WO2013118829A1 - Multiple-edged ball end mill - Google Patents

Multiple-edged ball end mill Download PDF

Info

Publication number
WO2013118829A1
WO2013118829A1 PCT/JP2013/052895 JP2013052895W WO2013118829A1 WO 2013118829 A1 WO2013118829 A1 WO 2013118829A1 JP 2013052895 W JP2013052895 W JP 2013052895W WO 2013118829 A1 WO2013118829 A1 WO 2013118829A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
ball
medium
end mill
low gradient
Prior art date
Application number
PCT/JP2013/052895
Other languages
French (fr)
Japanese (ja)
Inventor
真二郎 堺
英典 熊谷
Original Assignee
日立ツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ツール株式会社 filed Critical 日立ツール株式会社
Publication of WO2013118829A1 publication Critical patent/WO2013118829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1009Ball nose end mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/084Curved cutting edges

Definitions

  • the present invention relates to a multi-blade ball end mill that has a long service life with little chipping and chipping even when high-feed roughing is performed on hard-to-cut materials such as hardened steel used for various molds.
  • JP 2002-187011 discloses a multi-blade ball end mill with three or more ball blades that eliminates chip pockets near the rotation axis and prevents chip clogging.
  • a ball end mill has been proposed in which the lands of each ball blade are thinned and each ball blade is omitted near the center of rotation.
  • the flank of the ball blade before thinning has a width of zero at the rotation center point O as shown in FIG. .
  • a thinning portion having a flank as shown in FIG. 25 is formed.
  • the width of the flank face of the ball blade is substantially zero at the rotation center point O, and there is substantially no cutting edge.
  • a thin and medium gradient blade having an arcuate portion is not formed on the ball blade adjacent to the rear in the rotational direction by thinning. Therefore, chatter vibration occurs when a large load is applied in the vicinity of the rotation center point O, causing chipping and chipping of the ball blade.
  • Japanese Patent Application Laid-Open No. 2003-225821 is a ball end mill having three or more ball blades, in order to prevent the occurrence of minute chipping and chipping near the rotation center point of the ball blade when performing high-speed feed processing.
  • a multi-blade ball end mill is proposed in which the flank faces of all the ball blades reach the axial center, and a gasche having a V-shaped cross section is formed to the vicinity of the rotation center point.
  • this multi-blade ball end mill does not have a medium or low-gradient blade whose center of rotation is retracted in the axial direction, thus eliminating the chatter vibration problem caused by the cutting load near the center of rotation. Not done.
  • Japanese Patent Application Laid-Open No. 2009-56559 is a ball end mill having two or more ball blades, in which a V-shaped or U-shaped groove section passing through the rotation center point is formed between the ball blades.
  • this ball end mill has no cutting edge in the vicinity of the rotation center point, chatter vibrations are generated by a large load in the vicinity of the rotation center point, and there is a possibility that chipping and chipping occur in the ball blade.
  • Japanese Patent Laid-Open No. 9-267211 proposes a two-blade ball end mill with a V-shaped bottom blade at a tilt angle of 4 ° or more at the nose portion of the ball blade so that it is suitable for high-speed cutting of dies and the like Yes.
  • chatter vibrations are generated by a large load applied near the rotation center point, and there is a possibility that chipping and chipping occur in the ball blade.
  • an object of the present invention is a long-life, multi-blade ball end mill suitable for high-feed roughing of hard-hardened hard materials such as hardened steel, and prevents clogging of chips near the rotation center point. Accordingly, it is an object of the present invention to provide a multi-blade multi-blade ball end mill having three or more blades which has a chip pocket and suppresses the occurrence of chatter vibration, thereby effectively preventing chipping and chipping of the ball blade.
  • the multi-blade ball end mill of the present invention includes a shank portion that rotates about a rotation axis, a cutting blade portion having a ball portion at a tip, and three or more cutting blades formed on the cutting blade portion, each having a ball blade.
  • Middle and low gradient blades extend integrally from the tip of each ball blade to the rotation center point in the vicinity of the rotation center point of the ball portion tip,
  • Each of the medium and low gradient blades has at least an arcuate portion curved backward in the rotational direction,
  • Each of the medium and low gradient blades has an inclination angle ⁇ of 0.5 to 3 ° with respect to the plane perpendicular to the rotation axis so that the rotation center point is located rearward in the rotation axis direction than the connecting portion with the ball blade.
  • each medium and low gradient blade Is inclined at The ratio of the radial length of the arcuate portion in each medium and low gradient blade is 20 to 100%, In each cutting edge, the circumferential width of the flank at the connection point between the medium and low gradient blade and the ball blade is 20 to 80% of the maximum circumferential width of the ball blade, The radial length X (the radial distance between the outer end connected to the ball blade and the rotation center point) of each medium / low gradient blade is 1.25 to 3.75% of the blade diameter D of the cutting blade portion. .
  • Each of the medium and low gradient blades preferably includes an arcuate portion on the rotation center point side and an extension portion of the ball blade extending to the arcuate portion.
  • the ball blade extension may be linear or curved.
  • the arcuate portion and the straight portion are preferably connected smoothly without a bending point, but there may be a bending point between them.
  • the center angle ⁇ of the arcuate portion of each medium and low gradient blade is preferably 20 to 70 °.
  • the ratio (degree of curvature) of the length of the perpendicular line dropped from the apex of the arcuate part of each medium and low gradient blade to the line segment connecting both ends thereof and the length of the line segment is 5 to 40%.
  • the arrangement of the ball blades around the rotation axis may be either equally divided or unequal divided in the circumferential direction, but unequal division is preferred.
  • the medium and low gradient blades extend integrally between the tip of each ball blade and the rotation center point in the vicinity of the rotation center point of the ball portion tip.
  • the blade is inclined at an inclination angle ⁇ of 0.5 to 3 ° with respect to the plane orthogonal to the rotation axis so that the rotation center point is located rearward in the rotation axis direction than the connecting portion with the ball blade.
  • the length X in the radial direction of each medium / low gradient blade when viewed along the rotation axis is 1.25 to 3.75% of the blade diameter D of the cutting edge portion. For this reason, a recess (chip pocket) having a minute width T is formed in the vicinity of the rotation center point of the cutting edge.
  • the medium and low-gradient blades are also involved in the cutting process, so it is possible not only to reduce the large cutting load near the rotation center point O, but also to reduce chip discharge. Can be done automatically.
  • each of the medium and low gradient blades has an arcuate portion that is curved at least rearward in the rotation direction, and therefore has a low cutting resistance even for difficult-to-cut materials.
  • the ratio of the radial length of the arcuate portion in each medium / low gradient blade is as large as 20 to 100%, and the circumferential width of the flank at the connection point between each medium / low gradient blade and each ball blade is also the ball. 20 to 80% of the maximum circumferential width of the blade is large. Therefore, each of the medium and low gradient blades has sufficient rigidity, can suppress chatter vibration even in high-feed rough machining of difficult-to-cut materials, and can prevent the ball blades from being worn early, chipped and chipped.
  • the multi-blade ball end mill of the present invention having such characteristics is suitable for high-feed rough machining of difficult-to-cut materials, and particularly suitable for rough machining of dies made of difficult-to-cut materials.
  • FIG. 1 is a side view showing a four-blade ball end mill according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged front view showing a cutting edge in a ball portion of the four-blade ball end mill of FIG.
  • FIG. 2 is an enlarged view showing a trajectory of a ball blade of the four-blade ball end mill of FIG.
  • FIG. 2 is an enlarged front view showing a medium-low gradient blade of the four-blade ball end mill of FIG.
  • FIG. 5 is an enlarged front view showing a part of FIG. 4 for obtaining the central angle of the arcuate portion of the medium and low gradient blade.
  • FIG. 5 is an enlarged front view showing a part of FIG.
  • FIG. 5 is an enlarged perspective view showing a middle / low gradient blade in FIG.
  • FIG. 5 is a partially enlarged perspective view showing a part of FIG.
  • FIG. 3 is a sectional view taken along line AA in FIG.
  • FIG. 5 (a) is a cross-sectional view taken along line BB of FIG.
  • It is an enlarged front view which shows the medium and low-gradient blade of the four blade ball end mill by 2nd embodiment of this invention.
  • FIG. 10 is an enlarged front view showing a part of FIG. 9 for obtaining the central angle of the arcuate portion of the medium and low gradient blade.
  • FIG. 12 is an enlarged front view showing a part of FIG. 11 for explaining the configuration of the medium-low gradient blade. It is an enlarged front view which shows the ball
  • FIG. 16 is an enlarged front view showing a part of FIG. 15 in order to obtain the radial length of the gradient blade. It is an enlarged front view which shows the cutting edge in the ball
  • FIG. 18 is an enlarged front view showing a part of FIG. 17 in order to obtain the radial length of the gradient blade.
  • 4 is an optical micrograph showing the front of a ball blade of a four-blade ball end mill A that was cut for 90 minutes in Example 2.
  • FIG. 3 is an optical micrograph showing an oblique view of a ball blade of a four-blade ball end mill A that was cut for 90 minutes in Example 2.
  • FIG. 2 is an optical micrograph showing the front of a ball blade of a four-blade ball end mill B subjected to a cutting process for 90 minutes in Example 2.
  • FIG. FIG. 3 is an optical micrograph showing an oblique view of a ball blade of a four-blade ball end mill B that was cut for 90 minutes in Example 2.
  • FIG. 2 is a front view showing a ball blade before thinning in a multi-blade ball end mill disclosed in Japanese Patent Laid-Open No. 2002-187011.
  • FIG. 2 is an enlarged front view showing details of a ball blade after thinning in a multi-blade ball end mill disclosed in Japanese Patent Laid-Open No. 2002-187011.
  • FIG. 3 is a front view showing a four-blade ball end mill described in JP-A-2003-225821.
  • the multi-blade ball end mill of the present invention suitable for high-feed roughing of difficult-to-cut materials with high hardness will be described in detail below using a solid multi-blade ball end mill made of cemented carbide as an example.
  • the number of cutting edges of the multi-blade ball end mill of the present invention is preferably 3 to 6.
  • the term “high hardness difficult-to-cut material” refers to a metal having a Rockwell hardness HRC of 40 or more, particularly 50 or more, such as hardened alloy tool steel (SKD61, SKD11, powder high speed, etc.). Means.
  • the term “roughing” means processing performed before finishing processing, which has a large cutting depth and feed amount in order to increase cutting efficiency, and thus has a large cutting load.
  • the term “high feed machining” means machining in which any one or more of the feed speed Vf, the axial cutting depth ap, and the radial cutting depth ae is increased in order to perform high-efficiency machining.
  • feed rate Vf is 1250 mm / min or more
  • axial cutting depth ap is 0.3 mm or more
  • radial cutting depth ae is 0.9 mm or more.
  • the feed rate Vf is 1500 mm / min or more
  • the axial cutting depth ap is 0.4 mm or more
  • the radial cutting depth ae is 1.2 mm or more.
  • Solid-type multi-blade ball end mill made of cemented carbide is a mixture of WC powder and Co powder, which is molded and sintered, and then finished with cutting edges, gashes, chip discharge grooves, flank surfaces, rake surfaces, etc. Manufactured by (grinding). If necessary, a known wear-resistant hard coating such as TiSiN, TiAlN, TiAlSiN, CrN, CrSiN, AlCrN, AlCrSiN, AlTiCrN, or AlCrVBN is coated on the cutting edge portion.
  • a known wear-resistant hard coating such as TiSiN, TiAlN, TiAlSiN, CrN, CrSiN, AlCrN, AlCrSiN, AlTiCrN, or AlCrVBN is coated on the cutting edge portion.
  • FIGS. 1 to 5 Four-flute ball end mill (1)
  • First Embodiment A four-blade ball end mill 1 according to a first embodiment of the present invention shown in FIGS. 1 to 5 includes a cylindrical shank portion 2 and a cutting edge portion 3.
  • the cutting edge portion 3 includes a ball portion 3a at the tip, and an outer peripheral blade portion 3b between the ball portion 3a and the shank portion 2.
  • the cutting blade portion 3 is formed with four cutting blades 5a, 5b, 5c, 5d having a predetermined twist angle, and each cutting blade 5a to 5d is an arcuate ball blade 6a formed on the ball portion 3a. , 6b, 6c, 6d and spiral outer peripheral blades 7a, 7b, 7c, 7d formed on the outer peripheral blade portion 3b.
  • Each of the ball blades 6a-6d and each of the outer peripheral blades 7a-7d is smooth (bending point). Without connection). As shown in FIG. 2, four ball blades 6a to 6d are arranged around the rotation center point O through the gashes 17a to 17d in the ball portion 3a.
  • rake surfaces 11a to 11d are formed in front of the ball blades 6a to 6d in the rotational direction, and relief surfaces (lands) 9a, 9b, 9c and 9d are formed in the rear in the rotational direction.
  • relief surfaces (lands) 9a, 9b, 9c and 9d are formed in the rear in the rotational direction.
  • gashes 17a to 17d are formed in front of the rake faces 11a to 11d in the rotation direction, and the gashes 17a to 17d are in contact with the chip discharge grooves 4.
  • Ball blades 6a to 6d (only 6a and 6c are visible in FIG. 3) are points P1, P2, P3, and P4 near the rotation center point O from the outer periphery of the cutting edge 3 (only P1 and P3 are visible in FIG. 3). It extends to.
  • Middle and low gradient blades 8a, 8b, 8c, and 8d extend between the points P1 to P4 and the rotation center point O.
  • the points P1 to P4 can be called the tips of the ball blades 6a to 6d, the outer ends of the medium / low gradient blades 8a to 8d, or the connection points of the ball blades 6a to 6d and the medium / low gradient blades 8a to 8d.
  • Relief surfaces 10a, 10b, 10c, and 10d are formed at the rear in the rotational direction of the medium and low gradient blades 8a to 8d.
  • Each flank 10a to 10d is connected to the corresponding ball blade flank 9a to 9d via boundary lines 15a, 15b, 15c and 15d.
  • the medium and low gradient blades 8a to 8d extend from the rotation center point O to the respective points K1 to K4 and rotate. It consists of an arcuate portion curved backward in the direction and a ball blade extension extending from each point K1 to K4 to each point P1 to P4.
  • the arcuate portion is represented by 8d1
  • the ball blade extension portion is represented by 8d2.
  • R represents the direction of rotation.
  • the arcuate portion 8d1 of the medium / low gradient blade 8d is formed by forming the flank 10a of the medium / low gradient blade 8a adjacent to the front in the rotational direction. The same applies to the other arcuate portions 8a1 to 8c1.
  • the arcuate portions 8a1 to 8c1 may be entirely curved or may be partially curved. In the latter case, since the curved portion and the straight portion are smoothly connected, the boundary between the two is not determined accurately. Therefore, whether the curved portion is entire or partial, it will be referred to as an “arch”.
  • each of the medium and low gradient blades 8a to 8d may be an arcuate portion that is curved backward in the rotation direction.
  • the medium and low gradient blades 8a to 8d since each of the medium and low gradient blades 8a to 8d has the arcuate portions 8a1 to 8d1 curved at least in the rearward direction of rotation, the medium and low gradient blades can be used in the high feed cutting process that also uses the medium and low gradient blades 8a to 8d. 8a-8d can withstand cutting loads.
  • the flank 10a of the medium / low gradient blade 8a is in curved contact with the medium / low gradient blade 8d behind the rotation direction, and the medium / low gradient blade 8d And the trailing edge of the flank 10a in the rotational direction is connected to the gash 17d.
  • each of the medium and low gradient blades 8a to 8d is inclined at a slight inclination angle ⁇ with respect to the plane orthogonal to the rotation axis Ax so that the rotation center point O is the last point in the rotation axis direction. ing.
  • the medium / low gradient blades 8a to 8d located inside the tips P1 to P4 of the ball blades 6a to 6d form a very shallow recess 13 having a minute width T.
  • the recess 13 is represented by a circle C centered on the rotation center point O and passing through the connection points P1 to P4 of the medium and low gradient blades 8a to 8d and the ball blades 6a to 6d.
  • the inclination angle ⁇ of each of the medium and low gradient blades 8a to 8d is 0.5 to 3 °. If the inclination angle ⁇ exceeds 3 °, the cutting edges near the points P1 to P4 (ball blades 6a to 6d and medium to low gradient blades 8a 8d end) is likely to be prematurely worn and chipped. When the inclination angle ⁇ is smaller than 0.5 °, the medium and low gradient blades 8a to 8d near the rotation center point O are likely to come into contact with the work material, and the effect of the medium and low gradient blades 8a to 8d to reduce cutting resistance is achieved. Disappear.
  • a preferable inclination angle ⁇ is 1 to 2 °. As described above, since each of the medium and low gradient blades 8a to 8d is inclined rearward in the rotation axis direction with a minute inclination angle, chatter vibration can be suppressed in high feed cutting.
  • the radial length X of the medium and low gradient blades 8a to 8d is 1.25 to 3.75% of the blade diameter D of the cutting edge portion 3.
  • the radial length X of the medium and low gradient blades 8a to 8d is the radial distance between the outer ends P1 to P4 connected to the ball blades 6a to 6d and the rotation center point O, as seen from the front view of the cutting blade portion 3. Is equal to the distance between the outer ends P1 to P4 and the rotation center point O.
  • the radial length X of each of the medium and low gradient blades 8a to 8d (the radial distance between the outer ends P1 to P4 connected to the ball blades 6a to 6d and the rotation center point O) is Half the width T.
  • the width T of the recess 13 is set in the range of 0.2 to 0.6 mm.
  • the inclination angle ⁇ of the medium and low-gradient blades at the point O and the vicinity thereof can be secured in the range of 0.5 to 3 °, thereby enabling highly efficient roughing. If the radial length X of the medium / low gradient blades 8a to 8d is less than 1.25% of the blade diameter D of the cutting edge part 3, the inclination angle ⁇ of the medium / low gradient blades 8a to 8d becomes too large, and the medium / low gradient blade Processing of 8a to 8d is difficult.
  • the radial length X of the medium and low gradient blades 8a to 8d is more than 3.75% of the blade diameter D of the cutting edge, the ball blades 6a to 6d will be too short compared to the medium bottom gradient blades 8a to 8d. High-efficiency, high-feed cutting cannot be realized.
  • the radial length X of the medium / low gradient blades 8a to 8d is preferably 1.5 to 3.5% of the blade diameter D of the cutting edge portion 3.
  • the blade diameter D is preferably 0.1 to 30 mm, more preferably 0.5 to 20 mm from the viewpoint of practicality.
  • the medium / low gradient blade 8d has an arcuate portion 8d1 extending from the rotation center point O to the point K4.
  • the ball blade extension 8d2 extending from the point K4 to the outer end P4, the radial length X of the medium / low gradient blade 8d is equal to the radial length X1 of the arcuate portion 8d1 and the ball blade extension. This is the sum of the radial length X2 of 8d2.
  • the ball blade extension 8d2 is linear, but may be curved. The same applies to the other medium and low gradient blades 8a to 8c.
  • the radial length X1 of the arcuate portion is 20 to 100%, preferably 30 to 100%, more preferably 60 to 100% of the radial length X of the medium and low gradient blades 8a to 8d.
  • X1 is less than 20% of X, the cutting resistance of the medium and low gradient blades 8a to 8d is large.
  • the line segment Q1- Position point Q1 so that the length of Q2 is maximized.
