WO2013118703A1 - Mechanically and electronically integrated module - Google Patents

Mechanically and electronically integrated module Download PDF

Info

Publication number
WO2013118703A1
WO2013118703A1 PCT/JP2013/052570 JP2013052570W WO2013118703A1 WO 2013118703 A1 WO2013118703 A1 WO 2013118703A1 JP 2013052570 W JP2013052570 W JP 2013052570W WO 2013118703 A1 WO2013118703 A1 WO 2013118703A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
frame
inverter
motor
load
Prior art date
Application number
PCT/JP2013/052570
Other languages
French (fr)
Japanese (ja)
Inventor
義浩 深山
一法師 茂俊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013557514A priority Critical patent/JP5859031B2/en
Publication of WO2013118703A1 publication Critical patent/WO2013118703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to an electromechanical integrated module in which an inverter device is disposed on the opposite side of an axial load of a rotating electrical machine having a refrigerant flow path and sandwiching a counter load side end frame having a refrigerant flow path.
  • a conventional mechanical / electrical integrated module is configured by integrating a motor body and an inverter device via a heat sink. After cooling the inverter device by circulating a coolant inside the heat sink, the coolant is supplied to the motor body to supply the motor.
  • the main body was cooled (for example, refer to Patent Document 1).
  • the inverter device In this type of electromechanical integrated module, the inverter device must be arranged in a limited plane on the end face on the non-load side of the motor body. And in order to take a large arrangement area, the power module of an inverter apparatus is used and arrange
  • the heat sink is also configured to efficiently cool the power module by disposing the inverter device side refrigerant flow path to near the outer diameter in order to cool the power module.
  • the motor-side refrigerant flow path is formed over the entire circumference of the cylindrical frame. Accordingly, since the motor-side refrigerant flow path has a long flow path length and a high pressure loss, the motor-side refrigerant flow path is configured to increase the flow path cross-sectional area and reduce the pressure loss.
  • the refrigerant is interposed between the inverter apparatus side refrigerant flow path and the motor side refrigerant flow path in order to reduce the overall pressure loss.
  • a flow path conversion unit that performs branching, merging, and rectification is required.
  • an opening is formed in a portion on the motor body side corresponding to the drain outlet of the inverter side refrigerant flow path formed in the heat sink, and the inverter side refrigerant flow path and the motor side refrigerant flow path are formed. It was directly connected. Therefore, refrigerant channels having different channel cross-sectional shapes are directly connected, and there is a problem that a sudden decrease in the channel cross-sectional shape occurs at the connecting portion, resulting in an increase in pressure loss.
  • the inverter-side refrigerant flow path and the motor-side refrigerant flow path are connected via a flow path conversion portion disposed outside the frame of the motor body and the heat sink.
  • the flow path conversion unit can use the space outside the motor body to gently change the flow path cross-sectional shape to connect two refrigerant flow paths having different flow path cross-sectional shapes, thereby increasing pressure loss. Can be suppressed.
  • the flow path conversion portion is arranged outside the frame of the motor body or the heat sink. Will be distributed.
  • the flow path conversion part is disposed outside the frame of the motor body and the heat sink, which causes a new problem that the diameter of the electromechanical integrated module is increased. This problem becomes prominent especially when the radial size is limited, such as a drive motor for an electric vehicle.
  • the present invention has been made to solve the above-described problems, and without connecting the inverter-side refrigerant flow path and the motor-side refrigerant flow path to each other or the external refrigerant flow path without increasing the diameter of the device.
  • An object of the present invention is to obtain an electromechanical integrated module capable of suppressing an increase in pressure loss at a connecting portion and improving a cooling capacity.
  • An electromechanical integrated module includes a cylindrical frame having a built-in motor-side refrigerant flow path, a load-side end frame disposed at one end in the axial direction of the frame, and an inverter disposed at the other end in the axial direction.
  • a housing having an anti-load-side end frame with a built-in side refrigerant flow path, an annular stator core that is housed and held in the frame, a stator having a stator coil wound around the stator core, and the load
  • a rotating electrical machine including a rotor that is pivotally supported by the side end frame and the anti-load side end frame and rotatably disposed on the inner peripheral side of the stator; and the load side end frame of the anti-load side end frame A power module disposed on the opposite side of the inverter, and an inverter device having a power module drive circuit, and A first flow path conversion unit that communicates the data side refrigerant flow path and the inverter side refrigerant flow path, a second flow path conversion unit that communicates the first refrigerant supply / drain port and the inverter side refrigerant flow path, and a second refrigerant.
  • the space in which at least one of the first flow path conversion section, the second flow path conversion section, and the third flow path conversion section is configured by the frame, the stator core, and the anti-load side end frame.
  • the stator coil is disposed on the outer diameter side of the coil end opposite to the load side of the stator coil. Therefore, the flow path conversion unit can be provided without increasing the outer diameter of the device and without increasing the axial length. Furthermore, since the installation space of the flow path conversion unit can be increased, the cross-sectional shape of the flow path conversion unit can be changed smoothly, the two refrigerant flow paths can be connected to low pressure loss, and the cooling capacity can be increased. Can be improved.
  • FIG. 7 is a sectional view taken along arrow VII-VII in FIG. 6.
  • FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 7.
  • FIG. 7 is a cross-sectional view taken along arrow IX-IX in FIG. 6. It is sectional drawing explaining the structure of the refrigerant
  • FIG. 13 is a cross-sectional view taken along arrow XIII-XIII in FIG. 12.
  • FIG. 14 is a cross-sectional view taken along arrow XIV-XIV in FIG. 12.
  • FIG. 1 is a sectional view showing an electromechanical integrated module according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view showing an outer frame of a motor frame applied to the electromechanical integrated module according to Embodiment 1 of the present invention
  • 3 is a perspective view showing an inner frame of a motor frame applied to the electromechanical integrated module according to Embodiment 1 of the present invention
  • FIG. 4 shows the motor in the electromechanical integrated module according to Embodiment 1 of the present invention from the anti-load side.
  • FIG. 5 is a perspective view showing an anti-load side end frame in the electromechanical integrated module according to Embodiment 1 of the present invention, and FIG.
  • FIG. 6 is an anti-load side in the electromechanical integrated module according to Embodiment 1 of the present invention.
  • FIG. 7 is a cross-sectional view taken along arrow VII-VII in FIG. 6, and
  • FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 6 is a cross-sectional view taken along the line IX-IX in FIG. 6,
  • FIG. 10 is a cross-sectional view for explaining the structure of the refrigerant flow path of the non-load-side end frame in the electromechanical integrated module according to Embodiment 1 of the present invention, and
  • FIG. FIG. 12 is a schematic diagram for explaining the configuration of the module applied to the electromechanical integrated module according to Embodiment 1 of the present invention, and FIG.
  • FIG. 12 explains the configuration of the third flow path converter in the electromechanical integrated module according to Embodiment 1 of the present invention.
  • 13 is a cross-sectional view taken along arrow XIII-XIII in FIG. 12
  • FIG. 14 is a cross-sectional view taken along arrow XIV-XIV in FIG.
  • the electromechanical integrated module 100 includes a motor 1 as a rotating electrical machine, and an inverter device 50 that converts DC power supplied from the outside into AC power and supplies the AC power to the motor 1.
  • the motor 1 is integrally assembled on the opposite side of the load.
  • the motor 1 surrounds the rotor 35, a rotor 35 rotatably disposed in a housing including the motor frame 2, the anti-load side end frame 20, the motor frame 2 and the anti-load side end frame 20. And a stator 40 attached to the motor frame 2.
  • the motor frame 2 is made into a bottomed cylindrical shape having a disk-shaped load side end frame 3 and a cylindrical frame 4 protruding in the axial direction from the outer peripheral edge of the load side end frame 3.
  • a load-side bearing 30 is mounted at the axial center position of the load-side end frame 3.
  • the frame 4 includes a cylindrical inner frame 5 that is manufactured integrally with the load-side end frame 3, and a cylindrical outer frame 13 that is fitted to the inner frame 5 in an externally fitted state.
  • the inner frame 5 is configured such that the thin portion 7 projects in a cylindrical shape from the outer peripheral edge of the cylindrical thick portion 6 on the side opposite to the load (opening side), and the stator positioning step 8 is formed. It is formed in the vicinity of the load side end frame 3 on the inner peripheral surface of the thick portion 6.
  • a channel groove 9 is recessed in the outer peripheral surface of the thick portion 6.
  • the channel groove 9 is a zigzag shape in which linear groove portions with the groove direction as the axial direction are arranged at a predetermined pitch in the circumferential direction, and both ends of the groove portions arranged in the circumferential direction are alternately connected in the axial direction. It is configured in a groove shape.
  • the cutout portion 10 is formed by cutting out a part of the thin portion 7, and one end of the flow channel 9 is open to the cutout portion 10. Furthermore, the circumferential direction one side of the notch portion 10 of the thin portion 7 is formed in the same width as the thick portion 6 with the circumferential width including the other end of the flow channel groove 9, Constitute. Then, as shown in FIG. 12, the third flow path conversion unit 11 starts from the groove cross-sectional shape of the flow path groove 9 (the opening cross-sectional shape of the motor-side refrigerant flow path 18) while gradually changing the cross-sectional shape of the flow path. A flow path 11 a that changes to the opening cross-sectional shape of the second refrigerant supply / drain port 17 is formed.
  • the outer frame 13 is formed in a cylindrical shape having a predetermined thickness as shown in FIG.
  • the cutout portion 14 is formed by cutting out a part of the end of the outer frame 13 on the side opposite to the load.
  • the first flow path conversion portion 15 is provided so as to protrude from the inner peripheral surface of the outer frame 13 on the opposite load side to the inner diameter side.
  • the first flow path conversion unit 15 is located on one side in the circumferential direction of the notch 14, and is formed so that the flow path 15a penetrates in the axial direction.
  • the flow path 15a has a flow path groove 9 that opens to the notch 10 from the same cross-sectional shape as a drain outlet 28b of the inverter-side refrigerant flow path 19 described later, while gradually changing the cross-sectional shape from the opposite load side to the load side. Is formed in a flow path shape that changes to the same cross-sectional shape as the opening (opening of the motor-side refrigerant flow path 18). Further, the second refrigerant supply / drain port 17 is erected on the outer peripheral surface of the outer frame 13 on the side opposite to the load so as to be positioned on one side in the circumferential direction of the first flow path conversion unit 15. In addition, the inner diameter of the outer flow side of the 1st flow-path conversion part 15 of the outer frame 13 is large, and comprises the anti-load side end frame holding part which hold
  • the outer frame 13 is fitted to the inner frame 5 in an externally fitted state, and closes the upper opening of the flow channel groove 9 to constitute a motor side refrigerant flow channel 18.
  • the first flow path conversion unit 15 is inserted on one side in the circumferential direction in the notch 10.
  • the opening on the load side of the flow path 15a is opposed to one end opening of the flow path groove 9 (motor-side refrigerant flow path 18), and the flow path 16 and the motor-side refrigerant flow path 18 are connected.
  • the outer frame 13 is joined to the inner frame 5 by welding or the like, and the sealing performance of the motor side refrigerant flow path 18 is ensured.
  • an O-ring (not shown) is provided between the first flow path conversion unit 15 and the end surface of the notch 10, and the sealing performance of the connecting portion between the flow path 15a and the motor side refrigerant flow path 18 is ensured. Is done. Furthermore, the other circumferential side in the notch 10 and the notch 14 constitute a fitting recess.
  • the opening of the second refrigerant supply / drain port 17 faces the opening of the flow path 11 a of the third flow path conversion unit 11, and the second refrigerant supply / drain port 17 and the motor-side refrigerant flow path 18 pass through the third flow path conversion unit 11.
  • the second refrigerant supply / drain port 17 is made in a circular cross section
  • the motor side refrigerant flow path 18 is made in a rectangular cross section as shown in FIG. 14.
  • the flow path 11a of the 3rd flow-path conversion part 11 is the same rectangular cross section as the motor side refrigerant
  • the third flow path converter 11 is disposed radially outward of the anti-load side coil end of the stator coil 44.
  • the non-load-side end frame 20 is formed in a ring flat plate shape having an outer diameter equal to the inner diameter of the first flow path conversion portion 15 of the outer frame 13 on the anti-load side.
  • the capacitor housing recess 22 is formed in the center of one surface, and the channel groove 23 is formed in a ring flat plate shape with the base portion 21 formed on the outer diameter side of the capacitor housing recess 22 on one surface, and the one surface is a power module.
  • a cooling frame 24 as a mounting surface, cooling fins 25 provided on the other surface of the cooling frame 24 so as to extend in the circumferential direction at a predetermined protruding height, and radially outward from the outer peripheral surface of the base 21 And the 2nd flow path conversion part 26 provided so that it might protrude to the axial direction outward from the outer peripheral side of the other surface, and the 1st installed on the protrusion end side of the outer peripheral surface of the 2nd flow path conversion part 26 And a refrigerant supply / drain port 27. .
  • the cooling frame 24 is disposed on one surface of the base 21 so that the cooling fins 25 enter the flow path groove 23, and configures the inverter-side refrigerant flow path 19 by closing the upper opening of the flow path groove 23.
  • the cooling frame 24 is joined to the base portion 21 by welding or the like, and the sealing performance of the inverter-side refrigerant flow path 19 is ensured.
  • the flow path groove 23 is formed in a groove shape in which one end of two C-shaped grooves arranged concentrically is connected, and the cooling fin 25 is inserted in the center of the flow path groove 23 in the groove width direction.
  • the flow path 19 is configured as a parallel flow path. As a result, as shown in FIG. 10, the inverter-side refrigerant flow path 19 becomes a parallel flow from the water supply port 28a and is folded after flowing about 360 degrees in the circumferential direction. It is configured to flow about 360 degrees and reach the drain outlet 28b.
  • the water supply port 28a of the inverter-side refrigerant flow path 19 is formed in a rectangular cross section and is located on the inner diameter side of the first refrigerant supply / drainage port 27 on the same plane including the first refrigerant supply / drainage port 27 and the axis. As shown in FIG. 7, the axial flow of the cooling water introduced from the water supply port 28 a is converted into the flow direction of the inverter-side refrigerant flow channel 19 at a portion of the cooling frame 24 facing the water supply port 28 a. A concave flow path conversion surface 24a is formed. Further, as shown in FIGS.
  • the drain outlet 28 b of the inverter-side refrigerant flow path 19 is formed in a circular cross section and is shifted from the water supply inlet 28 a to one side in the circumferential direction. Open to the outer periphery of the surface.
  • a concave-shaped flow path conversion that converts the flow of cooling water flowing through the inverter-side refrigerant flow path 19 into an axial flow is provided in a portion of the cooling frame 24 that faces the drain outlet 28 b.
  • a surface 24b is formed.
  • the anti-load side bearing 31 is attached to the axial center position of the base portion 21 of the anti-load side end frame 20.
  • Six through holes 29 are formed at substantially equiangular pitches in the circumferential direction so as to penetrate the partition walls of the base portion 21 separating the inner peripheral side and the outer peripheral side of the flow channel groove 23 in the axial direction.
  • the first refrigerant supply / drain port 27 is connected to the inverter-side refrigerant flow path 19 via the flow path 26 a of the second flow path conversion unit 26.
  • coolant water supply / drain port 27 is produced by the circular cross section, as FIG. 8 shows.
  • the flow path 26a of the 2nd flow path conversion part 26 changes from the same circular cross section as the opening of the 1st refrigerant
  • the motor frame 2 and the anti-load side end frame 20 are manufactured by die casting using, for example, aluminum.
  • the material is not limited to aluminum as long as the material is a good heat conductive metal, and the manufacturing method is not limited to die casting.
  • the rotor 35 has a cylindrical rotor core 36 formed by laminating magnetic thin plates such as electromagnetic steel plates, and is formed so as to penetrate the rotor core 36 in the axial direction, and is disposed at an equiangular pitch in the circumferential direction.
  • 10 permanent magnets 37 housed and fixed in each of the 10 magnet housing holes 38, a shaft 39 inserted through the axial center of the rotor core 36 and secured to the rotor core 36, and the rotor core 36 And a pair of end plates 33 that prevent the permanent magnet 37 from coming off.
  • the permanent magnets 37 are arranged so that the polarities on the outer side in the radial direction alternate between the N pole and the S pole in the circumferential direction.
  • the rotor 35 is supported at the other end in the axial direction of the shaft 39 by the load side end frame 3 via the load side bearing 30, and at one end in the axial direction of the shaft 39 through the anti load side bearing 31.
  • 20 is supported by the base 21 and is rotatably disposed in the housing.
  • a resolver 32 is attached to one end of the shaft 39 in the axial direction so that the rotational position of the rotor 35 can be detected.
  • the anti-load-side end frame 20 is inserted into the anti-load-side end frame holding portion of the outer frame 13 in a state where the stator 40 and the rotor 35 are housed in the frame 4, and is fixed by shrink fitting or the like. ing. Thereby, the 2nd flow-path conversion part 26 is fitted by the fitting recessed part comprised by the notch parts 10 and 14.
  • FIG. The opening on the anti-load side of the first flow path conversion unit 15 is opposed to the drain port 28b opened on the other surface of the base 21 of the anti-load side end frame 20, and the motor side refrigerant flow path 18 and the inverter side refrigerant flow path 19 Are connected via the first flow path converter 15.
  • An O-ring (not shown) is provided between the first flow path conversion portion 15 and the other surface of the base portion 21, and the sealing performance of the connecting portion between the flow path 15a and the inverter-side refrigerant flow path 19 is ensured.
  • the stator 40 is configured by laminating magnetic thin plates such as electromagnetic steel plates, and extends inward in the radial direction from the inner peripheral surface of the annular core back 42 and the core back 42, and is equiangularly spaced in the circumferential direction.
  • the stator core 41 having the 12 teeth 43 arranged in the above-mentioned manner, and the 12 conductors formed by winding the insulation-coated conductor wires around the teeth 43 through the insulator 46 made of an insulating material in a concentrated manner.
