WO2013115285A1 - Heat sink and electronic component device provided with said heat sink - Google Patents

Heat sink and electronic component device provided with said heat sink Download PDF

Info

Publication number
WO2013115285A1
WO2013115285A1 PCT/JP2013/052117 JP2013052117W WO2013115285A1 WO 2013115285 A1 WO2013115285 A1 WO 2013115285A1 JP 2013052117 W JP2013052117 W JP 2013052117W WO 2013115285 A1 WO2013115285 A1 WO 2013115285A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat sink
powder
electronic component
flow path
Prior art date
Application number
PCT/JP2013/052117
Other languages
French (fr)
Japanese (ja)
Inventor
石峯 裕作
猛 宗石
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2013556481A priority Critical patent/JP5829695B2/en
Publication of WO2013115285A1 publication Critical patent/WO2013115285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat sink for dissipating heat generated in a heat generating member and an electronic component device including the heat sink.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal oxide field effect transistor
  • LED light emitting diode
  • FWD freewheeling diode
  • GTR giant transistor
  • a circuit board on which such an electronic component is mounted includes, for example, a circuit member mainly composed of copper on one main surface of a support substrate made of an insulating ceramic sintered body, and a plurality of fins on the other main surface.
  • the heat radiating member which is a heat sink provided with is joined.
  • Patent Document 1 exemplifies a heat dissipating structure including a planar fin, and after pouring mud into a plaster mold and drying, the dry body is taken out from the plaster mold, and the final shape is obtained by dry milling To finish.
  • the heat dissipation structure described in Patent Document 1 has a problem in that the degree of freedom in design is low because the outer dimensions of the heat dissipation structure are determined by the size of the gypsum mold.
  • an object of the present invention is to provide a heat sink having a high degree of design freedom and an electronic component device including the heat sink.
  • the heat sink of the present invention includes a plurality of first plate-like bodies and a second plate-like body disposed between the first plate-like bodies and having a height lower than at least the first plate-like body. Are stacked, and a space formed by the first plate-like body and the second plate-like body is a flow path for fluid flow.
  • the electronic component device of the present invention is characterized in that an electronic component is mounted on the heat sink having the above-described configuration.
  • the plurality of first plate-like bodies and the second plate-like shape disposed between the first plate-like bodies and having a height lower than at least the first plate-like body. Since the body is laminated and the space formed by the first plate-like body and the second plate-like body is a flow path for fluid to flow, the degree of freedom in design can be increased. Can be high.
  • the microcrack hardly develops even if heat radiation is repeated, so that the reliability can be improved.
  • FIG. 2 is an enlarged cross-sectional view taken along line A-A ′ of the heat sink shown in FIG. 1. It is an expanded sectional view showing other examples of a heat sink of this embodiment. It is another example of the heat sink of this embodiment, Comprising: It is a schematic diagram which shows the wave
  • FIG. 5 is a view showing still another example of the heat sink shown in FIG. 1, wherein (a) is an enlarged cross-sectional view, and (b) is a cross-sectional view taken along the line C-C ′ of FIG.
  • FIG. 5 is a view showing still another example of the heat sink shown in FIG.
  • FIG. 4 is a diagram showing still another example of a heat sink at the same location as FIG. 1A, (a) is an enlarged sectional view taken along the line BB ′, and (b) is an enlarged sectional view taken along the line AA ′. is there.
  • FIG. 4 is a diagram showing still another example of a heat sink at the same location as FIG. 1A, (a) is an enlarged sectional view taken along the line BB ′, and (b) is an enlarged sectional view taken along the line AA ′. is there.
  • It is a schematic sectional drawing which shows an example of the electronic component apparatus of this embodiment.
  • FIG. 1 is a perspective view showing an example of a heat sink of the present embodiment
  • FIG. 2 is an enlarged cross-sectional view of the heat sink shown in FIG.
  • the heat sink 10 of this embodiment is disposed between a plurality of first plate-like bodies 1 and the first plate-like body 1, and at least the first plate-like body 1.
  • the second plate-like body 2 having a lower height is laminated, and the flow path for the fluid to flow in the space formed by the first plate-like body 1 and the second plate-like body 2 is formed. 21.
  • the lower surface 20 becomes a surface in which a heat generating member etc. are mounted.
  • the line AA ′ is a line drawn at the midpoint of the length of the first plate 1 in the X direction
  • the line BB ′ is the line of the first plate 1. It is a line drawn at an intermediate point in the length in the Z direction.
  • the heat sink 10 of this embodiment is disposed between a plurality of first plate-like bodies 1 and the first plate-like body 1, and at least the first plate-like body 1. Since the second plate-like body 2 having a lower height is laminated, the outer side dimensions and thicknesses of the respective plate-like bodies 1 and 2 are adjusted in accordance with the required heat sink size. Thus, the degree of freedom in design can be increased with respect to the external size of the heat sink, the thickness of the first plate 1 and the width of the flow path 21 (in other words, the thickness of the second plate 2). In FIG. 1 and FIG. 2, one second plate 2 is arranged between the first plates 1. However, when it is desired to further increase the width of the flow path. A plurality of second plate-like bodies 2 may be laminated.
  • the dimensions in the X direction, Y direction, and Z direction of the first plate 1 constituting the heat sink 10 of the example shown in FIG. 1 are not particularly limited.
  • the X direction is 15 mm or more and 80 mm or less.
  • the Y direction is 0.3 mm or more and 3 mm or less, and the Z direction is 10 mm or more and 67.5 mm or less.
  • the first plate-like body 1 mainly constitutes the fin and the lower surface 20.
  • the dimensions of the second plate-like body 2 in the X direction, Y direction, and Z direction are, for example, 15 mm to 80 mm in the X direction, 0.3 mm to 2 mm in the Y direction, and 1 mm to 15 mm in the Z direction. is there.
  • the second plate-like body 2 is set so that the length in the Z direction is shorter than that of the first plate-like body 1.
  • the second plate-like body 2 mainly forms a flow path 21 in combination with the first plate-like body 1 (fins) and constitutes the lower surface 20.
  • the end of the first plate 1 in the length direction (X direction) and the end of the second plate 2 along the length of the first plate 1 are the pressure of the fluid. It is preferable that they are arranged at the same position so as to be uniformly applied. Furthermore, since one end (lower end) of the first plate-like body 1 and the second plate-like body 2 in the Z direction is a surface on which the heat generating member or the like is placed, it is arranged to be at the same position. It is preferable.
  • the surface on which the heat generating member or the like is placed is preferably polished so that the heat generating member or the like is easily placed.
  • the arithmetic average roughness (Ra) of the surface 2 a facing the flow path 21 of the second plate-like body 2 faces the flow path 21 of the first plate-like body 1. It is preferably rougher than the arithmetic average roughness (Ra) of the surface 1d.
  • the arithmetic mean roughness (Ra) of the surface 2 a facing the flow path 21 of the second plate-like body 2 is 3 ⁇ m or more and 10 ⁇ m or less, and the surface 1 d of the surface 1 d of the first plate-like body 1 facing the flow path 21.
  • the arithmetic average roughness (Ra) is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the arithmetic average roughness (Ra) of the surface 2 a facing the flow path 21 of the second plate-like body 2 and the surface 1 d facing the flow path 21 of the first plate-like body 1 is appropriate from the heat sink 10. After the sample is cut out in size, it can be measured based on JIS B0601-2001 using a contact or non-contact type roughness measuring instrument.
  • the plurality of flow paths 21 in the heat sink 10 of the present embodiment have flow paths 21 with different volumes of the flow paths 21 compared to other flow paths 21. Due to the presence of the flow paths 21 having different volumes, when the fluid enters the flow path 21 of the heat sink 10, a turbulent flow is easily generated due to a velocity gradient generated at the inlet of each flow path 21. The fluid can easily enter the flow path 21 in the emitted state. Thereby, the frequency of heat exchange between the heat sink 10 and the fluid is increased, and the heat dissipation characteristics can be further improved.
  • FIG. 3 is an enlarged cross-sectional view showing another example of the heat sink of the present embodiment
  • FIG. 4 is another example of the heat sink of the present embodiment, and is a schematic diagram showing a swell state in the first plate-like body. It is.
  • the plurality of first plate-like bodies 1 have warpage or undulation. If the first plate-like body 1 has warping or undulation, turbulent flow is likely to occur in the fluid flowing through the flow path 21 between the first plate-like bodies 1. As a result, the frequency of heat exchange between the heat sink 11 and the fluid increases, and the heat dissipation characteristics can be improved.
  • the warp said here means the state which the 1st plate-shaped body 1 is curled entirely in the height direction.
  • the waviness of the first plate-like body 1 shown in FIG. 4 can be expressed as, for example, the degree of curvature W av , and the degree of curvature W av is preferably 1.5 or more and 3 or less. If the degree of curvature Wav is within this range, turbulent flow is likely to occur in the fluid, and it can be suppressed that the residual stress generated due to the undulation is excessively large, and the first plate-like body is damaged. Can be suppressed. Accordingly, the frequency of heat exchange between the heat sink 11 and the fluid is increased while maintaining the strength, and the heat dissipation characteristics can be further improved.
  • the curvature W av in the present embodiment is the lower end 1 U of the surface with the smaller curvature of the surfaces on both sides of the first plate-like body 1 in the cross section taken along the line AA ′. This is the percentage of the maximum deviation width W from the long line with respect to the length L of the straight line connecting the upper end 1 L, and can be expressed as in equation (1).
  • W av W / L ⁇ 100 (1)
  • FIG. 5A and 5B are views showing still another example of the heat sink shown in FIG. 1, wherein FIG. 5A is an enlarged cross-sectional view, and FIG. 5B is a cross-sectional view taken along line C-C ′ of FIG.
  • a through hole 1 e connected to the adjacent flow path 21 is provided in the first plate 1.
  • the fluid flowing in the flow path 21 provided between the adjacent first plate-like bodies 1 is likely to generate turbulent flow through the through hole 1e.
  • the frequency of heat exchange with the fluid can be increased, and the heat dissipation characteristics can be further improved.
  • the fluid that has flowed through the flow channel 21 flows through the through-hole 1e and into the adjacent flow channel 21, so that the temperature of the heat sink 12 can be made uniform, and the bonding strength between the heat sink 12 and the heat generating member, etc. Can be suppressed.
  • the size of the through-hole 1e is preferably as large as possible without causing a problem with the strength of the heat sink 12 and the surface area of the surface 1d facing the flow path 21 of the first plate 1 not decreasing.
  • the number is preferably 3 or more and 10 or less for one first plate 1.
  • the shape of the through hole 1e may be any shape such as a substantially circular shape, a polygonal shape, or a star shape.
  • FIG. 5B shows an example in which many through holes 1 are provided on the fluid inlet side (the right side in FIG. 5B).
  • FIG. 6A is an enlarged sectional view taken along line BB ′
  • FIG. 6B is an enlarged sectional view taken along line AA ′. is there.
  • the heat sink 13 in the example shown in FIG. 6 has a concave portion 1 a on the adjacent main surface of the first plate 1, and the heat sink 14 in the example shown in FIG. 7 is adjacent to the first plate 1.
  • the main surface has the convex part 1b.
  • the heat sinks 13 and 14 of the present embodiment are such that at least one of the surfaces facing the adjacent flow paths 21 of the first plate-like body 1 is the concave portion 1a and the convex portion 1b. It is preferable to have at least one of them. With such a configuration, the frequency of occurrence of turbulence increases, and the surface area can be increased, so that the heat dissipation characteristics can be further improved.
  • the heat sinks 13 and 14 in the example shown in FIGS. 6 and 7 are heat sinks each having only the concave portion 1a and only the convex portion 1b on one surface of the first plate-like body 1, but the concave portion 1a and the convex portion 1b are mixed. The number of the concave portions 1a and the convex portions 1b can be appropriately set. Furthermore, the concave portion 1 a and the convex portion 1 b can be provided on both surfaces of the first plate-like body 1.
  • the fluid inlet side one end side in the X direction.
  • the fluid travels in the flow path 21 in a state where turbulent flow is generated on the inlet side, so that the heat exchange efficiency between the heat sink and the fluid can be further improved.
  • the depth of the concave portion 1a and the height of the convex portion 1b are 0.2 times the thickness of the first plate-like body 1 considering the strength of the first plate-like body 1 and the pressure loss of the fluid. It is preferable to be 0.3 times.
  • the first plate-like body 1 constituting the heat sink of the present embodiment is made of, for example, diamond, aluminum, copper, expanded graphite, glass, resin, or ceramic, and particularly preferably made of ceramic.
  • the ceramic material alumina, zirconia, carbon fiber reinforced carbon composite material, silicon nitride, silicon carbide, aluminum nitride, boron carbide, boron nitride, cordierite, or a composite thereof can be used.
  • the heat generating member is a light emitting diode (LED) element for optical communication made of gallium-aluminum-arsenic (GaAlAs) or indium-gallium-arsenic-phosphorus (InGaAsP)
  • the linear expansion coefficient of these compounds is Since it is about 5 ⁇ 10 ⁇ 6 / K and is close to the linear expansion coefficient of ceramics, even if the LED element is mounted on the heat sink, distortion due to heat generation is less likely to occur in the LED element, and the joint between the heat sink and the LED element Cracks are less likely to occur.
  • silicon carbide, aluminum nitride, boron nitride or carbon fiber reinforced carbon composite it is preferable to use silicon carbide, aluminum nitride, boron nitride or carbon fiber reinforced carbon composite. Since silicon carbide, aluminum nitride, and boron nitride have a linear expansion coefficient of 3.7 ⁇ 10 ⁇ 6 / K or more and 6 ⁇ 10 ⁇ 6 / K or less, they become closer to the linear expansion coefficient of the compound constituting the LED element, and generate heat. Distortion and cracks due to the above are less likely to occur.
