL 스케줄링을 받는 경우 해당 DMRS 포트(들)의 경우 각 CSI-RS 자원 구성이 지시하는 CSI-RS 포트(들)와 QCL/NQCL 가정을 할 수 있는지의 여부를 RRC로 지정해 놓을 수 있다. 또한, 상기 DMRS 포트(들)이 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와 QCL/NQCL 가정을 할 수 있는지도 포함할 수 있다. 일례로 CSI-RS 자원 구성 #1은 짝수 인덱스의 서브프레임에 DMRS 포트(들)와의 QCL 가정이 가능하다고 지정된다면, UE는 짝수 인덱스의 서브프레임에서 DMRS-기반 PDSCH 수신 시 CSI-RS 자원 구성 #1(및/또는 해당 셀(예컨대, DL 서빙 셀)의 CRS 포트(들))에서 가정한 광범위 특성의 추정치의 전부 또는 일부를 동일하게 적용하여 수신 프로세싱에 반영할 수 있다. 만일 CSI 보고시에도 이 정보가 반영되도록 한다면, 상기 UE가 상기 QCL/NQCL 가정 여부를 고려한 CSI(예컨대, 상기 UE가 향후 DMRS-기반 PDSCH를 수신하여 해당 DMRS 포트(들)와 CSI-RS 자원 구성 #1(및/또는 해당 셀(예컨대, DL 서빙 셀)의 CRS 포트(들))와의 QCL/NQCL 가정 하에 데이터 복조 시에 10% FER을 성취할 수 있는 MCS level, CQI, RI 및 이 때의 PMI 등)를 계산하여 QCL 가정일 때의 CSI, 및/또는 NQCL 가정일 때의 CSI를 각각 보고할 수도 있다. 이러한 정보는 특정 서브프레임 비트 맵 혹은 서브프레임 인덱스 집합 형태로 제공될 수 있다. 예를 들어, 서브프레임 집합 #1은 DMRS 포트(들)와 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)간의 QCL 가정이 가능, 서브프레임 집합 #2는 DMRS 포트(들)와 특정 CSI-RS 포트(들) 간의 QCL 가정이 가능하도록 설정될 수 있고, 또 다른 실시예로서, 서브프레임 집합 #1은 DMRS 포트(들)와 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)간의 QCL 가정이 가능, 서브프레임 집합 #2는 DMRS 포트(들)와 특정 CSI-RS 포트(들) 간의 NQCL을 가정하도록 설정될 수 있다.
<상위계층시그널링 및/또는 DCI를 통한 CSI-RS 포트와 DMRS 포트 간의 QCL>
본 발명의 다른 일 실시예로, 사전에 RRC 시그널링과 같은 상위 계층 시그널링을 통해 QCL 가정이 가능한 CSI-RS 포트(들) 및 DMRS 포트(들) 간 페어(pair) 정보, QCL 가정이 가능한 CRS 포트(들) 및 CSI-RS 포트(들) 간 페어 정보, 또는 QCL 가정이 가능한 CRS 포트(들) 및 DMRS 포트(들) 간 페어 정보 등을 복수의 상태(state)로 준-정적 방식으로 구성해놓고, DCI를 통해 스케줄링 승인(grant)를 제공할 때 이러한 상태 중 어느 하나를 동적으로 지시할 수 있다.
비-주기적 CSI(A-CSI) 및 비-주기적 SRS(A-SRS)의 트리거링 방식과 유사하게, N 비트들(예컨대, N=2)로 복수의 상태 중 하나를 트리거링하되, 각각의 상태는 RRC로 설정된 각 RS 포트들간(예컨대, "CSI-RS/DMRS 포트", "CRS/CSI-RS 포트", "CRS/DMRS 포트" 등) QCL 가정가능한-페어를 사전에 설정해 놓고 이를 동적으로 트리거링할 수 있다. 예를 들어, N=2인 경우, 상태 '00'은 NQCL(즉, DMRS 포트(들)는 어떠한 다른 RS 포트(들)와 QCL 가정 불가), 상태 '01'은 DMRS 포트(들)는 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와 QCL 가정 가능, 상태 '10'은 제 1 세트의 RRC로 설정된 RS간 QCL 페어 정보(예컨대, "CSI-RS/DMRS 포트(들)" 또는 "CRS/DMRS 포트(들)"), 상태 '11'은 제 2 세트의 RRC로 설정된 QCL 페어 정보(예컨대, "CSI-RS/DMRS 포트(들)" 또는 "CRS/DMRS 포트(들)") 등의 형태로 설정해 놓는 방식이 가능하다. 이 때, 예를 들어 제 1 세트의 RRC로 설정된 RS간 QCL 페어 정보는 "DMRS 포트(들)는 {CSI-RS 자원 구성 #1, CSI-RS 자원 구성 #2}에 포함된 CSI-RS 포트(들)와 QCL 가정 가능", 또한 제 2 세트의 RRC로 설정된 RS간 QCL 페어 정보는 "DMRS 포트(들)는 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)와 QCL 가정 가능" 등으로 설정될 수 있다.
