WO2013115124A1 - Detection system and detection apparatus - Google Patents

Detection system and detection apparatus Download PDF

Info

Publication number
WO2013115124A1
WO2013115124A1 PCT/JP2013/051726 JP2013051726W WO2013115124A1 WO 2013115124 A1 WO2013115124 A1 WO 2013115124A1 JP 2013051726 W JP2013051726 W JP 2013051726W WO 2013115124 A1 WO2013115124 A1 WO 2013115124A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
output
signal processing
input
Prior art date
Application number
PCT/JP2013/051726
Other languages
French (fr)
Japanese (ja)
Inventor
正徳 四方山
等志 薩田
Original Assignee
シチズンファインテックミヨタ株式会社
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンファインテックミヨタ株式会社, シチズンホールディングス株式会社 filed Critical シチズンファインテックミヨタ株式会社
Publication of WO2013115124A1 publication Critical patent/WO2013115124A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/10Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by pressure-sensitive members of the piezoelectric type

Definitions

  • the present invention relates to a detection system that detects a physical quantity and a detection device that detects a physical quantity.
  • a plurality of detection devices that detect pressure, temperature, and the like are mounted in the device. Based on the detection results of these detection devices, a control called ECU (Engine Control Unit) is performed.
  • the device controls the operation of the internal combustion engine.
  • the control device and the detection device are usually an electric wire for supplying power from the control device to the detection device, an electric wire for sending a signal from the detection device to the control device, and a ground between the control device and the detection device. It connects using the electric wire for making it common.
  • Patent Document 1 in an in-vehicle power steering system including an ECU unit and a current sensor unit that detects a current flowing through a current path, a ground of a power supply line that supplies power from the ECU unit to the current sensor unit is disclosed.
  • a technique for detecting a disconnection of a line using a circuit having an N-channel FET and a resistor is described.
  • An object of the present invention is to enable detection of disconnection of an electric wire used for grounding a signal processing circuit, and to reduce noise in an output signal from the signal processing circuit.
  • the detection system of the present invention includes a detection element for detecting a change in physical quantity, a signal processing circuit for processing a detection signal output from the detection element, the detection element and the signal processing circuit, and a grounding body.
  • a detector that includes a housing electrically connected to the housing, and a DC suppression unit that connects the housing and the ground in the signal processing circuit while suppressing energization of a DC current, and the signal in the detection unit
  • a constant voltage supply line for supplying a constant voltage to the processing circuit, an output signal transmission line for transmitting an output signal output from the signal processing unit, and a ground for connecting to the ground in the signal processing circuit Is connected to the detection unit via a wire and is further electrically connected to the grounding body to supply the constant voltage to the detection unit and input from the detection unit.
  • a supply / processing units performs processing on the output signal.
  • the detection element is composed of a piezoelectric element that detects pressure using a piezoelectric body, and the signal processing circuit integrates the charge signal input from the piezoelectric element, thereby obtaining the charge signal.
  • the signal processing circuit further includes a power supply circuit that converts the constant voltage input via the constant voltage supply line into a voltage lower than the constant voltage and supplies the voltage to the integrating circuit and the amplifier circuit. It is preferable to provide.
  • the integration circuit and the amplification circuit can be configured to include, for example, an operational amplifier.
  • the direct current suppression unit includes a capacitor. As a result, the DC cutoff circuit can be configured with a simple configuration.
  • the detection apparatus of the present invention includes a detection element that detects a change in physical quantity, a signal processing circuit that processes a detection signal output from the detection element, the detection element, and the signal A housing to which a processing circuit is attached, a constant voltage supply means for supplying a constant voltage to the signal processing circuit, an output signal transmission means for transmitting an output signal output from the signal processing circuit, and the signal A grounding means for connecting to the ground in the processing circuit; and a direct current suppression unit that connects the casing and the ground in the signal processing circuit while suppressing the application of direct current.
  • the present invention it is possible to detect disconnection of an electric wire used for grounding a signal processing circuit and to reduce noise in an output signal from the signal processing circuit.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine according to an embodiment. It is an enlarged view of the II section of the pressure detection apparatus shown in FIG. It is a schematic block diagram of a pressure detection apparatus.
  • FIG. 4 is a cross-sectional view of the IV-IV part of the pressure detection device shown in FIG. 3. It is an enlarged view of the V section of the pressure detection apparatus shown in FIG. It is an enlarged view of VI part of the pressure detection apparatus shown in FIG.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine 1 according to the present embodiment.
  • 2 is an enlarged view of the II part of the pressure detection device 5 shown in FIG.
  • the internal combustion engine 1 includes a cylinder block 2 having a cylinder 2a, a piston 3 that reciprocates in the cylinder 2a, a cylinder head 4 that is fastened to the cylinder block 2 and forms a combustion chamber C together with the cylinder 2a, the piston 3, and the like, It has.
  • both the cylinder block 2 and the cylinder head 4 are made of conductive aluminum, cast iron, or the like.
  • the internal combustion engine 1 is mounted on the cylinder head 4 to detect the pressure in the combustion chamber C, and a control device that controls the operation of the internal combustion engine 1 based on the pressure detected by the pressure detection device 5. 6, an electric signal is transmitted between the pressure detection device 5 and the control device 6, and between the pressure detection device 5 and the control device 6, which is interposed between the pressure detection device 5 and the cylinder head 4 and maintains the airtightness in the combustion chamber C.
  • the transmission cable 8 includes three cables, that is, a first cable 81, a second cable 82, and a third cable 83, and the first cable 81 to the third cable 83. And a connector 80 for connecting to the connector.
  • each of the first cable 81, the second cable 82, and the third cable 83 is constituted by an insulated wire in which the outer peripheral surface of a conductor portion made of a tinned annealed copper stranded wire is coated with a resin insulator.
  • the first cable 81 functions as a constant voltage supply line
  • the second cable 82 functions as an output signal transmission line
  • the third cable 83 functions as a ground line.
  • the cylinder head 4 is formed with a communication hole 4a for communicating the combustion chamber C with the outside.
  • the communication hole 4a has a hole diameter larger than the first hole part 4b, the inclined part 4c whose diameter gradually increases from the hole diameter of the first hole part 4b, and the hole diameter of the first hole part 4b.
  • a female screw 4e into which a male screw 332a of the housing 30 (described later) formed in the pressure detection device 5 is screwed is formed on the surrounding wall forming the second hole 4d.
  • FIG. 3 is a schematic configuration diagram of a pressure detection device 5 as an example of a detection unit or a detection device.
  • 4 is a cross-sectional view of the IV-IV portion of the pressure detection device 5 shown in FIG.
  • FIG. 5 is an enlarged view of a V portion of the pressure detection device 5 shown in FIG.
  • FIG. 6 is an enlarged view of a VI part of the pressure detection device 5 shown in FIG.
  • the pressure detection device 5 includes a sensor unit 100 having a piezoelectric element 10 that converts the pressure in the combustion chamber C into an electric signal, a signal processing unit 200 that processes an electric signal from the sensor unit 100, and a signal processing unit 200. Holding member 300.
  • the pressure detection device 5 is mounted on the cylinder head 4, the diaphragm head 40 (described later) of the sensor unit 100 is inserted into the communication hole 4 a formed in the cylinder head 4 first.
  • the left side of FIG. 4 is the front end side of the pressure detection device 5
  • the right side is the rear end side of the pressure detection device 5.
  • the sensor unit 100 includes a piezoelectric element 10 that converts received pressure into an electrical signal, and a housing 30 that is cylindrical and in which a cylindrical hole that accommodates the piezoelectric element 10 and the like is formed. .
  • the center line direction of the cylindrical hole formed in the housing 30 is simply referred to as a center line direction.
  • the sensor unit 100 is provided so as to close the opening on the distal end side of the housing 30, and is provided between the diaphragm head 40 on which the pressure in the combustion chamber C acts, and between the diaphragm head 40 and the piezoelectric element 10.
  • the first electrode unit 50 and the second electrode unit 55 disposed on the opposite side of the piezoelectric element 10 from the first electrode unit 50 are provided.
  • the sensor unit 100 is provided with an insulating ring 60 made of alumina ceramic that electrically insulates the second electrode unit 55 and a rear end side of the insulating ring 60, and a covering member 23 described later of the signal processing unit 200. And a coil spring 70 interposed between the second electrode portion 55 and a conductive member 22 described later.
  • the piezoelectric element 10 has a piezoelectric body that exhibits the piezoelectric action of the piezoelectric longitudinal effect.
  • the piezoelectric longitudinal effect refers to the action of generating charges on the surface of the piezoelectric body in the direction of the charge generation axis when an external force is applied to the stress application axis in the same direction as the charge generation axis of the piezoelectric body.
  • the piezoelectric element 10 according to the present embodiment is housed in the housing 30 so that the center line direction is the direction of the stress application axis.
  • the piezoelectric transverse effect is an action in which charges are generated on the surface of the piezoelectric body in the direction of the charge generation axis when an external force is applied to the stress application axis at a position orthogonal to the charge generation axis of the piezoelectric body.
  • a plurality of thinly formed piezoelectric bodies may be laminated, and by laminating in this way, the charge generated in the piezoelectric bodies can be efficiently collected to increase the sensitivity of the sensor.
  • Examples of the piezoelectric body include the use of a langasite crystal (a langasite, langagate, langanite, LGTA) having a piezoelectric longitudinal effect and a piezoelectric transverse effect, quartz, gallium phosphate, and the like.
  • a langasite single crystal is used as the piezoelectric body.
  • the housing 30 as an example of the housing includes a first housing 31 provided on the front end side and a second housing 32 provided on the rear end side.
  • the first housing 31 is a thin-walled cylindrical member having a cylindrical hole 310 formed therein so as to have a diameter that gradually changes from the front end side to the rear end side.
  • a projecting portion 315 that protrudes from the outer peripheral surface is provided in the central portion in the center line direction over the entire region in the circumferential direction.
  • the hole 310 includes a first hole 311 and a second hole 312 having a diameter larger than the diameter of the first hole 311 formed in order from the front end side to the rear end side.
  • the protrusion 315 has an inclined surface 315a whose diameter gradually increases from the front end side to the rear end side at the front end portion, and a vertical surface 315b perpendicular to the center line direction at the rear end portion.
  • the second housing 32 is a cylindrical member in which a cylindrical hole 320 is formed so that the diameter gradually changes from the front end side to the rear end side.
  • An outer peripheral surface 330 is formed on the outside so that the diameter is gradually changed from the front end side to the rear end side.
  • the hole 320 includes a first cylindrical hole 321 having a first hole diameter, a second cylindrical hole 322 having a second hole diameter smaller than the first hole diameter, and a second hole diameter.
  • a third cylindrical hole 323 having a larger third hole diameter, a fourth cylindrical hole 324 having a fourth hole diameter larger than the third hole diameter, a fifth cylindrical hole 325 having a fifth hole diameter larger than the fourth hole diameter, Consists of The first hole diameter in the first cylindrical hole 321 is such that the front end of the second housing 32 is fitted (press-fit) to the rear end of the first housing 31 with an interference fit. It is set to be less than the diameter.
  • the outer peripheral surface 330 has a first outer peripheral surface 331, a second outer peripheral surface 332 having an outer diameter larger than the outer diameter of the first outer peripheral surface 331, and an outer diameter of the second outer peripheral surface 332 from the front end side to the rear end side.
  • a third outer peripheral surface 333 having a larger outer diameter
  • a fourth outer peripheral surface 334 having an outer diameter larger than the outer diameter of the third outer peripheral surface 333
  • a fifth outer periphery having an outer diameter smaller than the outer diameter of the fourth outer peripheral surface 334
  • a male screw 332 a that is screwed into the female screw 4 e of the cylinder head 4 is formed at the tip of the second outer peripheral surface 332.
  • a first seal member 71 which will be described later, is fitted into the third outer peripheral surface 333 with a clearance fit, and the dimensional tolerance between the outer diameter of the third outer peripheral surface 333 and the inner diameter of the first seal member 71 is, for example, from zero to 0.2 mm.
  • the rear end portion of the fourth outer peripheral surface 334 is formed as a regular hexagonal column having six chamfers at equal intervals in the circumferential direction.
  • the portion formed in the regular hexagonal column is a portion into which a tightening tool is fitted and a rotational force applied to the tool is transmitted.
  • a concave portion 335a that is recessed from the outer peripheral surface is formed over the entire circumference in the center portion of the fifth outer peripheral surface 335 in the center line direction.
  • the second housing 32 is a transition portion from the fourth cylindrical hole 324 to the fifth cylindrical hole 325, and a signal is placed at the tip of the fifth cylindrical hole 325 (see FIG. 4).
  • An abutting surface 340 against which an end surface on the front end side of the substrate covering portion 232 of the covering member 23 described later of the processing unit 200 abuts is provided.
  • the abutting surface 340 is formed with a pin recess 340a into which the input-side second connection pin 21b of the circuit board unit 21 in the signal processing unit 200 described later is inserted.
  • first housing 31 and the second housing 32 exist at a position close to the combustion chamber C, it is desirable to manufacture the first housing 31 and the second housing 32 using a material that can withstand at least an operating temperature environment of ⁇ 40 to 350 [° C.]. Moreover, since the 1st housing 31 and the 2nd housing 32 are used for the earthing
  • the diaphragm head 40 has a cylindrical cylindrical portion 41 and an inner portion 42 formed inside the cylindrical portion 41.
  • the rear end portion of the cylindrical portion 41 is fitted (press-fitted) with the front end portion of the first housing 31 of the housing 30 with an interference fit, and enters the inside of the front end portion, and the end surface 31a at the front end portion.
  • the inner part 42 is a disk-shaped member provided so as to close the opening on the front end side in the cylindrical part 41, and a protruding part that protrudes from this surface to the piezoelectric element 10 side in the central part on the rear end side surface 42a is provided.
  • a concave portion 42b that is recessed from this surface to the piezoelectric element 10 side is provided at the center of the inner portion 42 on the front end side surface.
  • the material of the diaphragm head 40 is preferably made of an alloy having high elasticity and excellent durability, heat resistance, touch resistance, and the like because it exists in the combustion chamber C at a high temperature and a high pressure.
  • SUH660 can be illustrated.
  • the first electrode portion 50 is a columnar member formed so as to have a stepwise difference in diameter from the front end side to the rear end side, and has a radius larger than the radius of the first columnar portion 51 and the first columnar portion 51.
  • the second cylindrical portion 52 The outer diameter of the first cylindrical portion 51 is smaller than the inner diameter of the entry portion 41 a of the diaphragm head 40, and the outer diameter of the second cylindrical portion 52 is substantially the same as the hole diameter of the first hole 311 of the first housing 31.
  • the end surface on the front end side of the first cylindrical portion 51 is in contact with the protruding portion 42 a of the inner side portion 42 of the diaphragm head 40, and the end surface on the rear end side of the second cylindrical portion 52 is in contact with the front surface side of the piezoelectric element 10.
  • the outer peripheral surface of the second cylindrical portion 52 is in contact with the inner peripheral surface of the first housing 31 and / or the end surface on the distal end side of the first cylindrical portion 51 is in contact with the diaphragm head 40, the distal end of the piezoelectric element 10 is obtained.
  • the part is electrically connected to the housing 30.
  • the first electrode portion 50 applies pressure in the combustion chamber C to the piezoelectric element 10, and the end surface on the rear end side of the second cylindrical portion 52, which is the end surface on the piezoelectric element 10 side, is the end surface of the piezoelectric element 10. It is formed in a size that can push the entire surface.
  • the first electrode portion 50 has both end surfaces in the center line direction formed as smooth surfaces so that the pressure received from the diaphragm head 40 can be applied to the piezoelectric element 10 evenly, and the first electrode portion 50 has a center line direction.
  • An example of the material of the first electrode unit 50 is stainless steel.
  • the second electrode portion 55 is a columnar member, and is disposed such that the end surface on the front end side is in contact with the end surface on the rear end side in the piezoelectric element 10 and the end surface on the rear end side is in contact with the insulating ring 60.
  • a columnar projecting portion 55 a that projects from the end surface to the rear end side is provided on the end surface on the rear end side of the second electrode portion 55.
  • the protrusion 55a has a base end portion on the end face side and a tip end portion having an outer diameter smaller than the outer diameter of the base end portion.
  • the outer diameter of the protruding portion 55a is set smaller than the inner diameter of the insulating ring 60, and the length of the protruding portion 55a is set longer than the width of the insulating ring 60 (the length in the center line direction).
  • the tip is exposed from the insulating ring 60.
  • the second electrode portion 55 is a member that acts to apply a constant load to the piezoelectric element 10 between the second electrode portion 50 and the end face on the piezoelectric element 10 side (tip side) is a piezoelectric element.
  • 10 is formed to have a size capable of pressing the entire end face on the rear end side of the surface 10 and a flat surface parallel to the end face on the rear end side of the piezoelectric element 10.
  • the outer diameter of the second electrode portion 55 is set to be smaller than the hole diameter of the second hole 312 of the first housing 31, and the outer peripheral surface of the second electrode portion 55 and the inner peripheral surface of the first housing 31 are set. There is a gap between them.
  • An example of the material of the second electrode portion 55 is stainless steel.
  • the insulating ring 60 is a cylindrical member formed of alumina ceramic or the like, and the inner diameter (hole diameter at the center) is slightly larger than the outer diameter of the base end portion of the protruding portion 55a of the second electrode portion 55.
  • the diameter is set to be substantially the same as the hole diameter of the second hole 312 of the first housing 31.
  • the second electrode portion 55 is disposed with the protruding portion 55a inserted into the central hole of the insulating ring 60, so that the center position of the second electrode portion 55 and the center of the second hole 312 of the first housing 31 are Are arranged to be the same.
  • the support member 65 is a cylindrical member in which a plurality of cylindrical holes 650 having different diameters are formed inside from the front end side to the rear end side, and the diameter of the outer peripheral surface is the same.
  • the holes 650 are formed in order from the front end side to the rear end side, and have a first hole 651, a second hole 652 having a diameter larger than the diameter of the first hole 651, and a diameter larger than the diameter of the second hole 652.
  • the diameter of the first hole 651 is larger than the outer diameter of the base end portion of the protruding portion 55 a of the second electrode portion 55, and the protruding portion 55 a is exposed to the inside of the support member 65.
  • the hole diameter of the second hole 652 is larger than the outer diameter of the distal end portion of the conductive member 22 of the signal processing unit 200 described later.
  • the hole diameter of the third hole 653 is smaller than the outer diameter of the end portion on the front end side of the covering member 23 of the signal processing unit 200 described later, and the covering member 23 is fitted to the surrounding wall forming the third hole 653. Mated.
  • the support member 65 functions as a member that supports the end portion of the covering member 23.
  • the coil spring 70 has an inner diameter that is equal to or larger than the outer diameter of the distal end portion of the protruding portion 55a of the second electrode portion 55 and smaller than the outer diameter of the proximal end portion, and the outer diameter is smaller than the diameter of the insertion hole 22a of the conductive member 22 described later. Is also small.
  • the distal end portion of the protruding portion 55a of the second electrode portion 55 is inserted inside the coil spring 70, and the coil spring 70 is inserted into an insertion hole 22a of the conductive member 22 described later.
  • the length of the coil spring 70 is set to a length that can be interposed in a compressed state between the second electrode portion 55 and the conductive member 22.
  • As a material of the coil spring 70 an alloy having high elasticity and excellent durability, heat resistance, touch resistance and the like may be used. Further, it is preferable to increase electrical conduction by applying gold plating to the surface of the coil spring 70.
  • the signal processing unit 200 is generated in the piezoelectric element 10 and the circuit board unit 21 that at least amplifies an electric signal that is a weak charge obtained from the piezoelectric element 10 of the sensor unit 100.
  • a rod-shaped conductive member 22 that guides electric charges to the circuit board portion 21, a cover member 23 that covers the circuit board portion 21, the conductive member 22, and the like, and an O-ring 26 that seals the circuit board portion 21 and the like are provided.
  • the circuit board unit 21 includes a mounting board 210 on which electronic components constituting a circuit for amplifying a weak charge obtained from the piezoelectric element 10 of the sensor unit 100 are mounted.
  • An input side first connection pin 21a for electrically connecting a rear end portion of the conductive member 22 and an input side second connection pin 21b for grounding and positioning are soldered to the front end portion of the mounting substrate 210. Connected by attaching.
  • an output side first connection pin 21 c for electrically connecting to the control device 6 via a connector 80 provided at the front end portion of the transmission cable 8, an output side second portion.
  • the connection pin 21d and the output side third connection pin 21e are connected by soldering or the like.
  • the output-side first connection pin 21c is used to supply a power supply voltage (external power supply voltage Vc described later) from the control device 6 to the mounting board 210, and the output-side second connection pin 21d is controlled from the mounting board 210.
  • the output side third connection pin 21e is used for supplying a GND voltage from the control device 6 to the mounting board 210.
  • the output side third connection pin 21e is used for supplying an output voltage (external output voltage Vo described later) to the device 6.
  • the conductive member 22 is a rod-shaped (columnar) member, and an insertion hole 22a into which the distal end portion of the protruding portion 55a of the second electrode portion 55 is inserted is formed at the distal end portion.
  • the rear end portion of the conductive member 22 is electrically connected to the mounting substrate 210 of the circuit board portion 21 via a conductive wire (not shown) and the input-side first connection pin 21a.
  • Examples of the material of the conductive member 22 include brass and beryllium copper. In this case, brass is desirable from the viewpoint of workability and cost. On the other hand, beryllium copper is desirable from the viewpoints of electrical conductivity, high temperature strength, and reliability.
  • the covering member 23 includes a conductive member covering portion 231 that covers the outer periphery of the conductive member 22, a substrate covering portion 232 that covers the side surface and the bottom surface of the mounting substrate 210 of the circuit board portion 21, and a first output side connected to the mounting substrate 210. And a connector portion 233 that covers the periphery of the connection pin 21c, the output-side second connection pin 21d, and the output-side third connection pin 21e, and into which the connector 80 provided at the distal end portion of the transmission cable 8 is fitted.
  • the conductive member covering portion 231 extends along the center line direction and covers the conductive member 22 so that the distal end portion is exposed. Further, the conductive member covering portion 231 is composed of a plurality of cylindrical portions so that the outer diameters are gradually changed from the front end side to the rear end side. Specifically, a first cylindrical portion 241 having a first outer diameter, a second cylindrical portion 242 having a second outer diameter smaller than the first outer diameter, and a second outer diameter from the front end side to the rear end side. A third cylindrical portion 243 having a larger third outer diameter and a fourth cylindrical portion 244 having a fourth outer diameter larger than the third outer diameter are formed side by side.
  • the first outer diameter of the first cylindrical portion 241 is formed larger than the hole diameter of the third hole 653 of the support member 65. As a result, the leading end of the conductive member covering portion 231 is fitted (press-fitted) into the surrounding wall forming the third hole 653 of the support member 65 with an interference fit.
  • the conductive member covering portion 231 is provided with a plurality of convex portions 250 that protrude from the outer peripheral surface of the conductive member covering portion 231 and each extend in the center line direction.
  • the convex portion 250 is provided on the first convex portion 251 provided at the distal end portion of the second cylindrical portion 242 of the conductive member covering portion 231 and the fourth cylindrical portion 244 provided on the conductive member covering portion 231.
  • Two convex portions 252 are provided.
  • four first convex portions 251 are provided on the outer peripheral surface of the second cylindrical portion 242 at intervals of 90 degrees along the circumferential direction.
  • four second convex portions 252 are provided at intervals of 90 degrees along the circumferential direction on the outer peripheral surface of the fourth cylindrical portion 244.
  • the four first convex portions 251 are formed integrally with the second cylindrical portion 242 in the conductive member covering portion 231, and the four second convex portions 252 are formed in the conductive member covering portion 231. It is integrally formed with the fourth cylindrical portion 244.
  • the four first convex portions 251 provided in the second cylindrical portion 242 respectively contact the wall forming the second cylindrical hole 322 in the second housing 32. Touch.
  • the plurality of second convex portions 252 provided in the fourth cylindrical portion 244 abuts against the wall forming the fourth cylindrical hole 324 in the second housing 32.
  • the conductive member covering portion 231 is supported by the second housing 32.
  • the substrate covering portion 232 is basically a cylindrical portion, and a rectangular opening 232a for installing the mounting substrate 210 therein is provided on the side surface thereof.
  • a ring groove 232b for the O-ring 26 for sealing the inside of the housing 30 and the mounting board 210 installation portion is formed on the rear end side of the substrate covering portion 232.
  • the connector part 233 protrudes from the end face 232c on the rear end side in the board covering part 232, and is connected to the output side first connection pin 21c, the output side second connection pin 21d, and the output side third connection pin 21e connected to the mounting board 210. It is a thin part formed so as to cover the periphery.
  • the rear end portion of the connector portion 233 is open so that the connector 80 provided at the front end portion of the transmission cable 8 can be received therein. Further, a hole 233a that connects the inside and the outside is formed on the rear end side of the connector portion 233, and a hook provided on the connector 80 of the transmission cable 8 is hooked on the hole 233a, so that the transmission cable The eight connectors 80 are prevented from dropping from the connector portion 233.