  • a stator coil 44 composed of a concentrated winding coil 45.
  • the stator coil 44 is subjected to internal connection processing (end processing) using a connection conductor 48 a on the non-load side. That is, the end of each concentrated winding coil 45 is pulled out to the opposite side of the stator core 41 so that the winding direction of the two concentrated winding coils 45 adjacent to each other in the circumferential direction is reversed using the crossover wire 47.
  • Six phase coils are configured in series. Then, one end of each of the six phase coils is connected to each other using a connection conductor 48a, and two three-phase AC windings in which three phase coils are Y-connected are configured.
  • connection conductor 48a The connection of the six phase coils by the connection conductor 48a is performed while avoiding the circumferential region where the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are disposed. That is, the internal connection processing of the stator coil 44 is performed on both sides in the circumferential direction of the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 that are disposed close to each other in the circumferential direction. In the region, the connection conductor 48a is used. These connection conductors 48 a are held by the connection plate 48.
  • the stator 40 has a stator core 41 inserted into the thick portion 6 of the inner frame 5 from the anti-load side in an internally fitted state and fixed by shrink fitting or the like, and is attached to the motor frame 2 coaxially with the shaft 39 on the outer peripheral side of the rotor core 36. Is retained.
  • the connection conductor 48b connected to the other end of each phase coil avoids a circumferential region where the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are disposed. Pulled to the opposite load side.
  • the motor 1 thus configured operates as an inner rotor type three-phase motor having 10 poles and 12 slots.
  • the inverter device 50 includes six power modules 51 arranged at equiangular pitches in the circumferential direction on the power module mounting surface of the cooling frame 24 and a circuit that drives the power module 51.
  • the power module drive circuit board 52, the power module 51, and the power module drive circuit board 52 are disposed so as to cover the power module 51 and the power module drive circuit board 52, and are fastened to the non-load-side end frame 20 with screws or the like.
  • a protective cover 53 for protecting 52 for protecting 52.
  • the power module 51 has an upper arm side switching element 61 having one end connected to the positive DC terminal 64 and the other end connected to the module AC terminal 67, and one end connected to the module AC terminal 67.
  • the lower arm side switching element 62 connected to the negative side DC terminal 65 at the other end, the reflux diode 63 attached in parallel to each of the switching elements 61 and 62, and the resin sealing portion for sealing them 68, and constitutes 2 in 1 joule corresponding to conversion between DC power and AC power for one phase.
  • connection conductors 48 b are respectively drawn out to the non-load side through the through holes 29 formed in the non-load side end frame 20 and connected to the module AC terminal 67.
  • a capacitor 54 is attached to the capacitor housing recess 22 of the base 21.
  • the protective cover 53 is formed in a bottomed cylindrical shape having an outer diameter substantially equal to that of the outer frame 13, and covers the entire electromechanical integrated module 100 together with the motor frame 2.
  • the electromechanical integrated module 100 configured as described above, DC power supplied from an external power source is converted into AC power by the inverter device 50 and supplied to the stator coil 44. Thereby, a rotating magnetic field is generated in the stator 40. A rotational force is generated by the interaction between the rotating magnetic field of the stator 40 and the magnetic field of the permanent magnet 37, the rotor 35 is rotationally driven, and the rotational torque is output via the shaft 39.
  • the cooling water is supplied to the first refrigerant supply / drain port 27.
  • the cooling water supplied to the first refrigerant supply / drainage port 27 flows into the flow path 26a of the second flow path conversion unit 26, and the flow direction is gradually changed from the radial direction to the axial direction. It flows into the inverter side refrigerant flow path 19 built in the frame 20.
  • the cooling water that has flowed into the inverter-side refrigerant flow path 19 is changed from the axial flow by the flow path conversion surface 24 a to the flow direction of the inverter-side refrigerant flow path 19 and flows through the inverter-side refrigerant flow path 19.
  • the cooling water which circulated through the inverter side refrigerant flow path 19 is changed into the flow of an axial direction by the flow path conversion surface 24b, and flows into the flow path 15a of the 1st flow path conversion part 15 from the drain outlet 28b.
  • the cooling water flowing into the flow path 15a flows into the motor-side refrigerant flow path 18 built in the frame 4 while gradually changing the cross-sectional shape.
  • the cooling water flowing through the motor-side refrigerant flow path 18 flows into the third flow path conversion unit 11, the flow direction is gradually changed from the axial direction to the radial direction, and the water is discharged from the second refrigerant supply / drainage port 17.
  • the heat generated in the stator coil 44 is transmitted to the frame 4 via the stator core 41, and is radiated to the cooling water flowing through the motor-side refrigerant flow path 18, so that the temperature rise of the stator 40 is suppressed.
  • Heat generated by the switching elements 61 and 62 of the power module 51 is transmitted to the cooling frame 24 and dissipated to the cooling water flowing through the inverter-side refrigerant flow path 19, and the temperature rise of the power module 51 is suppressed.
  • the first flow path conversion unit 15 that connects the motor-side refrigerant flow path 18 and the inverter-side refrigerant flow path 19 is unavoidably configured by the frame 4, the stator core 41, and the anti-load side end frame 20. It is arranged on the outer diameter side of the coil end opposite to the load side of the stator coil 44 in a narrow space. Therefore, since there is no increase in diameter and increase in the axial length due to the arrangement of the first flow path conversion unit 15, the small electromechanical integrated module 100 can be realized. Moreover, since the volume of the 1st flow-path conversion part 15 can be enlarged, the flow-path cross-sectional shape of the flow path 15a can be changed smoothly, and the pressure loss in the 1st flow-path conversion part 15 can be made small.
  • the flow path 15a is a flow that changes from the same cross-sectional shape as the drain outlet 28b of the inverter-side refrigerant flow path 19 to the same cross-sectional shape as the motor-side refrigerant flow path 18 while gradually changing the cross-sectional shape from the opposite load side to the load side. It is formed in a road shape. Therefore, not only in the flow path 15a, but also in the connection portion between the inverter-side refrigerant flow path 19 and the flow path 15a, and in the connection portion between the motor-side refrigerant flow path 18 and the flow path 15a, a sudden change in the cross-sectional shape of the flow path. And pressure loss can be reduced.
  • a second flow path conversion unit 26 that connects the first refrigerant supply / drain port 27 and the inverter-side refrigerant flow path 19, and a third flow path conversion that connects the second refrigerant supply / drain port 17 and the motor-side refrigerant flow path 18.
  • the portion 11 is disposed on the outer diameter side of the anti-load side coil end of the stator coil 44 in an inevitable space constituted by the frame 4, the stator core 41 and the anti-load side end frame 20. Therefore, since there is no increase in diameter and increase in the axial length due to the arrangement of the second and third flow path conversion units 26 and 11, a small electromechanical integrated module 100 can be realized.
  • the volume of the 2nd and 3rd flow-path conversion parts 26 and 11 can be enlarged, the flow-path cross-sectional shape of the flow paths 26a and 11a can be changed smoothly, and the 2nd and 3rd flow-path conversion part 26 is changed. , 11 can be reduced.
  • the flow path 26a is formed in a flow path shape that changes from the same cross-sectional shape as the opening of the first refrigerant supply / drain port 27 to the same cross-sectional shape as the water supply port 28a of the inverter-side refrigerant flow path 19 while gradually changing the cross-sectional shape. .
  • the flow path 11a is formed in a flow path shape that changes from the same cross-sectional shape as the opening of the second refrigerant supply / drain port 17 to the same cross-sectional shape as the motor-side refrigerant flow path 18 while gradually changing the cross-sectional shape. Therefore, not only in the flow path 11a, but also in the connection portion between the second refrigerant supply / drain port 17 and the flow path 11a, and in the connection portion between the motor-side refrigerant flow path 18 and the flow path 11a, a sudden change in the cross-sectional shape of the flow path. And pressure loss can be reduced.
  • the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are arranged close to each other in the circumferential direction. Therefore, the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit disposed on the outer diameter side of the coil end opposite to the load side of the stator coil 44 and in the vicinity of the circumferential direction. Since the empty space which continues in the circumferential direction is formed on both sides in the circumferential direction, the internal connection processing of the stator coil 44 is facilitated. Further, since the first and second refrigerant supply / drain ports 27 and 17 are close to each other, the connection work between the first and second refrigerant supply / drain ports 27 and 17 and the external piping is facilitated.
  • first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are disposed in the circumferential region where the connection conductor 48 a that connects the stator coil 44 is not disposed.
  • the volume of the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 can be increased, and the change in the cross-sectional shape of the flow paths 15a, 26a, and 11a can be smoothed. Since the motor side refrigerant flow path 18 and the inverter side refrigerant flow path 19 are connected in series, branching of the flow path is reduced, and the occurrence of uneven cooling is suppressed.
  • FIG. FIG. 15 is a sectional view showing an electromechanical integrated module according to Embodiment 2 of the present invention.
  • a fin groove 70 is recessed in the bottom surface of the flow channel groove 23 of the base portion 21 so as to correspond to the cooling fin 25.
  • the tips of the cooling fins 25 are inserted into the fin grooves 70 to constitute the inverter-side refrigerant flow path 19.
  • Other configurations are the same as those in the first embodiment.
  • the same effect as in the first embodiment can be obtained.
  • the tips of the cooling fins 25 are inserted into fin grooves 70 that are recessed in the bottom surface of the flow channel groove 23. Therefore, it is difficult for a gap to be formed between the cooling fin 25 and the bottom surface of the channel groove 23, and the cooling water is less likely to leak into the adjacent channel in the inverter-side refrigerant channel 19. For this reason, the flow rate of the cooling water flowing in the flow path of the inverter side refrigerant flow path 19 is stabilized, and the cooling performance can be made uniform.
  • the flow path shape of the inverter-side refrigerant flow path 19 can be manufactured with high accuracy, and the occurrence of uneven cooling due to the uneven flow rate of the cooling water flowing through the flow path can be suppressed.
  • FIG. FIG. 16 is a cross-sectional view for explaining the structure of the refrigerant flow path of the non-load-side end frame in the electromechanical integrated module according to Embodiment 3 of the present invention.
  • the flow path groove 23 formed on one surface of the base 21 is formed in a groove shape in which one end of two C-shaped grooves arranged concentrically is connected.
  • a water supply port 28 a is formed in the base portion 21 so as to communicate one side of the groove width direction of one end of the flow channel groove 23 with the flow channel 26 a of the second flow channel conversion unit 26, and a drain port 28 b is formed in the flow channel groove 23. It is formed in the base 21 so as to reach the other surface of the base 21 from the other side in the groove width direction at one end.
  • the cooling fins 25 are inserted into the flow channel grooves 23 and are erected on the other surface of the cooling frame 24 so as to divide the flow channel grooves 23 into two in the groove width direction.
  • Through holes 29 through which the connecting conductors 48b are drawn to the opposite load side are formed in the capacitor housing recess 22 of the base 21 at a predetermined pitch in the circumferential direction, avoiding the installation position of the capacitors 54.
  • the cooling frame 24 is joined to the base 21, and the cooling fin 25 is inserted into the center of the flow channel groove 23 in the groove width direction to form the inverter side refrigerant flow channel 19 ⁇ / b> A.
  • the inverter-side refrigerant flow path 19A flows from the water supply port 28a through the outermost flow path in the circumferential direction by approximately 360 degrees, and is folded back and flows through the innermost flow path in the circumferential direction by approximately 360 degrees.
  • the second flow path from the side flows about 360 degrees in the circumferential direction, and is folded back to flow the second flow path from the outer peripheral side about 360 degrees in the circumferential direction to reach the drain outlet 28b.
  • Other configurations are the same as those in the first embodiment.
  • the inverter side refrigerant flow path 19A has a flow path structure in which four concentric flow paths are connected in series. Therefore, since the inverter-side refrigerant flow path 19A does not have a parallel flow path, no diversion occurs and the cooling capacity is made uniform. Further, the contact area between the cooling water and the cooling fins 25 is increased, and the cooling performance is improved.
  • the inverter-side refrigerant flow path is formed of four flow paths in the radial direction, but the number of flow paths in the radial direction is not limited to four.
  • the height of the cooling fin is changed, and the cross-sectional area of the inverter-side refrigerant flow path is substantially equal to the cross-sectional area of the motor-side refrigerant flow path and the cross-sectional areas of the first and second refrigerant supply / drain ports. It is preferable to do.
  • FIG. 17 is a perspective view showing an anti-load side end frame in an electromechanical integrated module according to Embodiment 4 of the present invention
  • FIG. 18 shows an outer frame of a motor frame applied to the electromechanical integrated module according to Embodiment 4 of the present invention
  • FIG. 19 is a perspective view illustrating a method for assembling an electromechanical integrated module according to Embodiment 4 of the present invention.
  • the anti-load side end frame 20B has a predetermined width in the circumferential direction so as to protrude radially outward from the outer peripheral surface of the base 21 and axially outward from the outer peripheral side of the other surface.
  • the flow path conversion unit 60 is provided.
  • the first refrigerant supply / drain port 27 is erected on the protruding end side of the outer peripheral surface of the flow path conversion unit 60.
  • the first flow path is formed in the flow path conversion unit 60 so as to communicate the water inlet 28 a of the inverter-side refrigerant flow path 19 and the first refrigerant supply / drain port 27.
  • the first flow path is configured to have a flow path shape that gradually changes its cross-sectional shape and changes from the same cross-sectional shape as the opening of the first refrigerant supply / drain port 27 to the same cross-sectional shape as the water intake port 28a.
  • the second flow path extends from the drain outlet 28b of the inverter-side refrigerant flow path 19 in the axial direction so as to open to the load side end face of the flow path conversion unit 60. It is formed in the flow path conversion part 60 by shifting to one side in the circumferential direction.
  • the second flow path is configured to have a flow path shape that gradually changes its cross-sectional shape and changes from the same cross-sectional shape as the drain port 28b to the same cross-sectional shape as the opening of the flow channel groove 9 that opens in a notch to be described later. Yes.
  • the flow path converter 60 includes the first flow path converter 15 and the second flow path converter 26 in the first embodiment.
  • the outer frame 13 ⁇ / b> A includes a notch portion 14 ⁇ / b> A formed by notching a part of the end portion on the opposite side to the same circumferential width and the same axial length as the flow path conversion portion 60.
  • Other configurations are the same as those in the first embodiment.
  • the outer frame 13A is fitted into the inner frame 5 from the anti-load side in an externally fitted state to produce a frame.
  • the stator core 41 of the stator 40 is inserted into the thick portion 6 of the inner frame 5 from the anti-load side in an internally fitted state until it hits the stator positioning step 8 and fixed by shrink fitting or the like.
  • the rotor 35 is inserted into the stator 40 from the anti-load side, and the anti-load side end frame 20B on which the power module 51, the power module circuit board 52, etc. are attached is attached to the anti-load side end frame holding portion of the outer frame 13A.
  • the shaft 39 is supported by the load side end frame 3 and the anti load side end frame 20B via the load side bearing 30 and the anti load side bearing shaft 31, and the rotor 35 is rotatably held in the housing.
  • the protective cover 53 is mounted from the anti-load side so as to cover the power module 51, the power module circuit board 52, etc., and fixed to the anti-load side end frame 20B with screws or the like, and the electromechanical integrated module is assembled.
  • components such as the inner frame 5, the outer frame 13A, the stator 40, the rotor 35, the anti-load side end frame 20B, and the protective cover 53 are moved from the anti-load side, that is, the shaft.
  • the electromechanical integrated module can be assembled by sequentially assembling from one side of the direction, the assemblability of the electromechanical integrated module is improved.
  • the 2nd flow path conversion part is comprised integrally with the flow path conversion part 60 with the 1st flow path conversion part, the drainage of the 2nd flow path of the 2nd flow path conversion part, and the inverter side refrigerant
  • cooling water flows from the inverter side refrigerant flow path to the motor side refrigerant flow path, but the cooling water may flow from the motor side refrigerant flow path to the inverter side refrigerant flow path.
  • cooling water is used as a refrigerant
  • coolant is not limited to cooling water, For example, you may use oil, an antifreeze, etc.
  • each of the first flow path conversion unit, the second flow path conversion unit, and the third flow path conversion unit gradually changes from the cross-sectional shape on one side of the flow channel to the cross-sectional shape on the other side.
  • the first flow path conversion section, the second flow path conversion section, and the third flow path conversion section may have a uniform cross section or a part of the flow paths. Good.
  • a permanent magnet motor having a rotor in which permanent magnets are embedded is used.
  • a switched reluctance motor having a rotor whose teeth protrude from the cylindrical yoke portion to the outer diameter side is provided.
  • six power modules are used, but the number of power modules only needs to be a natural number times the number of phases of the motor.
  • a motor having a ratio of the number of poles to the number of slots of 5: 6 is used.
  • the ratio of the number of poles of the motor to the number of slots is not limited to 5: 6.
  • a motor with a ratio of the number of slots to 2: 3 or 8: 9 may be used.
  • the upper arm side switching element and the lower arm side switching element that constitute the power module and the material of the free wheel diode are not mentioned, but the switching element and the free wheel diode are semiconductors such as silicon, It is manufactured using a wide band gap semiconductor such as silicon carbide or gallium nitride.
  • the cooling water circulates in the motor side refrigerant flow path because the wide band gap semiconductor is a high heat resistance element. Then, it can be made to flow into an inverter side refrigerant flow path. Thereby, it cools from the member with low heat-resistant temperature, and cooling property improves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