또한, 본 발명의 다른 일 실시예에서 상기 "CRS 포트(들) 및 DMRS 포트(들)간 QCL 페어 정보"는 DCI를 통한 동적인 지시 없이 RRC 시그널링과 같은 상위 계층 시그널링에 의한 준-정적인 방식으로 설정될 수 있다. 즉, 이러한 RRC 시그널링이 UE에서 수신되면, 상기 UE는 향후 DMRS-기반 PDSCH를 스케줄링 받았을 시에 해당 DMRS 포트(들)로부터의 RS에 기반하여 데이터 복조할 때 특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)과의 QCL/NQCL 가정 여부를 반영하여 수신 프로세싱을 수행할 수 있다. 또한, 만일 CSI 피드백은 CRS를 기반으로 하고, 데이터 복조는 DMRS를 기반으로 하는 전송모드에 대해서는, 상기 RRC로 설정된 "특정 셀(예컨대, DL 서빙 셀)의 CRS 포트(들) 및 DMRS 포트(들)간 QCL 페어 정보"에 입각하여 해당 CSI(예컨대, 자신이 향후 DMRS-기반 PDSCH를 수신하여 해당 DMRS 포트(들)와 해당 셀(예컨대, DL 서빙 셀)의 CRS 포트(들)과의 QCL/NQCL가정 하에 데이터 복조시에 10% FER을 성취할 수 있는 MCS level, CQI, RI 및 이 때의 PMI 등)를 보고할 수 있다.
도 9는 본 발명의 실시예들을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 Nt개(Nt는 1보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 Nr개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, UE는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, eNB는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다.
상기 전송장치 및/또는 상기 수신장치는 도 1 내지 도 18과 관련하여 설명한 본 발명의 실시예들 중 적어도 하나 또는 둘 이상의 실시예들의 조합을 수행할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (20)

  1. 무선 통신 시스템에서 사용자기기가 채널상태정보(channel state information; CSI)-참조신호(reference signal; RS)를 수신함에 있어서,
    CSI-RS의 자원 구성 정보를 수신하고, 그리고
    상기 CSI-RS의 자원 구성 정보에 기반하여 CSI-RS를 수신하되,
    상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고,
    상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정하는 것을 특징으로 하는, CSI-RS 수신 방법.
  2. 제1항에 있어서, 상기 CRS에 관한 정보는 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성(large-scale property)을 획득하기 위해 사용되는 것을 특징으로 하는, CSI-RS 수신 방법.
  3. 제1항에 있어서, 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성은 상기 CRS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널로부터 도출가능한 것을 특징으로 하는, CSI-RS 수신 방법.
  4. 제1항에 있어서, 상기 CRS에 관한 정보는:
    상기 CRS에 대한 식별자 정보를 포함하는 것을 특징으로 하는, CSI-RS 수신 방법.
  5. 제1항에 있어서, 상기 사용자기기는 전송 모드 10으로 구성되는 것을 특징으로 하는, CSI-RS 수신 방법.
  6. 제1항 또는 5항에 있어서, 상기 사용자기기는,
    DM-RS(demodulation-reference signal)를 전송하기 위해 사용되는 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 의해 식별되는 상기 CSI-RS를 전송하기 위해 사용되는 안테나 포트가, 상기 안테나 포트들의 무선 채널의 광범위 특성(large-scale property)에 관하여, 의사 코로케이트된다고 가정하는 것을 특징으로 하는, CSI-RS 수신 방법.
  7. 제1항에 있어서, 상기 하나 이상의 CSI-RS의 자원 구성 정보는 상위 계층 시그널링을 통해 수신되는 것을 특징으로 하는, CSI-RS 수신 방법.
  8. 제1항에 있어서, 상기 CSI-RS와 상기 CRS는 서로 다른 셀로부터 전송되는 것을 특징으로 하는, CSI-RS 수신 방법.
  9. 제2항에 있어서, 상기 무선 채널의 광범위 특성은 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연 중 하나 이상을 포함하는 것을 특징으로 하는, CSI-RS 수신 방법.
  10. 무선 통신 시스템에서 기지국이 채널상태정보(channel state information; CSI)- 참조신호(reference signal; RS)를 전송함에 있어서,
    사용자기기로 CSI-RS의 자원 구성 정보를 전송하고, 그리고
    상기 사용자기기로 상기 CSI-RS의 자원 구성 정보에 기반한 CSI-RS를 전송하되,
    상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고,
    상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정하는 것을 특징으로 하는, CSI-RS 전송 방법.