  • the carbon fiber reinforced carbon composite material is obtained by impregnating a carbon fiber with a liquid for impregnation obtained by dispersing or dissolving powdered carbon, fine carbon fiber having a hollow inside, and a thermosetting resin in a medium. Thereafter, the composite is obtained by molding, curing and firing so that the carbon fibers are arranged in one direction, and the coefficient of thermal expansion in the direction in which the carbon fibers are arranged is 3.7 ⁇ 10 ⁇ 6 / K or more and 6 ⁇ . It can be 10 ⁇ 6 / K or less.
  • the thermal conductivity is high.
  • nanocarbon fiber is particularly suitable.
  • the second plate-like body 2 constituting the heat sink of the present embodiment is preferably formed of the same material as that constituting the first plate-like body 1.
  • FIG. 8A and 8B are diagrams showing still another example of the heat sink at the same position as in FIG. 1A, where FIG. 8A is an enlarged cross-sectional view taken along the line BB ′, and FIG. It is an expanded sectional view.
  • the granular material 1c is joined to at least one main surface of the surfaces facing the adjacent flow paths 21 of the first plate-like body 1, and the granular material 1c is convex. Part. In such a configuration, turbulent flow is likely to occur in the fluid flowing through the flow path 21, and the surface area of the first plate-like body 1 can be increased. Accordingly, the frequency of heat exchange between the heat sink 15 and the fluid can be increased, and the heat dissipation characteristics can be further improved.
  • the granular body 1c joined to at least one main surface of the first plate-like body 1 is made of ceramics, it preferably contains silicon, specifically, silicon, silicon carbide, silicon nitride, carbonitriding. It is preferably at least one of silicon, silicon oxide and sialon. These components can be identified using thin film X-ray diffraction or transmission electron microscopy.
  • the granular material 1c has, for example, a width along the main surface of 10 ⁇ m to 48 ⁇ m and a height of 16 ⁇ m to 52 ⁇ m in an arbitrary cross section.
  • the width and height of such a granular material 1c can be obtained by using an optical microscope and setting the magnification to 100 to 500 times.
  • the convex portion 1 c may be one in which a plurality of granular bodies 1 c are integrated and joined to the main surface of the first plate-like body 1.
  • FIG. 9 is a schematic cross-sectional view showing an example of the electronic component device of the present embodiment.
  • the electronic component device 20 shown in FIG. 9 has an electronic component 3 that is a heat generating member, a circuit member 4 on which the electronic component 3 is mounted, and an electrically insulating material that supports the circuit member 4 on one main surface (front surface) side.
  • a support substrate 5, a housing (package) 6 that accommodates the electronic component 3 and the circuit member 4, and a heat sink 10 disposed on the other main surface (back surface) side of the support substrate 5 are provided.
  • the circuit members 4 are arranged in two rows, for example, and are joined to the support substrate 5 by a brazing material. Note that any of the heat sinks 11, 12, 13, 14, and 15 described above can be used as the heat sink.
  • the electronic component 3 is mounted on the heat sink 10 having high heat dissipation characteristics of the present embodiment. As a result, by efficiently dissipating the heat generated from the electronic component 3, it is possible to suppress the electronic component 3 from becoming high heat, and the life of the electronic component 3 can be extended, so that the reliability can be improved.
  • the electronic component device 20 is useful as a device that generates high heat during operation, such as a semiconductor module such as a PCU, a semiconductor device of a high-power LED headlamp, a DC high-voltage power supply device, and a switching device.
  • boron carbide powder and lignin carboxylate powder are added to silicon carbide powder having an average particle size (D 50 ) of 0.5 ⁇ m or more and 2 ⁇ m or less, and a ball mill, a rotary mill, Mix and pulverize with a mill such as a vibration mill or bead mill to obtain a mixed powder.
  • D 50 average particle size
  • the content of each of the boron carbide powder and the lignin carboxylate powder is, for example, 0.12% by mass to 1.4% by mass and 1% by mass to 3.4% by mass with respect to 100% by mass of the silicon carbide powder. It is preferable to do.
  • this mixed powder is mixed with an binder, a dispersant, a plasticizer, a lubricant and the like in an organic solvent to obtain a slurry.
  • the organic solvent it is preferable to use at least one of toluene, ethanol, methanol, methyl ethyl ketone, trichloroethylene, and methyl isobutyl ketone.
  • the binders include polyethylene glycol, methyl cellulose, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, octyl methacrylate, styrene, vinyl chloride and acetic acid. It is preferable to use at least one of vinyl, and it is particularly preferable to use polyvinyl butyral or isobutyl methacrylate.
  • the amount of binder added is preferably 4% by mass or less and 8% by mass or less with respect to 100% by mass of the mixed powder. If the added amount of the binder is 4% by mass or more and 8% by mass or less with respect to 100% by mass of the mixed powder, the strength and flexibility of the molded body are good, and the binder can be easily degreased.
  • the specific surface area by gas adsorption BET method is 2.0 m 2 / g or more and 3.0 m 2 / g or less
  • the uniaxial pressure molding density under a pressure of 50 MPa is 1.65. g / cm 3 or more 1.80 g / cm 3 or less
  • an average particle diameter (D 50) for example, the 2 ⁇ m or less of the aluminum nitride powder or 1 [mu] m, an alkaline earth metal oxide powder and the rare earth element oxide powder
  • D 50 average particle diameter
  • the total content of the alkaline earth metal oxide powder and the rare earth element oxide powder is preferably 1% by mass or more and 10% by mass or less with respect to 100% by mass of the aluminum nitride powder. .
  • BN powder, TiC powder, TiN powder, TiCN powder and Al powder, V, Cr, Zr, Nb, Mo, Hf, Ta, W are used as raw material powder.
  • At least one powder of metals, carbides and nitrides of the above, or at least one powder of Ni, Co, CoO, and Co 3 O 4 is prepared, and these are weighed to a specific composition, for example, ultra Mix and grind with a hard alloy ball mill to obtain mixed powder.
  • the BN powder is preferably 80% by mass to 95% by mass, and the total of other powders is preferably 5% by mass to 20% by mass.
  • a ceramic green sheet is formed by a doctor blade method, which is a general method of forming ceramics, and formed into a predetermined shape by punching with a mold or cutting with a laser beam. Moreover, what is necessary is just to process by the same method also when providing a through-hole like the heat sink 15.
  • a doctor blade method which is a general method of forming ceramics, and formed into a predetermined shape by punching with a mold or cutting with a laser beam.
  • the arithmetic average roughness (Ra) of the surface 2a facing the flow path of the second plate-like body 2 is set to the first level. It can be made rougher than the arithmetic average roughness (Ra) of the surface 1d facing the flow path of the plate-like body 1, and a desired roughness can be obtained by changing the abrasive grain size and output in blasting. it can.
  • the ceramic green sheet is heated in a nitrogen atmosphere for 10 to 40 hours, held at 450 to 650 ° C. for 2 to 10 hours, then naturally cooled and degreased to obtain a degreased body. .
  • the ceramic green sheets which become the adjacent first plate-like bodies 1 the ceramic green sheets which become the second plate-like bodies 2 in which the adhesion liquid is applied to the surfaces facing the flow paths on both sides, and the adhesion A green sheet having the same shape as the green sheet to be the second plate-like body 2 to which no liquid is applied is disposed as a spacer, and a pressure of 0.05 MPa or more and 0.5 MPa or less is applied through a flat plate-like pressurizing tool. In addition, it is then dried at about 50-70 ° C. for about 10-15 hours. And after making it dry, the ceramic green sheet used as a spacer is extracted. In addition, the same binder as the binder used when producing the ceramic green sheet can be used as the adhesion liquid. In addition, although the example which uses a ceramic green sheet was shown in the said arrangement
  • the ceramic green sheet is made of silicon carbide, for example, it is maintained in a temperature range of 1800 to 2200 ° C. for 10 minutes to 10 hours in an inert gas atmosphere or a vacuum atmosphere, and then 2200 to 2350 ° C. By holding for 10 minutes to 20 hours in the temperature range, a ceramic sintered body having a relative density of 90% or more can be obtained.
  • an inert gas Since it decomposes
  • the firing temperature is maintained in the range of 1500 to 1900 ° C. for 5 to 20 hours.
  • a ceramic sintered body having a density of 90% or more can be obtained.
  • the relative density can be maintained by maintaining the pressure in an inert atmosphere at a pressure of 4 to 6 GPa and a firing temperature of 1300 to 1800 ° C. for 10 to 30 minutes.
  • a heat sink made of a carbon fiber reinforced carbon composite material for example, polyacrylonitrile-based or pitch-based fibers or resins are dispersed or dissolved in a medium such as a phenol resin solution or a furan resin solution and mixed. A solution is obtained.
  • the concentration of the solution is preferably 10% by mass or more and 70% by mass or less with respect to 100% by mass of the solution.
  • the sheet When a sheet is produced from the obtained solution with a carbon fiber reinforced carbon composite material, the sheet is poured into a mold having a desired shape, and is heated at a heating temperature of 50 to 300 ° C. and a holding time of 20 minutes to 5 hours. Can be obtained by thermosetting.
  • a lengthy term protrusion and a hollow so that a recessed part, a convex part, a through-hole, etc. may be formed in the sheet
  • the arithmetic average roughness (Ra) of the surface 2a facing the flow path of the second plate-like body 2 is set to the first. It can be made rougher than the arithmetic average roughness (Ra) of the surface 1d facing the flow path of the plate-like body 1, and the desired roughness can be obtained by changing the abrasive grain size and output in blasting. Can do.
  • a heat sink made of a carbon fiber reinforced carbon composite material can be obtained by setting the temperature to 600 to 1000 ° C. so as to reach the maximum temperature over 30 to 50 hours and performing carbonization.
  • the second plate-like body 2 In addition to making the second plate-like body 2 have different heights, it is possible to change the volume of the flow path by changing the thickness and number of the second plate-like bodies 2.
  • a heat sink 14 having projections by joining a plurality of granular materials 1c containing silicon to the main surface of the first plate-like body 1, granules or covering powder containing silicon on the main surface of the ceramic green sheet It is only necessary to place a large number of powder particles such as those and laminate them as appropriate, followed by firing.
  • the method of mounting may be sprinkled using a sieve or the like, or added to a slurry by adding a solvent or the like to the powder and applied using a brush or a roller.
  • the powder constituting the granular material is, for example, silicon carbide or silicon carbonitride powder, graphite powder and boron carbide (B 4 C) powder as additive components.
  • the powder constituting the granular material may be at least one of silicon powder, silicon nitride powder, silicon oxide powder and sialon powder, and magnesium oxide (MgO) and calcium oxide (CaO) powders as additive components. And a rare earth element oxide powder.
  • the granules placed on the main surface of the ceramic green sheet are, for example, those obtained by mixing and pulverizing the above powder to form a slurry, and drying with a spray dryer. The fired sintered body is pulverized.
  • the firing temperature and time may be appropriately set according to the size and volume of the laminate.
  • the firing temperature is increased and the firing time is increased.
  • the ceramic green sheet is made of silicon carbide, it is 2250 to 2350 ° C.
  • the temperature may be maintained for 10 to 20 hours.
  • the firing temperature may be maintained in the range of 1700 to 1900 ° C. for 10 to 20 hours.
  • the ceramic green sheet is made of boron nitride, the ceramic green sheet may be held for 20 to 30 minutes at a pressure of 5.5 to 6 GPa and a firing temperature of 1500 to 1800 ° C.
  • the maximum temperature may be set to 900 to 1000 ° C. so as to reach the maximum temperature over 30 to 35 hours.
  • the lower surface 20 on which the heat generating member is placed is on the shelf board side under the condition for obtaining the waviness. It only has to be placed and fired.
  • the ceramic sintered body obtained by the above-described method can be obtained as shown in FIGS. 1, 2, 3, 5, 6, 7, and 8 by removing the outer periphery of the ceramic sintered body by grinding or the like as necessary.
  • Heat sinks 10, 11, 12, 13, 14, and 15 as shown can be used.
  • the ceramic green sheet is formed using the doctor blade method.
  • the ceramic green sheet is formed using a dry pressure forming method or a powder rolling method.
  • a dispersant boron carbide powder, and lignin carboxylate powder are added to a silicon carbide powder having an average particle size (D 50 ) of 0.5 ⁇ m or more and 2 ⁇ m or less, and a ball mill, rotary mill, vibration Mix and pulverize in a mill such as a mill or bead mill to make a slurry.
  • D 50 average particle size
  • celluloses such as methylcellulose and carboxymethylcellulose and their modified products, sugars, starches, dextrins and various modified products thereof
  • various water-soluble synthetic resins such as polyvinyl alcohol, synthetic resin emulsions such as vinyl acetate, lignin sulfonic acid Soda, gum arabic, casein, alginate, glucomannan, glycerin, sorbitan fatty acid ester and the like may be added and mixed, and then spray dried.
  • the content of each of the boron carbide powder and the lignin carboxylate powder is, for example, 0.12% by mass to 1.4% by mass and 1% by mass to 3.4% by mass with respect to 100% by mass of the silicon carbide powder. It is preferable to do.
  • coarse impurities and dust are removed by passing through a sieve with a particle size number of 200 described in ASTM E11-61 or a mesh finer than this mesh. It is preferable to remove iron and its compounds by a method such as removing iron with an iron machine.
  • the obtained ceramic granules can be formed into a ceramic green sheet having a relative density of 45% or more and 70% or less by molding using a dry pressure molding method or a powder rolling method.
  • a heat sink can be obtained by the same method as the manufacturing method mentioned above.
  • the heat sink produced by such a manufacturing method has a structure in which the plate-like bodies 1 and 2 are laminated, so that the amount of raw materials discarded before the heat sink 10 is produced can be reduced. Further, since there is no need for post-processing such as milling, breakage and cracks of the respective plate-like bodies 1 and 2 due to post-processing are less likely to be inherent.
  • each heat sink obtained by the manufacturing method described above is bonded to the back surface of the support substrate 5 on which the electronic component 3 is mounted via the circuit member 4 by using a bonding agent such as silicon grease.
  • the electronic component device 20 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