The present invention achieves a mechanically and electronically integrated module that is capable of improving cooling performance and suppressing an increase in pressure loss in the connection part between an inverter-side coolant channel, and a motor-side coolant channel or an external coolant flow, without necessitating an increase in the diameter of the device. A motor-side coolant channel (18) and an inverter-side coolant channel (19) are connected in a space configured from a frame (4), a stator core (41) and an unloaded-side end frame (20), with a first channel conversion unit (15) interposed between the channels on the outer-diameter side of a coil end on the unloaded side of a stator coil (44). The first channel conversion unit (15) is provided with a channel (15a) for gradually changing the cross-sectional shape thereof, and changing from the cross-sectional shape of the opening of the inverter-side coolant channel (19) to the cross-sectional shape of the opening of the motor-side coolant channel (18).

Description

機電一体モジュールMechanical and electrical integrated module
 この発明は、インバータ装置が冷媒流路を内蔵する回転電機の軸方向の反負荷側に冷媒流路を内蔵する反負荷側エンドフレームを挟んで配置された機電一体モジュールに関するものである。 The present invention relates to an electromechanical integrated module in which an inverter device is disposed on the opposite side of an axial load of a rotating electrical machine having a refrigerant flow path and sandwiching a counter load side end frame having a refrigerant flow path.
 従来の機電一体モジュールは、モータ本体とインバータ装置とをヒートシンクを介して一体化して構成され、冷却液をヒートシンク内部に流通させてインバータ装置を冷却した後、冷却液をモータ本体に供給してモータ本体を冷却していた(例えば、特許文献1参照)。 A conventional mechanical / electrical integrated module is configured by integrating a motor body and an inverter device via a heat sink. After cooling the inverter device by circulating a coolant inside the heat sink, the coolant is supplied to the motor body to supply the motor. The main body was cooled (for example, refer to Patent Document 1).
特開平5-292703号公報Japanese Patent Laid-Open No. 5-292703
 この種の機電一体モジュールにおいては、インバータ装置をモータ本体の反負荷側端面上の限られた面内に配置しなければならない。そして、配置面積を大きくとるため、インバータ装置のパワーモジュールは当該面内の外径付近まで使用して配置される。ヒートシンクも、パワーモジュールを冷却するためにインバータ装置側冷媒流路を外径付近まで配し、パワーモジュールを効率よく冷却できるように構成される。 In this type of electromechanical integrated module, the inverter device must be arranged in a limited plane on the end face on the non-load side of the motor body. And in order to take a large arrangement area, the power module of an inverter apparatus is used and arrange | positioned to the outer-diameter vicinity of the said surface. The heat sink is also configured to efficiently cool the power module by disposing the inverter device side refrigerant flow path to near the outer diameter in order to cool the power module.
 一方、モータ本体では、モータ側冷媒流路が円筒状のフレームの周方向の全周にわたって形成される。したがって、モータ側冷媒流路は流路長が長く、圧損が高くなるため、流路断面積を大きくとり、圧損を下げるように構成される。 On the other hand, in the motor body, the motor-side refrigerant flow path is formed over the entire circumference of the cylindrical frame. Accordingly, since the motor-side refrigerant flow path has a long flow path length and a high pressure loss, the motor-side refrigerant flow path is configured to increase the flow path cross-sectional area and reduce the pressure loss.
 このように、モータ側冷媒流路とインバータ装置側冷媒流路とに対する要求が異なるため、両者の流路断面形状が異なる。 Thus, since the requirements for the motor-side refrigerant flow path and the inverter device-side refrigerant flow path are different, the flow path cross-sectional shapes of the two are different.
 したがって、インバータ装置側冷媒流路とモータ側冷媒流路が接続される機電一体モジュールにおいては、全体の圧損の低減のために、インバータ装置側冷媒流路とモータ側冷媒流路との間で冷媒の分岐・合流・整流を行う流路変換部が必要となる。 Therefore, in the electromechanical integrated module in which the inverter apparatus side refrigerant flow path and the motor side refrigerant flow path are connected, the refrigerant is interposed between the inverter apparatus side refrigerant flow path and the motor side refrigerant flow path in order to reduce the overall pressure loss. A flow path conversion unit that performs branching, merging, and rectification is required.
 従来の機電一体モジュールでは、ヒートシンク内に形成されたインバータ装置側冷媒流路の排水口と対応するモータ本体側の部位に開口を形成し、インバータ装置側冷媒流路とモータ側冷媒流路とを直接連結していた。そこで、流路断面形状が異なる冷媒流路を直接連結することになり、連結部において流路断面形状の急減な変化が生じ、圧損の増大をもたらすという問題があった。 In the conventional electromechanical integrated module, an opening is formed in a portion on the motor body side corresponding to the drain outlet of the inverter side refrigerant flow path formed in the heat sink, and the inverter side refrigerant flow path and the motor side refrigerant flow path are formed. It was directly connected. Therefore, refrigerant channels having different channel cross-sectional shapes are directly connected, and there is a problem that a sudden decrease in the channel cross-sectional shape occurs at the connecting portion, resulting in an increase in pressure loss.
 この状況を鑑み、インバータ装置側冷媒流路とモータ側冷媒流路とを、モータ本体のフレームとヒートシンクの外側に配した流路変換部を介して連結することが考えられる。この場合、流路変換部は、モータ本体の外側のスペースを利用して、流路断面形状を緩やかに変えて流路断面形状の異なる2つの冷媒流路を連結することができ、圧損の増大を抑制することができる。同様に、インバータ装置側冷媒流路と外部冷媒流路との連結部、およびモータ側冷媒流路と外部冷媒流路との連結部においても、流路変換部をモータ本体のフレームやヒートシンクの外側に配することになる。 In view of this situation, it is conceivable that the inverter-side refrigerant flow path and the motor-side refrigerant flow path are connected via a flow path conversion portion disposed outside the frame of the motor body and the heat sink. In this case, the flow path conversion unit can use the space outside the motor body to gently change the flow path cross-sectional shape to connect two refrigerant flow paths having different flow path cross-sectional shapes, thereby increasing pressure loss. Can be suppressed. Similarly, in the connecting portion between the inverter device side refrigerant flow path and the external refrigerant flow path and the connecting portion between the motor side refrigerant flow path and the external refrigerant flow path, the flow path conversion portion is arranged outside the frame of the motor body or the heat sink. Will be distributed.
 しかしながら、流路変換部をモータ本体のフレームやヒートシンクの外側に配することになり、機電一体モジュールの大径化をもたらすという新たな問題が発生する。この問題は、特に電気自動車の駆動用モータのように径方向の大きさに制限がある場合には、顕著となる。 However, the flow path conversion part is disposed outside the frame of the motor body and the heat sink, which causes a new problem that the diameter of the electromechanical integrated module is increased. This problem becomes prominent especially when the radial size is limited, such as a drive motor for an electric vehicle.
 この発明は、上記課題を解決するためになされたもので、装置を大径化することなく、インバータ側冷媒流路とモータ側冷媒流路との相互の連結部、あるいは外部冷媒流路との連結部における圧損の増加を抑え、冷却能力を向上することができる機電一体モジュールを得ることを目的とする。 The present invention has been made to solve the above-described problems, and without connecting the inverter-side refrigerant flow path and the motor-side refrigerant flow path to each other or the external refrigerant flow path without increasing the diameter of the device. An object of the present invention is to obtain an electromechanical integrated module capable of suppressing an increase in pressure loss at a connecting portion and improving a cooling capacity.
 この発明による機電一体モジュールは、モータ側冷媒流路が内蔵された筒状のフレーム、該フレームの軸方向一端に配置される負荷側エンドフレーム、および該フレームの軸方向他端に配置され、インバータ側冷媒流路が内蔵された反負荷側エンドフレームを有するハウジング、上記フレームに内嵌状態に収納、保持される円環状のステータコアおよび該ステータコアに巻装されたステータコイルを有するステータ、および上記負荷側エンドフレームと上記反負荷側エンドフレームとに軸支されて上記ステータの内周側に回転可能に配設されるロータを備えた回転電機と、上記反負荷側エンドフレームの上記負荷側エンドフレームと反対側に配設されるパワーモジュール、およびパワーモジュール駆動回路を有するインバータ装置と、上記モータ側冷媒流路と上記インバータ側冷媒流路を連通する第1流路変換部と、第1冷媒給排水ポートと上記インバータ側冷媒流路を連通する第2流路変換部と、第2冷媒給排水ポートと上記モータ側冷媒流路を連通する第3流路変換部と、を備えている。そして、上記第1流路変換部、上記第2流路変換部および上記第3流路変換部の少なくとも1つの流路変換部が、上記フレーム、上記ステータコアおよび上記反負荷側エンドフレームにより構成される空間内の、上記ステータコイルの反負荷側コイルエンドの外径側に配設されている。 An electromechanical integrated module according to the present invention includes a cylindrical frame having a built-in motor-side refrigerant flow path, a load-side end frame disposed at one end in the axial direction of the frame, and an inverter disposed at the other end in the axial direction. A housing having an anti-load-side end frame with a built-in side refrigerant flow path, an annular stator core that is housed and held in the frame, a stator having a stator coil wound around the stator core, and the load A rotating electrical machine including a rotor that is pivotally supported by the side end frame and the anti-load side end frame and rotatably disposed on the inner peripheral side of the stator; and the load side end frame of the anti-load side end frame A power module disposed on the opposite side of the inverter, and an inverter device having a power module drive circuit, and A first flow path conversion unit that communicates the data side refrigerant flow path and the inverter side refrigerant flow path, a second flow path conversion unit that communicates the first refrigerant supply / drain port and the inverter side refrigerant flow path, and a second refrigerant. A water supply / drain port and a third flow path conversion portion communicating with the motor-side refrigerant flow path. Then, at least one flow path conversion section of the first flow path conversion section, the second flow path conversion section, and the third flow path conversion section is configured by the frame, the stator core, and the anti-load side end frame. Is disposed on the outer diameter side of the opposite coil end of the stator coil.
 この発明によれば、第1流路変換部、第2流路変換部および第3流路変換部の少なくとも1つの流路変換部が、フレーム、ステータコアおよび反負荷側エンドフレームにより構成される空間内の、ステータコイルの反負荷側コイルエンドの外径側に配設されている。そこで、装置の外径を大きくすることなく、かつ軸方向長さを長くすることなく、流路変換部を設けることができる。さらに、流路変換部の設置スペースを大きくできるので、流路変換部の流路断面形状を滑らかに変化させることができ、2つの冷媒流路を低圧損に接続することができ、冷却能力を向上することができる。 According to this invention, the space in which at least one of the first flow path conversion section, the second flow path conversion section, and the third flow path conversion section is configured by the frame, the stator core, and the anti-load side end frame. The stator coil is disposed on the outer diameter side of the coil end opposite to the load side of the stator coil. Therefore, the flow path conversion unit can be provided without increasing the outer diameter of the device and without increasing the axial length. Furthermore, since the installation space of the flow path conversion unit can be increased, the cross-sectional shape of the flow path conversion unit can be changed smoothly, the two refrigerant flow paths can be connected to low pressure loss, and the cooling capacity can be increased. Can be improved.
この発明の実施の形態1に係る機電一体モジュールを示す断面図である。It is sectional drawing which shows the electromechanical integrated module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る機電一体モジュールに適用されるモータフレームのアウターフレームを示す斜視図である。It is a perspective view which shows the outer frame of the motor frame applied to the electromechanical integrated module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る機電一体モジュールに適用されるモータフレームのインナーフレームを示す斜視図である。It is a perspective view which shows the inner frame of the motor frame applied to the electromechanical integrated module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る機電一体モジュールにおけるモータを反負荷側から見た端面図である。It is the end elevation which looked at the motor in the electromechanical integrated module concerning Embodiment 1 of this invention from the anti-load side. この発明の実施の形態1に係る機電一体モジュールにおける反負荷側エンドフレームを示す斜視図である。It is a perspective view which shows the anti-load side end frame in the electromechanical integrated module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る機電一体モジュールにおける反負荷側エンドフレームを負荷側から見た要部端面図である。It is the principal part end elevation which looked at the anti-load side end frame in the electromechanical integrated module which concerns on Embodiment 1 of this invention from the load side. 図6のVII-VII矢視断面図である。FIG. 7 is a sectional view taken along arrow VII-VII in FIG. 6. 図7のVIII-VIII矢視断面図である。FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 7. 図6のIX-IX矢視断面図である。FIG. 7 is a cross-sectional view taken along arrow IX-IX in FIG. 6. この発明の実施の形態1に係る機電一体モジュールにおける反負荷側エンドフレームの冷媒流路の構造を説明する断面図である。It is sectional drawing explaining the structure of the refrigerant | coolant flow path of the anti-load side end frame in the electromechanical integrated module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る機電一体モジュールに適用されるモジュールの構成を説明する模式図である。It is a schematic diagram explaining the structure of the module applied to the electromechanical integrated module which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る機電一体モジュールにおける第3流路変換部の構成を説明する断面図である。It is sectional drawing explaining the structure of the 3rd flow-path conversion part in the electromechanical integrated module which concerns on Embodiment 1 of this invention. 図12のXIII-XIII矢視断面図である。FIG. 13 is a cross-sectional view taken along arrow XIII-XIII in FIG. 12. 図12のXIV-XIV矢視断面図である。FIG. 14 is a cross-sectional view taken along arrow XIV-XIV in FIG. 12. この発明の実施の形態2に係る機電一体モジュールを示す断面図である。It is sectional drawing which shows the electromechanical integrated module which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る機電一体モジュールにおける反負荷側エンドフレームの冷媒流路の構造を説明する断面図である。It is sectional drawing explaining the structure of the refrigerant | coolant flow path of the anti-load side end frame in the electromechanical integrated module which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る機電一体モジュールにおける反負荷側エンドフレームを示す斜視図である。It is a perspective view which shows the anti-load side end frame in the electromechanical integrated module which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る機電一体モジュールに適用されるモータフレームのアウターフレームを示す斜視図である。It is a perspective view which shows the outer frame of the motor frame applied to the electromechanical integrated module which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る機電一体モジュールの組み立て方法を説明する斜視図である。It is a perspective view explaining the assembly method of the electromechanical integrated module which concerns on Embodiment 4 of this invention.
 以下、本発明による機電一体モジュールの好適な実施の形態につき図面を用いて説明する。 Hereinafter, preferred embodiments of the electromechanical integrated module according to the present invention will be described with reference to the drawings.
 実施の形態1.
 図1はこの発明の実施の形態1に係る機電一体モジュールを示す断面図、図2はこの発明の実施の形態1に係る機電一体モジュールに適用されるモータフレームのアウターフレームを示す斜視図、図3はこの発明の実施の形態1に係る機電一体モジュールに適用されるモータフレームのインナーフレームを示す斜視図、図4はこの発明の実施の形態1に係る機電一体モジュールにおけるモータを反負荷側から見た端面図、図5はこの発明の実施の形態1に係る機電一体モジュールにおける反負荷側エンドフレームを示す斜視図、図6はこの発明の実施の形態1に係る機電一体モジュールにおける反負荷側エンドフレームを負荷側から見た要部端面図、図7は図6のVII-VII矢視断面図、図8は図7のVIII-VIII矢視断面図、図9は図6のIX-IX矢視断面図、図10はこの発明の実施の形態1に係る機電一体モジュールにおける反負荷側エンドフレームの冷媒流路の構造を説明する断面図、図11はこの発明の実施の形態1に係る機電一体モジュールに適用されるモジュールの構成を説明する模式図、図12はこの発明の実施の形態1に係る機電一体モジュールにおける第3流路変換部の構成を説明する断面図、図13は図12のXIII-XIII矢視断面図、図14は図12のXIV-XIV矢視断面図である。
Embodiment 1 FIG.
1 is a sectional view showing an electromechanical integrated module according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view showing an outer frame of a motor frame applied to the electromechanical integrated module according to Embodiment 1 of the present invention. 3 is a perspective view showing an inner frame of a motor frame applied to the electromechanical integrated module according to Embodiment 1 of the present invention, and FIG. 4 shows the motor in the electromechanical integrated module according to Embodiment 1 of the present invention from the anti-load side. FIG. 5 is a perspective view showing an anti-load side end frame in the electromechanical integrated module according to Embodiment 1 of the present invention, and FIG. 6 is an anti-load side in the electromechanical integrated module according to Embodiment 1 of the present invention. FIG. 7 is a cross-sectional view taken along arrow VII-VII in FIG. 6, and FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG. 6 is a cross-sectional view taken along the line IX-IX in FIG. 6, FIG. 10 is a cross-sectional view for explaining the structure of the refrigerant flow path of the non-load-side end frame in the electromechanical integrated module according to Embodiment 1 of the present invention, and FIG. FIG. 12 is a schematic diagram for explaining the configuration of the module applied to the electromechanical integrated module according to Embodiment 1 of the present invention, and FIG. 12 explains the configuration of the third flow path converter in the electromechanical integrated module according to Embodiment 1 of the present invention. 13 is a cross-sectional view taken along arrow XIII-XIII in FIG. 12, and FIG. 14 is a cross-sectional view taken along arrow XIV-XIV in FIG.
 図1において、機電一体モジュール100は、回転電機としてのモータ1と、外部から供給された直流電力を交流電力に変換してモータ1に供給するインバータ装置50と、を有し、インバータ装置50がモータ1の反負荷側に一体に組み込まれて構成されている。 In FIG. 1, the electromechanical integrated module 100 includes a motor 1 as a rotating electrical machine, and an inverter device 50 that converts DC power supplied from the outside into AC power and supplies the AC power to the motor 1. The motor 1 is integrally assembled on the opposite side of the load.