  11. 무선 통신 시스템에서 채널상태정보(channel state information; CSI)- 참조신호(reference signal; RS)를 수신하도록 구성된 사용자기기에 있어서,
    무선 주파수(radio frequency, RF) 유닛; 및
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 상기 RF 유닛을 통해 CSI-RS의 자원 구성 정보를 수신하고, 상기 CSI-RS의 자원 구성 정보에 기반하여 CSI-RS를 수신하되,
    상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고,
    상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정하는 것을 특징으로 하는, 사용자기기.
  12. 제11항에 있어서, 상기 CRS에 관한 정보는 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성(large-scale property)을 획득하기 위해 사용되는 것을 특징으로 하는, 사용자기기.
  13. 제11항에 있어서, 상기 CSI-RS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널의 광범위 특성은 상기 CRS의 전송을 위해 사용되는 안테나 포트로부터의 무선 채널로부터 도출가능한 것을 특징으로 하는, 사용자기기.
  14. 제11항에 있어서, 상기 CRS에 관한 정보는:
    상기 CRS에 대한 식별자 정보를 포함하는 것을 특징으로 하는, 사용자기기.
  15. 제11항에 있어서, 상기 사용자기기는 전송 모드 10으로 구성되는 것을 특징으로 하는, 사용자기기.
  16. 제11항 또는 제15항에 있어서, 상기 사용자기기는:
    DM-RS(demodulation-reference signal)를 전송하기 위해 사용되는 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 의해 식별되는 상기 CSI-RS를 전송하기 위해 사용되는 안테나 포트가, 상기 안테나 포트들로부터의 무선 채널의 광범위 특성(large-scale property)에 관하여, 의사 코로케이트된다고 가정하는 것을 특징으로 하는, 사용자기기.
  17. 제11항에 있어서, 상기 하나 이상의 CSI-RS의 자원 구성 정보는 상위 계층 시그널링을 통해 수신되는 것을 특징으로 하는, 사용자기기.
  18. 제11항에 있어서, 상기 CSI-RS와 상기 CRS는 서로 다른 셀로부터 전송되는 것을 특징으로 하는, 사용자기기.
  19. 제12항에 있어서, 상기 무선 채널의 광범위 특성은 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연 중 하나 이상을 포함하는 것을 특징으로 하는, 사용자기기.
  20. 무선 통신 시스템에서 채널상태정보(channel state information; CSI)-참조신호(reference signal; RS)를 사용자기기로 전송하도록 구성된 기지국에 있어서,
    무선 주파수(radio frequency, RF) 유닛; 및
    상기 RF 유닛을 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 상기 RF 유닛을 통해 CSI-RS의 자원 구성 정보를 전송하고, 상기 CSI-RS의 자원 구성 정보에 기반한 CSI-RS를 전송하되,
    상기 CSI-RS의 자원 구성 정보는 상기 CSI-RS와 연관된 셀특정-RS(Cell specific-RS; CRS)에 관한 정보를 포함하고,
    상기 사용자기기는 상기 CRS에 관한 정보와 연관된 안테나 포트와 상기 CSI-RS의 자원 구성 정보에 해당하는 CSI-RS의 전송을 위해 사용되는 안테나 포트가 의사(quasi) 코로케이트(co-located)된다고 가정하는 것을 특징으로 하는, 기지국.