[Problem] To provide an electronic component device and a heat sink having a high degree of design freedom. [Solution] The heat sink results from laminating a plurality of first plate bodies (1) and second plate bodies (2) disposed between the first plate bodies (1) and having a lower height than that of at least the first plate bodies (1). The space formed by the first plate bodies (1) and the second plate bodies (2) is a flow path a fluid to flow through. Such a heat sink can have a higher degree of freedom of design with respect to heat sink shapes necessary depending on application.

Description

ヒートシンクおよびこのヒートシンクを備えた電子部品装置Heat sink and electronic component device including the heat sink
 本発明は、発熱部材に生じる熱を放熱するためのヒートシンクおよびこのヒートシンクを備えた電子部品装置に関する。 The present invention relates to a heat sink for dissipating heat generated in a heat generating member and an electronic component device including the heat sink.
 近年、絶縁ゲート・バイポーラ・トランジスタ(IGBT)素子,金属酸化膜型電界効果トランジスタ(MOSFET)素子,発光ダイオード(LED)素子,フリーホイーリングダイオード(FWD)素子,ジャイアント・トランジスタ(GTR)素子等の各種電子部品が回路基板上に搭載された電子部品装置が用いられている。 In recent years, insulated gate bipolar transistor (IGBT) devices, metal oxide field effect transistor (MOSFET) devices, light emitting diode (LED) devices, freewheeling diode (FWD) devices, giant transistor (GTR) devices, etc. An electronic component device in which various electronic components are mounted on a circuit board is used.
 このような電子部品を搭載する回路基板は、例えば、絶縁性のセラミック焼結体からなる支持基板の一方の主面に銅を主成分とする回路部材が、他方の主面に、複数のフィンを備えるヒートシンクである放熱部材が接合されている。 A circuit board on which such an electronic component is mounted includes, for example, a circuit member mainly composed of copper on one main surface of a support substrate made of an insulating ceramic sintered body, and a plurality of fins on the other main surface. The heat radiating member which is a heat sink provided with is joined.
 このようなヒートシンクとして、例えば、特許文献1では、平面形状のフィンを備える放熱構造体が例示され、泥漿を石膏型に流し込み、乾燥した後、石膏型から乾燥体を取り出し、乾式フライスによって最終形状に仕上げることが記載されている。 As such a heat sink, for example, Patent Document 1 exemplifies a heat dissipating structure including a planar fin, and after pouring mud into a plaster mold and drying, the dry body is taken out from the plaster mold, and the final shape is obtained by dry milling To finish.
国際公開第2000/076940号パンフレットInternational Publication No. 2000/0776940 Pamphlet
 特許文献1に記載された放熱構造体は、放熱構造体の外寸が石膏型の大きさによって決まるため、設計の自由度が低いという問題があった。 The heat dissipation structure described in Patent Document 1 has a problem in that the degree of freedom in design is low because the outer dimensions of the heat dissipation structure are determined by the size of the gypsum mold.
 それゆえ本発明は、設計の自由度が高いヒートシンクおよびこのヒートシンクを備えた電子部品装置を提供することを目的とするものである。 Therefore, an object of the present invention is to provide a heat sink having a high degree of design freedom and an electronic component device including the heat sink.
 本発明のヒートシンクは、複数の第1の板状体と、該第1の板状体の間に配置され、少なくとも前記第1の板状体よりも高さの低い第2の板状体とが積層されており、前記第1の板状体と前記第2の板状体とで形成された空間が、流体が流れるための流路とされていることを特徴とするものである。 The heat sink of the present invention includes a plurality of first plate-like bodies and a second plate-like body disposed between the first plate-like bodies and having a height lower than at least the first plate-like body. Are stacked, and a space formed by the first plate-like body and the second plate-like body is a flow path for fluid flow.
 また、本発明の電子部品装置は、上記構成のヒートシンクに、電子部品を搭載してなることを特徴とするものである。 The electronic component device of the present invention is characterized in that an electronic component is mounted on the heat sink having the above-described configuration.
 本発明のヒートシンクによれば、複数の第1の板状体と、該第1の板状体の間に配置され、少なくとも前記第1の板状体よりも高さの低い第2の板状体とが積層されており、前記第1の板状体と前記第2の板状体とで形成された空間が、流体が流れるための流路とされていることから、設計の自由度を高くすることができる。 According to the heat sink of the present invention, the plurality of first plate-like bodies and the second plate-like shape disposed between the first plate-like bodies and having a height lower than at least the first plate-like body. Since the body is laminated and the space formed by the first plate-like body and the second plate-like body is a flow path for fluid to flow, the degree of freedom in design can be increased. Can be high.
 また、本発明の電子部品装置によれば、本発明のヒートシンクに、電子部品を搭載してなることから、放熱を繰り返してもマイクロクラックが進展しにくいので、信頼性を向上することができる。 In addition, according to the electronic component device of the present invention, since the electronic component is mounted on the heat sink of the present invention, the microcrack hardly develops even if heat radiation is repeated, so that the reliability can be improved.
本実施形態のヒートシンクの一例を示す斜視図である。It is a perspective view which shows an example of the heat sink of this embodiment. 図1に示すヒートシンクのA-A’線における拡大断面図である。FIG. 2 is an enlarged cross-sectional view taken along line A-A ′ of the heat sink shown in FIG. 1. 本実施形態のヒートシンクの他の例を示す拡大断面図である。It is an expanded sectional view showing other examples of a heat sink of this embodiment. 本実施形態のヒートシンクの他の例であって、第1の板状体におけるうねり状態を示す模式図である。It is another example of the heat sink of this embodiment, Comprising: It is a schematic diagram which shows the wave | undulation state in a 1st plate-shaped object. 図1に示すヒートシンクのさらに他の例を示す図であり、(a)は拡大断面図、(b)は同図(a)のC-C’線における断面図である。FIG. 5 is a view showing still another example of the heat sink shown in FIG. 1, wherein (a) is an enlarged cross-sectional view, and (b) is a cross-sectional view taken along the line C-C ′ of FIG. 図1に示すヒートシンクのさらに他の例を示す図であり、(a)はB-B’線における拡大断面図、(b)はA-A’線における拡大断面図である。FIG. 5 is a view showing still another example of the heat sink shown in FIG. 1, wherein (a) is an enlarged cross-sectional view taken along line B-B ′, and (b) is an enlarged cross-sectional view taken along line A-A ′. 図1(a)と同様の箇所におけるヒートシンクのさらに他の例を示す図であり、(a)はB-B’線における拡大断面図、(b)はA-A’線における拡大断面図である。FIG. 4 is a diagram showing still another example of a heat sink at the same location as FIG. 1A, (a) is an enlarged sectional view taken along the line BB ′, and (b) is an enlarged sectional view taken along the line AA ′. is there. 図1(a)と同様の箇所におけるヒートシンクのさらに他の例を示す図であり、(a)はB-B’線における拡大断面図、(b)はA-A’線における拡大断面図である。FIG. 4 is a diagram showing still another example of a heat sink at the same location as FIG. 1A, (a) is an enlarged sectional view taken along the line BB ′, and (b) is an enlarged sectional view taken along the line AA ′. is there. 本実施形態の電子部品装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the electronic component apparatus of this embodiment.
 以下、本発明のヒートシンクの実施の形態の例を説明する。 Hereinafter, examples of embodiments of the heat sink of the present invention will be described.
 図1は本実施形態のヒートシンクの一例を示す斜視図であり、図2は図1に示すヒートシンクのA-A’線における拡大断面図である。 FIG. 1 is a perspective view showing an example of a heat sink of the present embodiment, and FIG. 2 is an enlarged cross-sectional view of the heat sink shown in FIG.
 図1,図2に示すように、本実施形態のヒートシンク10は、複数の第1の板状体1と、第1の板状体1の間に配置され、少なくとも第1の板状体1よりも高さの低い第2の板状体2とが積層されており、第1の板状体1と第2の板状体2とで形成された空間が、流体が流れるための流路21とされている。 As shown in FIGS. 1 and 2, the heat sink 10 of this embodiment is disposed between a plurality of first plate-like bodies 1 and the first plate-like body 1, and at least the first plate-like body 1. The second plate-like body 2 having a lower height is laminated, and the flow path for the fluid to flow in the space formed by the first plate-like body 1 and the second plate-like body 2 is formed. 21.
 なお、図1,図2に示すヒートシンク10においては、下面20が発熱部材等が載置される面となる。また、A-A’線は、第1の板状体1のX方向の長さにおける中間点に引かれた線であり、B-B’線は、いずれも第1の板状体1のZ方向の長さにおける中間点に引かれた線である。 In addition, in the heat sink 10 shown in FIG. 1, FIG. 2, the lower surface 20 becomes a surface in which a heat generating member etc. are mounted. The line AA ′ is a line drawn at the midpoint of the length of the first plate 1 in the X direction, and the line BB ′ is the line of the first plate 1. It is a line drawn at an intermediate point in the length in the Z direction.
 図1,図2に示すように、本実施形態のヒートシンク10は、複数の第1の板状体1と、第1の板状体1の間に配置され、少なくとも第1の板状体1よりも高さの低い第2の板状体2とが積層されてなることから、必要とするヒートシンクのサイズに合わせて、各々の板状体1,2の外辺寸法および厚みを調整することで、ヒートシンクの外形サイズ,第1の板状体1の厚みおよび流路21の幅(言い換えれば、第2の板状体2の厚み)等において、設計の自由度を高くすることができる。尚、図1,図2では第1の板状体1の間に第2の板状体2が1枚配置されている構成となっているが、さらに流路の幅を広くしたい場合には第2の板状体2を複数枚積層してもよい。 As shown in FIGS. 1 and 2, the heat sink 10 of this embodiment is disposed between a plurality of first plate-like bodies 1 and the first plate-like body 1, and at least the first plate-like body 1. Since the second plate-like body 2 having a lower height is laminated, the outer side dimensions and thicknesses of the respective plate- like bodies 1 and 2 are adjusted in accordance with the required heat sink size. Thus, the degree of freedom in design can be increased with respect to the external size of the heat sink, the thickness of the first plate 1 and the width of the flow path 21 (in other words, the thickness of the second plate 2). In FIG. 1 and FIG. 2, one second plate 2 is arranged between the first plates 1. However, when it is desired to further increase the width of the flow path. A plurality of second plate-like bodies 2 may be laminated.
 ここで、図1に示す例のヒートシンク10を構成する第1の板状体1のX方向,Y方向およびZ方向の各寸法は、特に制限はないが、例えば、X方向が15mm以上80mm以下、Y方向が0.3mm以上3mm以下、Z方向が10mm以上67.5mm以下である。また、第1の板状体1は、主にフィンと下面20とを構成するものである。 Here, the dimensions in the X direction, Y direction, and Z direction of the first plate 1 constituting the heat sink 10 of the example shown in FIG. 1 are not particularly limited. For example, the X direction is 15 mm or more and 80 mm or less. The Y direction is 0.3 mm or more and 3 mm or less, and the Z direction is 10 mm or more and 67.5 mm or less. Further, the first plate-like body 1 mainly constitutes the fin and the lower surface 20.
 また、第2の板状体2のX方向,Y方向およびZ方向の各寸法は、例えば、X方向が15mm以上80mm以下、Y方向が0.3mm以上2mm以下、Z方向が1mm以上15mm以下である。但し、第2の板状体2は、第1の板状体1よりもZ方向の長さが短くなるように設定する。また、第2の板状体2は、主に第1の板状体1(フィン)と組み合わせて流路21を形成するとともに、下面20を構成するものである。 The dimensions of the second plate-like body 2 in the X direction, Y direction, and Z direction are, for example, 15 mm to 80 mm in the X direction, 0.3 mm to 2 mm in the Y direction, and 1 mm to 15 mm in the Z direction. is there. However, the second plate-like body 2 is set so that the length in the Z direction is shorter than that of the first plate-like body 1. The second plate-like body 2 mainly forms a flow path 21 in combination with the first plate-like body 1 (fins) and constitutes the lower surface 20.
 なお、第1の板状体1の長さ方向(X方向)における端と、第2の板状体2の第1の板状体1の長さ方向に沿った端とは、流体の圧力が均一にかかるように同じ位置となるように配置されていることが好ましい。さらに、Z方向における第1の板状体1および第2の板状体2との一端(下端)は、発熱部材等が載置される面となることから、同じ位置となるように配置されていることが好ましい。なお、発熱部材等が載置される面は、発熱部材等が載置され易いようにその面を研磨しておくことが好ましい。 The end of the first plate 1 in the length direction (X direction) and the end of the second plate 2 along the length of the first plate 1 are the pressure of the fluid. It is preferable that they are arranged at the same position so as to be uniformly applied. Furthermore, since one end (lower end) of the first plate-like body 1 and the second plate-like body 2 in the Z direction is a surface on which the heat generating member or the like is placed, it is arranged to be at the same position. It is preferable. The surface on which the heat generating member or the like is placed is preferably polished so that the heat generating member or the like is easily placed.
 また、本実施形態のヒートシンク10は、第2の板状体2の流路21に面する面2aの算術平均粗さ(Ra)が、第1の板状体1の流路21に面する面1dの算術平均粗さ(Ra)よりも粗いことが好ましい。この様な構成にすることによって、発熱部材等が搭載される面に近いところで流体の乱流が発生しやすくなり、ヒートシンク10と流体との熱交換の頻度を高くでき放熱特性を向上することができる。ここで、第2の板状体2の流路21に面する面2aの算術平均粗さ(Ra)は3μm以上10μm以下、第1の板状体1の流路21に面する面1dの算術平均粗さ(Ra)は0.5μm以上2μm以下であることが好ましい。 In the heat sink 10 of the present embodiment, the arithmetic average roughness (Ra) of the surface 2 a facing the flow path 21 of the second plate-like body 2 faces the flow path 21 of the first plate-like body 1. It is preferably rougher than the arithmetic average roughness (Ra) of the surface 1d. By adopting such a configuration, fluid turbulence is likely to occur near the surface on which the heat generating member or the like is mounted, and the heat exchange frequency between the heat sink 10 and the fluid can be increased to improve the heat dissipation characteristics. it can. Here, the arithmetic mean roughness (Ra) of the surface 2 a facing the flow path 21 of the second plate-like body 2 is 3 μm or more and 10 μm or less, and the surface 1 d of the surface 1 d of the first plate-like body 1 facing the flow path 21. The arithmetic average roughness (Ra) is preferably 0.5 μm or more and 2 μm or less.
 なお、第2の板状体2の流路21に面する面2aおよび第1の板状体1の流路21に面する面1dにおける算術平均粗さ(Ra)は、ヒートシンク10から適当な大きさにサンプルを切り出した後、接触型もしくは非接触型粗さ測定器を用いて、JIS B0601-2001に基づいて測定すれば良い。 Note that the arithmetic average roughness (Ra) of the surface 2 a facing the flow path 21 of the second plate-like body 2 and the surface 1 d facing the flow path 21 of the first plate-like body 1 is appropriate from the heat sink 10. After the sample is cut out in size, it can be measured based on JIS B0601-2001 using a contact or non-contact type roughness measuring instrument.