 モータ1は、モータフレーム2と、反負荷側エンドフレーム20と、モータフレーム2と反負荷側エンドフレーム20とからなるハウジング内に回転可能に配設されたロータ35と、ロータ35を囲繞するようにモータフレーム2に取り付けられたステータ40と、を備えている。 The motor 1 surrounds the rotor 35, a rotor 35 rotatably disposed in a housing including the motor frame 2, the anti-load side end frame 20, the motor frame 2 and the anti-load side end frame 20. And a stator 40 attached to the motor frame 2.
 モータフレーム2は、円盤状の負荷側エンドフレーム3および負荷側エンドフレーム3の外周縁部から軸方向に突出する円筒状のフレーム4を有する有底円筒状に作製されている。負荷側軸受30が負荷側エンドフレーム3の軸心位置に装着されている。フレーム4は、負荷側エンドフレーム3と一体に作製された円筒状のインナーフレーム5と、インナーフレーム5に外嵌状態に嵌合される円筒状のアウターフレーム13と、を備えている。 The motor frame 2 is made into a bottomed cylindrical shape having a disk-shaped load side end frame 3 and a cylindrical frame 4 protruding in the axial direction from the outer peripheral edge of the load side end frame 3. A load-side bearing 30 is mounted at the axial center position of the load-side end frame 3. The frame 4 includes a cylindrical inner frame 5 that is manufactured integrally with the load-side end frame 3, and a cylindrical outer frame 13 that is fitted to the inner frame 5 in an externally fitted state.
 インナーフレーム5は、図3に示されるように、肉薄部7を円筒状の肉厚部6の反負荷側(開口側)の外周縁部から円筒状に突出して構成され、ステータ位置決め段差8が肉厚部6の内周面の負荷側エンドフレーム3の近傍に形成されている。流路溝9が、肉厚部6の外周面に凹設されている。流路溝9は、溝方向を軸方向とする直線状の溝部が周方向に所定のピッチで配列され、周方向に配列された溝部の両端部が軸方向に関して交互に連結されてジグザグ状の溝形状に構成されている。切り欠き部10が肉薄部7の一部を切り欠いて形成され、流路溝9の一端が切り欠き部10に開口している。さらに、肉薄部7の切り欠き部10の周方向一側が、流路溝9の他端を含む周方向幅で、肉厚部6と同じ肉厚に形成され、第3流路変換部11を構成する。そして、第3流路変換部11には、図12に示されるように、流路断面形状を漸次変えながら、流路溝9の溝断面形状(モータ側冷媒流路18の開口断面形状)から第2冷媒給排水ポート17の開口断面形状に変化する流路11aが形成されている。 As shown in FIG. 3, the inner frame 5 is configured such that the thin portion 7 projects in a cylindrical shape from the outer peripheral edge of the cylindrical thick portion 6 on the side opposite to the load (opening side), and the stator positioning step 8 is formed. It is formed in the vicinity of the load side end frame 3 on the inner peripheral surface of the thick portion 6. A channel groove 9 is recessed in the outer peripheral surface of the thick portion 6. The channel groove 9 is a zigzag shape in which linear groove portions with the groove direction as the axial direction are arranged at a predetermined pitch in the circumferential direction, and both ends of the groove portions arranged in the circumferential direction are alternately connected in the axial direction. It is configured in a groove shape. The cutout portion 10 is formed by cutting out a part of the thin portion 7, and one end of the flow channel 9 is open to the cutout portion 10. Furthermore, the circumferential direction one side of the notch portion 10 of the thin portion 7 is formed in the same width as the thick portion 6 with the circumferential width including the other end of the flow channel groove 9, Constitute. Then, as shown in FIG. 12, the third flow path conversion unit 11 starts from the groove cross-sectional shape of the flow path groove 9 (the opening cross-sectional shape of the motor-side refrigerant flow path 18) while gradually changing the cross-sectional shape of the flow path. A flow path 11 a that changes to the opening cross-sectional shape of the second refrigerant supply / drain port 17 is formed.
 アウターフレーム13は、図2に示されるように、所定厚みの円筒状に作製されている。切り欠き部14がアウターフレーム13の反負荷側の端部の一部を切り欠いて作製されている。さらに、第1流路変換部15がアウターフレーム13の反負荷側の内周面から内径側に突き出るように設けられている。第1流路変換部15は、切り欠き部14の周方向一側に位置し、流路15aが軸方向に貫通するように形成されている。この流路15aは、反負荷側から負荷側に向って断面形状を漸次変えながら、後述するインバータ側冷媒流路19の排水口28bと同じ断面形状から切り欠き部10に開口する流路溝9の開口(モータ側冷媒流路18の開口)と同じ断面形状に変化する流路形状に形成されている。また、第2冷媒給排水ポート17が、アウターフレーム13の反負荷側の外周面に、第1流路変換部15の周方向の一側に位置するように立設されている。なお、アウターフレーム13の第1流路変換部15の反負荷側の内径が大きくなっており、反負荷側エンドフレームを保持する反負荷側エンドフレーム保持部を構成する。 The outer frame 13 is formed in a cylindrical shape having a predetermined thickness as shown in FIG. The cutout portion 14 is formed by cutting out a part of the end of the outer frame 13 on the side opposite to the load. Further, the first flow path conversion portion 15 is provided so as to protrude from the inner peripheral surface of the outer frame 13 on the opposite load side to the inner diameter side. The first flow path conversion unit 15 is located on one side in the circumferential direction of the notch 14, and is formed so that the flow path 15a penetrates in the axial direction. The flow path 15a has a flow path groove 9 that opens to the notch 10 from the same cross-sectional shape as a drain outlet 28b of the inverter-side refrigerant flow path 19 described later, while gradually changing the cross-sectional shape from the opposite load side to the load side. Is formed in a flow path shape that changes to the same cross-sectional shape as the opening (opening of the motor-side refrigerant flow path 18). Further, the second refrigerant supply / drain port 17 is erected on the outer peripheral surface of the outer frame 13 on the side opposite to the load so as to be positioned on one side in the circumferential direction of the first flow path conversion unit 15. In addition, the inner diameter of the outer flow side of the 1st flow-path conversion part 15 of the outer frame 13 is large, and comprises the anti-load side end frame holding part which hold | maintains an anti-load side end frame.
 アウターフレーム13は、インナーフレーム5に外嵌状態に嵌合され、流路溝9の上部開口を塞口してモータ側冷媒流路18を構成する。第1流路変換部15が、切り欠き部10内の周方向一側に挿入される。これにより、流路15aの負荷側の開口が流路溝9(モータ側冷媒流路18)の一端開口に相対し、流路16とモータ側冷媒流路18とが接続される。なお、アウターフレーム13はインナーフレーム5に溶接などにより接合され、モータ側冷媒流路18のシール性が確保される。また、第1流路変換部15と切り欠き部10の端面との間にOリング(図示せず)が設けられ、流路15aとモータ側冷媒流路18との連結部のシール性が確保される。さらに、切り欠き部10内の周方向他側と切り欠き部14とにより、嵌合凹部が構成される。 The outer frame 13 is fitted to the inner frame 5 in an externally fitted state, and closes the upper opening of the flow channel groove 9 to constitute a motor side refrigerant flow channel 18. The first flow path conversion unit 15 is inserted on one side in the circumferential direction in the notch 10. As a result, the opening on the load side of the flow path 15a is opposed to one end opening of the flow path groove 9 (motor-side refrigerant flow path 18), and the flow path 16 and the motor-side refrigerant flow path 18 are connected. The outer frame 13 is joined to the inner frame 5 by welding or the like, and the sealing performance of the motor side refrigerant flow path 18 is ensured. In addition, an O-ring (not shown) is provided between the first flow path conversion unit 15 and the end surface of the notch 10, and the sealing performance of the connecting portion between the flow path 15a and the motor side refrigerant flow path 18 is ensured. Is done. Furthermore, the other circumferential side in the notch 10 and the notch 14 constitute a fitting recess.
 第2冷媒給排水ポート17の開口が第3流路変換部11の流路11aの開口に相対し、第2冷媒給排水ポート17とモータ側冷媒流路18とが第3流路変換部11を介して連結される。ここで、第2冷媒給排水ポート17は、図13に示されるように、円形断面に作製され、モータ側冷媒流路18は、図14に示されるように、矩形断面に作製されている。そして、第3流路変換部11の流路11aは、モータ側冷媒流路18の一端から第2冷媒給排水ポート17に向って断面形状を漸次変えながら、モータ側冷媒流路18と同じ矩形断面から第2冷媒給排水ポート17と同じ円形断面に変わる流路形状に構成されている。第3流路変換部11は、ステータコイル44の反負荷側コイルエンドの径方向外方に配置されている。 The opening of the second refrigerant supply / drain port 17 faces the opening of the flow path 11 a of the third flow path conversion unit 11, and the second refrigerant supply / drain port 17 and the motor-side refrigerant flow path 18 pass through the third flow path conversion unit 11. Connected. Here, as shown in FIG. 13, the second refrigerant supply / drain port 17 is made in a circular cross section, and the motor side refrigerant flow path 18 is made in a rectangular cross section as shown in FIG. 14. And the flow path 11a of the 3rd flow-path conversion part 11 is the same rectangular cross section as the motor side refrigerant | coolant flow path 18, changing a cross-sectional shape gradually toward the 2nd refrigerant | coolant water supply / drainage port 17 from the end of the motor side refrigerant | coolant flow path 18. To the second refrigerant supply / drain port 17, and the same circular cross section is formed. The third flow path converter 11 is disposed radially outward of the anti-load side coil end of the stator coil 44.
 反負荷側エンドフレーム20は、図1、図5および図10に示されるように、アウターフレーム13の第1流路変換部15の反負荷側の内径に等しい外径のリング平板状に作製され、コンデンサ収納凹部22がその一面中央に凹設され、流路溝23がその一面のコンデンサ収納凹部22の外径側に凹設された基部21と、リング平板状に作製され、一面をパワーモジュール搭載面とする冷却フレーム24と、冷却フレーム24の他面に、それぞれ、所定の突出高さで周方向に延びるように設けられた冷却フィン25と、基部21の外周面から径方向外方に、かつ他面の外周側から軸方向外方に突出するように設けられた第2流路変換部26と、第2流路変換部26の外周面の突出端側に立設された第1冷媒給排水ポート27と、を備えている。 As shown in FIGS. 1, 5, and 10, the non-load-side end frame 20 is formed in a ring flat plate shape having an outer diameter equal to the inner diameter of the first flow path conversion portion 15 of the outer frame 13 on the anti-load side. The capacitor housing recess 22 is formed in the center of one surface, and the channel groove 23 is formed in a ring flat plate shape with the base portion 21 formed on the outer diameter side of the capacitor housing recess 22 on one surface, and the one surface is a power module. A cooling frame 24 as a mounting surface, cooling fins 25 provided on the other surface of the cooling frame 24 so as to extend in the circumferential direction at a predetermined protruding height, and radially outward from the outer peripheral surface of the base 21 And the 2nd flow path conversion part 26 provided so that it might protrude to the axial direction outward from the outer peripheral side of the other surface, and the 1st installed on the protrusion end side of the outer peripheral surface of the 2nd flow path conversion part 26 And a refrigerant supply / drain port 27. .
 冷却フレーム24は、冷却フィン25が流路溝23内に入るように基部21の一面に配設され、流路溝23の上部開口を塞口してインバータ側冷媒流路19を構成する。なお、冷却フレーム24は基部21に溶接などにより接合され、インバータ側冷媒流路19のシール性が確保される。流路溝23は、同心状に配列された2つのC状溝の一端を連結した溝形状に構成され、冷却フィン25は、流路溝23の溝幅方向の中央に挿入され、インバータ側冷媒流路19を並列流路に構成している。これにより、インバータ側冷媒流路19は、図10に示されるように、給水口28aから平行流れとなって、周方向に約360度流れた後折り返されて、その内周側を周方向に約360度流れて排水口28bに至るように構成される。 The cooling frame 24 is disposed on one surface of the base 21 so that the cooling fins 25 enter the flow path groove 23, and configures the inverter-side refrigerant flow path 19 by closing the upper opening of the flow path groove 23. The cooling frame 24 is joined to the base portion 21 by welding or the like, and the sealing performance of the inverter-side refrigerant flow path 19 is ensured. The flow path groove 23 is formed in a groove shape in which one end of two C-shaped grooves arranged concentrically is connected, and the cooling fin 25 is inserted in the center of the flow path groove 23 in the groove width direction. The flow path 19 is configured as a parallel flow path. As a result, as shown in FIG. 10, the inverter-side refrigerant flow path 19 becomes a parallel flow from the water supply port 28a and is folded after flowing about 360 degrees in the circumferential direction. It is configured to flow about 360 degrees and reach the drain outlet 28b.
 インバータ側冷媒流路19の給水口28aは、矩形断面に形成され、第1冷媒給排水ポート27と軸心を含む同じ平面上の、第1冷媒給排水ポート27の内径側に位置している。冷却フレーム24の給水口28aと相対する部位には、図7に示されるように、給水口28aから導入された冷却水の軸方向の流れをインバータ側冷媒流路19の流路方向に変換する凹面形状の流路変換面24aが形成されている。また、インバータ側冷媒流路19の排水口28bは、図6、図9および図10に示されるように、円形断面に形成され、給水口28aから周方向一側にずれて、基部21の他面の外周側に開口している。冷却フレーム24の排水口28bと相対する部位には、図9に示されるように、インバータ側冷媒流路19を流れてきた冷却水の流れを軸方向の流れに変換する凹面形状の流路変換面24bが形成されている。 The water supply port 28a of the inverter-side refrigerant flow path 19 is formed in a rectangular cross section and is located on the inner diameter side of the first refrigerant supply / drainage port 27 on the same plane including the first refrigerant supply / drainage port 27 and the axis. As shown in FIG. 7, the axial flow of the cooling water introduced from the water supply port 28 a is converted into the flow direction of the inverter-side refrigerant flow channel 19 at a portion of the cooling frame 24 facing the water supply port 28 a. A concave flow path conversion surface 24a is formed. Further, as shown in FIGS. 6, 9 and 10, the drain outlet 28 b of the inverter-side refrigerant flow path 19 is formed in a circular cross section and is shifted from the water supply inlet 28 a to one side in the circumferential direction. Open to the outer periphery of the surface. As shown in FIG. 9, a concave-shaped flow path conversion that converts the flow of cooling water flowing through the inverter-side refrigerant flow path 19 into an axial flow is provided in a portion of the cooling frame 24 that faces the drain outlet 28 b. A surface 24b is formed.
 反負荷側軸受31が反負荷側エンドフレーム20の基部21の軸心位置に装着されている。貫通穴29が、それぞれ、流路溝23の内周側と外周側とを分離する基部21の隔壁を軸方向に貫通するように、周方向に略等角ピッチで6つ形成されている。 The anti-load side bearing 31 is attached to the axial center position of the base portion 21 of the anti-load side end frame 20. Six through holes 29 are formed at substantially equiangular pitches in the circumferential direction so as to penetrate the partition walls of the base portion 21 separating the inner peripheral side and the outer peripheral side of the flow channel groove 23 in the axial direction.
 第1冷媒給排水ポート27は、図7に示されるように、第2流路変換部26の流路26aを介してインバータ側冷媒流路19に連結される。ここで、第1冷媒給排水ポート27は、図8に示されるように、円形断面に作製されている。そして、第2流路変換部26の流路26aは、断面形状を漸次変えながら、第1冷媒給排水ポート27の開口と同じ円形断面からインバータ側冷媒流路19の給水口28aと同じ矩形断面に変わる流路形状に構成されている。 As shown in FIG. 7, the first refrigerant supply / drain port 27 is connected to the inverter-side refrigerant flow path 19 via the flow path 26 a of the second flow path conversion unit 26. Here, the 1st refrigerant | coolant water supply / drain port 27 is produced by the circular cross section, as FIG. 8 shows. And the flow path 26a of the 2nd flow path conversion part 26 changes from the same circular cross section as the opening of the 1st refrigerant | coolant water supply / drain port 27 to the same rectangular cross section as the water supply port 28a of the inverter side refrigerant | coolant flow path 19, changing a cross-sectional shape gradually. It is configured in a changing channel shape.
 なお、モータフレーム2および反負荷側エンドフレーム20は、例えば、アルミニウムを用いてダイカストにより製造されるが、材料は良熱伝導金属であればアルミニウムに限定されず、製造方法もダイカストに限定されない。 The motor frame 2 and the anti-load side end frame 20 are manufactured by die casting using, for example, aluminum. However, the material is not limited to aluminum as long as the material is a good heat conductive metal, and the manufacturing method is not limited to die casting.
 ロータ35は、電磁鋼板などの磁性薄板を積層して構成された円筒状のロータコア36と、それぞれ、ロータコア36を軸方向に貫通するように形成されて、周方向に等角ピッチで配設された10個の磁石収納穴38のそれぞれに収納、固着された10個の永久磁石37と、ロータコア36の軸心位置を貫通するように挿入されてロータコア36に固着されたシャフト39と、ロータコア36の軸方向両端面に配設され、永久磁石37の抜けを阻止する一対の端板33と、を備えている。永久磁石37は、径方向外側の極性がN極とS極とに周方向に交互になるように配設されている。 The rotor 35 has a cylindrical rotor core 36 formed by laminating magnetic thin plates such as electromagnetic steel plates, and is formed so as to penetrate the rotor core 36 in the axial direction, and is disposed at an equiangular pitch in the circumferential direction. 10 permanent magnets 37 housed and fixed in each of the 10 magnet housing holes 38, a shaft 39 inserted through the axial center of the rotor core 36 and secured to the rotor core 36, and the rotor core 36 And a pair of end plates 33 that prevent the permanent magnet 37 from coming off. The permanent magnets 37 are arranged so that the polarities on the outer side in the radial direction alternate between the N pole and the S pole in the circumferential direction.
 ロータ35は、シャフト39の軸方向他端側を負荷側軸受30を介して負荷側エンドフレーム3に支持され、シャフト39の軸方向一端側を反負荷側軸受31を介して反負荷側エンドフレーム20の基部21に支持され、ハウジング内に回転可能に配設されている。レゾルバ32がシャフト39の軸方向一端に取り付けられ、ロータ35の回転位置を検出可能となっている。 The rotor 35 is supported at the other end in the axial direction of the shaft 39 by the load side end frame 3 via the load side bearing 30, and at one end in the axial direction of the shaft 39 through the anti load side bearing 31. 20 is supported by the base 21 and is rotatably disposed in the housing. A resolver 32 is attached to one end of the shaft 39 in the axial direction so that the rotational position of the rotor 35 can be detected.
 反負荷側エンドフレーム20は、ステータ40およびロータ35がフレーム4内に収納された状態で、アウターフレーム13の反負荷側エンドフレーム保持部に内嵌状態に挿入され、焼きばめなどにより固着されている。これにより、第2流路変換部26が切り欠き部10,14により構成される嵌合凹部に嵌着される。第1流路変換部15の反負荷側の開口が反負荷側エンドフレーム20の基部21の他面に開口する排水口28bに相対し、モータ側冷媒流路18とインバータ側冷媒流路19とが第1流路変換部15を介して接続される。第1流路変換部15と基部21の他面との間にOリング(図示せず)が設けられ、流路15aとインバータ側冷媒流路19との連結部のシール性が確保される。 The anti-load-side end frame 20 is inserted into the anti-load-side end frame holding portion of the outer frame 13 in a state where the stator 40 and the rotor 35 are housed in the frame 4, and is fixed by shrink fitting or the like. ing. Thereby, the 2nd flow-path conversion part 26 is fitted by the fitting recessed part comprised by the notch parts 10 and 14. FIG. The opening on the anti-load side of the first flow path conversion unit 15 is opposed to the drain port 28b opened on the other surface of the base 21 of the anti-load side end frame 20, and the motor side refrigerant flow path 18 and the inverter side refrigerant flow path 19 Are connected via the first flow path converter 15. An O-ring (not shown) is provided between the first flow path conversion portion 15 and the other surface of the base portion 21, and the sealing performance of the connecting portion between the flow path 15a and the inverter-side refrigerant flow path 19 is ensured.