PCT/KR2013/001026 2012-02-11 2013-02-08 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치 WO2013119073A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147019344A KR101927322B1 (ko) 2012-02-11 2013-02-08 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치
US14/373,082 US9768930B2 (en) 2012-02-11 2013-02-08 Method for reporting channel state information, method for supporting same, and apparatus for said methods
JP2014555504A JP6006335B2 (ja) 2012-02-11 2013-02-08 チャネル状態情報を報告するための方法、これをサポートする方法、及びこれらの方法のための装置
EP13746635.5A EP2800286A4 (en) 2012-02-11 2013-02-08 METHOD FOR REPORTING CHANNEL STATUS INFORMATION, METHOD FOR ASSISTING IT AND DEVICE FOR SAID METHODS
CN201380008380.7A CN104106223A (zh) 2012-02-11 2013-02-08 报告信道状态信息的方法、其支持方法及所述方法的设备
US15/685,454 US10084583B2 (en) 2012-02-11 2017-08-24 Method for reporting channel state information, method for supporting same, and apparatus for said methods

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201261597725P 2012-02-11 2012-02-11
US61/597,725 2012-02-11
US201261669655P 2012-07-09 2012-07-09
US61/669,655 2012-07-09
US201261672253P 2012-07-16 2012-07-16
US61/672,253 2012-07-16
US201261675810P 2012-07-25 2012-07-25
US61/675,810 2012-07-25
US201261677471P 2012-07-30 2012-07-30
US61/677,471 2012-07-30
US201261678617P 2012-08-01 2012-08-01
US61/678,617 2012-08-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/373,082 A-371-Of-International US9768930B2 (en) 2012-02-11 2013-02-08 Method for reporting channel state information, method for supporting same, and apparatus for said methods
US15/685,454 Continuation US10084583B2 (en) 2012-02-11 2017-08-24 Method for reporting channel state information, method for supporting same, and apparatus for said methods

Publications (1)

Publication Number Publication Date
WO2013119073A1 true WO2013119073A1 (ko) 2013-08-15

Family

ID=48947777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001026 WO2013119073A1 (ko) 2012-02-11 2013-02-08 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치

Country Status (6)

Country Link
US (2) US9768930B2 (ko)
EP (1) EP2800286A4 (ko)
JP (1) JP6006335B2 (ko)
KR (1) KR101927322B1 (ko)
CN (1) CN104106223A (ko)
WO (1) WO2013119073A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015148045A1 (en) * 2014-03-28 2015-10-01 Intel IP Corporation User equipment-designed demodulation reference signal pattern book
WO2015156573A1 (ko) * 2014-04-09 2015-10-15 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
CN105024780A (zh) * 2014-04-23 2015-11-04 ***通信集团公司 一种信息发送、确定与信道重构方法及相关装置与***
WO2016033978A1 (zh) * 2014-09-05 2016-03-10 中兴通讯股份有限公司 准共位置的配置、确定方法及装置
JP2018512027A (ja) * 2015-03-27 2018-04-26 サムスン エレクトロニクス カンパニー リミテッド 大規模アンテナシステムにおけるリソース割り当て装置及び方法
CN108023841A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
CN109600841A (zh) * 2017-09-30 2019-04-09 北京三星通信技术研究有限公司 随机接入方法、网络节点和用户设备
CN113489577A (zh) * 2017-08-09 2021-10-08 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
US11736989B2 (en) 2017-04-01 2023-08-22 Samsung Electronics Co., Ltd. Random access method, network node and user equipment

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768930B2 (en) * 2012-02-11 2017-09-19 Lg Electronics Inc. Method for reporting channel state information, method for supporting same, and apparatus for said methods
US9203576B2 (en) * 2012-08-03 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Quasi co-located antenna ports for channel estimation
CN104982063B (zh) * 2013-03-01 2018-10-12 英特尔Ip公司 用于网络辅助的干扰抑制的准同位和pdsch资源元素映射信令
US9271279B2 (en) * 2013-05-09 2016-02-23 Sharp Laboratories Of America, Inc. Channel state measurement and reporting
CN105684545B (zh) * 2013-10-31 2019-06-14 Lg电子株式会社 在无线通信***中由ue利用d2d链路接收信号和由bs利用d2d链路发送信号的方法
CN105009640B (zh) * 2013-12-30 2020-02-14 华为技术有限公司 一种信道测量方法、小区切换方法、相关装置及***