  • the covering member 23 configured as described above is formed of an insulating material such as resin. Further, the covering member 23 includes the conductive member 22, the input side first connection pin 21a, the input side second connection pin 21b, the output side first connection pin 21c, the output side second connection pin 21d, and the output side third connection pin 21e. It is integrally molded with it. More specifically, the covering member 23 includes the conductive member 22, the input side first connection pin 21a, the input side second connection pin 21b, the output side first connection pin 21c, the output side second connection pin 21d, and the output side. Molded by pressing the heated resin into the mold on which the third connection pin 21e is set.
  • the mounting substrate 210 of the circuit board unit 21 is inserted from the opening 232 a of the formed covering member 23 and installed at the center of the substrate covering unit 232.
  • the input side first connection pin 21a, the input side second connection pin 21b, the output side first connection pin 21c, and the output side second connection pin 21d are inserted into the through holes penetrating in the plate thickness direction.
  • each tip of the output side third connection pin 21e is passed through and soldered.
  • the input side 1st connection pin 21a and the conduction member 22 are connected using a conducting wire.
  • the O-ring 26 is attached to the ring groove 232 b of the substrate covering portion 232 of the covering member 23.
  • the O-ring 26 is a well-known O-shaped ring made of fluorine-based rubber.
  • the holding member 300 is a thin cylindrical member, and as shown in FIG. 4, a protruding portion 300 a that protrudes inward from the inner peripheral surface is provided at the rear end portion.
  • the holding member 300 is caulked by pressurizing a portion corresponding to the concave portion 335 a provided in the fifth outer peripheral surface 335 from the outside. Thereby, the holding member 300 becomes difficult to move with respect to the housing 30, and the signal processing unit 200 is prevented from moving with respect to the housing 30.
  • FIG. 7 shows a circuit configuration diagram of the mounting substrate 210.
  • the mounting board 210 of this embodiment includes a printed wiring board 211 on which wiring (circuit pattern) for mounting one or a plurality of electronic components (circuit elements) is formed.
  • the mounting board 210 further includes a protection circuit 212, an integration circuit 213, an amplification circuit 214, a DC cutoff circuit 215, and a power supply circuit (Vreg) 216 mounted on the printed wiring board 211.
  • the integration circuit 213, the amplification circuit 214, and the power supply circuit 216 have a function as a signal processing circuit
  • the DC cutoff circuit 215 has a function as a DC suppression unit.
  • a charge signal as an example of a detection signal input from the piezoelectric element 10 via the protection circuit 212 is converted into a voltage signal by integration by the integration circuit 213, and after the conversion Are amplified by the amplification circuit 214 and output to the outside (for example, the control device 6 shown in FIG. 1).
  • the power supply circuit 216 creates and outputs a power supply voltage (an internal output voltage Vi described later) used in the integration circuit 213 and the amplifier circuit 214.
  • the DC cutoff circuit 215 blocks a DC current from the ground side of the mounting board 210 toward the housing 30 (more specifically, the second housing 32) that is the grounding target of the mounting board 210.
  • a so-called glass epoxy substrate based on a glass cloth base epoxy resin is used as the printed wiring board 211.
  • the printed circuit board 211 is provided with an input signal terminal 211a, an input ground terminal 211b, a power supply terminal 211c, an output signal terminal 211d, and an output ground terminal 211e as input / output terminals.
  • the input signal terminal 211 a is connected to the end face on the rear end side of the piezoelectric element 10 through the input side first connection pin 21 a, the conductive member 22, the coil spring 70, and the second electrode portion 55.
  • the input ground terminal 211b is connected to the second housing 32 via the input-side second connection pin 21b.
  • the power terminal 211c is connected to the first cable 81 (see FIG. 2) via the output-side first connection pin 21c and the connector 80.
  • the output signal terminal 211d is connected to the second cable 82 (see FIG. 2) via the output-side first connection pin 21c and the connector 80.
  • the output ground terminal 211e is connected to the third cable 83 (see FIG. 2) via the output-side third connection pin 21e and the connector 80.
  • the input ground terminal 211b and the output ground terminal 211e are connected to each other via a wiring provided on the printed wiring board 211 and a DC cutoff circuit 215 (capacitor).
  • the protection circuit 212 is composed of a diode, and an anode is connected to the input ground terminal 211b side and a cathode is connected to the power supply terminal 211c side.
  • the integrating circuit 213 includes a first operational amplifier OP1, an integrating capacitor C1, and a feedback resistor R1.
  • the inverting input terminal of the first operational amplifier OP1 is connected to the input signal terminal 211a.
  • the non-inverting input terminal of the first operational amplifier OP1 is connected to the output terminal (out) of the power supply circuit 216.
  • the output terminal of the first operational amplifier OP1 is connected to a non-inverting input terminal of a second operational amplifier OP2 (details will be described later) provided in the amplifier circuit 214.
  • one end of the integrating capacitor C1 is connected to the inverting input terminal of the first operational amplifier OP1, and the other end of the integrating capacitor C1 is connected to the output terminal of the first operational amplifier OP1.
  • One end of the feedback resistor R1 is connected to the inverting input terminal of the first operational amplifier OP1, and the other end of the feedback resistor R1 is connected to the output terminal of the first operational amplifier OP1. Therefore, the integrating capacitor C1 and the feedback resistor R1 are connected in parallel to the inverting input terminal and the output terminal of the first operational amplifier OP1.
  • the amplifier circuit 214 includes a second operational amplifier OP2, a first setting resistor R2a, and a second setting resistor R2b.
  • the inverting input terminal of the second operational amplifier OP2 is connected to the output terminal (out) of the power supply circuit 216 via the first setting resistor R2a.
  • the non-inverting input terminal of the second operational amplifier OP2 is connected to the output terminal of the first operational amplifier OP1 provided in the integrating circuit 213. Further, the output terminal of the second operational amplifier OP2 is connected to the output signal terminal 211d.
  • one end of the second setting resistor R2b is connected to the inverting input terminal of the second operational amplifier OP2, and the other end of the second setting resistor R2b is connected to the output terminal of the second operational amplifier OP2.
  • the DC cut-off circuit 215 is composed of a capacitor, one end is connected to the input ground terminal 211b, and the other end is connected to the anode side of the diode constituting the protection circuit 212.
  • a capacitor having a capacity of 1 ⁇ F is used as the DC cutoff circuit 215.
  • the power supply circuit 216 has an input terminal (in) connected to the power supply terminal 211c and an output terminal (out) connected to the integration circuit 213 (more specifically, the first operational amplifier OP1 provided in the integration circuit 213).
  • a non-inverting input terminal) and an amplifier circuit 214 (more specifically, a first setting resistor R2a provided in the amplifier circuit 214), and a ground terminal (GND) thereof is connected to the output ground terminal 211e, and It is connected to the input ground terminal 211b via the DC cutoff circuit 215.
  • the input charge Qi is input from the piezoelectric element 10 to the input signal terminal 211a as an input signal (charge signal).
  • An external power supply voltage Vc (an example of DC + 5.0 V in this example) is applied from the control device 6 to the power supply terminal 211c.
  • an external output voltage Vo as an example of an output signal is output from the output signal terminal 211 d to the control device 6.
  • the input ground terminal 211b and the output ground terminal 211e are set to the ground potential (GND potential) by being connected to a ground body provided outside the mounting substrate 210, respectively.
  • the integrating circuit 213 integrates the input charge Qi input from the piezoelectric element 10 and outputs the obtained internal output voltage Vi to the amplifying circuit 214. At this time, the input charge Qi is supplied from the input signal terminal 211a to the inverting input terminal of the first operational amplifier OP1. On the other hand, an internal power supply voltage Vr serving as a reference voltage is applied from the power supply circuit 216 to the non-inverting input terminal of the first operational amplifier OP1.
  • the integration circuit 213 of the present embodiment is configured as an integration circuit using the first operational amplifier OP1. However, the non-inverting input terminal of the first operational amplifier OP1 is not set to the GND potential (grounded) but is set to the internal power supply voltage Vr. This is because the first operational amplifier OP1 operates with a single power supply (details will be described later) and that the input charge Qi can take both positive and negative values.
  • the amplifying circuit 214 amplifies the internal output voltage Vi input from the integrating circuit 213, and outputs the obtained external output voltage Vo to the outside (for example, the control device 6 shown in FIG. 1).
  • the internal power supply voltage Vr output from the power supply circuit 216 is applied to the inverting input terminal of the second operational amplifier OP2 via the first setting resistor R2a.
  • the external output voltage Vo output from the output terminal of the second operational amplifier OP2 is applied to the inverting input terminal of the second operational amplifier OP2 via the second setting resistor R2b.
  • the internal output voltage Vi output from the output terminal of the first operational amplifier OP1 in the integrating circuit 213 is applied to the non-inverting input terminal of the second operational amplifier OP2.
  • the amplifier circuit 214 of the present embodiment is configured as an inverting amplifier circuit using the second operational amplifier OP2.
  • the power supply circuit 216 converts the external power supply voltage Vc (DC + 5.0V in this example) input via the power supply terminal 211c into a lower internal power supply voltage Vr (DC + 1.0V in this example) and outputs the converted voltage. Details of the circuit configuration of the power supply circuit 216 will be described later.
  • the first operational amplifier OP1 provided in the integrating circuit 213 and the second operational amplifier OP2 provided in the amplifying circuit 214 are each operated by a single power source of DC + 5.0V.
  • a positive power supply terminal (not shown) is connected to a power supply terminal 211c via a wiring not shown, and a negative power supply terminal (not shown) is connected.
  • the output ground terminal 211e is connected via a wiring (not shown). Therefore, DC + 5.0V is supplied as an operating voltage to each of the first operational amplifier OP1 and the second operational amplifier OP2.
  • FIG. 8 shows a circuit configuration diagram of the power supply circuit 216 provided on the mounting substrate 210.
  • the power supply circuit 216 includes a voltage dividing circuit 2161 for dividing the external output voltage Vo to obtain the internal power supply voltage Vr, and a voltage follower circuit 2162 for stabilizing the obtained internal power supply voltage Vr.
  • the voltage dividing circuit 2161 has one end connected to the input terminal (in) of the power supply circuit 216 and one end connected to the other end of the first voltage dividing resistor R3a and the other end connected to the power supply circuit. And a second voltage dividing resistor R3b connected to the ground terminal (GND) of 216.
  • the external output voltage Vo applied between the input terminal (in) and the ground terminal (GND) of the power supply circuit 216 is dropped by the drop voltage Vd in the first voltage dividing resistor R3a, and
  • the connection end of the first voltage dividing resistor R3a and the second voltage dividing resistor R3b in the voltage dividing circuit 2161 is connected to a non-inverting input terminal of a third operational amplifier OP3 (details will be described later) provided in the voltage follower circuit 2162. Connected.
  • the voltage follower circuit 2162 has a third operational amplifier OP3.
  • the non-inverting input terminal of the third operational amplifier OP3 is connected to the connection end of the voltage dividing circuit 2161.
  • the output terminal of the third operational amplifier OP3 is connected to the output terminal (out) of the power supply circuit 216 and the inverting input terminal of the third operational amplifier OP3.
  • the electrical connection structure in the pressure detection apparatus 5 mentioned above is demonstrated.
  • the end face on the front end side of the piezoelectric element 10 is electrically connected to the metal housing 30 via the metal first electrode portion 50 and the diaphragm head 40.
  • the end surface on the rear end side of the piezoelectric element 10 is electrically connected to the metal second electrode portion 55, and the second electrode portion 55 is connected to the metal coil spring 70 via the protruding portion 55 a. Electrically connected.
  • the coil spring 70 is electrically connected to the metal conductive member 22, and the conductive member 22 is electrically connected to the input signal terminal 211 a of the mounting substrate 210 via the input-side first connection pin 21 a.
  • the outer diameter of the protrusion 55 a of the second electrode portion 55 is smaller than the hole diameter of the first hole 651 of the support member 65, and the outer diameter of the tip portion of the conductive member 22 is larger than the hole diameter of the second hole 652 of the support member 65.
  • the second electrode portion 55, the coil spring 70, and the conductive member 22 are not electrically connected because they are not in direct contact with the support member 65. Therefore, the charge signal transmission path from the second electrode portion 55 to the mounting substrate 210 via the coil spring 70 and the conductive member 22 is formed by the insulating ring 60 and the covering member 23 each made of an insulator. It is electrically insulated from the metal housing 30.
  • the input ground terminal 211b of the mounting substrate 210 is electrically connected to the second housing 32 (housing 30) via the input-side second connection pin 21b.
  • the power supply terminal 211c of the mounting substrate 210 is electrically connected to the first cable 81 via the output-side first connection pin 21c.
  • the output signal terminal 211d of the mounting substrate 210 is electrically connected to the second cable 82 via the output-side second connection pin 21d.
  • the output ground terminal 211e of the mounting substrate 210 is electrically connected to the third cable 83 via the output-side third connection pin 21e.
  • the diaphragm head 40 of the sensor unit 100 is inserted into the communication hole 4a formed in the cylinder head 4 first,
  • the male screw 332 a formed in the second housing 32 of the housing 30 is screwed into the female screw 4 e formed in the communication hole 4 a of the cylinder head 4.
  • the housing 30 is electrically connected to the metal cylinder head 4. Since the cylinder head 4 is in a state of being electrically grounded, in the pressure detection device 5, the tip portion of the piezoelectric element 10 is grounded via the housing 30.
  • the side surface of the piezoelectric element 10 and the inner wall surface of the housing 30 are in contact with each other, but the resistance value is extremely large because the piezoelectric element 10 is made of an insulator.
  • the electric charge generated with the pressure change is generated at both ends of the piezoelectric element 10 in the center line direction.
  • the seal member 7 shown in FIG. As shown in FIG. 2, the seal member 7 includes an end surface of the surrounding wall forming the communication hole 4 a in the cylinder head 4 in the tightening direction of the sensor unit 100, a third outer peripheral surface 333 of the housing 30 of the pressure detection device 5, It has the 1st seal member 71 arrange
  • the seal member 7 has a second seal member 72 disposed between the inclined portion 4c of the communication hole 4a of the cylinder head 4 and the inclined surface 315a of the first housing 31 of the housing 30 of the pressure detection device 5. is doing.
  • FIG. 9 is a diagram for explaining the configuration of the control device 6.
  • FIG. 9A is a block diagram for explaining the hardware configuration of the control device 6, and
  • FIG. 9B is a diagram for explaining a power feeding system in the control device 6.
  • the control apparatus 6 may be called ECU (Engine
  • the control device 6 as an example of the supply / processing unit includes signals output from various devices provided in a device (for example, an automobile) in which the internal combustion engine 1 is mounted, such as the pressure detection device 5 (in the case of the pressure detection device 5, an external device).
  • the MCU Micro Control Unit
  • the MCU Micro Control Unit
  • An EEPROM Electrically-Erasable-Programmable-Read-Only Memory
  • a power supply unit 66 for supplying power necessary for operating various devices (such as the pressure detecting device 5) provided outside the control
  • the input receiving unit 61 performs A / D conversion on an analog signal input from the outside to create a digital signal, or performs gain adjustment on the digital signal input from the outside, thereby allowing an input from the outside.
  • the input signal is converted into a state usable by the MCU 62.
  • the external output voltage Vo input from the pressure detection device 5 to the input receiving unit 61 is an analog signal.
  • the MCU 62 is configured by a so-called one-chip microcomputer, and temporarily executes MPU (Micro-Processing Unit) that performs various arithmetic processing, ROM (Read Only Memory) that stores a program executed by the MPU, and program execution by the MPU.
  • MPU Micro-Processing Unit
  • ROM Read Only Memory
  • Built-in RAM Random Access Memory
  • the EEPROM 63 is a non-volatile memory having a characteristic that stored data does not disappear even if power is not supplied.
  • the EEPROM 63 provided in the control device 6 stores, for example, data on the result of failure diagnosis executed when the device equipped with the internal combustion engine 1 is started, and troubles occurring in the operation of the internal combustion engine 1.
  • the drive signal output unit 64 performs D / A conversion on the digital signal as the calculation result input from the MCU 62 to create an analog signal, or adjusts the gain of the digital signal as the calculation result input from the MCU 62. By performing this, the output signal from the MCU 62 is converted into a state usable by various devices provided outside.
  • the communication unit 67 converts a communication signal received from another control device to a level that can be processed by the MCU 62. Moreover, the digital signal input from MCU62 is converted into the communication signal suitable for the communication standard between other control apparatuses.
  • the power supply unit 66 converts the battery voltage Vb (in this example, DC + 12V) input via an external power supply (for example, a battery in the case of an automobile) provided in a device on which the internal combustion engine 1 is mounted, to a lower operating voltage. It converts and supplies to MCU62 grade
  • the power supply unit 66 converts the input battery voltage Vb into a lower external power supply voltage Vc and outputs it to the pressure detection device 5 provided outside the control device 6.
  • the grounding end (GND) of the power supply unit 66 is connected to the outside (for example, the cylinder block 2 of the internal combustion engine 1 shown in FIG. 1).
  • the operating voltage output from the power supply unit 66 and the external power supply voltage Vc may have the same magnitude or different magnitudes.
  • FIG. 10 is a diagram for explaining an electrical connection relationship among the internal combustion engine 1, the pressure detection device 5, the control device 6, and the transmission cable 8.
  • one end of the piezoelectric element 10 is connected to the input signal terminal 211a of the mounting substrate 210 via the input-side first connection pin 21a and the like.
  • the other end of the piezoelectric element 10 is connected to the housing 30 (more specifically, the first housing 31) via a diaphragm head 40 (not shown in FIG. 10).
  • the input ground terminal 211b provided on the mounting substrate 210 is connected to the housing 30 (more specifically, the second housing 32) via the input-side second connection pin 21b and the like.
  • the power supply terminal 211c provided on the mounting board 210 is connected to the output side first connection pin 21c, and the output signal terminal 211d provided on the mounting board 210 is connected to the output side second connection pin 21d.
  • the output ground terminal 211e provided on the output side is connected to the output-side third connection pin 21e.
  • a cylinder block 2 and a cylinder head 4 both of which are made of metal, are arranged in contact with each other (see FIG. 1). Accordingly, the cylinder block 2 and the cylinder head 4 are connected to each other.
  • the output side first connection pin 21 c provided in the pressure detection device 5 is connected to one end of the first cable 81 constituting the transmission cable 8, and the other end of the first cable 81 is provided in the control device 6.
  • the power supply unit 66 (see FIG. 9) is connected to an output line (indicated by a solid arrow in the figure) of the external power supply voltage Vc.
  • the output-side second connection pin 21 d provided in the pressure detection device 5 is connected to one end of the second cable 82 that constitutes the transmission cable 8, and the other end of the second cable 82 is provided in the control device 6. Connected to the input receiving unit 61 (see FIG. 9).
  • the output-side third connection pin 21 e provided in the pressure detection device 5 is connected to one end of a third cable 83 constituting the transmission cable 8, and the other end of the third cable 83 is provided in the control device 6. Connected to a ground line (indicated by a broken-line arrow in the figure) of external power supply voltage Vc in power supply unit 66 (see FIG. 9).
  • the housing 30 provided in the pressure detection device 5 is attached to the cylinder head 4 provided in the internal combustion engine 1 by screwing as described above. Therefore, the housing 30 and the cylinder head 4 both made of metal are connected.
  • a grounding end of a power supply unit 66 (see FIG. 9) provided in the control device 6 is connected to a cylinder block 2 provided in the internal combustion engine 1.
  • the cylinder block 2 and the cylinder head 4 provided in the internal combustion engine 1 are connected as described above. Therefore, the ground of the piezoelectric element 10 in the pressure detection device 5, the ground of the mounting substrate 210 in the pressure detection device 5, and the ground of the power supply unit 66 (see FIG. 9) in the control device 6 are the cylinder block 2 and the cylinder head. 4 is set in common through the terminal 4. Further, in the present embodiment, the ground of the mounting substrate 210 in the pressure detection device 5 and the ground of the power supply unit 66 (see FIG. 9) in the control device 6 are shared via the third cable 83 of the transmission cable 8. Is set.
  • the pressure detection device 5 of the present embodiment may be sold alone or sold with the transmission cable 8 attached to the pressure detection device 5.
  • the output side first connection pin 21c functions as a constant voltage supply unit
  • the output side second connection pin 21d functions as an output signal transmission unit
  • the output side third connection pin 21e functions as a ground unit.
  • the first cable 81 connected to the output side first connection pin 21c is a constant voltage supply means
  • the second cable 82 connected to the output side second connection pin 21d is an output signal transmission means.
  • the third cables 83 connected to the output-side third connection pins 21e function as grounding means.
  • the transmission cable 8 (more specifically, the first cable 81, the second cable 82, and the like) that connects the pressure detection device 5 and the control device 6. Fault diagnosis (disconnection detection) of the third cable 83) is performed.
  • FIG. 11 is a flowchart for explaining the procedure of the disconnection detection operation at the start of the internal combustion engine 1.
  • an ignition switch (not shown) for starting the internal combustion engine 1 is set to ON (step 11)
  • the control device 6 sends an external output voltage from the power source 66 to the pressure detection device 5 via the transmission cable 8.
  • Vo power supply is started (step 12).
  • the control device 6 performs a disconnection detection operation of the transmission cable 8 connecting the control device 6 and the pressure detection device 5 (step 13), and determines whether or not a disconnection is detected (step 14).
  • step 14 If an affirmative determination (YES) is made in step 14, that is, if disconnection is detected in any of the first cable 81, the second cable 82, and the third cable 83 that constitute the transmission cable 8, the control device 6 Records data on which cable is detected to be disconnected in the EEPROM 63 built in the control device 6 (step 15). Subsequently, the control device 6 displays a message on the disconnection detection on a user interface (not shown) (step 16), and completes a series of processing.
  • step 14 if a negative determination (NO) is made in step 14, that is, if no disconnection is detected in any of the first cable 81, the second cable 82, and the third cable 83 constituting the transmission cable 8, The control device 6 completes the process as it is.
  • the output ground terminal 211e provided on the mounting substrate 210 of the pressure detection device 5 is connected to the power supply unit 66 of the control device 6 via the output-side third connection pin 21e and the third cable 83.
  • the power supply unit 66 is grounded via the cylinder block 2.
  • An input ground terminal 211b provided on the mounting board 210 of the pressure detection device 5 is connected to the housing 30 via the input-side second connection pin 21b.
  • the housing 30 is grounded via the cylinder head 4. Has been. For this reason, for example, even when a disconnection occurs in the third cable 83, there is a concern that the disconnection cannot be detected in the above-described disconnection detection operation because the mounting substrate 210 is grounded via the input ground terminal 211b. .
  • a DC cutoff circuit 215 is provided between the input ground terminal 211b and the output ground terminal 211e so that no DC current flows from the input ground terminal 211b toward the housing 30. I did it. Therefore, when direct current is supplied to the mounting board 210, the output ground terminal 211e has a function as ground, while the input ground terminal 211b does not have a function as ground. As a result, in the above-described disconnection detection operation, it is possible to detect the presence or absence of disconnection in the third cable 83 by supplying a DC signal as a signal for detecting disconnection.
  • the pressure detection operation by the pressure detection device 5 of the present embodiment will be described.
  • the combustion pressure generated in the combustion chamber C is applied to the inner portion 42 of the diaphragm head 40 of the sensor unit 100.
  • the combustion pressure applied to the diaphragm head 40 acts on the piezoelectric element 10 sandwiched between the first electrode portion 50 and the second electrode portion 55, so that electric charges corresponding to the combustion pressure are applied to the piezoelectric element 10.
  • Arise The electric charge generated in the piezoelectric element 10 is supplied to the mounting board 210 of the circuit board part 21 as the input electric charge Qi through the second electrode part 55, the coil spring 70 and the conductive member 22.
  • the input charge Qi supplied to the mounting board 210 is subjected to integration processing and amplification processing in various circuits provided on the mounting board 210, and then an external output voltage Vo corresponding to the charge is transmitted from the circuit board portion 21. It is supplied to the control device 6 via the cable 8.
  • the pressure detection device 5 of the present embodiment is attached to the internal combustion engine 1, and electromagnetic waves generated in accordance with the operation of the internal combustion engine 1 affect the mounting substrate 210 provided in the pressure detection device 5. give. That is, there is a concern that noise due to the above-described electromagnetic waves is superimposed on various signals used on the mounting substrate 210 and the external output voltage Vo output from the mounting substrate 210.
  • the input ground terminal 211b is provided on the mounting substrate 210 via the DC cutoff circuit 215. Therefore, AC component noise generated in each circuit passes through the DC cutoff circuit 215. Can be dropped to ground. For this reason, the noise superimposed on the external output voltage Vo transmitted from the pressure detection device 5 to the control device 6 can be reduced.
  • the disconnection detection of the transmission cable 8 that connects the pressure detection device 5 and the control device 6 using the piezoelectric element 10 has been described as an example.
  • the present invention is not limited to this.
  • the present invention can also be applied to detection of disconnection of the transmission cable 8 that connects the control device 6 and a detection device that detects various physical quantities such as temperature, humidity, or flow rate.
  • a capacitor is used as the DC cutoff circuit 215.
  • the present invention is not limited to this.
  • a diode having an anode on the input ground terminal 211b side may be used.
  • the DC cut-off circuit 215 is incorporated in the mounting board 210.
  • the present invention is not limited to this.
  • a DC cut-off circuit 215 is separately provided between the mounting board 210 and the housing 30. It doesn't matter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