  • the ratio of the length of the line segment Q1-Q2 and the length of the line segment L3 at that time is defined as the curvature of the arcuate portion 8d1 of the medium / low gradient blade 8d.
  • the ratio (curvature) between the length of the line segment Q1-Q2 and the length of the line segment L3 is preferably 5 to 40%, more preferably 8 to 35%. If the degree of curvature is less than 5%, the tip pocket is too small, and if it exceeds 40%, the rigidity of the medium / low gradient blade is insufficient.
  • the hollow portion 13 having a small width T formed near the rotation center point O of the ball portion 3a is connected to the gashes 17a to 17d and functions as a tip pocket at the tip of the cutting edge portion 3.
  • the extremely thin chips generated by the medium and low-gradient blades 8a to 8d are discharged from the recess 13 to the chip discharge groove 4 via the gashes 17a to 17d, preventing chip clogging near the rotation center point O even in high-feed cutting. it can.
  • the width of the flank faces 10a to 10d of each medium and low gradient blade varies between the boundary lines 15a to 15d and the rotation center point O. Therefore, the widths of the flank surfaces 10a to 10d are evaluated by the following method. As illustrated in FIG. 7, the circumferential width W1 at the point P1 of the flank 10a of the medium / low gradient blade 8a is 20 to 80% of the maximum circumferential width W2 of the ball blade 6a, preferably 30 to 70%. By satisfying this requirement, the medium / low gradient blade can ensure high rigidity.
  • the circumferential width W1 of the flank 10a of the medium / low-gradient blade 8a at the point P1 connects the points P1 and P1 ′ at which the circle C passing through the point P1 with the rotation center point O as the center intersects the flank 10a. It is the length of the straight line.
  • the maximum circumferential width W2 of the ball blade 6a is the length of a straight line connecting the points B and B ′ where the circle C ′ centering on the rotation center point O intersects the flank 9a of the ball blade 6a (straight line Set the radius of the circle C 'so that the length of B-B' is maximized.).
  • the central angle ⁇ of the arcuate portions 8a1 to 8d1 of the medium and low gradient blades 8a to 8d is used.
  • the central angle ⁇ of the arcuate portions 8a1 to 8d1 is equal to both ends of the arcuate portion 8c1 of the medium / low gradient blade 8c formed by forming the flank 10d of the medium / low gradient blade 8d, as illustrated in FIG. 5 (a).
  • the center angle ⁇ of the arcuate part of the medium / low gradient blade is preferably 20 to 70 °. If the central angle ⁇ is less than 20 °, the width of the flank faces 10a to 10d of the medium and low gradient blades 8a to 8d is too small, and sufficient rigidity against the load resistance during cutting cannot be obtained. On the other hand, the medium and low gradient blades having a central angle ⁇ of 70 ° while satisfying the condition that the radial length X of each of the medium and low gradient blades 8a to 8d is 1.25 to 3.75% of the blade diameter D of the cutting edge portion 3. It is difficult to form 8a to 8d.
  • the central angle ⁇ is more preferably 30 to 60 °, and most preferably 40 to 48 °.
  • each of the medium and low gradient blades 8a to 8d not only has an arcuate portion curved at the rear in the rotation direction, but also has sufficient rigidity because the flank surfaces 10a to 10d have a sufficient width. For this reason, even when the roughing of the work material is performed at a high feed rate, chipping and chipping of the medium / low gradient blades 8a to 8d can be effectively prevented.
  • each of the ball blades 6a to 6d has a negative rake angle ⁇ 1
  • each of the medium and low gradient blades 8a to 8d has a negative rake angle ⁇ 2.
  • ⁇ 1 and ⁇ 2 may have a positive rake angle.
  • ⁇ 1 and ⁇ 2 are defined as rake angles in the direction orthogonal to the rotation axis Ax.
  • the rake angle ⁇ 1 of the ball blade 6d is preferably ⁇ 30 ° to 0 °.
  • the rake angle ⁇ 2 of the medium / low gradient blade 8d is preferably ⁇ 30 ° to 0 °.
  • both ⁇ 1 and ⁇ 2 are less than ⁇ 30 °, the cutting resistance becomes excessive, and if it exceeds 0 °, the design conditions become severe.
  • the ball blades 6a to 6d and the medium / low gradient blades 8a to 8d have sufficient rigidity, and in particular, the medium and low gradient blades 8a to 8d thinner than the ball blades 6a to 6d also have sufficient rigidity. Secured. As a result, chipping and chipping can be prevented in the case of high-efficiency roughing.
  • the clearance angles of the clearance surfaces 9a to 9d of the ball blades 6a to 6d and the clearance angles of the clearance surfaces 10a to 10d of the medium and low gradient blades 8a to 8d are preferably within 7 to 21 °.
  • both clearance angles are less than 7 °, the cutting resistance is high, and chatter vibration is likely to occur in highly efficient cutting.
  • both clearance angles exceed 21 ° the cutting resistance is reduced, but the rigidity of the ball blade and the medium / low gradient blade is reduced, so that chipping and chipping are likely to occur in highly efficient cutting.
  • the clearance angle of the flank faces 9a to 9d of the ball blade and the clearance angle of the flank faces 10a to 10d of the medium / low gradient blade are both preferably 9 to 19 °, and most preferably 10 to 15 °. Note that these clearance angles are preferably substantially the same. Accordingly, even when high-efficiency roughing is performed on a hard material having high hardness, chipping and chipping of the ball blade and the medium / low gradient blade are effectively prevented, and stable cutting can be performed.
  • the four-blade ball end mill 20 according to the second embodiment of the present invention is substantially the same except that each of the medium and low-gradient blades 8a to 8d consists of only an arcuate portion. Specifically, this is the same as the four-blade ball end mill 1 according to the first embodiment.
  • the same reference numerals are assigned to the same parts as those in the first embodiment. Therefore, only the shapes of the medium and low gradient blades 8a to 8d will be described in detail below.
  • the arcuate portion is entirely curved, but of course, the arcuate portion may partially include a linear portion.
  • the outer end P4 of the medium / low gradient blade 8d and the outer end K4 of the arcuate portion 8d1 coincide.
  • the circumferential width W1 at the point P4 of the flank 10d of the medium / low gradient blade 8d is 20 to 80% of the maximum circumferential width W2 of the ball blade 6d, as in the first embodiment. .
  • a straight line L2 is drawn between the two to obtain the central angle ⁇ of the arcuate portion.
  • the central angle ⁇ of the arcuate portion is preferably 20 to 70 ° as in the first embodiment.
  • the four-blade ball end mill 30 according to the third embodiment of the present invention includes (a) an arcuate portion and a curved portion connected via a bending point. This is substantially the same as the four-blade ball end mill 1 according to the first embodiment except that (b) the ball blade is non-uniformly divided.
  • the same reference numerals are assigned to the same parts as those in the first embodiment. Therefore, only the differences will be described in detail below.
  • Fig. 12 shows a part of Fig. 11 on an enlarged scale.
  • the arcuate portion 8c1 formed when forming the flank 10d extends between the rotation center point O and the point K3, and the curved extension portion 8c2 extending radially inward from the ball blade 6c is arcuate.
  • the part 8c1 is connected to the point K3.
  • the point K3 becomes a bending point between the arcuate portion 8c1 and the curved portion 8c2.
  • the circumferential width W1 at the point P4 of the flank 10d of the medium / low gradient blade 8d is 20 to 80 of the maximum circumferential width W2 of the ball blade 6d, as in the first embodiment. %.
  • the central angle ⁇ of the arcuate portion 8c1 of the medium / low gradient blade 8c formed by the formation of the flank 10d of the medium / low gradient blade 8d is a straight line L1 connecting both ends O and K3 of the arcuate portion 8c1 and the point P4. , The angle formed by L2.
  • the central angle ⁇ of the arcuate portion is preferably 20 to 70 ° as in the first embodiment.
  • the ball blades are unevenly divided, the positions and widths of the ball blades 6a to 6d are different, and the medium and low gradient blades 8a to 8d and the flank surfaces 10a to 10d are also different.
  • Such unevenly divided ball blades further suppress chatter vibration in the case of high-feed roughing of difficult-to-cut materials with high hardness.
  • the thin disc-shaped diamond grindstone that reciprocates in the direction E with respect to the flank 9d of one ball blade (for example, 6d) is gradually lowered to the direction of the arrow F from the point P4. Move to. As a result, a flank 10d that inclines backward from the point P4 in the rotation axis direction is formed.
  • the direction E In order to avoid interference with the ball blade 6c of another flank 9c against which the flank 9d abuts, the direction E must be inclined with respect to the ball blade 6c.
  • the inclination angle in the direction E with respect to the ball blade 6c may be 20 to 50 °.
  • the inclination angle is less than 20 °, the accuracy of the grinding process decreases, and if it exceeds 50 °, the grinding wheel interferes.
  • the medium and low gradient blades 8a to 8d shown in FIG. 11 are formed.
  • FIGS. 15 and 16 show the arrangement of medium and low gradient blades in the three-blade ball end mill 40 of the present invention.
  • the three-blade ball end mill 40 is composed of three ball blades 6a, 6b, 6c and medium-low extending integrally from the end portions P1, P2, P3 of the ball blades 6a, 6b, 6c to the rotation center point O.
  • Gradient blades 8a, 8b, and 8c are provided.
  • Gash 17a, 17b and 17c are formed in front of the ball blades 6a, 6b and 6c in the rotational direction.
  • the medium / low-gradient blade 8a includes an arcuate portion 8a1 that is curved backward in the rotation direction, and a ball blade extension portion 8a2.
  • the ball blade extension portion 8a2 may not be provided, and the arcuate portion 8a1 does not have to be entirely curved, and may be composed of a curved portion and a straight portion. This also applies to the other medium and low gradient blades 8b, 8c.
  • each of the medium and low-gradient blades 8a, 8b, 8c is arranged such that the rotation center point O is located rearward in the rotation axis direction than the connecting portions P1, P2, P3 with the ball blades 6a, 6b, 6c. Further, it is inclined at an inclination angle ⁇ of 0.5 to 3 ° with respect to a plane orthogonal to the rotation axis.
  • the ratio of the radial length X1 of the arcuate portion 8a1 to the radial length X of the medium and low gradient blade 8a is 20 to 100%, as in the first embodiment.
  • the circumferential width W1 of the flank 10a at the connection point P1 between the medium / low-gradient blade 8a and the ball blade 6a is 20 to 80% of the maximum circumferential width of the ball blade and is seen along the rotation axis.
  • the length X in the radial direction of the medium and low gradient blade 8a (the radial distance between the outer end P1 connected to the ball blade 6a and the rotation center point O) is 1.25 to 3.75% of the blade diameter D of the cutting edge portion 3.
  • the central angle ⁇ of the arcuate portion of the medium / low gradient blade 8a is preferably 20 to 70 °, as in the first embodiment.
  • FIGS. 17 and 18 show the arrangement of medium and low gradient blades in the six-blade ball end mill 50 of the present invention.
  • the six-blade ball end mill 50 is integrally formed from six ball blades 6a, 6b, 6c, 6d, 6e, 6f and ends P1, P2, P3, P4, P5, P6 of each ball blade 6a to 6f. It has medium and low gradient blades 8a, 8b, 8c, 8d, 8e, 8f extending to the rotation center point O. Gashes 17a, 17b, 17c, 17d, 17e, and 17f are formed in front of the ball blades 6a to 6f in the rotation direction.
  • the medium / low-gradient blade 8a includes an arcuate portion 8a1 that is curved backward in the rotation direction and a ball blade extension portion 8a2.
  • the ball blade extension portion 8a2 may not be provided, and the arcuate portion 8a1 does not have to be entirely curved, and may be composed of a curved portion and a straight portion. This also applies to the other medium and low gradient blades 8b-8f.
  • each of the medium and low-gradient blades 8a to 8f is orthogonal to the rotation axis so that the rotation center point O is positioned rearward in the rotation axis direction from the connecting portions P1 to P6 with the ball blades 6a to 6f. It is inclined at an inclination angle ⁇ of 0.5 to 3 ° with respect to the surface.
  • the ratio of the radial length X1 of the arcuate portion 8a1 to the radial length X of the medium / low gradient blade 8a is 20 to 100%, as in the first embodiment.
  • the circumferential width W1 of the flank 10a at the connection point P1 between the medium / low-gradient blade 8a and the ball blade 6a is 20 to 80% of the maximum circumferential width of the ball blade, as in the first embodiment.
  • the radial length X of the medium / low gradient blade 8a when viewed along the rotation axis (radial distance between the outer end P1 connected to the ball blade 6a and the rotation center point O) is also the same as that of the first embodiment.
  • the central angle ⁇ of the arcuate portion of the medium / low gradient blade 8a is preferably 20 to 70 ° as in the first embodiment.
  • Example 1 The four-blade ball end mill A according to the present invention having the shape shown in FIGS. 1 to 4 and the four-blade ball end mill B described in JP-A-2009-56559 (ball portion near the rotation center point) The tip region has two grooves crossing the cross). All have equally divided cutting edges. Table 1 shows the size of each 4-flute ball end mill.
  • Ratio of radial length X1 of arcuate part to radial length X of medium and low gradient blades (%).
  • Each four-flute ball end mill was mounted on an NC-controlled three-axis machining center, and a workpiece made of SKD61 (alloy tool steel) having a Rockwell hardness of HRC 50 was cut into a plane under the following cutting condition 1.
  • the medium and low gradient blades were also observed for defects and chipping, and VBmax was measured.
  • the wear width is an average value of VBmax of the flank faces of the four ball blades.
  • Cutting condition 1 Cutting method: Dry surface cutting using air blow Cutting speed Vc: 94 m / min Number of revolutions n: 3750 min -1 Feed rate Vf: 1500 mm / min Feed per tooth fz: 0.1 mm / tooth axial depth of cut ap: 0.7 mm Radial cutting depth ae: 1.75 mm Tool overhang OH: 32 mm
  • the four blade ball end mill A of the present invention since the medium and low gradient blades connected to the ball blade with a small inclination angle are also involved in the cutting process, the cutting process can proceed in a stable state, An excessive cutting load is not applied to the end of the ball blade, and chatter vibration is suppressed. Further, the four-blade ball end mill A of the present invention has a wear width of the ball blade by cutting for 90 minutes is about 1/2 of that of the four-blade ball end mill B, and can be determined to have a long life.
  • Example 2 Four-blade ball end mill C shown in FIG. 9 and four-blade ball end mill described in JP-A-2009-56559 under the same conditions as in Example 1 except that OH / D was changed to 6 and cutting condition 2 was used Using B, a pocket on a standing wall of a workpiece made of YXR3 (registered trademark) with a Rockwell hardness HRC of 58 (length: 25 mm, width: 25 mm, height: 14.7 mm) is cut for 90 minutes. did.
  • YXR3 is a steel type used for cold forging dies.
  • Cutting condition 2 Cutting method: Dry cutting of standing wall pocket using air blow Cutting speed Vc: 38 m / min Number of revolutions n: 1500 min -1 Feed rate Vf: 225 mm / min Feed per tooth fz: 0.075 mm / tooth axial depth of cut ap: 0.35 mm Radial depth of cut ae: 1.23 mm Tool overhang OH: 48 mm
  • FIGS. 19 (a) and 19 (b) The results of cutting using the four-blade ball end mill C of the present invention are shown in FIGS. 19 (a) and 19 (b), and the results of cutting using the four-blade ball end mill B are shown in FIG. 20 (a). And it is shown in FIG. 20 (b).
  • FIG. 19 and FIG. (a) As shown in FIGS. 19 (a) and 19 (b), in the four-blade ball end mill C of the present invention, the wear width of the flank face of the ball blade is as small as 0.07 mm even after 90 minutes, and normal wear. It was in the range.
  • FIGS. 19 (a) and 19 (b) As shown in FIGS.
  • Example 3 Using the above-described four-fluid ball end mills A and B, an inclined surface (an inclination angle of 30 °) of the workpiece made of YXR3 (registered trademark) was cut under the same cutting condition 2 as in Example 2. In the cutting of the inclined surface, the ball blade near the rotation center point O was also involved in the cutting. As a result of cutting for 90 minutes, in the four-blade ball end mill A of the present invention, the wear, chipping, and chipping to the extent that the processing accuracy is affected to the ball blade and the medium / low gradient blade were not recognized. On the other hand, chipping similar to that shown in FIG. 20 (b) was observed on the ball blade of the four-blade ball end mill B. Since the four-flute ball end mill B does not have a medium or low-gradient blade, it can be assumed that chatter vibration was generated by a large cutting load applied near the rotation center point O, which caused chipping of the ball blade.
  • chatter vibration was generated by a large cutting load applied near
  • Example 4 Four-blade ball end mill A of the present invention and Japanese Patent Application Laid-Open No. 2003-225821 shown in FIG. 26 under the same conditions as in Example 1 except that OH / D is 7 and the work material is SKD11 with an HRC of 60. Using the four-blade ball end mill D (equal division) described in 1 above, the workpiece was subjected to plane cutting under the following cutting condition 3.
  • Cutting condition 3 Cutting method: Dry surface cutting using air blow Cutting speed Vc: 94 m / min Number of revolutions n: 3750 min -1 Feed rate Vf: 1500 mm / min Feed per tooth fz: 0.1 mm / tooth axial depth of cut ap: 0.7 mm Radial cutting depth ae: 1.75 mm Tool overhang OH: 56 mm
  • the chipping and chipping of the ball blade and the medium / low gradient blade were observed by cutting for 40 seconds (cutting distance: 1 mm). As a result, no chipping or chipping was observed on the ball blade and the medium / low gradient blade of the four-blade ball end mill A, but chipping was observed on the ball blade of the four-blade ball end mill D.
  • the reason why chipping occurred in the 4-flute ball end mill D at the beginning of cutting is that the ball blade extends to the rotation center point O. It can be inferred that the vibration is generated and the cutting load acting on the ball blade is uneven due to chatter vibration. On the other hand, in the four-blade ball end mill A, it is considered that the occurrence of chatter vibration was suppressed by the medium-low gradient blade.
  • Example 5 YXR3 (registered trademark) with an HRC of 58 using a four-flute ball end mill A ′ shown in FIG. 11 (the cutting edges are arranged in an irregular division of 4 ° in the circumferential direction around the rotation center point O) ) After cutting the workpiece in a straight line under the following cutting condition 5, cut the corner that bends 90 ° on the plane, and then repeat the cutting in a straight line again. went. In the case of 4 ° unequal division, the arrangement angles of the four ball blades are 86 °, 94 °, 86 °, and 94 ° in this order. Table 3 shows the main specifications of the ball end mill A '. FIG.
  • FIG. 21 shows the results of evaluating chatter vibration using a three-component waveform of cutting resistance.
  • the vertical axis in FIG. 21 is component force [N], and the horizontal axis is Time [S].
  • Cutting condition 5 Cutting method: Dry surface cutting using air blow Cutting speed Vc: 100 m / min Rotational speed n: 4000 min -1 Feed rate Vf: 1920 mm / min Feed per tooth fz: 0.12 mm / tooth axial depth of cut ap: 0.3 mm Radial cutting depth ae: 0.1 mm Tool overhang OH: 32 mm
  • Ratio of radial length X1 of arcuate part to radial length X of medium and low gradient blades (%).
  • Example 6 The cutting performance of the ball end mills E to M in which the specifications of the ball end mill A ′ used in Example 5 were changed as shown in Table 4 were evaluated.
  • Ball end mills E to L are within the scope of the present invention, and ball end mill M is outside the scope of the present invention.
  • the specifications not described in Table 4 were the same as the ball end mill A ′ used in Example 5.
  • Cutting conditions were set to cutting conditions 5 as in Example 5, and chatter vibration was evaluated using a three-component force waveform of cutting resistance as in the ball end mill A ′.
  • Table 4 shows the evaluation results (presence / absence of chatter vibration). Note: (1) Ratio of radial length X1 of arcuate part to radial length X of medium and low gradient blades (%). (2) The ratio between the circumferential width W1 and the maximum circumferential width W2 of the ball blade at the connection point P between the flank of the medium and low gradient blade and the ball blade.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