JP6321815B2 (ja) * 2014-03-03 2018-05-09 華為技術有限公司Huawei Technologies Co.,Ltd. 情報を送信するための方法および装置、ならびに情報を受信するための方法および装置
CN111212477B (zh) 2014-06-13 2023-10-10 北京三星通信技术研究有限公司 一种数据传输方法和设备
CN105450272B (zh) * 2014-09-15 2021-07-20 中兴通讯股份有限公司 一种导频信息的反馈方法、装置及终端
KR101997901B1 (ko) 2014-11-07 2019-07-08 후아웨이 테크놀러지 컴퍼니 리미티드 물리 하향링크 제어채널 전송 방법, 기지국 장치, 및 사용자 장비
CN104467990B (zh) * 2014-11-26 2016-11-30 清华大学 一种识别无线信号的视距传播路径的方法及装置
EP3244549B1 (en) * 2015-01-07 2021-03-03 LG Electronics Inc. Method for reporting channel quality information in tdd type wireless communication system, and device therefor
WO2016115548A1 (en) * 2015-01-16 2016-07-21 Ping Liang Enhanced srs for massive mimo channel estimation
US9906344B2 (en) 2015-02-23 2018-02-27 Intel Corporation Methods, apparatuses, and systems for multi-point, multi-cell single-user based multiple input and multiple output transmissions
CN112491524B (zh) * 2015-04-10 2024-02-23 阿里斯卡尔股份有限公司 发送csi-rs的基站和报告csi的用户设备
WO2016167634A1 (ko) * 2015-04-17 2016-10-20 엘지전자 주식회사 무선 통신 시스템에서 진화된 멀티캐스트 및 브로드캐스트 신호를 송수신하는 방법 및 이를 위한 장치
EP3340487B1 (en) * 2015-08-20 2021-07-14 Samsung Electronics Co., Ltd. Channel state information feedback method and device in wireless communication system
WO2017039384A1 (ko) * 2015-09-03 2017-03-09 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN106559879B (zh) 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
CN108352879B (zh) * 2015-11-03 2021-08-13 Lg电子株式会社 用于在无线通信***中报告信道状态的方法及其设备
WO2017116141A1 (ko) 2015-12-29 2017-07-06 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
CN107302796B (zh) 2016-03-31 2023-04-18 华为技术有限公司 一种数据传输方法、网络侧设备及终端设备
CN114828252A (zh) 2016-04-08 2022-07-29 华为技术有限公司 多传输点数据传输的方法及装置
CN107306177B (zh) 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
KR101997461B1 (ko) * 2016-05-10 2019-07-08 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말이 데이터 신호를 송수신하는 방법 및 이를 지원하는 장치
EP3456017B1 (en) * 2016-05-10 2022-06-01 Nokia Technologies Oy Antenna co-location and receiver assumptions
EP3465968B1 (en) * 2016-05-23 2022-08-10 Telefonaktiebolaget LM Ericsson (PUBL) Methods and user equipment for handling communication
JP6938546B2 (ja) * 2016-05-26 2021-09-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 基準信号の伝送方法、ネットワーク設備及び端末設備
US10256883B2 (en) * 2016-05-27 2019-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal reporting in a wireless communication system
US10841057B2 (en) * 2016-08-08 2020-11-17 Futurewei Technologies, Inc. Systems and methods for UE-specific beam management for high frequency wireless communication
US10637624B2 (en) 2016-08-11 2020-04-28 Lg Electronics Inc. Method for indicating QCL information for aperiodic CSI-RS in wireless communication system and apparatus for same
US10039076B2 (en) * 2016-08-22 2018-07-31 Qualcomm Incorporated Declaring quasi co-location among multiple antenna ports
WO2018045586A1 (zh) 2016-09-12 2018-03-15 广东欧珀移动通信有限公司 导频信号的传输方法和设备
CN114466456A (zh) * 2016-09-29 2022-05-10 华为技术有限公司 下行控制信道的传输方法、接收网元及发送网元
CN107888236B (zh) * 2016-09-30 2021-06-29 华为技术有限公司 一种用于数据传输的方法和装置
US10419244B2 (en) * 2016-09-30 2019-09-17 Qualcomm Incorporated Demodulation reference signal management in new radio
US10420137B2 (en) * 2016-09-30 2019-09-17 Futurewei Technologies, Inc. System and method for signal density reduction in the frequency domain
RU2735309C1 (ru) * 2016-09-30 2020-10-29 Телефонактиеболагет Лм Эрикссон (Пабл) Апериодическая информация о состоянии канала (csi) и организация пула ресурсов csi-опорного сигнала (rs)
EP4239936A3 (en) 2016-10-31 2023-11-01 KT Corporation Method and device for allocating data channel resource for next-generation wireless access network
KR102114940B1 (ko) 2016-10-31 2020-05-26 주식회사 케이티 차세대 무선 액세스망을 위한 데이터 채널 자원 할당 방법 및 장치
CN108023849A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 一种信道状态信息的汇报方法和装置
CN110958628B (zh) * 2016-11-04 2021-06-29 华为技术有限公司 一种无线通信方法、装置、***及计算机可读存储介质