A mounting substrate (210) is provided with: an integration circuit (213), which integrates an input charge (Qi) obtained from a piezoelectric element (10) and converts the input charge into a piezoelectric signal; an amplifying circuit (214), which amplifies the piezoelectric signal; and a power supply circuit (216), which supplies an internal power supply voltage (Vr) to the integration circuit (213) and the amplifying circuit (214). The input charge (Qi) is inputted to the mounting substrate (210) from an input signal terminal (211a), an external power supply voltage (Vc) is inputted from a first cable via a power supply terminal (211c), and an external output voltage (Vo) is outputted from an output signal terminal (211d) via a second cable. Furthermore, the mounting substrate (210) is grounded from an output grounding terminal (211e) via a third cable, and is grounded from a direct-current blocking circuit (215) via the input grounding terminal (211b) and a housing.

Description

検出システムおよび検出装置Detection system and detection device
 本発明は、物理量を検出する検出システムおよび物理量を検出する検出装置に関する。 The present invention relates to a detection system that detects a physical quantity and a detection device that detects a physical quantity.
 例えば内燃機関を有する自動車等の装置では、装置内に圧力や温度等を検出する複数の検出装置が搭載されており、これらの検出装置による検出結果に基づき、ECU(Engine Control Unit)と呼ばれる制御装置が、内燃機関の動作等に関する制御を行っている。ここで、制御装置と検出装置とは、通常、制御装置から検出装置に給電を行うための電線、検出装置から制御装置に信号を送るための電線、および、制御装置と検出装置とのグランドを共通にするための電線、を用いて接続される。 For example, in an apparatus such as an automobile having an internal combustion engine, a plurality of detection devices that detect pressure, temperature, and the like are mounted in the device. Based on the detection results of these detection devices, a control called ECU (Engine Control Unit) is performed. The device controls the operation of the internal combustion engine. Here, the control device and the detection device are usually an electric wire for supplying power from the control device to the detection device, an electric wire for sending a signal from the detection device to the control device, and a ground between the control device and the detection device. It connects using the electric wire for making it common.
 例えば特許文献1には、ECUユニットと、電流路を流れる電流を検出する電流センサユニットとを備えた車載用のパワーステアリング装置システムにおいて、ECUユニットから電流センサユニットに電源を供給する電源ラインのグランド線の断線を、NチャンネルFETと抵抗とを有する回路を用いて検出する技術が記載されている。 For example, in Patent Document 1, in an in-vehicle power steering system including an ECU unit and a current sensor unit that detects a current flowing through a current path, a ground of a power supply line that supplies power from the ECU unit to the current sensor unit is disclosed. A technique for detecting a disconnection of a line using a circuit having an N-channel FET and a resistor is described.
特開2008-51722号公報JP 2008-51722 A
 ここで、上述した検出装置においては、検出信号にノイズが重畳されることがある。ここで、検出装置に設けられた信号処理回路におけるグランドが不安定な場合には、ノイズが重畳されやすくなってしまい、結果として、検出信号に基づいて得られる検出量に含まれる誤差が大きくなってしまうおそれがあった。
 本発明は、信号処理回路の接地に使用される電線の断線を検出可能にするとともに、信号処理回路からの出力信号におけるノイズの低減を図ることを目的とする。
Here, in the detection device described above, noise may be superimposed on the detection signal. Here, when the ground in the signal processing circuit provided in the detection device is unstable, noise is easily superimposed, and as a result, an error included in the detection amount obtained based on the detection signal increases. There was a risk of it.
An object of the present invention is to enable detection of disconnection of an electric wire used for grounding a signal processing circuit, and to reduce noise in an output signal from the signal processing circuit.
 本発明の検出システムは、物理量の変化を検出する検出素子と、当該検出素子から出力される検出信号に処理を施す信号処理回路と、当該検出素子および当該信号処理回路が取り付けられるとともに、接地体に電気的に接続される筐体と、当該筐体と当該信号処理回路におけるグランドとを、直流電流の通電を抑制しながら接続する直流抑制部とを含む検出部と、前記検出部における前記信号処理回路に定電圧を供給するための定電圧供給線と、当該信号処理部から出力される出力信号を伝送するための出力信号伝送線と、当該信号処理回路における前記グランドに接続するための接地線とを介して当該検出部に接続され、さらに、前記接地体に電気的に接続されることで、当該検出部に当該定電圧を供給するとともに当該検出部から入力される当該出力信号に処理を施す供給/処理部とを含んでいる。 The detection system of the present invention includes a detection element for detecting a change in physical quantity, a signal processing circuit for processing a detection signal output from the detection element, the detection element and the signal processing circuit, and a grounding body. A detector that includes a housing electrically connected to the housing, and a DC suppression unit that connects the housing and the ground in the signal processing circuit while suppressing energization of a DC current, and the signal in the detection unit A constant voltage supply line for supplying a constant voltage to the processing circuit, an output signal transmission line for transmitting an output signal output from the signal processing unit, and a ground for connecting to the ground in the signal processing circuit Is connected to the detection unit via a wire and is further electrically connected to the grounding body to supply the constant voltage to the detection unit and input from the detection unit. And a supply / processing units performs processing on the output signal.
 この検出システムにおいて、前記検出素子は、圧電体を用いて圧力を検出する圧電素子で構成され、前記信号処理回路は、前記圧電素子から入力される電荷信号を積分することで、当該電荷信号を電圧信号に変換する積分回路と、当該積分回路から入力される当該電圧信号を増幅し、得られた増幅信号を、前記出力信号伝送線を介して前記供給/処理部に出力する増幅回路とを有することが好ましい。これにより、微弱な電荷信号に基づいて増幅信号を得る場合においても、増幅信号に含まれるノイズを低減することができる。 In this detection system, the detection element is composed of a piezoelectric element that detects pressure using a piezoelectric body, and the signal processing circuit integrates the charge signal input from the piezoelectric element, thereby obtaining the charge signal. An integrating circuit for converting the voltage signal; and an amplifying circuit for amplifying the voltage signal input from the integrating circuit and outputting the obtained amplified signal to the supply / processing unit via the output signal transmission line. It is preferable to have. Thereby, even when an amplified signal is obtained based on a weak charge signal, noise contained in the amplified signal can be reduced.
 また、前記信号処理回路は、前記定電圧供給線を介して入力される前記定電圧を、当該定電圧よりも低い電圧に変換して、前記積分回路および前記増幅回路に供給する電源回路をさらに備えることが好ましい。これにより、積分回路および増幅回路を、例えば演算増幅器を含む構成とすることができる。
 さらに、前記直流抑制部は、コンデンサを含むことが好ましい。これにより、簡易な構成で直流遮断回路を構成することができる。
The signal processing circuit further includes a power supply circuit that converts the constant voltage input via the constant voltage supply line into a voltage lower than the constant voltage and supplies the voltage to the integrating circuit and the amplifier circuit. It is preferable to provide. Thereby, the integration circuit and the amplification circuit can be configured to include, for example, an operational amplifier.
Furthermore, it is preferable that the direct current suppression unit includes a capacitor. As a result, the DC cutoff circuit can be configured with a simple configuration.
 また、他の観点から捉えると、本発明の検出装置は、物理量の変化を検出する検出素子と、前記検出素子から出力される検出信号に処理を施す信号処理回路と、前記検出素子および前記信号処理回路が取り付けられる筐体と、前記信号処理回路に定電圧を供給するための定電圧供給手段と、前記信号処理回路から出力される出力信号を伝送するための出力信号伝送手段と、前記信号処理回路におけるグランドに接続するための接地手段と、前記筐体と前記信号処理回路における前記グランドとを、直流電流の通電を抑制しながら接続する直流抑制部とを含んでいる。 From another viewpoint, the detection apparatus of the present invention includes a detection element that detects a change in physical quantity, a signal processing circuit that processes a detection signal output from the detection element, the detection element, and the signal A housing to which a processing circuit is attached, a constant voltage supply means for supplying a constant voltage to the signal processing circuit, an output signal transmission means for transmitting an output signal output from the signal processing circuit, and the signal A grounding means for connecting to the ground in the processing circuit; and a direct current suppression unit that connects the casing and the ground in the signal processing circuit while suppressing the application of direct current.
 本発明によれば、信号処理回路の接地に使用される電線の断線を検出可能にするとともに、信号処理回路からの出力信号におけるノイズの低減を図ることができる。 According to the present invention, it is possible to detect disconnection of an electric wire used for grounding a signal processing circuit and to reduce noise in an output signal from the signal processing circuit.
実施の形態に係る内燃機関の概略構成図である。1 is a schematic configuration diagram of an internal combustion engine according to an embodiment. 図1に示す圧力検出装置のII部の拡大図である。It is an enlarged view of the II section of the pressure detection apparatus shown in FIG. 圧力検出装置の概略構成図である。It is a schematic block diagram of a pressure detection apparatus. 図3に示す圧力検出装置のIV-IV部の断面図である。FIG. 4 is a cross-sectional view of the IV-IV part of the pressure detection device shown in FIG. 3. 図4に示す圧力検出装置のV部の拡大図である。It is an enlarged view of the V section of the pressure detection apparatus shown in FIG. 図4に示す圧力検出装置のVI部の拡大図である。It is an enlarged view of VI part of the pressure detection apparatus shown in FIG. 実装基板における回路構成図である。It is a circuit block diagram in a mounting substrate. 実装基板に設けられた電源回路の回路構成図である。It is a circuit block diagram of the power supply circuit provided in the mounting board | substrate. 制御装置の構成を説明するための図である。It is a figure for demonstrating the structure of a control apparatus. 内燃機関、圧力検出装置、制御装置および伝送ケーブルの、電気的な接続関係を説明するための図である。It is a figure for demonstrating the electrical connection relationship of an internal combustion engine, a pressure detection apparatus, a control apparatus, and a transmission cable. 内燃機関の始動時における断線検出動作の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the disconnection detection operation | movement at the time of start-up of an internal combustion engine.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 図1は、本実施形態に係る内燃機関1の概略構成図である。また、図2は、図1に示す圧力検出装置5のII部の拡大図である。
 内燃機関1は、シリンダ2aを有するシリンダブロック2と、シリンダ2a内を往復動するピストン3と、シリンダブロック2に締結されてシリンダ2aおよびピストン3などとともに燃焼室Cを形成するシリンダヘッド4と、を備えている。ここで、シリンダブロック2およびシリンダヘッド4は、ともに、導電性を有するアルミニウムあるいは鋳鉄等で構成されている。また、内燃機関1は、シリンダヘッド4に装着されて燃焼室C内の圧力を検出する圧力検出装置5と、圧力検出装置5が検出した圧力に基づいて内燃機関1の作動を制御する制御装置6と、圧力検出装置5とシリンダヘッド4との間に介在して燃焼室C内の気密性を保つためのシール部材7と、圧力検出装置5と制御装置6との間で電気信号を伝送する伝送ケーブル8と、を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an internal combustion engine 1 according to the present embodiment. 2 is an enlarged view of the II part of the pressure detection device 5 shown in FIG.
The internal combustion engine 1 includes a cylinder block 2 having a cylinder 2a, a piston 3 that reciprocates in the cylinder 2a, a cylinder head 4 that is fastened to the cylinder block 2 and forms a combustion chamber C together with the cylinder 2a, the piston 3, and the like, It has. Here, both the cylinder block 2 and the cylinder head 4 are made of conductive aluminum, cast iron, or the like. The internal combustion engine 1 is mounted on the cylinder head 4 to detect the pressure in the combustion chamber C, and a control device that controls the operation of the internal combustion engine 1 based on the pressure detected by the pressure detection device 5. 6, an electric signal is transmitted between the pressure detection device 5 and the control device 6, and between the pressure detection device 5 and the control device 6, which is interposed between the pressure detection device 5 and the cylinder head 4 and maintains the airtightness in the combustion chamber C. A transmission cable 8.
 そして、伝送ケーブル8は、図2に示すように、3本のケーブルすなわち第1ケーブル81、第2ケーブル82および第3ケーブル83と、これら第1ケーブル81~第3ケーブル83を圧力検出装置5に接続するためのコネクタ80とを有している。ここで、第1ケーブル81、第2ケーブル82および第3ケーブル83は、それぞれ、錫メッキ軟銅撚り線からなる導体部の外周面に、樹脂製の絶縁体を被覆してなる絶縁電線にて構成されている。なお、本実施の形態では、第1ケーブル81が定電圧供給線として、第2ケーブル82が出力信号伝送線として、第3ケーブル83が接地線として、それぞれ機能している。 As shown in FIG. 2, the transmission cable 8 includes three cables, that is, a first cable 81, a second cable 82, and a third cable 83, and the first cable 81 to the third cable 83. And a connector 80 for connecting to the connector. Here, each of the first cable 81, the second cable 82, and the third cable 83 is constituted by an insulated wire in which the outer peripheral surface of a conductor portion made of a tinned annealed copper stranded wire is coated with a resin insulator. Has been. In the present embodiment, the first cable 81 functions as a constant voltage supply line, the second cable 82 functions as an output signal transmission line, and the third cable 83 functions as a ground line.
 また、図2に示すように、シリンダヘッド4には、燃焼室Cと外部とを連通する連通孔4aが形成されている。連通孔4aは、燃焼室C側から、第1孔部4bと、第1孔部4bの孔径から徐々に径が拡大している傾斜部4cと、第1孔部4bの孔径よりも孔径が大きい第2孔部4dと、を有している。第2孔部4dを形成する周囲の壁には、圧力検出装置5に形成された後述するハウジング30の雄ねじ332aがねじ込まれる雌ねじ4eが形成されている。 Further, as shown in FIG. 2, the cylinder head 4 is formed with a communication hole 4a for communicating the combustion chamber C with the outside. From the combustion chamber C side, the communication hole 4a has a hole diameter larger than the first hole part 4b, the inclined part 4c whose diameter gradually increases from the hole diameter of the first hole part 4b, and the hole diameter of the first hole part 4b. A large second hole 4d. A female screw 4e into which a male screw 332a of the housing 30 (described later) formed in the pressure detection device 5 is screwed is formed on the surrounding wall forming the second hole 4d.
 以下に、圧力検出装置5について詳述する。
 図3は、検出部あるいは検出装置の一例としての圧力検出装置5の概略構成図である。図4は、図3に示す圧力検出装置5のIV-IV部の断面図である。図5は、図4に示す圧力検出装置5のV部の拡大図である。また、図6は、図4に示す圧力検出装置5のVI部の拡大図である。
Below, the pressure detection apparatus 5 is explained in full detail.
FIG. 3 is a schematic configuration diagram of a pressure detection device 5 as an example of a detection unit or a detection device. 4 is a cross-sectional view of the IV-IV portion of the pressure detection device 5 shown in FIG. FIG. 5 is an enlarged view of a V portion of the pressure detection device 5 shown in FIG. FIG. 6 is an enlarged view of a VI part of the pressure detection device 5 shown in FIG.
 圧力検出装置5は、燃焼室C内の圧力を電気信号に変換する圧電素子10を有するセンサ部100と、センサ部100からの電気信号を処理する信号処理部200と、信号処理部200を保持する保持部材300と、を備えている。この圧力検出装置5をシリンダヘッド4に装着する際には、センサ部100の後述するダイアフラムヘッド40の方から先に、シリンダヘッド4に形成された連通孔4aに挿入していく。以下の説明において、図4の左側を圧力検出装置5の先端側、右側を圧力検出装置5の後端側とする。 The pressure detection device 5 includes a sensor unit 100 having a piezoelectric element 10 that converts the pressure in the combustion chamber C into an electric signal, a signal processing unit 200 that processes an electric signal from the sensor unit 100, and a signal processing unit 200. Holding member 300. When the pressure detection device 5 is mounted on the cylinder head 4, the diaphragm head 40 (described later) of the sensor unit 100 is inserted into the communication hole 4 a formed in the cylinder head 4 first. In the following description, the left side of FIG. 4 is the front end side of the pressure detection device 5, and the right side is the rear end side of the pressure detection device 5.
 先ずは、センサ部100について説明する。
 センサ部100は、受けた圧力を電気信号に変換する圧電素子10と、筒状であってその内部に圧電素子10などを収納する円柱状の孔が形成されたハウジング30と、を備えている。以下では、ハウジング30に形成された円柱状の孔の中心線方向を、単に中心線方向と称す。
First, the sensor unit 100 will be described.
The sensor unit 100 includes a piezoelectric element 10 that converts received pressure into an electrical signal, and a housing 30 that is cylindrical and in which a cylindrical hole that accommodates the piezoelectric element 10 and the like is formed. . Hereinafter, the center line direction of the cylindrical hole formed in the housing 30 is simply referred to as a center line direction.
 また、センサ部100は、ハウジング30における先端側の開口部を塞ぐように設けられて、燃焼室C内の圧力が作用するダイアフラムヘッド40と、ダイアフラムヘッド40と圧電素子10との間に設けられた第1電極部50と、圧電素子10に対して第1電極部50とは反対側に配置された第2電極部55と、を備えている。
 また、センサ部100は、第2電極部55を電気的に絶縁するアルミナセラミック製の絶縁リング60と、絶縁リング60よりも後端側に設けられて、信号処理部200の後述する覆い部材23の端部を支持する支持部材65と、第2電極部55と後述する伝導部材22との間に介在するコイルスプリング70と、を備えている。
The sensor unit 100 is provided so as to close the opening on the distal end side of the housing 30, and is provided between the diaphragm head 40 on which the pressure in the combustion chamber C acts, and between the diaphragm head 40 and the piezoelectric element 10. The first electrode unit 50 and the second electrode unit 55 disposed on the opposite side of the piezoelectric element 10 from the first electrode unit 50 are provided.
The sensor unit 100 is provided with an insulating ring 60 made of alumina ceramic that electrically insulates the second electrode unit 55 and a rear end side of the insulating ring 60, and a covering member 23 described later of the signal processing unit 200. And a coil spring 70 interposed between the second electrode portion 55 and a conductive member 22 described later.
 圧電素子10は、圧電縦効果の圧電作用を示す圧電体を有している。圧電縦効果とは、圧電体の電荷発生軸と同一方向の応力印加軸に外力を作用させると、電荷発生軸方向の圧電体の表面に電荷が発生する作用をいう。本実施形態に係る圧電素子10は、中心線方向が応力印加軸の方向となるようにハウジング30内に収納されている。 The piezoelectric element 10 has a piezoelectric body that exhibits the piezoelectric action of the piezoelectric longitudinal effect. The piezoelectric longitudinal effect refers to the action of generating charges on the surface of the piezoelectric body in the direction of the charge generation axis when an external force is applied to the stress application axis in the same direction as the charge generation axis of the piezoelectric body. The piezoelectric element 10 according to the present embodiment is housed in the housing 30 so that the center line direction is the direction of the stress application axis.
 次に、圧電素子10に圧電横効果を利用した場合を例示する。圧電横効果とは、圧電体の電荷発生軸に対して直交する位置にある応力印加軸に外力を作用させると、電荷発生軸方向の圧電体の表面に電荷が発生する作用をいう。薄板状に薄く形成した圧電体を複数枚積層して構成しても良く、このように積層することで、圧電体に発生する電荷を効率的に集めてセンサの感度を上げることができる。圧電体としては、圧電縦効果及び圧電横効果を有するランガサイト系結晶(ランガサイト、ランガテイト、ランガナイト、LGTA)や水晶、ガリウムリン酸塩などを使用することを例示することができる。なお、本実施形態の圧電素子10には、圧電体としてランガサイト単結晶を用いている。 Next, the case where the piezoelectric lateral effect is used for the piezoelectric element 10 will be exemplified. The piezoelectric transverse effect is an action in which charges are generated on the surface of the piezoelectric body in the direction of the charge generation axis when an external force is applied to the stress application axis at a position orthogonal to the charge generation axis of the piezoelectric body. A plurality of thinly formed piezoelectric bodies may be laminated, and by laminating in this way, the charge generated in the piezoelectric bodies can be efficiently collected to increase the sensitivity of the sensor. Examples of the piezoelectric body include the use of a langasite crystal (a langasite, langagate, langanite, LGTA) having a piezoelectric longitudinal effect and a piezoelectric transverse effect, quartz, gallium phosphate, and the like. In the piezoelectric element 10 of the present embodiment, a langasite single crystal is used as the piezoelectric body.
 筐体の一例としてのハウジング30は、図5に示すように、先端側に設けられた第1ハウジング31と、後端側に設けられた第2ハウジング32と、を有する。
 第1ハウジング31は、内部に、先端側から後端側にかけて段階的に径が異なるように形成された円柱状の孔310が形成された薄肉円筒状の部材である。外周面には、中心線方向の中央部に、外周面から突出する突出部315が周方向の全域に渡って設けられている。
 孔310は、先端側から後端側にかけて順に形成された、第1孔311と、第1孔311の孔径よりも大きな孔径の第2孔312と、から構成される。突出部315は、先端部に、先端側から後端側にかけて徐々に径が大きくなる傾斜面315aを有し、後端部に、中心線方向に垂直な垂直面315bを有している。
As shown in FIG. 5, the housing 30 as an example of the housing includes a first housing 31 provided on the front end side and a second housing 32 provided on the rear end side.
The first housing 31 is a thin-walled cylindrical member having a cylindrical hole 310 formed therein so as to have a diameter that gradually changes from the front end side to the rear end side. On the outer peripheral surface, a projecting portion 315 that protrudes from the outer peripheral surface is provided in the central portion in the center line direction over the entire region in the circumferential direction.
The hole 310 includes a first hole 311 and a second hole 312 having a diameter larger than the diameter of the first hole 311 formed in order from the front end side to the rear end side. The protrusion 315 has an inclined surface 315a whose diameter gradually increases from the front end side to the rear end side at the front end portion, and a vertical surface 315b perpendicular to the center line direction at the rear end portion.
 第2ハウジング32は、図4に示すように、内部に、先端側から後端側にかけて段階的に径が異なるように形成された円柱状の孔320が形成された筒状の部材であり、外部に、先端側から後端側にかけて段階的に径が異なるように形成された外周面330が設けられている。
 孔320は、先端側から後端側にかけて順に形成された、第1孔径を有する第1円柱孔321と、第1孔径よりも小さな第2孔径を有する第2円柱孔322と、第2孔径よりも大きな第3孔径を有する第3円柱孔323と、第3孔径よりも大きな第4孔径を有する第4円柱孔324と、第4孔径よりも大きな第5孔径を有する第5円柱孔325と、から構成される。
 第2ハウジング32における先端部は、第1ハウジング31における後端部にしまりばめで嵌合(圧入)されるように、第1円柱孔321における第1孔径は、第1ハウジング31の外周面の径以下となるように設定されている。
As shown in FIG. 4, the second housing 32 is a cylindrical member in which a cylindrical hole 320 is formed so that the diameter gradually changes from the front end side to the rear end side. An outer peripheral surface 330 is formed on the outside so that the diameter is gradually changed from the front end side to the rear end side.
The hole 320 includes a first cylindrical hole 321 having a first hole diameter, a second cylindrical hole 322 having a second hole diameter smaller than the first hole diameter, and a second hole diameter. A third cylindrical hole 323 having a larger third hole diameter, a fourth cylindrical hole 324 having a fourth hole diameter larger than the third hole diameter, a fifth cylindrical hole 325 having a fifth hole diameter larger than the fourth hole diameter, Consists of
The first hole diameter in the first cylindrical hole 321 is such that the front end of the second housing 32 is fitted (press-fit) to the rear end of the first housing 31 with an interference fit. It is set to be less than the diameter.
 外周面330は、先端側から後端側にかけて、第1外周面331と、第1外周面331の外径よりも大きな外径の第2外周面332と、第2外周面332の外径よりも大きな外径の第3外周面333と、第3外周面333の外径よりも大きな外径の第4外周面334と、第4外周面334の外径よりも小さな外径の第5外周面335と、から構成される。
 第2外周面332における先端部には、シリンダヘッド4の雌ねじ4eにねじ込まれる雄ねじ332aが形成されている。第3外周面333には、後述する第1シール部材71がすきまばめで嵌め込まれ、第3外周面333の外径と第1シール部材71の内径との寸法公差は、例えば零から0.2mmとなるように設定される。第4外周面334における後端部は、周方向に等間隔に6つの面取りを有する正六角柱に形成されている。この正六角柱に形成された部位が、圧力検出装置5をシリンダヘッド4に締め付ける際に、締付用の工具が嵌め込まれ、工具に付与された回転力が伝達される部位となる。第5外周面335における中心線方向の中央部には、外周面から凹んだ凹部335aが全周に渡って形成されている。
The outer peripheral surface 330 has a first outer peripheral surface 331, a second outer peripheral surface 332 having an outer diameter larger than the outer diameter of the first outer peripheral surface 331, and an outer diameter of the second outer peripheral surface 332 from the front end side to the rear end side. A third outer peripheral surface 333 having a larger outer diameter, a fourth outer peripheral surface 334 having an outer diameter larger than the outer diameter of the third outer peripheral surface 333, and a fifth outer periphery having an outer diameter smaller than the outer diameter of the fourth outer peripheral surface 334 A surface 335.
A male screw 332 a that is screwed into the female screw 4 e of the cylinder head 4 is formed at the tip of the second outer peripheral surface 332. A first seal member 71, which will be described later, is fitted into the third outer peripheral surface 333 with a clearance fit, and the dimensional tolerance between the outer diameter of the third outer peripheral surface 333 and the inner diameter of the first seal member 71 is, for example, from zero to 0.2 mm. Is set to be The rear end portion of the fourth outer peripheral surface 334 is formed as a regular hexagonal column having six chamfers at equal intervals in the circumferential direction. When the pressure detecting device 5 is fastened to the cylinder head 4, the portion formed in the regular hexagonal column is a portion into which a tightening tool is fitted and a rotational force applied to the tool is transmitted. A concave portion 335a that is recessed from the outer peripheral surface is formed over the entire circumference in the center portion of the fifth outer peripheral surface 335 in the center line direction.