 A multiple-edged ball end mill which is equipped with a shank part, a cutting edge part having a ball part, and at least three cutting edges each having a ball edge. Therein: concave inclined edges integrally extend from the tips of each ball edge in the vicinity of the rotational centre of the tip of the ball part as far as the rotational centre; each concave inclined edge has an arch-shaped section which is at least curved rearward to the rotational direction; each concave inclined part is inclined at an inclination angle (α) of 0.5-3° relative to the plane perpendicular to the rotational axis, such that the rotational centre is located rearward in the rotational axis direction; the proportion, in the radial direction, of the length of arch-shaped section in each of the concave inclined parts is 20-100%; in each of the cutting edges, the width, in the circumferential direction, of the flank surface at the connection point between the concave inclined edge and the ball edge is 20-80% of the maximum width, in the circumferential direction, of the ball edge; and the length (X), in the radial direction, of each of the concave inclined edges is 1.25-3.75% of the cutting diameter (D) of the cutting edge part.

Description

多刃ボールエンドミルMulti-blade ball end mill
 本発明は、各種の金型に用いられる焼入れ鋼等の高硬度の難削材に対して高送りの荒加工を行っても、チッピング及び欠損が少なく長寿命である多刃ボールエンドミルに関する。 The present invention relates to a multi-blade ball end mill that has a long service life with little chipping and chipping even when high-feed roughing is performed on hard-to-cut materials such as hardened steel used for various molds.
 自動車工業や電子工業等において各種の部品を製造するための、高硬度の難削材からなる金型を高能率に切削加工し得る長寿命のボールエンドミルとして、シャンク部の先端部に3枚以上のボール刃を有する超硬合金製のソリッド型多刃のボールエンドミルが広く使用されている。しかし、ボールエンドミルを用いて被削材を切削加工すると、ボール刃の回転中心点で回転速度がゼロであるため、ボール刃の回転中心点近傍に大きな切削加工負荷がかかり、ビビリ振動が発生することが多い。その結果、ボール刃の回転中心点近傍にチッピング及び欠損が発生する。 Three or more pieces at the tip of the shank as a long-life ball end mill that can efficiently cut molds made of hard hard-to-cut materials for manufacturing various parts in the automotive and electronics industries Solid-type, multi-blade ball end mills made of cemented carbide having the following ball blades are widely used. However, when the workpiece is cut using a ball end mill, the rotation speed is zero at the rotation center point of the ball blade, so a large cutting load is applied in the vicinity of the rotation center point of the ball blade, and chatter vibration is generated. There are many cases. As a result, chipping and chipping occur near the rotation center point of the ball blade.
 このため、高硬度の難削材からなる金型等を高送りで荒加工するためのボールエンドミルでは、ボール刃の回転中心点近傍におけるチッピング及び欠損を防止する種々の試みがなされている。例えば、特開2002-187011号は、図22に示すように、3枚以上のボール刃を設けた多刃ボールエンドミルにおいて、回転軸線近傍のチップポケットの不足を解消して切屑詰りの発生を防止するために、各ボール刃のランドにシンニングを施し、回転中心近傍で各ボール刃を欠落させたボールエンドミルを提案している。しかし、図22及び図23に示す特開2002-187011号のボールエンドミルでは、シンニングする前のボール刃の逃げ面は、図24に示すように、回転中心点Oにおいて幅がゼロになっている。このようなボール刃に対してシンニングを施すことにより、図25に示す逃げ面を有するシンニング部が形成される。このように、特開2002-187011号の多刃ボールエンドミルでは回転中心点Oでボール刃の逃げ面の幅がほぼゼロになっており、実質的に切刃が存在しない。さらにシンニングにより回転方向後方に隣接するボール刃に弓状部を有する中低勾配刃が形成されていない。そのため、回転中心点O近傍に大きな負荷がかかったときにビビリ振動が発生し、ボール刃のチッピング及び欠損の原因となる。 For this reason, various attempts have been made to prevent chipping and chipping in the vicinity of the rotation center point of the ball blade in a ball end mill for roughing a die made of a hard material having high hardness at a high feed rate. For example, as shown in FIG. 22, JP 2002-187011 discloses a multi-blade ball end mill with three or more ball blades that eliminates chip pockets near the rotation axis and prevents chip clogging. In order to achieve this, a ball end mill has been proposed in which the lands of each ball blade are thinned and each ball blade is omitted near the center of rotation. However, in the ball end mill of Japanese Patent Laid-Open No. 2002-187011 shown in FIGS. 22 and 23, the flank of the ball blade before thinning has a width of zero at the rotation center point O as shown in FIG. . By thinning such a ball blade, a thinning portion having a flank as shown in FIG. 25 is formed. As described above, in the multi-blade ball end mill disclosed in Japanese Patent Laid-Open No. 2002-187011, the width of the flank face of the ball blade is substantially zero at the rotation center point O, and there is substantially no cutting edge. Further, a thin and medium gradient blade having an arcuate portion is not formed on the ball blade adjacent to the rear in the rotational direction by thinning. Therefore, chatter vibration occurs when a large load is applied in the vicinity of the rotation center point O, causing chipping and chipping of the ball blade.
 特開2003-225821号は、3枚以上のボール刃を有するボールエンドミルにおいて、高速送り加工を行ったときにボール刃の回転中心点近傍に微小チッピング及び欠損が発生するのを防止するために、全てのボール刃の逃げ面が軸心まで達しているとともに、V字状断面を有するギャッシュが回転中心点近傍まで形成されている多刃ボールエンドミルを提案している。しかし図26に示すように、この多刃ボールエンドミルは、回転中心点が軸線方向に後退した中低勾配刃を有していないので、回転中心点近傍にかかる切削負荷によるビビリ振動の問題を解消していない。 Japanese Patent Application Laid-Open No. 2003-225821 is a ball end mill having three or more ball blades, in order to prevent the occurrence of minute chipping and chipping near the rotation center point of the ball blade when performing high-speed feed processing. A multi-blade ball end mill is proposed in which the flank faces of all the ball blades reach the axial center, and a gasche having a V-shaped cross section is formed to the vicinity of the rotation center point. However, as shown in Fig. 26, this multi-blade ball end mill does not have a medium or low-gradient blade whose center of rotation is retracted in the axial direction, thus eliminating the chatter vibration problem caused by the cutting load near the center of rotation. Not done.
 特開2009-56559号は、2枚以上のボール刃を有するボールエンドミルであって、回転中心点を通る断面V字状又はU字状の溝部がボール刃の間に形成されており、もって高能率加工でも工具中心部からの切屑の排出を良好にしたボールエンドミルを提案している。しかし、このボールエンドミルは、回転中心点近傍に切れ刃が存在しないので、回転中心点近傍にかかる大きな負荷によりビビリ振動が発生し、ボール刃にチッピング及び欠損が発生するおそれがある。 Japanese Patent Application Laid-Open No. 2009-56559 is a ball end mill having two or more ball blades, in which a V-shaped or U-shaped groove section passing through the rotation center point is formed between the ball blades. We have proposed a ball end mill that improves chip discharge from the tool center even in efficient machining. However, since this ball end mill has no cutting edge in the vicinity of the rotation center point, chatter vibrations are generated by a large load in the vicinity of the rotation center point, and there is a possibility that chipping and chipping occur in the ball blade.
 特開平9-267211号は、金型等の高速切削に適するように、ボール刃のノーズ部分に4°以上の傾斜角でV字状の底刃を設けた二枚刃ボールエンドミルを提案している。しかし、回転中心点にはボール刃の逃げ面がないので、回転中心点近傍にかかる大きな負荷によりビビリ振動が発生し、ボール刃にチッピング及び欠損が発生するおそれがある。 Japanese Patent Laid-Open No. 9-267211 proposes a two-blade ball end mill with a V-shaped bottom blade at a tilt angle of 4 ° or more at the nose portion of the ball blade so that it is suitable for high-speed cutting of dies and the like Yes. However, since there is no flank of the ball blade at the rotation center point, chatter vibrations are generated by a large load applied near the rotation center point, and there is a possibility that chipping and chipping occur in the ball blade.
 従って、本発明の目的は、焼入れ鋼等の高硬度の難削材の高送り荒加工に好適な長寿命の多刃のボールエンドミルであって、回転中心点近傍に切屑が詰まるのを防止するためにチップポケットを有するとともに、ビビリ振動の発生を抑制し、もってボール刃のチッピング及び欠損を効果的に防止することができる三枚刃以上の多刃ボールエンドミルを提供することである。 Accordingly, an object of the present invention is a long-life, multi-blade ball end mill suitable for high-feed roughing of hard-hardened hard materials such as hardened steel, and prevents clogging of chips near the rotation center point. Accordingly, it is an object of the present invention to provide a multi-blade multi-blade ball end mill having three or more blades which has a chip pocket and suppresses the occurrence of chatter vibration, thereby effectively preventing chipping and chipping of the ball blade.
 本発明の多刃ボールエンドミルは、回転軸を中心として回転するシャンク部と、先端にボール部を有する切れ刃部と、前記切れ刃部に形成され、それぞれボール刃を有する3枚以上の切れ刃とを具備し、
 前記ボール部先端の回転中心点の近傍で各ボール刃の先端から前記回転中心点まで中低勾配刃が一体的に延在しており、
 各中低勾配刃は少なくとも回転方向後方に湾曲した弓状部を有し、
 各中低勾配刃は、前記ボール刃との連結部より前記回転中心点の方が回転軸方向後方に位置するように、前記回転軸と直交する面に対して0.5~3°の傾斜角αで傾斜しており、
 各中低勾配刃における前記弓状部の半径方向長さの割合は20~100%であり、
 各切れ刃において中低勾配刃とボール刃との連結点における逃げ面の円周方向幅は、前記ボール刃の最大円周方向幅の20~80%であり、
 各中低勾配刃の半径方向長さX(ボール刃に繋がる外端と前記回転中心点との半径方向距離)は前記切れ刃部の刃径Dの1.25~3.75%であることを特徴とする。
The multi-blade ball end mill of the present invention includes a shank portion that rotates about a rotation axis, a cutting blade portion having a ball portion at a tip, and three or more cutting blades formed on the cutting blade portion, each having a ball blade. And
Middle and low gradient blades extend integrally from the tip of each ball blade to the rotation center point in the vicinity of the rotation center point of the ball portion tip,
Each of the medium and low gradient blades has at least an arcuate portion curved backward in the rotational direction,
Each of the medium and low gradient blades has an inclination angle α of 0.5 to 3 ° with respect to the plane perpendicular to the rotation axis so that the rotation center point is located rearward in the rotation axis direction than the connecting portion with the ball blade. Is inclined at
The ratio of the radial length of the arcuate portion in each medium and low gradient blade is 20 to 100%,
In each cutting edge, the circumferential width of the flank at the connection point between the medium and low gradient blade and the ball blade is 20 to 80% of the maximum circumferential width of the ball blade,
The radial length X (the radial distance between the outer end connected to the ball blade and the rotation center point) of each medium / low gradient blade is 1.25 to 3.75% of the blade diameter D of the cutting blade portion. .
 各中低勾配刃は、前記回転中心点側にある弓状部と、前記弓状部まで延在する前記ボール刃の延長部とからなるのが好ましい。ボール刃延長部は直線状でも湾曲状でも良い。弓状部と直線部とは屈曲点なしにスムーズに連結しているのが好ましいが、両者の間に屈曲点があっても良い。 Each of the medium and low gradient blades preferably includes an arcuate portion on the rotation center point side and an extension portion of the ball blade extending to the arcuate portion. The ball blade extension may be linear or curved. The arcuate portion and the straight portion are preferably connected smoothly without a bending point, but there may be a bending point between them.
 各中低勾配刃の弓状部の中心角βは20~70°であるのが好ましい。 The center angle β of the arcuate portion of each medium and low gradient blade is preferably 20 to 70 °.
 各中低勾配刃の弓状部の頂点からその両端を結ぶ線分に降ろした垂線の長さと前記線分の長さとの比(湾曲度)は5~40%であるのが好ましい。 It is preferable that the ratio (degree of curvature) of the length of the perpendicular line dropped from the apex of the arcuate part of each medium and low gradient blade to the line segment connecting both ends thereof and the length of the line segment is 5 to 40%.
 前記ボール刃の前記回転軸を中心とした配置は、円周方向に等分割又は不等分割のいずれでも良いが、不等分割の方が好ましい。 The arrangement of the ball blades around the rotation axis may be either equally divided or unequal divided in the circumferential direction, but unequal division is preferred.
 本発明の多刃ボールエンドミルでは、ボール部先端の回転中心点の近傍で各ボール刃の先端と回転中心点との間に中低勾配刃が一体的に延在しており、各中低勾配刃は、ボール刃との連結部より回転中心点の方が回転軸方向後方に位置するように、回転軸と直交する面に対して0.5~3°の傾斜角αで傾斜している。また、回転軸に沿って見たときの各中低勾配刃の半径方向長さXは切れ刃部の刃径Dの1.25~3.75%である。このため、切れ刃部の回転中心点近傍に、微小な幅Tの窪み部(チップポケット)が形成される。難削材の高送りの荒加工中に、中低勾配刃も切削加工に関与するので、回転中心点O近傍に大きな切削負荷がかかるのを緩和することができるだけでなく、切屑の排出も効果的に行うことができる。 In the multi-blade ball end mill of the present invention, the medium and low gradient blades extend integrally between the tip of each ball blade and the rotation center point in the vicinity of the rotation center point of the ball portion tip. The blade is inclined at an inclination angle α of 0.5 to 3 ° with respect to the plane orthogonal to the rotation axis so that the rotation center point is located rearward in the rotation axis direction than the connecting portion with the ball blade. Further, the length X in the radial direction of each medium / low gradient blade when viewed along the rotation axis is 1.25 to 3.75% of the blade diameter D of the cutting edge portion. For this reason, a recess (chip pocket) having a minute width T is formed in the vicinity of the rotation center point of the cutting edge. During roughing of difficult-to-cut materials with high feed, the medium and low-gradient blades are also involved in the cutting process, so it is possible not only to reduce the large cutting load near the rotation center point O, but also to reduce chip discharge. Can be done automatically.
 その上、各中低勾配刃は、少なくとも回転方向後方に湾曲した弓状部を有するので、難削材に対しても切削抵抗が小さい。また、各中低勾配刃における前記弓状部の半径方向長さの割合は20~100%と大きく、各中低勾配刃と各ボール刃との連結点における逃げ面の円周方向幅もボール刃の最大円周方向幅の20~80%と大きい。そのため、各中低勾配刃は十分な剛性を有し、難削材の高送りの荒加工でもビビリ振動を抑制でき、もってボール刃の早期摩耗やチッピング及び欠損の発生を防止できる。 In addition, each of the medium and low gradient blades has an arcuate portion that is curved at least rearward in the rotation direction, and therefore has a low cutting resistance even for difficult-to-cut materials. In addition, the ratio of the radial length of the arcuate portion in each medium / low gradient blade is as large as 20 to 100%, and the circumferential width of the flank at the connection point between each medium / low gradient blade and each ball blade is also the ball. 20 to 80% of the maximum circumferential width of the blade is large. Therefore, each of the medium and low gradient blades has sufficient rigidity, can suppress chatter vibration even in high-feed rough machining of difficult-to-cut materials, and can prevent the ball blades from being worn early, chipped and chipped.
 このような特徴を有する本発明の多刃ボールエンドミルは、難削材の高送りの荒加工に好適であり、特に難削材からなる金型の荒加工に好適である。 The multi-blade ball end mill of the present invention having such characteristics is suitable for high-feed rough machining of difficult-to-cut materials, and particularly suitable for rough machining of dies made of difficult-to-cut materials.
本発明の第一の実施形態による四枚刃ボールエンドミルを示す側面図である。1 is a side view showing a four-blade ball end mill according to a first embodiment of the present invention. 図1の四枚刃ボールエンドミルのボール部における切れ刃を示す拡大正面図である。FIG. 2 is an enlarged front view showing a cutting edge in a ball portion of the four-blade ball end mill of FIG. 図1の四枚刃ボールエンドミルのボール刃の軌跡を示す拡大図である。FIG. 2 is an enlarged view showing a trajectory of a ball blade of the four-blade ball end mill of FIG. 図1の四枚刃ボールエンドミルの中低勾配刃を示す拡大正面図である。FIG. 2 is an enlarged front view showing a medium-low gradient blade of the four-blade ball end mill of FIG. 中低勾配刃の弓状部の中心角を求めるための図4の一部分を示す拡大正面図である。FIG. 5 is an enlarged front view showing a part of FIG. 4 for obtaining the central angle of the arcuate portion of the medium and low gradient blade. 中低勾配刃の弓状部の湾曲度を求めるための図4の一部分を示す拡大正面図である。FIG. 5 is an enlarged front view showing a part of FIG. 4 for obtaining the degree of curvature of the arcuate portion of the medium and low gradient blade. 図4の中低勾配刃を示す拡大斜視図である。FIG. 5 is an enlarged perspective view showing a middle / low gradient blade in FIG. 図4の一部を示す部分拡大斜視図である。FIG. 5 is a partially enlarged perspective view showing a part of FIG. 図2のA-A断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 図5(a) のB-B断面図である。FIG. 5 (a) is a cross-sectional view taken along line BB of FIG. 本発明の第二の実施形態による四枚刃ボールエンドミルの中低勾配刃を示す拡大正面図である。It is an enlarged front view which shows the medium and low-gradient blade of the four blade ball end mill by 2nd embodiment of this invention. 中低勾配刃の弓状部の中心角を求めるための図9の一部分を示す拡大正面図である。FIG. 10 is an enlarged front view showing a part of FIG. 9 for obtaining the central angle of the arcuate portion of the medium and low gradient blade. 本発明の第三の実施形態による四枚刃ボールエンドミルを示す拡大正面図である。It is an enlarged front view which shows the four blade ball | bowl end mill by 3rd embodiment of this invention. 中低勾配刃の構成を説明するための図11の一部分を示す拡大正面図である。FIG. 12 is an enlarged front view showing a part of FIG. 11 for explaining the configuration of the medium-low gradient blade. 本発明の第三の実施形態による四枚刃ボールエンドミルを製造するために中低勾配刃を形成する前の段階のボール部を示す拡大正面図である。It is an enlarged front view which shows the ball | bowl part of the step before forming a medium-low-gradient blade in order to manufacture the four blade ball end mill by 3rd embodiment of this invention. 1つの中低勾配刃を形成した後のボール部を示す拡大正面図である。It is an enlarged front view which shows the ball | bowl part after forming one middle low gradient blade. 本発明の三枚刃ボールエンドミルのボール部における切れ刃を示す拡大正面図である。It is an enlarged front view which shows the cutting edge in the ball | bowl part of the three blade ball end mill of this invention. 三枚刃ボールエンドミルにおける中低勾配刃の弓状部の中心角、中低勾配刃とボール刃との連結点における逃げ面の円周方向幅、及び回転軸に沿って見たときの中低勾配刃の半径方向長さを求めるために、図15の一部分を示す拡大正面図である。The center angle of the arcuate part of the medium / low gradient blade in the three-flute ball end mill, the circumferential width of the flank at the connection point between the medium / low gradient blade and the ball blade, and the medium / low when viewed along the rotation axis FIG. 16 is an enlarged front view showing a part of FIG. 15 in order to obtain the radial length of the gradient blade. 本発明の六枚刃ボールエンドミルのボール部における切れ刃を示す拡大正面図である。It is an enlarged front view which shows the cutting edge in the ball | bowl part of the 6-flute ball end mill of this invention. 六枚刃ボールエンドミルにおける中低勾配刃の弓状部の中心角、中低勾配刃とボール刃との連結点における逃げ面の円周方向幅、及び回転軸に沿って見たときの中低勾配刃の半径方向長さを求めるために、図17の一部分を示す拡大正面図である。The center angle of the arcuate part of the medium and low gradient blade in the 6-flute ball end mill, the circumferential width of the flank at the connection point between the medium and low gradient blade and the ball blade, and the medium and low when viewed along the rotation axis FIG. 18 is an enlarged front view showing a part of FIG. 17 in order to obtain the radial length of the gradient blade. 実施例2で90分間の切削加工を行った四枚刃ボールエンドミルAのボール刃の正面を示す光学顕微鏡写真である。4 is an optical micrograph showing the front of a ball blade of a four-blade ball end mill A that was cut for 90 minutes in Example 2. FIG. 実施例2で90分間の切削加工を行った四枚刃ボールエンドミルAのボール刃を斜めに示す光学顕微鏡写真である。FIG. 3 is an optical micrograph showing an oblique view of a ball blade of a four-blade ball end mill A that was cut for 90 minutes in Example 2. FIG. 実施例2で90分間の切削加工を行った四枚刃ボールエンドミルBのボール刃の正面を示す光学顕微鏡写真である。2 is an optical micrograph showing the front of a ball blade of a four-blade ball end mill B subjected to a cutting process for 90 minutes in Example 2. FIG. 実施例2で90分間の切削加工を行った四枚刃ボールエンドミルBのボール刃を斜めに示す光学顕微鏡写真である。FIG. 3 is an optical micrograph showing an oblique view of a ball blade of a four-blade ball end mill B that was cut for 90 minutes in Example 2. FIG. 実施例5において、不等分割に配置されたボール刃を有する四枚刃ボールエンドミルA’を用いて切削加工を行ったときの切削抵抗の3分力Fx、Fy、Fzを示すグラフである。In Example 5, it is a graph which shows 3 component force Fx, Fy, and Fz of cutting resistance when cutting is performed using the 4-flute ball end mill A 'which has the ball blades arranged in unequal division. 特開2002-187011号の多刃ボールエンドミルのボール刃を示す拡大正面図である。It is an enlarged front view which shows the ball blade of the multiblade ball end mill of Unexamined-Japanese-Patent No. 2002-187011. 特開2002-187011号の多刃ボールエンドミルを示す正面図である。It is a front view which shows the multiblade ball end mill of Unexamined-Japanese-Patent No. 2002-187011. 特開2002-187011号の多刃ボールエンドミルにおいて、シンニングを施す前のボール刃を示す正面図である。FIG. 2 is a front view showing a ball blade before thinning in a multi-blade ball end mill disclosed in Japanese Patent Laid-Open No. 2002-187011. 特開2002-187011号の多刃ボールエンドミルにおいて、シンニングを施した後のボール刃の詳細を示す拡大正面図である。FIG. 2 is an enlarged front view showing details of a ball blade after thinning in a multi-blade ball end mill disclosed in Japanese Patent Laid-Open No. 2002-187011. 特開2003-225821号に記載の四枚刃ボールエンドミルを示す正面図である。FIG. 3 is a front view showing a four-blade ball end mill described in JP-A-2003-225821.