 また、本実施形態のヒートシンク10における複数の流路21は、他の流路21と比較して、流路21の容積が異なる流路21を有していることが好適である。容積が異なる流路21が存在することによって、流体がヒートシンク10の流路21に入る際に、各流路21の入口で速度勾配が生じることによって乱流が発生しやすくなり、この乱流が発した状態のままで流体が流路21に入りやすくなる。それにより、ヒートシンク10と流体との熱交換の頻度が高くなり、放熱特性をさらに向上させることができる。 In addition, it is preferable that the plurality of flow paths 21 in the heat sink 10 of the present embodiment have flow paths 21 with different volumes of the flow paths 21 compared to other flow paths 21. Due to the presence of the flow paths 21 having different volumes, when the fluid enters the flow path 21 of the heat sink 10, a turbulent flow is easily generated due to a velocity gradient generated at the inlet of each flow path 21. The fluid can easily enter the flow path 21 in the emitted state. Thereby, the frequency of heat exchange between the heat sink 10 and the fluid is increased, and the heat dissipation characteristics can be further improved.
 図3は、本実施形態のヒートシンクの他の例を示す拡大断面図であり、図4は本実施形態のヒートシンクの他の例であって、第1の板状体におけるうねり状態を示す模式図である。 FIG. 3 is an enlarged cross-sectional view showing another example of the heat sink of the present embodiment, and FIG. 4 is another example of the heat sink of the present embodiment, and is a schematic diagram showing a swell state in the first plate-like body. It is.
 図3および図4に示すように、本実施形態のヒートシンク11は、複数の第1の板状体1が反りまたはうねりを有していることが好適である。第1の板状体1が反りまたはうねりを有していると、第1の板状体1の間の流路21を流れる流体に乱流が生じやすくなる。それにより、ヒートシンク11と流体との熱交換の頻度が高くなり、放熱特性を向上させることができる。なおここで言う反りとは、第1の板状体1が高さ方向に全体的に反っている状態を言う。 As shown in FIGS. 3 and 4, in the heat sink 11 of the present embodiment, it is preferable that the plurality of first plate-like bodies 1 have warpage or undulation. If the first plate-like body 1 has warping or undulation, turbulent flow is likely to occur in the fluid flowing through the flow path 21 between the first plate-like bodies 1. As a result, the frequency of heat exchange between the heat sink 11 and the fluid increases, and the heat dissipation characteristics can be improved. In addition, the warp said here means the state which the 1st plate-shaped body 1 is curled entirely in the height direction.
 図4に示す第1の板状体1のうねりは、例えば、湾曲度Wavとして表すことができ、湾曲度Wavは、1.5以上3以下であることが好適である。湾曲度Wavがこの範囲であれば、流体に乱流が生じやすくなり、かつうねりを有することよって発生する残留応力が大きくなりすぎることを抑制でき、第1の板状体が破損することを抑制できる。それにより強度を維持しつつもヒートシンク11と流体との熱交換の頻度が高くなり、放熱特性をさらに向上させることができる。 The waviness of the first plate-like body 1 shown in FIG. 4 can be expressed as, for example, the degree of curvature W av , and the degree of curvature W av is preferably 1.5 or more and 3 or less. If the degree of curvature Wav is within this range, turbulent flow is likely to occur in the fluid, and it can be suppressed that the residual stress generated due to the undulation is excessively large, and the first plate-like body is damaged. Can be suppressed. Accordingly, the frequency of heat exchange between the heat sink 11 and the fluid is increased while maintaining the strength, and the heat dissipation characteristics can be further improved.
 なお、本実施形態における湾曲度Wavとは、中点A-A’線での断面における、第1の板状体1の両側の面のうち、湾曲が小さい方の面の下端1と上端1とを結ぶ直線の長さLに対する長線からの最大のずれ幅Wの百分率であり、式(1)のように表すことができる。
 Wav=W/L×100・・・(1)
The curvature W av in the present embodiment is the lower end 1 U of the surface with the smaller curvature of the surfaces on both sides of the first plate-like body 1 in the cross section taken along the line AA ′. This is the percentage of the maximum deviation width W from the long line with respect to the length L of the straight line connecting the upper end 1 L, and can be expressed as in equation (1).
W av = W / L × 100 (1)
 図5は、図1に示すヒートシンクのさらに他の例を示す図であり、(a)は拡大断面図、(b)は同図(a)のC-C’線における断面図である。 5A and 5B are views showing still another example of the heat sink shown in FIG. 1, wherein FIG. 5A is an enlarged cross-sectional view, and FIG. 5B is a cross-sectional view taken along line C-C ′ of FIG.
 図5に示す例のヒートシンク12は、第1の板状体1に、隣接する流路21につながる貫通孔1eが設けられている。このような構成にすることによって、隣接する第1の板状体1の間に設けられた流路21に流れた流体が、貫通孔1eを通ることによって乱流が生じやすくなるので、ヒートシンク12と流体との熱交換の頻度を高くでき、さらに放熱特性を向上させることができる。あわせて、流路21に流れた流体が、貫通孔1eを通って隣接する流路21に流れることで、ヒートシンク12の温度を均一に近づけることができ、ヒートシンク12と発熱部材等との接合強度が低下することを抑制できる。 In the heat sink 12 of the example shown in FIG. 5, a through hole 1 e connected to the adjacent flow path 21 is provided in the first plate 1. With this configuration, the fluid flowing in the flow path 21 provided between the adjacent first plate-like bodies 1 is likely to generate turbulent flow through the through hole 1e. The frequency of heat exchange with the fluid can be increased, and the heat dissipation characteristics can be further improved. In addition, the fluid that has flowed through the flow channel 21 flows through the through-hole 1e and into the adjacent flow channel 21, so that the temperature of the heat sink 12 can be made uniform, and the bonding strength between the heat sink 12 and the heat generating member, etc. Can be suppressed.
 なお、貫通孔1eの大きさはヒートシンク12の強度に問題がなく、かつ第1の板状体1の流路21に面する面1dの表面積が減少しない範囲で、できるだけ大きくすることが好ましく、その個数は1つの第1の板状体1に対して3個以上10個以下であることが好ましい。この範囲であれば、ヒートシンク12の強度を維持しつつ、第1の板状体1の表面積を大きく減らすことなく、流体に乱流が生じる場所が多くなり、さらに熱交換効率を向上することができるほか、ヒートシンク12の温度をより均一に近づけることができる。なお、貫通孔1eの形状は、略円形状、多角形状、星形状などどのような形状でも構わない。 The size of the through-hole 1e is preferably as large as possible without causing a problem with the strength of the heat sink 12 and the surface area of the surface 1d facing the flow path 21 of the first plate 1 not decreasing. The number is preferably 3 or more and 10 or less for one first plate 1. Within this range, while maintaining the strength of the heat sink 12, there are many places where turbulent flow occurs in the fluid without greatly reducing the surface area of the first plate-like body 1, and the heat exchange efficiency can be further improved. In addition, the temperature of the heat sink 12 can be made more uniform. The shape of the through hole 1e may be any shape such as a substantially circular shape, a polygonal shape, or a star shape.
 また、貫通孔1は、流体の入口側(X方向の一端側)に多く設けることが好ましい。それにより、入口側で乱流が発生した状態で流体が流路21内を進むため、ヒートシンクと流体との熱交換効率をさらに向上することができる。図5(b)においては、流体入口側(図5(b)における右側)に貫通孔1を多く設けている例を示している。 Further, it is preferable to provide a large number of through holes 1 on the fluid inlet side (one end side in the X direction). As a result, the fluid travels in the flow path 21 in a state where turbulent flow is generated on the inlet side, so that the heat exchange efficiency between the heat sink and the fluid can be further improved. FIG. 5B shows an example in which many through holes 1 are provided on the fluid inlet side (the right side in FIG. 5B).
 図6,7は、図1に示すヒートシンクのさらに他の例を示す図であり、(a)はB-B’線における拡大断面図、(b)はA-A’線における拡大断面図である。 6 and 7 are diagrams showing still another example of the heat sink shown in FIG. 1. FIG. 6A is an enlarged sectional view taken along line BB ′, and FIG. 6B is an enlarged sectional view taken along line AA ′. is there.
 図6に示す例のヒートシンク13は、第1の板状体1の隣り合う主面が、凹部1aを有し、図7に示す例のヒートシンク14は、第1の板状体1の隣り合う主面が、凸部1bを有している。 The heat sink 13 in the example shown in FIG. 6 has a concave portion 1 a on the adjacent main surface of the first plate 1, and the heat sink 14 in the example shown in FIG. 7 is adjacent to the first plate 1. The main surface has the convex part 1b.
 図6,7に示すように、本実施形態のヒートシンク13,14は、第1の板状体1の隣り合う流路21に面する面において、少なくとも一方の面が、凹部1aおよび凸部1bのうち少なくとも一方を有することが好適である。このような構成であるときには、乱流の生じる頻度が高くなり、しかも表面積を増やすことができることから、さらに放熱特性を向上させることができる。図6,7に示す例のヒートシンク13,14は、第1の板状体1の一方の面にそれぞれ凹部1aのみ、凸部1bのみを有するヒートシンクであるが、凹部1aおよび凸部1bが混在するものであってもよく、凹部1aや凸部1bの各個数は適宜設定することができる。さらには、第1の板状体1の両方の面に、凹部1aや凸部1bを設けることもできる。 As shown in FIGS. 6 and 7, the heat sinks 13 and 14 of the present embodiment are such that at least one of the surfaces facing the adjacent flow paths 21 of the first plate-like body 1 is the concave portion 1a and the convex portion 1b. It is preferable to have at least one of them. With such a configuration, the frequency of occurrence of turbulence increases, and the surface area can be increased, so that the heat dissipation characteristics can be further improved. The heat sinks 13 and 14 in the example shown in FIGS. 6 and 7 are heat sinks each having only the concave portion 1a and only the convex portion 1b on one surface of the first plate-like body 1, but the concave portion 1a and the convex portion 1b are mixed. The number of the concave portions 1a and the convex portions 1b can be appropriately set. Furthermore, the concave portion 1 a and the convex portion 1 b can be provided on both surfaces of the first plate-like body 1.
 また、凹部1aおよび凸部1bは、流体の入口側(X方向の一端側)に多く設けることが好ましい。それにより、入口側で乱流が発生した状態で流体が流路21内を進むため、ヒートシンクと流体との熱交換効率をさらに向上することができる。 Further, it is preferable to provide a large number of the concave portions 1a and the convex portions 1b on the fluid inlet side (one end side in the X direction). As a result, the fluid travels in the flow path 21 in a state where turbulent flow is generated on the inlet side, so that the heat exchange efficiency between the heat sink and the fluid can be further improved.
 なお、凹部1aの深さおよび凸部1bの高さは、第1の板状体1の強度や流体の圧力損失を考慮すれば、第1の板状体1の厚みに対して、0.2倍~0.3倍であることが好ましい。 The depth of the concave portion 1a and the height of the convex portion 1b are 0.2 times the thickness of the first plate-like body 1 considering the strength of the first plate-like body 1 and the pressure loss of the fluid. It is preferable to be 0.3 times.
 ここで、本実施形態のヒートシンクを構成する第1の板状体1は、例えば、ダイヤモンド,アルミニウム,銅,膨張黒鉛,ガラス,樹脂またはセラミックスからなり、特に、セラミックスからなることが好適である。 Here, the first plate-like body 1 constituting the heat sink of the present embodiment is made of, for example, diamond, aluminum, copper, expanded graphite, glass, resin, or ceramic, and particularly preferably made of ceramic.
 ここで、セラミックスの材質としては、アルミナ,ジルコニア,炭素繊維強化炭素複合材,窒化珪素,炭化珪素,窒化アルミニウム,炭化硼素,窒化硼素,コージェライトまたはこれらの複合物を用いることができる。 Here, as the ceramic material, alumina, zirconia, carbon fiber reinforced carbon composite material, silicon nitride, silicon carbide, aluminum nitride, boron carbide, boron nitride, cordierite, or a composite thereof can be used.
 特に、発熱部材が、ガリウム-アルミニウム-砒素(GaAlAs)またはインジウム-ガリウム-砒素-リン(InGaAsP)等からなる光通信用の発光ダイオード(LED)素子である場合、これらの化合物の線膨張係数は5×10-6/K程度であり、セラミックスの線膨張係数と近いことから、LED素子をヒートシンクに搭載しても、LED素子に発熱による歪みが生じにくくなり、ヒートシンクとLED素子との接合部においてクラックが生じにくくなる。 In particular, when the heat generating member is a light emitting diode (LED) element for optical communication made of gallium-aluminum-arsenic (GaAlAs) or indium-gallium-arsenic-phosphorus (InGaAsP), the linear expansion coefficient of these compounds is Since it is about 5 × 10 −6 / K and is close to the linear expansion coefficient of ceramics, even if the LED element is mounted on the heat sink, distortion due to heat generation is less likely to occur in the LED element, and the joint between the heat sink and the LED element Cracks are less likely to occur.
 特にセラミックの材質の中でも、炭化珪素,窒化アルミニウム,窒化硼素または炭素繊維強化炭素複合材を用いることが好適である。炭化珪素,窒化アルミニウムおよび窒化硼素は、線膨張係数が3.7×10-6/K以上6×10-6/K以下であることから、LED素子を構成する化合物の線膨張係数により近くなり、発熱による歪みやクラックがさらに生じにくくなる。 In particular, among ceramic materials, it is preferable to use silicon carbide, aluminum nitride, boron nitride or carbon fiber reinforced carbon composite. Since silicon carbide, aluminum nitride, and boron nitride have a linear expansion coefficient of 3.7 × 10 −6 / K or more and 6 × 10 −6 / K or less, they become closer to the linear expansion coefficient of the compound constituting the LED element, and generate heat. Distortion and cracks due to the above are less likely to occur.
 なお、炭素繊維強化炭素複合材とは、粉末状炭素、内部が空洞である微細炭素繊維および熱硬化性樹脂を媒体中に分散または溶解させて得られる含浸用液を、炭素繊維に含浸させた後、一方向に炭素繊維が配列するように成形し、硬化させ、焼成することによって得られる複合材であり、炭素繊維の配列する方向における熱膨張係数を3.7×10-6/K以上6×10-6/K以下とすることができる。 The carbon fiber reinforced carbon composite material is obtained by impregnating a carbon fiber with a liquid for impregnation obtained by dispersing or dissolving powdered carbon, fine carbon fiber having a hollow inside, and a thermosetting resin in a medium. Thereafter, the composite is obtained by molding, curing and firing so that the carbon fibers are arranged in one direction, and the coefficient of thermal expansion in the direction in which the carbon fibers are arranged is 3.7 × 10 −6 / K or more and 6 ×. It can be 10 −6 / K or less.
 さらに、放熱特性を向上させるために、第1の板状体1を形成する材料よりも熱伝導率の高い粒子および繊維の少なくともいずれかを含んでいることが好適であり、熱伝導率の高い繊維としては、ナノカーボンファイバーが特に好適である。 Furthermore, in order to improve the heat dissipation characteristics, it is preferable to include at least one of particles and fibers having a higher thermal conductivity than the material forming the first plate-like body 1, and the thermal conductivity is high. As the fiber, nanocarbon fiber is particularly suitable.
 なお、本実施形態のヒートシンクを構成する第2の板状体2は、第1の板状体1を構成する材料と同じ材料により形成されることが好適である。 Note that the second plate-like body 2 constituting the heat sink of the present embodiment is preferably formed of the same material as that constituting the first plate-like body 1.