 また、図6に示すように、第2ハウジング32は、第4円柱孔324から第5円柱孔325への移行部分であり、第5円柱孔325(図4参照)における先端部には、信号処理部200の後述する覆い部材23の基板被覆部232における先端側の端面が突き当たる突当面340が設けられている。突当面340には、後述する信号処理部200における回路基板部21の入力側第2接続ピン21bが差し込まれるピン用凹部340aが形成されている。 Further, as shown in FIG. 6, the second housing 32 is a transition portion from the fourth cylindrical hole 324 to the fifth cylindrical hole 325, and a signal is placed at the tip of the fifth cylindrical hole 325 (see FIG. 4). An abutting surface 340 against which an end surface on the front end side of the substrate covering portion 232 of the covering member 23 described later of the processing unit 200 abuts is provided. The abutting surface 340 is formed with a pin recess 340a into which the input-side second connection pin 21b of the circuit board unit 21 in the signal processing unit 200 described later is inserted.
 第1ハウジング31および第2ハウジング32は、燃焼室Cに近い位置に存在するため、少なくとも、-40~350〔℃〕の使用温度環境に耐える材料を用いて製作することが望ましい。また、第1ハウジング31および第2ハウジング32は、後述するように、ハウジング30内に収容される各部の接地に使用されることから、導電性を有する材料を用いて製作することが望ましい。具体的には、導電性を有し且つ耐熱性の高いステンレス鋼材、例えば、JIS規格のSUS630、SUS316、SUS430等を用いることが望ましい。 Since the first housing 31 and the second housing 32 exist at a position close to the combustion chamber C, it is desirable to manufacture the first housing 31 and the second housing 32 using a material that can withstand at least an operating temperature environment of −40 to 350 [° C.]. Moreover, since the 1st housing 31 and the 2nd housing 32 are used for the earthing | grounding of each part accommodated in the housing 30 so that it may mention later, it is desirable to manufacture using the material which has electroconductivity. Specifically, it is desirable to use a stainless steel material having conductivity and high heat resistance, for example, JIS standard SUS630, SUS316, SUS430, or the like.
 ダイアフラムヘッド40は、図5に示すように、円筒状の円筒状部41と、円筒状部41の内側に形成された内側部42と、を有している。
 円筒状部41における後端部は、ハウジング30の第1ハウジング31における先端部としまりばめで嵌合(圧入)されて、この先端部の内部に入り込む進入部41aと、この先端部における端面31aと同形状に形成され、嵌合された際にこの端面31aが突き当たる突当面41bと、を有している。
 内側部42は、円筒状部41における先端側の開口を塞ぐように設けられた円盤状の部材であり、後端側の面における中央部にはこの面から圧電素子10側に突出する突出部42aが設けられている。また、内側部42の、先端側の面における中央部にはこの面から圧電素子10側に凹んだ凹部42bが設けられている。
 ダイアフラムヘッド40の材料としては、高温でありかつ高圧となる燃焼室C内に存在するため、弾性が高く、かつ耐久性、耐熱性、耐触性等に優れた合金製であることが望ましく、例えばSUH660を例示することができる。
As shown in FIG. 5, the diaphragm head 40 has a cylindrical cylindrical portion 41 and an inner portion 42 formed inside the cylindrical portion 41.
The rear end portion of the cylindrical portion 41 is fitted (press-fitted) with the front end portion of the first housing 31 of the housing 30 with an interference fit, and enters the inside of the front end portion, and the end surface 31a at the front end portion. And an abutting surface 41b against which the end surface 31a abuts when fitted.
The inner part 42 is a disk-shaped member provided so as to close the opening on the front end side in the cylindrical part 41, and a protruding part that protrudes from this surface to the piezoelectric element 10 side in the central part on the rear end side surface 42a is provided. Further, a concave portion 42b that is recessed from this surface to the piezoelectric element 10 side is provided at the center of the inner portion 42 on the front end side surface.
The material of the diaphragm head 40 is preferably made of an alloy having high elasticity and excellent durability, heat resistance, touch resistance, and the like because it exists in the combustion chamber C at a high temperature and a high pressure. For example, SUH660 can be illustrated.
 第1電極部50は、先端側から後端側にかけて段階的に径が異なるように形成された円柱状の部材であり、第1円柱部51と、第1円柱部51の半径よりも大きな半径の第2円柱部52と、から構成される。第1円柱部51の外径はダイアフラムヘッド40の進入部41aの内径よりも小さく、第2円柱部52の外径は第1ハウジング31の第1孔311の孔径と略同じである。そして、第1円柱部51における先端側の端面がダイアフラムヘッド40の内側部42の突出部42aと、第2円柱部52における後端側の端面が圧電素子10における先端側の面とに接触するように配置される。第2円柱部52の外周面が第1ハウジング31の内周面と接触すること、および/または第1円柱部51における先端側の端面がダイアフラムヘッド40と接触することによって、圧電素子10における先端部は、ハウジング30と電気的に接続される。
 第1電極部50は、燃焼室C内の圧力を圧電素子10に作用させるものであり、圧電素子10側の端面である第2円柱部52における後端側の端面が圧電素子10の端面の全面を押すことが可能な大きさに形成される。また、第1電極部50は、ダイアフラムヘッド40から受ける圧力を均等に圧電素子10に作用させることができるように、中心線方向の両端面が、それぞれ平滑面に形成されるとともに、中心線方向と直交する面に沿って互いに略平行に設けられている。
 第1電極部50の材質としては、ステンレスを例示することができる。
The first electrode portion 50 is a columnar member formed so as to have a stepwise difference in diameter from the front end side to the rear end side, and has a radius larger than the radius of the first columnar portion 51 and the first columnar portion 51. The second cylindrical portion 52. The outer diameter of the first cylindrical portion 51 is smaller than the inner diameter of the entry portion 41 a of the diaphragm head 40, and the outer diameter of the second cylindrical portion 52 is substantially the same as the hole diameter of the first hole 311 of the first housing 31. The end surface on the front end side of the first cylindrical portion 51 is in contact with the protruding portion 42 a of the inner side portion 42 of the diaphragm head 40, and the end surface on the rear end side of the second cylindrical portion 52 is in contact with the front surface side of the piezoelectric element 10. Are arranged as follows. When the outer peripheral surface of the second cylindrical portion 52 is in contact with the inner peripheral surface of the first housing 31 and / or the end surface on the distal end side of the first cylindrical portion 51 is in contact with the diaphragm head 40, the distal end of the piezoelectric element 10 is obtained. The part is electrically connected to the housing 30.
The first electrode portion 50 applies pressure in the combustion chamber C to the piezoelectric element 10, and the end surface on the rear end side of the second cylindrical portion 52, which is the end surface on the piezoelectric element 10 side, is the end surface of the piezoelectric element 10. It is formed in a size that can push the entire surface. In addition, the first electrode portion 50 has both end surfaces in the center line direction formed as smooth surfaces so that the pressure received from the diaphragm head 40 can be applied to the piezoelectric element 10 evenly, and the first electrode portion 50 has a center line direction. Are provided substantially in parallel with each other along a plane orthogonal to each other.
An example of the material of the first electrode unit 50 is stainless steel.
 第2電極部55は、円柱状の部材であり、先端側の端面が圧電素子10における後端側の端面に接触し、後端側の端面が絶縁リング60に接触するように配置される。第2電極部55における後端側の端面には、この端面から後端側に突出する円柱状の突出部55aが設けられている。突出部55aは、端面側の基端部と、この基端部の外径よりも小さな外径の先端部と、を有する。突出部55aの外径は絶縁リング60の内径よりも小さく設定されるとともに、突出部55aの長さは絶縁リング60の幅(中心線方向の長さ)よりも長く設定され、突出部55aの先端が絶縁リング60から露出している。この第2電極部55は、第1電極部50との間で圧電素子10に対して一定の荷重を加えるように作用する部材であり、圧電素子10側(先端側)の端面は、圧電素子10の後端側の端面の全面を押すことが可能な大きさに形成されるとともに、平滑面且つ圧電素子10の後端側の端面と平行な面に形成されている。第2電極部55の外径は第1ハウジング31の第2孔312の孔径よりも小さくなるように設定されており、第2電極部55の外周面と第1ハウジング31の内周面との間には隙間がある。
 第2電極部55の材質としては、ステンレスを例示することができる。
The second electrode portion 55 is a columnar member, and is disposed such that the end surface on the front end side is in contact with the end surface on the rear end side in the piezoelectric element 10 and the end surface on the rear end side is in contact with the insulating ring 60. A columnar projecting portion 55 a that projects from the end surface to the rear end side is provided on the end surface on the rear end side of the second electrode portion 55. The protrusion 55a has a base end portion on the end face side and a tip end portion having an outer diameter smaller than the outer diameter of the base end portion. The outer diameter of the protruding portion 55a is set smaller than the inner diameter of the insulating ring 60, and the length of the protruding portion 55a is set longer than the width of the insulating ring 60 (the length in the center line direction). The tip is exposed from the insulating ring 60. The second electrode portion 55 is a member that acts to apply a constant load to the piezoelectric element 10 between the second electrode portion 50 and the end face on the piezoelectric element 10 side (tip side) is a piezoelectric element. 10 is formed to have a size capable of pressing the entire end face on the rear end side of the surface 10 and a flat surface parallel to the end face on the rear end side of the piezoelectric element 10. The outer diameter of the second electrode portion 55 is set to be smaller than the hole diameter of the second hole 312 of the first housing 31, and the outer peripheral surface of the second electrode portion 55 and the inner peripheral surface of the first housing 31 are set. There is a gap between them.
An example of the material of the second electrode portion 55 is stainless steel.
 絶縁リング60は、アルミナセラミックス等により形成された円筒状の部材であり、内径(中央部の孔径)は、第2電極部55の突出部55aの基端部の外径よりもやや大きく、外径は、第1ハウジング31の第2孔312の孔径と略同じに設定されている。第2電極部55は、突出部55aが絶縁リング60の中央部の孔に挿入されて配置されることで、第2電極部55の中心位置と第1ハウジング31の第2孔312の中心とが同じになるように配置される。 The insulating ring 60 is a cylindrical member formed of alumina ceramic or the like, and the inner diameter (hole diameter at the center) is slightly larger than the outer diameter of the base end portion of the protruding portion 55a of the second electrode portion 55. The diameter is set to be substantially the same as the hole diameter of the second hole 312 of the first housing 31. The second electrode portion 55 is disposed with the protruding portion 55a inserted into the central hole of the insulating ring 60, so that the center position of the second electrode portion 55 and the center of the second hole 312 of the first housing 31 are Are arranged to be the same.
 支持部材65は、先端側から後端側にかけて、内部に、径が異なる複数の円柱状の孔650が形成され、外周面の径が同一の、筒状の部材である。
 孔650は、先端側から後端側にかけて順に形成された、第1孔651と、第1孔651の孔径よりも大きな孔径の第2孔652と、第2孔652の孔径よりも大きな孔径の第3孔653と、から構成される。第1孔651の孔径は、第2電極部55の突出部55aの基端部の外径よりも大きく、この突出部55aが支持部材65の内部まで露出する。第2孔652の孔径は、後述する信号処理部200の伝導部材22における先端部の外径よりも大きい。第3孔653の孔径は、後述する信号処理部200の覆い部材23における先端側の端部の外径よりも小さく、この覆い部材23が第3孔653を形成する周囲の壁にしまりばめで嵌合される。これにより、支持部材65は、覆い部材23の端部を支持する部材として機能する。
The support member 65 is a cylindrical member in which a plurality of cylindrical holes 650 having different diameters are formed inside from the front end side to the rear end side, and the diameter of the outer peripheral surface is the same.
The holes 650 are formed in order from the front end side to the rear end side, and have a first hole 651, a second hole 652 having a diameter larger than the diameter of the first hole 651, and a diameter larger than the diameter of the second hole 652. A third hole 653. The diameter of the first hole 651 is larger than the outer diameter of the base end portion of the protruding portion 55 a of the second electrode portion 55, and the protruding portion 55 a is exposed to the inside of the support member 65. The hole diameter of the second hole 652 is larger than the outer diameter of the distal end portion of the conductive member 22 of the signal processing unit 200 described later. The hole diameter of the third hole 653 is smaller than the outer diameter of the end portion on the front end side of the covering member 23 of the signal processing unit 200 described later, and the covering member 23 is fitted to the surrounding wall forming the third hole 653. Mated. Thereby, the support member 65 functions as a member that supports the end portion of the covering member 23.
 コイルスプリング70は、内径が、第2電極部55の突出部55aにおける先端部の外径以上で基端部の外径より小さく、外径が、後述する伝導部材22の挿入孔22aの径よりも小さい。コイルスプリング70の内側に第2電極部55の突出部55aの先端部が挿入されるとともに、コイルスプリング70は、後述する伝導部材22の挿入孔22aに挿入される。コイルスプリング70の長さは、第2電極部55と伝導部材22との間に圧縮した状態で介在することができる長さに設定されている。コイルスプリング70の材質としては、弾性が高く、かつ耐久性、耐熱性、耐触性等に優れた合金を用いるとよい。また、コイルスプリング70の表面に金メッキを施すことで、電気伝導を高めるとよい。 The coil spring 70 has an inner diameter that is equal to or larger than the outer diameter of the distal end portion of the protruding portion 55a of the second electrode portion 55 and smaller than the outer diameter of the proximal end portion, and the outer diameter is smaller than the diameter of the insertion hole 22a of the conductive member 22 described later. Is also small. The distal end portion of the protruding portion 55a of the second electrode portion 55 is inserted inside the coil spring 70, and the coil spring 70 is inserted into an insertion hole 22a of the conductive member 22 described later. The length of the coil spring 70 is set to a length that can be interposed in a compressed state between the second electrode portion 55 and the conductive member 22. As a material of the coil spring 70, an alloy having high elasticity and excellent durability, heat resistance, touch resistance and the like may be used. Further, it is preferable to increase electrical conduction by applying gold plating to the surface of the coil spring 70.
 次に、信号処理部200について説明する。
 信号処理部200は、図3および図4に示すように、センサ部100の圧電素子10から得られる微弱な電荷である電気信号を少なくとも増幅処理する回路基板部21と、圧電素子10に生じた電荷を回路基板部21まで導く棒状の伝導部材22と、これら回路基板部21、伝導部材22などを覆う覆い部材23と、回路基板部21などを密封するOリング26と、を備えている。
Next, the signal processing unit 200 will be described.
As shown in FIGS. 3 and 4, the signal processing unit 200 is generated in the piezoelectric element 10 and the circuit board unit 21 that at least amplifies an electric signal that is a weak charge obtained from the piezoelectric element 10 of the sensor unit 100. A rod-shaped conductive member 22 that guides electric charges to the circuit board portion 21, a cover member 23 that covers the circuit board portion 21, the conductive member 22, and the like, and an O-ring 26 that seals the circuit board portion 21 and the like are provided.
 回路基板部21は、センサ部100の圧電素子10から得られる微弱な電荷を増幅するための回路を構成する電子部品などが実装された実装基板210を有する。実装基板210における先端部には、伝導部材22における後端部を電気的に接続するための入力側第1接続ピン21aと、接地用および位置決め用の入力側第2接続ピン21bとが、半田付けなどにより接続されている。また、実装基板210における後端部には、伝送ケーブル8の先端部に設けられたコネクタ80を介して制御装置6と電気的に接続するための出力側第1接続ピン21c、出力側第2接続ピン21dおよび出力側第3接続ピン21eが、半田付けなどにより接続されている。そして、出力側第1接続ピン21cは、制御装置6から実装基板210への電源電圧(後述する外部電源電圧Vc)の供給に用いられ、出力側第2接続ピン21dは、実装基板210から制御装置6への出力電圧(後述する外部出力電圧Vo)の供給に用いられ、出力側第3接続ピン21eは、制御装置6から実装基板210へのGND電圧の供給に用いられる。 The circuit board unit 21 includes a mounting board 210 on which electronic components constituting a circuit for amplifying a weak charge obtained from the piezoelectric element 10 of the sensor unit 100 are mounted. An input side first connection pin 21a for electrically connecting a rear end portion of the conductive member 22 and an input side second connection pin 21b for grounding and positioning are soldered to the front end portion of the mounting substrate 210. Connected by attaching. Further, at the rear end portion of the mounting substrate 210, an output side first connection pin 21 c for electrically connecting to the control device 6 via a connector 80 provided at the front end portion of the transmission cable 8, an output side second portion. The connection pin 21d and the output side third connection pin 21e are connected by soldering or the like. The output-side first connection pin 21c is used to supply a power supply voltage (external power supply voltage Vc described later) from the control device 6 to the mounting board 210, and the output-side second connection pin 21d is controlled from the mounting board 210. The output side third connection pin 21e is used for supplying a GND voltage from the control device 6 to the mounting board 210. The output side third connection pin 21e is used for supplying an output voltage (external output voltage Vo described later) to the device 6.
 伝導部材22は、棒状(円柱状)の部材であり、先端部には、第2電極部55の突出部55aの先端部が挿入される挿入孔22aが形成されている。伝導部材22における後端部は、回路基板部21の実装基板210に、導線(図示せず)および入力側第1接続ピン21aを介して電気的に接続される。伝導部材22の材質としては、真鍮及びベリリウム銅等を例示することができる。この場合、加工性およびコストの観点からは、真鍮が望ましい。これに対して、電気伝導性、高温強度、信頼性の観点からは、ベリリウム銅が望ましい。 The conductive member 22 is a rod-shaped (columnar) member, and an insertion hole 22a into which the distal end portion of the protruding portion 55a of the second electrode portion 55 is inserted is formed at the distal end portion. The rear end portion of the conductive member 22 is electrically connected to the mounting substrate 210 of the circuit board portion 21 via a conductive wire (not shown) and the input-side first connection pin 21a. Examples of the material of the conductive member 22 include brass and beryllium copper. In this case, brass is desirable from the viewpoint of workability and cost. On the other hand, beryllium copper is desirable from the viewpoints of electrical conductivity, high temperature strength, and reliability.
 覆い部材23は、伝導部材22の外周を覆う伝導部材被覆部231と、回路基板部21の実装基板210の側面および下面を覆う基板被覆部232と、実装基板210に接続された出力側第1接続ピン21c、出力側第2接続ピン21dおよび出力側第3接続ピン21eの周囲を覆うとともに伝送ケーブル8の先端部に設けられたコネクタ80が嵌め込まれるコネクタ部233と、を有している。 The covering member 23 includes a conductive member covering portion 231 that covers the outer periphery of the conductive member 22, a substrate covering portion 232 that covers the side surface and the bottom surface of the mounting substrate 210 of the circuit board portion 21, and a first output side connected to the mounting substrate 210. And a connector portion 233 that covers the periphery of the connection pin 21c, the output-side second connection pin 21d, and the output-side third connection pin 21e, and into which the connector 80 provided at the distal end portion of the transmission cable 8 is fitted.
 伝導部材被覆部231は、図3に示すように、中心線方向に沿って延び、伝導部材22を先端部が露出するように覆っている。
 また、伝導部材被覆部231は、先端側から後端側にかけて段階的に外径が異なるように、複数の円筒形状の部分から構成される。具体的には、先端側から後端側にかけて、第1外径を有する第1円筒部241と、第1外径よりも小さな第2外径を有する第2円筒部242と、第2外径よりも大きな第3外径を有する第3円筒部243と、第3外径よりも大きな第4外径を有する第4円筒部244とが並んで形成されている。
 第1円筒部241における第1外径は、支持部材65の第3孔653の孔径よりも大きく形成されている。これにより、伝導部材被覆部231における先端部は、支持部材65の第3孔653を形成する周囲の壁にしまりばめで嵌合(圧入)される。
As shown in FIG. 3, the conductive member covering portion 231 extends along the center line direction and covers the conductive member 22 so that the distal end portion is exposed.
Further, the conductive member covering portion 231 is composed of a plurality of cylindrical portions so that the outer diameters are gradually changed from the front end side to the rear end side. Specifically, a first cylindrical portion 241 having a first outer diameter, a second cylindrical portion 242 having a second outer diameter smaller than the first outer diameter, and a second outer diameter from the front end side to the rear end side. A third cylindrical portion 243 having a larger third outer diameter and a fourth cylindrical portion 244 having a fourth outer diameter larger than the third outer diameter are formed side by side.
The first outer diameter of the first cylindrical portion 241 is formed larger than the hole diameter of the third hole 653 of the support member 65. As a result, the leading end of the conductive member covering portion 231 is fitted (press-fitted) into the surrounding wall forming the third hole 653 of the support member 65 with an interference fit.
 図3に示すように、伝導部材被覆部231には、伝導部材被覆部231の外周面から突出するとともに、それぞれが中心線方向に延びる複数の凸部250が設けられている。本実施の形態では、凸部250は、伝導部材被覆部231の第2円筒部242における先端部に設けられる第1凸部251と、伝導部材被覆部231の第4円筒部244に設けられる第2凸部252を有する。
 この例では、第1凸部251は、第2円筒部242の外周面において、周方向に沿って90度間隔で4個設けられている。また、第2凸部252は、第4円筒部244の外周面において、周方向に沿って90度間隔で4個設けられている。
 なお、この例では、4個の第1凸部251は、伝導部材被覆部231における第2円筒部242と一体的に形成され、4個の第2凸部252は、伝導部材被覆部231における第4円筒部244と一体的に形成されている。
As shown in FIG. 3, the conductive member covering portion 231 is provided with a plurality of convex portions 250 that protrude from the outer peripheral surface of the conductive member covering portion 231 and each extend in the center line direction. In the present embodiment, the convex portion 250 is provided on the first convex portion 251 provided at the distal end portion of the second cylindrical portion 242 of the conductive member covering portion 231 and the fourth cylindrical portion 244 provided on the conductive member covering portion 231. Two convex portions 252 are provided.
In this example, four first convex portions 251 are provided on the outer peripheral surface of the second cylindrical portion 242 at intervals of 90 degrees along the circumferential direction. Further, four second convex portions 252 are provided at intervals of 90 degrees along the circumferential direction on the outer peripheral surface of the fourth cylindrical portion 244.
In this example, the four first convex portions 251 are formed integrally with the second cylindrical portion 242 in the conductive member covering portion 231, and the four second convex portions 252 are formed in the conductive member covering portion 231. It is integrally formed with the fourth cylindrical portion 244.
 信号処理部200においては、図5に示すように、第2円筒部242に設けられた4個の第1凸部251が、それぞれ第2ハウジング32における第2円柱孔322を形成する壁に当接する。また、図6に示すように、第4円筒部244に設けられた複数の第2凸部252が、それぞれ第2ハウジング32における第4円柱孔324を形成する壁に当接する。これにより、伝導部材被覆部231が第2ハウジング32に支持されることになる。 In the signal processing unit 200, as shown in FIG. 5, the four first convex portions 251 provided in the second cylindrical portion 242 respectively contact the wall forming the second cylindrical hole 322 in the second housing 32. Touch. In addition, as shown in FIG. 6, the plurality of second convex portions 252 provided in the fourth cylindrical portion 244 abuts against the wall forming the fourth cylindrical hole 324 in the second housing 32. As a result, the conductive member covering portion 231 is supported by the second housing 32.
 基板被覆部232は、基本的には円筒状の部位であり、その側面には、実装基板210を内部に設置するための矩形の開口部232aが設けられている。また、基板被覆部232における後端側には、ハウジング30内および実装基板210設置部を密封するためのOリング26用のリング溝232bが形成されている。 The substrate covering portion 232 is basically a cylindrical portion, and a rectangular opening 232a for installing the mounting substrate 210 therein is provided on the side surface thereof. A ring groove 232b for the O-ring 26 for sealing the inside of the housing 30 and the mounting board 210 installation portion is formed on the rear end side of the substrate covering portion 232.
 コネクタ部233は、基板被覆部232における後端側の端面232cから突出し、実装基板210に接続された出力側第1接続ピン21c、出力側第2接続ピン21dおよび出力側第3接続ピン21eの周囲を覆うように形成された薄肉の部位である。コネクタ部233における後端部は開口しており、内部に伝送ケーブル8の先端部に設けられたコネクタ80を受け入れることが可能になっている。また、コネクタ部233における後端側には、内部と外部とを連通する孔233aが形成されており、伝送ケーブル8のコネクタ80に設けられたフックがこの孔233aに引っ掛ることで、伝送ケーブル8のコネクタ80がコネクタ部233から脱落することが抑制される。 The connector part 233 protrudes from the end face 232c on the rear end side in the board covering part 232, and is connected to the output side first connection pin 21c, the output side second connection pin 21d, and the output side third connection pin 21e connected to the mounting board 210. It is a thin part formed so as to cover the periphery. The rear end portion of the connector portion 233 is open so that the connector 80 provided at the front end portion of the transmission cable 8 can be received therein. Further, a hole 233a that connects the inside and the outside is formed on the rear end side of the connector portion 233, and a hook provided on the connector 80 of the transmission cable 8 is hooked on the hole 233a, so that the transmission cable The eight connectors 80 are prevented from dropping from the connector portion 233.
 以上のように構成された覆い部材23は、樹脂などの絶縁性を有する材料にて成形されている。また、覆い部材23は、伝導部材22、入力側第1接続ピン21a、入力側第2接続ピン21b、出力側第1接続ピン21c、出力側第2接続ピン21dおよび出力側第3接続ピン21eとともに一体成形されている。より具体的には、覆い部材23は、これら伝導部材22、入力側第1接続ピン21a、入力側第2接続ピン21b、出力側第1接続ピン21c、出力側第2接続ピン21dおよび出力側第3接続ピン21eをセットした金型に加熱した樹脂が押し込まれることで成形される。 The covering member 23 configured as described above is formed of an insulating material such as resin. Further, the covering member 23 includes the conductive member 22, the input side first connection pin 21a, the input side second connection pin 21b, the output side first connection pin 21c, the output side second connection pin 21d, and the output side third connection pin 21e. It is integrally molded with it. More specifically, the covering member 23 includes the conductive member 22, the input side first connection pin 21a, the input side second connection pin 21b, the output side first connection pin 21c, the output side second connection pin 21d, and the output side. Molded by pressing the heated resin into the mold on which the third connection pin 21e is set.