 高硬度の難削材の高送り荒加工に適する本発明の多刃ボールエンドミルを、超硬合金製のソリッド型多刃ボールエンドミルを例にとって、以下詳細に説明する。本発明の多刃ボールエンドミルの切れ刃の枚数は3~6枚が好ましい。 The multi-blade ball end mill of the present invention suitable for high-feed roughing of difficult-to-cut materials with high hardness will be described in detail below using a solid multi-blade ball end mill made of cemented carbide as an example. The number of cutting edges of the multi-blade ball end mill of the present invention is preferably 3 to 6.
 本明細書において用いる用語「高硬度の難削材」は、例えば焼き入れ処理した合金工具鋼(SKD61、SKD11、粉末ハイス等)のような40以上、特に50以上のロックウェル硬度HRCを有する金属を意味する。用語「荒加工」は、仕上げ加工の前に行う加工であって、切削能率を上げるために切込深さ及び送り量が大きく、もって切削負荷が大きい加工を意味する。また用語「高送り加工」は、高能率に加工するために送り速度Vf、軸方向切込み量ap及び径方向切込み量aeのいずれか1つ以上を大きくした加工を意味する。高硬度の難削材の高送り加工の場合、例えば三枚刃ボールエンドミルでは送り速度Vfを1250 mm/min以上、軸方向切込み量apを0.3 mm以上、径方向切込み量aeを0.9 mm以上するのが望ましく、四枚刃ボールエンドミルでは送り速度Vfを1500 mm/min以上、軸方向切込み量apを0.4 mm以上、径方向切込み量aeを1.2 mm以上にするのが望ましい。 As used herein, the term “high hardness difficult-to-cut material” refers to a metal having a Rockwell hardness HRC of 40 or more, particularly 50 or more, such as hardened alloy tool steel (SKD61, SKD11, powder high speed, etc.). Means. The term “roughing” means processing performed before finishing processing, which has a large cutting depth and feed amount in order to increase cutting efficiency, and thus has a large cutting load. The term “high feed machining” means machining in which any one or more of the feed speed Vf, the axial cutting depth ap, and the radial cutting depth ae is increased in order to perform high-efficiency machining. For high-feed machining of hard hard-to-cut materials, for example, with a 3-flute ball end mill, feed rate Vf is 1250 mm / min or more, axial cutting depth ap is 0.3 mm or more, and radial cutting depth ae is 0.9 mm or more. In a four-flute ball end mill, it is desirable that the feed rate Vf is 1500 mm / min or more, the axial cutting depth ap is 0.4 mm or more, and the radial cutting depth ae is 1.2 mm or more.
 超硬合金製のソリッド型多刃ボールエンドミルは、WC粉末とCo粉末の混合粉末を金型成形及び焼結した後、切れ刃部、ギャッシュ、切屑排出溝、逃げ面、すくい面等の仕上げ加工(研削加工)を行って製造される。必要に応じて、切れ刃部に例えばTiSiN、TiAlN、TiAlSiN、CrN、CrSiN、AlCrN、AlCrSiN、 AlTiCrN又はAlCrVBN等の公知の耐摩耗性硬質皮膜を被覆する。 Solid-type multi-blade ball end mill made of cemented carbide is a mixture of WC powder and Co powder, which is molded and sintered, and then finished with cutting edges, gashes, chip discharge grooves, flank surfaces, rake surfaces, etc. Manufactured by (grinding). If necessary, a known wear-resistant hard coating such as TiSiN, TiAlN, TiAlSiN, CrN, CrSiN, AlCrN, AlCrSiN, AlTiCrN, or AlCrVBN is coated on the cutting edge portion.
[1] 四枚刃ボールエンドミル
(1) 第一の実施形態
 図1~図5に示す本発明の第一の実施形態による四枚刃ボールエンドミル1は、円柱状のシャンク部2と、切れ刃部3とを備えている。切れ刃部3は、先端のボール部3aと、ボール部3aとシャンク部2との間の外周刃部3bとからなる。切れ刃部3には、所定のねじれ角を有する4枚の切刃5a、5b、5c、5dが形成されており、各切刃5a~5dはボール部3aに形成された円弧状ボール刃6a、6b、6c、6dと、外周刃部3bに形成された螺旋状外周刃7a、7b、7c、7dとからなり、各ボール刃6a~6dと各外周刃7a~7dはスムーズに(屈曲点なしに)連結している。図2に示すように、ボール部3aに4枚のボール刃6a~6dがそれぞれギャッシュ17a~17dを介して回転中心点Oの廻りに配置されている。
[1] Four-flute ball end mill
(1) First Embodiment A four-blade ball end mill 1 according to a first embodiment of the present invention shown in FIGS. 1 to 5 includes a cylindrical shank portion 2 and a cutting edge portion 3. The cutting edge portion 3 includes a ball portion 3a at the tip, and an outer peripheral blade portion 3b between the ball portion 3a and the shank portion 2. The cutting blade portion 3 is formed with four cutting blades 5a, 5b, 5c, 5d having a predetermined twist angle, and each cutting blade 5a to 5d is an arcuate ball blade 6a formed on the ball portion 3a. , 6b, 6c, 6d and spiral outer peripheral blades 7a, 7b, 7c, 7d formed on the outer peripheral blade portion 3b. Each of the ball blades 6a-6d and each of the outer peripheral blades 7a-7d is smooth (bending point). Without connection). As shown in FIG. 2, four ball blades 6a to 6d are arranged around the rotation center point O through the gashes 17a to 17d in the ball portion 3a.
 図2及び図6に示すように、各ボール刃6a~6dの回転方向前方にすくい面11a~11dが形成されており、回転方向後方に逃げ面(ランド)9a、9b、9c、9dが形成されている。また、各すくい面11a~11dの回転方向前方にギャッシュ17a~17dが形成されており、各ギャッシュ17a~17dは各切屑排出溝4に接している。 As shown in FIG. 2 and FIG. 6, rake surfaces 11a to 11d are formed in front of the ball blades 6a to 6d in the rotational direction, and relief surfaces (lands) 9a, 9b, 9c and 9d are formed in the rear in the rotational direction. Has been. Further, gashes 17a to 17d are formed in front of the rake faces 11a to 11d in the rotation direction, and the gashes 17a to 17d are in contact with the chip discharge grooves 4.
 図3及び図4はボール部3aの回転中心点O近傍を示す。各ボール刃6a~6d(図3では6a、6cのみ見える)は、切れ刃部3の外周から回転中心点Oの近傍の点P1、P2、P3、P4(図3ではP1、P3のみ見える)まで延在している。各点P1~P4から回転中心点Oまでの間に、中低勾配刃8a、8b、8c、8dが延在している。従って、点P1~P4はボール刃6a~6dの先端、中低勾配刃8a~8dの外端、又はボール刃6a~6dと中低勾配刃8a~8dの連結点と呼ぶことができる。各中低勾配刃8a~8dの回転方向後方に逃げ面10a、10b、10c、10dが形成されている。各逃げ面10a~10dは、対応するボール刃逃げ面9a~9dと境界線15a、15b、15c、15dを介して連接している。 3 and 4 show the vicinity of the rotation center point O of the ball portion 3a. Ball blades 6a to 6d (only 6a and 6c are visible in FIG. 3) are points P1, P2, P3, and P4 near the rotation center point O from the outer periphery of the cutting edge 3 (only P1 and P3 are visible in FIG. 3). It extends to. Middle and low gradient blades 8a, 8b, 8c, and 8d extend between the points P1 to P4 and the rotation center point O. Therefore, the points P1 to P4 can be called the tips of the ball blades 6a to 6d, the outer ends of the medium / low gradient blades 8a to 8d, or the connection points of the ball blades 6a to 6d and the medium / low gradient blades 8a to 8d. Relief surfaces 10a, 10b, 10c, and 10d are formed at the rear in the rotational direction of the medium and low gradient blades 8a to 8d. Each flank 10a to 10d is connected to the corresponding ball blade flank 9a to 9d via boundary lines 15a, 15b, 15c and 15d.
 図4から明らかなように、本発明の第一の実施形態による四枚刃ボールエンドミル1では、中低勾配刃8a~8dは、回転中心点Oから各点K1~K4まで延在し、回転方向後方に湾曲した弓状部と、各点K1~K4から各点P1~P4まで延在するボール刃延長部とからなる。中低勾配刃8dを示す図5(a) 及び図5(b) では、弓状部は8d1により表され、ボール刃延長部は8d2により表される。Rは回転方向を表す。中低勾配刃8dの弓状部8d1は、回転方向前方に隣接する中低勾配刃8aの逃げ面10aの形成により形成される。これは、他の弓状部8a1~8c1も同様である。 As is apparent from FIG. 4, in the four-blade ball end mill 1 according to the first embodiment of the present invention, the medium and low gradient blades 8a to 8d extend from the rotation center point O to the respective points K1 to K4 and rotate. It consists of an arcuate portion curved backward in the direction and a ball blade extension extending from each point K1 to K4 to each point P1 to P4. In FIGS. 5 (a) and 5 (b) showing the medium / low gradient blade 8d, the arcuate portion is represented by 8d1, and the ball blade extension portion is represented by 8d2. R represents the direction of rotation. The arcuate portion 8d1 of the medium / low gradient blade 8d is formed by forming the flank 10a of the medium / low gradient blade 8a adjacent to the front in the rotational direction. The same applies to the other arcuate portions 8a1 to 8c1.
 弓状部8a1~8c1は全体的に曲線状である場合と、部分的に曲線状である場合とがある。後者の場合、曲線状の部分と直線状の部分とはスムーズに連結しているので、両者の境界は正確に決まらない。従って、曲線状の部分が全体的であろうと部分的であろうと、「弓状部」と呼ぶことにする。 The arcuate portions 8a1 to 8c1 may be entirely curved or may be partially curved. In the latter case, since the curved portion and the straight portion are smoothly connected, the boundary between the two is not determined accurately. Therefore, whether the curved portion is entire or partial, it will be referred to as an “arch”.
 しかし、ボール刃延長部8d2は必須ではなく、各中低勾配刃8a~8dは全体的に回転方向後方に湾曲した弓状部でも良い。このように、各中低勾配刃8a~8dが少なくとも回転方向後方に湾曲した弓状部8a1~8d1を有するので、中低勾配刃8a~8dも使用する高送り切削加工でも、中低勾配刃8a~8dは切削加工負荷に耐えることができる。 However, the ball blade extension 8d2 is not essential, and each of the medium and low gradient blades 8a to 8d may be an arcuate portion that is curved backward in the rotation direction. Thus, since each of the medium and low gradient blades 8a to 8d has the arcuate portions 8a1 to 8d1 curved at least in the rearward direction of rotation, the medium and low gradient blades can be used in the high feed cutting process that also uses the medium and low gradient blades 8a to 8d. 8a-8d can withstand cutting loads.
 図4及び図5(a) 及び図5(b) に示すように、中低勾配刃8aの逃げ面10aはその回転方向後方の中低勾配刃8dに曲線状に接して中低勾配刃8dの弓状部8d1を形成するとともに、逃げ面10aの回転方向後縁部はギャッシュ17dに繋がっている。これは、他の中低勾配刃8b~8dの逃げ面10b~10dについても同様である。 As shown in FIG. 4 and FIG. 5 (a) and FIG. 5 (b), the flank 10a of the medium / low gradient blade 8a is in curved contact with the medium / low gradient blade 8d behind the rotation direction, and the medium / low gradient blade 8d And the trailing edge of the flank 10a in the rotational direction is connected to the gash 17d. The same applies to the flank faces 10b to 10d of the other medium and low gradient blades 8b to 8d.
 図3に示すように、各中低勾配刃8a~8dは、回転中心点Oが回転軸方向最後点になるように、回転軸Axと直交する面に対して微小な傾斜角αで傾斜している。これにより、ボール刃6a~6dの先端P1~P4より内側にある中低勾配刃8a~8dは微小な幅Tの極めて浅い窪み部13を形成する。図4に示すように、窪み部13は、回転中心点Oを中心とし、中低勾配刃8a~8dとボール刃6a~6dの連結点P1~P4を通る円Cにより表される。 As shown in FIG. 3, each of the medium and low gradient blades 8a to 8d is inclined at a slight inclination angle α with respect to the plane orthogonal to the rotation axis Ax so that the rotation center point O is the last point in the rotation axis direction. ing. As a result, the medium / low gradient blades 8a to 8d located inside the tips P1 to P4 of the ball blades 6a to 6d form a very shallow recess 13 having a minute width T. As shown in FIG. 4, the recess 13 is represented by a circle C centered on the rotation center point O and passing through the connection points P1 to P4 of the medium and low gradient blades 8a to 8d and the ball blades 6a to 6d.
 各中低勾配刃8a~8dの傾斜角αは0.5~3°である。傾斜角αが3°を超えると、中低勾配刃8a~8dを使用する平面切削加工により作用する負荷により、点P1~P4付近の切れ刃(ボール刃6a~6d及び中低勾配刃8a~8dの端部)の早期摩耗やチッピングが発生し易くなる。また、傾斜角αが0.5°より小さくなると、回転中心点O付近の中低勾配刃8a~8dが被削材と接触し易くなり、切削抵抗を低減する中低勾配刃8a~8dの効果が消失する。好ましい傾斜角αは1~2°である。このように、各中低勾配刃8a~8dが微小な傾斜角で回転軸方向後方に傾斜しているので、高送り切削加工においてビビリ振動を抑制することができる。 The inclination angle α of each of the medium and low gradient blades 8a to 8d is 0.5 to 3 °. If the inclination angle α exceeds 3 °, the cutting edges near the points P1 to P4 (ball blades 6a to 6d and medium to low gradient blades 8a 8d end) is likely to be prematurely worn and chipped. When the inclination angle α is smaller than 0.5 °, the medium and low gradient blades 8a to 8d near the rotation center point O are likely to come into contact with the work material, and the effect of the medium and low gradient blades 8a to 8d to reduce cutting resistance is achieved. Disappear. A preferable inclination angle α is 1 to 2 °. As described above, since each of the medium and low gradient blades 8a to 8d is inclined rearward in the rotation axis direction with a minute inclination angle, chatter vibration can be suppressed in high feed cutting.
 中低勾配刃8a~8dの半径方向長さXは切れ刃部3の刃径Dの1.25~3.75%である。中低勾配刃8a~8dの半径方向長さXは、ボール刃6a~6dに繋がる外端P1~P4と回転中心点Oとの半径方向距離であり、切れ刃部3の正面図で見たときの外端P1~P4と回転中心点Oとの距離に等しい。図3に示すように、各中低勾配刃8a~8dの半径方向長さX(ボール刃6a~6dに繋がる外端P1~P4と回転中心点Oとの半径方向距離)は窪み部13の幅Tの半分である。例えば刃径Dが8 mmの場合、窪み部13の幅Tを0.2~0.6 mmの範囲に設定する。 The radial length X of the medium and low gradient blades 8a to 8d is 1.25 to 3.75% of the blade diameter D of the cutting edge portion 3. The radial length X of the medium and low gradient blades 8a to 8d is the radial distance between the outer ends P1 to P4 connected to the ball blades 6a to 6d and the rotation center point O, as seen from the front view of the cutting blade portion 3. Is equal to the distance between the outer ends P1 to P4 and the rotation center point O. As shown in FIG. 3, the radial length X of each of the medium and low gradient blades 8a to 8d (the radial distance between the outer ends P1 to P4 connected to the ball blades 6a to 6d and the rotation center point O) is Half the width T. For example, when the blade diameter D is 8 mm, the width T of the recess 13 is set in the range of 0.2 to 0.6 mm.
 中低勾配刃8a~8dの半径方向長さXを切れ刃部3の刃径Dの1.25~3.75%とすることにより、ボール刃の長さを確保しながら、切削速度が0となる回転中心点O及びその近傍における中低勾配刃の傾斜角αを0.5~3°の範囲に確保でき、もって高能率な荒加工が可能となる。中低勾配刃8a~8dの半径方向長さXが切れ刃部3の刃径Dの1.25%未満であると、中低勾配刃8a~8dの傾斜角αが大きくなりすぎ、中低勾配刃8a~8dの加工が困難である。一方、中低勾配刃8a~8dの半径方向長さXが切れ刃部の刃径Dの3.75%超であると、中底勾配刃8a~8dに対してボール刃6a~6dが短くなりすぎ、高能率な高送り切削加工が実現できない。中低勾配刃8a~8dの半径方向長さXは切れ刃部3の刃径Dの1.5~3.5%とするのが好ましい。特に限定されないが、実用性の点から、刃径Dは好ましくは0.1~30 mmであり、より好ましくは0.5~20 mmである。 The center of rotation where the cutting speed is 0 while securing the length of the ball blade by setting the radial length X of the medium and low gradient blades 8a to 8d to 1.25 to 3.75% of the blade diameter D of the cutting edge 3 The inclination angle α of the medium and low-gradient blades at the point O and the vicinity thereof can be secured in the range of 0.5 to 3 °, thereby enabling highly efficient roughing. If the radial length X of the medium / low gradient blades 8a to 8d is less than 1.25% of the blade diameter D of the cutting edge part 3, the inclination angle α of the medium / low gradient blades 8a to 8d becomes too large, and the medium / low gradient blade Processing of 8a to 8d is difficult. On the other hand, if the radial length X of the medium and low gradient blades 8a to 8d is more than 3.75% of the blade diameter D of the cutting edge, the ball blades 6a to 6d will be too short compared to the medium bottom gradient blades 8a to 8d. High-efficiency, high-feed cutting cannot be realized. The radial length X of the medium / low gradient blades 8a to 8d is preferably 1.5 to 3.5% of the blade diameter D of the cutting edge portion 3. Although not particularly limited, the blade diameter D is preferably 0.1 to 30 mm, more preferably 0.5 to 20 mm from the viewpoint of practicality.
 図5(a) に例示するように、本発明の第一の実施形態による四枚刃ボールエンドミル1では、中低勾配刃8dは、回転中心点Oから点K4まで延在する弓状部8d1と、点K4から外端P4まで延在するボール刃延長部8d2とからなるので、中低勾配刃8dの半径方向長さXは、弓状部8d1の半径方向長さX1とボール刃延長部8d2の半径方向長さX2の合計である。この例では、ボール刃延長部8d2は直線状であるが、曲線状でも構わない。これは、他の中低勾配刃8a~8cも同様である。弓状部の半径方向長さX1は中低勾配刃8a~8dの半径方向長さXの20~100%であり、好ましくは30~100%であり、より好ましくは60~100%である。X1がXの20%未満であると、中低勾配刃8a~8dの切削抵抗が大きい。 As illustrated in FIG. 5 (a) 四, in the four-blade ball end mill 1 according to the first embodiment of the present invention, the medium / low gradient blade 8d has an arcuate portion 8d1 extending from the rotation center point O to the point K4. And the ball blade extension 8d2 extending from the point K4 to the outer end P4, the radial length X of the medium / low gradient blade 8d is equal to the radial length X1 of the arcuate portion 8d1 and the ball blade extension. This is the sum of the radial length X2 of 8d2. In this example, the ball blade extension 8d2 is linear, but may be curved. The same applies to the other medium and low gradient blades 8a to 8c. The radial length X1 of the arcuate portion is 20 to 100%, preferably 30 to 100%, more preferably 60 to 100% of the radial length X of the medium and low gradient blades 8a to 8d. When X1 is less than 20% of X, the cutting resistance of the medium and low gradient blades 8a to 8d is large.
 図5(b) に示すように、弓状部8d1の両端O、K4を結ぶ線分L3上の点Q1から引いた垂線が弓状部8d1上の点Q2と交差したとき、線分Q1-Q2の長さが最大になるように点Q1の位置を決める。そのときの線分Q1-Q2の長さと線分L3の長さとの比を中低勾配刃8dの弓状部8d1の湾曲度とする。線分Q1-Q2の長さと線分L3の長さとの比(湾曲度)は5~40%が好ましく、より好ましくは8~35%である。湾曲度が5%未満ではチップポケットが過小であり、40%を超えると中低勾配刃の剛性が不足する。 As shown in FIG. 5 (b), when the perpendicular drawn from the point Q1 on the line segment L3 connecting both ends O and K4 of the arcuate part 8d1 intersects the point Q2 on the arcuate part 8d1, the line segment Q1- Position point Q1 so that the length of Q2 is maximized. The ratio of the length of the line segment Q1-Q2 and the length of the line segment L3 at that time is defined as the curvature of the arcuate portion 8d1 of the medium / low gradient blade 8d. The ratio (curvature) between the length of the line segment Q1-Q2 and the length of the line segment L3 is preferably 5 to 40%, more preferably 8 to 35%. If the degree of curvature is less than 5%, the tip pocket is too small, and if it exceeds 40%, the rigidity of the medium / low gradient blade is insufficient.
 ボール部3aの回転中心点O付近に形成された微小な幅Tの窪み部13はギャッシュ17a~17dに連接し、切れ刃部3の先端におけるチップポケットとして機能する。中低勾配刃8a~8dにより生成された極めて薄い切屑は窪み部13からギャッシュ17a~17dを介して切屑排出溝4に排出され、高送り切削加工でも回転中心点O近傍での切屑詰りを防止できる。 The hollow portion 13 having a small width T formed near the rotation center point O of the ball portion 3a is connected to the gashes 17a to 17d and functions as a tip pocket at the tip of the cutting edge portion 3. The extremely thin chips generated by the medium and low-gradient blades 8a to 8d are discharged from the recess 13 to the chip discharge groove 4 via the gashes 17a to 17d, preventing chip clogging near the rotation center point O even in high-feed cutting. it can.
 各中低勾配刃の逃げ面10a~10dの幅は、境界線15a~15dから回転中心点Oまでの間で変動する。そこで、逃げ面10a~10dの幅を以下の方法により評価する。図7に例示するように、中低勾配刃8aの逃げ面10aの点P1における円周方向幅W1は、ボール刃6aの最大円周方向幅W2の20~80%であり、好ましくは30~70%である。この要件を満たすことにより、中低勾配刃は高い剛性を確保できる。ここで、点P1における中低勾配刃8aの逃げ面10aの円周方向幅W1は、回転中心点Oを中心として点P1を通る円Cが逃げ面10aと交差する点P1、P1’を結んだ直線の長さである。また、ボール刃6aの最大円周方向幅W2は、回転中心点Oを中心とした円C’がボール刃6aの逃げ面9aと交差する点B、B’を結んだ直線の長さ(直線B-B’の長さが最大になるように円C’の半径を設定する。)である。 ¡The width of the flank faces 10a to 10d of each medium and low gradient blade varies between the boundary lines 15a to 15d and the rotation center point O. Therefore, the widths of the flank surfaces 10a to 10d are evaluated by the following method. As illustrated in FIG. 7, the circumferential width W1 at the point P1 of the flank 10a of the medium / low gradient blade 8a is 20 to 80% of the maximum circumferential width W2 of the ball blade 6a, preferably 30 to 70%. By satisfying this requirement, the medium / low gradient blade can ensure high rigidity. Here, the circumferential width W1 of the flank 10a of the medium / low-gradient blade 8a at the point P1 connects the points P1 and P1 ′ at which the circle C passing through the point P1 with the rotation center point O as the center intersects the flank 10a. It is the length of the straight line. Further, the maximum circumferential width W2 of the ball blade 6a is the length of a straight line connecting the points B and B ′ where the circle C ′ centering on the rotation center point O intersects the flank 9a of the ball blade 6a (straight line Set the radius of the circle C 'so that the length of B-B' is maximized.).
 中低勾配刃8a~8dの半径方向長さXに対する逃げ面10a~10dの幅を評価する場合、中低勾配刃8a~8dの弓状部8a1~8d1の中心角βを用いる。弓状部8a1~8d1の中心角βは、図5(a) に例示するように、中低勾配刃8dの逃げ面10dの形成により形成された中低勾配刃8cの弓状部8c1の両端O及びK3と点P4とを結ぶ直線L1、L2を引いたときの直線L1と直線L2の角度である。 When evaluating the width of the relief surfaces 10a to 10d with respect to the radial length X of the medium and low gradient blades 8a to 8d, the central angle β of the arcuate portions 8a1 to 8d1 of the medium and low gradient blades 8a to 8d is used. The central angle β of the arcuate portions 8a1 to 8d1 is equal to both ends of the arcuate portion 8c1 of the medium / low gradient blade 8c formed by forming the flank 10d of the medium / low gradient blade 8d, as illustrated in FIG. 5 (a). The angle between the straight line L1 and the straight line L2 when the straight lines L1 and L2 connecting O and K3 and the point P4 are drawn.