HUE060509T2 (hu) 2016-11-04 2023-03-28 Ericsson Telefon Ab L M Eljárások és rendszerek nyalábkövetési folyamatok menedzselésére, indexek és megfelelõ rendszerek alkalmazásával
US11005547B2 (en) * 2017-01-04 2021-05-11 Lg Electronics Inc. Method for channel state reporting in wireless communication system and apparatus for same
CN109565432B (zh) * 2017-01-06 2021-12-03 Lg 电子株式会社 无线通信***中接收参考信号的方法及其装置
CN108282321B (zh) 2017-01-06 2022-03-29 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
CN110199557B (zh) * 2017-01-25 2021-10-26 华为技术有限公司 通信方法、网络侧设备和终端设备
CN108400852B (zh) * 2017-02-06 2020-10-30 电信科学技术研究院 一种大尺度信道参数的指示、确定方法、基站及终端
US20180269956A1 (en) * 2017-03-14 2018-09-20 Qualcomm Incorporated Techniques and apparatuses for beam management
CN108633029B (zh) * 2017-03-24 2023-05-02 中兴通讯股份有限公司 波束指示方法及装置
EP3602808A1 (en) * 2017-03-24 2020-02-05 Telefonaktiebolaget LM Ericsson (publ) Systems and methods for determining transmitter and receiver configurations for a wireless device
CN111106918B (zh) * 2017-04-25 2021-03-05 Oppo广东移动通信有限公司 处理信号的方法和设备
US11652586B2 (en) 2017-04-27 2023-05-16 Nec Corporation Methods and apparatuses for reference signal transmission
JP7272491B2 (ja) * 2017-04-27 2023-05-12 日本電気株式会社 方法およびue
CN108809573B (zh) * 2017-05-05 2023-09-29 华为技术有限公司 确定天线端口的qcl的方法和设备
CN108112074B (zh) * 2017-05-05 2023-07-18 中兴通讯股份有限公司 信息的上报、接收方法、装置及计算机可读存储介质
WO2018201495A1 (en) 2017-05-05 2018-11-08 Zte Corporation Techniques for communicating beam information
CN108809600B (zh) 2017-05-05 2023-11-21 华为技术有限公司 一种通信方法、***及相关设备
WO2018202188A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 一种通信方法、***及相关设备
CN108111269B (zh) 2017-05-05 2023-01-10 中兴通讯股份有限公司 一种信道状态信息导频传输方法与装置
US11245444B2 (en) 2017-06-16 2022-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Channel state information for reference signals in a wireless communication system
CN109150473B (zh) * 2017-06-16 2022-10-04 华为技术有限公司 通信方法、网络设备、终端设备和***
CN112291050B (zh) * 2017-06-16 2024-06-18 华为技术有限公司 传输信息的方法和装置
CN109150467B (zh) 2017-06-16 2022-10-11 华为技术有限公司 通信方法、相关设备及计算机存储介质
CN110999443A (zh) * 2017-08-10 2020-04-10 中兴通讯股份有限公司 无线网络中多波束资源管理的方法和计算设备
CN109391435B (zh) * 2017-08-11 2021-05-25 电信科学技术研究院有限公司 Pucch传输方法、用户设备和装置
US10790956B2 (en) 2017-08-11 2020-09-29 Futurewei Technologies, Inc. System and method for communicating time and frequency tracking signals using configurations for one port CSI-RSs
CN111279648A (zh) * 2017-08-29 2020-06-12 苹果公司 用于基站收发机、用户设备和移动通信***的实体的装置、方法和计算机程序
US10425208B2 (en) 2017-09-08 2019-09-24 At&T Intellectual Property I, L.P. Unified indexing framework for reference signals
CN111357210B (zh) * 2017-11-16 2022-02-01 华为技术有限公司 一种处理设备及其方法
EP3718360A4 (en) * 2017-11-27 2021-08-11 Nokia Technologies Oy LINK BEAM NOTIFICATION FOR WIRELESS NETWORKS
CN110035518B (zh) * 2018-01-12 2022-05-24 华为技术有限公司 一种通信方法及装置
CN110149187B (zh) * 2018-02-13 2021-08-10 展讯通信(上海)有限公司 一种获取非周期信道探测参考信号的方法
CN110299978B (zh) * 2018-03-23 2020-10-02 维沃移动通信有限公司 信息传输方法、终端及网络设备
KR20200138738A (ko) * 2018-04-04 2020-12-10 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 결정 및 구성 방법, 장치, 컴퓨터 저장 매체
KR20230056064A (ko) * 2018-04-06 2023-04-26 노키아 테크놀로지스 오와이 다중 패널 ue에 대한 빔 표시
JP2021129126A (ja) * 2018-04-27 2021-09-02 ソニーグループ株式会社 無線通信装置、および、無線通信方法
CN110474745B (zh) * 2018-05-11 2021-01-22 维沃移动通信有限公司 一种准共址配置方法、终端及网络设备
CN110730056B (zh) * 2018-06-29 2021-07-27 维沃移动通信有限公司 定位参考信号传输方法、终端及网络设备
WO2020032631A2 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
CN110943769B (zh) * 2018-09-21 2022-04-12 大唐移动通信设备有限公司 一种信道状态信息的确定方法及装置
US11159270B2 (en) * 2018-11-08 2021-10-26 Qualcomm Incorporated Separately communicating demodulation reference signal-based channel information for multiple transmit receive points
US11057917B2 (en) * 2018-11-12 2021-07-06 Qualcomm Incorporated Quasi co-location relation configuration for periodic channel state information reference signals