 信号処理部200をユニット化するにあたっては、成形された覆い部材23の開口部232aから、回路基板部21の実装基板210を挿入し、基板被覆部232の中央部に設置する。実装基板210を設置する際、板厚方向に貫通されたスルーホールに、入力側第1接続ピン21a、入力側第2接続ピン21b、出力側第1接続ピン21c、出力側第2接続ピン21dおよび出力側第3接続ピン21eの各先端を通し、半田付けする。その後、入力側第1接続ピン21aと伝導部材22とを導線を用いて接続する。また、覆い部材23の基板被覆部232のリング溝232bにOリング26を装着する。Oリング26は、フッ素系ゴムからなる周知のO状のリングである。 When unitizing the signal processing unit 200, the mounting substrate 210 of the circuit board unit 21 is inserted from the opening 232 a of the formed covering member 23 and installed at the center of the substrate covering unit 232. When the mounting substrate 210 is installed, the input side first connection pin 21a, the input side second connection pin 21b, the output side first connection pin 21c, and the output side second connection pin 21d are inserted into the through holes penetrating in the plate thickness direction. And each tip of the output side third connection pin 21e is passed through and soldered. Then, the input side 1st connection pin 21a and the conduction member 22 are connected using a conducting wire. Further, the O-ring 26 is attached to the ring groove 232 b of the substrate covering portion 232 of the covering member 23. The O-ring 26 is a well-known O-shaped ring made of fluorine-based rubber.
 次に、保持部材300について説明する。
 保持部材300は、薄肉円筒状の部材であり、図4に示すように、後端部に内周面から内側に突出した突出部300aが設けられている。保持部材300は、第2ハウジング32に装着された後、外部から、第5外周面335に設けられた凹部335aに対応する部位が加圧されることでかしめられる。これにより、保持部材300は、ハウジング30に対して移動し難くなり、信号処理部200がハウジング30に対して移動することを抑制している。
Next, the holding member 300 will be described.
The holding member 300 is a thin cylindrical member, and as shown in FIG. 4, a protruding portion 300 a that protrudes inward from the inner peripheral surface is provided at the rear end portion. After the holding member 300 is mounted on the second housing 32, the holding member 300 is caulked by pressurizing a portion corresponding to the concave portion 335 a provided in the fifth outer peripheral surface 335 from the outside. Thereby, the holding member 300 becomes difficult to move with respect to the housing 30, and the signal processing unit 200 is prevented from moving with respect to the housing 30.
 続いて、信号処理部200の回路基板部21における実装基板210の構成について説明を行う。図7は、実装基板210における回路構成図を示している。
 本実施の形態の実装基板210は、1または複数の電子部品(回路素子)を実装するための配線(回路パターン)が形成されたプリント配線基板211を備えている。また、この実装基板210は、プリント配線基板211に実装された、保護回路212と、積分回路213と、増幅回路214と、直流遮断回路215と、電源回路(Vreg)216とをさらに備える。なお、本実施の形態では、積分回路213、増幅回路214および電源回路216が、信号処理回路としての機能を有しており、直流遮断回路215が直流抑制部としての機能を有している。
Next, the configuration of the mounting substrate 210 in the circuit board unit 21 of the signal processing unit 200 will be described. FIG. 7 shows a circuit configuration diagram of the mounting substrate 210.
The mounting board 210 of this embodiment includes a printed wiring board 211 on which wiring (circuit pattern) for mounting one or a plurality of electronic components (circuit elements) is formed. The mounting board 210 further includes a protection circuit 212, an integration circuit 213, an amplification circuit 214, a DC cutoff circuit 215, and a power supply circuit (Vreg) 216 mounted on the printed wiring board 211. In this embodiment, the integration circuit 213, the amplification circuit 214, and the power supply circuit 216 have a function as a signal processing circuit, and the DC cutoff circuit 215 has a function as a DC suppression unit.
 本実施の形態の実装基板210では、圧電素子10から保護回路212を介して入力されてくる検出信号の一例としての電荷信号を、積分回路213で積分することで電圧信号に変換し、変換後の電圧信号を増幅回路214で増幅して外部(例えば図1に示す制御装置6)に出力している。この間、電源回路216は、積分回路213および増幅回路214で使用する電源電圧(後述する内部出力電圧Vi)の作成および出力を行う。また、直流遮断回路215は、実装基板210における接地側から、実装基板210の接地対象であるハウジング30(より具体的には第2ハウジング32)に向かう、直流電流を遮断している。 In the mounting substrate 210 of the present embodiment, a charge signal as an example of a detection signal input from the piezoelectric element 10 via the protection circuit 212 is converted into a voltage signal by integration by the integration circuit 213, and after the conversion Are amplified by the amplification circuit 214 and output to the outside (for example, the control device 6 shown in FIG. 1). During this time, the power supply circuit 216 creates and outputs a power supply voltage (an internal output voltage Vi described later) used in the integration circuit 213 and the amplifier circuit 214. Further, the DC cutoff circuit 215 blocks a DC current from the ground side of the mounting board 210 toward the housing 30 (more specifically, the second housing 32) that is the grounding target of the mounting board 210.
 本実施の形態では、プリント配線基板211としてガラス布基材エポキシ樹脂をベースとした所謂ガラエポ基板を用いている。そして、プリント配線基板211には、入出力用の端子として、入力信号端子211a、入力接地端子211b、電源端子211c、出力信号端子211dおよび出力接地端子211eが設けられている。これらのうち、入力信号端子211aは、入力側第1接続ピン21a、伝導部材22、コイルスプリング70および第2電極部55を介して、圧電素子10の後端側の端面に接続される。また、入力接地端子211bは、入力側第2接続ピン21bを介して第2ハウジング32に接続される。さらに、電源端子211cは、出力側第1接続ピン21cおよびコネクタ80を介して第1ケーブル81(図2参照)に接続される。さらにまた、出力信号端子211dは、出力側第1接続ピン21cおよびコネクタ80を介して第2ケーブル82(図2参照)に接続される。そして、出力接地端子211eは、出力側第3接続ピン21eおよびコネクタ80を介して第3ケーブル83(図2参照)に接続される。なお、入力接地端子211bおよび出力接地端子211eは、プリント配線基板211に設けられた配線および直流遮断回路215(コンデンサ)を介して互いに接続されている。 In the present embodiment, a so-called glass epoxy substrate based on a glass cloth base epoxy resin is used as the printed wiring board 211. The printed circuit board 211 is provided with an input signal terminal 211a, an input ground terminal 211b, a power supply terminal 211c, an output signal terminal 211d, and an output ground terminal 211e as input / output terminals. Among these, the input signal terminal 211 a is connected to the end face on the rear end side of the piezoelectric element 10 through the input side first connection pin 21 a, the conductive member 22, the coil spring 70, and the second electrode portion 55. The input ground terminal 211b is connected to the second housing 32 via the input-side second connection pin 21b. Further, the power terminal 211c is connected to the first cable 81 (see FIG. 2) via the output-side first connection pin 21c and the connector 80. Furthermore, the output signal terminal 211d is connected to the second cable 82 (see FIG. 2) via the output-side first connection pin 21c and the connector 80. The output ground terminal 211e is connected to the third cable 83 (see FIG. 2) via the output-side third connection pin 21e and the connector 80. The input ground terminal 211b and the output ground terminal 211e are connected to each other via a wiring provided on the printed wiring board 211 and a DC cutoff circuit 215 (capacitor).
 保護回路212は、ダイオードで構成されており、入力接地端子211b側にアノードが接続され、電源端子211c側にカソードが接続される。 The protection circuit 212 is composed of a diode, and an anode is connected to the input ground terminal 211b side and a cathode is connected to the power supply terminal 211c side.
 積分回路213は、第1演算増幅器OP1と、積分用コンデンサC1と、帰還抵抗R1とを備える。積分回路213において、第1演算増幅器OP1の反転入力端子は、入力信号端子211aに接続される。また、第1演算増幅器OP1の非反転入力端子は、電源回路216の出力端(out)に接続される。さらに、第1演算増幅器OP1の出力端子は、増幅回路214に設けられた第2演算増幅器OP2(詳細は後述する)の非反転入力端子に接続される。さらにまた、積分用コンデンサC1の一端は、第1演算増幅器OP1の反転入力端子に接続され、積分用コンデンサC1の他端は、第1演算増幅器OP1の出力端子に接続される。そして、帰還抵抗R1の一端は、第1演算増幅器OP1の反転入力端子に接続され、帰還抵抗R1の他端は、第1演算増幅器OP1の出力端子に接続される。したがって、積分用コンデンサC1および帰還抵抗R1は、第1演算増幅器OP1の反転入力端子および出力端子に対し、並列に接続されている。 The integrating circuit 213 includes a first operational amplifier OP1, an integrating capacitor C1, and a feedback resistor R1. In the integrating circuit 213, the inverting input terminal of the first operational amplifier OP1 is connected to the input signal terminal 211a. Further, the non-inverting input terminal of the first operational amplifier OP1 is connected to the output terminal (out) of the power supply circuit 216. Further, the output terminal of the first operational amplifier OP1 is connected to a non-inverting input terminal of a second operational amplifier OP2 (details will be described later) provided in the amplifier circuit 214. Furthermore, one end of the integrating capacitor C1 is connected to the inverting input terminal of the first operational amplifier OP1, and the other end of the integrating capacitor C1 is connected to the output terminal of the first operational amplifier OP1. One end of the feedback resistor R1 is connected to the inverting input terminal of the first operational amplifier OP1, and the other end of the feedback resistor R1 is connected to the output terminal of the first operational amplifier OP1. Therefore, the integrating capacitor C1 and the feedback resistor R1 are connected in parallel to the inverting input terminal and the output terminal of the first operational amplifier OP1.
 増幅回路214は、第2演算増幅器OP2と、第1設定抵抗R2aと、第2設定抵抗R2bとを備える。増幅回路214において、第2演算増幅器OP2の反転入力端子は、第1設定抵抗R2aを介して、電源回路216の出力端(out)に接続される。また、第2演算増幅器OP2の非反転入力端子は、積分回路213に設けられた第1演算増幅器OP1の出力端子に接続される。さらに、第2演算増幅器OP2の出力端子は、出力信号端子211dに接続される。さらにまた、第2設定抵抗R2bの一端は、第2演算増幅器OP2の反転入力端子に接続され、第2設定抵抗R2bの他端は、第2演算増幅器OP2の出力端子に接続される。 The amplifier circuit 214 includes a second operational amplifier OP2, a first setting resistor R2a, and a second setting resistor R2b. In the amplifier circuit 214, the inverting input terminal of the second operational amplifier OP2 is connected to the output terminal (out) of the power supply circuit 216 via the first setting resistor R2a. The non-inverting input terminal of the second operational amplifier OP2 is connected to the output terminal of the first operational amplifier OP1 provided in the integrating circuit 213. Further, the output terminal of the second operational amplifier OP2 is connected to the output signal terminal 211d. Furthermore, one end of the second setting resistor R2b is connected to the inverting input terminal of the second operational amplifier OP2, and the other end of the second setting resistor R2b is connected to the output terminal of the second operational amplifier OP2.
 直流遮断回路215は、コンデンサで構成されており、入力接地端子211bに一端が接続され、保護回路212を構成するダイオードにおけるアノード側に他端が接続される。なお、この例では、直流遮断回路215として、1μFの容量を有するコンデンサを用いている。 The DC cut-off circuit 215 is composed of a capacitor, one end is connected to the input ground terminal 211b, and the other end is connected to the anode side of the diode constituting the protection circuit 212. In this example, a capacitor having a capacity of 1 μF is used as the DC cutoff circuit 215.
 電源回路216は、その入力端(in)が、電源端子211cに接続され、その出力端(out)が、積分回路213(より具体的には積分回路213に設けられた第1演算増幅器OP1の非反転入力端子)および増幅回路214(より具体的には増幅回路214に設けられた第1設定抵抗R2a)に接続され、その接地端(GND)が、出力接地端子211eに接続され、且つ、直流遮断回路215を介して入力接地端子211bに接続される。 The power supply circuit 216 has an input terminal (in) connected to the power supply terminal 211c and an output terminal (out) connected to the integration circuit 213 (more specifically, the first operational amplifier OP1 provided in the integration circuit 213). A non-inverting input terminal) and an amplifier circuit 214 (more specifically, a first setting resistor R2a provided in the amplifier circuit 214), and a ground terminal (GND) thereof is connected to the output ground terminal 211e, and It is connected to the input ground terminal 211b via the DC cutoff circuit 215.
 本実施の形態の実装基板210において、入力信号端子211aには、圧電素子10より、入力信号(電荷信号)として入力電荷Qiが入力される。また、電源端子211cには、制御装置6から、定電圧の一例としての外部電源電圧Vc(この例ではDC+5.0V)が印加される。さらに、出力信号端子211dからは、制御装置6に向けて、出力信号の一例としての外部出力電圧Voが出力される。そして、入力接地端子211bおよび出力接地端子211eは、それぞれ、実装基板210の外部に設けられた接地体に接続されることにより、グランド電位(GND電位)に設定される。 In the mounting substrate 210 of the present embodiment, the input charge Qi is input from the piezoelectric element 10 to the input signal terminal 211a as an input signal (charge signal). An external power supply voltage Vc (an example of DC + 5.0 V in this example) is applied from the control device 6 to the power supply terminal 211c. Further, an external output voltage Vo as an example of an output signal is output from the output signal terminal 211 d to the control device 6. The input ground terminal 211b and the output ground terminal 211e are set to the ground potential (GND potential) by being connected to a ground body provided outside the mounting substrate 210, respectively.
 また、積分回路213は、圧電素子10から入力されてくる入力電荷Qiを積分し、得られた内部出力電圧Viを増幅回路214に向けて出力する。このとき、第1演算増幅器OP1の反転入力端子には、入力信号端子211aから入力電荷Qiが供給される。一方、第1演算増幅器OP1の非反転入力端子には、電源回路216から基準電圧となる内部電源電圧Vrが印加される。このように、本実施の形態の積分回路213は、第1演算増幅器OP1を用いた積分回路として構成されている。ただし、第1演算増幅器OP1の非反転入力端子は、GND電位に設定される(接地される)のではなく、内部電源電圧Vrに設定される。これは、第1演算増幅器OP1が単電源で動作する(詳細は後述する)ことと、入力電荷Qiが正負両方の値をとり得ることとを理由とするものである。 Further, the integrating circuit 213 integrates the input charge Qi input from the piezoelectric element 10 and outputs the obtained internal output voltage Vi to the amplifying circuit 214. At this time, the input charge Qi is supplied from the input signal terminal 211a to the inverting input terminal of the first operational amplifier OP1. On the other hand, an internal power supply voltage Vr serving as a reference voltage is applied from the power supply circuit 216 to the non-inverting input terminal of the first operational amplifier OP1. As described above, the integration circuit 213 of the present embodiment is configured as an integration circuit using the first operational amplifier OP1. However, the non-inverting input terminal of the first operational amplifier OP1 is not set to the GND potential (grounded) but is set to the internal power supply voltage Vr. This is because the first operational amplifier OP1 operates with a single power supply (details will be described later) and that the input charge Qi can take both positive and negative values.
 増幅回路214は、積分回路213から入力されてくる内部出力電圧Viを増幅し、得られた外部出力電圧Voを外部(例えば図1に示す制御装置6)に向けて出力する。このとき、第2演算増幅器OP2の反転入力端子には、電源回路216から出力される内部電源電圧Vrが、第1設定抵抗R2aを介して印加される。また、第2演算増幅器OP2の反転入力端子には、第2演算増幅器OP2の出力端子から出力される外部出力電圧Voが、第2設定抵抗R2bを介して印加される。一方、第2演算増幅器OP2の非反転入力端子には、積分回路213における第1演算増幅器OP1の出力端子から出力される内部出力電圧Viが印加される。このように、本実施の形態の増幅回路214は、第2演算増幅器OP2を用いた反転増幅回路として構成されている。 The amplifying circuit 214 amplifies the internal output voltage Vi input from the integrating circuit 213, and outputs the obtained external output voltage Vo to the outside (for example, the control device 6 shown in FIG. 1). At this time, the internal power supply voltage Vr output from the power supply circuit 216 is applied to the inverting input terminal of the second operational amplifier OP2 via the first setting resistor R2a. The external output voltage Vo output from the output terminal of the second operational amplifier OP2 is applied to the inverting input terminal of the second operational amplifier OP2 via the second setting resistor R2b. On the other hand, the internal output voltage Vi output from the output terminal of the first operational amplifier OP1 in the integrating circuit 213 is applied to the non-inverting input terminal of the second operational amplifier OP2. As described above, the amplifier circuit 214 of the present embodiment is configured as an inverting amplifier circuit using the second operational amplifier OP2.
 電源回路216は、電源端子211cを介して入力されてくる外部電源電圧Vc(この例ではDC+5.0V)を、より低い内部電源電圧Vr(この例ではDC+1.0V)に変換して出力する。なお、電源回路216における回路構成の詳細については後述する。 The power supply circuit 216 converts the external power supply voltage Vc (DC + 5.0V in this example) input via the power supply terminal 211c into a lower internal power supply voltage Vr (DC + 1.0V in this example) and outputs the converted voltage. Details of the circuit configuration of the power supply circuit 216 will be described later.
 ここで、積分回路213に設けられた第1演算増幅器OP1および増幅回路214に設けられた第2演算増幅器OP2は、それぞれ、DC+5.0Vの単電源で動作するものを用いている。これら第1演算増幅器OP1、第2演算増幅器OP2のそれぞれにおいて、正電源端子(図示せず)は、図示しない配線を介して電源端子211cに接続されており、負電源端子(図示せず)は、図示しない配線を介して出力接地端子211eに接続されている。したがって、これら第1演算増幅器OP1、第2演算増幅器OP2には、それぞれ、動作電圧としてDC+5.0Vが供給されることになる。 Here, the first operational amplifier OP1 provided in the integrating circuit 213 and the second operational amplifier OP2 provided in the amplifying circuit 214 are each operated by a single power source of DC + 5.0V. In each of the first operational amplifier OP1 and the second operational amplifier OP2, a positive power supply terminal (not shown) is connected to a power supply terminal 211c via a wiring not shown, and a negative power supply terminal (not shown) is connected. The output ground terminal 211e is connected via a wiring (not shown). Therefore, DC + 5.0V is supplied as an operating voltage to each of the first operational amplifier OP1 and the second operational amplifier OP2.
 図8は、実装基板210に設けられた電源回路216の回路構成図を示している。
 電源回路216は、外部出力電圧Voを分圧して内部電源電圧Vrを得るための分圧回路2161と、得られた内部電源電圧Vrを安定させるためのボルテージフォロワ回路2162とを備えている。
FIG. 8 shows a circuit configuration diagram of the power supply circuit 216 provided on the mounting substrate 210.
The power supply circuit 216 includes a voltage dividing circuit 2161 for dividing the external output voltage Vo to obtain the internal power supply voltage Vr, and a voltage follower circuit 2162 for stabilizing the obtained internal power supply voltage Vr.
 分圧回路2161は、一端が電源回路216の入力端(in)に接続される第1分圧抵抗R3aと、一端が第1分圧抵抗R3aの他端に接続されるとともに他端が電源回路216の接地端(GND)に接続される第2分圧抵抗R3bとを有している。本実施の形態では、電源回路216の入力端(in)と接地端(GND)との間に印加される外部出力電圧Voを、第1分圧抵抗R3aにおいて降下電圧Vdだけ電圧降下させ且つ第2分圧抵抗R3bにおいて内部電源電圧Vrだけ電圧降下させるように(Vo=Vd+Vr)、第1分圧抵抗R3aおよび第2分圧抵抗R3bの各抵抗値を設定している。そして、分圧回路2161における第1分圧抵抗R3aおよび第2分圧抵抗R3bの接続端は、ボルテージフォロワ回路2162に設けられた第3演算増幅器OP3(詳細は後述する)の非反転入力端子に接続される。 The voltage dividing circuit 2161 has one end connected to the input terminal (in) of the power supply circuit 216 and one end connected to the other end of the first voltage dividing resistor R3a and the other end connected to the power supply circuit. And a second voltage dividing resistor R3b connected to the ground terminal (GND) of 216. In the present embodiment, the external output voltage Vo applied between the input terminal (in) and the ground terminal (GND) of the power supply circuit 216 is dropped by the drop voltage Vd in the first voltage dividing resistor R3a, and The resistance values of the first voltage dividing resistor R3a and the second voltage dividing resistor R3b are set so that the voltage is dropped by the internal power supply voltage Vr in the two voltage dividing resistor R3b (Vo = Vd + Vr). The connection end of the first voltage dividing resistor R3a and the second voltage dividing resistor R3b in the voltage dividing circuit 2161 is connected to a non-inverting input terminal of a third operational amplifier OP3 (details will be described later) provided in the voltage follower circuit 2162. Connected.
 ボルテージフォロワ回路2162は、第3演算増幅器OP3を有している。ここで、第3演算増幅器OP3の非反転入力端子は、分圧回路2161の接続端に接続される。また、第3演算増幅器OP3の出力端子は、電源回路216の出力端(out)および第3演算増幅器OP3の反転入力端子に接続される。 The voltage follower circuit 2162 has a third operational amplifier OP3. Here, the non-inverting input terminal of the third operational amplifier OP3 is connected to the connection end of the voltage dividing circuit 2161. The output terminal of the third operational amplifier OP3 is connected to the output terminal (out) of the power supply circuit 216 and the inverting input terminal of the third operational amplifier OP3.
 ここで、上述した圧力検出装置5における電気的な接続構造について説明する。
 先ず、圧電素子10における先端側の端面は、金属製の第1電極部50およびダイアフラムヘッド40を介して、金属製のハウジング30と電気的に接続される。
Here, the electrical connection structure in the pressure detection apparatus 5 mentioned above is demonstrated.
First, the end face on the front end side of the piezoelectric element 10 is electrically connected to the metal housing 30 via the metal first electrode portion 50 and the diaphragm head 40.
 これに対し、圧電素子10における後端側の端面は、金属製の第2電極部55と電気的に接続され、第2電極部55は、突出部55aを介して金属製のコイルスプリング70と電気的に接続される。また、コイルスプリング70は、金属製の伝導部材22と電気的に接続され、伝導部材22は、入力側第1接続ピン21aを介して実装基板210の入力信号端子211aと電気的に接続される。他方、第2電極部55の突出部55aの外径は支持部材65の第1孔651の孔径よりも小さく、伝導部材22における先端部の外径は支持部材65の第2孔652の孔径よりも小さい。つまり、第2電極部55、コイルスプリング70および伝導部材22は、支持部材65と直接接触していないために、電気的に接続されていない。それゆえ、第2電極部55からコイルスプリング70および伝導部材22を介して実装基板210へと至る電荷信号の伝送経路は、それぞれが絶縁体で構成された、絶縁リング60および覆い部材23によって、金属製のハウジング30と電気的に絶縁される。 On the other hand, the end surface on the rear end side of the piezoelectric element 10 is electrically connected to the metal second electrode portion 55, and the second electrode portion 55 is connected to the metal coil spring 70 via the protruding portion 55 a. Electrically connected. The coil spring 70 is electrically connected to the metal conductive member 22, and the conductive member 22 is electrically connected to the input signal terminal 211 a of the mounting substrate 210 via the input-side first connection pin 21 a. . On the other hand, the outer diameter of the protrusion 55 a of the second electrode portion 55 is smaller than the hole diameter of the first hole 651 of the support member 65, and the outer diameter of the tip portion of the conductive member 22 is larger than the hole diameter of the second hole 652 of the support member 65. Is also small. That is, the second electrode portion 55, the coil spring 70, and the conductive member 22 are not electrically connected because they are not in direct contact with the support member 65. Therefore, the charge signal transmission path from the second electrode portion 55 to the mounting substrate 210 via the coil spring 70 and the conductive member 22 is formed by the insulating ring 60 and the covering member 23 each made of an insulator. It is electrically insulated from the metal housing 30.
 また、実装基板210の入力接地端子211bは、入力側第2接続ピン21bを介して第2ハウジング32(ハウジング30)と電気的に接続される。さらに、実装基板210の電源端子211cは、出力側第1接続ピン21cを介して第1ケーブル81と電気的に接続される。さらにまた、実装基板210の出力信号端子211dは、出力側第2接続ピン21dを介して第2ケーブル82と電気的に接続される。そして、実装基板210の出力接地端子211eは、出力側第3接続ピン21eを介して、第3ケーブル83と電気的に接続される。 In addition, the input ground terminal 211b of the mounting substrate 210 is electrically connected to the second housing 32 (housing 30) via the input-side second connection pin 21b. Furthermore, the power supply terminal 211c of the mounting substrate 210 is electrically connected to the first cable 81 via the output-side first connection pin 21c. Furthermore, the output signal terminal 211d of the mounting substrate 210 is electrically connected to the second cable 82 via the output-side second connection pin 21d. The output ground terminal 211e of the mounting substrate 210 is electrically connected to the third cable 83 via the output-side third connection pin 21e.
 以上のように構成された圧力検出装置5をシリンダヘッド4に装着する際には、センサ部100のダイアフラムヘッド40の方から先にシリンダヘッド4に形成された連通孔4aに挿入していき、ハウジング30の第2ハウジング32に形成された雄ねじ332aをシリンダヘッド4の連通孔4aに形成された雌ねじ4eにねじ込む。
 圧力検出装置5をシリンダヘッド4に装着することにより、ハウジング30は、金属製のシリンダヘッド4と電気的に接続される。このシリンダヘッド4は、電気的に接地された状態にあるため、圧力検出装置5では、ハウジング30を介して、圧電素子10における先端部が接地される。ここで、この例では、圧電素子10の側面とハウジング30の内壁面とが接触し得る構造になっているが、圧電素子10が絶縁体で構成されていることにより抵抗値が極めて大きいことと、圧力変化に伴って発生する電荷が、圧電素子10における中心線方向の両端部に発生することとにより、特に問題とはならない。
When the pressure detecting device 5 configured as described above is attached to the cylinder head 4, the diaphragm head 40 of the sensor unit 100 is inserted into the communication hole 4a formed in the cylinder head 4 first, The male screw 332 a formed in the second housing 32 of the housing 30 is screwed into the female screw 4 e formed in the communication hole 4 a of the cylinder head 4.
By mounting the pressure detection device 5 on the cylinder head 4, the housing 30 is electrically connected to the metal cylinder head 4. Since the cylinder head 4 is in a state of being electrically grounded, in the pressure detection device 5, the tip portion of the piezoelectric element 10 is grounded via the housing 30. Here, in this example, the side surface of the piezoelectric element 10 and the inner wall surface of the housing 30 are in contact with each other, but the resistance value is extremely large because the piezoelectric element 10 is made of an insulator. The electric charge generated with the pressure change is generated at both ends of the piezoelectric element 10 in the center line direction.
 次に、図1等に示すシール部材7について説明する。
 シール部材7は、図2に示すように、シリンダヘッド4における連通孔4aを形成する周囲の壁のセンサ部100締め付け方向の端面と、圧力検出装置5のハウジング30の第3外周面333と第4外周面334とを接続する接続面との間に配置された第1シール部材71を有している。また、シール部材7は、シリンダヘッド4の連通孔4aの傾斜部4cと、圧力検出装置5のハウジング30の第1ハウジング31の傾斜面315aとの間に配置された第2シール部材72を有している。
Next, the seal member 7 shown in FIG.
As shown in FIG. 2, the seal member 7 includes an end surface of the surrounding wall forming the communication hole 4 a in the cylinder head 4 in the tightening direction of the sensor unit 100, a third outer peripheral surface 333 of the housing 30 of the pressure detection device 5, It has the 1st seal member 71 arrange | positioned between the connection surfaces which connect 4 outer peripheral surface 334. FIG. In addition, the seal member 7 has a second seal member 72 disposed between the inclined portion 4c of the communication hole 4a of the cylinder head 4 and the inclined surface 315a of the first housing 31 of the housing 30 of the pressure detection device 5. is doing.