 中低勾配刃の弓状部の中心角βは20~70°とするのが好ましい。中心角βが20°未満であると、中低勾配刃8a~8dの逃げ面10a~10dの幅が小さすぎ、切削加工時の負荷抵抗に対する十分な剛性が得られない。一方、各中低勾配刃8a~8dの半径方向長さXが切れ刃部3の刃径Dの1.25~3.75%であるという条件を満たしつつ、中心角βを70°にした中低勾配刃8a~8dを形成するのは困難である。中心角βはより好ましくは30~60°であり、最も好ましくは40~48°である。 The center angle β of the arcuate part of the medium / low gradient blade is preferably 20 to 70 °. If the central angle β is less than 20 °, the width of the flank faces 10a to 10d of the medium and low gradient blades 8a to 8d is too small, and sufficient rigidity against the load resistance during cutting cannot be obtained. On the other hand, the medium and low gradient blades having a central angle β of 70 ° while satisfying the condition that the radial length X of each of the medium and low gradient blades 8a to 8d is 1.25 to 3.75% of the blade diameter D of the cutting edge portion 3. It is difficult to form 8a to 8d. The central angle β is more preferably 30 to 60 °, and most preferably 40 to 48 °.
 上記の通り、各中低勾配刃8a~8dは少なくとも回転方向後方に湾曲した弓状部を有するだけでなく、逃げ面10a~10dが十分な幅を有するので、十分な剛性を有する。このため、被削材の荒加工を高送りで実施しても、中低勾配刃8a~8dのチッピング及び欠損を効果的に防止できる。 As described above, each of the medium and low gradient blades 8a to 8d not only has an arcuate portion curved at the rear in the rotation direction, but also has sufficient rigidity because the flank surfaces 10a to 10d have a sufficient width. For this reason, even when the roughing of the work material is performed at a high feed rate, chipping and chipping of the medium / low gradient blades 8a to 8d can be effectively prevented.
 図8(a) 及び図8(b) に示すように、各ボール刃6a~6dは負のすくい角γ1を有し、各中低勾配刃8a~8dは負のすくい角γ2を有しても良く、勿論γ1及びγ2は正のすくい角を有しても良い。γ1及びγ2は回転軸Axと直交する方向のすくい角として定義する。ボール刃6dのすくい角γ1は-30°~0°が好ましい。また、中低勾配刃8dのすくい角γ2は-30°~0°が好ましい。γ1及びγ2がいずれも-30°未満では切削抵抗が過大になり、0°を超えると設計条件が厳しくなる。このようなすくい角γ1、γ2により、ボール刃6a~6d及び中低勾配刃8a~8dは十分な剛性を有し、特にボール刃6a~6dより薄い中低勾配刃8a~8dの剛性も十分に確保される。その結果、高能率な荒加工の場合にチッピング及び欠損を防止することができる。 As shown in FIGS. 8 (a) and 8 (b), each of the ball blades 6a to 6d has a negative rake angle γ1, and each of the medium and low gradient blades 8a to 8d has a negative rake angle γ2. Of course, γ1 and γ2 may have a positive rake angle. γ1 and γ2 are defined as rake angles in the direction orthogonal to the rotation axis Ax. The rake angle γ1 of the ball blade 6d is preferably −30 ° to 0 °. Further, the rake angle γ2 of the medium / low gradient blade 8d is preferably −30 ° to 0 °. If both γ1 and γ2 are less than −30 °, the cutting resistance becomes excessive, and if it exceeds 0 °, the design conditions become severe. With such rake angles γ1, γ2, the ball blades 6a to 6d and the medium / low gradient blades 8a to 8d have sufficient rigidity, and in particular, the medium and low gradient blades 8a to 8d thinner than the ball blades 6a to 6d also have sufficient rigidity. Secured. As a result, chipping and chipping can be prevented in the case of high-efficiency roughing.
 ボール刃6a~6dの逃げ面9a~9dの逃げ角及び中低勾配刃8a~8dの逃げ面10a~10dの逃げ角はいずれも7~21°以内であるのが好ましい。両逃げ角が7°未満であると切削抵抗が高く、高能率な切削加工においてビビリ振動が生じやすい。一方、両逃げ角が21°超であると切削抵抗は低減するが、ボール刃及び中低勾配刃の剛性が低下するため、高能率な切削加工でチッピング及び欠損が生じやすい。ボール刃の逃げ面9a~9dの逃げ角及び中低勾配刃の逃げ面10a~10dの逃げ角はいずれも、より好ましくは9~19°であり、最も好ましくは10~15°である。なお、これらの逃げ角はほぼ同じであるのが好ましい。これにより、高硬度の難削材に対して高能率の荒加工を行っても、ボール刃及び中低勾配刃のチッピング及び欠損が効果的に防止され、安定した切削加工が可能になる。 The clearance angles of the clearance surfaces 9a to 9d of the ball blades 6a to 6d and the clearance angles of the clearance surfaces 10a to 10d of the medium and low gradient blades 8a to 8d are preferably within 7 to 21 °. When both clearance angles are less than 7 °, the cutting resistance is high, and chatter vibration is likely to occur in highly efficient cutting. On the other hand, if both clearance angles exceed 21 °, the cutting resistance is reduced, but the rigidity of the ball blade and the medium / low gradient blade is reduced, so that chipping and chipping are likely to occur in highly efficient cutting. The clearance angle of the flank faces 9a to 9d of the ball blade and the clearance angle of the flank faces 10a to 10d of the medium / low gradient blade are both preferably 9 to 19 °, and most preferably 10 to 15 °. Note that these clearance angles are preferably substantially the same. Accordingly, even when high-efficiency roughing is performed on a hard material having high hardness, chipping and chipping of the ball blade and the medium / low gradient blade are effectively prevented, and stable cutting can be performed.
(2) 第二の実施形態
 図9に示すように、本発明の第二の実施形態による四枚刃ボールエンドミル20は、各中低勾配刃8a~8dが弓状部のみからなる以外、実質的に第一の実施形態による四枚刃ボールエンドミル1と同じである。図9において第一の実施形態と同じ部分には同じ参照番号を付与している。そこで、中低勾配刃8a~8dの形状についてのみ以下詳述する。図示の例では弓状部は全体的に曲線状であるが、勿論弓状部に部分的に直線部があっても良い。
(2) Second Embodiment As shown in FIG. 9, the four-blade ball end mill 20 according to the second embodiment of the present invention is substantially the same except that each of the medium and low-gradient blades 8a to 8d consists of only an arcuate portion. Specifically, this is the same as the four-blade ball end mill 1 according to the first embodiment. In FIG. 9, the same reference numerals are assigned to the same parts as those in the first embodiment. Therefore, only the shapes of the medium and low gradient blades 8a to 8d will be described in detail below. In the illustrated example, the arcuate portion is entirely curved, but of course, the arcuate portion may partially include a linear portion.
 図10に例示するように、全体が弓状部からなる中低勾配刃8dの場合、中低勾配刃8dの外端P4と弓状部8d1の外端K4とは一致する。この場合も、中低勾配刃8dの逃げ面10dの点P4における円周方向幅W1は、第一の実施形態と同様に、ボール刃6dの最大円周方向幅W2の20~80%である。また中低勾配刃8dの半径方向長さXに対する逃げ面10dの幅を評価するために、点P4と回転中心点Oとの間に直線L1を引き、点P4と点P3(=K3)との間に直線L2を引き、弓状部の中心角βを求める。この弓状部の中心角βも、第一の実施形態と同様に、20~70°であるのが好ましい。 As illustrated in FIG. 10, in the case of the medium / low gradient blade 8d formed entirely of an arcuate portion, the outer end P4 of the medium / low gradient blade 8d and the outer end K4 of the arcuate portion 8d1 coincide. Also in this case, the circumferential width W1 at the point P4 of the flank 10d of the medium / low gradient blade 8d is 20 to 80% of the maximum circumferential width W2 of the ball blade 6d, as in the first embodiment. . In addition, in order to evaluate the width of the flank 10d with respect to the radial length X of the medium / low gradient blade 8d, a straight line L1 is drawn between the point P4 and the rotation center point O, and the point P4 and the point P3 (= K3) A straight line L2 is drawn between the two to obtain the central angle β of the arcuate portion. The central angle β of the arcuate portion is preferably 20 to 70 ° as in the first embodiment.
(3) 第三の実施形態
 図11に示すように、本発明の第三の実施形態による四枚刃ボールエンドミル30は、(a) 弓状部と曲線部とが屈曲点を介して連結してなる中低勾配刃を有し、かつ(b) ボール刃が不等分割である以外、実質的に第一の実施形態による四枚刃ボールエンドミル1と同じである。図11において第一の実施形態と同じ部分には同じ参照番号を付与している。そこで、以下相違点についてのみ詳述する。
(3) Third Embodiment As shown in FIG. 11, the four-blade ball end mill 30 according to the third embodiment of the present invention includes (a) an arcuate portion and a curved portion connected via a bending point. This is substantially the same as the four-blade ball end mill 1 according to the first embodiment except that (b) the ball blade is non-uniformly divided. In FIG. 11, the same reference numerals are assigned to the same parts as those in the first embodiment. Therefore, only the differences will be described in detail below.
 図12は図11の一部を拡大して示す。逃げ面10dを形成する際に形成された弓状部8c1は回転中心点Oと点K3との間に延在し、ボール刃6cから半径方向内方に延びる曲線状の延長部8c2は弓状部8c1と点K3で連結する。点K3は、弓状部8c1と曲線部8c2との間で屈曲点となる。 Fig. 12 shows a part of Fig. 11 on an enlarged scale. The arcuate portion 8c1 formed when forming the flank 10d extends between the rotation center point O and the point K3, and the curved extension portion 8c2 extending radially inward from the ball blade 6c is arcuate. The part 8c1 is connected to the point K3. The point K3 becomes a bending point between the arcuate portion 8c1 and the curved portion 8c2.
 図12に示す例でも、中低勾配刃8dの逃げ面10dの点P4における円周方向幅W1は、第一の実施形態と同様に、ボール刃6dの最大円周方向幅W2の20~80%である。また、中低勾配刃8dの逃げ面10dの形成により形成された中低勾配刃8cの弓状部8c1の中心角βは、弓状部8c1の両端O及びK3と点P4とを結ぶ直線L1、L2がなす角度である。この弓状部の中心角βも、第一の実施形態と同様に、20~70°であるのが好ましい。 Also in the example shown in FIG. 12, the circumferential width W1 at the point P4 of the flank 10d of the medium / low gradient blade 8d is 20 to 80 of the maximum circumferential width W2 of the ball blade 6d, as in the first embodiment. %. Further, the central angle β of the arcuate portion 8c1 of the medium / low gradient blade 8c formed by the formation of the flank 10d of the medium / low gradient blade 8d is a straight line L1 connecting both ends O and K3 of the arcuate portion 8c1 and the point P4. , The angle formed by L2. The central angle β of the arcuate portion is preferably 20 to 70 ° as in the first embodiment.
 このように、中低勾配刃8cが弓状部8c1とボール刃延長部8c2とが屈曲点K3を介して連結してなる場合でも、(a) 各中低勾配刃が回転軸と直交する面に対して0.5~3°の傾斜角αで回転軸方向後方に傾斜しており、(b) 各中低勾配刃における弓状部の半径方向長さの割合が20~100%であり、(c) 各中低勾配刃と各ボール刃との連結点における逃げ面の円周方向幅が、そのボール刃の最大円周方向幅の20~80%であり、かつ(d) 各中低勾配刃の半径方向長さXが切れ刃部の刃径Dの1.25~3.75%である(第一の実施形態と同様)という本発明の他の条件を満たす限り、第一の実施形態と同じ効果が得られる。 Thus, even when the medium / low gradient blade 8c is formed by connecting the arcuate portion 8c1 and the ball blade extension portion 8c2 via the bending point K3, (a) the surface where each medium / low gradient blade is orthogonal to the rotation axis (B) The ratio of the radial length of the arcuate part in each of the medium and low gradient blades is 20 to 100%. c) The circumferential width of the flank at the connection point between each medium-low gradient blade and each ball blade is 20-80% of the maximum circumferential width of the ball blade, and (d) each medium-low gradient The same effect as in the first embodiment as long as the other length of the present invention that the length X in the radial direction of the blade is 1.25 to 3.75% of the blade diameter D of the cutting edge (similar to the first embodiment) is satisfied. Is obtained.
 第三の実施形態ではボール刃を不等分割しているので、ボール刃6a~6dの回転方向位置及び幅が異なり、それらの中低勾配刃8a~8d及び逃げ面10a~10dも異なる。このような不等分割のボール刃により、高硬度の難削材の高送り荒加工の場合にビビリ振動がいっそう抑制される。 In the third embodiment, since the ball blades are unevenly divided, the positions and widths of the ball blades 6a to 6d are different, and the medium and low gradient blades 8a to 8d and the flank surfaces 10a to 10d are also different. Such unevenly divided ball blades further suppress chatter vibration in the case of high-feed roughing of difficult-to-cut materials with high hardness.
(4) 製造方法
 第三の実施形態の四枚刃ボールエンドミル30を例にとって、製造方法を詳細に説明する。まず図13に示すように、薄板円板状のダイヤモンド砥石を装着したNC制御の研削加工機(図示せず)を用いて、4枚のボール刃6a~6dを順次形成する。回転中心点Oの近傍は中低勾配刃8a~8dの形成により削除されるので、ボール刃6a~6dの形成を回転中心点Oの近傍で停止する。その結果、回転中心点Oを含む領域に研削残りの四角状突起16が残留する。
(4) Manufacturing Method The manufacturing method will be described in detail using the four-blade ball end mill 30 of the third embodiment as an example. First, as shown in FIG. 13, four ball blades 6a to 6d are sequentially formed using an NC control grinding machine (not shown) equipped with a thin disc-shaped diamond grindstone. Since the vicinity of the rotation center point O is deleted by the formation of the medium and low gradient blades 8a to 8d, the formation of the ball blades 6a to 6d is stopped in the vicinity of the rotation center point O. As a result, an unground square protrusion 16 remains in a region including the rotation center point O.
 図14に示すように、1つのボール刃(例えば6d)の逃げ面9dに対して、方向Eに往復動する薄板円板状のダイヤモンド砥石を徐々に降下させながら、点P4から矢印Fの方向に移動させる。その結果、点P4から回転軸方向後方に傾斜する逃げ面10dが形成される。逃げ面9dが突き当たる別の逃げ面9cのボール刃6cとの干渉を避けるために、方向Eはボール刃6cに対して傾斜していなければならない。ボール刃6cに対する方向Eの傾斜角は20~50°で良い。傾斜角が20°未満では研削加工の精度が低下し、50°を超えると研削砥石の干渉が起こる。この手順を全てのボール刃の逃げに行うことにより、図11に示す中低勾配刃8a~8dが形成される。 As shown in FIG. 14, the thin disc-shaped diamond grindstone that reciprocates in the direction E with respect to the flank 9d of one ball blade (for example, 6d) is gradually lowered to the direction of the arrow F from the point P4. Move to. As a result, a flank 10d that inclines backward from the point P4 in the rotation axis direction is formed. In order to avoid interference with the ball blade 6c of another flank 9c against which the flank 9d abuts, the direction E must be inclined with respect to the ball blade 6c. The inclination angle in the direction E with respect to the ball blade 6c may be 20 to 50 °. If the inclination angle is less than 20 °, the accuracy of the grinding process decreases, and if it exceeds 50 °, the grinding wheel interferes. By performing this procedure for the relief of all the ball blades, the medium and low gradient blades 8a to 8d shown in FIG. 11 are formed.
[2] その他のボールエンドミル
(1) 三枚刃ボールエンドミル
 図15及び図16は本発明の三枚刃ボールエンドミル40における中低勾配刃の配置を示す。図15において四枚刃ボールエンドミルと同じ部分には同じ参照番号を付与している。三枚刃ボールエンドミル40は、3枚のボール刃6a、6b、6cと、各ボール刃6a、6b、6cの端部P1、P2、P3から一体的に回転中心点Oまで延在する中低勾配刃8a、8b、8cとを有する。各ボール刃6a、6b、6cの回転方向前方にギャッシュ17a、17b、17cが形成されている。
[2] Other ball end mills
(1) Three-Blade Ball End Mill FIGS. 15 and 16 show the arrangement of medium and low gradient blades in the three-blade ball end mill 40 of the present invention. In FIG. 15, the same reference numerals are assigned to the same parts as the four-blade ball end mill. The three-blade ball end mill 40 is composed of three ball blades 6a, 6b, 6c and medium-low extending integrally from the end portions P1, P2, P3 of the ball blades 6a, 6b, 6c to the rotation center point O. Gradient blades 8a, 8b, and 8c are provided. Gash 17a, 17b and 17c are formed in front of the ball blades 6a, 6b and 6c in the rotational direction.
 図16に例示するように、中低勾配刃8aは回転方向後方に湾曲した弓状部8a1と、ボール刃延長部8a2とを有する。勿論、ボール刃延長部8a2はなくても良く、また弓状部8a1は全体的に曲線状である必要はなく、曲線部と直線部とからなっていても良い。これは、他の中低勾配刃8b、8cにも当てはまる。 As illustrated in FIG. 16, the medium / low-gradient blade 8a includes an arcuate portion 8a1 that is curved backward in the rotation direction, and a ball blade extension portion 8a2. Of course, the ball blade extension portion 8a2 may not be provided, and the arcuate portion 8a1 does not have to be entirely curved, and may be composed of a curved portion and a straight portion. This also applies to the other medium and low gradient blades 8b, 8c.
 図示していないが、各中低勾配刃8a、8b、8cは、ボール刃6a、6b、6cとの連結部P1、P2、P3より回転中心点Oの方が回転軸方向後方に位置するように、回転軸と直交する面に対して0.5~3°の傾斜角αで傾斜している。 Although not shown, each of the medium and low- gradient blades 8a, 8b, 8c is arranged such that the rotation center point O is located rearward in the rotation axis direction than the connecting portions P1, P2, P3 with the ball blades 6a, 6b, 6c. Further, it is inclined at an inclination angle α of 0.5 to 3 ° with respect to a plane orthogonal to the rotation axis.
 図16に例示するように、中低勾配刃8aの半径方向長さXに対する弓状部8a1の半径方向長さX1の割合は、第一の実施形態と同様に、20~100%であり、中低勾配刃8aとボール刃6aとの連結点P1における逃げ面10aの円周方向幅W1は、ボール刃の最大円周方向幅の20~80%であり、かつ回転軸に沿って見たときの中低勾配刃8aの半径方向長さX(ボール刃6aに繋がる外端P1と回転中心点Oとの半径方向距離)は切れ刃部3の刃径Dの1.25~3.75%である。これも、勿論他の中低勾配刃8b、8cに当てはまる。三枚刃ボールエンドミルの場合も、第一の実施形態と同様に、中低勾配刃8aの弓状部の中心角βは20~70°であるのが好ましい。 As illustrated in FIG. 16, the ratio of the radial length X1 of the arcuate portion 8a1 to the radial length X of the medium and low gradient blade 8a is 20 to 100%, as in the first embodiment. The circumferential width W1 of the flank 10a at the connection point P1 between the medium / low-gradient blade 8a and the ball blade 6a is 20 to 80% of the maximum circumferential width of the ball blade and is seen along the rotation axis. The length X in the radial direction of the medium and low gradient blade 8a (the radial distance between the outer end P1 connected to the ball blade 6a and the rotation center point O) is 1.25 to 3.75% of the blade diameter D of the cutting edge portion 3. This is of course also true for the other medium and low gradient blades 8b, 8c. In the case of a three-blade ball end mill, the central angle β of the arcuate portion of the medium / low gradient blade 8a is preferably 20 to 70 °, as in the first embodiment.
(2) 六枚刃ボールエンドミル
 図17及び図18は本発明の六枚刃ボールエンドミル50における中低勾配刃の配置を示す。図17において四枚刃ボールエンドミルと同じ部分には同じ参照番号を付与している。六枚刃ボールエンドミル50は、6枚のボール刃6a、6b、6c、6d、6e、6fと、各ボール刃6a~6fの端部P1、P2、P3、P4、P5、P6から一体的に回転中心点Oまで延在する中低勾配刃8a、8b、8c、8d、8e、8fとを有する。各ボール刃6a~6fの回転方向前方にギャッシュ17a、17b、17c、17d、17e、17fが形成されている。
(2) Six-Blade Ball End Mill FIGS. 17 and 18 show the arrangement of medium and low gradient blades in the six-blade ball end mill 50 of the present invention. In FIG. 17, the same reference numerals are assigned to the same parts as the four-flute ball end mill. The six-blade ball end mill 50 is integrally formed from six ball blades 6a, 6b, 6c, 6d, 6e, 6f and ends P1, P2, P3, P4, P5, P6 of each ball blade 6a to 6f. It has medium and low gradient blades 8a, 8b, 8c, 8d, 8e, 8f extending to the rotation center point O. Gashes 17a, 17b, 17c, 17d, 17e, and 17f are formed in front of the ball blades 6a to 6f in the rotation direction.
 図18に例示するように、中低勾配刃8aは回転方向後方に湾曲した弓状部8a1と、ボール刃延長部8a2とを有する。勿論、ボール刃延長部8a2はなくても良く、また弓状部8a1は全体的に曲線状である必要はなく、曲線部と直線部とからなっていても良い。これは、他の中低勾配刃8b~8fにも当てはまる。 As illustrated in FIG. 18, the medium / low-gradient blade 8a includes an arcuate portion 8a1 that is curved backward in the rotation direction and a ball blade extension portion 8a2. Of course, the ball blade extension portion 8a2 may not be provided, and the arcuate portion 8a1 does not have to be entirely curved, and may be composed of a curved portion and a straight portion. This also applies to the other medium and low gradient blades 8b-8f.
 図示していないが、各中低勾配刃8a~8fは、ボール刃6a~6fとの連結部P1~P6より回転中心点Oの方が回転軸方向後方に位置するように、回転軸と直交する面に対して0.5~3°の傾斜角αで傾斜している。 Although not shown, each of the medium and low-gradient blades 8a to 8f is orthogonal to the rotation axis so that the rotation center point O is positioned rearward in the rotation axis direction from the connecting portions P1 to P6 with the ball blades 6a to 6f. It is inclined at an inclination angle α of 0.5 to 3 ° with respect to the surface.
 図18に例示するように、中低勾配刃8aの半径方向長さXに対する弓状部8a1の半径方向長さX1の割合は、第一の実施形態と同様に、20~100%であり、中低勾配刃8aとボール刃6aとの連結点P1における逃げ面10aの円周方向幅W1も、第一の実施形態と同様に、ボール刃の最大円周方向幅の20~80%であり、かつ回転軸に沿って見たときの中低勾配刃8aの半径方向長さX(ボール刃6aに繋がる外端P1と回転中心点Oとの半径方向距離)も、第一の実施形態と同様に、切れ刃部3の刃径Dの1.25~3.75%である。これは、勿論他の中低勾配刃8b~8fにも当てはまる。六枚刃ボールエンドミルの場合、中低勾配刃8aの弓状部の中心角βは、第一の実施形態と同様に、20~70°であるのが好ましい。 As illustrated in FIG. 18, the ratio of the radial length X1 of the arcuate portion 8a1 to the radial length X of the medium / low gradient blade 8a is 20 to 100%, as in the first embodiment. The circumferential width W1 of the flank 10a at the connection point P1 between the medium / low-gradient blade 8a and the ball blade 6a is 20 to 80% of the maximum circumferential width of the ball blade, as in the first embodiment. The radial length X of the medium / low gradient blade 8a when viewed along the rotation axis (radial distance between the outer end P1 connected to the ball blade 6a and the rotation center point O) is also the same as that of the first embodiment. Similarly, it is 1.25 to 3.75% of the blade diameter D of the cutting edge portion 3. This is of course also true for the other medium and low gradient blades 8b-8f. In the case of a six-blade ball end mill, the central angle β of the arcuate portion of the medium / low gradient blade 8a is preferably 20 to 70 ° as in the first embodiment.
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
実施例1
 WC基超硬合金により、図1~図4に示す形状の本発明の四枚刃ボールエンドミルA、及び特開2009-56559号に記載の四枚刃ボールエンドミルB(回転中心点付近のボール部先端領域に十字に交差する2本の溝部を有する)を作製した。いずれも等分割の切れ刃を有する。各四枚刃ボールエンドミルのサイズを表1に示す。
Example 1
The four-blade ball end mill A according to the present invention having the shape shown in FIGS. 1 to 4 and the four-blade ball end mill B described in JP-A-2009-56559 (ball portion near the rotation center point) The tip region has two grooves crossing the cross). All have equally divided cutting edges. Table 1 shows the size of each 4-flute ball end mill.
Figure JPOXMLDOC01-appb-T000001
注:(1) 中低勾配刃の半径方向長さXに対する弓状部の半径方向長さX1の割合(%)。
   (2) 中低勾配刃の逃げ面のボール刃との連結点Pにおける円周方向幅W1とボール刃の最大円周方向幅W2との比率。
 