 ステータ40は、電磁鋼板などの磁性薄板を積層して構成され、円環状のコアバック42、およびそれぞれコアバック42の内周面から径方向内方に延在して、周方向に等角ピッチで配列された12個のティース43を有するステータコア41と、絶縁被覆された導体線をティース43のそれぞれに絶縁材で作製されたインシュレータ46を介して集中巻きに巻回して作製された12個の集中巻コイル45から構成されるステータコイル44と、を備えている。 The stator 40 is configured by laminating magnetic thin plates such as electromagnetic steel plates, and extends inward in the radial direction from the inner peripheral surface of the annular core back 42 and the core back 42, and is equiangularly spaced in the circumferential direction. The stator core 41 having the 12 teeth 43 arranged in the above-mentioned manner, and the 12 conductors formed by winding the insulation-coated conductor wires around the teeth 43 through the insulator 46 made of an insulating material in a concentrated manner. And a stator coil 44 composed of a concentrated winding coil 45.
 ここで、ステータコイル44は、図4に示されるように、反負荷側で結線導体48aを用いて内部結線処理(端部処理)が施されている。つまり、各集中巻コイル45の端部がステータコア41の反負荷側に引き出され、それぞれ、渡り線47を用いて周方向に隣り合う2個の集中巻コイル45を巻き方向が逆となるように直列に接続して6つの相コイルが構成される。そして、6つの相コイルの一端が結線導体48aを用いて互いに接続され、それぞれ、3つの相コイルがY結線された2つの3相交流巻線が構成される。結線導体48aによる6つの相コイルの接続は、第1流路変換部15、第2流路変換部26および第3流路変換部11が配設される周方向領域を避けて行われる。すなわち、ステータコイル44の内部結線処理は、周方向に近接して配設された第1流路変換部15、第2流路変換部26および第3流路変換部11の周方向の両側の領域で、結線導体48aを用いて行われる。これらの結線導体48aは結線板48に保持される。 Here, as shown in FIG. 4, the stator coil 44 is subjected to internal connection processing (end processing) using a connection conductor 48 a on the non-load side. That is, the end of each concentrated winding coil 45 is pulled out to the opposite side of the stator core 41 so that the winding direction of the two concentrated winding coils 45 adjacent to each other in the circumferential direction is reversed using the crossover wire 47. Six phase coils are configured in series. Then, one end of each of the six phase coils is connected to each other using a connection conductor 48a, and two three-phase AC windings in which three phase coils are Y-connected are configured. The connection of the six phase coils by the connection conductor 48a is performed while avoiding the circumferential region where the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are disposed. That is, the internal connection processing of the stator coil 44 is performed on both sides in the circumferential direction of the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 that are disposed close to each other in the circumferential direction. In the region, the connection conductor 48a is used. These connection conductors 48 a are held by the connection plate 48.
 ステータ40は、ステータコア41をインナーフレーム5の肉厚部6に反負荷側から内嵌状態に挿入され、焼きばめなどにより固着され、ロータコア36の外周側にシャフト39と同軸にモータフレーム2に保持されている。各相コイルの他端に接続された接続導体48bが、第1流路変換部15、第2流路変換部26および第3流路変換部11が配設される周方向の領域を避けて反負荷側に引き出される。 The stator 40 has a stator core 41 inserted into the thick portion 6 of the inner frame 5 from the anti-load side in an internally fitted state and fixed by shrink fitting or the like, and is attached to the motor frame 2 coaxially with the shaft 39 on the outer peripheral side of the rotor core 36. Is retained. The connection conductor 48b connected to the other end of each phase coil avoids a circumferential region where the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are disposed. Pulled to the opposite load side.
 このように構成されたモータ1は、極数10、スロット数12のインナーロータ型の3相モータとして動作する。 The motor 1 thus configured operates as an inner rotor type three-phase motor having 10 poles and 12 slots.
 インバータ装置50は、図1に示されるように、冷却フレーム24のパワーモジュール搭載面に周方向に等角ピッチで配設された6個のパワーモジュール51と、パワーモジュール51を駆動する回路が搭載されたパワーモジュール駆動回路基板52と、パワーモジュール51およびパワーモジュール駆動回路基板52を覆うように配置されて反負荷側エンドフレーム20にねじなどにより締着され、パワーモジュール51およびパワーモジュール駆動回路基板52を保護する保護カバー53と、を備えている。 As shown in FIG. 1, the inverter device 50 includes six power modules 51 arranged at equiangular pitches in the circumferential direction on the power module mounting surface of the cooling frame 24 and a circuit that drives the power module 51. The power module drive circuit board 52, the power module 51, and the power module drive circuit board 52 are disposed so as to cover the power module 51 and the power module drive circuit board 52, and are fastened to the non-load-side end frame 20 with screws or the like. And a protective cover 53 for protecting 52.
 パワーモジュール51は、図11に示されるように、一端が正極側直流端子64に接続され、他端がモジュール交流端子67に接続された上アーム側スイッチング素子61と、一端がモジュール交流端子67に接続され、他端が負極側直流端子65に接続された下アーム側スイッチング素子62と、スイッチング素子61,62のそれぞれに並列に取り付けられた還流ダイオード63と、それらを封止する樹脂封止部68と、からなり、直流電力と1相分の交流電力との変換に対応する2in1ジュールを構成している。 As shown in FIG. 11, the power module 51 has an upper arm side switching element 61 having one end connected to the positive DC terminal 64 and the other end connected to the module AC terminal 67, and one end connected to the module AC terminal 67. The lower arm side switching element 62 connected to the negative side DC terminal 65 at the other end, the reflux diode 63 attached in parallel to each of the switching elements 61 and 62, and the resin sealing portion for sealing them 68, and constitutes 2 in 1 joule corresponding to conversion between DC power and AC power for one phase.
 そして、接続導体48bが、それぞれ、反負荷側エンドフレーム20に形成された貫通穴29を通って反負荷側に引き出され、モジュール交流端子67に接続される。コンデンサ54が、基部21のコンデンサ収納凹部22に取り付けられている。保護カバー53は、アウターフレーム13と略等しい外径を有する有底円筒状に作製され、モータフレーム2とともに、機電一体モジュール100の全体を覆っている。 Then, the connection conductors 48 b are respectively drawn out to the non-load side through the through holes 29 formed in the non-load side end frame 20 and connected to the module AC terminal 67. A capacitor 54 is attached to the capacitor housing recess 22 of the base 21. The protective cover 53 is formed in a bottomed cylindrical shape having an outer diameter substantially equal to that of the outer frame 13, and covers the entire electromechanical integrated module 100 together with the motor frame 2.
 このように構成される機電一体モジュール100では、外部電源から供給された直流電力がインバータ装置50により交流電力に変換され、ステータコイル44に供給される。これにより、ステータ40に回転磁界が発生される。このステータ40の回転磁界と永久磁石37による磁界との相互作用により回転力が発生し、ロータ35が回転駆動され、その回転トルクがシャフト39を介して出力される。 In the electromechanical integrated module 100 configured as described above, DC power supplied from an external power source is converted into AC power by the inverter device 50 and supplied to the stator coil 44. Thereby, a rotating magnetic field is generated in the stator 40. A rotational force is generated by the interaction between the rotating magnetic field of the stator 40 and the magnetic field of the permanent magnet 37, the rotor 35 is rotationally driven, and the rotational torque is output via the shaft 39.
 そして、冷却水が、第1冷媒給排水ポート27に給水される。第1冷媒給排水ポート27に給水された冷却水は、第2流路変換部26の流路26aに流れ込み、流れ方向を径方向から軸方向に徐々に変えられ、給水口28aから反負荷側エンドフレーム20に内蔵されたインバータ側冷媒流路19内に流入する。インバータ側冷媒流路19内に流入した冷却水は、流路変換面24aにより軸方向の流れからインバータ側冷媒流路19の流路方向に変えられ、インバータ側冷媒流路19を流通する。 Then, the cooling water is supplied to the first refrigerant supply / drain port 27. The cooling water supplied to the first refrigerant supply / drainage port 27 flows into the flow path 26a of the second flow path conversion unit 26, and the flow direction is gradually changed from the radial direction to the axial direction. It flows into the inverter side refrigerant flow path 19 built in the frame 20. The cooling water that has flowed into the inverter-side refrigerant flow path 19 is changed from the axial flow by the flow path conversion surface 24 a to the flow direction of the inverter-side refrigerant flow path 19 and flows through the inverter-side refrigerant flow path 19.
 そして、インバータ側冷媒流路19を流通した冷却水は、流路変換面24bにより軸方向の流れに変えられ、排水口28bから第1流路変換部15の流路15aに流れ込む。流路15aに流れ込んだ冷却水は、断面形状を徐々に変えながら、フレーム4に内蔵されたモータ側冷媒流路18内に流入する。そして、モータ側冷媒流路18を流通した冷却水は、第3流路変換部11に流れ込み、流れ方向を軸方向から径方向に徐々に変えられ、第2冷媒給排水ポート17から排水される。 And the cooling water which circulated through the inverter side refrigerant flow path 19 is changed into the flow of an axial direction by the flow path conversion surface 24b, and flows into the flow path 15a of the 1st flow path conversion part 15 from the drain outlet 28b. The cooling water flowing into the flow path 15a flows into the motor-side refrigerant flow path 18 built in the frame 4 while gradually changing the cross-sectional shape. Then, the cooling water flowing through the motor-side refrigerant flow path 18 flows into the third flow path conversion unit 11, the flow direction is gradually changed from the axial direction to the radial direction, and the water is discharged from the second refrigerant supply / drainage port 17.
 そこで、ステータコイル44での発熱は、ステータコア41を介してフレーム4に伝達され、モータ側冷媒流路18を流通する冷却水に放熱され、ステータ40の温度上昇が抑えられる。パワーモジュール51のスイッチング素子61,62での発熱は、冷却フレーム24に伝達され、インバータ側冷媒流路19を流通する冷却水に放熱され、パワーモジュール51の温度上昇が抑えられる。 Therefore, the heat generated in the stator coil 44 is transmitted to the frame 4 via the stator core 41, and is radiated to the cooling water flowing through the motor-side refrigerant flow path 18, so that the temperature rise of the stator 40 is suppressed. Heat generated by the switching elements 61 and 62 of the power module 51 is transmitted to the cooling frame 24 and dissipated to the cooling water flowing through the inverter-side refrigerant flow path 19, and the temperature rise of the power module 51 is suppressed.
 この実施の形態1では、モータ側冷媒流路18とインバータ側冷媒流路19とを連結する第1流路変換部15がフレーム4、ステータコア41および反負荷側エンドフレーム20とにより構成される不可避な空間のステータコイル44の反負荷側コイルエンドの外径側に配設されている。そこで、第1流路変換部15を配設することによる大径化および軸方向の長さの増大がないので、小型の機電一体モジュール100を実現できる。また、第1流路変換部15の容積を大きくできるので、流路15aの流路断面形状を滑らかに変化させることができ、第1流路変換部15での圧損を小さくすることができる。 In the first embodiment, the first flow path conversion unit 15 that connects the motor-side refrigerant flow path 18 and the inverter-side refrigerant flow path 19 is unavoidably configured by the frame 4, the stator core 41, and the anti-load side end frame 20. It is arranged on the outer diameter side of the coil end opposite to the load side of the stator coil 44 in a narrow space. Therefore, since there is no increase in diameter and increase in the axial length due to the arrangement of the first flow path conversion unit 15, the small electromechanical integrated module 100 can be realized. Moreover, since the volume of the 1st flow-path conversion part 15 can be enlarged, the flow-path cross-sectional shape of the flow path 15a can be changed smoothly, and the pressure loss in the 1st flow-path conversion part 15 can be made small.
 流路15aは、反負荷側から負荷側に向って断面形状を漸次変えながら、インバータ側冷媒流路19の排水口28bと同じ断面形状からモータ側冷媒流路18と同じ断面形状に変化する流路形状に形成されている。そこで、流路15a内のみならず、インバータ側冷媒流路19と流路15aとの連結部、およびモータ側冷媒流路18と流路15aとの連結部での流路断面形状の急激な変化がなく、圧損を小さくすることができる。 The flow path 15a is a flow that changes from the same cross-sectional shape as the drain outlet 28b of the inverter-side refrigerant flow path 19 to the same cross-sectional shape as the motor-side refrigerant flow path 18 while gradually changing the cross-sectional shape from the opposite load side to the load side. It is formed in a road shape. Therefore, not only in the flow path 15a, but also in the connection portion between the inverter-side refrigerant flow path 19 and the flow path 15a, and in the connection portion between the motor-side refrigerant flow path 18 and the flow path 15a, a sudden change in the cross-sectional shape of the flow path. And pressure loss can be reduced.
 また、第1冷媒給排水ポート27とインバータ側冷媒流路19とを連結する第2流路変換部26、および第2冷媒給排水ポート17とモータ側冷媒流路18とを連結する第3流路変換部11がフレーム4、ステータコア41および反負荷側エンドフレーム20とにより構成される不可避な空間のステータコイル44の反負荷側コイルエンドの外径側に配設されている。そこで、第2および第3流路変換部26,11を配設することによる大径化および軸方向の長さの増大がないので、小型の機電一体モジュール100を実現できる。また、第2および第3流路変換部26,11の容積を大きくできるので、流路26a,11aの流路断面形状を滑らかに変化させることができ、第2および第3流路変換部26,11での圧損を小さくすることができる。 In addition, a second flow path conversion unit 26 that connects the first refrigerant supply / drain port 27 and the inverter-side refrigerant flow path 19, and a third flow path conversion that connects the second refrigerant supply / drain port 17 and the motor-side refrigerant flow path 18. The portion 11 is disposed on the outer diameter side of the anti-load side coil end of the stator coil 44 in an inevitable space constituted by the frame 4, the stator core 41 and the anti-load side end frame 20. Therefore, since there is no increase in diameter and increase in the axial length due to the arrangement of the second and third flow path conversion units 26 and 11, a small electromechanical integrated module 100 can be realized. Moreover, since the volume of the 2nd and 3rd flow- path conversion parts 26 and 11 can be enlarged, the flow-path cross-sectional shape of the flow paths 26a and 11a can be changed smoothly, and the 2nd and 3rd flow-path conversion part 26 is changed. , 11 can be reduced.
 流路26aは、断面形状を漸次変えながら、第1冷媒給排水ポート27の開口と同じ断面形状からインバータ側冷媒流路19の給水口28aと同じ断面形状に変化する流路形状に形成されている。そこで、流路26a内のみならず、第1冷媒給排水ポート27と流路26aとの連結部、およびインバータ側冷媒流路19と流路26aとの連結部での流路断面形状の急激な変化がなく、圧損を小さくすることができる。 The flow path 26a is formed in a flow path shape that changes from the same cross-sectional shape as the opening of the first refrigerant supply / drain port 27 to the same cross-sectional shape as the water supply port 28a of the inverter-side refrigerant flow path 19 while gradually changing the cross-sectional shape. . Thus, not only in the flow path 26a, but also in the connection portion between the first refrigerant supply / drain port 27 and the flow path 26a, and in the connection portion between the inverter-side refrigerant flow path 19 and the flow path 26a, a sudden change in the cross-sectional shape of the flow path. And pressure loss can be reduced.
 流路11aは、断面形状を漸次変えながら、第2冷媒給排水ポート17の開口と同じ断面形状からモータ側冷媒流路18と同じ断面形状に変化する流路形状に形成されている。そこで、流路11a内のみならず、第2冷媒給排水ポート17と流路11aとの連結部、およびモータ側冷媒流路18と流路11aとの連結部での流路断面形状の急激な変化がなく、圧損を小さくすることができる。 The flow path 11a is formed in a flow path shape that changes from the same cross-sectional shape as the opening of the second refrigerant supply / drain port 17 to the same cross-sectional shape as the motor-side refrigerant flow path 18 while gradually changing the cross-sectional shape. Therefore, not only in the flow path 11a, but also in the connection portion between the second refrigerant supply / drain port 17 and the flow path 11a, and in the connection portion between the motor-side refrigerant flow path 18 and the flow path 11a, a sudden change in the cross-sectional shape of the flow path. And pressure loss can be reduced.
 第1流路変換部15、第2流路変換部26および第3流路変換部11が周方向に近接して配列されている。そこで、ステータコイル44の反負荷側コイルエンドの外径側に、かつ周方向に近接して配設された第1流路変換部15、第2流路変換部26および第3流路変換部11の周方向両側に、周方向に連続する空きスペースが形成されるので、ステータコイル44の内部結線処理が容易となる。また、第1および第2冷媒給排水ポート27,17が近接するので、第1および第2冷媒給排水ポート27,17と外部配管との接続作業が容易となる。 The first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are arranged close to each other in the circumferential direction. Therefore, the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit disposed on the outer diameter side of the coil end opposite to the load side of the stator coil 44 and in the vicinity of the circumferential direction. Since the empty space which continues in the circumferential direction is formed on both sides in the circumferential direction, the internal connection processing of the stator coil 44 is facilitated. Further, since the first and second refrigerant supply / drain ports 27 and 17 are close to each other, the connection work between the first and second refrigerant supply / drain ports 27 and 17 and the external piping is facilitated.
 第1流路変換部15、第2流路変換部26および第3流路変換部11が、ステータコイル44を結線する結線導体48aが配設されていない周方向領域に配設されているので、第1流路変換部15、第2流路変換部26および第3流路変換部11の容積を大きくでき、流路15a,26a,11aの流路断面形状の変化を滑らかにできる。
 モータ側冷媒流路18とインバータ側冷媒流路19とが直列に接続されているので、流路の分岐が少なくなり、冷却ムラの発生が抑えられる。
Since the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 are disposed in the circumferential region where the connection conductor 48 a that connects the stator coil 44 is not disposed. The volume of the first flow path conversion unit 15, the second flow path conversion unit 26, and the third flow path conversion unit 11 can be increased, and the change in the cross-sectional shape of the flow paths 15a, 26a, and 11a can be smoothed.
Since the motor side refrigerant flow path 18 and the inverter side refrigerant flow path 19 are connected in series, branching of the flow path is reduced, and the occurrence of uneven cooling is suppressed.
 実施の形態2.
 図15はこの発明の実施の形態2に係る機電一体モジュールを示す断面図である。
Embodiment 2. FIG.