 図8は、図1(a)と同様の箇所におけるヒートシンクのさらに他の例を示す図であり、(a)はB-B’線における拡大断面図、(b)はA-A’線における拡大断面図である。 8A and 8B are diagrams showing still another example of the heat sink at the same position as in FIG. 1A, where FIG. 8A is an enlarged cross-sectional view taken along the line BB ′, and FIG. It is an expanded sectional view.
 図8に示す例のヒートシンク15は、第1の板状体1の隣り合う流路21に面する面のうち、少なくとも一方の主面に粒状体1cが接合しており、粒状体1cが凸部をなしている。このような構成であるときには、流路21を流れる流体に乱流が生じやすくなるほか、第1の板状体1の表面積を増やすことができる。それにより、ヒートシンク15と流体との熱交換の頻度が高くでき、さらに放熱特性を向上させることができる。第1の板状体1の少なくとも一方の主面に接合する粒状体1cは、セラミックスからなる場合には、珪素を含むものが好ましく、具体的には、珪素,炭化珪素,窒化珪素,炭窒化珪素,酸化珪素およびサイアロンの少なくともいずれかであることが好ましい。なお、これらの成分は薄膜X線回折法または透過電子顕微鏡法を用いて同定することができる。 In the heat sink 15 of the example shown in FIG. 8, the granular material 1c is joined to at least one main surface of the surfaces facing the adjacent flow paths 21 of the first plate-like body 1, and the granular material 1c is convex. Part. In such a configuration, turbulent flow is likely to occur in the fluid flowing through the flow path 21, and the surface area of the first plate-like body 1 can be increased. Accordingly, the frequency of heat exchange between the heat sink 15 and the fluid can be increased, and the heat dissipation characteristics can be further improved. When the granular body 1c joined to at least one main surface of the first plate-like body 1 is made of ceramics, it preferably contains silicon, specifically, silicon, silicon carbide, silicon nitride, carbonitriding. It is preferably at least one of silicon, silicon oxide and sialon. These components can be identified using thin film X-ray diffraction or transmission electron microscopy.
 また、粒状体1cは、任意の断面において、例えば、主面に沿った幅が10μm以上48μm以下であり、高さが16μm以上52μm以下である。このような粒状体1cの幅および高さは、光学顕微鏡を用い、倍率を100倍以上500倍以下として求めることができる。なお、凸部1cは、複数の粒状体1cが集まって一体化したものが、第1の板状体1の主面に接合したものでもよい。 In addition, the granular material 1c has, for example, a width along the main surface of 10 μm to 48 μm and a height of 16 μm to 52 μm in an arbitrary cross section. The width and height of such a granular material 1c can be obtained by using an optical microscope and setting the magnification to 100 to 500 times. Note that the convex portion 1 c may be one in which a plurality of granular bodies 1 c are integrated and joined to the main surface of the first plate-like body 1.
 図9は、本実施形態の電子部品装置の一例を示す概略断面図である。 FIG. 9 is a schematic cross-sectional view showing an example of the electronic component device of the present embodiment.
 図9に示す例の電子部品装置20は、発熱部材である電子部品3と、電子部品3を搭載する回路部材4と、回路部材4を一方主面(表面)側で支持する電気絶縁性の支持基板5と、電子部品3および回路部材4を収容する筐体(パッケージ)6と、支持基板5の他方主面(裏面)側に配置されるヒートシンク10とを備えてなる。回路部材4は、例えば、2列に配置され、ろう材によって、支持基板5に接合されている。なお、ヒートシンクは、上述のヒートシンク11,12,13,14,15のいずれを用いることもできる。 The electronic component device 20 shown in FIG. 9 has an electronic component 3 that is a heat generating member, a circuit member 4 on which the electronic component 3 is mounted, and an electrically insulating material that supports the circuit member 4 on one main surface (front surface) side. A support substrate 5, a housing (package) 6 that accommodates the electronic component 3 and the circuit member 4, and a heat sink 10 disposed on the other main surface (back surface) side of the support substrate 5 are provided. The circuit members 4 are arranged in two rows, for example, and are joined to the support substrate 5 by a brazing material. Note that any of the heat sinks 11, 12, 13, 14, and 15 described above can be used as the heat sink.
 本実施形態の電子部品装置20は、本実施形態の放熱特性が高いヒートシンク10に、電子部品3が搭載されている。それにより電子部品3から発せられる熱を、効率良く放熱することで、電子部品3が高熱となることを抑制でき、電子部品3の寿命を延ばすことができることから信頼性を向上することができる。 In the electronic component device 20 of the present embodiment, the electronic component 3 is mounted on the heat sink 10 having high heat dissipation characteristics of the present embodiment. As a result, by efficiently dissipating the heat generated from the electronic component 3, it is possible to suppress the electronic component 3 from becoming high heat, and the life of the electronic component 3 can be extended, so that the reliability can be improved.
 特に、電子部品装置20としては、PCUなどの半導体モジュールや、高出力LED前照灯の半導体装置、直流高電圧電源装置およびスイッチング装置など作動時に高熱を発する装置として用いることが有用である。 In particular, the electronic component device 20 is useful as a device that generates high heat during operation, such as a semiconductor module such as a PCU, a semiconductor device of a high-power LED headlamp, a DC high-voltage power supply device, and a switching device.
 次に、本実施形態のヒートシンクの製造方法の一例について説明する。 Next, an example of a method for manufacturing the heat sink of the present embodiment will be described.
 炭化珪素からなるヒートシンクを得る場合には、まず、平均粒径(D50)が0.5μm以上2μm以下である炭化珪素粉末に炭化硼素粉末およびリグニンカルボン酸塩の粉末を加え、ボールミル,回転ミル,振動ミル,ビーズミル等のミルで混合,粉砕して混合粉末を得る。 When obtaining a heat sink made of silicon carbide, first, boron carbide powder and lignin carboxylate powder are added to silicon carbide powder having an average particle size (D 50 ) of 0.5 μm or more and 2 μm or less, and a ball mill, a rotary mill, Mix and pulverize with a mill such as a vibration mill or bead mill to obtain a mixed powder.
 ここで、炭化硼素粉末およびリグニンカルボン酸塩の粉末のそれぞれの含有量は、炭化珪素粉末100質量%に対して、例えば、0.12質量%以上1.4質量%以下、1質量%以上3.4質量%以下とすることが好ましい。 Here, the content of each of the boron carbide powder and the lignin carboxylate powder is, for example, 0.12% by mass to 1.4% by mass and 1% by mass to 3.4% by mass with respect to 100% by mass of the silicon carbide powder. It is preferable to do.
 そして、この混合粉末を、バインダ,分散剤,可塑剤および滑剤等とともに有機溶剤中で混合してスラリーを得る。 Then, this mixed powder is mixed with an binder, a dispersant, a plasticizer, a lubricant and the like in an organic solvent to obtain a slurry.
 なお、有機溶剤としては、トルエン,エタノール,メタノール,メチルエチルケトン,トリクロロエチレンおよびメチルイソブチルケトンの少なくともいずれか1種を用いることが好ましい。 As the organic solvent, it is preferable to use at least one of toluene, ethanol, methanol, methyl ethyl ketone, trichloroethylene, and methyl isobutyl ketone.
 また、バインダとしては、ポリエチレングリコール,メチルセルロース,ポリエチレングリコール,ポリビニルアルコール,ポリビニルブチラール,メタクリル酸メチル,メタクリル酸エチル,メタクリル酸ブチル,メタクリル酸イソブチル,メタクリル酸シクロヘキシル,メタクリル酸オクチル,スチレン,塩化ビニルおよび酢酸ビニルの少なくともいずれか1種を用いることが好ましく、特にはこれらの中でもポリビニルブチラールまたはメタクリル酸イソブチルを用いることが好ましい。 The binders include polyethylene glycol, methyl cellulose, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, octyl methacrylate, styrene, vinyl chloride and acetic acid. It is preferable to use at least one of vinyl, and it is particularly preferable to use polyvinyl butyral or isobutyl methacrylate.
 また、バインダの添加量は、混合粉末100質量%に対して4質量%8質量%以下とすることが好ましい。バインダの添加量が混合粉末100質量%に対して4質量%以上8質量%以下であれば、成形体の強度や可撓性が良好で、また、バインダの脱脂を容易にすることができる。 Also, the amount of binder added is preferably 4% by mass or less and 8% by mass or less with respect to 100% by mass of the mixed powder. If the added amount of the binder is 4% by mass or more and 8% by mass or less with respect to 100% by mass of the mixed powder, the strength and flexibility of the molded body are good, and the binder can be easily degreased.
 また、窒化アルミニウムからなるヒートシンクを得る場合には、まず、気体吸着BET法による比表面積が2.0m/g以上3.0m/g以下であり、50MPaの圧力下における一軸加圧成形密度が1.65g/cm以上1.80g/cm以下である、平均粒径(D50)が、例えば、1μm以上2μm以下の窒化アルミニウム粉末に、アルカリ土類金属酸化物の粉末および希土類元素酸化物の粉末を加え、ボールミル,回転ミル,振動ミル,ビーズミル等のミルで混合,粉砕して混合粉末を得る。 Also, when obtaining a heat sink made of aluminum nitride, first, the specific surface area by gas adsorption BET method is 2.0 m 2 / g or more and 3.0 m 2 / g or less, and the uniaxial pressure molding density under a pressure of 50 MPa is 1.65. g / cm 3 or more 1.80 g / cm 3 or less, an average particle diameter (D 50), for example, the 2μm or less of the aluminum nitride powder or 1 [mu] m, an alkaline earth metal oxide powder and the rare earth element oxide powder And mixed and pulverized in a ball mill, rotary mill, vibration mill, bead mill or the like to obtain a mixed powder.
 ここで、アルカリ土類金属酸化物の粉末および希土類元素酸化物の粉末の含有量の合計は、窒化アルミニウム粉末100質量%に対して、例えば、1質量%以上10質量%以下とすることが好ましい。 Here, the total content of the alkaline earth metal oxide powder and the rare earth element oxide powder is preferably 1% by mass or more and 10% by mass or less with respect to 100% by mass of the aluminum nitride powder. .
 そして、スラリーは、上述した炭化珪素からなるヒートシンクを得る場合と同じ方法によって得られる。 And a slurry is obtained by the same method as the case where the heat sink which consists of silicon carbide mentioned above is obtained.
 また、窒化硼素からなるヒートシンクを得る場合には、まず、原料粉末としてBN粉末と、TiC粉末、TiN粉末、TiCN粉末とAl粉末と、V,Cr,Zr,Nb,Mo,Hf,Ta,Wの金属、炭化物、窒化物のうち少なくとも一種の粉末、あるいは、これらに加えNi,Co,CoO,Coのうち少なくとも一種の粉末を準備し、これらを特定の組成を秤量し、例えば超硬合金製のボールミルで混合,粉砕し混合粉末を得る。 When a heat sink made of boron nitride is obtained, first, BN powder, TiC powder, TiN powder, TiCN powder and Al powder, V, Cr, Zr, Nb, Mo, Hf, Ta, W are used as raw material powder. At least one powder of metals, carbides and nitrides of the above, or at least one powder of Ni, Co, CoO, and Co 3 O 4 is prepared, and these are weighed to a specific composition, for example, ultra Mix and grind with a hard alloy ball mill to obtain mixed powder.
 ここで、混合粉末を100質量%とした場合、BN粉末を80質量%以上95質量%以下とし、その他粉末を合計で5質量%以下20質量%以下とすることが好ましい。 Here, when the mixed powder is 100% by mass, the BN powder is preferably 80% by mass to 95% by mass, and the total of other powders is preferably 5% by mass to 20% by mass.
 そして、スラリーは、上述した炭化珪素からなるヒートシンクを得る場合と同じ方法によって得られる。 And a slurry is obtained by the same method as the case where the heat sink which consists of silicon carbide mentioned above is obtained.
 次に、これらのスラリーを用いてセラミックスの一般的な成形法であるドクターブレード法によりセラミックグリーンシートを形成し、金型による打ち抜加工またはレーザー光による切断加工によって所定形状とする。また、ヒートシンク15のような貫通孔を設ける場合も同様の方法で加工すれば良い。 Next, using these slurries, a ceramic green sheet is formed by a doctor blade method, which is a general method of forming ceramics, and formed into a predetermined shape by punching with a mold or cutting with a laser beam. Moreover, what is necessary is just to process by the same method also when providing a through-hole like the heat sink 15. FIG.
 また、焼成前のセラミックグリーンシートの端面以外にマスクをした後にブラスト加工を行なうことによって、第2の板状体2の流路に面する面2aの算術平均粗さ(Ra)を第1の板状体1の流路に面する面1dの算術平均粗さ(Ra)よりも粗くすることができ、ブラスト加工における砥粒サイズや出力を変更することによって、所望の粗さを得ることができる。 In addition, by performing blasting after masking other than the end face of the ceramic green sheet before firing, the arithmetic average roughness (Ra) of the surface 2a facing the flow path of the second plate-like body 2 is set to the first level. It can be made rougher than the arithmetic average roughness (Ra) of the surface 1d facing the flow path of the plate-like body 1, and a desired roughness can be obtained by changing the abrasive grain size and output in blasting. it can.
 そして、セラミックグリーンシートは、必要に応じて、窒素雰囲気中、10~40時間で昇温し、450~650℃で2~10時間保持した後、自然冷却して脱脂して、脱脂体とする。 If necessary, the ceramic green sheet is heated in a nitrogen atmosphere for 10 to 40 hours, held at 450 to 650 ° C. for 2 to 10 hours, then naturally cooled and degreased to obtain a degreased body. .
 そして、隣り合う第1の板状体1となるセラミックグリーンシートの間に、両側の流路に面する面に密着液が塗布された第2の板状体2となるセラミックグリーンシートと、密着液が塗布されていない第2の板状体2となるグリーンシートと同形状のグリーンシートをスペーサとして、それぞれ配置し、平板状の加圧具を介して0.05MPa以上0.5MPa以下の加圧を加え、その後に、約50~70℃で約10~15時間乾燥させる。そして、乾燥させた後、スペーサとして用いたセラミックグリーンシートを抜く。なお、密着液はセラミックグリーンシートを作製するときに用いたバインダと同じバインダを用いることができる。なお、上記配置では、セラミックグリーンシートを用いる例を示したが、セラミックグリーンシートに替えて脱脂体を用いてもよい。 And between the ceramic green sheets which become the adjacent first plate-like bodies 1, the ceramic green sheets which become the second plate-like bodies 2 in which the adhesion liquid is applied to the surfaces facing the flow paths on both sides, and the adhesion A green sheet having the same shape as the green sheet to be the second plate-like body 2 to which no liquid is applied is disposed as a spacer, and a pressure of 0.05 MPa or more and 0.5 MPa or less is applied through a flat plate-like pressurizing tool. In addition, it is then dried at about 50-70 ° C. for about 10-15 hours. And after making it dry, the ceramic green sheet used as a spacer is extracted. In addition, the same binder as the binder used when producing the ceramic green sheet can be used as the adhesion liquid. In addition, although the example which uses a ceramic green sheet was shown in the said arrangement | positioning, it replaces with a ceramic green sheet and may use a degreased body.
 このとき、第2の板状体2を異なる高さとするほか、第2の板状体2の厚みや枚数を変更することによって、流路の容積を変更することが可能である。 At this time, in addition to making the second plate-like body 2 have different heights, it is possible to change the volume of the flow path by changing the thickness and number of the second plate-like bodies 2.
 そして、セラミックグリーンシートが炭化珪素からなる場合には、例えば、不活性ガスの雰囲気中または真空雰囲気中で、1800~2200℃の温度範囲で10分~10時間保持した後、2200~2350℃の温度範囲で10分~20時間保持することによって、相対密度が90%以上のセラミック焼結体とすることができる。 In the case where the ceramic green sheet is made of silicon carbide, for example, it is maintained in a temperature range of 1800 to 2200 ° C. for 10 minutes to 10 hours in an inert gas atmosphere or a vacuum atmosphere, and then 2200 to 2350 ° C. By holding for 10 minutes to 20 hours in the temperature range, a ceramic sintered body having a relative density of 90% or more can be obtained.