 続いて、圧力検出装置5とともに、内燃機関1の圧力検出システムを構成する制御装置6について説明する。図9は、制御装置6の構成を説明するための図である。ここで、図9(a)は制御装置6のハードウェア構成を説明するためのブロック図であり、図9(b)は制御装置6における給電系統を説明するための図である。なお、制御装置6は、ECU(Engine Control Unit)と呼ばれることがある。 Subsequently, the control device 6 constituting the pressure detection system of the internal combustion engine 1 together with the pressure detection device 5 will be described. FIG. 9 is a diagram for explaining the configuration of the control device 6. Here, FIG. 9A is a block diagram for explaining the hardware configuration of the control device 6, and FIG. 9B is a diagram for explaining a power feeding system in the control device 6. In addition, the control apparatus 6 may be called ECU (Engine | Control * Unit).
 供給/処理部の一例としての制御装置6は、圧力検出装置5など、内燃機関1を搭載した装置(例えば自動車)に設けられた各種機器から出力される信号(圧力検出装置5の場合は外部出力電圧Vo)の入力を受け付ける入力受付部61と、入力受付部61を介して入力される各種信号に基づいて制御量を演算するMCU(Micro Control Unit)62と、MCU62による演算結果に基づき、電源停止後においても記憶させておくべきデータを記憶するEEPROM(Electrically Erasable Programmable Read-Only Memory)63と、MCU62による演算結果に基づき、各種機器に対して制御のための駆動信号を出力する駆動信号出力部64と、同じ装置内に設けられた他の制御装置と通信を行う通信部67と、制御装置6の内部に設けられた各部(MCU62等)を動作させるために必要な電力を供給するとともに、制御装置6の外部に設けられた各種機器(圧力検出装置5等)を動作させるために必要な電力を供給する電源部66とを備えている。 The control device 6 as an example of the supply / processing unit includes signals output from various devices provided in a device (for example, an automobile) in which the internal combustion engine 1 is mounted, such as the pressure detection device 5 (in the case of the pressure detection device 5, an external device). Based on the calculation result of the input receiving unit 61 that receives the input of the output voltage Vo), the MCU (Micro Control Unit) 62 that calculates the control amount based on various signals input via the input receiving unit 61, An EEPROM (Electrically-Erasable-Programmable-Read-Only Memory) 63 that stores data that should be stored even after the power is stopped, and a drive signal that outputs a drive signal for control to various devices based on the calculation result by the MCU 62 The output unit 64, a communication unit 67 that communicates with other control devices provided in the same device, and each unit (MCU provided in the control device 6) And a power supply unit 66 for supplying power necessary for operating various devices (such as the pressure detecting device 5) provided outside the control device 6. I have.
 入力受付部61は、外部から入力されてくるアナログ信号にA/D変換を施してデジタル信号を作成したり、外部から入力されてくるデジタル信号にゲイン調整を施したりすることで、外部からの入力信号をMCU62で使用可能な状態に変換する。なお、この例において、圧力検出装置5から入力受付部61に入力される外部出力電圧Voは、アナログ信号である。 The input receiving unit 61 performs A / D conversion on an analog signal input from the outside to create a digital signal, or performs gain adjustment on the digital signal input from the outside, thereby allowing an input from the outside. The input signal is converted into a state usable by the MCU 62. In this example, the external output voltage Vo input from the pressure detection device 5 to the input receiving unit 61 is an analog signal.
 MCU62は、所謂ワンチップマイコンで構成されており、各種演算処理を行うMPU(Micro-Processing Unit)、MPUが実行するプログラムを格納するROM(Read Only Memory)、MPUによるプログラムの実行において一時的に発生するデータを記憶するRAM(Random Access Memory)等を内蔵している。 The MCU 62 is configured by a so-called one-chip microcomputer, and temporarily executes MPU (Micro-Processing Unit) that performs various arithmetic processing, ROM (Read Only Memory) that stores a program executed by the MPU, and program execution by the MPU. Built-in RAM (Random Access Memory) for storing generated data.
 EEPROM63は、電源供給を行わなくても、記憶しているデータが消えない特性を有する不揮発性メモリである。そして、制御装置6に設けられたEEPROM63は、例えば、内燃機関1を搭載する装置の起動時に実行される故障診断の結果や、内燃機関1の動作において生じた不具合等に関するデータを記憶する。 The EEPROM 63 is a non-volatile memory having a characteristic that stored data does not disappear even if power is not supplied. The EEPROM 63 provided in the control device 6 stores, for example, data on the result of failure diagnosis executed when the device equipped with the internal combustion engine 1 is started, and troubles occurring in the operation of the internal combustion engine 1.
 駆動信号出力部64は、MCU62から入力されてくる演算結果としてのデジタル信号にD/A変換を施してアナログ信号を作成したり、MCU62から入力されてくる演算結果としてのデジタル信号にゲイン調整を施したりすることで、MCU62からの出力信号を外部に設けられた各種機器にて使用可能な状態に変換する。 The drive signal output unit 64 performs D / A conversion on the digital signal as the calculation result input from the MCU 62 to create an analog signal, or adjusts the gain of the digital signal as the calculation result input from the MCU 62. By performing this, the output signal from the MCU 62 is converted into a state usable by various devices provided outside.
 通信部67は、他の制御装置から受信した通信信号を、MCU62で処理できるレベルに変換する。また、MCU62から入力されてくるデジタル信号を、他の制御装置との間の通信規格に適した通信信号に変換する。 The communication unit 67 converts a communication signal received from another control device to a level that can be processed by the MCU 62. Moreover, the digital signal input from MCU62 is converted into the communication signal suitable for the communication standard between other control apparatuses.
 電源部66は、内燃機関1が搭載された装置に設けられた外部電源(例えば自動車の場合はバッテリ)を介して入力されてくるバッテリ電圧Vb(この例ではDC+12V)を、より低い動作電圧に変換して、制御装置6を構成するMCU62等に供給する。また、電源部66は、入力されてくるバッテリ電圧Vbを、より低い外部電源電圧Vcに変換して、制御装置6の外部に設けられた圧力検出装置5等に出力する。さらに、電源部66の接地端(GND)は、外部(例えば図1に示す内燃機関1のシリンダブロック2)に接続されている。これにより、制御装置6を構成する各部(MCU62等)は、電源部66の接地端(GND)の電位を基準(グランド)として動作する。なお、電源部66が出力する動作電圧および外部電源電圧Vcは、同じ大きさであってもよいし、異なる大きさであってもかまわない。 The power supply unit 66 converts the battery voltage Vb (in this example, DC + 12V) input via an external power supply (for example, a battery in the case of an automobile) provided in a device on which the internal combustion engine 1 is mounted, to a lower operating voltage. It converts and supplies to MCU62 grade | etc., Which comprises the control apparatus 6. FIG. In addition, the power supply unit 66 converts the input battery voltage Vb into a lower external power supply voltage Vc and outputs it to the pressure detection device 5 provided outside the control device 6. Furthermore, the grounding end (GND) of the power supply unit 66 is connected to the outside (for example, the cylinder block 2 of the internal combustion engine 1 shown in FIG. 1). Thereby, each part (MCU62 etc.) which comprises the control apparatus 6 operate | moves using the electric potential of the ground terminal (GND) of the power supply part 66 as a reference | standard (ground). Note that the operating voltage output from the power supply unit 66 and the external power supply voltage Vc may have the same magnitude or different magnitudes.
 図10は、内燃機関1、圧力検出装置5、制御装置6および伝送ケーブル8の、電気的な接続関係を説明するための図である。 FIG. 10 is a diagram for explaining an electrical connection relationship among the internal combustion engine 1, the pressure detection device 5, the control device 6, and the transmission cable 8.
 まず、圧力検出装置5の内部における接続関係について説明を行う。
 圧力検出装置5においては、圧電素子10の一端が、入力側第1接続ピン21a等を介して実装基板210の入力信号端子211aに接続されている。また、圧電素子10の他端は、ダイアフラムヘッド40(図10には図示せず)を介してハウジング30(より具体的には第1ハウジング31)に接続されている。また、実装基板210に設けられた入力接地端子211bは、入力側第2接続ピン21b等を介してハウジング30(より具体的には第2ハウジング32)に接続されている。さらに、実装基板210に設けられた電源端子211cは出力側第1接続ピン21cに接続され、実装基板210に設けられた出力信号端子211dは出力側第2接続ピン21dに接続され、実装基板210に設けられた出力接地端子211eは出力側第3接続ピン21eに接続される。
First, the connection relationship inside the pressure detection device 5 will be described.
In the pressure detection device 5, one end of the piezoelectric element 10 is connected to the input signal terminal 211a of the mounting substrate 210 via the input-side first connection pin 21a and the like. The other end of the piezoelectric element 10 is connected to the housing 30 (more specifically, the first housing 31) via a diaphragm head 40 (not shown in FIG. 10). The input ground terminal 211b provided on the mounting substrate 210 is connected to the housing 30 (more specifically, the second housing 32) via the input-side second connection pin 21b and the like. Furthermore, the power supply terminal 211c provided on the mounting board 210 is connected to the output side first connection pin 21c, and the output signal terminal 211d provided on the mounting board 210 is connected to the output side second connection pin 21d. The output ground terminal 211e provided on the output side is connected to the output-side third connection pin 21e.
 次に、内燃機関1の内部における接続関係について説明を行う。
 内燃機関1では、ともに金属で構成されたシリンダブロック2とシリンダヘッド4とが、互いに接触した状態で配置されている(図1参照)。したがって、シリンダブロック2およびシリンダヘッド4は、互いに接続された状態にある。
Next, the connection relationship inside the internal combustion engine 1 will be described.
In the internal combustion engine 1, a cylinder block 2 and a cylinder head 4, both of which are made of metal, are arranged in contact with each other (see FIG. 1). Accordingly, the cylinder block 2 and the cylinder head 4 are connected to each other.
 続いて、伝送ケーブル8を介した、圧力検出装置5と制御装置6との接続関係について説明を行う。
 圧力検出装置5に設けられた出力側第1接続ピン21cは、伝送ケーブル8を構成する第1ケーブル81の一端に接続され、この第1ケーブル81の他端は、制御装置6に設けられた電源部66(図9参照)における外部電源電圧Vcの出力ライン(図中実線矢印で示す)に接続される。また、圧力検出装置5に設けられた出力側第2接続ピン21dは、伝送ケーブル8を構成する第2ケーブル82の一端に接続され、この第2ケーブル82の他端は、制御装置6に設けられた入力受付部61(図9参照)に接続される。さらに、圧力検出装置5に設けられた出力側第3接続ピン21eは、伝送ケーブル8を構成する第3ケーブル83の一端に接続され、この第3ケーブル83の他端は、制御装置6に設けられた電源部66(図9参照)における外部電源電圧Vcの接地ライン(図中破線矢印で示す)に接続される。
Subsequently, the connection relationship between the pressure detection device 5 and the control device 6 via the transmission cable 8 will be described.
The output side first connection pin 21 c provided in the pressure detection device 5 is connected to one end of the first cable 81 constituting the transmission cable 8, and the other end of the first cable 81 is provided in the control device 6. The power supply unit 66 (see FIG. 9) is connected to an output line (indicated by a solid arrow in the figure) of the external power supply voltage Vc. The output-side second connection pin 21 d provided in the pressure detection device 5 is connected to one end of the second cable 82 that constitutes the transmission cable 8, and the other end of the second cable 82 is provided in the control device 6. Connected to the input receiving unit 61 (see FIG. 9). Further, the output-side third connection pin 21 e provided in the pressure detection device 5 is connected to one end of a third cable 83 constituting the transmission cable 8, and the other end of the third cable 83 is provided in the control device 6. Connected to a ground line (indicated by a broken-line arrow in the figure) of external power supply voltage Vc in power supply unit 66 (see FIG. 9).
 さらに、圧力検出装置5と内燃機関1との接続関係について説明を行う。
 圧力検出装置5に設けられたハウジング30は、内燃機関1に設けられたシリンダヘッド4に対し、上述したようにねじ込みによって取り付けられている。したがって、ともに金属で構成されたハウジング30とシリンダヘッド4とが接続されていることになる。
Further, the connection relationship between the pressure detection device 5 and the internal combustion engine 1 will be described.
The housing 30 provided in the pressure detection device 5 is attached to the cylinder head 4 provided in the internal combustion engine 1 by screwing as described above. Therefore, the housing 30 and the cylinder head 4 both made of metal are connected.
 さらにまた、制御装置6と内燃機関1との接続関係について説明を行う。
 制御装置6に設けられた電源部66(図9参照)の接地端は、内燃機関1に設けられたシリンダブロック2に接続される。
Furthermore, the connection relationship between the control device 6 and the internal combustion engine 1 will be described.
A grounding end of a power supply unit 66 (see FIG. 9) provided in the control device 6 is connected to a cylinder block 2 provided in the internal combustion engine 1.
 本実施の形態において、内燃機関1に設けられたシリンダブロック2およびシリンダヘッド4は、上述したように接続関係にある。したがって、圧力検出装置5における圧電素子10のグランドと、圧力検出装置5における実装基板210のグランドと、制御装置6における電源部66(図9参照)のグランドとは、これらシリンダブロック2およびシリンダヘッド4を介して共通に設定されていることになる。
 また、本実施の形態において、圧力検出装置5における実装基板210のグランドと、制御装置6における電源部66(図9参照)のグランドとは、伝送ケーブル8の第3ケーブル83を介して共通に設定されている。
In the present embodiment, the cylinder block 2 and the cylinder head 4 provided in the internal combustion engine 1 are connected as described above. Therefore, the ground of the piezoelectric element 10 in the pressure detection device 5, the ground of the mounting substrate 210 in the pressure detection device 5, and the ground of the power supply unit 66 (see FIG. 9) in the control device 6 are the cylinder block 2 and the cylinder head. 4 is set in common through the terminal 4.
Further, in the present embodiment, the ground of the mounting substrate 210 in the pressure detection device 5 and the ground of the power supply unit 66 (see FIG. 9) in the control device 6 are shared via the third cable 83 of the transmission cable 8. Is set.
 ここで、本実施の形態の圧力検出装置5は、単体で販売される場合と、圧力検出装置5に伝送ケーブル8を装着した状態で販売される場合とがあり得る。これらのうち、前者においては、出力側第1接続ピン21cが定電圧供給手段として、出力側第2接続ピン21dが出力信号伝送手段として、出力側第3接続ピン21eが接地手段として、それぞれ機能する。これに対し、後者においては、出力側第1接続ピン21cに接続される第1ケーブル81が定電圧供給手段として、出力側第2接続ピン21dに接続される第2ケーブル82が出力信号伝送手段として、出力側第3接続ピン21eに接続される第3ケーブル83が接地手段として、それぞれ機能する。 Here, the pressure detection device 5 of the present embodiment may be sold alone or sold with the transmission cable 8 attached to the pressure detection device 5. Among these, in the former, the output side first connection pin 21c functions as a constant voltage supply unit, the output side second connection pin 21d functions as an output signal transmission unit, and the output side third connection pin 21e functions as a ground unit. To do. On the other hand, in the latter case, the first cable 81 connected to the output side first connection pin 21c is a constant voltage supply means, and the second cable 82 connected to the output side second connection pin 21d is an output signal transmission means. As described above, the third cables 83 connected to the output-side third connection pins 21e function as grounding means.
 本実施の形態の内燃機関1を搭載した装置では、内燃機関1を始動させる際に、この装置に搭載される各種機器の故障診断が実行される。例えば圧力検出システムにおいては、圧力検出装置5の故障診断に加えて、圧力検出装置5と制御装置6とを接続する伝送ケーブル8(より具体的には、第1ケーブル81、第2ケーブル82および第3ケーブル83)の故障診断(断線検出)が行われる。 In the apparatus equipped with the internal combustion engine 1 of the present embodiment, when the internal combustion engine 1 is started, failure diagnosis of various devices mounted on the apparatus is executed. For example, in the pressure detection system, in addition to the failure diagnosis of the pressure detection device 5, the transmission cable 8 (more specifically, the first cable 81, the second cable 82, and the like) that connects the pressure detection device 5 and the control device 6. Fault diagnosis (disconnection detection) of the third cable 83) is performed.
 図11は、内燃機関1の始動時における断線検出動作の手順を説明するためのフローチャートである。
 内燃機関1を始動させるためのイグニッションスイッチ(図示せず)がオンに設定されると(ステップ11)、制御装置6は、電源部66から伝送ケーブル8を介して圧力検出装置5に外部出力電圧Voの給電を開始する(ステップ12)。続いて、制御装置6は、制御装置6と圧力検出装置5とを接続する伝送ケーブル8の断線検出動作を実行し(ステップ13)、断線が検出されたか否かを判断する(ステップ14)。
FIG. 11 is a flowchart for explaining the procedure of the disconnection detection operation at the start of the internal combustion engine 1.
When an ignition switch (not shown) for starting the internal combustion engine 1 is set to ON (step 11), the control device 6 sends an external output voltage from the power source 66 to the pressure detection device 5 via the transmission cable 8. Vo power supply is started (step 12). Subsequently, the control device 6 performs a disconnection detection operation of the transmission cable 8 connecting the control device 6 and the pressure detection device 5 (step 13), and determines whether or not a disconnection is detected (step 14).
 ステップ14において肯定の判断(YES)を行った場合、すなわち、伝送ケーブル8を構成する第1ケーブル81、第2ケーブル82および第3ケーブル83のいずれかにおいて断線が検出された場合、制御装置6は、どのケーブルにおいて断線が検出されたかについてのデータを、制御装置6に内蔵されるEEPROM63に記録する(ステップ15)。続いて、制御装置6は、図示しないユーザインタフェースに断線が検出されたことに関するメッセージを表示させ(ステップ16)、一連の処理を完了する。 If an affirmative determination (YES) is made in step 14, that is, if disconnection is detected in any of the first cable 81, the second cable 82, and the third cable 83 that constitute the transmission cable 8, the control device 6 Records data on which cable is detected to be disconnected in the EEPROM 63 built in the control device 6 (step 15). Subsequently, the control device 6 displays a message on the disconnection detection on a user interface (not shown) (step 16), and completes a series of processing.
 一方、ステップ14において否定の判断(NO)を行った場合、すなわち、伝送ケーブル8を構成する第1ケーブル81、第2ケーブル82および第3ケーブル83のいずれにおいても断線が検出されなかった場合、制御装置6は、そのまま処理を完了する。 On the other hand, if a negative determination (NO) is made in step 14, that is, if no disconnection is detected in any of the first cable 81, the second cable 82, and the third cable 83 constituting the transmission cable 8, The control device 6 completes the process as it is.
 ここで、本実施の形態では、圧力検出装置5の実装基板210に設けられた出力接地端子211eが、出力側第3接続ピン21eおよび第3ケーブル83を介して制御装置6の電源部66に接続されており、この電源部66の接地端が、シリンダブロック2を介して接地されている。また、圧力検出装置5の実装基板210に設けられた入力接地端子211bが、入力側第2接続ピン21bを介してハウジング30に接続されており、このハウジング30は、シリンダヘッド4を介して接地されている。このため、例えば第3ケーブル83で断線が発生した場合においても、実装基板210が、入力接地端子211bを介して接地されているために、上述した断線検出動作において断線を検出できなくなる懸念がある。 Here, in the present embodiment, the output ground terminal 211e provided on the mounting substrate 210 of the pressure detection device 5 is connected to the power supply unit 66 of the control device 6 via the output-side third connection pin 21e and the third cable 83. The power supply unit 66 is grounded via the cylinder block 2. An input ground terminal 211b provided on the mounting board 210 of the pressure detection device 5 is connected to the housing 30 via the input-side second connection pin 21b. The housing 30 is grounded via the cylinder head 4. Has been. For this reason, for example, even when a disconnection occurs in the third cable 83, there is a concern that the disconnection cannot be detected in the above-described disconnection detection operation because the mounting substrate 210 is grounded via the input ground terminal 211b. .
 これに対し、本実施の形態では、実装基板210において、入力接地端子211bと出力接地端子211eとの間に直流遮断回路215を設け、入力接地端子211bからハウジング30に向けて直流電流が流れないようにした。このため、実装基板210に直流を供給する場合においては、出力接地端子211eは接地としての機能を有する一方、入力接地端子211bは接地としての機能を有さないようになる。その結果、上述した断線検出動作において、断線検出用の信号として直流信号を供給することにより、第3ケーブル83における断線の有無を検出することが可能となる。 On the other hand, in the present embodiment, in the mounting substrate 210, a DC cutoff circuit 215 is provided between the input ground terminal 211b and the output ground terminal 211e so that no DC current flows from the input ground terminal 211b toward the housing 30. I did it. Therefore, when direct current is supplied to the mounting board 210, the output ground terminal 211e has a function as ground, while the input ground terminal 211b does not have a function as ground. As a result, in the above-described disconnection detection operation, it is possible to detect the presence or absence of disconnection in the third cable 83 by supplying a DC signal as a signal for detecting disconnection.
 次に、本実施の形態の圧力検出装置5による圧力検出動作について説明する。
 内燃機関1の作動時には、センサ部100のダイアフラムヘッド40の内側部42に、燃焼室C内で発生した燃焼圧が付与される。そして、ダイアフラムヘッド40に付与された燃焼圧が、第1電極部50と第2電極部55とによって挟まれた圧電素子10に作用することにより、この圧電素子10に燃焼圧に応じた電荷が生じる。圧電素子10に生じた電荷は、第2電極部55、コイルスプリング70および伝導部材22を介して、入力電荷Qiとして回路基板部21の実装基板210に供給される。実装基板210に供給された入力電荷Qiは、実装基板210に設けられた各種回路にて積分処理および増幅処理がなされた後、その電荷に応じた外部出力電圧Voが、回路基板部21から伝送ケーブル8を介して、制御装置6に供給される。
Next, the pressure detection operation by the pressure detection device 5 of the present embodiment will be described.
During operation of the internal combustion engine 1, the combustion pressure generated in the combustion chamber C is applied to the inner portion 42 of the diaphragm head 40 of the sensor unit 100. The combustion pressure applied to the diaphragm head 40 acts on the piezoelectric element 10 sandwiched between the first electrode portion 50 and the second electrode portion 55, so that electric charges corresponding to the combustion pressure are applied to the piezoelectric element 10. Arise. The electric charge generated in the piezoelectric element 10 is supplied to the mounting board 210 of the circuit board part 21 as the input electric charge Qi through the second electrode part 55, the coil spring 70 and the conductive member 22. The input charge Qi supplied to the mounting board 210 is subjected to integration processing and amplification processing in various circuits provided on the mounting board 210, and then an external output voltage Vo corresponding to the charge is transmitted from the circuit board portion 21. It is supplied to the control device 6 via the cable 8.
 ここで、本実施の形態の圧力検出装置5は、内燃機関1に取り付けられており、内燃機関1の動作に伴って発生する電磁波が、圧力検出装置5に設けられた実装基板210に影響を与える。すなわち、実装基板210で用いられる各種信号および実装基板210から出力される外部出力電圧Voに、上述した電磁波に起因するノイズが重畳されてしまう懸念がある。 Here, the pressure detection device 5 of the present embodiment is attached to the internal combustion engine 1, and electromagnetic waves generated in accordance with the operation of the internal combustion engine 1 affect the mounting substrate 210 provided in the pressure detection device 5. give. That is, there is a concern that noise due to the above-described electromagnetic waves is superimposed on various signals used on the mounting substrate 210 and the external output voltage Vo output from the mounting substrate 210.
 これに対し、本実施の形態では、実装基板210において、直流遮断回路215を介して入力接地端子211bを設けているので、各回路で生じた交流成分のノイズについては、直流遮断回路215を通過させて接地に落とすことができる。このため、圧力検出装置5から制御装置6に伝送される外部出力電圧Voに重畳されるノイズを低減することができる。 On the other hand, in the present embodiment, the input ground terminal 211b is provided on the mounting substrate 210 via the DC cutoff circuit 215. Therefore, AC component noise generated in each circuit passes through the DC cutoff circuit 215. Can be dropped to ground. For this reason, the noise superimposed on the external output voltage Vo transmitted from the pressure detection device 5 to the control device 6 can be reduced.
 なお、本実施の形態では、圧電素子10を用いた圧力検出装置5と制御装置6とを接続する伝送ケーブル8の断線検出を例として説明を行ったが、これに限られるものではなく、例えば温度、湿度、あるいは流量など、各種物理量を検出する検出装置と制御装置6とを接続する伝送ケーブル8の断線検出にも適用することができる。 In the present embodiment, the disconnection detection of the transmission cable 8 that connects the pressure detection device 5 and the control device 6 using the piezoelectric element 10 has been described as an example. However, the present invention is not limited to this. The present invention can also be applied to detection of disconnection of the transmission cable 8 that connects the control device 6 and a detection device that detects various physical quantities such as temperature, humidity, or flow rate.
 また、本実施の形態では、直流遮断回路215としてコンデンサを用いていたが、これに限られるものではなく、例えば入力接地端子211b側をアノードとするダイオードを用いてもよい。 In this embodiment, a capacitor is used as the DC cutoff circuit 215. However, the present invention is not limited to this. For example, a diode having an anode on the input ground terminal 211b side may be used.
 さらに、本実施の形態では、実装基板210に直流遮断回路215を組み込んでいたが、これに限られるものではなく、例えば実装基板210とハウジング30との間に、別途、直流遮断回路215を設けてもかまわない。 Further, in the present embodiment, the DC cut-off circuit 215 is incorporated in the mounting board 210. However, the present invention is not limited to this. For example, a DC cut-off circuit 215 is separately provided between the mounting board 210 and the housing 30. It doesn't matter.
1…内燃機関、2…シリンダブロック、3…ピストン、4…シリンダヘッド、5…圧力検出装置、6…制御装置、8…伝送ケーブル、10…圧電素子、21…回路基板部、22…伝導部材、23…覆い部材、30…ハウジング、61…入力受付部、62…MCU(Micro Control Unit)、63…EEPROM、64…駆動信号出力部、66…電源部、67…通信部、80…コネクタ、81…第1ケーブル、82…第2ケーブル、83…第3ケーブル、100…センサ部、200…信号処理部、210…実装基板、211…プリント配線基板、212…保護回路、213…積分回路、214…増幅回路、215…直流遮断回路、216…電源回路、300…保持部材 DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Cylinder block, 3 ... Piston, 4 ... Cylinder head, 5 ... Pressure detection apparatus, 6 ... Control apparatus, 8 ... Transmission cable, 10 ... Piezoelectric element, 21 ... Circuit board part, 22 ... Conductive member 23 ... Cover member, 30 ... Housing, 61 ... Input receiving unit, 62 ... Micro control unit (MCU), 63 ... EEPROM, 64 ... Drive signal output unit, 66 ... Power supply unit, 67 ... Communication unit, 80 ... Connector, 81 ... 1st cable, 82 ... 2nd cable, 83 ... 3rd cable, 100 ... Sensor part, 200 ... Signal processing part, 210 ... Mounting board, 211 ... Printed wiring board, 212 ... Protection circuit, 213 ... Integration circuit, 214 ... Amplifying circuit, 215 ... DC cut-off circuit, 216 ... Power supply circuit, 300 ... Holding member