EP3884722A4 (en) 2018-11-21 2022-07-06 QUALCOMM Incorporated CONFIGURING CHANNEL STATE INFORMATION REFERENCE SUB-BAND SIGNAL RESOURCE BLOCK GROUPS
US20200196162A1 (en) * 2018-12-17 2020-06-18 Qualcomm Incorporated Transmit/receive beam association in millimeter wave v2x
CN111106916B (zh) * 2019-01-11 2021-11-09 维沃移动通信有限公司 一种信道和干扰测量方法和设备
CN111435883B (zh) * 2019-01-11 2021-10-26 华为技术有限公司 准共址指示方法及装置
CN111600690B (zh) 2019-04-30 2021-07-06 维沃移动通信有限公司 参考信号测量、参考信号资源配置方法和设备
CN110687503B (zh) * 2019-10-31 2021-07-09 华中科技大学 一种基于背向散射的无线定位方法、装置及***
WO2021159258A1 (zh) * 2020-02-10 2021-08-19 华为技术有限公司 一种数据传输方法及装置
WO2022032663A1 (zh) * 2020-08-14 2022-02-17 华为技术有限公司 一种协作传输的方法、基站及终端
US11825321B2 (en) * 2020-09-23 2023-11-21 Qualcomm Incorporated Beam failure detection using mixed downlink reference signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148119A2 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Downlink reference signal for type ii relay
KR20110119778A (ko) * 2009-04-22 2011-11-02 엘지전자 주식회사 릴레이 통신 시스템에서 기준신호 전송 방법 및 장치
WO2011145886A2 (ko) * 2010-05-18 2011-11-24 엘지전자 주식회사 다중 분산 노드 시스템에서 채널 측정을 수행하기 위한 방법 및 장치
KR20120001599A (ko) * 2010-06-28 2012-01-04 엘지전자 주식회사 다중 노드 시스템에서 참조 신호 전송 방법 및 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9374148B2 (en) * 2009-11-17 2016-06-21 Qualcomm Incorporated Subframe dependent transmission mode in LTE-advanced
US8989114B2 (en) 2010-03-17 2015-03-24 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (CSI-RS) configuration information in a wireless communication system supporting multiple antennas
KR101253197B1 (ko) * 2010-03-26 2013-04-10 엘지전자 주식회사 참조신호 수신 방법 및 사용자기기, 참조신호 전송 방법 및 기지국
JP5291664B2 (ja) 2010-04-30 2013-09-18 株式会社エヌ・ティ・ティ・ドコモ データ送信方法、基地局装置及び移動局装置
WO2011145888A2 (ko) 2010-05-19 2011-11-24 세창인스트루먼트(주) 웹사이트 영역취합시스템 및 그 방법
US8838159B2 (en) 2010-06-28 2014-09-16 Lg Electronics Inc. Method and apparatus for transmitting reference signal in multi-node system
US9374253B2 (en) 2012-01-13 2016-06-21 Qualcomm Incorporated DM-RS based decoding using CSI-RS-based timing
KR102094050B1 (ko) * 2012-01-27 2020-03-27 인터디지탈 패튼 홀딩스, 인크 다중 캐리어 기반형 및/또는 의사 조합형 네트워크에서 epdcch를 제공하는 시스템 및/또는 방법
US9768930B2 (en) * 2012-02-11 2017-09-19 Lg Electronics Inc. Method for reporting channel state information, method for supporting same, and apparatus for said methods
KR102082465B1 (ko) 2012-04-19 2020-02-27 삼성전자주식회사 협력 멀티-포인트 통신 시스템들에 대한 기준 심볼 포트들의 준 공존 식별을 위한 방법 및 장치
JP6095991B2 (ja) * 2013-01-24 2017-03-15 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110119778A (ko) * 2009-04-22 2011-11-02 엘지전자 주식회사 릴레이 통신 시스템에서 기준신호 전송 방법 및 장치
WO2010148119A2 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Downlink reference signal for type ii relay
WO2011145886A2 (ko) * 2010-05-18 2011-11-24 엘지전자 주식회사 다중 분산 노드 시스템에서 채널 측정을 수행하기 위한 방법 및 장치
KR20120001599A (ko) * 2010-06-28 2012-01-04 엘지전자 주식회사 다중 노드 시스템에서 참조 신호 전송 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGRAN; E-UTRA; Physical layer procedures (Release 10)", 3GPP TS 36.213 V10.4.0, December 2011 (2011-12-01), pages 63, XP055131945 *
See also references of EP2800286A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9253771B2 (en) 2014-03-28 2016-02-02 Intel IP Corporation User equipment-designed demodulation reference signal pattern book
WO2015148045A1 (en) * 2014-03-28 2015-10-01 Intel IP Corporation User equipment-designed demodulation reference signal pattern book
WO2015156573A1 (ko) * 2014-04-09 2015-10-15 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
US10050756B2 (en) 2014-04-09 2018-08-14 Lg Electronics Inc. Method for tranceiving signal in wireless communication system and apparatus therefor
CN105024780B (zh) * 2014-04-23 2018-08-10 ***通信集团公司 一种信息发送、确定与信道重构方法及相关装置与***
CN105024780A (zh) * 2014-04-23 2015-11-04 ***通信集团公司 一种信息发送、确定与信道重构方法及相关装置与***