 なお、不活性ガスについては特に限定されるものではないが、2000℃以上で保持する場合には炭化珪素の分解が生じるので、アルゴンまたはヘリウムを用いることが好適である。 In addition, although it does not specifically limit about an inert gas, Since it decomposes | disassembles a silicon carbide when it hold | maintains at 2000 degreeC or more, it is suitable to use argon or helium.
 また、セラミックグリーンシートが窒化アルミニウムからなる場合には、例えば、窒素雰囲気中または窒素および水素の混合雰囲気中で、焼成温度が1500~1900℃の範囲で5時間~20時間保持することによって、相対密度が90%以上のセラミック焼結体とすることができる。 When the ceramic green sheet is made of aluminum nitride, for example, in a nitrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen, the firing temperature is maintained in the range of 1500 to 1900 ° C. for 5 to 20 hours. A ceramic sintered body having a density of 90% or more can be obtained.
 また、セラミックグリーンシートが窒化硼素からなる場合には、例えば、不活性雰囲気中で、圧力が4~6GPa、焼成温度が1300~1800℃の範囲で10分間~30分間保持することによって、相対密度が90%以上のセラミック焼結体とすることができる。 When the ceramic green sheet is made of boron nitride, for example, the relative density can be maintained by maintaining the pressure in an inert atmosphere at a pressure of 4 to 6 GPa and a firing temperature of 1300 to 1800 ° C. for 10 to 30 minutes. Can be a ceramic sintered body with 90% or more.
 また、炭素繊維強化炭素複合材からなるヒートシンクを得る場合には、例えば、ポリアクリロニトリル系、ピッチ系などの繊維や樹脂を、フェノール樹脂溶液やフラン樹脂溶液などの媒体中に分散または溶解させて混合し溶液を得る。 When obtaining a heat sink made of a carbon fiber reinforced carbon composite material, for example, polyacrylonitrile-based or pitch-based fibers or resins are dispersed or dissolved in a medium such as a phenol resin solution or a furan resin solution and mixed. A solution is obtained.
 ここで、溶液の濃度としては、上記溶液100質量%に対して、10質量%以上70質量%以下とすることが好ましい。 Here, the concentration of the solution is preferably 10% by mass or more and 70% by mass or less with respect to 100% by mass of the solution.
 そして、得られた溶液から炭素繊維強化炭素複合材でシートを作製する場合は、所望の形状にした金型に流し込み、加熱温度を50~300℃、保持時間を20分間~5時間で加熱処理させることで熱硬化して得ることができる。なお、必要に応じて、金型には、第1の板状体となるシートに、凹部、凸部、貫通孔等が形成される様に突起や窪みを設けておけばよい。また、得られた焼成前のシートの端面以外にマスクをした後にブラスト加工を行なうことによって、第2の板状体2の流路に面する面2aの算術平均粗さ(Ra)を第1の板状体1の流路に面する面1dの算術平均粗さ(Ra)よりも粗くすることができ、ブラスト加工における砥粒サイズや出力を変更することによって、所望の粗さを得ることができる。 When a sheet is produced from the obtained solution with a carbon fiber reinforced carbon composite material, the sheet is poured into a mold having a desired shape, and is heated at a heating temperature of 50 to 300 ° C. and a holding time of 20 minutes to 5 hours. Can be obtained by thermosetting. In addition, what is necessary is just to provide a processus | protrusion and a hollow so that a recessed part, a convex part, a through-hole, etc. may be formed in the sheet | seat used as a 1st plate-shaped object as needed. Further, by performing blasting after masking other than the end face of the obtained sheet before firing, the arithmetic average roughness (Ra) of the surface 2a facing the flow path of the second plate-like body 2 is set to the first. It can be made rougher than the arithmetic average roughness (Ra) of the surface 1d facing the flow path of the plate-like body 1, and the desired roughness can be obtained by changing the abrasive grain size and output in blasting. Can do.
 そして、得られたシート同士を接合させるために例えば、シートの間にエポキシ樹脂やフェノール樹脂などの熱硬化性樹脂に炭素粉末(グラファイトパウダー)を介在させた後、不活性雰囲気中で、最高温度600~1000℃に設定し30~50時間かけて最高温度に到達するようにし、炭化処理をすることによって、炭素繊維強化炭素複合材からなるヒートシンクを得ることができる。 And in order to join the obtained sheets, for example, after interposing carbon powder (graphite powder) in a thermosetting resin such as epoxy resin or phenol resin between the sheets, the maximum temperature is maintained in an inert atmosphere. A heat sink made of a carbon fiber reinforced carbon composite material can be obtained by setting the temperature to 600 to 1000 ° C. so as to reach the maximum temperature over 30 to 50 hours and performing carbonization.
 なお、第2の板状体2を異なる高さとするほか、第2の板状体2の厚みや枚数を変更することによって、流路の容積を変更することが可能である。 In addition to making the second plate-like body 2 have different heights, it is possible to change the volume of the flow path by changing the thickness and number of the second plate-like bodies 2.
 なお、第1の板状体1の主面に珪素を含む複数の粒状体1cを接合して凸部を有するヒートシンク14を得るには、セラミックグリーンシートの主面に珪素を含む顆粒または敷粉等の多数の粉粒体を載置し適宜積層したのち焼成すればよい。載置する方法は、篩い等を用いて振り掛ける、または粉粒体に溶媒等を加えてスラリーとし、刷毛やローラ等を用いて塗布してもよい。なお、粉粒体を構成する粉末は、例えば、炭化珪素または炭窒化珪素の粉末と、添加成分としてのグラファイトの粉末および炭化硼素(BC)の粉末である。あるいは、粉粒体を構成する粉末は、珪素の粉末,窒化珪素の粉末,酸化珪素の粉末およびサイアロンの粉末の少なくともいずれかと、添加成分としての酸化マグネシウム(MgO)および酸化カルシウム(CaO)の粉末の少なくともいずれかならびに希土類元素の酸化物の粉末である。ここで、セラミックグリーンシートの主面に載置する顆粒とは、例えば上記粉末を混合し粉砕してスラリーとし、噴霧乾燥機で乾燥させたものであり、敷粉とは、上記粉末を用いて焼成した焼結体を粉砕したもの等である。 In order to obtain a heat sink 14 having projections by joining a plurality of granular materials 1c containing silicon to the main surface of the first plate-like body 1, granules or covering powder containing silicon on the main surface of the ceramic green sheet It is only necessary to place a large number of powder particles such as those and laminate them as appropriate, followed by firing. The method of mounting may be sprinkled using a sieve or the like, or added to a slurry by adding a solvent or the like to the powder and applied using a brush or a roller. The powder constituting the granular material is, for example, silicon carbide or silicon carbonitride powder, graphite powder and boron carbide (B 4 C) powder as additive components. Alternatively, the powder constituting the granular material may be at least one of silicon powder, silicon nitride powder, silicon oxide powder and sialon powder, and magnesium oxide (MgO) and calcium oxide (CaO) powders as additive components. And a rare earth element oxide powder. Here, the granules placed on the main surface of the ceramic green sheet are, for example, those obtained by mixing and pulverizing the above powder to form a slurry, and drying with a spray dryer. The fired sintered body is pulverized.
 また、焼成の温度および時間は、積層体のサイズや体積に応じて適宜設定すればよい。 Moreover, the firing temperature and time may be appropriately set according to the size and volume of the laminate.
 なお、反りを有する第1の板状体1を得るには、発熱部材等が載置される下面20が棚板側になるように載置して焼成すればよい。 In addition, in order to obtain the 1st plate-shaped body 1 which has a curvature, what is necessary is just to mount and bake so that the lower surface 20 in which a heat generating member etc. are mounted may become the shelf board side.
 また、うねりを有する第1の板状体1とするためには、焼成の温度を高くし、焼成の時間を長くすればよく、セラミックグリーンシートが炭化珪素からなる場合には、2250~2350℃の温度範囲で10時間~20時間保持すればよい。また、セラミックグリーンシートが窒化アルミニウムからなる場合には、焼成温度が1700~1900℃の範囲で10時間~20時間保持すればよい。また、セラミックグリーンシートが窒化硼素からなる場合には、圧力が5.5~6GPa、焼成温度が1500~1800℃の範囲で20分間~30分間保持すればよい。また、セラミックグリーンシートが炭素繊維強化炭素複合材からなる場合には、最高温度900~1000℃に設定し30~35時間かけて最高温度に到達するようにすればよい。 Further, in order to obtain the first plate-like body 1 having undulations, the firing temperature is increased and the firing time is increased. When the ceramic green sheet is made of silicon carbide, it is 2250 to 2350 ° C. The temperature may be maintained for 10 to 20 hours. In the case where the ceramic green sheet is made of aluminum nitride, the firing temperature may be maintained in the range of 1700 to 1900 ° C. for 10 to 20 hours. When the ceramic green sheet is made of boron nitride, the ceramic green sheet may be held for 20 to 30 minutes at a pressure of 5.5 to 6 GPa and a firing temperature of 1500 to 1800 ° C. When the ceramic green sheet is made of a carbon fiber reinforced carbon composite material, the maximum temperature may be set to 900 to 1000 ° C. so as to reach the maximum temperature over 30 to 35 hours.
 ちなみに、反りを有するとともに、その一部がうねりを有する第1の板状体1を得るには、上記のうねりを得る条件にて、発熱部材が載置される下面20が棚板側になるように載置して焼成すればよい。 Incidentally, in order to obtain the first plate-like body 1 having warpage and part of which has waviness, the lower surface 20 on which the heat generating member is placed is on the shelf board side under the condition for obtaining the waviness. It only has to be placed and fired.
 上述した方法で得られたセラミック焼結体は、必要に応じて、セラミック焼結体の外辺を研削加工等で削除することにより、図1,2,3,5,6,7,8に示すようなヒートシンク10,11,12,13,14,15とすることができる。 The ceramic sintered body obtained by the above-described method can be obtained as shown in FIGS. 1, 2, 3, 5, 6, 7, and 8 by removing the outer periphery of the ceramic sintered body by grinding or the like as necessary. Heat sinks 10, 11, 12, 13, 14, and 15 as shown can be used.
 なお、上述においては、セラミックグリーンシートはドクターブレード法を用いて成形する場合を示したが、炭化珪素からなるヒートシンクを得るにあたり、セラミックグリーンシートを乾式加圧成形法または粉末圧延法を用いて成形する場合には、まず、平均粒径(D50)が0.5μm以上2μm以下である炭化珪素粉末に水,分散剤,炭化硼素粉末,リグニンカルボン酸塩の粉末を加え、ボールミル,回転ミル,振動ミル,ビーズミル等のミルで混合,粉砕し、スラリー化する。このスラリーにメチルセルロース、カルボキシメチルセルロース等のセルロース類やその変成品、糖類、澱粉類、デキストリンやこれらの各種変成品、ポリビニルアルコール等の水溶性各種合成樹脂や酢酸ビニル等の合成樹脂エマルジョン、リグニンスルホン酸ソーダ,アラビアゴム,カゼイン,アルギン酸塩,グルコマンナン,グリセリン,ソルビタン脂肪酸エステル等を添加,混合した後、噴霧乾燥すればよい。 In the above description, the ceramic green sheet is formed using the doctor blade method. However, in order to obtain a heat sink made of silicon carbide, the ceramic green sheet is formed using a dry pressure forming method or a powder rolling method. First, water, a dispersant, boron carbide powder, and lignin carboxylate powder are added to a silicon carbide powder having an average particle size (D 50 ) of 0.5 μm or more and 2 μm or less, and a ball mill, rotary mill, vibration Mix and pulverize in a mill such as a mill or bead mill to make a slurry. In this slurry, celluloses such as methylcellulose and carboxymethylcellulose and their modified products, sugars, starches, dextrins and various modified products thereof, various water-soluble synthetic resins such as polyvinyl alcohol, synthetic resin emulsions such as vinyl acetate, lignin sulfonic acid Soda, gum arabic, casein, alginate, glucomannan, glycerin, sorbitan fatty acid ester and the like may be added and mixed, and then spray dried.
 ここで、炭化硼素粉末,リグニンカルボン酸塩の粉末のそれぞれの含有量は、炭化珪素粉末100質量%に対して、例えば、0.12質量%以上1.4質量%以下、1質量%以上3.4質量%以下とすることが好ましい。 Here, the content of each of the boron carbide powder and the lignin carboxylate powder is, for example, 0.12% by mass to 1.4% by mass and 1% by mass to 3.4% by mass with respect to 100% by mass of the silicon carbide powder. It is preferable to do.
 また、噴霧乾燥の前にASTM E11-61に記載されている粒度番号が200のメッシュまたはこのメッシュより細かいメッシュの篩いに通すことによって、粗大な不純物やゴミを除去し、さらに磁力を用いた除鉄機で除鉄するなどの方法で、鉄およびその化合物を除去することが好適である。 Also, before spray drying, coarse impurities and dust are removed by passing through a sieve with a particle size number of 200 described in ASTM E11-61 or a mesh finer than this mesh. It is preferable to remove iron and its compounds by a method such as removing iron with an iron machine.
 得られたセラミックス顆粒は、乾式加圧成形法または粉末圧延法を用いて成形することにより、相対密度が45%以上70%以下のセラミックグリーンシートとすることができる。 The obtained ceramic granules can be formed into a ceramic green sheet having a relative density of 45% or more and 70% or less by molding using a dry pressure molding method or a powder rolling method.
 ここで、第1の板状体1の隣り合う流路に面する面のうち少なくとも一方の面が、凹部および凸部のうち少なくとも一方を有するヒートシンク12,13を得る場合には、そのような形状が得られる成形型を用い、乾式加圧成形法によりセラミックグリーンシートに形状を加工したものを用いればよい。 Here, when obtaining heat sinks 12 and 13 in which at least one of the surfaces facing the adjacent flow paths of the first plate-like body 1 has at least one of a concave portion and a convex portion, such a case is obtained. What is necessary is just to use what processed the shape into the ceramic green sheet by the dry press molding method using the shaping | molding die from which a shape is obtained.
 そして、金型による打ち抜き加工またはレーザー光による切断加工を用いて所定形状とした後は、上述した製造方法と同じ方法でヒートシンクを得ることができる。 And after making into a predetermined shape using the punching process by a metal mold | die, or the cutting process by a laser beam, a heat sink can be obtained by the same method as the manufacturing method mentioned above.
 この様な製造方法で作製したヒートシンクは、各々の板状体1,2を積層してなる構造とすることによって、ヒートシンク10を作製するまでに廃棄する原料を少なくできる。また、フライス等の後加工の必要がないことから後加工による各々の板状体1,2の破損やクラックが内在しにくくなる。 The heat sink produced by such a manufacturing method has a structure in which the plate- like bodies 1 and 2 are laminated, so that the amount of raw materials discarded before the heat sink 10 is produced can be reduced. Further, since there is no need for post-processing such as milling, breakage and cracks of the respective plate- like bodies 1 and 2 due to post-processing are less likely to be inherent.
 また、上述した製造方法により得られた各ヒートシンクを、回路部材4を介して電子部品3を搭載する支持基板5の裏面にシリコングリス等の接合剤を用いて接合することで、本実施形態の電子部品装置20とすることができる。 In addition, each heat sink obtained by the manufacturing method described above is bonded to the back surface of the support substrate 5 on which the electronic component 3 is mounted via the circuit member 4 by using a bonding agent such as silicon grease. The electronic component device 20 can be obtained.
 1:第1の板状体
 1a:凹部
 1b:凸部
 1c:粒状体
 1d:表面
 1e:貫通孔
 2:第2の板状体
 2a:表面
 3:電子部品
 4:回路部材
 5:支持基板
 6:筐体(パッケージ)
 10,11,12,13,14,15:ヒートシンク
 20:電子部品装置
1: 1st plate-like body 1a: concave portion 1b: convex portion 1c: granular body 1d: surface 1e: through hole 2: second plate-like body 2a: surface 3: electronic component 4: circuit member 5: support substrate 6 : Housing (package)
10, 11, 12, 13, 14, 15: Heat sink 20: Electronic component device