Figure JPOXMLDOC01-appb-T000001
Note: (1) Ratio of radial length X1 of arcuate part to radial length X of medium and low gradient blades (%).
(2) The ratio between the circumferential width W1 and the maximum circumferential width W2 of the ball blade at the connection point P between the flank of the medium and low gradient blade and the ball blade.
 各四枚刃ボールエンドミルをNC制御の三軸マシニングセンタに装着し、下記切削条件1によりロックウェル硬さHRCが50のSKD61(合金工具鋼)からなる被削材を平面切削した。工具の突き出し量OHは32 mmであり、工具突き出し量OH/刃径D=4であった。切削加工を開始してから30分後、60分後及び90分後に、それぞれボール刃の逃げ面の欠損及びチッピングを観察し、かつ摩耗幅(VBmax)を測定した。また実施例1では、中低勾配刃についても欠損及びチッピングの有無を観察するとともに、VBmaxを測定した。なお、摩耗幅は4枚のボール刃の逃げ面のVBmaxの平均値である。
  切削条件1
  切削方法:エアーブローを用いた乾式平面切削
  切削速度Vc:94 m/min
  回転数n:3750 min-1
  送り速度Vf:1500 mm/min
  1刃当たりの送り量fz:0.1 mm/刃
  軸方向切込み量ap:0.7 mm
  径方向切込み量ae:1.75 mm
  工具突き出し量OH:32 mm
 