Claims (5)

  1.  物理量の変化を検出する検出素子と、当該検出素子から出力される検出信号に処理を施す信号処理回路と、当該検出素子および当該信号処理回路が取り付けられるとともに、接地体に電気的に接続される筐体と、当該筐体と当該信号処理回路におけるグランドとを、直流電流の通電を抑制しながら接続する直流抑制部とを含む検出部と、
     前記検出部における前記信号処理回路に定電圧を供給するための定電圧供給線と、当該信号処理部から出力される出力信号を伝送するための出力信号伝送線と、当該信号処理回路における前記グランドに接続するための接地線とを介して当該検出部に接続され、さらに、前記接地体に電気的に接続されることで、当該検出部に当該定電圧を供給するとともに当該検出部から入力される当該出力信号に処理を施す供給/処理部とを含む検出システム。
    A detection element for detecting a change in physical quantity, a signal processing circuit for processing a detection signal output from the detection element, the detection element and the signal processing circuit are attached, and are electrically connected to a grounding body A detection unit including a casing, and a DC suppression unit that connects the casing and the ground in the signal processing circuit while suppressing energization of a DC current;
    A constant voltage supply line for supplying a constant voltage to the signal processing circuit in the detection unit, an output signal transmission line for transmitting an output signal output from the signal processing unit, and the ground in the signal processing circuit Is connected to the detection unit via a ground line for connection to the power source, and is further electrically connected to the grounding body so that the constant voltage is supplied to the detection unit and input from the detection unit. And a supply / processing unit that processes the output signal.
  2.  前記検出素子は、圧電体を用いて圧力を検出する圧電素子で構成され、
     前記信号処理回路は、前記圧電素子から入力される電荷信号を積分することで、当該電荷信号を電圧信号に変換する積分回路と、当該積分回路から入力される当該電圧信号を増幅し、得られた増幅信号を、前記出力信号伝送線を介して前記供給/処理部に出力する増幅回路とを有することを特徴とする請求項1記載の検出システム。
    The detection element includes a piezoelectric element that detects pressure using a piezoelectric body,
    The signal processing circuit is obtained by integrating the charge signal input from the piezoelectric element to amplify the voltage signal input from the integration circuit that converts the charge signal into a voltage signal and the integration circuit. The detection system according to claim 1, further comprising: an amplification circuit that outputs the amplified signal to the supply / processing unit via the output signal transmission line.
  3.  前記信号処理回路は、前記定電圧供給線を介して入力される前記定電圧を、当該定電圧よりも低い電圧に変換して、前記積分回路および前記増幅回路に供給する電源回路をさらに備えることを特徴とする請求項2記載の検出システム。 The signal processing circuit further includes a power supply circuit that converts the constant voltage input via the constant voltage supply line into a voltage lower than the constant voltage and supplies the converted voltage to the integrating circuit and the amplifier circuit. The detection system according to claim 2.
  4.  前記直流抑制部は、コンデンサを含むことを特徴とする請求項1乃至3のいずれか1項記載の検出システム。 The detection system according to any one of claims 1 to 3, wherein the direct current suppression unit includes a capacitor.
  5.  物理量の変化を検出する検出素子と、
     前記検出素子から出力される検出信号に処理を施す信号処理回路と、
     前記検出素子および前記信号処理回路が取り付けられる筐体と、
     前記信号処理回路に定電圧を供給するための定電圧供給手段と、
     前記信号処理回路から出力される出力信号を伝送するための出力信号伝送手段と、
     前記信号処理回路におけるグランドに接続するための接地手段と、
     前記筐体と前記信号処理回路における前記グランドとを、直流電流の通電を抑制しながら接続する直流抑制部と
    を含む検出装置。
    A detecting element for detecting a change in physical quantity;
    A signal processing circuit for processing a detection signal output from the detection element;
    A housing to which the detection element and the signal processing circuit are attached;
    Constant voltage supply means for supplying a constant voltage to the signal processing circuit;
    Output signal transmission means for transmitting an output signal output from the signal processing circuit;
    Grounding means for connecting to ground in the signal processing circuit;
    A detection apparatus comprising: a DC suppression unit that connects the casing and the ground in the signal processing circuit while suppressing energization of DC current.
PCT/JP2013/051726 2012-01-30 2013-01-28 Detection system and detection apparatus WO2013115124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012017373A JP5901982B2 (en) 2012-01-30 2012-01-30 Detection system and detection device
JP2012-017373 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115124A1 true WO2013115124A1 (en) 2013-08-08