Claims (8)

  1.  複数の第1の板状体と、該第1の板状体の間に配置され、少なくとも前記第1の板状体よりも高さの低い第2の板状体とが積層されており、前記第1の板状体と前記第2の板状体とで形成された空間が、流体が流れるための流路とされていることを特徴とするヒートシンク。 A plurality of first plate-like bodies and a second plate-like body disposed between the first plate-like bodies and having a height lower than that of the first plate-like body are laminated. A heat sink, wherein a space formed by the first plate-like body and the second plate-like body is a flow path for fluid to flow.
  2.  前記第2の板状体の前記流路に面する面の表面粗さ(Ra)が、前記第1の板状体の前記流路に面する面の表面粗さ(Ra)よりも粗いことを特徴とする請求項1に記載のヒートシンク。 The surface roughness (Ra) of the surface facing the flow path of the second plate-shaped body is rougher than the surface roughness (Ra) of the surface facing the flow path of the first plate-shaped body. The heat sink according to claim 1.
  3.  前記第1の板状体が、反りまたはうねりを有していることを特徴とする請求項1または請求項2のいずれかに記載のヒートシンク。 3. The heat sink according to claim 1, wherein the first plate-like body has warpage or undulation.
  4.  前記第1の板状体には、前記流路につながる貫通孔が設けられていることを特徴とする請求項1乃至請求項3のいずれかに記載のヒートシンク。 The heat sink according to any one of claims 1 to 3, wherein the first plate-like body is provided with a through hole connected to the flow path.
  5.  前記第1の板状体の隣り合う前記流路に面する面のうち、少なくとも一方の面に、凹部および凸部のうち少なくとも一方を有することを特徴とする請求項1乃至請求項4のいずれかに記載のヒートシンク。 5. The device according to claim 1, wherein at least one of a concave portion and a convex portion is provided on at least one of the surfaces of the first plate-like body facing the flow paths adjacent to each other. The heat sink described in the crab.
  6.  前記第1の板状体の隣り合う前記流路に面する面のうち、少なくとも一方の面に複数の粒状体が接合しており、該粒状体がそれぞれ前記凸部をなしていることを特徴とする請求項5に記載のヒートシンク。 A plurality of granular bodies are joined to at least one of the faces facing the flow paths adjacent to each other of the first plate-like bodies, and each of the granular bodies forms the convex portion. The heat sink according to claim 5.
  7.  前記第1および前記第2の板状体が、セラミックスからなることを特徴とする請求項1乃至請求項6に記載のヒートシンク。 The heat sink according to any one of claims 1 to 6, wherein the first and second plate-like bodies are made of ceramics.
  8.  回路基板と、該回路基板に接合された請求項1乃至請求項7のいずれかに記載のヒートシンクと、回路基板に搭載された電子部品とを有することを特徴とする電子部品装置。 An electronic component device comprising: a circuit board; the heat sink according to claim 1 bonded to the circuit board; and an electronic component mounted on the circuit board.
PCT/JP2013/052117 2012-01-30 2013-01-30 Heat sink and electronic component device provided with said heat sink WO2013115285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556481A JP5829695B2 (en) 2012-01-30 2013-01-30 Heat sink and electronic component device including the heat sink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-016747 2012-01-30
JP2012016747 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115285A1 true WO2013115285A1 (en) 2013-08-08