Each four-flute ball end mill was mounted on an NC-controlled three-axis machining center, and a workpiece made of SKD61 (alloy tool steel) having a Rockwell hardness of HRC 50 was cut into a plane under the following cutting condition 1. The tool protrusion amount OH was 32 mm, and the tool protrusion amount OH / blade diameter D = 4. 30 minutes, 60 minutes and 90 minutes after the start of cutting, the ball blade flank defect and chipping were observed and the wear width (VBmax) was measured. In Example 1, the medium and low gradient blades were also observed for defects and chipping, and VBmax was measured. The wear width is an average value of VBmax of the flank faces of the four ball blades.
Cutting condition 1
Cutting method: Dry surface cutting using air blow Cutting speed Vc: 94 m / min
Number of revolutions n: 3750 min -1
Feed rate Vf: 1500 mm / min
Feed per tooth fz: 0.1 mm / tooth axial depth of cut ap: 0.7 mm
Radial cutting depth ae: 1.75 mm
Tool overhang OH: 32 mm
 切削加工の結果、表2に示すとおり以下のことが分った。
Figure JPOXMLDOC01-appb-T000002
As a result of the cutting, the following were found as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
(a) 本発明の四枚刃ボールエンドミルAでは、高硬度の難削材に対する90分間の高送りで荒加工でもボール刃及び中低勾配刃に欠損及びチッピングが発生しなかった。ボール刃の逃げ面の摩耗に関しては、90分後に摩耗幅0.12 mmの均一な摩耗が認められた。これは正常な切削加工で発生する摩耗幅であり、加工精度に影響を与えない。
(b) 特開2009-56559号に記載の四枚刃ボールエンドミルBでは、30分間の切削加工でボール刃の逃げ面のうち回転中心点に近い部分に微小な摩耗が観察され、60分後には摩耗幅は拡大し、さらに90分後には摩耗幅は0.20 mmまで拡大し、かつボール刃に欠けが認められた。0.20 mmという摩耗幅は荒加工用工具の寿命に近づいた値である。
(c) 以上から、高硬度の難削材に対する高送りの荒加工において、本発明の四枚刃ボールエンドミルAのボール刃には欠けが発生しないのに、四枚刃ボールエンドミルBのボール刃には欠けが発生することが分かる。これは、四枚刃ボールエンドミルBでは窪み部(溝部)に接するボール刃に大きな切削加工負荷がかかるので、早く摩耗するだけでなくビビリ振動も起こり、ボール刃の欠けの原因となるためであると考えられる。これに対して、本発明の四枚刃ボールエンドミルAでは、ボール刃に小さな傾斜角で連接する中低勾配刃も切削加工に関与するので、安定した状態で切削加工を進行させることができ、ボール刃端部に過大な切削加工負荷がかからず、もってビビリ振動が抑制される。また、本発明の四枚刃ボールエンドミルAは、90分間の切削加工によるボール刃の摩耗幅が四枚刃ボールエンドミルBの1/2程度であり、長寿命であると判定できる。
(a) In the four-blade ball end mill A of the present invention, no chipping or chipping occurred in the ball blade and the medium / low gradient blade even during rough machining with a high feed rate of 90 minutes for a hard material having high hardness. Regarding wear of the flank face of the ball blade, uniform wear with a wear width of 0.12 mm was observed after 90 minutes. This is a wear width generated in normal cutting, and does not affect the processing accuracy.
(b) In the four-blade ball end mill B described in JP-A-2009-56559, minute wear was observed in the portion near the center of rotation of the flank of the ball blade after 30 minutes of cutting, and after 60 minutes. The wear width increased, and after 90 minutes, the wear width increased to 0.20 mm, and the ball blade was chipped. The wear width of 0.20 mm is close to the life of the roughing tool.
(c) From the above, in the high-feed roughing for difficult-to-cut materials with high hardness, the ball blade of the four-blade ball end mill B of the present invention is not chipped, but the ball blade of the four-blade ball end mill B It can be seen that chipping occurs. This is because in the four-blade ball end mill B, a large cutting load is applied to the ball blade in contact with the indented portion (groove portion), which not only wears quickly but also generates chatter vibration, which causes the chipping of the ball blade. it is conceivable that. On the other hand, in the four blade ball end mill A of the present invention, since the medium and low gradient blades connected to the ball blade with a small inclination angle are also involved in the cutting process, the cutting process can proceed in a stable state, An excessive cutting load is not applied to the end of the ball blade, and chatter vibration is suppressed. Further, the four-blade ball end mill A of the present invention has a wear width of the ball blade by cutting for 90 minutes is about 1/2 of that of the four-blade ball end mill B, and can be determined to have a long life.
実施例2
 OH/Dを6に変更し、かつ切削条件2を用いた以外実施例1と同じ条件で、図9に示す四枚刃ボールエンドミルC及び特開2009-56559号に記載の四枚刃ボールエンドミルBを用いて、ロックウェル硬さHRCが58のYXR3(登録商標)からなる被削材(縦:25 mm、横:25 mm、高さ:14.7 mm)の立ち壁のポケットを90分間切削加工した。なお、YXR3は冷間鍛造用金型等に用いられる鋼種である。
  切削条件2
  切削方法:エアーブローを用いた立ち壁のポケットの乾式切削加工
  切削速度Vc:38 m/min
  回転数n:1500 min-1
  送り速度Vf:225 mm/min
  1刃当たりの送り量fz:0.075 mm/刃
  軸方向切込み量ap:0.35 mm
  径方向切込み量ae:1.23 mm
  工具突き出し量OH:48 mm
Example 2
Four-blade ball end mill C shown in FIG. 9 and four-blade ball end mill described in JP-A-2009-56559 under the same conditions as in Example 1 except that OH / D was changed to 6 and cutting condition 2 was used Using B, a pocket on a standing wall of a workpiece made of YXR3 (registered trademark) with a Rockwell hardness HRC of 58 (length: 25 mm, width: 25 mm, height: 14.7 mm) is cut for 90 minutes. did. YXR3 is a steel type used for cold forging dies.
Cutting condition 2
Cutting method: Dry cutting of standing wall pocket using air blow Cutting speed Vc: 38 m / min
Number of revolutions n: 1500 min -1
Feed rate Vf: 225 mm / min
Feed per tooth fz: 0.075 mm / tooth axial depth of cut ap: 0.35 mm
Radial depth of cut ae: 1.23 mm
Tool overhang OH: 48 mm
 本発明の四枚刃ボールエンドミルCを用いた切削加工の結果を図19(a) 及び図19(b) に示し、四枚刃ボールエンドミルBを用いた切削加工の結果を図20(a) 及び図20(b)に示す。図19及び図20から以下のことが分った。
(a) 図19(a) 及び図19(b) に示すように、本発明の四枚刃ボールエンドミルCでは、90分後でもボール刃の逃げ面の摩耗幅は0.07 mmと小さく、正常摩耗の範囲内であった。
(b) 図20(a) 及び図20(b)に示すように、特開2009-56559号に記載の四枚刃ボールエンドミルBでは、90分後にボール刃の逃げ面の摩耗幅は0.07 mmであったが、○印で示す箇所に欠けが発生していた。回転中心点O近傍に十字に交差する2本の溝部を有する四枚刃ボールエンドミルBのボール刃に欠けが発生した原因は、中低勾配刃を備えていなので、ポケット部底面の平面切削時に回転中心点O近傍に大きな切削加工負荷がかかり、ビビリ振動が発生し、もって切削加工が不安定になったためであると推測できる。
The results of cutting using the four-blade ball end mill C of the present invention are shown in FIGS. 19 (a) and 19 (b), and the results of cutting using the four-blade ball end mill B are shown in FIG. 20 (a). And it is shown in FIG. 20 (b). The following was found from FIG. 19 and FIG.
(a) As shown in FIGS. 19 (a) and 19 (b), in the four-blade ball end mill C of the present invention, the wear width of the flank face of the ball blade is as small as 0.07 mm even after 90 minutes, and normal wear. It was in the range.
(b) As shown in FIGS. 20 (a) and 20 (b), in the four-blade ball end mill B described in JP-A-2009-56559, after 90 minutes, the wear width of the flank face of the ball blade is 0.07 mm. However, there was a chipping at the position indicated by a circle. The cause of chipping in the four-blade ball end mill B with two grooves intersecting the cross in the vicinity of the rotation center point O is that it is equipped with a medium and low-gradient blade, so it rotates during plane cutting of the pocket bottom. It can be presumed that a large cutting load is applied in the vicinity of the center point O, chatter vibration is generated, and the cutting process becomes unstable.
実施例3
 上記四枚刃ボールエンドミルA及びBを用いて、実施例2と同じ切削条件2でYXR3(登録商標)からなる被削材の傾斜面(傾斜角が30°)を切削加工した。この傾斜面の切削加工では、回転中心点O近傍のボール刃も切削加工に関与した。90分間の切削加工の結果、本発明の四枚刃ボールエンドミルAでは、ボール刃及び中低勾配刃に加工精度に影響を与える程度の摩耗、チッピング及び欠けが認められなかった。これに対して、四枚刃ボールエンドミルBのボール刃には図20(b) に示すのと同様な欠けが認められた。四枚刃ボールエンドミルBは中低勾配刃を備えていないので、回転中心点O付近にかかる大きな切削加工負荷によりビビリ振動が発生し、それがボール刃の欠けを引き起こしたと推測できる。
Example 3
Using the above-described four-fluid ball end mills A and B, an inclined surface (an inclination angle of 30 °) of the workpiece made of YXR3 (registered trademark) was cut under the same cutting condition 2 as in Example 2. In the cutting of the inclined surface, the ball blade near the rotation center point O was also involved in the cutting. As a result of cutting for 90 minutes, in the four-blade ball end mill A of the present invention, the wear, chipping, and chipping to the extent that the processing accuracy is affected to the ball blade and the medium / low gradient blade were not recognized. On the other hand, chipping similar to that shown in FIG. 20 (b) was observed on the ball blade of the four-blade ball end mill B. Since the four-flute ball end mill B does not have a medium or low-gradient blade, it can be assumed that chatter vibration was generated by a large cutting load applied near the rotation center point O, which caused chipping of the ball blade.
実施例4
 OH/Dを7とし、かつ被削材の材質をHRCが60のSKD11とした以外実施例1と同じ条件で、本発明の四枚刃ボールエンドミルA及び図26に示す特開2003-225821号に記載の四枚刃ボールエンドミルD(等分割)を用いて、下記切削条件3で被削材の平面切削加工を行った。
  切削条件3
  切削方法:エアーブローを用いた乾式平面切削
  切削速度Vc:94 m/min
  回転数n:3750 min-1
  送り速度Vf:1500 mm/min
  1刃当たりの送り量fz:0.1 mm/刃
  軸方向切込み量ap:0.7 mm
  径方向切込み量ae:1.75 mm
  工具突き出し量OH:56 mm
Example 4
Four-blade ball end mill A of the present invention and Japanese Patent Application Laid-Open No. 2003-225821 shown in FIG. 26 under the same conditions as in Example 1 except that OH / D is 7 and the work material is SKD11 with an HRC of 60. Using the four-blade ball end mill D (equal division) described in 1 above, the workpiece was subjected to plane cutting under the following cutting condition 3.
Cutting condition 3
Cutting method: Dry surface cutting using air blow Cutting speed Vc: 94 m / min
Number of revolutions n: 3750 min -1
Feed rate Vf: 1500 mm / min
Feed per tooth fz: 0.1 mm / tooth axial depth of cut ap: 0.7 mm
Radial cutting depth ae: 1.75 mm
Tool overhang OH: 56 mm
 40秒間の切削加工(切削距離:1 m)によるボール刃及び中低勾配刃のチッピング及び欠けを観察した。その結果、四枚刃ボールエンドミルAのボール刃及び中低勾配刃にはチッピング及び欠けは全く観察されなかったが、四枚刃ボールエンドミルDのボール刃には欠けが観察された。切削加工初期に四枚刃ボールエンドミルDに欠けが発生した原因は、回転中心点Oまでボール刃が延在しているので、平面切削時に回転中心点O近傍に切削加工負荷が集中した結果ビビリ振動が発生し、ビビリ振動によりボール刃に作用する切削加工負荷が不均一化したためであると推測できる。これに対して、四枚刃ボールエンドミルAでは中低勾配刃によりビビリ振動の発生が抑制されたと考えられる。 The chipping and chipping of the ball blade and the medium / low gradient blade were observed by cutting for 40 seconds (cutting distance: 1 mm). As a result, no chipping or chipping was observed on the ball blade and the medium / low gradient blade of the four-blade ball end mill A, but chipping was observed on the ball blade of the four-blade ball end mill D. The reason why chipping occurred in the 4-flute ball end mill D at the beginning of cutting is that the ball blade extends to the rotation center point O. It can be inferred that the vibration is generated and the cutting load acting on the ball blade is uneven due to chatter vibration. On the other hand, in the four-blade ball end mill A, it is considered that the occurrence of chatter vibration was suppressed by the medium-low gradient blade.
実施例5
 図11に示す四枚刃ボールエンドミルA’(回転中心点Oを中心として切れ刃は円周方向に4°の不等分割に配置されている)を用いて、HRCが58のYXR3(登録商標)からなる被削材に対して、下記切削条件5により、直線的に平面切削加工を行った後、平面上で90°に曲がるコーナ部の切削加工を行い、再度直線的に平面切削加工を行った。なお、4°の不等分割では4枚のボール刃の配置角度は順に86°、94°、86°及び94°である。ボールエンドミルA’の主な仕様を表3に示す。切削抵抗の3分力波形によりビビリ振動を評価した結果を図21に示す。図21の縦軸は分力 [N]であり、横軸はTime [S]である。
  切削条件5
  切削方法:エアーブローを用いた乾式平面切削
  切削速度Vc:100 m/min
  回転数n:4000 min-1
  送り速度Vf:1920 mm/min
  1刃当たりの送り量fz:0.12 mm/刃
  軸方向切込み量ap:0.3 mm
  径方向切込み量ae:0.1 mm
  工具突き出し量OH:32 mm
 
Example 5
YXR3 (registered trademark) with an HRC of 58 using a four-flute ball end mill A ′ shown in FIG. 11 (the cutting edges are arranged in an irregular division of 4 ° in the circumferential direction around the rotation center point O) ) After cutting the workpiece in a straight line under the following cutting condition 5, cut the corner that bends 90 ° on the plane, and then repeat the cutting in a straight line again. went. In the case of 4 ° unequal division, the arrangement angles of the four ball blades are 86 °, 94 °, 86 °, and 94 ° in this order. Table 3 shows the main specifications of the ball end mill A '. FIG. 21 shows the results of evaluating chatter vibration using a three-component waveform of cutting resistance. The vertical axis in FIG. 21 is component force [N], and the horizontal axis is Time [S].
Cutting condition 5
Cutting method: Dry surface cutting using air blow Cutting speed Vc: 100 m / min
Rotational speed n: 4000 min -1
Feed rate Vf: 1920 mm / min
Feed per tooth fz: 0.12 mm / tooth axial depth of cut ap: 0.3 mm
Radial cutting depth ae: 0.1 mm
Tool overhang OH: 32 mm
Figure JPOXMLDOC01-appb-T000003
注:(1) 中低勾配刃の半径方向長さXに対する弓状部の半径方向長さX1の割合(%)。
  (2) 中低勾配刃の逃げ面のボール刃との連結点Pにおける円周方向幅W1とボール刃の最大円周方向幅W2との比率。
 
Figure JPOXMLDOC01-appb-T000003
Note: (1) Ratio of radial length X1 of arcuate part to radial length X of medium and low gradient blades (%).
(2) The ratio between the circumferential width W1 and the maximum circumferential width W2 of the ball blade at the connection point P between the flank of the medium and low gradient blade and the ball blade.
 図21から明らかなように3分力の波形Fx、Fy、Fzに高周波の振動がないので、不等分割の四枚刃ボールエンドミルA’ではビビリ振動が発生しなかったと言える。 As can be seen from FIG. 21, since the three-component force waveforms Fx, Fy, and Fz do not have high-frequency vibration, it can be said that chatter vibration did not occur in the unequal split four-blade ball end mill A ′.
実施例6
 実施例5で使用したボールエンドミルA’の仕様を表4に示すように変化させたボールエンドミルE~Mの切削性能を評価した。なお、ボールエンドミルE~Lは本発明の範囲内であり、ボールエンドミルMは本発明の範囲外である。なお、表4に記載していない諸元は、実施例5で使用したボールエンドミルA’と同じにした。切削条件は実施例5と同様に切削条件5とし、ボールエンドミルA’と同様に切削抵抗の3分力波形によりビビリ振動を評価した。評価結果(ビビリ振動の有無)を表4に示す。
Figure JPOXMLDOC01-appb-T000004
注:(1) 中低勾配刃の半径方向長さXに対する弓状部の半径方向長さX1の割合(%)。
  (2) 中低勾配刃の逃げ面のボール刃との連結点Pにおける円周方向幅W1とボール刃の最大円周方向幅W2との比率。
 
Example 6
The cutting performance of the ball end mills E to M in which the specifications of the ball end mill A ′ used in Example 5 were changed as shown in Table 4 were evaluated. Ball end mills E to L are within the scope of the present invention, and ball end mill M is outside the scope of the present invention. The specifications not described in Table 4 were the same as the ball end mill A ′ used in Example 5. Cutting conditions were set to cutting conditions 5 as in Example 5, and chatter vibration was evaluated using a three-component force waveform of cutting resistance as in the ball end mill A ′. Table 4 shows the evaluation results (presence / absence of chatter vibration).
Figure JPOXMLDOC01-appb-T000004
Note: (1) Ratio of radial length X1 of arcuate part to radial length X of medium and low gradient blades (%).
(2) The ratio between the circumferential width W1 and the maximum circumferential width W2 of the ball blade at the connection point P between the flank of the medium and low gradient blade and the ball blade.
 表4から、不等分割の四枚刃ボールエンドミルE~L(本発明の範囲内)ではビビリ振動が発生しなかったが、X/Dが5.1%であるボールエンドミルM(本発明の範囲外)ではビビリ振動が発生し、実用に耐えなかった。 From Table 4, no chatter vibration was generated in the non-uniformly divided four-blade ball end mills E to L (within the scope of the present invention), but a ball end mill M with X / D of 5.1% (out of the scope of the present invention). ) Caused chatter vibrations and could not withstand practical use.
 1、20、30:四枚刃ボールエンドミル
 2:シャンク部
 3:切れ刃部
 4:切屑排出溝
 6a、6b、6c、6d:ボール刃
 8a、8b、8c、8d:中低勾配刃
 8a1、8b1、8c1、8d1:弓状部
 8a2、8b2、8c2、8d2:ボール刃延長部
 9a、9b、9c、9d:ボール刃の逃げ面
 10a、10b、10c、10d:中低勾配刃の逃げ面
 11a、11b、11c、11d:ボール刃のすくい面
 13:窪み部
 17a、17b、17c、17d:ギャッシュ
 40:三枚刃ボールエンドミル
 50:六枚刃ボールエンドミル
 Ax:回転中心軸
 C:回転軸心の近傍範囲
 D:切れ刃部の直径
 L1、L2、L3:直線
 O:回転中心点
 P1、P2、P3、P4:中低勾配刃とボール刃との連結点
 K1、K2、K3、K4:中低勾配刃の弓状部の外端
 Q1:中低勾配刃の弓状部の両端を結ぶ直線と、中低勾配刃の弓状部の頂点から降ろした垂線との交点
 Q2:中低勾配刃の弓状部の頂点
 R:多刃ボールエンドミルの回転方向
 T:幅
 X:中低勾配刃の半径方向長さ
 X1:中低勾配刃の弓状部の半径方向長さ
 X2:ボール刃延長部の半径方向長さ
 W1:中低勾配刃の逃げ面における円周方向幅
 W2:ボール刃の最大円周方向幅
 α:中低勾配刃の傾斜角度
 β:中低勾配刃の弓状部の中心角
 γ1:ボール刃のすくい角
 γ2:中低勾配刃のすくい角
1, 20, 30: Four-flute ball end mill 2: Shank part 3: Cutting edge part 4: Chip discharge groove 6a, 6b, 6c, 6d: Ball blades 8a, 8b, 8c, 8d: Medium to low-gradient blades 8a1, 8b1 8c1, 8d1: Arcuate part 8a2, 8b2, 8c2, 8d2: Ball blade extension 9a, 9b, 9c, 9d: Ball blade flank face 10a, 10b, 10c, 10d: Flank face 11a, 10b, 10c, 10d 11b, 11c, 11d: Rake face of ball blade 13: Recessed portion 17a, 17b, 17c, 17d: Gash 40: Three-flute ball end mill 50: Six-flute ball end mill Ax: Center axis of rotation C: Near rotation axis Range D: Diameter of cutting edge L1, L2, L3: Straight line O: Rotation center point P1, P2, P3, P4: Connection point between medium and low gradient blade and ball blade K1, K2, K3, K4: Medium and low gradient Outer edge of blade arcuate part Q1: Intersection of the straight line connecting both ends of the arcuate part of medium and low gradient blades and the perpendicular line dropped from the apex of the arcuate part of medium and low gradient blades Q2: Bow of medium and low gradient blades Of the ridge part R: Rotation of a multi-blade ball end mill Direction T: Width X: Radial length of medium / low gradient blade X1: Radial length of arcuate portion of medium / low gradient blade X2: Radial length of ball blade extension W1: Flank of medium / low gradient blade Width in circumferential direction W2: Maximum width in the circumferential direction of the ball blade α: Inclination angle of the medium-low gradient blade β: Center angle of the arcuate part of the medium-low gradient blade γ1: Rake angle of the ball blade γ2: Medium-low gradient blade Rake angle

Claims (5)

  1. 回転軸を中心として回転するシャンク部と、先端にボール部を有する切れ刃部と、前記切れ刃部に形成され、それぞれボール刃を有する3枚以上の切れ刃とを具備する多刃ボールエンドミルであって、
     前記ボール部先端の回転中心点の近傍で各ボール刃の先端から前記回転中心点まで中低勾配刃が一体的に延在しており、
     各中低勾配刃は少なくとも回転方向後方に湾曲した弓状部を有し、
     各中低勾配刃は、前記ボール刃との連結部より前記回転中心点の方が回転軸方向後方に位置するように、前記回転軸と直交する面に対して0.5~3°の傾斜角αで傾斜しており、
     各中低勾配刃における前記弓状部の半径方向長さの割合は20~100%であり、
     各切れ刃において中低勾配刃とボール刃との連結点における逃げ面の円周方向幅は、前記ボール刃の最大円周方向幅の20~80%であり、
     各中低勾配刃の半径方向長さX(ボール刃に繋がる外端と前記回転中心点との半径方向距離)は前記切れ刃部の刃径Dの1.25~3.75%であることを特徴とする多刃ボールエンドミル。
    A multi-blade ball end mill comprising a shank portion that rotates about a rotation axis, a cutting edge portion having a ball portion at a tip, and three or more cutting edges formed on the cutting edge portion and each having a ball blade. There,
    Middle and low gradient blades extend integrally from the tip of each ball blade to the rotation center point in the vicinity of the rotation center point of the ball portion tip,
    Each of the medium and low gradient blades has at least an arcuate portion curved backward in the rotational direction,
    Each of the medium and low gradient blades has an inclination angle α of 0.5 to 3 ° with respect to the plane perpendicular to the rotation axis so that the rotation center point is located rearward in the rotation axis direction than the connecting portion with the ball blade. Is inclined at
    The ratio of the radial length of the arcuate portion in each medium and low gradient blade is 20 to 100%,
    In each cutting edge, the circumferential width of the flank at the connection point between the medium and low gradient blade and the ball blade is 20 to 80% of the maximum circumferential width of the ball blade,
    The radial length X (the radial distance between the outer end connected to the ball blade and the rotation center point) of each medium / low gradient blade is 1.25 to 3.75% of the blade diameter D of the cutting blade portion. Multi-blade ball end mill.
  2. 請求項1に記載の多刃ボールエンドミルにおいて、各中低勾配刃は前記回転中心点側にある弓状部と、前記弓状部まで延在する前記ボール刃の延長部とからなることを特徴とする多刃ボールエンドミル。 2. The multi-blade ball end mill according to claim 1, wherein each of the medium and low gradient blades includes an arcuate portion on the rotation center point side and an extension portion of the ball blade extending to the arcuate portion. Multi-blade ball end mill.
  3. 請求項1又は2に記載の多刃ボールエンドミルにおいて、各中低勾配刃の弓状部の中心角βは20~70°であることを特徴とする多刃ボールエンドミル。 3. The multi-blade ball end mill according to claim 1, wherein the central angle β of the arcuate portion of each medium and low gradient blade is 20 to 70 °.
  4. 請求項1~3のいずれかに記載の多刃ボールエンドミルにおいて、各中低勾配刃の弓状部の頂点からその両端を結ぶ線分に降ろした垂線の長さと前記線分の長さとの比(湾曲度)が5~40%であることを特徴とする多刃ボールエンドミル。 The multi-blade ball end mill according to any one of claims 1 to 3, wherein a ratio between a length of a perpendicular line dropped from a vertex of an arcuate portion of each medium and low gradient blade to a line segment connecting the both ends and the length of the line segment. A multi-blade ball end mill having a (curvature) of 5 to 40%.
  5. 請求項1~4のいずれかに記載の多刃ボールエンドミルにおいて、前記ボール刃が、前記回転軸を中心として円周方向に等分割又は不等分割に配置されていることを特徴とする多刃ボールエンドミル。 The multi-blade ball end mill according to any one of claims 1 to 4, wherein the ball blades are arranged in an equal division or an unequal division in a circumferential direction around the rotation axis. Ball end mill.
PCT/JP2013/052895 2012-02-07 2013-02-07 Multiple-edged ball end mill WO2013118829A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012023687 2012-02-07
JP2012-023687 2012-02-07
JP2012-135658 2012-06-15
JP2012135658 2012-06-15
JP2012-166243 2012-07-26
JP2012166243 2012-07-26
JP2012-239878 2012-10-31
JP2012239878A JP5846098B2 (en) 2012-02-07 2012-10-31 Multi-blade ball end mill

Publications (1)

Publication Number Publication Date
WO2013118829A1 true WO2013118829A1 (en) 2013-08-15

Family

ID=48947585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052895 WO2013118829A1 (en) 2012-02-07 2013-02-07 Multiple-edged ball end mill

Country Status (2)

Country Link
JP (1) JP5846098B2 (en)
WO (1) WO2013118829A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003873A1 (en) * 2011-02-16 2014-01-02 Hitachi Tool Engineering, Ltd. End mill for cutting of high-hardness materials
CN105473264A (en) * 2013-10-23 2016-04-06 三菱综合材料株式会社 Ball end mill
WO2016067985A1 (en) * 2014-10-28 2016-05-06 三菱日立ツール株式会社 Ceramic end mill and method for cutting difficult-to-cut material using same
GB2542124A (en) * 2015-09-08 2017-03-15 Technicut Ltd Method and tools for manufacturing a blisk
JP2019202378A (en) * 2018-05-23 2019-11-28 三菱日立ツール株式会社 End mill

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021115684A (en) * 2020-01-28 2021-08-10 日進工具株式会社 Multi-blade ball end mil and processing method of multi-blade ball end mill
WO2021172414A1 (en) * 2020-02-28 2021-09-02 京セラ株式会社 End mill and method for manufacturing cut workpiece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303707A (en) * 1989-05-16 1990-12-17 Mitsubishi Heavy Ind Ltd Ball end mill
JPH10263913A (en) * 1997-03-25 1998-10-06 Hitachi Tool Eng Co Ltd Ball end mill
JP2002187011A (en) * 2000-12-21 2002-07-02 Osg Corp Multi-blade ball end mill
JP2004082263A (en) * 2002-08-27 2004-03-18 Hitachi Tool Engineering Ltd End mill
JP2005224898A (en) * 2004-02-13 2005-08-25 Mitsubishi Materials Kobe Tools Corp Three-blade ball end mill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809306B2 (en) * 2007-08-31 2011-11-09 ユニオンツール株式会社 Ball end mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303707A (en) * 1989-05-16 1990-12-17 Mitsubishi Heavy Ind Ltd Ball end mill
JPH10263913A (en) * 1997-03-25 1998-10-06 Hitachi Tool Eng Co Ltd Ball end mill
JP2002187011A (en) * 2000-12-21 2002-07-02 Osg Corp Multi-blade ball end mill
JP2004082263A (en) * 2002-08-27 2004-03-18 Hitachi Tool Engineering Ltd End mill
JP2005224898A (en) * 2004-02-13 2005-08-25 Mitsubishi Materials Kobe Tools Corp Three-blade ball end mill

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140003873A1 (en) * 2011-02-16 2014-01-02 Hitachi Tool Engineering, Ltd. End mill for cutting of high-hardness materials
US9421624B2 (en) * 2011-02-16 2016-08-23 Hitachi Tool Engineering, Ltd. End mill for cutting of high-hardness materials
CN105473264A (en) * 2013-10-23 2016-04-06 三菱综合材料株式会社 Ball end mill
US10449611B2 (en) 2013-10-23 2019-10-22 Mitsubishi Materials Corporation Ball end mill
CN107073602A (en) * 2014-10-28 2017-08-18 三菱日立工具技术株式会社 The cutting process of the hard-cutting material of ceramic slotting cutter and the use ceramic slotting cutter
JPWO2016067985A1 (en) * 2014-10-28 2017-09-07 三菱日立ツール株式会社 Ceramic end mill and method of cutting difficult-to-cut materials using the same
US9975187B2 (en) 2014-10-28 2018-05-22 Mitsubishi Hitachi Tool Engineering, Ltd. Ceramic end mill and method for cutting difficult-to-cut material using the same
CN107073602B (en) * 2014-10-28 2019-03-15 三菱日立工具技术株式会社 The cutting process of ceramic slotting cutter and the hard-cutting material using the ceramics slotting cutter
WO2016067985A1 (en) * 2014-10-28 2016-05-06 三菱日立ツール株式会社 Ceramic end mill and method for cutting difficult-to-cut material using same
WO2017042158A1 (en) * 2015-09-08 2017-03-16 Technicut Limited Method and tool for machining a blisk
GB2542124A (en) * 2015-09-08 2017-03-15 Technicut Ltd Method and tools for manufacturing a blisk
GB2542124B (en) * 2015-09-08 2019-06-05 Technicut Ltd Method and tools for manufacturing a bladed disk
JP2019202378A (en) * 2018-05-23 2019-11-28 三菱日立ツール株式会社 End mill
JP7089171B2 (en) 2018-05-23 2022-06-22 株式会社Moldino End mill

Also Published As

Publication number Publication date
JP2014039994A (en) 2014-03-06
JP5846098B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6344391B2 (en) Multi-blade ball end mill
WO2013118829A1 (en) Multiple-edged ball end mill
JP5803647B2 (en) End mill
KR101746483B1 (en) Multi-flute endmill
EP2065111B1 (en) Rotary cutting tool
JP2007030074A (en) Radius end mill and cutting method
JP5614511B2 (en) Ball end mill and insert
JP2012091306A (en) End mill made of cemented carbide
CN105636729A (en) Roughing end mill
WO2015104732A1 (en) End mill
JP2014039994A5 (en)
JPWO2019073752A1 (en) Rotary cutting tool
JP2005111651A (en) Tip, milling cutter, and machining method using the same
JP5644084B2 (en) Cemented carbide end mill
JP2024023943A (en) ball end mill
WO2018074542A1 (en) Cutting insert and cutting edge-interchangeable rotary cutting tool
JP5016737B1 (en) Multi-blade end mill
JPH07204921A (en) End mill
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP2013013962A (en) Cbn end mill
JP2000052127A (en) End mill
JP2021115684A (en) Multi-blade ball end mil and processing method of multi-blade ball end mill
WO2020166421A1 (en) Endmill
JP2022007242A (en) Two-blade ball end mill
JPWO2020075489A1 (en) End mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747193

Country of ref document: EP

Kind code of ref document: A1