FIG. 15 is a sectional view showing an electromechanical integrated module according to Embodiment 2 of the present invention.
 図15において、フィン溝70が、基部21の流路溝23の底面に、冷却フィン25に対応するように凹設されている。冷却フレーム24が基部21に取り付けられる際に、冷却フィン25の先端がフィン溝70に挿入され、インバータ側冷媒流路19を構成する。
 なお、他の構成は上記実施の形態1と同様に構成されている。
In FIG. 15, a fin groove 70 is recessed in the bottom surface of the flow channel groove 23 of the base portion 21 so as to correspond to the cooling fin 25. When the cooling frame 24 is attached to the base portion 21, the tips of the cooling fins 25 are inserted into the fin grooves 70 to constitute the inverter-side refrigerant flow path 19.
Other configurations are the same as those in the first embodiment.
 このように構成された機電一体モジュール101においても、上記実施の形態1と同様の効果が得られる。
 この機電一体モジュール101では、冷却フィン25の先端が流路溝23の底面に凹設されたフィン溝70に挿入されている。そこで、冷却フィン25と流路溝23の底面との間に隙間があきにくくなり、冷却水がインバータ側冷媒流路19内で隣の流路に漏れにくくなる。このため、インバータ側冷媒流路19の流路内を流れる冷却水の流量が安定し、冷却性能を均一化できる。さらに、冷却フィンの位置ずれが抑えられるので、インバータ側冷媒流路19の流路形状を高精度に作製でき、流路を流れる冷却水の流量の偏りによる冷却ムラの発生を抑えることができる。
Also in the electromechanical integrated module 101 configured in this way, the same effect as in the first embodiment can be obtained.
In this electromechanical integrated module 101, the tips of the cooling fins 25 are inserted into fin grooves 70 that are recessed in the bottom surface of the flow channel groove 23. Therefore, it is difficult for a gap to be formed between the cooling fin 25 and the bottom surface of the channel groove 23, and the cooling water is less likely to leak into the adjacent channel in the inverter-side refrigerant channel 19. For this reason, the flow rate of the cooling water flowing in the flow path of the inverter side refrigerant flow path 19 is stabilized, and the cooling performance can be made uniform. Further, since the displacement of the cooling fins is suppressed, the flow path shape of the inverter-side refrigerant flow path 19 can be manufactured with high accuracy, and the occurrence of uneven cooling due to the uneven flow rate of the cooling water flowing through the flow path can be suppressed.
 実施の形態3.
 図16はこの発明の実施の形態3に係る機電一体モジュールにおける反負荷側エンドフレームの冷媒流路の構造を説明する断面図である。
Embodiment 3 FIG.
FIG. 16 is a cross-sectional view for explaining the structure of the refrigerant flow path of the non-load-side end frame in the electromechanical integrated module according to Embodiment 3 of the present invention.
 図16において、基部21の一面に形成された流路溝23は、同心状に配列された2つのC状溝の一端を連結した溝形状に構成されている。給水口28aが流路溝23の一端の溝幅方向の一側と第2流路変換部26の流路26aとを連通するように基部21に形成され、排水口28bが流路溝23の一端の溝幅方向の他側から基部21の他面に至るように基部21に形成されている。冷却フィン25は、流路溝23内に挿入され、流路溝23を溝幅方向に2分するように冷却フレーム24の他面に立設されている。接続導体48bを反負荷側に引き出す貫通穴29が基部21のコンデンサ収納凹部22にコンデンサ54の設置位置を避けて周方向に所定のピッチで形成されている。 In FIG. 16, the flow path groove 23 formed on one surface of the base 21 is formed in a groove shape in which one end of two C-shaped grooves arranged concentrically is connected. A water supply port 28 a is formed in the base portion 21 so as to communicate one side of the groove width direction of one end of the flow channel groove 23 with the flow channel 26 a of the second flow channel conversion unit 26, and a drain port 28 b is formed in the flow channel groove 23. It is formed in the base 21 so as to reach the other surface of the base 21 from the other side in the groove width direction at one end. The cooling fins 25 are inserted into the flow channel grooves 23 and are erected on the other surface of the cooling frame 24 so as to divide the flow channel grooves 23 into two in the groove width direction. Through holes 29 through which the connecting conductors 48b are drawn to the opposite load side are formed in the capacitor housing recess 22 of the base 21 at a predetermined pitch in the circumferential direction, avoiding the installation position of the capacitors 54.
 冷却フレーム24が基部21に接合され、冷却フィン25が流路溝23の溝幅方向の中央に挿入され、インバータ側冷媒流路19Aが構成される。このインバータ側冷媒流路19Aは、給水口28aから最外周の流路を周方向に約360度流れ、折り返されて最内周の流路を周方向に約360度流れ、折り返されて内周側から2番目の流路を周方向に約360度流れ、折り返されて外周側から2番目の流路を周方向に約360度流れて排水口28bに至るように構成される。
 なお、他の構成は上記実施の形態1と同様に構成されている。
The cooling frame 24 is joined to the base 21, and the cooling fin 25 is inserted into the center of the flow channel groove 23 in the groove width direction to form the inverter side refrigerant flow channel 19 </ b> A. The inverter-side refrigerant flow path 19A flows from the water supply port 28a through the outermost flow path in the circumferential direction by approximately 360 degrees, and is folded back and flows through the innermost flow path in the circumferential direction by approximately 360 degrees. The second flow path from the side flows about 360 degrees in the circumferential direction, and is folded back to flow the second flow path from the outer peripheral side about 360 degrees in the circumferential direction to reach the drain outlet 28b.
Other configurations are the same as those in the first embodiment.
 この実施の形態3においても、上記実施の形態1と同様の効果が得られる。
 この実施の形態3による反負荷側エンドフレーム20Aでは、インバータ側冷媒流路19Aは4重の同心円状の流路を直列に接続した流路構造となっている。そこで、インバータ側冷媒流路19Aは、並列流路がないので、分流が発生せず、冷却能力の均一化が図られる。また、冷却水と冷却フィン25との接触面積が多くなり、冷却性能が向上される。
In the third embodiment, the same effect as in the first embodiment can be obtained.
In the anti-load side end frame 20A according to the third embodiment, the inverter side refrigerant flow path 19A has a flow path structure in which four concentric flow paths are connected in series. Therefore, since the inverter-side refrigerant flow path 19A does not have a parallel flow path, no diversion occurs and the cooling capacity is made uniform. Further, the contact area between the cooling water and the cooling fins 25 is increased, and the cooling performance is improved.
 なお、上記実施の形態3では、インバータ側冷媒流路が径方向に4重の流路で構成されているが、径方向の流路数は4つに限定されない。この場合、冷却フィンの高さを変更し、インバータ側冷媒流路の流路断面積を、モータ側冷媒流路の流路断面積、および第1および第2冷媒給排水ポートの断面積と略等しくすることが好ましい。 In Embodiment 3 described above, the inverter-side refrigerant flow path is formed of four flow paths in the radial direction, but the number of flow paths in the radial direction is not limited to four. In this case, the height of the cooling fin is changed, and the cross-sectional area of the inverter-side refrigerant flow path is substantially equal to the cross-sectional area of the motor-side refrigerant flow path and the cross-sectional areas of the first and second refrigerant supply / drain ports. It is preferable to do.
 実施の形態4.
 図17はこの発明の実施の形態4に係る機電一体モジュールにおける反負荷側エンドフレームを示す斜視図、図18はこの発明の実施の形態4に係る機電一体モジュールに適用されるモータフレームのアウターフレームを示す斜視図、図19はこの発明の実施の形態4に係る機電一体モジュールの組み立て方法を説明する斜視図である。
Embodiment 4 FIG.
FIG. 17 is a perspective view showing an anti-load side end frame in an electromechanical integrated module according to Embodiment 4 of the present invention, and FIG. 18 shows an outer frame of a motor frame applied to the electromechanical integrated module according to Embodiment 4 of the present invention. FIG. 19 is a perspective view illustrating a method for assembling an electromechanical integrated module according to Embodiment 4 of the present invention.
 図17および図18において、反負荷側エンドフレーム20Bは、周方向に所定の幅で、基部21の外周面から径方向外方に、かつ他面の外周側から軸方向外方に突出するように設けられた流路変換部60を備えている。第1冷媒給排水ポート27が、流路変換部60の外周面の突出端側に立設されている。また、図示していないが、第1流路が、インバータ側冷媒流路19の吸水口28aと第1冷媒給排水ポート27とを連通するように流路変換部60内に形成されている。第1流路は、その断面形状を漸次変化させて、第1冷媒給排水ポート27の開口と同じ断面形状から吸水口28aと同じ断面形状に変わる流路形状に構成されている。さらに、図示していないが、第2流路が、インバータ側冷媒流路19の排水口28bから軸方向に延びて流路変換部60の負荷側端面に開口するように、第1流路から周方向に一側にずれて流路変換部60に形成されている。第2流路は、その断面形状を漸次変化させて、排水口28bと同じ断面形状から後述する切り欠き部に開口する流路溝9の開口と同じ断面形状に変わる流路形状に構成されている。このように、流路変換部60は、実施の形態1における第1流路変換部15と第2流路変換部26を備えている。 17 and 18, the anti-load side end frame 20B has a predetermined width in the circumferential direction so as to protrude radially outward from the outer peripheral surface of the base 21 and axially outward from the outer peripheral side of the other surface. The flow path conversion unit 60 is provided. The first refrigerant supply / drain port 27 is erected on the protruding end side of the outer peripheral surface of the flow path conversion unit 60. Although not shown, the first flow path is formed in the flow path conversion unit 60 so as to communicate the water inlet 28 a of the inverter-side refrigerant flow path 19 and the first refrigerant supply / drain port 27. The first flow path is configured to have a flow path shape that gradually changes its cross-sectional shape and changes from the same cross-sectional shape as the opening of the first refrigerant supply / drain port 27 to the same cross-sectional shape as the water intake port 28a. Further, although not shown in the drawing, the second flow path extends from the drain outlet 28b of the inverter-side refrigerant flow path 19 in the axial direction so as to open to the load side end face of the flow path conversion unit 60. It is formed in the flow path conversion part 60 by shifting to one side in the circumferential direction. The second flow path is configured to have a flow path shape that gradually changes its cross-sectional shape and changes from the same cross-sectional shape as the drain port 28b to the same cross-sectional shape as the opening of the flow channel groove 9 that opens in a notch to be described later. Yes. As described above, the flow path converter 60 includes the first flow path converter 15 and the second flow path converter 26 in the first embodiment.
 アウターフレーム13Aは、その反負荷側端部の一部を、流路変換部60と同じ周方向幅および同じ軸方向長さに切り欠いて形成された切り欠き部14Aを備えている。
 なお、他の構成は上記実施の形態1と同様に構成されている。
The outer frame 13 </ b> A includes a notch portion 14 </ b> A formed by notching a part of the end portion on the opposite side to the same circumferential width and the same axial length as the flow path conversion portion 60.
Other configurations are the same as those in the first embodiment.
 ここで、この実施の形態4による機電一体モジュールの組み立て方法について図19を参照しつつ説明する。 Here, a method for assembling the electromechanical integrated module according to the fourth embodiment will be described with reference to FIG.
 まず、アウターフレーム13Aを反負荷側からインナーフレーム5に外嵌状態に嵌合させ、フレームを作製する。ついで、ステータ40のステータコア41をインナーフレーム5の肉厚部6に反負荷側から内嵌状態にステータ位置決め段差8に突き当たるまで挿入し、焼きばめなどにより固着させる。ついで、ロータ35を反負荷側からステータ40内に挿入し、パワーモジュール51、パワーモジュール回路基板52などが装着された反負荷側エンドフレーム20Bをアウターフレーム13Aの反負荷側エンドフレーム保持部に装着する。これにより、シャフト39が負荷側軸受30および反負荷側軸受軸31を介して負荷側エンドフレーム3および反負荷側エンドフレーム20Bに支持され、ロータ35がハウジング内に回転可能に保持される。 First, the outer frame 13A is fitted into the inner frame 5 from the anti-load side in an externally fitted state to produce a frame. Next, the stator core 41 of the stator 40 is inserted into the thick portion 6 of the inner frame 5 from the anti-load side in an internally fitted state until it hits the stator positioning step 8 and fixed by shrink fitting or the like. Next, the rotor 35 is inserted into the stator 40 from the anti-load side, and the anti-load side end frame 20B on which the power module 51, the power module circuit board 52, etc. are attached is attached to the anti-load side end frame holding portion of the outer frame 13A. To do. Thus, the shaft 39 is supported by the load side end frame 3 and the anti load side end frame 20B via the load side bearing 30 and the anti load side bearing shaft 31, and the rotor 35 is rotatably held in the housing.
 さらに、保護カバー53が、反負荷側からパワーモジュール51およびパワーモジュール回路基板52などを覆うように装着され、ねじなどにより反負荷側エンドフレーム20Bに固定され、機電一体モジュールが組み立てられる。 Further, the protective cover 53 is mounted from the anti-load side so as to cover the power module 51, the power module circuit board 52, etc., and fixed to the anti-load side end frame 20B with screws or the like, and the electromechanical integrated module is assembled.
 このように、この実施の形態4によれば、インナーフレーム5、アウターフレーム13A、ステータ40、ロータ35、反負荷側エンドフレーム20B、保護カバー53などの構成部品を、反負荷側から、すなわち軸方向の一側から順次組み付けて機電一体モジュールを組み立てることができるので、機電一体モジュールの組立性が高められる。
 また、第2流路変換部が第1流路変換部ともに流路変換部60に一体に構成されているので、第2流路変換部の第2流路とインバータ側冷媒流路19の排水口28bとの接続作業が不要となる。そこで、第2流路変換部の第2流路とインバータ側冷媒流路19の排水口28bとの接続部にOリングなどを装着する必要がなく、機電一体モジュールの組立性が高められるとともに、冷媒流路のシール性が向上される。
Thus, according to the fourth embodiment, components such as the inner frame 5, the outer frame 13A, the stator 40, the rotor 35, the anti-load side end frame 20B, and the protective cover 53 are moved from the anti-load side, that is, the shaft. Since the electromechanical integrated module can be assembled by sequentially assembling from one side of the direction, the assemblability of the electromechanical integrated module is improved.
Moreover, since the 2nd flow path conversion part is comprised integrally with the flow path conversion part 60 with the 1st flow path conversion part, the drainage of the 2nd flow path of the 2nd flow path conversion part, and the inverter side refrigerant | coolant flow path 19 is carried out. The connection work with the port 28b becomes unnecessary. Therefore, it is not necessary to attach an O-ring or the like to the connecting portion between the second flow path of the second flow path conversion section and the drain outlet 28b of the inverter-side refrigerant flow path 19, and the assembly of the electromechanical integrated module is improved. The sealing performance of the refrigerant flow path is improved.
 なお、上記各実施の形態では、冷却水をインバータ側冷媒流路からモータ側冷媒流路に流すものとしているが、冷却水をモータ側冷媒流路からインバータ側冷媒流路に流してもよい。
 また、上記各実施の形態では、冷媒として冷却水を用いるものとしているが、冷媒は冷却水に限定されるものではなく、例えば油や不凍液などを用いてもよい。
In each of the above embodiments, the cooling water flows from the inverter side refrigerant flow path to the motor side refrigerant flow path, but the cooling water may flow from the motor side refrigerant flow path to the inverter side refrigerant flow path.
Moreover, in each said embodiment, although cooling water is used as a refrigerant | coolant, a refrigerant | coolant is not limited to cooling water, For example, you may use oil, an antifreeze, etc.
 また、上記各実施の形態では、第1流路変換部、第2流路変換部および第3流路変換部のそれぞれが、流路の一側の断面形状から他側の断面形状に漸次変化する流路断面形状に形成されているが、第1流路変換部、第2流路変換部および第3流路変換部は、流路の一部あるいは全部が均一な断面形状であってもよい。 In each of the above embodiments, each of the first flow path conversion unit, the second flow path conversion unit, and the third flow path conversion unit gradually changes from the cross-sectional shape on one side of the flow channel to the cross-sectional shape on the other side. However, the first flow path conversion section, the second flow path conversion section, and the third flow path conversion section may have a uniform cross section or a part of the flow paths. Good.
 また、上記各実施の形態では、永久磁石が埋設されたロータを持つ永久磁石モータを用いるものとしているが、歯部が円筒形のヨーク部から外径側に突出したロータをもつスイッチドリラクタンスモータや、円筒形コアに穴をあけてフラックスバリアを設けたロータを持つシンクロナスリラクタンスモータを用いても、同様の効果が得られる。
 上記各実施の形態では、6個のパワーモジュールを用いるものとしているが、パワーモジュールの個数は、モータの相数の自然数倍になっていればよい。
 また、上記各実施の形態では、極数とスロット数の比を5:6とするモータを用いているが、モータの極数とスロット数の比は5:6に限定されず、例えば極数とスロット数の比を2:3や8:9とするモータを用いてもよい。
In each of the above embodiments, a permanent magnet motor having a rotor in which permanent magnets are embedded is used. However, a switched reluctance motor having a rotor whose teeth protrude from the cylindrical yoke portion to the outer diameter side. The same effect can be obtained by using a synchronous reluctance motor having a rotor in which a hole is formed in a cylindrical core and a flux barrier is provided.
In each of the above embodiments, six power modules are used, but the number of power modules only needs to be a natural number times the number of phases of the motor.
In each of the above embodiments, a motor having a ratio of the number of poles to the number of slots of 5: 6 is used. However, the ratio of the number of poles of the motor to the number of slots is not limited to 5: 6. A motor with a ratio of the number of slots to 2: 3 or 8: 9 may be used.
 また、上記各実施の形態では、パワーモジュールを構成する上アーム側スイッチング素子および下アーム側スイッチング素子および還流ダイオードの材料について言及していないが、スイッチング素子および還流ダイオードは、ケイ素などの半導体や、炭化ケイ素、窒化ガリウムなどのワイドバンドギャップ半導体を用いて作製される。例えば、スイッチング素子および還流ダイオードを炭化ケイ素、窒化ガリウムなどのワイドバンドギャップ半導体を用いて作製した場合、ワイドバンドギャップ半導体が高耐熱素子であることから、冷却水はモータ側冷媒流路を流通した後、インバータ側冷媒流路に流すことができる。これにより、耐熱温度の低い部材から冷却することになり、冷却性が向上する。 Further, in each of the above embodiments, the upper arm side switching element and the lower arm side switching element that constitute the power module and the material of the free wheel diode are not mentioned, but the switching element and the free wheel diode are semiconductors such as silicon, It is manufactured using a wide band gap semiconductor such as silicon carbide or gallium nitride. For example, when the switching element and the reflux diode are made using a wide band gap semiconductor such as silicon carbide or gallium nitride, the cooling water circulates in the motor side refrigerant flow path because the wide band gap semiconductor is a high heat resistance element. Then, it can be made to flow into an inverter side refrigerant flow path. Thereby, it cools from the member with low heat-resistant temperature, and cooling property improves.

Claims (7)

  1.  モータ側冷媒流路が内蔵された筒状のフレーム、該フレームの軸方向一端に配置される負荷側エンドフレーム、および該フレームの軸方向他端に配置され、インバータ側冷媒流路が内蔵された反負荷側エンドフレームを有するハウジング、上記フレームに内嵌状態に収納、保持される円環状のステータコアおよび該ステータコアに巻装されたステータコイルを有するステータ、および上記負荷側エンドフレームと上記反負荷側エンドフレームとに軸支されて上記ステータの内周側に回転可能に配設されるロータを備えた回転電機と、
     上記反負荷側エンドフレームの上記負荷側エンドフレームと反対側に配設されるパワーモジュール、およびパワーモジュール駆動回路を有するインバータ装置と、
     上記モータ側冷媒流路と上記インバータ側冷媒流路を連通する第1流路変換部と、
     第1冷媒給排水ポートと上記インバータ側冷媒流路を連通する第2流路変換部と、
     第2冷媒給排水ポートと上記モータ側冷媒流路を連通する第3流路変換部と、を備え、
     上記第1流路変換部、上記第2流路変換部および上記第3流路変換部の少なくとも1つの流路変換部が、上記フレーム、上記ステータコアおよび上記反負荷側エンドフレームにより構成される空間内の、上記ステータコイルの反負荷側コイルエンドの外径側に配設されていることを特徴とする機電一体モジュール。
    A cylindrical frame with a built-in motor-side refrigerant flow path, a load-side end frame disposed at one axial end of the frame, and an axial-side other end of the frame, with an inverter-side refrigerant flow path built-in A housing having an anti-load-side end frame, an annular stator core that is housed and held in the frame in an internally fitted state, a stator having a stator coil wound around the stator core, and the load-side end frame and the anti-load side A rotating electrical machine including a rotor that is pivotally supported by an end frame and rotatably disposed on the inner peripheral side of the stator;
    A power module disposed on the opposite side of the load side end frame of the anti-load side end frame, and an inverter device having a power module drive circuit;
    A first flow path converter that communicates the motor-side refrigerant flow path and the inverter-side refrigerant flow path;
    A second flow path conversion unit communicating the first refrigerant water supply / drain port and the inverter-side refrigerant flow path;
    A second refrigerant supply / drain port and a third flow path conversion unit communicating the motor side refrigerant flow path,
    A space in which at least one of the first flow path conversion section, the second flow path conversion section, and the third flow path conversion section is configured by the frame, the stator core, and the anti-load side end frame. An electromechanical integrated module, wherein the module is disposed on the outer diameter side of the coil end on the opposite side of the stator coil.
  2.  上記空間内の上記ステータコイルの反負荷側コイルエンドの外径側に配設されている上記流路変換部が、上記反負荷側エンドフレームに一体に構成されていることを特徴とする請求項1記載の機電一体モジュール。 The said flow path conversion part arrange | positioned in the outer diameter side of the anti-load side coil end of the said stator coil in the said space is comprised integrally with the said anti-load side end frame. The electromechanical integrated module according to 1.
  3.  上記ステータコイルは、上記空間内の、上記ステータコイルの反負荷側コイルエンドの外径側に配設されている上記流路変換部の周方向両側の領域で、結線導体を用いて結線処理が施されていることを特徴とする請求項1又は請求項2記載の機電一体モジュール。 The stator coil is connected using a connection conductor in regions in the circumferential direction on both sides in the circumferential direction of the flow path conversion unit disposed on the outer diameter side of the coil end opposite to the load side of the stator coil in the space. The electromechanical integrated module according to claim 1, wherein the electromechanical integrated module is provided.
  4.  上記第1流路変換部が、上記空間内の、上記ステータコイルの反負荷側コイルエンドの外径側に配設され、流路断面形状を漸次変えながら上記インバータ側冷媒流路の開口断面形状から上記モータ側冷媒流路の開口断面形状に変化する流路を備えていることを特徴とする請求項1から請求項3のいずれか1項に記載の機電一体モジュール。 The first flow path conversion portion is disposed on the outer diameter side of the coil end opposite to the load of the stator coil in the space, and the cross-sectional shape of the inverter-side refrigerant flow path is gradually changed while gradually changing the flow path cross-sectional shape. The electromechanical integrated module according to any one of claims 1 to 3, further comprising a flow path that changes from an opening cross-sectional shape of the motor-side refrigerant flow path to the motor-side refrigerant flow path.
  5.  上記第2流路変換部が、上記空間内の、上記ステータコイルの反負荷側コイルエンドの外径側に配設され、流路断面形状を漸次変えながら上記第1冷媒給排水ポートの開口断面形状から上記インバータ側冷媒流路の開口断面形状に変化する流路を備えていることを特徴とする請求項1から請求項4のいずれか1項に記載の機電一体モジュール。 The second flow path conversion portion is disposed on the outer diameter side of the anti-load side coil end of the stator coil in the space, and the opening cross-sectional shape of the first refrigerant supply / drainage port while gradually changing the flow path cross-sectional shape 5. The electro-mechanical integrated module according to claim 1, further comprising a flow path that changes from an opening cross-sectional shape of the inverter-side refrigerant flow path to the inverter-side refrigerant flow path.
  6.  上記第3流路変換部が、上記空間内の、上記ステータコイルの反負荷側コイルエンドの外径側に配設され、流路断面形状を漸次変えながら上記モータ側冷媒流路の開口断面形状から上記第2冷媒給排水ポートの開口断面形状に変化する流路を備えていることを特徴とする請求項1から請求項5のいずれか1項に記載の機電一体モジュール。 The third flow path conversion portion is disposed on the outer diameter side of the coil end opposite to the load side of the stator coil in the space, and the motor side refrigerant flow path opening cross-sectional shape while gradually changing the flow path cross-sectional shape The electromechanical integrated module according to any one of claims 1 to 5, further comprising a flow path that changes from an opening cross-sectional shape of the second refrigerant supply / drainage port to the second refrigerant supply / drainage port.
  7.  上記第1流路変換部、上記第2流路変換部および上記第3流路変換部が周方向に隣り合って配置されていることを特徴とする請求項6記載の機電一体モジュール。 The electromechanical integrated module according to claim 6, wherein the first flow path conversion section, the second flow path conversion section, and the third flow path conversion section are arranged adjacent to each other in the circumferential direction.
PCT/JP2013/052570 2012-02-07 2013-02-05 Mechanically and electronically integrated module WO2013118703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013557514A JP5859031B2 (en) 2012-02-07 2013-02-05 Mechanical and electrical integrated module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-024238 2012-02-07
JP2012024238 2012-02-07

Publications (1)

Publication Number Publication Date
WO2013118703A1 true WO2013118703A1 (en) 2013-08-15

Family

ID=48947466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052570 WO2013118703A1 (en) 2012-02-07 2013-02-05 Mechanically and electronically integrated module

Country Status (2)

Country Link
JP (1) JP5859031B2 (en)
WO (1) WO2013118703A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRN20130033A1 (en) * 2013-08-28 2015-03-01 Lucchi R Elettromeccanica Srl STATOR CONTAINMENT CASE FOR ELECTRIC MACHINE AND STATHY PART OF THE CARCASSA
WO2015063924A1 (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Vehicle rotating electric machine
JP2016042770A (en) * 2014-08-19 2016-03-31 三菱電機株式会社 Power supply unit integrated electric motor
CN106464153A (en) * 2014-05-28 2017-02-22 三菱电机株式会社 Power conversion device
JP2017085692A (en) * 2015-10-23 2017-05-18 三菱電機株式会社 Inverter integrated rotating electric machine
JPWO2016051535A1 (en) * 2014-09-30 2017-07-27 日産自動車株式会社 Rotating electrical machine system
US9948157B2 (en) 2015-01-19 2018-04-17 Lucchi R. Elettromeccanica Srl Containing casing for a stator of an electric machine and stator assembly using said casing
EP3127223B1 (en) 2014-03-31 2018-07-18 Continental Automotive GmbH Electric machine
CN109155547A (en) * 2016-12-14 2019-01-04 普罗蒂恩电子有限公司 For motor or the stator of generator
TWI658680B (en) * 2017-11-30 2019-05-01 財團法人工業技術研究院 Integrated power connecting device of driving controller coupling with electric power
WO2020017101A1 (en) * 2018-07-19 2020-01-23 アイシン・エィ・ダブリュ株式会社 Stator cooling structure
JP2020516218A (en) * 2017-03-28 2020-05-28 エルジー エレクトロニクス インコーポレイティド motor
WO2021006738A1 (en) * 2019-07-11 2021-01-14 Tecnotion Assets B.V. Permanent magnet synchronous torque motor
JP2021509562A (en) * 2017-11-06 2021-03-25 ホワイロット Axial Flux Electromagnetic Machines with Cooling Circuits Common to Machines and Electronic Means of Control and Power
JP2021065083A (en) * 2019-10-10 2021-04-22 ジン−ジン エレクトリック テクノロジーズ カンパニー リミテッド Motor housing
US11011955B2 (en) 2017-03-28 2021-05-18 Lg Electronics Inc. Motor
EP3829029A1 (en) * 2019-11-27 2021-06-02 Robert Bosch GmbH Housing arrangement of an electric drive unit
JPWO2021117803A1 (en) * 2019-12-10 2021-06-17
CN113316524A (en) * 2019-01-31 2021-08-27 日立安斯泰莫株式会社 Wheel drive device and electric vehicle provided with wheel drive device
WO2021240085A1 (en) * 2020-05-29 2021-12-02 Novares France Electric motor device with liquid cooling incorporating a heat sink adjacent to the electronic system
US11303219B2 (en) 2019-06-13 2022-04-12 Denso Corporation Power conversion apparatus with annularly-arranged switching and capacitor modules
US11641143B2 (en) * 2018-02-07 2023-05-02 Mitsubishi Electric Corporation Control device-integrated rotary electric machine
WO2023132201A1 (en) * 2022-01-05 2023-07-13 株式会社明電舎 Rotating machine
WO2023194033A1 (en) * 2022-04-07 2023-10-12 WBV Weisenburger Bau+Verwaltung GmbH Electric motor, method for producing a housing for an electric motor, and water sport device comprising an electric motor
WO2023234044A1 (en) * 2022-06-02 2023-12-07 三菱電機株式会社 Rotary electric machine unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274606A (en) * 2002-03-15 2003-09-26 Denso Corp Dynamo-electric machine
JP2006197781A (en) * 2005-01-17 2006-07-27 Fuji Heavy Ind Ltd Motor unit with integrated inverter
JP2010166710A (en) * 2009-01-15 2010-07-29 Aisin Aw Co Ltd Stator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946950B2 (en) * 2000-10-17 2007-07-18 三菱電機株式会社 AC generator for vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274606A (en) * 2002-03-15 2003-09-26 Denso Corp Dynamo-electric machine
JP2006197781A (en) * 2005-01-17 2006-07-27 Fuji Heavy Ind Ltd Motor unit with integrated inverter
JP2010166710A (en) * 2009-01-15 2010-07-29 Aisin Aw Co Ltd Stator

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRN20130033A1 (en) * 2013-08-28 2015-03-01 Lucchi R Elettromeccanica Srl STATOR CONTAINMENT CASE FOR ELECTRIC MACHINE AND STATHY PART OF THE CARCASSA
WO2015063924A1 (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Vehicle rotating electric machine
JP6037365B2 (en) * 2013-10-31 2016-12-07 三菱電機株式会社 Rotating electric machine for vehicles
US10033243B2 (en) 2013-10-31 2018-07-24 Mitsubishi Electric Corporation Rotating electrical machine for a vehicle
JPWO2015063924A1 (en) * 2013-10-31 2017-03-09 三菱電機株式会社 Rotating electric machine for vehicles
EP3127223B1 (en) 2014-03-31 2018-07-18 Continental Automotive GmbH Electric machine
US10063123B2 (en) 2014-05-28 2018-08-28 Mitsubishi Electric Corporation Electric power converting apparatus
JPWO2015182301A1 (en) * 2014-05-28 2017-04-20 三菱電機株式会社 Power converter
CN106464153A (en) * 2014-05-28 2017-02-22 三菱电机株式会社 Power conversion device
CN106464153B (en) * 2014-05-28 2019-04-02 三菱电机株式会社 Power inverter
JP2016042770A (en) * 2014-08-19 2016-03-31 三菱電機株式会社 Power supply unit integrated electric motor
JPWO2016051535A1 (en) * 2014-09-30 2017-07-27 日産自動車株式会社 Rotating electrical machine system
US9948157B2 (en) 2015-01-19 2018-04-17 Lucchi R. Elettromeccanica Srl Containing casing for a stator of an electric machine and stator assembly using said casing
JP2017085692A (en) * 2015-10-23 2017-05-18 三菱電機株式会社 Inverter integrated rotating electric machine
CN109155547A (en) * 2016-12-14 2019-01-04 普罗蒂恩电子有限公司 For motor or the stator of generator
JP2020516218A (en) * 2017-03-28 2020-05-28 エルジー エレクトロニクス インコーポレイティド motor
US11011955B2 (en) 2017-03-28 2021-05-18 Lg Electronics Inc. Motor
JP2021509562A (en) * 2017-11-06 2021-03-25 ホワイロット Axial Flux Electromagnetic Machines with Cooling Circuits Common to Machines and Electronic Means of Control and Power
JP7228271B2 (en) 2017-11-06 2023-02-24 ホワイロット motor
TWI658680B (en) * 2017-11-30 2019-05-01 財團法人工業技術研究院 Integrated power connecting device of driving controller coupling with electric power
US11641143B2 (en) * 2018-02-07 2023-05-02 Mitsubishi Electric Corporation Control device-integrated rotary electric machine
WO2020017101A1 (en) * 2018-07-19 2020-01-23 アイシン・エィ・ダブリュ株式会社 Stator cooling structure
CN113316524A (en) * 2019-01-31 2021-08-27 日立安斯泰莫株式会社 Wheel drive device and electric vehicle provided with wheel drive device
CN113316524B (en) * 2019-01-31 2024-05-10 日立安斯泰莫株式会社 Wheel drive device and electric vehicle provided with same
US11303219B2 (en) 2019-06-13 2022-04-12 Denso Corporation Power conversion apparatus with annularly-arranged switching and capacitor modules
WO2021006738A1 (en) * 2019-07-11 2021-01-14 Tecnotion Assets B.V. Permanent magnet synchronous torque motor
NL2023483B1 (en) * 2019-07-11 2021-02-03 Tecnotion Assets B V Permanent Magnet Synchronous Torque Motor
US11811290B2 (en) 2019-10-10 2023-11-07 Jing-Jin Electric Technologies Co., Ltd. Electric-machine housing
JP2021065083A (en) * 2019-10-10 2021-04-22 ジン−ジン エレクトリック テクノロジーズ カンパニー リミテッド Motor housing
JP7073466B2 (en) 2019-10-10 2022-05-23 ジン-ジン エレクトリック テクノロジーズ カンパニー リミテッド Motor housing
EP3829029A1 (en) * 2019-11-27 2021-06-02 Robert Bosch GmbH Housing arrangement of an electric drive unit
JP7302015B2 (en) 2019-12-10 2023-07-03 日立Astemo株式会社 electric circuit device
WO2021117803A1 (en) * 2019-12-10 2021-06-17 日立Astemo株式会社 Electric circuit device
JPWO2021117803A1 (en) * 2019-12-10 2021-06-17
FR3111027A1 (en) * 2020-05-29 2021-12-03 Novares France Electric motorization device incorporating an electrically insulating heat sink
WO2021240085A1 (en) * 2020-05-29 2021-12-02 Novares France Electric motor device with liquid cooling incorporating a heat sink adjacent to the electronic system
WO2023132201A1 (en) * 2022-01-05 2023-07-13 株式会社明電舎 Rotating machine
JP2023100188A (en) * 2022-01-05 2023-07-18 株式会社明電舎 Rotary machine
JP7371705B2 (en) 2022-01-05 2023-10-31 株式会社明電舎 rotating machine
WO2023194033A1 (en) * 2022-04-07 2023-10-12 WBV Weisenburger Bau+Verwaltung GmbH Electric motor, method for producing a housing for an electric motor, and water sport device comprising an electric motor
WO2023234044A1 (en) * 2022-06-02 2023-12-07 三菱電機株式会社 Rotary electric machine unit

Also Published As

Publication number Publication date
JPWO2013118703A1 (en) 2015-05-11
JP5859031B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5859031B2 (en) Mechanical and electrical integrated module
JP5649737B2 (en) Mechanical and electrical integrated module
JP5748869B2 (en) Mechanical and electrical integrated module
JP6081021B2 (en) Mechanical and electric integrated motor device
JP5501257B2 (en) Rotating electrical machine unit
JP4859950B2 (en) Rotating electric machine
JP2004159454A (en) Mechatronic driver
KR20030081524A (en) Fluid cooled electric machine
WO2005078899A1 (en) Compact dynamoelectric machine
JP2014143841A (en) Inverter integrated motor
WO2020110887A1 (en) Electric drive module
JP2022519097A (en) Axial flux electromechanical and auxiliary components
JP2019522456A (en) Electric motor
JP2014138489A (en) Motor with inverter
CN111869057B (en) Rotating electric machine with brush
JP3774862B2 (en) Rotating electric machine
WO2020110880A1 (en) Electric drive module
JP5717669B2 (en) Mechanical and electrical integrated module
EP4040648A1 (en) Stator of electric machine
JP3972855B2 (en) Inverter module
JP7339882B2 (en) Wheel built-in electric device
US20230318369A1 (en) Axial flux electric machine including cooling fins projecting from casing to spaces between windings on stator cores
JP2010279127A (en) Magnetic inductor type rotating machine and turbocharger using the same
KR20190130236A (en) Rotor and driving motor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747106

Country of ref document: EP

Kind code of ref document: A1