Family

ID=48905317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052117 WO2013115285A1 (en) 2012-01-30 2013-01-30 Heat sink and electronic component device provided with said heat sink

Country Status (2)

Country Link
JP (1) JP5829695B2 (en)
WO (1) WO2013115285A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801729A2 (en) 2013-05-06 2014-11-12 Eolotec GmbH Main bearing, in particular main bearing of a wind turbine and method for determining a bearing clearance of a roller bearing and wind turbine
JP2014241410A (en) * 2013-05-17 2014-12-25 京セラ株式会社 Heat dissipation member, electronic equipment using the same, and picture display unit
JP2015138910A (en) * 2014-01-23 2015-07-30 京セラ株式会社 Channel member and heat exchanger using the same, and semiconductor manufacturing apparatus
JP2020038919A (en) * 2018-09-05 2020-03-12 ウシオ電機株式会社 Electric component unit
JPWO2020158843A1 (en) * 2019-01-30 2021-11-25 デンカ株式会社 Manufacturing method of single-wafer green sheet, manufacturing method of silicon nitride sintered body, single-wafer green sheet and silicon nitride sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346251A (en) * 1991-05-23 1992-12-02 Mitsubishi Electric Corp Cooling device
JPH0569954U (en) * 1992-02-28 1993-09-21 京セラ株式会社 Semiconductor package
JPH1167990A (en) * 1997-08-25 1999-03-09 Fujikura Ltd Manufacture of heat sink
JP2004349324A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Direct water-cooled power semiconductor module structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346251A (en) * 1991-05-23 1992-12-02 Mitsubishi Electric Corp Cooling device
JPH0569954U (en) * 1992-02-28 1993-09-21 京セラ株式会社 Semiconductor package
JPH1167990A (en) * 1997-08-25 1999-03-09 Fujikura Ltd Manufacture of heat sink
JP2004349324A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Direct water-cooled power semiconductor module structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801729A2 (en) 2013-05-06 2014-11-12 Eolotec GmbH Main bearing, in particular main bearing of a wind turbine and method for determining a bearing clearance of a roller bearing and wind turbine
JP2014241410A (en) * 2013-05-17 2014-12-25 京セラ株式会社 Heat dissipation member, electronic equipment using the same, and picture display unit
JP2015138910A (en) * 2014-01-23 2015-07-30 京セラ株式会社 Channel member and heat exchanger using the same, and semiconductor manufacturing apparatus
JP2020038919A (en) * 2018-09-05 2020-03-12 ウシオ電機株式会社 Electric component unit
JP7305938B2 (en) 2018-09-05 2023-07-11 ウシオ電機株式会社 electric parts unit
JPWO2020158843A1 (en) * 2019-01-30 2021-11-25 デンカ株式会社 Manufacturing method of single-wafer green sheet, manufacturing method of silicon nitride sintered body, single-wafer green sheet and silicon nitride sintered body

Also Published As

Publication number Publication date
JPWO2013115285A1 (en) 2015-05-11
JP5829695B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
US7993728B2 (en) Aluminum/silicon carbide composite and radiating part comprising the same
US8025962B2 (en) Aluminum-silicon carbide composite and heat dissipation device employing the same
JP5829695B2 (en) Heat sink and electronic component device including the heat sink
JP6351585B2 (en) Resin-impregnated boron nitride sintered body and use thereof
JP5496888B2 (en) Method for producing aluminum-diamond composite
JP5061018B2 (en) Aluminum-graphite-silicon carbide composite and method for producing the same
WO2017065139A1 (en) Aluminum-diamond composite and method for producing same
JP6262522B2 (en) Resin-impregnated boron nitride sintered body and use thereof
JP6636924B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2016171343A (en) Passage member, heat exchanger and electronic component device using the same, and semiconductor manufacturing apparatus
JP7165341B2 (en) Graphite-copper composite material, heat sink member using the same, and method for producing graphite-copper composite material
JP7116689B2 (en) Heat dissipation member and manufacturing method thereof
JP7050978B1 (en) Molded body and its manufacturing method
KR101473708B1 (en) Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
WO2023038151A1 (en) Method for producing boron nitride sintered body, and boron nitride sintered body
JPWO2016002943A1 (en) Heat dissipation component and manufacturing method thereof
JP2013138193A (en) Heat sink and electronic component device including the same
JP3913130B2 (en) Aluminum-silicon carbide plate composite
JP7322323B1 (en) Boron nitride sintered body and composite
JP2020123713A (en) Heat-dissipating member and manufacturing method thereof
JP7165844B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
WO2021200971A1 (en) Boron nitride sintered body, complex, method for manufacturing these, and heat dissipation member
JP2012171838A (en) Method for producing aluminum-silicon carbide composite
JP2013182983A (en) Silicon nitride circuit board and module using the same
WO2023058598A1 (en) Heat dissipation member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743510

Country of ref document: EP

Kind code of ref document: A1