WO2016033978A1 (zh) * 2014-09-05 2016-03-10 中兴通讯股份有限公司 准共位置的配置、确定方法及装置
CN105471559A (zh) * 2014-09-05 2016-04-06 中兴通讯股份有限公司 准共位置的配置、确定方法及装置
CN105471559B (zh) * 2014-09-05 2020-01-14 中兴通讯股份有限公司 准共位置的配置、确定方法及装置
JP2018512027A (ja) * 2015-03-27 2018-04-26 サムスン エレクトロニクス カンパニー リミテッド 大規模アンテナシステムにおけるリソース割り当て装置及び方法
US10721037B2 (en) 2015-03-27 2020-07-21 Samsung Electronics Co., Ltd. Resource allocation device and method in large-scale antenna system
JP7085983B2 (ja) 2015-03-27 2022-06-17 サムスン エレクトロニクス カンパニー リミテッド 大規模アンテナシステムにおけるリソース割り当て装置及び方法
US11552758B2 (en) 2015-03-27 2023-01-10 Samsung Electronics Co., Ltd. Resource allocation device and method in large-scale antenna system
CN108023841A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
CN108023841B (zh) * 2016-11-04 2024-01-05 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
US11736989B2 (en) 2017-04-01 2023-08-22 Samsung Electronics Co., Ltd. Random access method, network node and user equipment
US11451414B2 (en) 2017-08-09 2022-09-20 Zte Corporation Method for indicating reference signal configuration information, base station, and terminal
CN113489577B (zh) * 2017-08-09 2023-03-24 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
CN113489577A (zh) * 2017-08-09 2021-10-08 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
CN109600841A (zh) * 2017-09-30 2019-04-09 北京三星通信技术研究有限公司 随机接入方法、网络节点和用户设备
CN109600841B (zh) * 2017-09-30 2024-03-15 北京三星通信技术研究有限公司 随机接入方法、网络节点和用户设备

Also Published As

Publication number Publication date
US9768930B2 (en) 2017-09-19
EP2800286A4 (en) 2015-09-09
CN104106223A (zh) 2014-10-15
US20150029966A1 (en) 2015-01-29
KR20140124358A (ko) 2014-10-24
JP6006335B2 (ja) 2016-10-12
EP2800286A1 (en) 2014-11-05
US20170353282A1 (en) 2017-12-07
JP2015513237A (ja) 2015-04-30
KR101927322B1 (ko) 2018-12-10
US10084583B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2013119073A1 (ko) 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치
WO2013002563A2 (ko) 채널상태정보 전송방법 및 사용자 기기, 그리고 채널상태정보 수신방법 및 기지국
WO2018199681A1 (ko) 무선 통신 시스템에서 채널 및 간섭 측정을 위한 방법 및 이를 위한 장치
WO2017135745A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 맵핑, 전송, 또는 수신 방법 및 이를 위한 장치
WO2013141595A1 (ko) 상향링크 신호 전송 또는 수신 방법
WO2018128340A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2018164452A1 (ko) 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2016129908A1 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2017078338A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2016148450A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2016105121A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2016018100A1 (ko) 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016144050A1 (ko) 무선 통신 시스템에서 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2016032218A2 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2017043834A1 (ko) 채널 상태 보고 방법 및 이를 위한 장치
WO2016163807A1 (ko) 무선 통신 시스템에서 간섭 하향링크 제어 정보를 수신하기 위한 방법 및 이를 위한 장치
WO2019156466A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2013043026A2 (ko) 상향링크 신호 전송방법 및 사용자기기와, 상향링크 신호 수신방법 및 기지국
WO2018203624A1 (ko) 무선 통신 시스템에서 참조 신호를 수신하기 위한 방법 및 이를 위한 장치
WO2013073917A1 (ko) 상향링크 신호 수신 방법 및 기지국과, 상향링크 신호 전송 방법 및 사용자기기
WO2014073865A1 (en) Method and apparatus for transmitting and receiving data in a wireless communication system
WO2013062359A1 (en) Method for determining transmission power information of downlink subframe and apparatus therefor
WO2016018101A1 (ko) 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2018012774A1 (ko) 무선 통신 시스템에서 송수신 방법 및 이를 위한 장치
WO2016182369A1 (ko) 무선 통신 시스템에서 채널 센싱을 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147019344

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14373082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013746635

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014555504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE