WO2013118945A1 - 기둥형 풍력 발전장치 - Google Patents

기둥형 풍력 발전장치 Download PDF

Info

Publication number
WO2013118945A1
WO2013118945A1 PCT/KR2012/003916 KR2012003916W WO2013118945A1 WO 2013118945 A1 WO2013118945 A1 WO 2013118945A1 KR 2012003916 W KR2012003916 W KR 2012003916W WO 2013118945 A1 WO2013118945 A1 WO 2013118945A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind power
air
power generation
power generator
Prior art date
Application number
PCT/KR2012/003916
Other languages
English (en)
French (fr)
Inventor
손성철
손호윤
Original Assignee
Son Sung-Chul
Son Ho-Yoon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Son Sung-Chul, Son Ho-Yoon filed Critical Son Sung-Chul
Priority to US14/131,454 priority Critical patent/US9103324B2/en
Priority to JP2014555467A priority patent/JP5921721B2/ja
Priority to CN201280062654.6A priority patent/CN103998771A/zh
Publication of WO2013118945A1 publication Critical patent/WO2013118945A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/131Stators to collect or cause flow towards or away from turbines by means of vertical structures, i.e. chimneys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a columnar wind power generation device, more specifically, having a height of 20M or more, the wind power generation chamber is formed in a multi-layer, and formed in a cylindrical wind pillar unit having a chimney exhaust passage in the center, each wind power generation chamber
  • the wind turbine is installed in the shortest distance in communication with the outer wall is formed, the wind turbine is provided with a wind turbine for generating power by the wind flowed through the wind inlet to the exhaust chimney passage, the wind turbine It is provided with a maintenance crane and a maintenance elevator, and the upper side of the wind turbine unit is provided with an induction exhaust exhaust to achieve constant power generation by the chimney effect without being affected by the direction of the wind.
  • the wind power generator is to generate power by rotating the windmill using the wind.
  • the wind power generator as described above is carried out by the construction on land and sea, and there are many cases of construction on the sea for large scale.
  • wind turbine generators are installed in the sea.
  • 175 wind turbines with a diameter of 120 meters and a wind turbine blade of 147 meters are installed on the coast of the mouth of the Thames Estuary to produce 2,500 GW of electricity per year. I plan to.
  • the wind power generator as described above has the effect of reducing more than 900,000 tons of annual greenhouse gas emissions.
  • the present invention is to provide a generator having a power generation capacity of 0.3MW ⁇ 0.5MW by floor and each floor by the wind-winding structure in order to solve the problem that the conventional wind power generator by the windmill is limited to the direction of the wind as described above
  • Each will have four or six generators to invent an economical and multi-stage power generation system.
  • the present invention has a height of 20M or more, and the wind power generation chamber is formed in multiple layers, and is formed as a cylindrical wind pillar having a chimney exhaust passage in the center, and each wind power generation chamber is connected to the outer wall at the shortest distance.
  • the wind turbine is provided with a wind power generating unit for exhausting the chimney exhaust passage after the power generation by the wind power introduced through the wind inlet, the wind turbine is provided with a maintenance crane and a maintenance elevator, The upper side of the wind pillar is provided with an induction exhaust exhaust.
  • the present invention minimizes the air resistance caused by the pillar part by introducing the wind blowing from the front, side, and rear to minimize weathering damage due to air resistance, and discharge the air introduced into the front, side, rear through the center It is to maximize the power generation effect due to wind inflow, has a height of more than 20M and forms a wind power generation chamber in multiple layers, formed of a cylindrical wind pillar with a chimney exhaust passage in the center, and communicating with the outer wall in each wind power generation chamber.
  • the wind turbine is installed at the shortest distance, and the wind turbine is provided with a wind turbine that generates electricity by the wind flowed through the wind turbine and then exhausts it into the chimney exhaust passage.
  • Elbows with deviations in and out of the flue exhaust passages prevent collisions and cause As it expands to the upper part, it turns into a powerful updraft and expands to the upper part, so wind and air flowing into the wind power generation chamber on each floor pass through the generator, so it is weaker than the rising air from the bottom, and is easily discharged to the upper part.
  • the wind turbine is provided with a maintenance crane and a maintenance elevator so that it can be checked from time to time, so that maintenance, management, maintenance, and repair will be performed from time to time, and the risk of overall maintenance will be solved and economical operation will be possible.
  • FIG. 1 is a perspective view showing an embodiment according to the present invention.
  • FIG. 2 is a detailed side view of a wind power generation room according to the present invention.
  • FIG. 3 is a plan view of the wind power generation unit according to the present invention.
  • Figure 4 is a perspective view of the wind power generation unit according to the present invention.
  • FIG. 5 is a projection side view of the wind power generation unit according to the present invention.
  • FIG. 6 is a detailed side view of the induction exhaust exhaust unit according to the present invention.
  • FIG. 8 is a plan view of a wind turbine according to another embodiment of the present invention.
  • Figure 9 is an overall side view showing another embodiment inclined to install the wind power generation unit according to the present invention.
  • Figure 10 is a perspective view of the wind turbine with a power generation in one embodiment according to the present invention.
  • the present invention is to minimize the air resistance of the wind pole of the wind turbine generator to minimize the weathering damage and to generate power.
  • the present invention is provided with a columnar columnar wind power generator for generating the wind blowing from the side to the inside and discharged to the upper through the center.
  • the columnar wind power generator has a height of 20M or more, as shown in FIGS. 1 to 3, and forms a wind power generation chamber 112 in multiple layers, and has a cylindrical wind pillar unit having a chimney exhaust passage 130 in the center. It is formed of (110), each wind turbine 112 is formed in the shortest distance in the wind inlet 111 in communication with the outer wall, the wind turbine 112 is introduced through the wind inlet 111 After generating power by the wind is provided with a wind power generating unit 120 for exhausting the chimney exhaust passage 130, the ceiling of the wind power generator chamber 112 in a donut type for maintenance of the wind power generation unit 120 It is provided with a maintenance crane 113 movably installed along the wind power generating chamber 112, and has a maintenance elevator 114 for connecting each floor, and the induction discharge on the upper side of the wind pole 110 It is provided with an exhaust 150, the wind pole The lower portion of 110 where it can be carried out to facilitate air flow through the chimney to exhaust passage 130 provided with a supplementary air inlet 170.
  • the wind power generation unit 120 is a wind power generation duct 121 and the wind power generation duct is connected to the chimney exhaust passage 130 is formed in the expansion and reduction pipe smoothly inlet of air as shown in FIG.
  • the wind generator 122 installed at the center of the 121 and the upper guide elbow 123 to induce and discharge the air discharged toward the chimney exhaust passage 130 to the upper portion.
  • the induction exhaust exhaust part 150 has a solid-shaped order cap 151 formed to prevent rainwater from entering the chimney exhaust passage 130 as shown in FIG. ), An external exhaust communication 154 surrounding the outside of the exhaust hole 152 to form an external communication, and an upper external exhaust communication (A) to the lower side wind pillar 110 of the exhaust hole 152.
  • the air guide surface 153 is formed to be inclined inwardly toward the top to guide the discharge of the air through the exhaust hole 152 to guide to the 154, the side air is guided to the air guide surface 153 It can be carried out by forming the flow guide braid 153a to be rotated.
  • the lower surface of the order cap 151 can be carried out by forming a cone shape protruding downward to minimize the friction of air and induce external discharge.
  • the outer surface of the wind pillar 110, the supplementary air inlet 170 is formed on the outer surface of the air induction partition 171 which is vertically installed so as to guide the outside air to the supplementary air inlet 170 in equal intervals It can be formed and implemented.
  • the lower portion of the supplementary air inlet 170 is generated in the wind power generation unit 120 to increase the chimney effect through the chimney exhaust passage 130 by causing a temperature deviation of the air as shown in FIG. It can be carried out by having a chimney effect induction heater 180 that is operated by electricity to heat the air.
  • the wind power generation duct 121 of the wind power generation unit 120 flows in the air of the rising air generated by solar radiation from the outer surface of the wind pillar 110, the inflow is upper It can be carried out by forming inclined toward the upper side to be guided into the furnace.
  • the wind power generation duct 121 of the wind power generation unit 120 is the wind pillar portion so that the air discharged through the chimney exhaust passage 130 is rotated and discharged smoothly It can be carried out by forming a vent in the tangential direction (110).
  • the upper portion of the wind pillar 110 may be provided with a windmill generator 161 and a wind power generator 162 built as shown in FIG. 10.
  • the columnar wind power generator has a height of 20M or more.
  • the wind turbine 112 is formed in multiple layers, and is formed as a cylindrical wind pillar 110 having a chimney exhaust passage 130 at the center, and each wind turbine 112 has a wind inlet communicating with an outer wall.
  • the wind power generation unit 120 is formed at the shortest distance and the wind power generation chamber 112 generates electricity by the wind power introduced through the wind inlet 111 and then exhausts it to the chimney exhaust passage 130.
  • a maintenance crane 113 installed on the ceiling of the wind power generator chamber 112 so as to be movable along the wind power generator chamber 112 made of a donut type for maintenance of the wind power generator unit 120.
  • the upper side of the wind pillar portion 110 is provided with an induction exhaust exhaust portion 150, the lower portion of the wind pillar portion 110 through the chimney exhaust passage 130.
  • the power generation efficiency is improved by maximizing the air flow generated through the inlet 111 and the air flow generated from the chimney exhaust passage 130.
  • induction exhaust exhaust unit 150 when the induction exhaust exhaust unit 150 is formed on the upper side of the wind pillar 110, wind blowing from the upper side of the wind pillar 110 is flowed upward along the air guide surface 153. The air discharged to the exhaust hole 152 is boiled out through the external exhaust communication 154 to increase the discharge effect through the exhaust hole 152.
  • the flow is flowed back by the flow guide blade 153a of the air guide surface 153 is to more effectively guide the exhaust through the exhaust hole 152.
  • the chimney effect induction heater 180 when the chimney effect induction heater 180 is provided below the supplementary air inlet 170, the air introduced through the supplementary air inlet 170 is heated, thereby maximizing the chimney effect due to temperature variation.
  • the inflow of air through the inlet 120 is smooth and the speed of the rising air flow through the chimney exhaust passage 130 is increased to maximize the amount of power generated.
  • the upper portion of the wind turbine unit 110 is provided with a windmill generator 161 and a wind power generator 162 built up, power generation is performed by air of the upper layer along with power generation through the wind. The effect is increased and can be carried out by incorporating the existing windmill generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 기둥형 풍력 발전장치에 관한 것으로서, 20M 이상의 높이를 가지며 풍력 발전실을 다층으로 형성하고, 중앙에 굴뚝 배기통로를 구비한 원통형의 풍력 기둥부로 형성하며, 각 풍력 발전실에는 외벽과 연통된 풍력 유입부를 최단거리에 설치 형성하고, 상기 풍력 발전실에는 풍력 유입부를 통하여 유입된 풍력에 의하여 발전을 한 후 굴뚝 배기통로로 배기하는 풍력 발전부를 구비하고, 상기 풍력 발전실에는 유지보수크레인과 유지보수엘리베이터를 구비하고, 상기 풍력 기둥부의 상부 측에는 유도 배출 배기부를 구비하여 구성한 것이다. 따라서, 본 발명은 전면, 측면, 후면에서 부는 바람을 유입 발전함으로써 기둥부에 의한 공기저항이 최소화되어 공기저항에 따른 풍화 훼손이 최소화되고, 전면, 측면, 후면으로 유입된 공기를 중앙을 통하여 배출되어 풍력 유입에 의한 발전효과가 극대화되는 것이다.

Description

기둥형 풍력 발전장치
본 발명은 기둥형 풍력 발전장치에 관한 것으로서, 더욱 상세하게는 20M 이상의 높이를 가지며 풍력 발전실을 다층으로 형성하고, 중앙에 굴뚝 배기통로를 구비한 원통형의 풍력 기둥부로 형성하며, 각 풍력 발전실에는 외벽과 연통된 풍력 유입부를 최단거리에 설치 형성하고, 상기 풍력 발전실에는 풍력 유입부를 통하여 유입된 풍력에 의하여 발전을 한 후 굴뚝 배기통로로 배기하는 풍력 발전부를 구비하고, 상기 풍력 발전실에는 유지보수크레인과 유지보수엘리베이터를 구비하고, 상기 풍력 기둥부의 상부 측에는 유도 배출 배기부를 구비하여서 바람의 방향에 영향을 받지 않고 굴뚝효과에 의하여 상시적인 발전이 이루어질 수 있도록 함을 목적으로 한 것이다.
일반적으로, 풍력 발전장치는 바람을 이용하여서 풍차를 회전시켜 발전을 하는 것이다.
이상과 같은 풍력 발전장치는 육지와 바다에 시공하여 실시하고 있으며 대형화를 위하여 바다에 시공하여 실시하는 사례가 많다.
상기한 바와 같이 풍력 발전장치를 바다에 시공 사례로는 현재 템스강 하구 일대 해안가에 풍차날개 지름이 120미터이고 높이가 147미터인 풍력 발전장치를 총 175개나 설치하여 연 2,500GW의 전력을 생산할 수 있도록 계획하고 있다.
이상과 같은 풍력 발전장치는 무엇보다 연가 온실가스 90만 톤 이상을 줄일 수 있는 효과를 가지는 것이다.
그러나, 상기한 바와 같이 현재 운영되고 있는 육지 및 고산지 바다에 설치된 풍력발전기의 직경이 10~120m 넘는 대형 블레이드가 거대한 기둥형 지주대로 구성하여 고산지에 설치 운영한 결과 주변 환경이 대형 블레이드를 회전시킬 수 있는 전면 풍력과 알맞은 풍속 및 풍향이 합당해야 회전이 되고, 풍력과 풍속 및 풍향이 알맞지 않을 경우에는 정지 상태에 있어 효율성이 떨어지는 문제점이 있었다.
또한, 풍력발전기의 대형 블레이드가 정지 상태에서 재회전되는 과정에 주위에 갑작스런 난기류 및 급상승기류가 발생하여 수목 및 식물들에 함유하고 있던 수분이 사방으로 분출되거나 급속한 증발로 주위에 수목과 식물들의 마름 현상이 일어나는 문제점이 있었다.
또한, 풍력발전기의 대형 블레이드가 회전되는 과정에 거대한 진동과 소음 및 흙먼지가 발생되어 주위에 있던 식물들의 광합성 작용이 정지되고 고사되며 뿌리 주위에 있던 수분이 아래로 빠져 흐르므로 표토 및 수목과 식물들의 뿌리가 지지하고 있던 흙과 점토의 응집이 이완되므로 수목과 식물들이 고사에 이르고, 지구의 온난화로 기후변화가 심해 일시에 폭우가 내리게 되면 대형 산사태가 발생해 주위가 황폐화되며 산 아래에는 막대한 피해가 발생됨과 동시에 대형 블레이드의 회전으로 산울림으로 인하여 소음공해가 발생되어 지역 주민들의 피해가 속출되고 있어 주민들의 민원이 빈번하고 있으며, 풍속의 변화가 심해 풍력발전기의 고장과 파손이 빈번하여 관리, 정비, 수리가 힘들어 애물단지로 전락하는 문제점이 있었다.
이에, 본 발명은 상술한 바와 같이 종래 풍차에 의한 풍력 발전장치가 바람의 방향에 한정 발전 되는 문제점을 해결하기 위하여 집풍 구조에 의하여 0.3MW~0.5MW 발전 능력을 갖는 발전기를 층별로 구비하고 각 층마다 4~6대의 발전기를 구비하여 경제적이며 다단계인 발전시스템을 발명하려고 하는 것이다.
즉, 본 발명은 20M 이상의 높이를 가지며 풍력 발전실을 다층으로 형성하고, 중앙에 굴뚝 배기통로를 구비한 원통형의 풍력 기둥부로 형성하며, 각 풍력 발전실에는 외벽과 연통된 풍력 유입부를 최단거리에 설치 형성하고, 상기 풍력 발전실에는 풍력 유입부를 통하여 유입된 풍력에 의하여 발전을 한 후 굴뚝 배기통로로 배기하는 풍력 발전부를 구비하고, 상기 풍력 발전실에는 유지보수크레인과 유지보수엘리베이터를 구비하고, 상기 풍력 기둥부의 상부 측에는 유도 배출 배기부를 구비하여 구성한 것이다.
따라서, 본 발명은 전면, 측면, 후면에서 부는 바람을 유입 발전함으로써 기둥부에 의한 공기저항이 최소화되어 공기저항에 따른 풍화 훼손이 최소화되고, 전면, 측면, 후면으로 유입된 공기를 중앙을 통하여 배출되어 풍력 유입에 의한 발전효과가 극대화되는 것이고, 20M 이상의 높이를 가지며 풍력 발전실을 다층으로 형성하고, 중앙에 굴뚝 배기통로를 구비한 원통형의 풍력 기둥부로 형성하며, 각 풍력 발전실에는 외벽과 연통된 풍력 유입부를 최단거리에 설치 형성하고, 상기 풍력 발전실에는 풍력 유입부를 통하여 유입된 풍력에 의하여 발전을 한 후 굴뚝 배기통로로 배기하는 풍력 발전부를 구비함으로써, 풍력발전부에서 배출된 바람과 공기와 굴뚝 배기통로에서 편차를 가진 엘보관에 의하여 충돌이 방지되고 유입된 강력한 바람과 공기가 상층부로 팽창하므로 강력한 상승기류로 변해 상층부로 팽창되므로 각층에 풍력 발전실로 유입된 바람과 공기는 발전기를 통과하므로 하단에서 올라오는 상승기류보다 약해 상층부로 쉽게 배출되므로 각층에 설치된 발전기는 하등에 지장 없이 발전이 이루어지는 것이며, 상기 풍력 발전실에는 유지보수크레인과 유지보수엘리베이터를 구비함으로써 수시로 점검할 수 있어 유지, 관리, 정비, 수리가 수시로 이루어져 전체적인 유지관리에 위험이 해결될 것이며 경제적인 운영이 가능할 것이다.
또한, 이러한 현상으로 말미암아 주위에 난기류 및 급상승기류가 발생되지 않으므로 자연을 황폐화시키지 않으며 친환경적이며 수익성이 극대화된 발전시스템을 이루는 것이다.
도 1 은 본 발명에 따른 일 실시 예를 보인 사시도.
도 2 는 본 발명에 따른 풍력 발전실의 상세 측면도.
도 3 은 본 발명에 따른 풍력 발전부의 평면도.
도 4 는 본 발명에 따른 풍력 발전부의 투영 사시도.
도 5 는 본 발명에 따른 풍력 발전부의 투영 측면도.
도 6 은 본 발명에 따른 유도 배출 배기부의 상세 측면도.
도 7 은 본 발명에 따른 전체 측면도.
도 8 은 본 발명에 따른 다른 실시 예를 보인 풍력 발전부의 평면도.
도 9 는 본 발명에 따른 또 다른 실시 예로 풍력 발전부를 경사지게 설치한 것을 보인 전체 측면도.
도 10 은 본 발명에 따른 일 실시 예에 있어 풍차 발전부를 구비한 것을 보인 사시도.
이하, 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.
본 발명은 풍력 발전장치의 풍력 기둥이 공기저항을 최소화시켜 풍화 훼손도 최소화하며 발전이 이루어지도록 한 것이다.
즉, 본 발명은 측면에서 부는 바람을 내부로 유입하여서 중앙을 통하여 상부로 배출시켜 발전시키는 기둥 형상의 기둥형 풍력 발전장치를 구비한 것이다.
상기 기둥형 풍력 발전장치는 도 1 내지 도 3 에 도시된 바와 같이 20M 이상의 높이를 가지며 풍력 발전실(112)을 다층으로 형성하고, 중앙에 굴뚝 배기통로(130)를 구비한 원통형의 풍력 기둥부(110)로 형성하며, 각 풍력 발전실(112)에는 외벽과 연통된 풍력 유입부(111)를 최단거리에 형성하고, 상기 풍력 발전실(112)에는 풍력 유입부(111)를 통하여 유입된 풍력에 의하여 발전을 한 후 굴뚝 배기통로(130)로 배기하는 풍력 발전부(120)를 구비하고, 상기 풍력 발전실(112)의 천정에는 풍력 발전부(120)의 유지보수를 위하여 도넛형으로 이루어진 풍력 발전실(112)을 따라 이동 가능하게 설치된 유지보수크레인(113)을 구비하며, 각 층을 연결하는 유지보수엘리베이터(114)를 구비하고, 상기 풍력 기둥부(110)의 상부 측에는 유도 배출 배기부(150)를 구비하고, 상기 풍력 기둥부(110)의 하부에는 굴뚝 배기통로(130)를 통한 원활한 공기 유동을 위하여 보충 공기유입부(170)를 구비하여 실시할 수 있는 것이다.
여기서, 상기 풍력 발전부(120)는 도 2 에 도시된 바와 같이 공기의 유입이 원활하게 확대 축소관으로 형성되어 굴뚝 배기통로(130)로 연결되는 풍력발전덕트(121)와, 상기 풍력발전덕트(121)의 중앙부에 설치되는 풍력 발전기(122)와, 굴뚝 배기통로(130) 측으로 배출되는 공기를 상부로 유도배출할 수 있게 상부유도엘보우(123)로 구성한 것이다.
한편, 도 4 와 도 5 에 도시된 바와 같이 동일층의 풍력 발전실(112)에 구비된 상기 풍력 발전부(120)의 상부유도엘보부(123)의 토출구의 단부가 서로 상이한 높이로 형성되게 실시하여 배출되는 공기의 충돌로 인한 배기 손실이 최소화되게 실시할 수 있는 것이다.
또한, 상기 유도 배출 배기부(150)는 도 6 에 도시된 바와 같이 굴뚝 배기통로(130)로의 빗물 유입이 방지되게 형성한 고깔 형상의 차수캡(151)과 측 방향으로 개구된 배기공(152)과, 상기 배기공(152)의 외측을 감싸 외부 연통을 형성하는 외부 배기연통(154)과, 상기 배기공(152)의 하부 측 풍력 기둥부(110)에 측 풍을 상부 외부 배기연통(154)으로 유도하여 배기공(152)을 통하여 공기의 배출을 유도할 수 있게 상부를 향하여 내측으로 경사지게 형성된 공기 유도면(153)을 형성하고, 상기 공기 유도면(153)에는 측 풍이 회류 유도되어 회동되게 회류유도브레이드(153a)를 형성하여 실시할 수 있는 것이다.
한편, 상기 차수캡(151)의 하면은 공기의 마찰을 최소화하며 외부 배출을 유도할 수 있게 하부로 돌출된 콘형상으로 형성하여 실시할 수 있는 것이다.
또한, 상기 보충 공기유입부(170)가 형성된 풍력 기둥부(110)의 외면에는 외부 공기를 보충 공기유입부(170)로 집중 유도할 수 있게 수직으로 설치되는 공기 유도 격벽(171)을 등 간격으로 형성하여 실시할 수 있는 것이다.
또한, 상기 보충 공기유입구(170)의 하부에는 도 7 에 도시된 바와 같이 공기의 온도편차를 유발시켜 굴뚝 배기통로(130)를 통한 굴뚝효과를 증대시킬 수 있게 풍력 발전부(120)에서 발전되는 전기에 의하여 동작되어 공기를 가열하는 굴뚝효과 유도히터(180)를 구비하여 실시할 수 있는 것이다.
또한, 상기 풍력 발전부(120)의 풍력발전덕트(121)는 도 8 에 도시된 바와 같이 풍력 기둥부(110)의 외면에서 태양 복사열에 의하여 발생한 상승기류의 공기를 함께 유입하고 그 유입이 상부로 유도 유입할 수 있게 상부를 향하여 경사지게 형성하여 실시할 수 있는 것이다.
또한, 상기 풍력 발전부(120)의 풍력발전덕트(121)는 도 9 에 도시된 바와 같이 굴뚝 배기통로(130)를 통하여 배출되는 공기가 회전 배출되어 그 배출이 원활하게 이루어질 수 있게 풍력 기둥부(110)에 접선 방향으로 통기 되게 형성하여 실시할 수 있는 것이다.
또한, 상기 풍력 기둥부(110)의 상부에는 도 10 에 도시된 바와 같이 풍차 발전기(161)와 축설된 발전풍차(162)를 구비하여 실시할 수 있는 것이다.
이하, 본 발명의 동작과정에 대하여 설명하면 다음과 같다.
상기한 바와 같이 전면, 측면, 후면에서 부는 바람을 내부로 유입하여서 중앙을 통하여 상부로 배출시켜 발전시키는 기둥 형상의 기둥형 풍력 발전장치를 구비하되, 상기 기둥형 풍력 발전장치는 20M 이상의 높이를 가지며 풍력 발전실(112)을 다층으로 형성하고, 중앙에 굴뚝 배기통로(130)를 구비한 원통형의 풍력 기둥부(110)로 형성하며, 각 풍력 발전실(112)에는 외벽과 연통된 풍력 유입부(111)를 최단거리에 형성하고, 상기 풍력 발전실(112)에는 풍력 유입부(111)를 통하여 유입된 풍력에 의하여 발전을 한 후 굴뚝 배기통로(130)로 배기하는 풍력 발전부(120)를 구비하고, 상기 풍력 발전실(112)의 천정에는 풍력 발전부(120)의 유지보수를 위하여 도넛형으로 이루어진 풍력 발전실(112)을 따라 이동 가능하게 설치된 유지보수크레인(113)을 구비하며, 각 층을 연결하는 유지보수엘리베이터(114)를 구비하고, 상기 풍력 기둥부(110)의 상부 측에는 유도 배출 배기부(150)를 구비하고, 상기 풍력 기둥부(110)의 하부에는 굴뚝 배기통로(130)를 통한 원활한 공기 유동을 위하여 보충 공기유입구(170)를 구비한 본 발명을 적용하여 실시하게 되면, 방향에 관계없이 전면, 측면, 후면에서 바람이 부는 바람에 관계 없이 상시적인 발전이 이루어지는 것이다.
또한, 전면, 측면, 후면의 풍력 유입부(111)를 통하여 유입된 공기가 각 풍력 발전실(112)에 구비된 풍력 발전부(120)를 통하여 굴뚝 배기통로(130)를 통하여 온도와 기압 차이에 따라 원활하게 상승 배기 되어 풍력 유입부(111)를 통하여 공기 유입 및 굴뚝 배기통로(130)에서 발생하는 상승기류를 최대한으로 활용함으로써 발전 효율이 향상되는 것이다.
또한, 상기 풍력 유입부(111)를 상부를 향하여 경사지게 형성하여 실시하게 되면, 풍력 기둥부(110)의 외면에서 태양 복사열에 의하여 발생한 상승기류가 함께 풍력 유입부(111)로 유입되어 굴뚝 배기통로(130)에서의 굴뚝효과에 의하여 배기가 더욱 원활하게 이루어지는 것이다.
또한, 상기 풍력 유입부(111)를 풍력 기둥부(110)에 접선 방향으로 통기 되게 형성하여 실시하게 되면, 풍력 유입부(111)를 통하여 유입되는 공기가 굴뚝 배기통로(130)에서 회전 배출되어 상승기류의 발생에 의한 배출이 원활하게 이루어지는 것이다.
또한, 상기 풍력 기둥부(110)의 상부 측에는 유도 배출 배기부(150)를 형성하여 실시하게 되면, 풍력 기둥부(110)의 상부 측에서 부는 바람이 공기 유도면(153)을 따라 상승 유동 되어서 배기공(152)으로 배출되는 공기가 외부 배기연통(154)을 통하여 끓어 배출시켜 상기 배기공(152)을 통한 배출효과를 증대시키는 것이다.
한편, 상기 공기 유도면(153)의 회류유도브레이드(153a)에 의하여 회류 유동되어 배기공(152)을 통한 배기 유도가 더욱 효과적으로 이루어지는 것이다.
또한, 상기 풍력 기둥부(110)의 하부에 보충 공기유입구(170)를 형성하여 실시하게 되면, 굴뚝 배기통로(130)의 하부에서 공기의 보충이 이루어져 굴뚝 현상에 의한 공기의 상승 유동이 더욱 원활하게 이루어지며 풍력 유입구(120)의 내측에서 공기 유입과 상승기류의 유도하는 유도효과가 증대되는 것이다.
또한, 상기 보충 공기유입구(170)의 하부에 굴뚝효과 유도히터(180)를 구비하여 실시하게 되면, 보충 공기유입구(170)를 통하여 유입된 공기가 가열되어서 온도 편차에 의한 굴뚝효과가 극대화되어 풍력 유입부(120)를 통한 공기의 유입이 원활해지고 굴뚝 배기통로(130)를 통한 상승 기류의 속도가 증대되어 발전량이 극대화되는 것이다.
또한, 상기 풍력 기둥부(110)의 상부에는 풍차 발전기(161)와 축설된 발전풍차(162)를 구비하여 실시하게 되면, 측 풍을 통한 발전과 함께 상부 층의 공기에 의한 발전이 이루어져 그 발전효과가 증대되며, 기존의 풍차 발전장치에도 접목하여 실시할 수 있는 것이다.

Claims (7)

  1. 전면, 측면, 후면에서 부는 바람을 내부로 유입하여서 중앙을 통하여 상부로 배출시켜 발전시키는 기둥 형상의 기둥형 풍력 발전장치를 구비하되,
    상기 기둥형 풍력 발전장치는 20M 이상의 높이를 가지며 풍력 발전실(112)을 다층으로 형성하고, 중앙에 굴뚝 배기통로(130)를 구비한 원통형의 풍력 기둥부(110)로 형성하며, 각 풍력 발전실(112)에는 외벽과 연통된 풍력 유입부(111)를 최단거리에 형성하고, 상기 풍력 발전실(112)에는 풍력 유입부(111)를 통하여 유입된 풍력에 의하여 발전을 한 후 굴뚝 배기통로(130)로 배기하는 풍력 발전부(120)를 구비하고, 상기 풍력 발전실(112)의 천정에는 풍력 발전부(120)의 유지보수를 위하여 도넛형으로 이루어진 풍력 발전실(112)을 따라 이동 가능하게 설치된 유지보수크레인(113)을 구비하며, 각 층을 연결하는 유지보수엘리베이터(114)를 구비하고, 상기 풍력 기둥부(110)의 상부 측에는 유도 배출 배기부(150)를 구비하고, 상기 풍력 기둥부(110)의 하부에는 굴뚝 배기통로(130)를 통한 원활한 공기 유동을 위하여 보충 공기유입부(170)를 구비한 것을 특징으로 하는 기둥형 풍력 발전장치.
  2. 제 1 항에 있어서;
    상기 풍력 발전부(120)는 공기의 유입이 원활하게 확대 축소관으로 형성되어 굴뚝 배기통로(130)로 연결되는 풍력발전덕트(121)와, 상기 풍력발전덕트(121)의 중앙부에 설치되는 풍력 발전기(122)와, 굴뚝 배기통로(130) 측으로 배출되는 공기를 상부로 유도배출할 수 있게 상부유도엘보우(123)로 구성하며,
    동일층의 풍력 발전실(112)에 등 간격으로 구비되는 풍력 발전부(120)의 상부유도엘보부(123)의 토출구의 단부가 서로 상이한 높이로 형성한 것을 특징으로 하는 기둥형 풍력 발전장치.
  3. 제 1 항에 있어서;
    상기 풍력 발전부(120)의 풍력발전덕트(121)는 굴뚝 배기통로(130)를 통하여 배출되는 공기가 회전 배출되어 그 배출이 원활하게 이루어질 수 있게 풍력 기둥부(110)에 접선 방향으로 통기 되게 형성한 것을 특징으로 하는 기둥형 풍력 발전장치.
  4. 제 1 항에 있어서;
    상기 풍력 발전부(120)의 풍력발전덕트(121)는 풍력 기둥부(110)의 외면에서 태양 복사열에 의하여 발생한 상승기류의 공기를 함께 유입하고 그 유입이 상부로 유도 유입할 수 있게 상부를 향하여 경사지게 형성한 것을 특징으로 하는 기둥형 풍력 발전장치.
  5. 제 1 항에 있어서;
    상기 유도 배출 배기부(150)는 굴뚝 배기통로(130)로의 빗물 유입이 방지되게 형성한 고깔 형상의 차수캡(151)과 측 방향으로 개구된 배기공(152)과, 상기 배기공(152)의 외측을 감싸 외부 연통을 형성하는 외부 배기연통(154)과, 상기 배기공(152)의 하부 측 풍력 기둥부(110)에 측 풍을 상부 외부 배기연통(154)으로 유도하여 배기공(152)을 통하여 공기의 배출을 유도할 수 있게 상부를 향하여 내측으로 경사지게 형성된 공기 유도면(153)을 형성하고, 상기 공기 유도면(153)에는 측 풍이 회류 유도되어 회동되게 회류유도브레이드(153a)를 형성하며,
    상기 차수캡(151)의 하면은 공기의 마찰을 최소화하며 외부 배출을 유도할 수 있게 하부로 돌출된 콘형상으로 형성하며,
    상기 보충 공기유입부(170)가 형성된 풍력 기둥부(110)의 외면에는 외부 공기를 보충 공기유입부(170)로 집중 유도할 수 있게 수직으로 설치되는 공기 유도 격벽(171)을 등 간격으로 형성한 것을 특징으로 하는 기둥형 풍력 발전장치.
  6. 제 5 항에 있어서;
    상기 보충 공기유입구(170)의 하부에는 공기의 온도편차를 유발시켜 굴뚝 배기통로(130)를 통한 굴뚝효과를 증대시킬 수 있게 풍력 발전부(120)에서 발전되는 전기에 의하여 동작되어 공기를 가열하는 굴뚝효과 유도히터(180)를 구비한 것을 특징으로 하는 기둥형 풍력 발전장치.
  7. 제 1 항에 있어서;
    상기 풍력 기둥부(110)의 상부에는 풍차 발전기(161)와 축설된 발전풍차(162)를 구비한 것을 특징으로 하는 기둥형 풍력 발전장치.
PCT/KR2012/003916 2012-02-07 2012-05-17 기둥형 풍력 발전장치 WO2013118945A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/131,454 US9103324B2 (en) 2012-02-07 2012-05-17 Pillar type wind power generator
JP2014555467A JP5921721B2 (ja) 2012-02-07 2012-05-17 コラム型風力発電装置
CN201280062654.6A CN103998771A (zh) 2012-02-07 2012-05-17 柱形风力发电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20-2012-0000913 2012-02-07
KR2020120000913U KR200460486Y1 (ko) 2011-12-01 2012-02-07 기둥형 풍력 발전장치

Publications (1)

Publication Number Publication Date
WO2013118945A1 true WO2013118945A1 (ko) 2013-08-15

Family

ID=46607640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003916 WO2013118945A1 (ko) 2012-02-07 2012-05-17 기둥형 풍력 발전장치

Country Status (5)

Country Link
US (1) US9103324B2 (ko)
JP (1) JP5921721B2 (ko)
KR (1) KR200460486Y1 (ko)
CN (1) CN103998771A (ko)
WO (1) WO2013118945A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106907301A (zh) * 2015-12-23 2017-06-30 哈尔滨工大金涛科技股份有限公司 热风塔风力发电机

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105386934B (zh) * 2015-11-20 2018-08-17 内蒙古工业大学 筒式气流光合发电装置
US10443570B2 (en) * 2016-02-18 2019-10-15 The Boeing Company Internal mounted cylindrical turbine for electricity generation using exterior flush and scoop intakes
CN105909474A (zh) * 2016-06-03 2016-08-31 朱安心 一种三维空间密集布局垂直轴大功率风力发电***
CN106593765A (zh) * 2017-01-16 2017-04-26 王俊彪 一种多风种全自动风能发电控制***
CN108425802B (zh) * 2017-07-13 2018-12-21 金祺然 变向式凸翼型发电装置
CN108361154B (zh) * 2017-07-13 2019-01-11 王贤 凸翼型截面的环绕式径向风力发电装置
CA2997766C (en) * 2018-03-08 2019-10-08 Branko Mizerit Vortex acceleration wind energy tower
KR102038685B1 (ko) * 2018-06-07 2019-10-30 두산중공업 주식회사 Ess 일체형 풍력 발전기
KR102094146B1 (ko) * 2018-09-11 2020-03-27 비즈 주식회사 크레인을 구비한 태양열 상승기류 발전소
US10947957B1 (en) * 2018-11-29 2021-03-16 Keith G. Bandy Apparatus, system and method for utilizing kinetic energy to generate electricity
KR102032550B1 (ko) * 2019-09-11 2019-10-15 주식회사 더조은에너지 풍력 발전 장치
KR102188888B1 (ko) * 2019-10-01 2020-12-09 박진현 풍력발전을 위한 집풍기
CN111120214A (zh) * 2019-12-16 2020-05-08 合肥敬卫新能源有限公司 一种移动立体式风能发电装置
RU2753330C1 (ru) * 2020-05-25 2021-08-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" Способ снижения силы ветра на объекте при пожаре
CN113153638A (zh) * 2021-05-26 2021-07-23 巴雅尔图 一种风光互补的连续性山坡发电装置
KR102655634B1 (ko) * 2022-04-28 2024-04-05 메이첸신 와류 동적 발전 구조물
CN117662364A (zh) * 2023-12-26 2024-03-08 济南泰景电力技术有限公司 一种大气自流风力发电装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004412A (ko) * 2007-07-05 2009-01-12 고영은 풍력 발전장치
KR20100013809A (ko) * 2008-08-01 2010-02-10 박원규 바람 유도 장치 및 이를 이용한 풍력 발전 시스템
KR100940193B1 (ko) * 2009-10-19 2010-02-10 화인케미칼 주식회사 수직축 풍력발전 시스템

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608873A (en) * 1969-10-15 1971-09-28 Fluor Prod Co Inc Mechanically assisted spiral-draft water-cooling tower
US3936652A (en) * 1974-03-18 1976-02-03 Levine Steven K Power system
US4122675A (en) * 1977-03-17 1978-10-31 Jack Polyak Solar heat supplemented convection air stack with turbine blades
US4499034A (en) * 1982-09-02 1985-02-12 The United States Of America As Represented By The United States Department Of Energy Vortex-augmented cooling tower-windmill combination
US4935639A (en) * 1988-08-23 1990-06-19 Yeh Dong An Revolving power tower
WO1996031698A1 (en) * 1995-04-06 1996-10-10 Daya Ranjit Senanayake Power production plant and method of making such a plant
US6749393B2 (en) * 2001-08-13 2004-06-15 Yevgeniya Sosonkina Wind power plant
US6870280B2 (en) * 2002-05-08 2005-03-22 Elcho R. Pechler Vertical-axis wind turbine
JP2004190506A (ja) * 2002-12-09 2004-07-08 Yoshito Omori 風力発電装置、風力発電方法、並びに風力発電装置に用いられる風洞部材
JP2007120241A (ja) * 2005-10-31 2007-05-17 Sk Housing Corp 避難用タワー
US8668433B2 (en) * 2005-12-22 2014-03-11 Kevin L. Friesth Multi-turbine airflow amplifying generator
US20100001532A1 (en) * 2006-06-12 2010-01-07 Mihai Grumazescu Wind-driven turbine cells and arrays
CN101220800A (zh) * 2007-01-12 2008-07-16 连志敏 智能复合式发电能源塔
CA2723631C (en) * 2007-05-05 2017-10-31 Gordon David Sherrer System and method for extracting power from fluid
US7845904B2 (en) * 2007-05-09 2010-12-07 Cleveland State University Wind harnessing system
US7911075B2 (en) * 2007-10-15 2011-03-22 Pagliasotti Robert R Building-integrated system for capturing and harvesting the energy from environmental wind
CN101469674A (zh) * 2007-12-26 2009-07-01 程新生 楼顶可聚风并安装聚风门、泄风门及风力发电机的风能大厦
CN101328863B (zh) * 2008-07-24 2011-03-30 宁波银风能源科技股份有限公司 空气力学塔式风力发电***
US8128337B2 (en) * 2009-08-05 2012-03-06 Constantine D Pezaris Omnidirectional vertical-axis wind turbine
WO2011029138A1 (en) * 2009-09-08 2011-03-17 Atlantis Resources Corporation Pte Limited Power generator
CN201610822U (zh) * 2009-11-24 2010-10-20 中金富华能源科技有限公司 塔型多层多柱组合式水平轴风力发电***
EP2516844A4 (en) * 2009-12-22 2014-07-02 Design Protom Inc ENERGY GENERATION SYSTEM AND RELATED METHODS
CN201666224U (zh) * 2010-02-10 2010-12-08 西安孔明电子科技有限公司 一种风能发电建筑墙板模块
CN102146711A (zh) * 2010-02-10 2011-08-10 西安孔明电子科技有限公司 一种风能发电建筑墙板模块及施工方法
CN201627680U (zh) * 2010-02-11 2010-11-10 安徽金爱家光能科技有限公司 一种利用风洞效应的微风力发电机
US20110302879A1 (en) * 2010-06-15 2011-12-15 Baker Brookes H Method for erecting a facility for producing electrical energy from wind
KR101059160B1 (ko) 2010-10-06 2011-08-25 제이케이이엔지(주) 풍력발전타워
US8546971B2 (en) * 2011-12-26 2013-10-01 Ilya Tsitron Apparatus for generating electricity from wind power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090004412A (ko) * 2007-07-05 2009-01-12 고영은 풍력 발전장치
KR20100013809A (ko) * 2008-08-01 2010-02-10 박원규 바람 유도 장치 및 이를 이용한 풍력 발전 시스템
KR100940193B1 (ko) * 2009-10-19 2010-02-10 화인케미칼 주식회사 수직축 풍력발전 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106907301A (zh) * 2015-12-23 2017-06-30 哈尔滨工大金涛科技股份有限公司 热风塔风力发电机

Also Published As

Publication number Publication date
US20140125065A1 (en) 2014-05-08
US9103324B2 (en) 2015-08-11
KR200460486Y1 (ko) 2012-05-23
JP2015506440A (ja) 2015-03-02
CN103998771A (zh) 2014-08-20
JP5921721B2 (ja) 2016-05-24

Similar Documents

Publication Publication Date Title
WO2013118945A1 (ko) 기둥형 풍력 발전장치
CN202450809U (zh) 热气流发电装置
EP2457319B1 (en) Generating electrical power utilizing surface-level hot air as the heat source, high atmosphere as the heat sink and a microwave beam to initiate and control air updraft
WO2010150932A1 (ko) 발전장치
CN102996359A (zh) 自然能源蓄能发电方法及其发电***
WO2011062346A1 (ko) 풍력발전기용 집풍타워
CN103344130B (zh) 双曲线冷却塔循环水发电***
CN102996357A (zh) 综合能源风道井发电站
CN105275746A (zh) 自造风风力发电***
CN103956964A (zh) 一种塔式环绕分布风光互补发电装置
CN203939628U (zh) 自造风风力发电***
WO2011139085A2 (ko) 수풍발전기
CN101532470A (zh) 利用烟囱效应发电的方法
CN203454841U (zh) 双曲线冷却塔循环水发电***
CN101368543A (zh) 垂直向上流动的气能发电装置
CN210004860U (zh) 自然通风湿式排烟冷却塔及其分散式排烟装置
RU2546366C1 (ru) Ветровая электростанция
CN207620971U (zh) 一种三维立体聚能风道垂直轴大功率高效风力发电***
WO2011019094A1 (ko) 유체 배관을 이용한 발전장치
WO2020138601A1 (ko) 풍력과 수력을 이용한 발전장치
CN207583548U (zh) 一种群组式发电设备
WO2013113136A1 (zh) 物腔自产风力的装置及其发电的方法
WO2022260382A1 (ko) 흡기실과 배기실을 구비한 수직축 풍력발전기
CN102146884B (zh) 人造空气低温温差发电***
CN203114520U (zh) 一种自然能源发电塔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14131454

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014555467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867751

Country of ref document: EP

Kind code of ref document: A1