Family

ID=48905163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051726 WO2013115124A1 (en) 2012-01-30 2013-01-28 Detection system and detection apparatus

Country Status (2)

Country Link
JP (1) JP5901982B2 (en)
WO (1) WO2013115124A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941138A (en) * 2014-04-16 2014-07-23 华北电力大学 OPGW whole-wire monitoring and diagnosing system and method
JP2015137924A (en) * 2014-01-22 2015-07-30 株式会社デンソー Charge amp built-in type combustion pressure sensor
CN106404267A (en) * 2015-07-31 2017-02-15 基斯特勒控股公司 Pressure sensor
CN108885151A (en) * 2016-03-24 2018-11-23 西铁城精密器件株式会社 Piezoelectric transducer
WO2020120593A1 (en) * 2018-12-14 2020-06-18 Kistler Holding Ag Sensor arrangement with a piezoelectric sensor and a measuring amplifier

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147059A1 (en) * 2014-03-27 2015-10-01 シチズンファインテックミヨタ株式会社 Pressure-detecting device
CN104568242B (en) * 2014-12-09 2017-04-05 太原航空仪表有限公司 The small-sized resonant vibration barrel pressure pickup signal conditioning circuit of piezoelectric excitation
JP6499601B2 (en) * 2016-02-25 2019-04-10 シチズンファインデバイス株式会社 Detection device and detection system
US10996127B2 (en) 2016-02-25 2021-05-04 Citizen Finedevice Co., Ltd. Pressure detection device and pressure detection system having first and second housings electrically insulated from each other
JP6483634B2 (en) * 2016-03-09 2019-03-13 シチズンファインデバイス株式会社 Detection device and detection system
JP6606483B2 (en) 2016-09-27 2019-11-13 シチズンファインデバイス株式会社 Pressure detection device, internal combustion engine with pressure detection device, and method of manufacturing pressure detection device
JP6827866B2 (en) * 2017-03-28 2021-02-10 シチズンファインデバイス株式会社 Detector and circuit board
JP6409148B1 (en) * 2018-08-28 2018-10-17 シチズンファインデバイス株式会社 Pressure detector, processing circuit
US11877864B2 (en) 2019-05-29 2024-01-23 Measurement Specialties, Inc. Voltage nulling pressure sensor preamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045857A (en) * 1998-07-29 2000-02-15 Honda Motor Co Ltd Cylinder internal pressure detecting device for engine
JP2000105163A (en) * 1998-09-30 2000-04-11 Fuji Koki Corp Pressure sensor
JP2001183253A (en) * 1999-12-24 2001-07-06 Denso Corp Dynamic quantity sensor device
JP2009052988A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Pressure sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045857A (en) * 1998-07-29 2000-02-15 Honda Motor Co Ltd Cylinder internal pressure detecting device for engine
JP2000105163A (en) * 1998-09-30 2000-04-11 Fuji Koki Corp Pressure sensor
JP2001183253A (en) * 1999-12-24 2001-07-06 Denso Corp Dynamic quantity sensor device
JP2009052988A (en) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd Pressure sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137924A (en) * 2014-01-22 2015-07-30 株式会社デンソー Charge amp built-in type combustion pressure sensor
WO2015111380A1 (en) * 2014-01-22 2015-07-30 株式会社デンソー Fuel-pressure sensor with built-in charge amplifier
CN106415230A (en) * 2014-01-22 2017-02-15 株式会社电装 Fuel-pressure sensor with built-in charge amplifier
CN106415230B (en) * 2014-01-22 2019-10-29 株式会社电装 Charge amplifier internally-arranged type burning pressure sensor
CN103941138A (en) * 2014-04-16 2014-07-23 华北电力大学 OPGW whole-wire monitoring and diagnosing system and method
CN106404267B (en) * 2015-07-31 2020-08-07 基斯特勒控股公司 Pressure sensor
CN106404267A (en) * 2015-07-31 2017-02-15 基斯特勒控股公司 Pressure sensor
EP3124947A3 (en) * 2015-07-31 2017-05-10 Kistler Holding AG Pressure sensor
US10458873B2 (en) 2015-07-31 2019-10-29 Kistler Holding Ag Pressure sensor
CN108885151A (en) * 2016-03-24 2018-11-23 西铁城精密器件株式会社 Piezoelectric transducer
EP3435052A4 (en) * 2016-03-24 2019-10-30 Citizen Finedevice Co., Ltd. Piezoelectric sensor
US11506555B2 (en) 2016-03-24 2022-11-22 Citizen Finedevice Co., Ltd. Piezoelectric sensor
WO2020120593A1 (en) * 2018-12-14 2020-06-18 Kistler Holding Ag Sensor arrangement with a piezoelectric sensor and a measuring amplifier

Also Published As

Publication number Publication date
JP2013156171A (en) 2013-08-15
JP5901982B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5901982B2 (en) Detection system and detection device
JP5883290B2 (en) Pressure detecting device and charge amplifier circuit
US9222424B2 (en) Internal combustion engine fitted with combustion pressure detection device
JP5820759B2 (en) Method for manufacturing pressure detection device, method for manufacturing internal combustion engine with pressure detection device
JP6624989B2 (en) Pressure detector
JP5975793B2 (en) Combustion pressure sensor
WO2013129483A1 (en) Combustion pressure detection device, and internal combustion engine equipped with combustion pressure detection device
JP5893920B2 (en) Detection system and detection device
JP2013174553A (en) Pressure detection device, and internal combustion engine equipped with pressure detection device
JP5936878B2 (en) Pressure detection device
US10996127B2 (en) Pressure detection device and pressure detection system having first and second housings electrically insulated from each other
JP2008185349A (en) Pressure sensor
JP4595747B2 (en) Pressure sensor
KR100562862B1 (en) Pressure detector having elongate housing containing pressure-sensitive element therein
JP6483634B2 (en) Detection device and detection system
JP6827866B2 (en) Detector and circuit board
WO2012157622A1 (en) Glow plug
JP2013140044A (en) Pressure detector and internal combustion engine having pressure detector
JP5883691B2 (en) Internal combustion engine with combustion pressure detector
JP2013174552A (en) Manufacturing method of pressure detection device, and pressure detection device
JP2013096805A (en) Dynamic quantity sensor
JP6764770B2 (en) Internal combustion engine with pressure detector and pressure detector
JP7008006B2 (en) Pressure detector
JP2017181191A (en) Pressure detection device and piezoelectric element
JP2020085624A (en) Pressure detector, circuit built-in member, and manufacturing method for pressure detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743438

Country of ref document: EP

Kind code of ref document: A1